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Abstract. We present explicit formulas for the distributions of the extreme eigenvalues of the
β–Jacobi random matrix ensemble in terms of the hypergeometric function of a matrix argument.
For β = 1, 2, 4, these formulas specialize to the well-known real, complex, and quaternion Jacobi
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1. Introduction. Various multivariate statistical techniques such as canonical
correlation analysis, multivariate analysis of variance, etc., are based on the distri-
butions of the extreme eigenvalues of random matrices and, in particular, real and
complex Jacobi random matrices [3, 5, 17].

The distribution of the extreme eigenvalues of the real Jacobi random matrices are
well known (see section 2.3). The contribution of this paper is to generalize this result
by deriving explicit expressions for the extreme eigenvalues of all β–Jacobi matrices
in terms of the hypergeometric function of a matrix argument. The real, complex,
and quaternion Jacobi random matrices are β–Jacobi distributed for β = 1, 2, and
4, respectively (see section 2 for the formal definitions of the classical Jacobi and
β–Jacobi ensembles).

Other than the classical real case [17], the complex (β = 2) Jacobi matrices are
of interest in wireless communication and signal processing [3, 5]. In general, the
β–Jacobi ensembles are prominent in statistical physics in the study of the positions
of the particles in a log-Coulomb gas at 2/β temperature, with Jacobi potentials [9].

The parameter β. Historically, the hypergeometric function of a matrix argu-
ment has been defined in terms of a parameter α [2, 10]. Elsewhere in random matrix
theory, for example in statistical mechanics, the parameter β = 2

α is prevalent (and
known as the Boltzmann constant). This can sometimes be a source of confusion,
thus we emphasize the fact that in this paper we are using the parameter β only.

Organization of the paper. In section 2 we define the Wishart, Jacobi, and β–
Jacobi ensembles; we review their matrix models, define the hypergeometric function
of a matrix argument, and survey the existing formulas for the distributions of the
extreme eigenvalues of the real Jacobi ensemble. We present our main results—
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2 IOANA DUMITRIU AND PLAMEN KOEV

formulas for the distributions of the extreme eigenvalues of the β–Jacobi ensemble—in
section 3. We present numerical experiments in section 4.

2. Background. In this section we recall the definitions of the hypergeometric
function of a matrix argument; we define the classical Jacobi random matrix ensem-
bles, the β–Jacobi distributions and ensembles, and survey the classical relationships
between them.

2.1. Hypergeometric function of a matrix argument. This function (de-
fined below) is a series of Jack functions. The Jack function, C(β)

κ (X), defined for a
partition κ and a symmetric matrix X, is a symmetric, homogeneous polynomial in
the eigenvalues x1, x2, . . . , xm of X. It generalizes the (normalized) Schur function,
the zonal polynomial [20, Proposition 1.2], and the quaternion zonal polynomial to
which it reduces for β = 1, 2, and 4, respectively [15].

There are several normalizations of the Jack function; in this paper we use the
“C” normalization, i.e., the one for which

∑
κ�k C

(β)
κ (X) = (trX)k. The explicit

definition and properties of the Jack function are available from the classical paper
by Stanley [20]; we do not need them here.

Definition 2.1 (hypergeometric function of a matrix argument). Let p ≥ 0 and
q ≥ 0 be integers, and let X be an m × m symmetric matrix. The hypergeometric
function of a matrix argument X and parameter β > 0 is defined as

pF
(β)

q (a1, . . . , ap; b1, . . . , bq;X) ≡
∞∑
k=0

∑
κ�k

(a1)
(β)
κ · · · (ap)(β)

κ

k!(b1)
(β)
κ · · · (bq)(β)

κ
· C(β)

κ (X),

where κ � k means κ = (κ1, κ2, . . . , κm), κ1 ≥ κ2 ≥ · · · ≥ κm ≥ 0, is a partition of k
and

(a)(β)

κ ≡
m∏
i=1

κi∏
j=1

(
a− β

2
(i− 1) + j − 1

)

is the generalized Pochhammer symbol.

2.2. The classical Jacobi ensembles and the β–Jacobi ensemble. The
classical real, complex, and quaternion Jacobi ensembles are defined as “ratios” of
real, complex, and quaternion Wishart matrices, respectively. The β–Jacobi ensem-
bles generalize the eigenvalue distributions of the classical Jacobi ensembles, and are
defined for any β > 0.

Definition 2.2 (real, complex, and quaternion Wishart ensembles). Let Z be an
m× n real, complex, or quaternion Gaussian random matrix distributed as N(0, In ⊗
Σ), CN(0, In ⊗ Σ), or HN(0, In ⊗ Σ), respectively.1 Then the matrix A = ZDZ is a
real, complex, or quaternion m×m central Wishart matrix with n degrees of freedom
and covariance matrix Σ.2 We denote the real, complex, and quaternion Wishart
distributions as W (β)

m (n,Σ) for β = 1, 2, and 4, respectively.
Definition 2.3 (real, complex, and quaternion Jacobi ensembles). If A ∼

W (β)
m (n1,Σ) and B ∼ W (β)

m (n2,Σ) are independent real, complex, or quaternion Wi-
shart matrices (where β = 1, 2, or 4, respectively), then C = A(A + B)−1 is called a
real, complex, or quaternion Jacobi matrix, respectively.

1The notation H stands for William Hamilton, who introduced the quaternions in the 1850s.
2The notation ZD stands for the quaternion conjugate transpose of the matrix Z and reduces to

the Hermitian transpose ZH when Z is complex and the transpose ZT when Z is real.
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EIGENVALUES OF BETA–JACOBI MATRICES 3

The real Jacobi distribution is sometimes called “multivariate Beta distribution”
[4, 17] and is closely related to the “MANOVA” (Multivariate ANalysis Of VAriance)
distribution [17], which, rather than consider the matrix A(A + B)−1, examines the
matrix AB−1.

Remark 2.4. The eigenvalues of a Jacobi matrix are unaffected by the covariance
matrix Σ, which can thus be assumed to be the identity without any loss of generality.

Proposition 2.5. Every eigenvalue λ of a real, complex, and quaternion Jacobi
matrix C is real; moreover, λ ∈ [0, 1].

Proof. If λ is an eigenvalue of C, then there exists an eigenvalue λ̃ of AB−1

such that λ = λ̃/(1 + λ̃). Since A and B are positive semidefinite, λ̃ is positive
as a generalized eigenvalue of the matrix pair (A,B), and the desired conclusion
follows.

The following definition is central to this paper.
Definition 2.6 (β–Jacobi ensembles). For β > 0 and parameters a1, a2 >

β
2 (m− 1), a matrix is said to be β–Jacobi distributed if its joint eigenvalue density is

(2.1)
1

I(m,β, a1, a2)

m∏
i=1

λ
a1− β

2 (m−1)−1
i (1 − λi)

a2− β
2 (m−1)−1

∏
i<j

|λi − λj |β ,

where

I(m,β, a1, a2) =
Γ(β)
m

(
1 + β

2m
)

π
m(m−1)β

2

(
Γ
(
1 + β

2

))m · Γ(β)
m (a1) Γ(β)

m (a2)

Γ(β)
m (a1 + a2)

is the Selberg Integral value [19] and

Γ(β)

m (c) ≡ π
m(m−1)β

4

m∏
i=1

Γ

(
c− β

2
(i− 1)

)
for �(c) >

β

2
(m− 1)

is the multivariate gamma function of parameter β > 0.
From Theorem 3.3.4 in Muirhead [17], the real Jacobi matrices are β–Jacobi

distributed for β = 1. By repeating the same argument for β = 2 and 4 we obtain
the following theorem.

Theorem 2.7. With the notation as in Definition 2.3, the matrix C is β–Jacobi
distributed with parameters a1 = β

2n1 and a2 = β
2n2, for β = 1, 2, or 4, respectively.

Following the methods of Dumitriu and Edelman [7], several matrix models were
proposed that have β–Jacobi distributions [11, 14, 21]; here we present the one from
Sutton [21].

Theorem 2.8. The tridiagonal positive semidefinite matrix J ≡ ZTZ is β–Jacobi
distributed, where

Z ≡

⎡
⎢⎢⎢⎢⎣

cm −smc′m−1

cm−1s
′
m−1

. . .

. . . −s2c
′
1

c1s
′
1

⎤
⎥⎥⎥⎥⎦ ,

with

ck ∼
√

Beta
(
a1 − β

2 (m− k), a2 − β
2 (m− k)

)
, sk =

√
1 − c2k,

c′k ∼
√

Beta
(
β
2 k, a1 + a2 − β

2 (2m− k − 1)
)
, s′k =

√
1 − c′2k ,
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4 IOANA DUMITRIU AND PLAMEN KOEV

where Beta stands for the well-known univariate beta distribution.

2.3. Survey of the real case (β = 1). We now survey the well-known distribu-
tion of the largest eigenvalue of the real Jacobi matrix (which is β–Jacobi distributed
for β = 1). We generalize this result to any β in section 3.

Let A ∼ W (1)
m (n1,Σ), B ∼ W (1)

m (n2,Σ), where n1 ≥ m and n2 ≥ m, be indepen-
dent real Wishart matrices. For the distribution of the largest eigenvalue λmax of the
real Jacobi matrix A(A + B)−1 we have [4, equation (61)]:

P (λmax < x) =
Γ(1)
m (n1+n2

2 )Γ(1)
m (m+1

2 )

Γ(1)
m (n1+m+1

2 )Γ(1)
m (n2

2 )
· x

mn1
2 · 2F

(1)

1 (n1

2 , −n2+m+1
2 ; n1+m+1

2 ;xI).

Using [1, equation (9)] we obtain an explicit expression for the density of λmax:

dens(λmax) =
mn1

2
·
Γ(1)
m (n1+n2

2 )Γ(1)
m (m+1

2 )

Γ(1)
m (n1+m+1

2 )Γ(1)
m (n2

2 )
· (1 − x)

n2−m−1
2 x

mn1
2 −1

× 2F
(1)

1

(
n1−1

2 , m−n2+1
2 ; n1+m+1

2 ;xIm−1

)
.

3. The extreme eigenvalues of the β–Jacobi ensembles. We obtain our
main result in this paper by integrating the joint eigenvalue density of a β–Jacobi
matrix and expressing the resulting integral in terms of the hypergeometric function
of a matrix argument.

The connection with 2F
(β)

1 comes from Kaneko [10, Theorem 5]:

(3.1) 2F
(β)

1 (r, a, a + b, tIm)

=
1

I (m,β, a, b)

∫
[0,1]m

m∏
i=1

xλ1
i (1 − xi)

λ2(1 − txi)
−r

∏
i<j

|xj − xi|βdx1 · · · dxm,

where a = λ1 + β
2 (m− 1) + 1 and b = λ2 + β

2 (m− 1) + 1.
Now let the m × m matrix Jβ be β–Jacobi distributed with parameters a1, a2,

and let λmax and λmin be its largest and smallest eigenvalues, respectively.
Theorem 3.1. The distributions of λmax and λmin are as follows:

P (λmax < x) =
Γ(β)
m (a1 + a2) · Γ(β)

m

(
β
2 (m− 1) + 1

)
Γ(β)
m

(
a1 + β

2 (m− 1) + 1
)
· Γ(β)

m (a2)
· xma1

× 2F
(β)

1

(
a1,

β

2
(m− 1) + 1 − a2; a1 +

β

2
(m− 1) + 1;xIm

)
,(3.2)

P (λmin < x) = 1 −
Γ(β)
m (a1 + a2) · Γ(β)

m

(
β
2 (m− 1) + 1

)
Γ(β)
m

(
a2 + β

2 (m− 1) + 1
)
· Γ(β)

m (a1)
· (1 − x)ma2

× 2F
(β)

1

(
a2,

β

2
(m− 1) + 1 − a1; a2 +

β

2
(m− 1) + 1; (1 − x)Im

)
.

Proof. We start with the joint eigenvalue density of Jβ , (2.1), and note that to
compute the distribution of the largest eigenvalue of Jβ we need to integrate this

density from 0 to xIm. For bi ≡ ai − β
2 (m− 1) − 1, i = 1, 2, we have

P (Jβ < xIm) =
1

I(m,β, a1, a2)

∫
[0,x]m

m∏
i=1

λb1
i (1 − λi)

b2
∏
i<j

|λi − λj |βdλ1 · · · dλm.
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Fig. 1. Left: Distributions of λmax of a complex Jacobi matrix for two sets of parameters
(m,n1, n2). The solid and dotted lines are the empirical distributions with 10, 000 replications; “◦”
and “�” are the corresponding analytical predictions (3.2). Right: Distributions of λmax of a 5× 5

β–Jacobi matrix with ai = ti + β
2
(m − 1) + 1, i = 1, 2 for different values of β. The solid, dotted,

and dashed lines are the empirical distributions with 10, 000 replications; “◦,” “�,” and “�” are the
corresponding analytical predictions (3.3).

We make an m-dimensional change of variables xλ̃i = λi to obtain

P (Jβ < xIm) =
xma1

I(m,β, a1, a2)

∫
[0,1]m

m∏
i=1

λ̃b1
i (1 − xλ̃i)

b2
∏
i<j

|λ̃i − λ̃j |βdλ̃1 · · · dλ̃m.

We evaluate the last integral using (3.1) and get (3.2).
The result for λmin follows immediately by observing that 1 − λmin is the largest

eigenvalue of I − Jβ , which is β–Jacobi distributed with parameters a2 and a1.

When t ≡ a2− β
2 (m−1)−1 is a nonnegative integer, the hypergeometric series in

(3.2) terminates and becomes a polynomial of degree mt. Then we can use Proposition
11.47 in Forrester [9] to obtain the expression

(3.3) P (λmax < x) = xma1

mt∑
k=0

∑
κ�k, κ1≤t

1

k!
(a1)

(β)

κ C(β)

κ ((1 − x)I),

which numerically is often much more feasible than (3.2).
Analogous results extending the well-known distributions of the extreme eigen-

values of real random matrices [4, 17] were obtained for β–Laguerre ensembles in [6,
section 10.2] and complex Wishart ensembles in [18].

4. Numerical experiments. We performed extensive numerical tests against
Monte-Carlo experiments to confirm the correctness of Theorem 3.2. We report the
results of two tests whose results were typical.

In our first experiment we tested formula (3.2) against the empirical distribution
of the largest eigenvalue of a complex Jacobi matrix. The more samples we used
for the empirical distribution, the better approximation it was to the analytical pre-
diction, with 10,000 samples sufficing for a perfect visual match. We generated our
sample matrices in MATLAB [16] as C=A/(A+B), where A and B were complex
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Wishart matrices generated as A=Z’*Z/2, where Z=randn(n1,m)+i*randn(n1,m),
with B generated analogously. We evaluated the analytical formula (3.2), also in
MATLAB, using the algorithms for computing pF

(β)
q from [12, 13]. We plot the re-

sults in Figure 1, left.
In our second experiment we demonstrate the β dependence of the largest eigen-

value of a 5×5 β–Jacobi matrix with parameters ai = ti+
β
2 (m−1)+1, i = 1, 2, where

we fixed t1 = 4 and t2 = 5. In Figure 1, right, we plotted the empirical distribution
from 10,000 replications which, again, matched the theoretical prediction (3.3) (which
we could use since a2 − β

2 (m− 1) − 1 = t2 = 5 was a nonnegative integer).
In line with the results of [8], this experiment supports a conjecture that as β

increases (and so do a1 and a2), the largest eigenvalue of the β–Jacobi ensemble
approaches 1 = lima,b→−1 λ

a,b, where λa,b is the largest root of the mth orthogonal
Jacobi polynomial Ja,b

m (x).
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RIGIDITY IN FINITE-ELEMENT MATRICES: SUFFICIENT
CONDITIONS FOR THE RIGIDITY OF STRUCTURES

AND SUBSTRUCTURES∗

GIL SHKLARSKI† AND SIVAN TOLEDO†

Abstract. We present an algebraic theory of rigidity for finite-element matrices. The theory
provides a formal algebraic definition of finite-element matrices; notions of rigidity of finite-element
matrices and of mutual rigidity between two such matrices; and sufficient conditions for rigidity and
mutual rigidity. We also present a novel sparsification technique, called fretsaw extension, for finite-
element matrices. We show that this sparsification technique generates matrices that are mutually
rigid with the original matrix. We also show that one particular construction algorithm for fretsaw
extensions generates matrices that can be factored with essentially no fill. This algorithm can be
used to construct preconditioners for finite-element matrices. Both our theory and our algorithms
are applicable to a wide range of finite-element matrices, including matrices arising from finite-
element discretizations of both scalar and vector partial differential equations (e.g., electrostatics
and linear elasticity). Both the theory and the algorithms are purely algebraic-combinatorial. They
manipulate only the element matrices and are oblivious to the geometry, the material properties,
and the discretization details of the underlying continuous problem.

Key words. rigidity, finite elements, element matrices, null spaces, combinatorial precondition-
ers, support preconditioners

AMS subject classifications. 65F10, 65F05, 65F50, 65Y20, 05C50, 05C85, 52C25

DOI. 10.1137/060650295

1. Introduction. This paper presents an algebraic-combinatorial theory of rigid-
ity for finite-element matrices and applies this theory to two important problems:
determining whether a finite-element matrix represents a rigid structure, and deter-
mining whether a matrix representing a structure and a matrix representing a sub-
structure have the same range and null space. The paper addresses these problems
by providing simple sufficient conditions for rigidity and null-space equality, and by
providing linear-time algorithms (assuming bounded element degrees) to test these
conditions.

Our results employ three new technical tools—one combinatorial and two alge-
braic. One algebraic tool is a purely algebraic definition of the rigidity relationships
between two rank-deficient matrices.1 The other algebraic tool is a definition of a
finite-element matrix A as a sum of symmetric semidefinite matrices {Ae}ke=1 that
all satisfy a certain condition. The combinatorial tool is a graph, called the rigidity
graph, that represents the rigidity relationships between the terms Ae of a finite-
element matrix A =

∑
e Ae. These tools may be applicable to the solution of other

problems involving finite-element matrices.

∗Received by the editors January 18, 2006; accepted for publication (in revised form) by E. Ng
June 18, 2007; published electronically January 23, 2008. This research was supported by an IBM
Faculty Partnership Award, by grant 848/04 from the Israel Science Foundation (founded by the
Israel Academy of Sciences and Humanities), and by grant 2002261 from the United States–Israel
Binational Science Foundation.

http://www.siam.org/journals/simax/30-1/65029.html
†School of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv

University, Tel-Aviv 69978, Israel (shagil@tau.ac.il, stoledo@tau.ac.il).
1The literature contains another definition of matrix rigidity, originally defined by Valiant [20].

Our definition is completely different and unrelated.
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The concept of rigidity is usually associated with elastic structures and with
finite-element models of such structures. An elastic structure is rigid if any deformation
of it that is not a translation and/or rotation requires energy. A coin is rigid; a door
hinge is not. Our theory of rigidity is consistent with the traditional concept of rigid-
ity, but it is purely algebraic and more general. By purely algebraic, we mean that
our theory uses only the element matrices Ae and a basis for the rigid body motions
(e.g., translations and rotations) of the structure. Our theory and algorithms do
not depend on the geometry of the structure or on the details of the finite-element
discretization. Our theory generalizes the concept of rigidity in a natural way from
finite-element models of elastic structures to models of other physical systems, such
as electrostatics.

On the other hand, our theory provides only sufficient conditions for rigidity.
Characterizing rigidity exactly is difficult, even if we limit our attention to specific
families of elastic structures. Consider, for example, a structure consisting of struts
(elastic bars) connected at their endpoints by pin joints. The struts can only elongate
or compress, and the struts connected to a pin are free to rotate around the pin.
The rigidity of such structures in two dimensions has been extensively studied and is
now well understood. However, the conditions that characterize the rigidity of a two-
dimensional structure are expensive to check [14], and they do not generalize easily
to three-dimensional trusses and to other structures. Our theory of rigidity avoids
these difficulties by focusing on characterizations that are simple and general but only
sufficient. In fact, structures consisting of struts always fail our sufficient conditions.

Our new theory is essentially an algebraic-combinatorial characterization of finite-
element models of structures that are, informally speaking, “evidently rigid.” Models
of structures that are rigid due to complex nonlocal interactions between parts of
the structure will usually fail our conditions. The main contributions of this paper
are formal and easily computed characterizations of “evidently rigid” structures. We,
therefore, call structures that pass our test evidently rigid. We apply these character-
izations to the construction of algorithms that find certain minimally rigid substruc-
tures of a rigid structure.

The results in this paper are a step toward the generalization of results in spec-
tral graph theory from Laplacians to finite-element matrices. We are particularly
interested in an area of spectral graph theory called support theory or support precon-
ditioning. This area is mostly concerned with constructing an approximation B to a
matrix A in three steps: (1) building a graph GA that represents A, (2) approximat-
ing GA by a simpler graph GB , and (3) building the matrix B that corresponds to
GB . The graph GB should be simpler in some way than GA (e.g., smaller balanced
vertex separators), and the generalized eigenvalues λ of Ax = λBx should not be very
large or very small. Much progress has been made in this area, but only when A is a
Laplacian [2, 11, 18, 19, 5], is a diagonally dominant symmetric matrix (i.e., GA is a
signed graph) [4, 11], or can be well approximated by a Laplacian [6].

This paper makes three contributions to support preconditioning of finite-element
matrices. First, the paper provides a reasonable definition of what a finite-element
matrix is: a sum of element matrices whose null spaces are derived from a single global
null space. Second, the paper provides a graph model of finite-element matrices and
proposes graph algorithms for sparsifying the coefficient matrix A. Third, the paper
provides simple combinatorial conditions that allow us to show that the range and
null space of the sparsified matrix (the preconditioner) B are the same as those of
A. The qualitative range and null-space equalities are weaker statements than quan-
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titative bounds on the generalized eigenvalues, but they are a step toward eigenvalue
bounds. A weighted rigidity graph may allow us to bound eigenvalues and generalized
eigenvalues. The same technical tools may also be applicable to the generalization of
other results in spectral graph theory, such as Cheeger-type bounds [7, 9, 1].

We use these three contributions to define algebraic methods to sparsify finite-
elements matrices. One method drops elements from the structure. The other method,
called fretsaw preconditioning, cuts some of the connections between elements. The
fretsaw preconditioning algorithm that we present in the paper constructs, using an
almost linear amount of work, a preconditioner that can be applied in linear time in
every iteration and which has the same null space as the original matrix (the linear
cost is with respect to the number of unknowns assuming a fixed element degree).
The construction is purely algebraic—the same algorithm, data structure, and code
work on elasticity and electrostatics in two and three dimensions.

The paper is quite technical and fairly complex. It may seem strange that all of
this complexity is needed to prove results that are physically intuitive. If a structure is
evidently rigid, why is all the algebraic and notational complexity needed? The answer
appears to be that the complexity is a result of our insistence on a purely algebraic
and combinatorial analysis. We do not rely directly on any physical or continuous
properties of the structures that we analyze. Our analysis reaches physically intuitive
conclusions, but the algebraic path toward these conclusions is complex. We believe
that the generality and software-engineering advantages of a purely algebraic approach
are worth the complexity of the paper. Furthermore, the analysis is complex, but the
algorithms that we propose are both general and simple.

The paper is organized as follows. Finite-element matrices are sums of very
sparse terms called element matrices. Most of the rows and columns in each element
matrix contain only zeros. Such matrices have a trivial null space that the zero
columns generate and sometimes another null subspace that is more interesting. Our
study of rigidity is essentially a study of these nontrivial subspaces. Section 2 defines
these subspaces and analyzes their properties. The combinatorial structure that we
use, the rigidity graph, is defined by rigidity relationships between pairs of element
matrices. These relationships are defined and explored in sections 3 and 4. One of our
ultimate goals in this paper is to show that a connected rigidity graph implies that the
underlying structure is rigid. Unfortunately, this is not true for collections of arbitrary
element matrices; they must have something in common for their rigidity graph to
be useful. This common property is called null-space compatibility. Its definition
and significance are explained in section 5. The rigidity graph itself is defined in
section 6, along with a proof that a connected rigidity graph implies the rigidity of
the structure. Section 7 studies three families of finite-element matrices and their
rigidity graphs to further illustrate the concepts presented earlier. In section 8 we
present two methods for sparsifying a finite-element matrix while preserving its null
space. The more sophisticated method, called spanning-tree fretsaw extension, always
leads to simplified finite-element matrices that can be factored with essentially no fill.
We present four numerical examples of the use of spanning-tree fretsaw extension as
preconditioners in section 9. We conclude the paper with a few open problems in
section 10.

2. The essential null space of a matrix. Rigidity is closely related to rela-
tionships between null spaces. We therefore start our analysis with definitions and
lemmas concerning the null space of matrices with zero columns.
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10 GIL SHKLARSKI AND SIVAN TOLEDO

Definition 2.1. Let A be an m-by-n matrix, let ZA ⊆ {1, . . . , n} be the set of its
zero columns, and let NA be the set of its nonzero columns. The essential null space
of A is the space of vectors x satisfying

• Ax = 0 and
• xi = 0 for i ∈ ZA.

The trivial null space of A is the space of vectors x satisfying xi = 0 for i ∈ NA. We
denote the two spaces by enull(A) and tnull(A).

Clearly, the essential and trivial null spaces of a matrix are orthogonal, and their
span (union) is simply the null space of the matrix.

Definition 2.2. A restriction of a vector y to the indices NA is the vector

xi =

{
yi, i ∈ NA,

0 otherwise.

(The restriction is a projection.) An extension with respect to NA of a vector x
satisfying xi = 0 for i ∈ ZA is any vector y such that yi = xi for all i ∈ NA.

Lemma 2.3. Let y be any extension with respect to NA of a vector x ∈ enull(A).
Then y ∈ null(A).

Proof. Let z = y − x, so y = x + z. Since yi = xi for i ∈ Ne, we have zi = 0 for
i ∈ NA. Therefore, Az = 0, so Ay = Ax + Az = 0 + 0 = 0.

Lemma 2.4. The restriction of a vector y ∈ null(A) to NA is in enull(A).
Proof. Let y = yN + yZ be a splitting of y into a vector yN with nonzeros only in

NA and yZ with nonzeros only in ZA. Clearly, AyN = AyZ = 0. The result follows
from the fact that yN is the restriction of y to NA.

Lemma 2.5. Let A and B be n-by-n symmetric positive semidefinite ( spsd)
matrices. Then null(A + B) = null(A) ∩ null(B).

Proof. Let x ∈ null(A + B) and suppose for contradiction that Ax �= 0. A has
a decomposition A = LLT . Since Ax �= 0, we also have LTx �= 0, so xTLLTx =
xTAx > 0. Therefore, xTBx = xT (A + B)x − xTAx = 0 − xTAx < 0, which is a
contradiction. Therefore, x ∈ null(A) and, similarly, x ∈ null(B). This shows that
null(A + B) ⊆ null(A) ∩ null(B). The other direction is trivial.

A column that is nonzero in both A and B can be a zero in A + B due to
cancellation. The next lemma shows that this cannot happen when the terms are
spsd matrices.

Lemma 2.6. Let A and B be n-by-n spsd matrices. Then NA+B = NA ∪NB.
Proof. Clearly NA+B ⊆ NA ∪ NB . Suppose for contradiction that the lemma

does not hold. Then there is a column index j in NA or in NB that is not in NA+B .
Without loss of generality assume that j ∈ NA. Let x be the jth unit vector. Since
j ∈ NA, Ax, which is simply the jth column of A, is nonzero. But since j �∈ NA+B ,
we also have (A + B)x = 0, which is a contradiction to Lemma 2.5.

The last lemma in this section shows the relationship between null-space contain-
ment and the sets N and Z.

Lemma 2.7. Let A be an m-by-n matrix and let B be an l-by-n matrix with
null(B) ⊆ null(A). Then ZB ⊆ ZA and NA ⊆ NB.

Proof. Let j ∈ ZB and let ej be the jth unit vector. By definition, Bej = 0. By
the assumption on the null spaces, Aej = 0. This implies that j ∈ ZA. Therefore,
ZB ⊆ ZA, so the complements of these sets satisfy NA ⊆ NB .

3. Rigidity relationships. This section introduces the main notion of this
paper: rigidity relationships.
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Definition 3.1. Let A be an m-by-n matrix A and let B be an �-by-n matrix. A
vector y ∈ enull(B) is a mapping of x ∈ enull(A) if yi = xi for all i ∈ NA ∩NB. We
say that the mapping is rigid if there is only one such mapping of x. The matrix A is
rigid with respect to the matrix B if every vector x ∈ enull(A) has a rigid mapping
y ∈ enull(B). The two matrices are called mutually rigid if they are rigid with respect
to each other.

Example 3.2. Mutual rigidity does not follow automatically from one-sided rigid-
ity. Consider, for example,

A =

⎡
⎢⎢⎢⎣

0 0 0 0

0 1 −1 0

0 −1 1 0

0 0 0 0

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

⎤
⎥⎥⎥⎦ .

A is rigid with respect to B, because vectors in enull(A) have the form
[
0 α α 0

]T
,

and they have a unique extension to vectors in enull(B), namely,
[
α α α α

]T
. But

vectors in enull(B), which have the form
[
α α β β

]T
, are not in null(A) unless

α = β.

Example 3.3. Let A1 =
[
1 −1 0 0

]
and A2 =

[
0 1 −1 0

]
. The two

matrices are mutually rigid. We have

enull (A1) = span
[
1 1 0 0

]T
,

enull (A2) = span
[
0 1 1 0

]T
.

Therefore, for every x =
[
α α 0 0

]T ∈ enull(A1), there is a unique y =
[
0 α

α 0
]T ∈ enull(A1), and symmetrically for A2.

Now let A3 =
[
0 1 0 0

]
and A4 =

[
0 0 −1 1

]
. A1 is not rigid with respect

to either of these two. It is not rigid with respect to A3 because enull(A3) = {0}, so
for an x ∈ enull(A1) there is no rigid y in enull(A3). A1 is not rigid with respect to A4

because for x =
[
α α 0 0

]T ∈ enull(A1), any y =
[
0 0 β β

]T
is in enull(A4),

so the mapping is not unique.

We now show how to test whether a matrix A is rigid with respect to another
matrix B. For an m-by-n matrix A, we define ΨA and ΨĀ to be the n-by-n diagonal
matrices

[
ΨA

]
jj

=

{
1, j ∈ NA,

0, j ∈ ZA,
and

[
ΨĀ

]
jj

=

{
0, j ∈ NA,

1, j ∈ ZA .

For two matrices A and B with n columns each, we define ΨA,B to be the n-by-n
diagonal matrix

[
ΨA,B

]
jj

=

{
1, j ∈ NA ∩NB ,

0 otherwise.

Let x be a vector in enull(A). If x has a mapping to y ∈ enull(B), then y must
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satisfy the equations

ΨB̄y = 0,

By = 0,

ΨA,By = ΨA,Bx.

The first two conditions constrain y to be in enull(B) and the third condition constrains
y to be a mapping of x. If this linear system is inconsistent, then x has no rigid map-
ping to y ∈ enull(B), so A is not rigid with respect to B. Even if the system is
consistent for all x ∈ enull(A), A is not necessarily rigid with respect to B. If the

coefficient matrix RA,B =
[
ΨT

B̄
BT ΨT

A,B

]T
is rank deficient, the mappings are not

unique.
Therefore, to test rigidity we must check that for all x ∈ enull(A), the vector[

0 0 xTΨT
A,B

]T
is spanned by the columns of RA,B and that the columns of RA,B

are linearly independent. We now derive equivalent conditions, but on a much smaller
system. First, we drop rows and columns ZB from the coefficient matrix and rows ZB

from y. These rows correspond to equations that constrain yi = 0 for i ∈ ZB . Since
these elements of y are not used in any of the other equations, we can drop them
without making an inconsistent system into a consistent one. Also, these columns are
linearly independent, and all the other columns are independent of them. Therefore,
dropping these |ZB | rows and columns reduces the rank of RA,B by exactly |ZB |;
therefore, RA,B is full rank if and only if the remaining rows and columns form a
full-rank matrix. Now we drop all the zero rows from the system—rows NB in the
ΨB̄ block of RA,B , the zero rows from the B block, and the zero rows from the ΨA,B

block. These rows correspond to equations that are consistent for any x and any y;
being zero, they do not affect the rank of RA,B .

We assume without loss of generality that columns NA ∩ NB are the last among
the nonzero columns of B. We denote by B̆ the matrix formed by dropping all the
zero rows and columns of B and by yNB

the vector formed by dropping elements
ZB from y. (For any n-vector v and a set S ⊆ {1, . . . , n}, the notation vS means
the |S|-vector formed by dropping the elements of v whose indices are not in S, and
similarly for matrices.) Our reduced system is

R̆A,ByNB
=

[
B̆

0 | I

]
yNB

=

[
0

xNA∩NB

]
,

where the order of the identity matrix is |NA ∩NB |. To test whether A is rigid with
respect to B, we construct a matrix NA whose columns span enull(A) and check

1. whether R̆A,B has full rank, and
2. whether, for every column x in NA,

R̆A,BR̆
+
A,B

[
0

xNA∩NB

]
=

[
0

xNA∩NB

]
,

where R̆+
A,B denotes the Moore–Penrose pseudoinverse of R̆A,B .

If B has only a few nonzero rows and columns and if the number of columns in NA

is small, then this is an inexpensive computation. The construction is illustrated in
Figure 3.1.
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=

x

y

ΞA,B

0

0

ΞA,B

B

ΞB̄

the inner matrix is
R̆A,B

B (with A as an
overlay)

A

Fig. 3.1. Testing rigidity. The top part of the figure shows the entire linear system, and the
bottom part shows the construction of R̆A,B.

The next three lemmas show the relationship between null-space containment and
rigidity.

Lemma 3.4. Let A be an m-by-n matrix and let B be an l-by-n matrix. If
null(A) ⊆ null(B), then A is rigid with respect to B.
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14 GIL SHKLARSKI AND SIVAN TOLEDO

Proof. Let x ∈ enull(A). Therefore, x ∈ null(A) and x ∈ null(B). Define
y = ΨBx. We have that xi = yi for all i ∈ NA ∩ NB . By Lemma 2.4, y ∈ enull(B).
Therefore, y is a mapping of x in enull(B).

We now show that y is the unique mapping of x. Let ŷ be a mapping of x in
enull(B). By Lemma 2.7, NB ⊆ NA. The equalities yi = xi = ŷi hold for every
i ∈ NA ∩ NB = NB . Therefore, y = ŷ, so y is the unique mapping of x in enull(B).
This implies that A is rigid with respect to B.

Lemma 3.5. Let A be an m-by-n matrix and let B be an l-by-n matrix. If
NB ⊆ NA and A is rigid with respect to B, then null(A) ⊆ null(B).

Proof. Let x ∈ null(A). We can write x as y + z, where y ∈ enull(A) and
z ∈ tnull(A). We have that z ∈ tnull(B), since NB ⊆ NA. Therefore, z ∈ null(B).

We now show that y is also in null(B). Let u be y’s rigid mapping to enull(B).
We have that ui = yi for every i ∈ NA ∩ NB = NB . Therefore, we can write y as
y = u+u′, where u′

i �= 0 only for i ∈ NA\NB . It is clear that u′ ∈ tnull(B) ⊆ null(B).
Therefore, y = u + u′ ∈ null(B) and x = y + z ∈ null(B), which is what we need to
prove the lemma.

Corollary 3.6. Let A be an m-by-n matrix and let B be an l-by-n matrix, such
that NA = NB. Then A and B are mutually rigid if and only if null(A) = null(B).

Proof. The proof directly follows from Lemmas 3.4 and 3.5.
The last lemma in this section shows that rigidity relationships are maintained in

certain Schur complements.
Lemma 3.7. Let A and B be n-by-n matrices of the form

A =

[
A11 0

0 0

]
, B =

[
B11 B12

B21 B22

]
,

where A11 and B11 are k-by-k matrices for some 0 < k < n. Assume that A is
rigid with respect to B, that NA = {1, . . . , k}, that NB = {1, . . . , n}, and that B22 is
nonsingular. Then null(A11) ⊆ null(B11 −B12B

−1
22 B21) and A11 is rigid with respect

to B11 −B12B
−1
22 B21.

Moreover, if A and B are mutually rigid, then null(A11) = null(B11−B12B
−1
22 B21).

Proof. Let x ∈ null(A11). Let x̂ be the vector of size n that equals x in its
first k coordinates and that contains zeros in its last (n − k) coordinates. Clearly,
x̂ ∈ null(A). Since there are no zero columns in A11 we also have that x̂ ∈ enull(A).
Let ŷ be the rigid mapping of x̂ in enull(B). The equalities ŷi = x̂i = xi hold for all
i ∈ {1, . . . , k}. Let y be a vector of size (n− k) consisting of the last (n− k) elements
of ŷ. Writing the equation Bŷ = 0 in terms of x and y, we obtain

[
B11 B12

B21 B22

] [
x
y

]
=

[
B11x + B12y

B21x + B22y

]
= 0.

Multiplying the second block row by B−1
22 gives y = −B−1

22 B21x. Substituting y
with −B−1

22 B21x in the first block row, we get B11x − B12B
−1
22 B21x = 0. Therefore,

x ∈ null(B11−B12B
−1
22 B21), so null(A11) ⊆ null(B11−B12B

−1
22 B21). The containment

of the null spaces, along with Lemma 3.4, shows that A11 is rigid with respect to
B11 −B12B

−1
22 B21.

Now assume A and B are mutually rigid (we add the assumption that B is rigid
with respect to A). Let x ∈ null(B11−B12B

−1
22 B21). Let x̂ be the vector of size n that

equals x in its first k coordinates and equals −B−1
22 B21x in its last (n−k) coordinates.
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The vector x̂ is in enull(B), since

Bx̂ =

[
B11x + B12(−B−1

22 B21x)

B21x + B22(−B−1
22 B21x)

]
= 0.

Because B is rigid with respect to A, the vector x̂ has a unique mapping to enull(A).
Since NA ⊆ NB , this mapping is ΨAx̂. Therefore, AΨAx̂ = 0, so x ∈ null(A11).
This implies that null(B11 − B12B

−1
22 B21) ⊆ null(A11). Therefore, null(B11 − B12

B−1
22 B21) = null(A11). This concludes the proof of the lemma.

4. Rigidity of sums. Finite-element matrices are sums of mostly zero matrices.
This section extends our study of rigidity to sums of matrices.

Lemma 4.1. Let A and B be spsd n-by-n matrices. The matrix (A+B) is always
rigid with respect to A and with respect to B.

Proof. By Lemma 2.5, null(A + B) ⊆ null(A). Therefore, from Lemma 3.4,
(A+B) is rigid with respect to A. By symmetry, (A+B) is rigid with respect to B,
too.

The previous lemma showed that a sum of spsd matrices is rigid with respect to
the terms of the sum, but the terms are not always rigid with respect to the sum,
even when the terms are spsd. For example, A =

[
1 −1
−1 1

]
is not rigid with respect to

A + [ 0 0
0 1 ], because A is rank deficient but the sum is not. Hence, vectors in enull(A)

have no mapping at all to the essential null space of the sum.

Also, the lemma holds for spsd matrices but not for general matrices. Let A =

[ 1 0
0 1 ] and let B =

[
0 −1
0 −1

]
. Their sum is A + B =

[
1 −1
0 0

]
. The vector

[
1 1

]T ∈
enull(A + B), but this vector has no mapping into enull(A) = {0}.

The next lemma strengthens both the hypothesis and the consequence of
Lemma 4.1. It shows that if the terms are mutually rigid, then rigidity between
the terms and the sum is mutual.

Lemma 4.2. Let A and B be mutually rigid spsd n-by-n matrices. Then A and
A + B are mutually rigid, and B and A + B are mutually rigid.

Proof. By Lemma 4.1, the sum is rigid with respect to the terms. So all we need
to prove is the opposite direction.

Let x �= 0 be a vector in enull(A). Let y be the rigid mapping of x into enull(B).
We now show that x has a mapping into enull(A + B); we shall show the uniqueness
of the mapping later. We define

wi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xi, i ∈ NA,

xi = yi, i ∈ NA ∩NB ,

yi, i ∈ NB ,

0 otherwise.

Because NA+B ⊆ NA ∪ NB , we have wi = 0 for i ∈ ZA+B . Therefore, to show that
w ∈ enull(A + B), we need only to show that (A + B)w = 0. This is indeed the case
because w is an extension of both x and y, so Aw = Bw = 0.

We now show that w is the unique mapping of x into enull(A+B). Suppose that
there is another mapping w′ �= w. Under this supposition, there must be w′

i �= wi

for some i ∈ NB \ NA, so the restriction y′ of w′ to NB must be different from y.
By Lemmas 2.5 and 2.4, y′ ∈ enull(B). The vectors y and y′ are both in enull(B)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

16 GIL SHKLARSKI AND SIVAN TOLEDO

and both coincide with x on NA ∩ NB , so they are two different mappings of x,
contradicting the hypothesis that A and B are mutually rigid.

Lemma 4.3. Let A and B be spsd n-by-n matrices, and let C be an m-by-n
matrix . C and A + B are mutually rigid if and only if C and A + αB are mutually
rigid for every real α > 0.

Proof. Let α > 0. We first show that enull(A + αB) = enull(A + B). It is
clear that NαB = NB and that αB is spsd. From Lemma 2.6 we have NA+αB =
NA ∪NαB = NA ∪NB = NA+B . By Lemma 2.5,

null(A + αB) = null(A) ∩ null(αB) = null(A) ∩ null(B) = null(A + B).

Therefore, enull(A + αB) = enull(A + B). The lemma follows directly from the
definition of mutual rigidity and the fact that enull(A + αB) = enull(A + B).

In some special cases, mutual rigidity between sums allows us to infer that the
terms of the sums are mutually rigid and vice versa.

Lemma 4.4. Let A, B, and C be n-by-n spsd matrices such that NC ∩ NA =
NC ∩NB = ∅. Then A and B are mutually rigid if and only if A+C and B +C are
mutually rigid.

Proof. Assume that A and B are mutually rigid. We show that A + C is rigid
with respect to B + C. By symmetry, B + C is rigid with respect to A + C, so the
two sums are mutually rigid.

Let x ∈ enull(A + C). By Lemma 2.5, x ∈ null(A) and x ∈ null(C). Let x̂ be x’s
restriction to NA, and let x̄ be its restriction to NC . By Lemma 2.4, x̂ ∈ enull(A) and
x̄ ∈ enull(C). Let ŷ be x̂’s rigid (unique) mapping to enull(B). We define the vector

yi =

⎧⎪⎪⎨
⎪⎪⎩
ŷi, i ∈ NB ,

x̄i, i ∈ NC ,

0 otherwise.

The definition is valid because NC∩NB = ∅. We show that y is the rigid mapping of x
in enull(B+C). Multiplying B+C by y we obtain (B+C)y = By+Cy = Bŷ+Cx̄ =
0+0 = 0. Since yi = 0 for all i /∈ NB ∪NC = NB+C , y ∈ enull(B+C). By definition,
yi = xi for all i ∈ (NA ∩ NB) ∪ NC = (NA ∪ NC) ∩ (NB ∪ NC) = NA+C ∩ NB+C .
Therefore, y is a mapping of x in enull(B + C).

We now show that this mapping is indeed unique. Assume that there exists
u ∈ enull(B + C) that satisfies ui = xi for all i ∈ NA+C ∩ NB+C . We have that
ui = xi = yi for all i ∈ NC ⊆ NA+C ∩ NB+C . Let û be u’s restriction to NB . We
have û ∈ enull(B) and ûi = xi = x̂i for all i ∈ NA ∩NB . Therefore, û is a mapping of
x̂ in enull(B). Since A and B are mutually rigid, û must equal ŷ. Therefore, u = y,
and y is the rigid mapping of x in enull(B +C). This shows that A+C is rigid with
respect to B + C. Figure 4.1 (a) presents this notation graphically.

We now show the other direction. Assume A + C and B + C are mutually rigid.
We show that A is rigid with respect to B; mutual rigidity follows by symmetry. The
notation for this part of the proof is presented graphically in part (b) of Figure 4.1.
Let x̂ ∈ enull(A). Since NC ∩ NA = ∅, x̂ ∈ tnull(C). We also have x̂i = 0 for all
i /∈ NA∪NC = NA+C , so x̂ ∈ enull(A+C). Let ŷ be x̂’s rigid mapping to enull(B+C).
We show that ŷ is x̂’s rigid mapping to enull(B). By Lemma 2.5, ŷ ∈ null(B). Also,
ŷi = x̂i = 0 for all i in i ∈ NC ⊆ NB+C . Therefore, ŷi = 0 for all i /∈ NB , so
ŷ ∈ enull(B). By definition, x̂i = ŷi for all (NA∩NB) ⊆ NA+C ∩NB+C . This implies
that ŷ is a mapping of x̂ in enull(B).
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Finally, we claim that ŷ is the unique mapping of x̂. Assume that there exists û
in enull(B) that satisfies x̂i = ûi for all i ∈ NA ∩ NB . We have that x̂i = ûi = 0 for
all i ∈ NC . Since û is also in enull(B+C), it is the rigid mapping of x̂ ∈ enull(A+C)
in enull(B + C). Because A + B is rigid with respect to A + C, we have that û = ŷ.
Therefore, ŷ is indeed unique. This implies that A is rigid with respect to B, which
concludes the proof of the lemma.

(a) (b)

Fig. 4.1. An illustration of the notation of Lemma 4.4: (a) The vectors defined in the proof of
the mutual rigidity of A+B and A+C. (b) The vectors defined in the proof of the mutual rigidity
of A and B.

We would like to build larger assemblies of mutually rigid matrices from chains
of mutual rigidity, but this is not always possible, as the next example shows.

Example 4.5. Let

A =

⎡
⎢⎣

1 −1 0

−1 1 0

0 0 0

⎤
⎥⎦ , B =

⎡
⎢⎣

0 0 0

0 1 −1

0 −1 1

⎤
⎥⎦ , C =

⎡
⎢⎣

1 0 1

0 0 0

1 0 1

⎤
⎥⎦ .

These matrices are all spsd, and their essential null spaces are spanned by
[
1 1 0

]T
,[

0 1 1
]T

, and
[
1 0 −1

]T
, respectively. The matrices A and B are mutually rigid,

and so are B and C. The essential null space of A+B is spanned by
[
1 1 1

]T
, and

the essential null space of B + C is spanned by
[
1 −1 −1

]T
. Therefore, C is not

mutually rigid with A + B and A is not mutually rigid with B + C. Moreover, none
of A, B, C, A + B, or B + C is mutually rigid with A + B + C, because A + B + C
has full rank. This example is inspired by the analysis of signed graphs in [4], which
shows that A + B + C has full rank.

To build larger assemblies of mutually rigid matrices, we need another tool.

5. Null-space compatibility. This section defines and explores a concept that
we call null-space compatibility, which is the tool that allows us to build large assem-
blies of mutually rigid matrices.
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Definition 5.1. Let S ⊆ R
n be a linear space. A matrix A is called S-compatible

(or compatible with S) if every vector in enull(A) has a unique extension into a vector
in S, and if the restriction of every vector in S to NA is always in enull(A).

Definition 5.2. Let A be an n-by-n matrix. If A is S-compatible and NA =
{1, . . . , n}, then we say that A is S-rigid. This condition is equivalent to null(A) = S

and NA = {1, . . . , n}. If S is clear from the context, we simply say that A is rigid.

Given a basis for S, we can easily check the compatibility of a matrix A. Let the
columns of N be a basis for S, and let NA be a basis for enull(A). A is compatible
with S if and only if NA = ΨANA and ΨAN have the same range. This can be checked
numerically using the singular value decompositions of the two matrices, for example.

Example 5.3. Let S = span
[
1 1 1

]T
. The matrices A and B from Example 4.5

are compatible with S, but C is not. Note that the mutual rigidity of A and C together
with the S-compatibility of A do not imply S-compatibility for C. The matrix A+B
from the same example is also compatible with S, and since NA+B = {1, 2, 3}, A+B
is rigid.

Lemma 5.4. Let A be an S-compatible matrix. Let N be a matrix whose columns
form a basis for S. Then enull(A) = span(ΨAN).

Proof. We first show that enull(A) ⊆ span(ΨAN). Let x ∈ enull(A). Since A is
S-compatible, x has a unique extension w in S. By definition, there exists a vector
y such that w = Ny. Substituting w in the equation x = ΨAw, we get x = ΨANy.
Therefore, x ∈ span(ΨAN), so enull(A) ⊆ span(ΨAN).

We now show that span(ΨAN) ⊆ enull(A). Let x = ΨANy ∈ span(ΨAN).
Define w = Ny ∈ S. Since A is S-compatible, x = ΨAw ∈ enull(A). This shows that
span(ΨAN) ⊆ enull(A).

The definition of null-space compatibility is related to the definition of mutual
rigidity, but it defines compatibility with respect to a space, not with respect to
a particular matrix having that space as a null space. Here is the relationship of
S-compatibility with mutual rigidity.

Lemma 5.5. Let S ⊆ R
m be a linear space, and let B be some matrix with no

zero columns whose null space is S. Another matrix A is S-compatible if and only if
A and B are mutually rigid.

Proof. The equivalence follows from the fact that enull(B) = null(B) = S (because
ZB = ∅) and from the fact that NA ∩NB = NA.

If the dimension of S is small, the S-compatibility test given after Definition 5.2
can be much more efficient than the test for mutual rigidity given earlier.

Example 5.6. Two matrices that are both compatible with some null space S are
not necessarily mutually rigid. For example,

A =

⎡
⎢⎢⎢⎣

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

⎤
⎥⎥⎥⎦

are both compatible with S = span
[
1 1 1 1

]T
, but they are not mutually rigid.

Also, their sum is not S-compatible. Since NA+B = {1, 2, 3, 4}, enull(A + B) =
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null(A + B), and so A + B is S-compatible if and only if null(A + B) = S. However,

enull(A + B) = enull

⎡
⎢⎢⎢⎣

1 −1 0 0

−1 1 0 0

0 0 1 −1

0 0 −1 1

⎤
⎥⎥⎥⎦ = span

⎡
⎢⎢⎣

1 0
1 0
0 1
0 1

⎤
⎥⎥⎦ �= S = span

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

The next two lemmas are key results that will allow us to build large assemblies
of mutually rigid matrices.

Lemma 5.7. Let A and B be mutually rigid and both S-compatible for some null
space S. Then A + B is also S-compatible.

Proof. Let u be a vector in enull(A+B), let x be the restriction of u to NA, and
let y be the restriction to NB . Clearly, y is the rigid mapping of x in enull(B). Let w
be the extension of x to a vector in S. We claim that w is a unique extension of u
to S. If w is not an extension of u, then they must differ on an index in NB \ NA,
so the restriction of w to NB is some y′ �= y. The vector y′ is also a mapping of x in
enull(B). But both y and y′ �= y are mappings of x in enull(B), in contradiction to
the mutual rigidity of A and B.

We now show that w is the unique extension of u to S. If there is another
extension, its restriction to NA must differ from x, so it cannot be an extension of u.

We now show that the restriction u of a vector w ∈ S is in enull(A + B). The
restriction x of u to NA is also the restriction of w to NA, so Ax = Au = Aw = 0.
The same is true for the restrictions to NB . Therefore, (A + B)u = 0, so u ∈
enull(A + B).

We now introduce a technical lemma that shows how to transform a null-space
extension of a vector into the rigid mapping of the same vector.

Lemma 5.8. Let A and B be mutually rigid matrices, both compatible with some
null space S. Let x ∈ enull(A) and let w ∈ S be its unique extension to S. The vector
ΨBw is the rigid mapping of x to enull(B). In particular, if some vector u is the rigid
mapping of x to enull(B), then the unique extension of u to S is w.

Proof. Let y = ΨBw. We first show that y is the rigid mapping of x to enull(B).
The vector y is in enull(B), since B is S-compatible and w ∈ S. From the definition
of w and y we have that xi = wi = yi for all i ∈ NA ∩NB . Therefore, y is a mapping
of x in enull(B), and it is unique because A and B are mutually rigid.

Let u be the rigid mapping of x to enull(B). Since this mapping is unique,
u = y = ΨBw. The vector w is an extension of u to S. The matrix B is S-compatible,
so this extension is unique.

The following lemma is the main result of this section. Compare this lemma to
Example 4.5: in the example, the three matrices were not all compatible with some
null space S; the conclusion of this lemma does not hold in that example.

Lemma 5.9. Let A, B, and C be spsd n-by-n matrices, all compatible with some
null space S. Let A and B be mutually rigid, and let B and C be mutually rigid. Then
A + B and C are mutually rigid (and similarly for B + C and A).

Proof. We first show that A+B is rigid with respect to C. Let u be in enull(A+B).
By Lemma 5.7, the matrix A+B is S-compatible. Let w be u’s extension to S. Define
x = ΨT

Aw, y = ΨT
Bw, and z = ΨT

Cw. By definition, u = ΨT
A+Bw and therefore zi = ui

for all i ∈ NA+B ∩ NC . Since C is S compatible, z ∈ enull(C). Therefore, z is a
mapping of u in enull(C).

We show that z is unique. The matrices A+B and A are mutually rigid according
to Lemma 4.2. According to Lemma 5.8, x is the unique mapping of u in enull(A), y
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is the unique mapping of x in enull(B), and z is the unique mapping of y in enull(C).
Therefore, z is the unique mapping of u in enull(C) and A + B is rigid with respect
to C.

We show now that C is rigid with respect to A + B. Let z be in enull(C). The
matrix C is S-compatible. Let w be z’s extension to S. Define x = ΨT

Aw, y = ΨT
Bw,

and u = ΨT
A+Bw. By definition, z = ΨT

Cw and therefore zi = ui for all i ∈ NA+B∩NC .
Therefore, u is a mapping of z in enull(A + B).

We show that u is unique. According to Lemma 5.8, y is the unique mapping of
z in enull(B), x is the unique mapping of y in enull(A), and u is the unique mapping
of x in enull(A + B). Therefore, u is the unique mapping of z in enull(A + B).
This implies that C is rigid with respect to A + B and concludes the proof of the
lemma.

Example 5.10. This example shows that A and C are not necessarily mutually
rigid, even if A and B are mutually rigid, B and C are mutually rigid, and all three
are S-compatible. Instead of constructing the matrices here, we refer the reader
to the construction of section 7.3, where we construct matrices that model elastic
triangles. Suppose that the three matrices are 10-by-10, that A corresponds to a
triangle (p1, p2, p3) (pi is a point in the plane; all the points are different), B to
(p2,, p3, p4), and C to (p3, p4, p5). We assume that the three triangles are disjoint
except for shared edges. The analysis of section 7.3 shows that A and B are mutually
rigid and B and C are mutually rigid but A and C are not.

The next lemma characterizes the rigidity and S-compatibility of certain larger
sums.

Lemma 5.11. Let A and B1, B2, . . . , Bk be spsd matrices, all compatible with
some null space S. Let A and Bi be mutually rigid for i = 1, . . . , k. Then A and
A +

∑k
i=1 Bi are mutually rigid and A +

∑k
i=1 Bi is S-compatible.

Proof. We prove the lemma by induction on k. The case k = 1 is trivial by
Lemmas 4.2 and 5.7. We assume that the claim is correct for k smaller than n and
show that it is correct for k = n. By the inductive assumption, A and A +

∑n−1
i=1 Bi

are mutually rigid and A +
∑n−1

i=1 Bi is S-compatible. A and Bn are mutually rigid.

Therefore, by Lemma 5.9 we have that Bn and A+A+
∑n−1

i=1 Bi = 2A+
∑n−1

i=1 Bi are

mutually rigid. By Lemma 4.3, Bn and A+
∑n−1

i=1 Bi are mutually rigid. Therefore, by

Lemma 5.9, we have that A and Bn+A+
∑n−1

i=1 Bi = A+
∑n

i=1 Bi are mutually rigid.

By Lemma 5.7, we also have that Bn +A+
∑n−1

i=1 Bi = A+
∑n

i=1 Bi is S-compatible.
This concludes the proof of the lemma.

The following lemma shows that the property of null-space compatiblity simplifies
considerably the mutual rigidity test.

Lemma 5.12. Let A and B be S-compatible spsd n-by-n matrices. Let N be an
n-by-� rank-� matrix whose colums span S. The matrices A and B are mutually rigid
if and only if ΨA,BN has full rank �.

Proof. We first assume that ΨA,BN has rank � and show that A is rigid with
respect to B. Mutual rigidity follows by symmetry. Let x ∈ enull(A). We can write
x = ΨANyA, where yA is some length-� vector. Define u = ΨBNyA. By definition,
u ∈ enull(B) and since

ΨA,Bu = ΨA,BΨBNyA = ΨA,BNyA = ΨA,BΨANyA = ΨA,Bx,

u is a mapping of x.
We now show it is unique. Let û ∈ enull(B), such that ΨA,Bû = ΨA,Bx. By
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definition, û = ΨBNyB for some yB . Clearly,

ΨA,Bû = ΨA,BΨBNyB = ΨA,BNyB .

Therefore,

ΨA,BNyA = ΨA,Bx = ΨA,Bû = ΨA,BNyB ,

and

ΨA,BN(yA − yB) = 0.

Since ΨA,BN has full rank �, yA = yB , so u = û. This implies that A is rigid with
respect to B.

We show now the other direction. Assume A and B are mutually rigid. We note
that for every 0 �= n ∈ S, ΨAn �= 0. Otherwise, both n and 0 are extensions of
0 ∈ enull(A), which is impossible since A is S-compatible.

Suppose for contradiction that ΨA,BN is rank deficient. Therefore, there exists
an �-vector y �= 0 such that ΨA,BNy = 0. Since N has full rank, Ny �= 0. By the
previous paragraph, ΨANy �= 0. Note that the mapping of ΨANy to enull(B) is
ΨBΨANy = ΨA,BNy = 0. Therefore, the mapping of both the zero vector and of
ΨANy to enull(B) is the zero vector. This contradicts the assumption that A and B
are mutually rigid.

6. The rigidity graph. Mutual rigidity relationships in a collection of S-com-
patible spsd matrices define a graph structure that we can use to demonstrate the
rigidity of finite-element matrices.

Definition 6.1. Let A1, A2, . . . , Ak be S-compatible spsd n-by-n matrices for
some null space S. The rigidity graph G = (V,E) of {A1, . . . , Ak} is the undirected
graph with V = {A1, . . . , Ak} and

E = {(Ae, Af ) : Ae and Af are mutually rigid} .

We could also define the rigidity graph of a collection of matrices that are not
necessarily S-compatible, but Example 4.5 suggests that such a definition might not
have interesting applications. On the other hand, the S-compatibility requirement in
the definition enables an important result, which we state and prove next.

Lemma 6.2. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of S-
compatible spsd n-by-n matrices. Let H be a connected subgraph of G, let V (H)
denote the vertex set of H, and let Ae be a vertex in H. Then Ae and

∑
Af∈V (H) Af

are mutually rigid, and
∑

Af∈V (H) Af is S-compatible.
Proof. Let T be a depth-first-search tree of H whose root is Ae. Denote by

{T1, T2, . . . , Tc} the trees in the forest formed from T by removing Ae. We show
by induction on the height h of T that the following claims holds: Ae and Ae +∑c

i=1

∑
Af∈Ti

Af are mutually rigid, and Ae +
∑c

i=1

∑
Af∈Ti

Af is S-compatible.

The claim holds trivially for k = 1 (a single-vertex tree), because Ae is S-
compatible and is mutually rigid with itself.

Now, we assume that the inductive claim is correct for trees with height h or less
and we show it is correct for trees with height h+1. Let T be a tree of height h+1 whose
root vertex is Ae, and let T1, T2, . . . , Tc be the subtrees defined above. The height of
every Ti is h or less. Let Ai be the root vertex of Ti, and let Fi be the forest of Ai’s
descendants. By definition, Ae and Ai are mutually rigid. By the inductive claim on
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Ti, we have that Ai+
∑

Af∈Fi
Af is S-compatible and mutually rigid with Ai. We note

that all the sums of the form
∑

Af are symmetric and positive semidefinite. Therefore,
by Lemma 5.9 Ae and Ai +(Ai +

∑
Af∈Fi

Af ) = 2Ai +
∑

Af∈Fi
Af are mutually rigid.

By Lemma 4.3, we have that Ae and Ai +
∑

Af∈Fi
Af =

∑
Af∈Ti

Af are mutually

rigid for every i. By Lemma 5.11, we have that Ae and Ae +
∑c

i=1

∑
Af∈Ti

Af are

mutually rigid and Ae +
∑c

i=1

∑
Af∈Ti

Af is S-compatible. This concludes the proof
of the lemma.

The next result generalizes the previous lemma.

Theorem 6.3. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of S-
compatible spsd n-by-n matrices. Let H1 and H2 be two connected subgraphs of G that
share a vertex Ae. Then B =

∑
Af∈V (H1)

Af and C =
∑

Af∈V (H2)
Af are mutually

rigid.

Proof. According to Lemma 6.2, B and Ae are mutually rigid, and so are C
and Ae. By Lemma 5.9, we have that B and Ae + C are mutually rigid. The
sum Ae + C equals

∑
Af∈V (H2)\Ae

Af + 2Ae. By Lemma 4.3, we have that B and∑
Af∈V (H2)

Af = C are mutually rigid.

The next theorem shows that the rigidity graph can sometimes tell us that a
finite-element matrix is rigid in the sense that its null space is exactly S. This is only
a sufficient condition; it is not necessary.

Theorem 6.4. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of S-
compatible symmetric positive semidefinite n-by-n matrices. Let A =

∑k
e=1 Ae. Let

N be a matrix whose columns form a basis for S. If G is connected, then enull(A) =

span(ΨAN). In particular, if
⋃k

e=1 NAe = {1, . . . , n}, then null(A) = S and A is
rigid.

Proof. According to Lemma 6.2, A is S-compatible. Therefore, by Lemma 5.4,
enull(A) = span(ΨAN).

If
⋃k

e=1 NAe = {1, . . . , n}, then ΨAN = N and enull(A) = null(A). Therefore,
null(A) = enull(A) = span(ΨAN) = span(N) = S. By definition, A is rigid.

When the rigidity graph is not connected, the null space may or may not be S. To
show that a disconnected rigidity graph sometimes corresponds to a null space larger
than S, consider

A1 =

⎡
⎢⎢⎢⎣

1 −1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ and A2 =

⎡
⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 1 −1

0 0 −1 1

⎤
⎥⎥⎥⎦ .

Both are compatible with S = span
[
1 1 1 1

]T
, but they are not mutually rigid.

Therefore, their rigidity graph consists of two disconnected vertices. The null space

of A1 +A2 is spanned by both
[
1 1 1 1

]T
and

[
1 1 −1 −1

]T
, so it is indeed

larger than S, even though NA1
∪ NA2

= {1, 2, 3, 4}. Examples in which the rigidity
graph is not connected but the null space of the sum is S are more complex; we show
an example in section 7.3.

7. Three case studies. This section presents three families of S-compatible
spsd matrices for two different Ss. One is well known and we present it without
proofs. The second and third are more complex and we present them in full.
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7.1. Laplacians. The first family of matrices that we present consists of Lapla-
cians, matrices that are often used in spectral graph theory and in other areas. The
results in this section are all adaptations of known results, so we omit the proofs. All
the matrices and vectors are of order n.

Definition 7.1. For a pair (k, j) of indices, 1 ≤ k < j ≤ n, we define the vector
u(k,j),

u
(k,j)
i =

⎧⎪⎪⎨
⎪⎪⎩

+1, i = k,

−1, i = j,

0 otherwise.

We define the (k, j) edge matrix using A(k,j) = u(k,j) u(k,j) T .
Lemma 7.2. Let 1 ≤ k < j ≤ n and let A(k,j) be an edge matrix. Then the

following hold:
1. A(k,j) is spsd.
2. NA(k,j) = {k, j}.

3. A(k,j) is compatible with S1 = span
[
1 1 · · · 1

]T
.

The next lemma gives a sufficient and necessary condition for two edge matrices
to be mutually rigid.

Lemma 7.3. The edge matrices A(i,j) and A(k,�) are mutually rigid if and only if
|{i, j} ∩ {k, �}| ≥ 1.

Laplacians are sums of edge matrices (sometimes of positively scaled edge matri-
ces). They are often defined using an undirected graph G = ({1, 2, . . . , n}, E),

A(G) =
∑

(i,j)∈E

A(i,j).

Each edge matrix A(i,j) is then associated with an edge (i, j) ∈ E in the graph
G. Lemma 7.3 states that two edge matrices are mutually rigid if and only if the
corresponding edges are incident on a common vertex.

The rigidity graph of {A(i,j)|(i, j) ∈ E} is a dual of G:

Gdual = (E, {(e, f) : e and f share a vertex in G}) .

The rigidity graph of Laplacians is special in that its connectivity is not only a
sufficient condition for the rigidity of the Laplacian, as shown in Theorem 6.4, but
also a necessary condition.

Lemma 7.4. Let G = ({1, 2, . . . , n}, E) be an undirected graph. If A(G) =∑
E A(i,j) is rigid, then the rigidity graph Gdual of {A(i,j)|(i, j) ∈ E} is connected.

Proof. We first show that if A(G) is rigid, then G is a connected graph. Assume
for contradiction that G is not connected. Therefore, there are two nonempty sets of
vertices S and S̄ = {1, . . . , n}\S that are disconnected. Define the vector x:

xi =

{
+1, i ∈ S,

−1, i ∈ S̄.

By definition, A(i,j)x = 0 for every (i, j) ∈ E. Therefore, A(G)x =
∑

(i,j)∈E A(i,j)x =

0. The vector x is in enull(A(G)) and has no extension to S1. This contradicts the
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assumption that A(G) is rigid, since this assumption implies that it is S1-compatible.
Therefore, G is a connected graph.

It is clear that if G is connected, then Gdual is connected. This concludes the
proof of the lemma.

All the results on the rigidity of Laplacians hold for weighted Laplacians, which
are sums of positively scaled edge matrices.

7.2. Elastic struts in two dimensions. The second family of matrices model
a collection of pin-jointed struts. Such a collection may form a rigid structure called
a truss (e.g., a triangle in two dimensions) or a nonrigid structure called a mechanism
(e.g., two struts connected by a pin). The rigidity graph of such a structure, however,
is never connected: it has no edges at all. Therefore, the rigidity graph can never
show that the underlying structure is rigid. This shows that our analysis indeed
only provides sufficient, but not necessary, conditions. We carry out the analysis
nonetheless to give another example of how to derive mutual rigidity conditions.

We note that there is a combinatorial technique that can determine whether
such a structure is rigid, under a technical assumption on the geometrical location
of the pins. The structure is modeled by a graph in which vertices correspond to
pins (assuming there is a pin at the end of each strut) and in which edges correspond
to struts. If the pins are in an appropriately defined general position, then several
equivalent conditions on the graph characterize exactly the rigidity of the structure
[13, 15, 17, 21, 14]. These conditions can be tested in O(n2) operations [12].

Our technique is more general but less precise than these techniques. It applies
to any finite-element matrix, but it provides only sufficient conditions for rigidity. In
the cases of two-dimensional struts, our sufficient conditions are never satisfied. We
show later in this section that our technique does work for other families of elastic
structures.

Definition 7.5. Let P = {pl}nl=1 be a set of different points in the plane,
pl = (xl, yl). For every pi �= pj, let v(i,j) be the 2P -by-1 vector defined by

v
(k,j)
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(xk − xj)/rk,j , i = 2k − 1,

(yk − yj)/rk,j , i = 2k,

−(xk − xj)/rk,j , i = 2j − 1,

−(yk − yj)/rk,j , i = 2j,

0 otherwise,

where rk,j =
√

(xk − xj)2 + (yk − yj)2. We define the (i, j) strut matrix to be A(i,j) =

v(i,j) v(i,j) T .
Definition 7.6. Given a collection P = {pl}nl=1 of points in the plane, we define

the translation and rotation vectors

N
(x)
P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

0

1

0

...

1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, N
(y)
P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

0

1

...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and N
(r)
P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y1

x1

−y2

x2

...

−yn

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The planar null space of the collection is SP = spanNP , where NP = [N
(x)
P N

(y)
P N

(r)
P ].

The next lemma shows that the strut matrices are SP compatible.
Lemma 7.7. Let P = {pl}nl=1 be a set of different points in the plane that share

no x coordinates and no y coordinates. Then the following hold:
1. A(i,j) is symmetric and positive semidefinite.
2. NA(i,j) = {2i− 1, 2i, 2j − 1, 2j}.
3. A(i,j) is SP -compatible.

Proof. The first two claims in the lemma follow directly from the definition of
A(i,j). We show that A(i,j) is SP -compatible by showing that the columns of ΨA(i,j)NP

form a basis for enull(A(i,j)).
A direct calculation, which we omit, shows that AΨA(i,j)NP = 0. The points

pi and pj are different, so the rank of ΨA(i,j)NP is 3. The rank of A(i,j) is 1, so
its essential null space has dimension 3. Therefore, ΨA(i,j)NP spans enull(A(i,j)), so
A(i,j) is SP compatible.

The following lemma indicates that the rigidity graph of a collection of strut
matrices contains only trivial edges (self loops, which are always present).

Lemma 7.8. Let P = {pl}nl=1 be a set of different points in the plain that share
no x coordinates and no y coordinates. Let A(i,j) and A(k,�) be two strut matrices.
A(i,j) and A(k,�) are mutually rigid if and only if {i, j} = {k, �}.

Proof. Assume A(i,j) and A(k,�) are mutually rigid. By Lemma 5.12, rank
(ΨA(i,j),A(k,�)NP ) = 3. Therefore, using Lemma 7.7, |{2i − 1, 2i, 2j − 1, 2j} ∩ {2k −
1, 2k, 2�− 1, 2�}| ≥ 3. This implies that {i, j} = {k, �}. The other direction is imme-
diate; a matrix is always mutually rigid with itself.

7.3. Elastic triangles in two dimensions. We now study another family of
matrices that also arises in two-dimensional linear elasticity—matrices that model
triangular elements. The rigidity graph of such a collection can be connected, so the
rigidity graph can sometimes tell us that the structure is rigid. There are also cases
in which the structure is rigid but its rigidity graph is not connected.

Definition 7.9. Let P = {pl}nl=1 be a set of different points in the plain, pl =
(xl, yl), and let v(i,j) and A(i,j) be defined as in Definition 7.5. For three different
points pi, pj, and pk, we define the (i, j, k) element matrix in this family to be

A(i,j,k) = A(i,j) + A(i,k) + A(j,k) = v(i,j) v(i,j) T + v(j,k) v(j,k) T + v(k,i) v(k,i) T .

We note that this definition of A(i,j,k) is numerically different from the definition that
results from standard finite-element analysis (but the sparsity patterns and the null
spaces are the same).

The next lemma is the equivalent of Lemma 7.7. We omit the proof, which is
similar to the proof of Lemma 7.7.

Lemma 7.10. Let P = {pl}nl=1 be a set of affinely independent points in the plain.
Let A be an (i, j, k) element matrix. Then the following hold:

1. A is symmetric and positive semidefinite.
2. NA = {2i− 1, 2i, 2j − 1, 2j, 2k − 1, 2k}.
3. A is SP -compatible, where SP is the planar null space defined in Definition 7.6.

The following lemma characterizes mutual rigidity between SP -compatible matri-
ces.

Lemma 7.11. Let P = {pl}nl=1 be a set of different points in the plain. Let A
and B be SP -compatible matrices. Assume that there exist i and j �= i such that
{2i− 1, 2i, 2j − 1, 2j} ⊆ NA ∩NB. Then, A and B are mutually rigid.
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(a) (b)

(c) (d)

Fig. 7.1. Triangular plane elements and their rigidity graphs (in blue).

Proof. By Lemma 5.12, it is sufficient to show that ΨA,BNP is rank-3. Indeed, it
is easy to validate that since the points are different, rank(ΨA,BNP ) > 3.

The last lemma of this section shows how to construct the rigidity graph for this
family of matrices.

Lemma 7.12. Let P = {pl}nl=1 be a set of different points in the plain. Let
A = A(i,j,k) and let B = A(p,q,r) be element matrices Then, A and B are mutually
rigid if and only if |{i, j, k} ∩ {p, q, r}| ≥ 2.

Proof. If |{i, j, k} ∩ {p, q, r}| ≥ 2, there exist m �= l such that {2m − 1, 2m, 2l −
1, 2l} ⊆ NA ∩NB . Then, by Lemma 7.11, A and B are mutually rigid.

If A and B are mutually rigid, by Lemma 5.12, ΨA,BNP is rank-3. Therefore,
|NA ∩NB | ≥ 3. By Lemma 7.11, |{2i− 1, 2i, 2j − 1, 2j, 2k − 1, 2k} ∩ {2p− 1, 2p, 2q −
1, 2q, 2r − 1, 2r}| ≥ 3. Therefore, |{i, j, k} ∩ {p, q, r}| ≥ 2.

Informally speaking, Lemma 7.12 shows that edges in the rigidity graph corre-
spond to pairs of triangles whose mutual rigidity is evident: they share a side. The
lemma can be generalized to higher dimensions: elastic elements are mutually rigid
if and only if they share a face. For elasticity, this may be a trivial statement, but
it shows that our algebraic definition of mutual rigidity indeed captures the domain-
specific notion of rigidity.

Figure 7.1 shows a few examples of triangular plane elements and their rigidity
graphs. The structures in cases (a) and (b) are not rigid, and the rigidity graph is not
connected. Case (c) is rigid, and the rigidity graph is connected. Case (d) is rigid, but
the rigidity graph does not show it; the graph is not connected. This shows, again,
that connectivity of the rigidity graph is not a necessary condition for rigidity.

8. Rigid sparsifications. Our next goal is to sparsify a matrix A defined as a
sum of S-compatible spsd n-by-n matrices, but without changing null(A). By sparsify
we mean that linear systems of the form Bz = r, where B is the sparsification of A,
should be easier to solve than linear systems of the form Ax = b. In this sense, B is
sparser than A if it has a subset of the nonzeros of A, or if the pattern graph of B
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has smaller balanced vertex separators than the pattern graph of A [10, 16]. There
may be other meanings.

8.1. Dropping vertices from the rigidity graph. Perhaps the most obvious
way to sparsify A =

∑
e Ae is to drop some of the element matrices from the assembly.

This section gives a condition that guarantees that the subset-sum has the same range
and null space as A. The analysis is inductive: it analyzes the effect of dropping one
element at a time.

Lemma 8.1. Let G be the rigidity graph of a collection A1, A2, . . . , Ak of S-
compatible spsd n-by-n matrices. Let {H1, H2, . . . , H�} be the connected components
of G. Assume that NHi

∩NHj = φ for every i �= j.

Let A =
∑k

f=1 Af and let

B =

k∑
f=1
f �=e

Af = A−Ae

for some vertex Ae. If
1. G and the rigidity graph of B have the same number of connected components

and
2. NA = NB,

then the matrices A and B have the same null space.
Proof. By Corollary 3.6 and by the condition NA = NB , it is sufficient to show

that A and B are mutually rigid. By Lemma 4.1, A = B + Ae is rigid with respect
to B. All that is left to show is that B is rigid with respect to A.

Assume without loss of generality that Ae is in H1. Let

C =
∑

Af∈H1

f �=e

Af .

The first condition of the lemma implies that H1\{Ae} is a nonempty connected
subgraph of G. Therefore, there exists a vertex Ac in H1\{Ae} such that Ae and Ac

are mutually rigid. Applying Theorem 6.3 to {Ae, Ac} and to H1\{Ae} shows that
Ae +Ac and C are mutually rigid. Therefore, by Lemma 4.2, C and C +Ae +Ac are
mutually rigid. Finally, by Lemma 4.3, C and C + Ae are mutually rigid.

Let D =
∑�

i=2

∑
Af∈Hi

Af . We have that ND ∩ NC = φ and ND ∩ NC+Ae = φ,
since NHi are pairwise disjoint. By Lemma 4.4, we have that C +D and C +Ae +D
are mutually rigid. Therefore, A = C + Ae + D and B = C + D are mutually rigid,
so null(A) = null(B).

In particular, if G is connected, then the lemma allows us to drop element matri-
ces only as long as the rigidity graph of the remaining elements remains connected.
Clearly, there are cases where we can drop an element matrix that would disconnect
the rigidity graph without changing the null space of the sum. In this case dropping
the element violates the sufficient condition stated in Lemma 8.1, but without actually
changing the null space. For example, dropping A(2,5,6) from the structure shown in
Figure 7.1.(c) leads to the structure shown in Figure 7.1.(d), which is also rigid but
has a disconnected rigidity graph.

The examples shown in Figure 7.1 (a) and (b) show that the lemma does not hold
if the NHi

are not mutually disjoint. Dropping A(3,4,5) from the structure shown in
part (a) of the figure gives the structure shown in (b). The rigidity graphs of both
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structures have the same number of connected components, 2, and NA = NA−A(3,4,5) .
But the null space of the structure in (a) has dimension 4 (rigid body motions and a
rotation around p3), whereas the null space of the structure in (b) has dimension 6
(separate rigid body motions for the two elements).

If we use Lemma 8.1 to construct a preconditioner B by repeatedly dropping
element matrices from the sum A =

∑
i Ai, the generalized eigenvalues of (B,A) are

clearly bounded from above by 1, since for any λ that satisfies Bx = λAx for an
x �∈ null(A) we have

λ ≤ max
x

Ax�=0

xTBx

xTAx

= max
x

Ax�=0

xT
(∑

i∈S⊂{1,...,k} Ai

)
x

xT
(∑k

i=1 Ai

)
x

≤ 1.

8.2. Dropping edges from the rigidity graph by fretsaw extensions. We
now show and analyze a more sophisticated sparsification technique that drops edges
from the rigidity graph. This technique allows us to algebraically express the physical
action of cutting slits in a structure without changing its qualitative behavior (its null
modes) and its material properties. The technique drops edges from the rigidity graph
of a given structure and then modifies the indices of nonzero rows and columns in
element matrices to simulate the action of cutting slits along element boundaries where
edges have been dropped. Figure 8.1 illustrates the cutting idea and its connection
to dropped edges in the rigidity graph. The technique is quite complex to define and
analyze.

Definition 8.2. An extension mapping for matrices with n rows is a length �
vector s =

[
s1 s2 · · · s�

]
of integers in the range 1 to n. The master extension

matrix P of an extension mapping s is an (n+ �)-by-n matrix with a single 1 in each
row,

P
(s)
ij =

⎧⎪⎪⎨
⎪⎪⎩

1, i ≤ n and j = i,

1, i > n and j = si−n,

0 otherwise.

An extension matrix Q(s) of an extension mapping s is an (n + �)-by-n with a single

1 in each column and at most a single 1 in each row such that P
(s)
ij = 0 implies

Q
(s)
ij = 0. When the mapping is clear from the context, we drop the superscript from

the extension matrices.
In the product Q(s)A of an extension matrix Q(s) and an arbitrary matrix A, each

row of the product is either all zeros or a copy of some row of A, and each row of A
is mapped to a row of the product. In particular, row i of A is mapped either to row
i of the product or to row n + j, where sj = i.

The following lemma states some properties of extension matrices and their rela-
tion to the projection matrices ΨA. We omit its proof.

Lemma 8.3. Let P = P (s) and Q = Q(s) be a master extension matrix and
an extension matrix for some extension mapping s of length �. Let A be an n-by-n
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symmetric matrix, and let In be the n-by-n identity matrix. Then QTQ = PTQ =
QTP = In and ΨQAQT = QΨAQ

T .
Definition 8.4. The extension of a subspace S ⊆ R

n under an extension map-
ping s is the subspace span

(
P (s)N

)
, where N is a matrix whose columns form a basis

for S. To keep the notation simple, we abuse the notation and denote this space by
P (s)

S.
Lemma 8.5. The space P (s)

S depends only on P (s) and on S—not on a par-
ticular basis N . That is, for any two matrices N1 and N2 whose columns span S,
span

(
P (s)N1

)
= span

(
P (s)N2

)
.

Proof. Let x ∈ span
(
P (s)N1

)
. There exists a vector y such that x = P (s)N1y.

Since N1y ∈ S, there exists a vector z such that N1y = N2z. Therefore, x =
P (s)N1y = P (s)N2z ∈ span(P (s)N2). This implies that span

(
P (s)N1

)
⊆ span(P (s)

N2). Equality follows by symmetry.
Note that span

(
P (s)N

)
is essentially the same space as N , but with some coordi-

nates replicated. This observation serves as an intuition for the proofs of the following
two lemmas.

The following lemma shows that the extension of an S-compatible spsd matrix
retains its essential properties.

Lemma 8.6. Let A be an S-compatible spsd matrix, and let Q = Q(s) be an
extension matrix for some extension mapping s. Then QAQT is spsd and compatible
with P (s)

S.
Proof. The matrix QAQT is symmetric since A is symmetric. For an arbitrary

vector x, let y = QTx. We have that xTQAQTx = yTAy ≥ 0, since A is positive
semidefinite. This implies that QAQT is positive semidefinite.

We now show that QAQT is compatible with P (s)
S. Let N be a matrix whose

columns form a basis for S. It is sufficient to show that span(ΨQAQTP (s)N) =
enull(QAQT ).

By Lemma 8.3,

ΨQAQTP (s)N = QΨAQ
TP (s)N = QΨAN.

Therefore, span(ΨQAQTP (s)N) = span(QΨAN). Let E be a matrix whose columns
form a basis for enull(A). Since A is S-compatible, span(ΨAN) = span(E). Moreover,
since Q has full rank, span(QΨAN) = span(QE). Therefore, span(ΨQAQTP (s)N) =
span(QE).

Now, it is sufficient to show that span(QE) = enull(QAQT ) in order to prove the
lemma. In the special case where Q is an (n + �)-by-n identity matrix, this equality
directly follows the fact that span(E) = enull(A). In the general case, Q is a row
permutation of the (n+ �)-by-n identity matrix, and the equlity holds since renaming
the variables does not change anything.

Similarly extended matrices maintain their rigidity relationship.
Lemma 8.7. Let {Ai}ki=1 be a collection of S-compatible spsd matrices, and let

Qe = Q
(s)
e and Qf = Q

(s)
f be extension matrices for some s such that [Qe] : ,j = [Qf ] : ,j

for every j ∈ NAe
∩NAf

. Then QeAeQ
T
e is rigid with respect to QfAfQ

T
f if and only

if Ae is rigid with respect to Af .
In particular, if Q is the (n + �)-by-n identity matrix (the first n columns of an

(n+�)-by-(n+�) identity matrix; such a matrix is an extension matrix for any s), then
(Ae, Af ) is an edge of the rigidity graph of {Ai}ki=1 if and only if (QAeQ

T , QAfQ
T )

is an edge of the rigidity graph of {QAiQ
T }ki=1.
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Proof. We start by some immediate definitions and observations. Let N be an
n-by-� matrix whose columns form a basis for S. Let P (s) be the corresponding master
extension matrix. By Lemma 8.6, the matrix P (s) is a basis for P (s)

S, and QeAeQ
T
e

and QfAfQ
T
f are P (s)

S-compatible.
By Lemma 5.12, the matrices Ae and Af are mutually rigid if and only if ΨAe,Af

N

is rank-�. The matrix ΨQeAeQT
e ,QfAfQT

f
P (s)N equals the matrix ΨAe,Af

N . There-

fore, ΨAe,Af
N is rank-� if and only if ΨQeAeQT

e ,QfAfQT
f
P (s)N is rank-�. Applying

Lemma 5.12 again, we get that ΨQeAeQT
e ,QfAfQT

f
P (s)N is rank-� if and only if QeAeQ

T
e

and QfAfQ
T
f are mutually rigid. This concludes the proof of the lemma.

We are particularly interested in certain extensions, described by the following
definition.

Definition 8.8. Let {Ai}ki=1 be a collection of S-compatible symmetric positive
semidefinite matrices, let s be an extension mapping, and let {Qi}ki=1 be a collection

of extension matrices for this s. Let G be the rigidity graph of {Ai}ki=1, and let Ĝ be
the rigidity graph of {QiAiQ

T
i }ki=1. If

• for every j ∈ NA, there is some i such that j ∈ NAi and [Qi]j,j = 1,

• for every connected component Ai1 , . . . , Aim of G, the matrices Qi1Ai1Q
T
i2
,

. . . , QimAimQT
im

are a connected component of Ĝ and vice versa, and
• for every connected component Ai1 , . . . , Aimof G, there is at least one j ∈

{i1, . . . , im} such that Qj is the (n + �)-by-n identity matrix,
then we say that {QiAiQ

T
i }ki=1 is a fretsaw extension of {Ai}ki=1. (The rationale

behind the name fretsaw is explained below.) When the Qis are clear from the context,

we use F(A) to denote
∑k

i=1 QiAiQ
T
i ; we call this matrix the fretsaw extension of

A =
∑k

i=1 Ai.
We note that the first fretsaw condition ensures that NA ⊆ NF(A).

Transforming an extended matrix B =
∑

Q
(s)
i Ai Q

(s)
i

T
back to A =

∑
Ai is

simple, as shown in the next lemma.
Lemma 8.9. Let A1, A2, . . . , Ak be a collection of n-by-n matrices. Let P be a

master extension matrix for some extension mapping s and let {Qi}ki=1 be a collection

of extension matrices for this s. Denote A =
∑k

i=1 Ai and B =
∑k

i=1 QiAiQ
T
i . Then

A = PTBP .
Proof. By Lemma 8.3, PTQi = I, so

PTBP =

k∑
i=1

PTQiAiQ
T
i P =

k∑
i=1

Ai = A.

Definition 8.10. Let B be an (n + �)-by-(n + �) matrix. Partition

B =

[
B11 B12

B21 B22

]

such that B11 is n-by-n and B22 is �-by-�. If B22 is nonsingular, we denote schur�(B) =
B11 −B12B

−1
22 B21. When � is clear from the context, we simply use schur(B).

The following theorem is the main structural result of this section. The theorem
characterizes the relationship of the null spaces of a matrix and its fretsaw extension.
In particular, it lists conditions that guarantee the preservation of the null space under
a fretsaw extension.
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Algorithm 1. Pseudocode for the construction of fretsaw spanning-tree extensions.

TreeFretsawExtension(A, G)
� A = {A1, A2, . . . , Ak} is a collection of S-compatible spsd n-by-n matrices
� G = (A, E) is the rigidity graph of A
T ←A spanning tree of G
r ← n
For j ∈ {1, . . . , n} do � in any order

� Construct column j of Q1, . . . , Qk

Set the jth column of Q1 to be ej
V (j) ← {Ai ∈ A|j ∈ NAi

} � the elements that are incident on the index j
E(j) = {(Ap, Aq) ∈ T |Ap, Aq ∈ V (j)}
G(j) ← (V (j), E(j)) � the subgraph of T that is induced by V (j)

G
(j)
1 , G

(j)
2 , . . . , G

(j)
cj ← The connectivity components of G(j)

� The order is arbitrary, except that if A1 ∈ V (j), then A1 ∈ G
(j)
1

For all Ap ∈ G
(j)
1 , set the jth columns of Qp to ej

For G
(j)
i ∈ {G(j)

2 , . . . , G
(j)
cj } do � in any order

r ← r + 1
For all Ap ∈ G

(j)
i , set the jth columns of Qp to er

End For
For i ∈ {1, . . . , k} do

If j �∈ NAi
, then set the jth columns of Qi to ej

End For
End For

Theorem 8.11. Let A =
∑k

i=1 Ai, where A1, A2, . . . , Ak is a collection of S-
compatible symmetric positive semidefinite n-by-n matrices, let Q be the (n + �)-by-
n identity matrix, and let F(A) be a fretsaw extension of A. Assume that NA =
{1, . . . , n}. If the rigidity graph of A1, A2, . . . , Ak is connected, then the following
hold:

1. QAQT and F(A) are mutually rigid.
2. For every x ∈ enull(QAQT ), there exists a vector y ∈ enull(F(A)) such that

ΨQAQT y = x.
3. null(F(A)) ⊆ null(QAQT ).
4. If schur(F(A)) exists, then null(A) = null(schur(F(A))).

Proof. Let {Qi}ki=1 be the collection of the extension matrices used in F(A). By
Lemma 8.6, the matrices in collections {QiAiQ

T
i }ki=1 and {QAiQ

T }ki=1 are compat-
ible with P (s)

S. By definition, the rigidity graph of {QiAiQ
T
i }ki=1 is connected. By

Lemma 8.7 and the assumption that the rigidity graph of {Ai}ki=1 is connected, the
rigidity graph of {QAiQ

T }ki=1 is also connected. By definition, the rigidity graph
of {QAiQ

T }ki=1 shares at least one vertex with the rigidity graph of {QiAiQ
T
i }ki=1.

Therefore, by Lemma 6.3, QAQT and F(A) are mutually rigid.
The second part of the lemma follows the fact that QAQT is rigid with respect

to F(A) and that NQAQT = NA ⊆ NF(A).
The matrix F(A) is rigid with respect to QAQT . We also have that NQAQT =

NA ⊆ NF(A). Therefore, by Lemma 3.5, null(F(A)) ⊆ null(QAQT ). This proves the
third part of the lemma.

The fourth part of the lemma follows from Lemma 3.7 and the fact that QAQT

and F(A) are mutually rigid.
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8.3. Constructing a fretsaw extension from a spanning tree. We now
show a practical way to construct nontrivial fretsaw extensions. The extensions that
we build here are essentially as sparse as possible: we can factor F(A) with no fill.
Our simple spanning-tree extensions may not be effective preconditioners (the gener-
alized eigenvalues may be large), but the construction shows that there are efficient
algorithms for constructing nontrivial fretsaw extensions.

Let A = {A1, A2, . . . , Ak} be a collection of S-compatible symmetric positive
semidefinite n-by-n matrices. Let G = (A, E) be the rigidity graph of A. Without
loss of generality, we assume that G is connected (otherwise we repeat the construction
for each connected component of G). The construction builds the Qis by columns.
This introduces a slight notational difficulty, since we do not know the number of rows
in the Qis until the construction ends. We use the convention that the columns are
tall enough (nk is tall enough) and then chop the Qis to remove the rows that are
zero in all of them. We denote by er the rth (long enough) unit vector.

We use a spanning tree T of G to define an extension F(A). We initialize a
variable r to n. This variable stores the index of the last nonzero row in the Qis.
We also initialize the extension mapping s = 〈〉. The algorithm iterates over the
column indices j ∈ {1, . . . , n} (in any order). In iteration j, we construct column j of
Q1, . . . , Qk.

We begin iteration j by setting the jth column of Q1 to ej . This ensures that Q1

is an identity matrix, so the third fretsaw condition is automatically satisfied.

We now construct the set V (j) = {Ai ∈ A|j ∈ NAi} of elements that are incident
on the index j. We also construct the subgraph G(j) = (V (j), E(j)) of T that is induced
by V (j). We partition G(j) into its connected components and process each component
separately. The ordering of the components is arbitrary, except that if A1 ∈ V (j),
then we process the component containing A1 first. Let {Ai1 , Ai2 , . . . , Aim} ⊆ V (j)

be the vertices of the next component to be processed. If this component is the first
component of G(j), then we set the jth columns of Qi1 , . . . , Qim to ej . Otherwise, we
increment r, set the jth columns of Qi1 , . . . , Qim to er, and concatenate the current
index j to the end of s.

This process specifies the jth column of every Qi such that j ∈ NAi . We complete
the construction of the Qis by setting the jth column of every Qi such that j �∈ NAi

to ej .

Sometimes the row/column indices of A =
∑

Ai have a natural grouping. For
example, in problems arising in two-dimensional linear elasticity, each point in the
geometry of the discrete structure is associated with two indices, an x-direction index,
say, j1, and a y-direction index, say, j2. This usually implies that G(j1) and G(j2)

are identical graphs. In such cases, it may be wise to extend A consistently : we
order the connected components of G(j1) and G(j2) consistently, which means that
[Qi] : ,j1 = ej1 if and only if [Qi] : ,j2 = ej2 . A consistent extension has a physical
interpretation in terms of slits in the material, whereas an inconsistent extension may
have no straightforward physical meaning.

Figure 8.1 illustrates the construction of a spanning-tree fretsaw-extended matrix
for a structure consisting of linear elastic elements in two dimensions. The figure
explains the rationale behind the term fretsaw. A fretsaw is a fine-toothed saw held
under tension, designed for cutting thin slits in flat materials, such as sheets of ply-
wood. When applied to two-dimensional elastic structures, like the one shown in
Figure 8.1, the spanning-tree fretsaw construction appears to cut the original struc-
ture like a fretsaw.
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(a) (b)

(c) (d)

Fig. 8.1. The construction of a spanning-tree fretsaw-extended matrix. (a) The elements of
the original structure and its rigidity graph in blue; elements are mutually rigid if and only if they
share a side. (b) A spanning tree T (yellow) of the rigidity graph. (c) The structure induced by
the spanning tree; duplicated nodes are marked by red circles. In the illustration, the triangles have
been slightly shrunk to show how rigidity relationships have been severed, but the element matrices
are only permuted, so they still model the original triangles. (d) The fretsaw-extended structure.

Once the Qi’s are constructed, we form F(A) =
∑k

i=1 QiAiQ
T
i . The next theorem

shows that the Qi’s are extension matrices for some s and that F(A) is a fretsaw
extension of A.

Theorem 8.12. Let {Ai}ki=1 be a collection of S-compatible spsd n-by-n matri-
ces, let s be the extension mapping that our spanning-tree algorithm constructs, and
let {Qi}ki=1 be the extension matrices for this extension. Then F(A) =

∑k
i=1 QiAiQ

T
i

is a fretsaw extension of A.
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Proof. We first show that the Qi’s are indeed valid extension matrices for a single
s. We construct s step-by-step simultaneously with the construction of the Qi’s. We
initialize s = 〈〉. When we increment the value r, we concatenate the current index j
to the end of s. By definition, Qi contains a nonzero in (r, j) if and only if s contains
the value j in its (r − n)th position. Therefore, the Qi’s are consistent with P (s).
Moreover, by definition, every column j of a matrix Qi is either ej or er, where r > n
and r is unique among the columns of Qi. Therefore, the Qi’s are valid extension
matrices.

Let G be the rigidity graph of {Ai}ki=1, and let Ĝ be the rigidity graph of
{QiAiQ

T
i }ki=1. We show now that for every connected component Ai1 , Ai2 , . . . , Aim in

G, the matrices Qi1Ai1Q
T
i1
, Qi2Ai2Q

T
i2
, . . . , QimAimQT

im
form a connected component

in Ĝ and vice versa. Let Ai1 , Ai2 , . . . , Aim be a connected component of G. Let T be
the spanning tree used to create Qi1 , Qi2 , . . . , Qim . Let Ap and Aq be two matrices
adjacent in T . For every index j ∈ NAp

∩ NAq
, Ap and Aq belong to the same

connected component of G(j). Therefore, Qp and Qj coincide on their jth column.
Therefore, by Lemma 8.7, QpApQ

T
p and QqAqQ

T
q are mutually rigid. Therefore,

Qi1Ai1Q
T
i1
, Qi2Ai2Q

T
i2
, . . . , QimAimQT

im
is a connected component in Ĝ. In a similar

manner, if Qi1Ai1Q
T
i1
, Qi2Ai2Q

T
i2
, . . . , QimAimQT

im
form a connected component in Ĝ,

by Lemma 8.7, Ai1 , Ai2 , . . . , Aim is a connected component in G.
There are two additional properties that need to be verified in order to show that

F(A) is a fretsaw extension. By definition, the construction ensures that there is at
least one Qi1 for every connected component which is an (n+ l)-by-n identity matrix.
The second property that we need to show is that NA ⊆ NF(A). Let j ∈ NA. Let

Ap be a matrix in the connected component of G(j) that was processed first. By
definition, column j of Qp contains ej . Therefore, j ∈ NQpApQT

p
. Lemma 2.6 ensures

that j ∈ NF(A).

8.4. Perfect elimination orderings for spanning-tree fretsaw extensions.
The spanning-tree fretsaw construction is motivated by an elimination ordering that
guarantees that all the fill occurs within the nonzero structure of the element matrices.
If [Ae]i,j �= 0 for all i, j ∈ NA, this ordering is a no-fill ordering of F(A).

The analysis in the proof is closely related to the analysis of clique trees. The
spanning-tree fretsaw is a tree of cliques that satisfies the clique-intersection property
defined by Blair and Peyton [3]. If the elements were guaranteed to be maximal
cliques, then Theorem 3.2 of [3] would guarantee a no-fill elimination ordering. But
we are not certain whether element matrices are always maximal cliques in the graph
of the assembled matrix, so [3, Theorem 3.2] is not directly applicable.

Lemma 8.13. Let A = {A1, A2, . . . , Ak} be a collection of S-compatible spsd n-

by-n matrices. Let F(A) be a spanning-tree fretsaw extension of A =
∑k

i=1 Ai. There
is a permutation matrix Γ such that all the nonzeros Li,j of the Cholesky factor L of
ΓF(A)ΓT satisfy i, j ∈ NΓQeAeQT

e ΓT for some e (e depends on i and j).
Proof. We root the spanning tree T of the rigidity graph at A1 and take φ to

be a postorder of this rooted tree. That is, φ is an ordering of the element matrices
in which the leaves of the rooted tree appear first, followed by parents of leaves, etc.
We construct an elimination ordering γ incrementally. Initially, γ = 〈〉 is an empty
ordering. Let Ae be the next unprocessed element matrix in φ, and let Af be the
parent of Ae in the rooted tree (if it has a parent). Let {i1, . . . , im} be the indices in

NQeAeQT
e
\
(
NQfAfQT

f

⋃
γ
)
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(with γ taken to be a set of already ordered indices). We concatenate 〈i1, . . . , im〉 to
γ in an arbitrary order. The permutation matrix Γ is the matrix that corresponds to
γ. That is, Γi,γi = 1.

Now that we have specified Γ, we show that it limits fill as claimed.

Claim A. Let i ∈ {1, . . . , n, n+1, . . . , n+�}. Let j be the column in P (s) such that

P
(s)
i,j �= 0 (recall that every row in P (s) contains exactly one nonzero). We denote by

G
(j)
i the connected component of G(j) in which j is mapped to i. The graph G

(j)
i is a

connected subgraph of G(j) which is an induced subgraph of a rooted tree. Therefore,

G
(j)
i is itself a rooted tree. We claim that i is added to γ during the processing of the

root Ah of G
(j)
i .

Proof of Claim A. We first show that if i is added to γ, then it is added during

the processing of the root of G
(j)
i . Let Ae be the element during the processing of

which we add i to γ. We first show that Ae ∈ G
(j)
i . Clearly, i ∈ NQeAeQT

e
. Therefore,

j ∈ NAe . By the definition of G(j), Ae ∈ G(j), and by the definition of G
(j)
i , Ae ∈ G

(j)
i .

Now suppose for contradiction that Ae is not the root of G
(j)
i . Then Ae has a parent

Af in G
(j)
i . Because Af is in G

(j)
i , i ∈ NQfAfQT

f
, so the algorithm would not have

added i to γ during the processing of Ae. Therefore, Ae is the root of G
(j)
i .

To complete the proof of Claim A, we show that i is added to γ. Suppose for

contradiction that it is not. When we process the root Ah of G
(j)
i , i �∈ γ. But i cannot

be in NQfAfQT
f
, where Af is the parent of Ah in the global rooted tree. If it was,

then j ∈ NAf
, so Af would be in G(j), and because it is connected to Ah, it must

also be in G
(j)
i . But Ah is the root of G

(j)
i , so i �∈ NQfAfQT

f
. Therefore, i is added to

γ. This concludes the proof of Claim A.

Claim B. Just before Af is processed, γ is exactly the set

γ =
{
i : i ∈ NQeAeQT

e
for some Ae that appears before Af in φ

}

\
(
NQfAfQT

f
∪
{
i : i ∈ NQgAgQT

g
for some Ag that appears after Af in φ

})
.

Proof of Claim B. The claim follows by induction from the process of constructing
γ and from the fact that φ is a postorder of the rooted tree.

Claim C. If Lr̂,ĉ �= 0 then r̂, ĉ ∈ NΓQeAeQT
e ΓT for some e.

Proof of Claim C. If Lr̂,ĉ �= 0, then either
[
ΓF(A)ΓT

]
r̂,ĉ

�= 0 or there is some

ı̂ < r̂, ĉ such that Lr̂,̂ı �= 0 and Lĉ,̂ı �= 0. The first condition cannot violate Claim B,
because if

[
ΓF(A)ΓT

]
r̂,ĉ

�= 0 then there is some e such that
[
ΓQeAeQ

T
e ΓT

]
r̂,ĉ

�= 0, so

r̂, ĉ ∈ NΓQeAeQT
e ΓT .

If for some r̂ and ĉ we have Lr̂,ĉ �= 0 because of the second condition, then let
ı̂ be the minimal index such that Lr̂,̂ı �= 0 and Lr̂,̂ı �= 0 for all such (r̂, ĉ) pairs.
This definition of ı̂ guarantees that

[
ΓF(A)ΓT

]
r̂,̂ı

�= 0 and
[
ΓF(A)ΓT

]
ĉ,̂ı

�= 0. Define

i = γı̂, r = γr̂, and c = γĉ.

Let Af be the element during the processing of which i was added to γ. Because
ı̂ < r̂, ĉ, when i is added to γ, r and c are not yet in γ. We claim that r and
c are in NQfAfQT

f
; if this is true, Claim C holds. Suppose for contradiction that

r �∈ NQfAfQT
f
. By Claim B, r ∈ NAg

for some Ag that appears after Af in φ.

Because
[
ΓF(A)ΓT

]
r̂,̂ı

�= 0 and because Ag is symmetric, we must also have i ∈ NAg .
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But this implies that i cannot be added to γ when Af is processed (by Claim B). This
concludes the proof of Claim C and the entire proof.

8.5. Quantitative analysis. Lemma 8.11 showed that if the rigidity graph of a
finite-element matrix A =

∑
Ae is connected and if schur(F(A)) exists for a fretsaw

extension F(A), then A and schur(F(A)) have the same range and null space. We now
strengthen this result and show that the generalized eigenvalues of (schur(F(A)), A)
are bounded from above by 1. We note that schur(F(A)) can be implicitly used as a
preconditioner; in the preconditioning step of an iterative linear solver, we can solve
a linear system whose coefficient matrix is F(A)—not schur(F(A)) [11, section 3.3].
In particular, the previous section showed that we can factor a spanning-tree fretsaw
extension F(A) with essentially no fill.

Lemma 8.14. Let A1, A2, . . . , Ak be a collection of S-compatible spsd n-by-n ma-
trices. Let A =

∑k
i=1 Ai. Let F(A) be a fretsaw extension of A. Then if schur(F(A))

exists, and λ is a finite generalized eigenvalue of the pencil (schur(F(A)), A), then
λ ≤ 1.

Proof. We partition F(A) into

F(A) =

[
B11 B12

BT
12 B22

]
,

where B11 is n-by-n and B22 is �-by-�. By the assumption that schur(F(A)) exists, B22

is symmetric positive definite. In this notation, schur(F(A)) = B11−B12B
−1
22 BT

12. Let
P be the (n+ �)-by-n master extension matrix corresponding to the fretsaw extension
F(A) and let Q be the (n + �)-by-n identity matrix.

Let λmax be the maximal finite generalized eigenvalue of the pencil (schur(F(A)),
A) and let x be the corresponding eigenvector. We let

x̂ =

[
x

−B−1
22 B21x

]

and multiply it by F(A):

F(A)x̂ =

[
B11x + B12(−B−1

22 B21x)

B21x + B22(−B−1
22 B21x)

]

=

[
schur(F(A))x

0

]

=

[
λmaxAx

0

]

= λmaxQAQT x̂ .

Multiplying both sides by x̂T , we obtain x̂TF(A)x̂ = λmaxx̂
TQAQT x̂.

We now show that x̂TF(A)x̂ ≤ x̂TQAQT x̂. For a length-� vector y, define the
function

f(y) =
[
xT yT

]
F(A)

[
x
y

]
.
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We note that f(−B−1
22 B21x) = x̂TF(A)x̂. For an arbitrary y,

[
xT yT

]
F(A)

[
x
y

]
=

[
xT yT

] [B11 B12

BT
12 B22

] [
x
y

]

= xTB11x + yTBT
12x + xTB12y + yTB22y

= xT
(
B11 −B12B

−1
22 BT

12

)
x + xTB12B

−1
22 BT

12x

+yTBT
12x + xTB12y + yTB22y

= xT
(
B11 −B12B

−1
22 BT

12

)
x

+
(
y + B−1

22 BT
12x

)T
B22

(
y + B−1

22 BT
12x

)
.

Because B22 is positive definite, f(y) is minimized at y = −B−1
22 BT

12x.
By Lemma 8.9, x̂TQAQT x̂ = x̂TQ(PTF(A)P )QT x̂ = xTPTF(A)Px. By the

definition of a master extension matrix, the vector Px contains the vector x in its
first n coordinates, so Px =

[
xT zT

]
for some z and xTPTF(A)Px = f(z). Since

−B−1
22 BT

12x minimizes f ,

x̂TQAQT x̂ = xTPTF(A)Px = f(z) ≥ f(−B−1
22 BT

12x) = x̂TF(A)x̂.

This implies that λmax ≤ 1 and concludes the proof of the lemma.

9. Numerical examples. In this section we present experimental results that
indicate that fretsaw-tree sparsifications can be used as preconditioners. We do not
claim that they are particularly effective. Our only goal in this section is to demon-
strate that fretsaw-tree sparsifications can be used computationally as precondition-
ers. The results presented in this section also suggest that the qualitative convergence
behavior of fretsaw-extension preconditioners is similar to that of Vaidya’s precondi-
tioners when applied to weighted Laplacians [8].

Figure 9.1 shows convergence results for an iterative solver (preconditioned con-
jugate gradients) with a fretsaw-tree preconditioner. The figure shows results for two
different physical two-dimensional problems that we discretized on the same trian-
gulated mesh. One problem was a Poisson problem and the other a linear elasticity
problem, both with constant coefficients and with Neumann (natural) boundary con-
ditions. In each case, we constrained one or three unknowns belonging to a single
triangle to transform the coefficient matrix into a nonsingular one.

Each graph shows convergence results for three conjugate-gradient solvers: with
no preconditioning, with no-fill incomplete Cholesky preconditioning (denoted cho-
linc(0) in the graphs), and with fretsaw-tree preconditioning. The fretsaw trees for
the two problems are different, of course, because the rigidity graphs are different.
We chose to compare the fretsaw-tree preconditioner with a no-fill incomplete Cholesky
preconditioner because both are equally sparse.

Figure 9.2 shows similar plots for two three-dimensional problems defined on a
cylinder, a Poisson problem, and a linear elastic problem. The material is isotropic,
but the coefficients are variable; the material constant is 1 + 10x + 1000y + 1000z,
where x ∈ [0, 35] and y, z ∈ [0, 0.2]. The tree that we constructed was a maximum
spanning tree, where the weights were chosen heuristically to reflect the norm and
condition of element matrices.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

38 GIL SHKLARSKI AND SIVAN TOLEDO

The results show that fretsaw trees can be used as preconditioners. The experi-
ments are too limited to fully judge them, but the experiments do indicate that they
are not worse than another no-fill preconditioner. Two other observations on the
graphs are (1) the fretsaw is better than incomplete Cholesky on the two-dimensional
Poisson problem, but the two preconditioners are comparable on the other problems,
and (2) the steady linear convergence behavior of the fretsaw trees is similar to the
convergence behavior of Vaidya’s preconditioners on weighted Laplacians [8].

10. Concluding remarks. To keep the paper readable and of reasonable length,
we have omitted from it several topics, which we plan to cover in other papers.

• Element matrices that represent boundary conditions. In much of this paper,
we have assumed that all the element matrices are compatible with S. This
means, in particular, that the element matrix is singular. In many practical
computations, boundary conditions are added to remove the singularity. We
kept the discussion focused on singular matrices to reduce clutter. We plan
to explore the handling of boundary conditions in a future paper.

• Fretsaw constructions other than spanning-tree fretsaw extensions. Previ-
ous work on combinatorial preconditioners indicates, both theoretically and
experimentally, that tree and tree-like preconditioners are not effective; aug-
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Fig. 9.1. A triangularization of a two-dimensional domain (top) and convergence plots for two
problems discretized on this domain. The triangularization used in the plots is finer than the one
shown in the top part of the figure. The graph on the left shows the convergence of iterative solvers
on a discretization of a Poisson problem, and the graph on the right shows convergence on a linear
elasticity problem, both with constant coefficients.
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Fig. 9.2. A tetrahedral meshing of a three-dimensional cylinder (top) and convergence plots for
two problems discretized on a similar but longer cylinder (bottom). The leftmost part of the cylinder
was removed to reveal the irregular meshing inside.

mented trees and other constructions usually work better. We have devel-
oped augmented spanning-tree fretsaw extension algorithms for Laplacians,
but this construction is beyond the scope of this paper.

In addition, there are several interesting problems that we have not yet solved.
The most interesting one is proving lower bounds on the generalized eigenvalues of
(schur(F(A)), A) and finding fretsaw constructions that ensure that this bound is not
too small. A particularly interesting question is whether this can be done by assigning
weights to the edges of the rigidity graph.

Another question is what other results from spectral graph theory can be gen-
eralized to finite-element matrices as defined in this paper, and whether the rigidity
graph, perhaps weighted, would be useful in such generalizations.

Acknowledgments. Thanks to the two anonymous referees for numerous com-
ments and suggestions.
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GENERALIZED EIGENVALUES OF NONSQUARE PENCILS
WITH STRUCTURE∗

PABLO LECUMBERRI† , MARISOL GÓMEZ† , AND ALFONSO CARLOSENA‡

Abstract. This work deals with the generalized eigenvalue problem for nonsquare matrix pencils
A − λB such that matrices A,B ∈ MC (m×n) show a given structure. More precisely, we assume
they result from removing the first row of some matrix G ∈ MC ((m+1) , n) in the case of A,
and its last row in the case of B. This structured generalized eigenvalue problem can be found in
signal processing methods and in the numerical computation of the greatest common divisor (GCD)
of polynomials. Traditional methods for solving the problem (A− λB)v = 0 do not yield valid
solutions when the data are not exact, as is often the case in real applications. In this work we adopt
a minimal perturbation approach. Taking into account the structure of the matrices involved, we
develop a simple algorithm for the computation of the generalized eigenvalues.

Key words. nonsquare pencils, generalized eigenvalue, pseudospectra
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1. Introduction.

1.1. Nonsquare matrix pencils with structure. Given two matrices A, B of
the same dimensions, the set {A − λB; λ ∈ C} constitutes a pencil. The generalized
eigenvalues of the matrix pencil are those values of λ for which there exist vectors v
different from zero, called generalized eigenvectors, such that the pair (λ,v) satisfies

(A − λB) · v = 0.

The computation of the generalized eigenvalues has been regarded as a tool of great
importance in engineering problems for decades. See [6] for applications in linear
systems theory.

Matrices A and B form a regular matrix pencil (A − λB) if they are square and
the characteristic polynomial p(λ) = det(A − λB) is only zero for a finite number of
values of λ. The generalized eigenvalue problem for this case has been extensively
studied. In [12] there can be found some methods to solve it. The problem is more
difficult when the matrices are rectangular or (A − λB) is square and singular for all
values of λ. A matrix pencil built with this kind of matrices is known as a singular
matrix pencil and its set of eigenvalues can be finite, empty, or infinite.

It is common to find applications, especially in the field of signal processing, that
involve rectangular matrices A,B ∈ MC(m,n), m > n. Additional measurements,
which should allow more accurate estimations, add more rows to matrices A and
B. Besides, matrices A and B often show some structure that must be taken into
account for a correct treatment of the problem, or that may ease the complexity of
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the computation of the generalized eigenvalues. In this work we consider the following
structure: We assume that matrix A is the result of removing the first row of some
matrix G ∈ MC(m+1, n), while matrix B results from removing the last row of G.
These structured nonsquare matrix pencils appear, for example, in some important
signal processing applications [13, 9, 17] (in some of these examples, matrices A, B
also show some other structure, namely the Hankel structure of matrix G; this is not
considered in this paper), and in the computation of the greatest common divisor of
polynomials [14, 15], which in turn has application in diverse fields, such as network
theory, automatic control, and computer-aided geometric design.

1.2. The use of the Kronecker canonical form (KCF). The Jordan cano-
nical form of a square matrix, which describes its eigenvalues and invariant subspaces,
can be extended to matrix pencils. A pencil (A − λB) is similar to its KCF [11], which
is a pseudodiagonal matrix whose diagonal building blocks are Jordan blocks, with
finite and infinite eigenvalues, and, in the case of singular pencils, singular blocks.
The development of algorithms for the computation of the KCF has been a matter
of research for decades. Nowadays, numerically stable routines are available (see
[1] and the references therein). However, the computation of the KCF is an ill-posed
problem, in the sense that small perturbations to the pencil may yield a different KCF,
probably a generic one, which only contains singular blocks. This feature hampers
the application of the KCF to singular pencils derived from imperfectly known data,
which is common in fields such as signal processing.

Previous study of perturbations in singular matrix pencils has been carried out
under the light of the KCF. Stewart [19] bounds the perturbation on generalized
eigenvalues and eigenvectors implicitly assuming that the perturbation on the pencil
does not change the structure of the KCF. A similar assumption is used in [5] to bound
the change in deflating subspaces of perturbed singular matrix pencils. In that paper,
Demmel and K̊agström also consider the regular case. Boley in [2] gives bounds for the
perturbation that must be applied to A for the pencil (A − λB) to have a regular part
in its KCF. Edelman, Elmroth, and K̊agström in [8] give bounds on the perturbation
that makes a pencil less generic. These works give bounds to perturbations, which
may be regarded as important information for some linear systems applications, but
do not address the computation of the eigenvalues of the perturbed pencils, which in
turn would be useful for many other real-world applications.

1.3. Contribution and structure of the paper. The goal of this paper is
to propose a numerical method for finding generalized eigenvalues of nonsquare, and
thus singular, matrix pencils. Aiming at its application to problems with real data,
the method must be robust with respect to perturbations on the matrices of the pen-
cil. This requirement leads us to discard matrix decompositions or transformations
that reveal the structure of the pencil. We adopt the minimal perturbation approach
(MPA) for the development of the numerical method. This paper can be seen as a
follow-up to [3] and [4] which considers a particular structure for the matrix pencil. In
those papers, the MPA for the eigenproblem of singular matrix pencils is presented.
Roughly speaking, it consists of minimizing the norm of the perturbation that must
be applied to a pencil so that it has a fixed number of generalized eigenvalues. The
main contribution of this paper, apart from adapting the results in [4] to the consid-
ered structure, is the transformation of the constrained optimization problem of the
MPA into an unconstrained one with a low-dimensional parameter vector when only
one eigenvalue is assumed to exist. Well-known optimization techniques [16] can be
applied to solve it, outperforming the numerical algorithm proposed in [3] in terms of
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convergence rate and speed.
The paper is organized as follows: Section 2 reviews the MPA presented in [3]

and [4] and its relation to pseudospectra. In section 3 the structure considered in this
paper for the matrices that form the matrix pencil is introduced and incorporated to
the constrained optimization problem that lies at the heart of the MPA. Then, it is
shown to be equivalent to a simpler optimization problem and, in the case of seeking a
single eigenvalue, it is further transformed into an unconstrained optimization problem
that allows the use of simple numerical algorithms. Section 4 includes an example
to show the differences between considering the structure of the matrix pencil and
not doing so. Finally, we conclude the paper highlighting the main contribution and
future research lines.

1.4. Notation. Matrices are denoted by boldface upper-case letters, such as A,
whereas boldface lower-case letters, such as v, stand for column vectors. Scalars and
polynomials are in roman typography, as λ and p(x), respectively. AT stands for the
transpose of matrix A, AH stands for the conjugate transpose, and λ∗ denotes the
complex conjugate of scalar λ. The 2-norm and the Frobenius norm of matrices and
vectors are denoted by ‖·‖2 and ‖·‖F , respectively.

The inner product 〈u,v〉 is defined as 〈u,v〉 = uH·v. Either notation will be used
throughout the text. The projection of vector u onto the range of A is denoted by
PA(u) = PA ·u, where PA is the corresponding matrix projection operator. Matrix
P⊥

A is the projection operator over the complement subspace of the range of A. 0
stands for a row or column vector whose elements are all equal to zero. Its actual
dimensions will become clear from the context.

The ith singular value of a matrix M ∈ MC(m,n) is denoted by σi(M), with
1 ≤ i ≤ min(m.n). The singular values are assumed to be in decreasing order, i.e.,
σ1(A) ≤ σ2(A) ≤ · · · ≤ σmin(m,n)(A).

2. Pseudospectra and the minimal perturbation approach. In some prob-
lems, particularly in singular matrix pencils, the eigenvalues do not change contin-
uously with perturbations of the matrices involved. In these situations, the pseu-
dospectra has proved to be a more useful tool to gain the insight usually provided by
eigenvalues.

The spectra of a square matrix A ∈ MC(m,m) is defined as its set of eigenvalues:

Λ(A) = {z ∈ C : ∃u �= 0,A·u = z ·u} .

The ε-pseudospectra of A, Λε(A), includes those elements of C that are eigenvalues
of a matrix obtained from A by a perturbation of Frobenius norm at most ε [20]:

Λε(A) = {z ∈ C : z ∈ Λ(A+E) , ‖E‖F ≤ ε} .

The spectra of A is obtained as the ε-pseudospectra when ε = 0.
The extension to regular matrix pencils is treated in several papers; [7, 10] are

some of them. Given two matrices A,B ∈ MC(m,m), the pseudospectra of the pair
(allowing perturbation on both matrices) is defined as

(2.1) Λε(A,B) =
{
z ∈ C : ∃u �= 0, (A+E)·u = z ·(B+F)·u, ‖E‖2

F + ‖F‖2
F ≤ ε2

}
.

As in the case of a square matrix, when we are dealing with regular matrix
pencils, there exists a nonempty spectra Λ(A,B) and any connected region of the
pseudospectra has elements of Λ(A,B) inside it [10]. This does not happen with
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singular matrix pencils. The definition of pseudospectra is generalized for rectangular
matrices and general matrix pencils in [21], considering matrices in MC(m,n) in (2.1).

The spectra of a singular matrix pencil may be empty, as well as its pseudospectra
for values of ε small enough. As the value of ε is increased, the pseudospectra will
eventually become nonempty. The MPA for the generalized eigenvalue problem for
nonsquare matrix pencils [3] aims to find the smallest ε that allows a number of
eigenvalues to be included in the pseudospectra of the pair (A,B). It yields not only
the eigenvalues, but also the exact perturbation matrices. The formulation of the
MPA, also referred to as inverse pseudospectra analysis of the pencil, is as follows:

Given A,B ∈ MC(m,n), find:

(2.2)

min
{A0,B0,{λk,vk}p

k=1}
‖A0 − A‖2

F + ‖B0 − B‖2
F

subject to:{
(A0 − λkB0)vk = 0

‖vk‖2 = 1

}
, k = 1, . . . , p

{v1, . . . ,vp} is an independent set.

This difficult optimization problem is shown in [4] to be equivalent to an opti-
mization over the compact set of p×p unitary matrices. The result in [4] provides
a feasible way to compute the least-squares (LS) estimation (or maximum likelihood
estimation provided the errors in the elements of the matrices are independent and
follow a Gaussian distribution) of the p finite eigenvalues of a perturbed rectangular
pencil. From a practical point of view, the number p of finite eigenvalues (number of
finite elementary divisors in the KCF) of the pair (A0,B0) must be known before-
hand and the optimization process can be complicated due to the large number of
parameters.

Two particular cases that allow for a simpler formulation of the optimization
problem are studied in [3]. The eigenproblem for matrices A,B ∈ MC(m, 1) is studied
in the first place, showing that it is equivalent to a total least squares problem. Then,
the problem for matrices in MC(m,n), with n > 1, is considered, assuming that a
single finite eigenvalue is known to exist (p = 1). The simplified formulation of the
minimal perturbation approach for this particular case is as follows:

Given A,B ∈ MC(m,n), find:

(2.3)

min
{A0,B0,λ,v}

‖A0 − A‖2
F + ‖B0 − B‖2

F

subject to:

(A0 − λB0)v = 0,

‖v‖2 = 1.

A method for solving (2.3) is proposed. The optimization problem

(2.4)

min
{λ,v}

‖(A − λB)v‖2
2

1+|λ|2

subject to:

‖v‖2
2 = 1
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is shown to be equivalent to (2.3) (both objective functions attain their conditioned
minimum values at the same points), and a numerical algorithm guaranteed to con-

verge to the local minima of f(λ,v) =
‖(A−λB)v‖2

2

1+|λ|2 is given. It is also noted that if

several eigenvalues exist, f(λ,v) has minima at values of λ next to the eigenvalues.
Different initial values may result in the optimization process converging at different
local minima, and therefore, estimations of different eigenvalues. Note that, simple as
this approach may be, the estimation of p finite eigenvalues (p > 1) with this method
is based on heuristics, unlike the LS estimation presented in [4].

When analyzing pseudospectra, we study a function that gives the norm of the
smallest perturbation that must be applied to in order to make λ an eigenvalue. The
pseudospectra of a square matrix A is studied in [20] and the proposed function is
the smallest singular value of (A−λI), σmin(A−λI), as only perturbations on A are
allowed. In [10], the pseudospectra of regular matrix pencils is studied and another
function is considered, as perturbation may occur on both matrices A and B. In fact,
the function that appears in [10] is equivalent to f(λ,v), which provides a measure-
ment of the magnitude of the perturbation that must be applied to the pair (A,B)
for λ to be its finite eigenvalue.

The position of the global minimum of f(λ,v) yields a LS estimation of the eigen-
value (provided the assumptions n > 1, p = 1 are valid and matrices A,B are unstruc-
tured). However, when using the proposed method for finding several eigenvalues, the
minimization of f(λ,v) is performed for each eigenvalue on its own, without consid-
ering how the perturbation that would make a value of λ an eigenvalue would affect
the other eigenvalues in the set. It is not a LS estimation of the set of eigenvalues,
but nevertheless it may be accurate enough for many applications.

3. Minimal perturbation approach for structured nonsquare matrix
pencils.

3.1. Introduction. We adopt the MPA for nonsquare matrix pencils (A − λB)
with a particular structure, namely matrix A ∈ MC(m,n) is the bottom m×n sub-
matrix of some matrix G ∈ MC(m+1, n), while B ∈ MC(m,n) is the top m×n
submatrix of G. This structure may be written in a compact way as follows:

(3.1)
A =

[
0 Im

]
· G,

B =
[
Im 0

]
· G,

where Im is an m×m identity matrix.

Structure (3.1) usually stems from the special characteristics of a particular pro-
blem or application, and matrix G comprises the data that is subject to perturbations.
In this framework, as errors appear in the elements of G, it is more natural to take the
objective function of the MPA as the norm of the perturbation applied to matrix G,
‖Go − G‖2

F , instead of the sum of the norms of the perturbation suffered by matrices

A and B, ‖Ao − A‖2
F + ‖Bo − B‖2

F . These functions are slightly different, as it can
be seen from (3.1) that the elements of the first and last row of the perturbation
matrix Go − G contribute once to the latter objective function, whereas the rest of
the elements contribute twice. Taking this observation into account, the MPA for a
nonsquare matrix pencil that shows structure (3.1) adopts the following conditioned
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optimization formulation:

(3.2)

min
{Go,{λk,vk}p

k=1}
‖Go − G‖2

F

subject to:{ ([
0 Im

]
− λk

[
Im 0

])
Govk = 0

‖vk‖2 = 1

}
, k = 1, . . . , p

{v1, . . . ,vp} independent set.

As it is pointed out in [3] and section 2, an easy-to-solve optimization formulation
may be obtained if the scope of the problem is limited to simple cases. We assume
that matrices (A,B) are such that there exists one single finite eigenvalue. As has
been stated previously, if the matrix pencil comes from the perturbation of another
pencil with several finite eigenvalues, these will appear as local minima of the MPA
function. Problem (3.2) is simplified to

min
{Go,λ,v}

‖Go − G‖2
F(3.3a)

subject to:([
0 Im

]
− λ

[
Im 0

])
Gov = 0(3.3b)

‖v‖2 = 1.(3.3c)

In this section we give a solution for problem (3.2) as a minimization over the
set {{λk}pk=1}. This solution is then particularized to the case p = 1 (only a single
eigenvalue is assumed to exist) and it is shown that the corresponding constrained
optimization problem (3.3) can be transformed into an unconstrained minimization of
a function of λ. The objective function of this unconstrained optimization problem can
be seen as a scalar function of R

2. Nonlinear optimization algorithms like gradient-
descent, conjugate-gradient or Gauss–Newton method can be used to find a local
minimum, with the advantage that the reduced number of parameters lowers the
complexity of the function and the number of local minima. This procedure is simpler
and faster than the iterative algorithm proposed in [3], or the minimization of f(λ,v)
through standard optimization algorithms.

3.2. Definition of vectors and matrices. Before performing the simplifica-
tion of the optimization problem, we introduce some preliminary results that will
be used. Given a set of complex numbers {{λk ∈ C}pk=1}, matrix W(λ1,λ2,...,λp) ∈
MC(m+1, p) is defined as the Vandermonde matrix:

(3.4) W(λ1,λ2,...,λp) =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1
λ1 λ2 · · · λp

λ2
1 λ2

2 · · · λ2
p

...
...

...
λm

1 λm
2 · · · λm

p

⎤
⎥⎥⎥⎥⎥⎦
.

In the following, when the list of arguments is clear from the context, it will be omitted
for the sake of clarity. A well-known property of Vandermonde matrices is that they
have full column rank as long as λi �= λj , 1 ≤ i �= j ≤ p, and (m+1) ≥ p.
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We also define matrix D(λ) ∈ MC(m+1,m) as

(3.5) D(λ) =

[
0
Im

]
− λ∗

[
Im
0

]
.

Matrix D(λ) has some relevant properties that are easy to prove:
• D(λ) has full column rank m.

• Range
{
D(λ)

}
is an m-dimensional subspace in C

(m+1).
• The left null space of D(λ) is a subspace of dimension 1 spanned by the

Vandermonde vector W(λ). The corresponding unit-norm vector is denoted

by d⊥ ∈ C
(m+1):

(3.6) d⊥ =
1√∑m

k=0 |λ|
2k

·

⎡
⎢⎢⎢⎣

1
λ
...

λm

⎤
⎥⎥⎥⎦ .

As D(λ) has full column rank, the hermitian matrix DH
(λ) ·D(λ) is regular and the

projection operator PD ∈ MC(m,m) over Range
{
D(λ)

}
can be computed as

(3.7) PD = D(λ) ·
(
DH

(λ) ·D(λ)

)−1

·DH
(λ) =

(
I − d⊥ ·dH

⊥
)
.

3.3. Equivalent optimization problems. The following lines give a solution
for problem (3.2) as a minimization over the set {{λk}pk=1}, and then the constrained
optimization problem (3.3) is transformed into an unconstrained minimization of a
function that only depends on λ. These transformations are made in three steps that
we present as theorems.

Theorem 1. The optimization problem posed in (3.2) is equivalent to the opti-
mization problem

(3.8) min
{{λk}p

k=1}

p∑
i=1

σ(n−p+i)

(
P⊥

W ·G
)
,

where P⊥
W is the projection matrix over the complement subspace of the range of the

Vandermonde matrix W, which is defined in (3.4). The optimal solution for Go is
obtained by a rank-p perturbation to the original matrix G:

(3.9) Go = G − P⊥
W · G · Q · QH,

with Q ∈ MC(n, p) a matrix composed of the singular vectors of P⊥
W ·G corresponding

to its smallest singular values.
Proof. We will begin the transformation of the optimization problem (3.2) by

noting that conditions

(3.10)
[
0 Im

]
·Go ·vk = λk ·

[
Im 0

]
·Govk, k = 1, . . . , p

are equivalent to

{
[Go ·vk]1 = hk,

[Go ·vk]i = λk ·[Go ·vk](i−1) i = 2, . . . , m+1,
k = 1, . . . , p
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where [x]i denotes the ith element of vector x, and hk ∈ C, k = 1, . . . , p. Therefore,
(3.10) will hold if and only if

(3.11) Go ·V = W·H

for some diagonal matrix H ∈ MC(p, p) built with h1, h2, . . . , hp as its diagonal ele-
ments. Since the Vandermonde matrix W ∈ MC(m+1, p) has full column rank (3.4),
so does V, which amounts to the set {{vk}pk=1} being independent, as required by
the last condition of (3.2).

Let T ∈ MC(p, p) be an invertible matrix such that V·T = Q, with Q ∈ MC(n, p)
a matrix with orthonormal columns. Then, multiplying (3.11) by T we get

Go ·V·T = W·H·T,

or, equivalently,

(3.12) Go ·Q = W·R.

Equation (3.12) is equivalent to equation (3.10) and R ∈ MC(p, p) is a regular matrix.
Let U ∈ MC(n, n−p) denote a matrix with orthonormal columns such that S =[

Q U
]

is a n × n unitary matrix. Taking Δ = Go − G, the objective function of
the optimization problem can be written as follows:

‖G − Go‖F = ‖Δ‖F = ‖Δ·S‖F =
∥∥[Δ·Q Δ·U

]∥∥
F

=
∥∥[Δ(Q) ·Q Δ(U) ·U

]∥∥
F
.(3.13)

In the last equality, the decomposition of the perturbation matrix Δ = Δ(Q) + Δ(U)

has been used:

Δ = Δ·S· SH = Δ·
(
Q·QH + U·UH

)
= Δ·Q·QH + Δ·U· UH = Δ(Q) + Δ(U).

The rows of Δ(Q) and Δ(U) are the projections of the rows of Δ onto the range of
Q and U, respectively, so Δ(Q) ·U = 0 and Δ(U) ·Q = 0.

Then, condition (3.12) can be written in terms of the perturbation matrix as

(3.14)
(
G + Δ(Q)

)
·Q = W·R.

It is clear that the minimum of the objective function (3.13) subject to condition (3.14)
will be attained for a perturbation matrix such that Δ(U) = 0. The objective function
can be replaced by

∥∥Δ(Q) ·Q
∥∥
F

and, consequently, problem (3.3) is equivalent to

min
{Go,{λ}p

k=1,Q}
‖G·Q − Go ·Q‖F(3.15a)

subject to:

Go ·Q = W·R(3.15b)

for some invertible matrix R ∈ MC(p, p) and with Q ∈ MC(n, p) a matrix with or-
thonormal columns. The matrix Go that solves the constrained optimization problem
satisfies

Go = G + Δ = G + Δ(Q) = G + Δ(Q) ·Q·QH.
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From condition (3.14), we have

(3.16) Go = G + W·R·QH − G·Q·QH.

Condition (3.15b) can be incorporated to the objective function (3.15a), yielding
the following optimization problem:

(3.17) min
{R,{λk}p

k=1,Q}
‖G·Q − W·R‖F .

Given matrix Q and a set {λk}pk=1, the value of R that minimizes the objective
function (3.17) is the one that makes the columns of W·R equal to the projection of
the corresponding columns of G·Q over the range of W:

(3.18) W·R = PW ·G·Q.

Hence, the objective function can be written as:

‖G·Q − PW ·G·Q‖F = ‖(I − PW)·G·Q‖F =
∥∥P⊥

W ·G·Q
∥∥
F
.

The minimum of the objective function will be attained for a matrix Q such that
its columns are the singular vectors of P⊥

W ·G corresponding to its smallest singular
values:

min
{{λk}p

k=1,Q}
∥∥P⊥

W ·G·Q
∥∥
F

= min
{{λk}p

k=1}

p∑
i=1

σ(n−p+i)

(
P⊥

W ·G
)
.

Finally, an expression for the optimal solution Go in terms of matrix G and a
perturbation will be given. From (3.16) and (3.18), we have

Go = G + PW ·G·Q·QH − G·Q·QH

= G − (I − PW)·G·Q·QH = G − P⊥
W ·G·Q·QH.

Corollary 1. The optimization problem posed in (3.3) is equivalent to the
optimization problem

min
{λ,v}

vH ·GH ·PD ·G·v(3.19a)

subject to:

‖v‖2 = 1(3.19b)

with PD defined in (3.7). The optimal solution for Go is obtained by a rank-one
perturbation to the original matrix G:

Go = G − PD ·G·v·vH.

Proof. This corollary follows directly from Theorem 1, taking p = 1, and the
definitions in section 3.2. Note that in this case W = h1 ·d⊥, for some h1 ∈ C, and
Q = v.

Corollary 1 provides a simple formulation for the MPA when only one eigenvalue
is assumed to exist. Still, the minimization problem it poses is complicated due to the
number of parameters involved, which discourages the use of standard optimization
techniques. The following theorems show that if matrix G has orthonormal columns,
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50 P. LECUMBERRI, M. GÓMEZ, AND A. CARLOSENA

then problem (3.8) is equivalent to the unconstrained minimization of a function of
λ.

The assumption of G having orthonormal columns is valid in many practical
applications. For example, in the case of the greatest common divisor (GCD) compu-
tation, the columns of matrix G span the null-space of a matrix P defined in terms
of the coefficients of the polynomials [14], so G can be computed with orthonormal
columns from the singular value decomposition of P.

On the other hand, the generalized eigenvalues of a matrix pencil that shows

structure (3.1) are the roots of the Vandermonde vectors
[
1 λ∗ . . . (λ∗)m

]H
that

are included in Range(G) [18]. Therefore, a matrix Ĝ with orthonormal columns that

has the same range as G gives rise to a matrix pencil (Â−λ·B̂), with Â =
[
0 Im

]
·Ĝ

and B̂ =
[
Im 0

]
·Ĝ, that has the same eigenvalues.

Although the MPA yields different results for G and Ĝ, the position of the minima
of the objective function when Ĝ is considered may still be a good estimate for the
approximate eigenvalues of (A − λB).

Theorem 2. The optimization problem posed in (3.19) is equivalent to the opti-
mization problem

max
{λ,v}

∣∣dH
⊥ ·G·v

∣∣2(3.20a)

subject to:

eH
⊥ ·G·v = 0.(3.20b)

‖v‖2 = 1.(3.20c)

Proof. We will make use of the inner-product and projection function notation
for transforming the objective function (3.19a):

vH ·GH ·PD ·G·v =
〈
G·v, PD(λ)

(G·v)
〉

=
〈
PD(λ)

(G·v) + Pd⊥(G·v) , PD(λ)
(G·v)

〉
=

〈
PD(λ)

(G·v) , PD(λ)
(G·v)

〉
,(3.21)

where the orthogonality of projections onto the range of D(λ) and d⊥ has been taken
into account.

Under the assumption that the columns of G are orthonormal, the norm of G·v
will be the same as the norm of v, which must be equal to 1 (3.19b). This property
fixes a relationship between the inner-products of the projections of G·v:

‖G·v‖2
2 = 〈G·v,G·v〉

=
〈
PD(λ)

(G·v) + Pd⊥(G·v) , PD(λ)
(G·v) + Pd⊥(G·v)

〉
=

〈
PD(λ)

(G·v) , PD(λ)
(G·v)

〉
+ 〈Pd⊥(G·v) , Pd⊥(G·v)〉 = 1.(3.22)

From (3.21) and (3.22) it is clear that our objective function is

‖G − Go‖2
F = ‖G·v‖2

2 − ‖Pd⊥(G·v)‖2
2 = 1 − ‖Pd⊥(G·v)‖2

2 .

Its minimization is equivalent to the maximization of ‖Pd⊥(G·v)‖2
2.

Consequently, the objective of our optimization problem is the maximization of

‖Pd⊥(G·v)‖2
2 =

∥∥d⊥ ·dH
⊥ ·G·v

∥∥2

2
= ‖d⊥‖2

2 ·
∣∣dH

⊥ ·G·v
∣∣2 =

∣∣dH
⊥ ·G·v

∣∣2 .
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Theorem 3. The optimization problem posed in (3.20) is equivalent to the opti-
mization problem

(3.23) min
λ

1

f(λ)

with

f(λ) = dH
⊥ ·G·GH ·d⊥.

Proof. We define vector x as the vector in the direction of v that makes dH
⊥ ·G·x =

1. Since v is a unit-norm vector (3.20c), v = x
‖x‖2

, and the objective function (3.20a)

can be written in terms of x as

∣∣dH
⊥ ·G·v

∣∣2 =

∣∣dH
⊥ ·G·x

∣∣2
‖x‖2

2

=
1

‖x‖2
2

.

Thus, the optimization problem (3.20) is equivalent to

min
{λ,x}

‖x‖2
2(3.24a)

subject to:

dH
⊥ ·G·x = 1.(3.24b)

Condition (3.24b) poses an undetermined linear system. The minimum norm
solution for x will minimize function (3.24a). For every λ, the minimum norm solution
of the respective undetermined linear system can be computed as the product of the
Moore–Penrose pseudoinverse of the coefficients matrix and the independent term.
The pseudoinverse of dH

⊥ ·G can be constructed from its singular value decomposition
[12], dH

⊥ ·G = u·σ ·vH, with

u = 1 σ =
∥∥GH ·d⊥

∥∥
2

v =
GH ·d⊥

‖GH ·d⊥‖2

.

Then, the pseudoinverse of dH
⊥ ·G is defined as

(
dH
⊥ ·G

)+
= v· 1

σ
·uH =

GH ·d⊥
‖GH ·d⊥‖2

2

.

And the minimum norm solution of the undetermined linear system is

x =
(
dH
⊥ ·G

)+ ·1 =
(
dH
⊥ ·G

)+
.

With this result, the objective function we are trying to minimize is equivalent to

‖x‖2
2 = xH ·x =

dH
⊥ ·G·GH ·d⊥
‖GH ·d⊥‖4

2

=
dH
⊥ ·G·GH ·d⊥
‖GH ·d⊥‖4

2

=

∥∥GH ·d⊥
∥∥2

2

‖GH ·d⊥‖4
2

=
1

‖GH ·d⊥‖2
2

=
1

dH
⊥ ·G·GH ·d⊥

.(3.25)
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4. Example. In order to obtain a matrix pencil with the structure considered
in this paper, we pose a numerical GCD computation problem. First, we take a
polynomial p(x) with roots −0.5, −1.25, 0.2 ± 1.4i and 0.625:

p(x) = (x + 0.5)·(x + 1.25)·
(
x2 − 0.4x + 2

)
·(x− 0.625) .

Then we randomly generate 20 polynomials of degree 44 with their coefficients follo-
wing a normal distribution with zero mean and variance equal to one. After multiply-
ing these polynomials with p(x), we have 20 polynomials whose GCD is p(x). Matrix
X ∈ MR(50, 20) is built with the coefficients of these 20 polynomials as columns.
In [14, 17] it is proved that the only generalized eigenvalues of the matrix pencil
A − λB with A =

[
0 I

]
·G, B =

[
I 0

]
·G, and G ∈ MR(50, 30) the orthogonal

complement of X, are the roots of the GCD, p(x). Figure 4.1(a) shows a plot of
ε(λ) = log(1−f(λ)). This function has been chosen so that its minima can be clearly
spotted in Figure 4.1. Five minima, located at values of λ equal to the roots of p(x),
can be seen.

The MPA is an alternative to traditional methods (computation of the KCF or
other structure-revealing forms) when the available data are contaminated by noise
and the latter yield no valid results. Figures 4.1(b) and 4.1(c) show plots of function
e(λ) for matrix X perturbed with matrices whose elements are taken from zero-mean
normal distributions of variance σ = 0.5 and σ = 1, respectively. It can be observed
that the minima are not as deep as in the noiseless case (Figure 4.1(a)) and that
they are slightly deviated from their correct position. Some minima may vanish for
strong perturbations, and therefore, in these situations, the MPA may fail to provide
an estimation of the generalized eigenvalues.

Having established the suitability of the MPA for low and moderate noise levels
in our example, we proceed to compare the optimization method proposed in [3] and
the minimization of function e(λ) (3.23). To this end, we must choose a method for
the unconstrained minimization of e(λ). Due to its simplicity, we make use of the
steepest descent method, although more sophisticated strategies, such as trust region
methods, show better convergence properties [16].

Figure 4.1(d) shows a plot of e(λ) for a perturbation of level σ = 0.5 with the
points reached at every iteration for both minimization methods, starting from a hand-
picked initial point. The steepest descent method over e(λ) (triangles) converges to
the minimum faster than the optimization algorithm proposed in [3] (circles). This
can also be seen in Figure 4.2. It shows the values of e(λ) at every iteration for two
different hand-picked initial points for both optimization methods. Lines of the same
style (solid or dashed) denote the same initialization, whereas triangles correspond to
points found with the steepest descent method and circles correspond to the method
proposed in [3]. Note that this hand-picked starting points are considerably further
away from the location of the minima than the initial values of λ obtained by the
squaring method of initialization [3].

Apart from the rate of convergence, another issue that should be taken into
account is the numerical complexity of each iteration. The method of minimization
for unstructured matrix pencils requires the computation of the singular vector related
to the smallest singular value of (A − λB) at every iteration. The SVD for a m × n
matrix is an operation of complexity O

(
mn2

)
(this value can be lowered by suitable

factorization or partial decomposition [12]). On the other hand, the gradient and
Hessian of f(λ) can be computed with a complexity of O(m).
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Fig. 4.1. Log of function (1−f(λ)) with exact data (a), with σ = 0.5 (b) and with σ = 1 (c).
Iterations of minimization algorithms (d): Method proposed in [3] (circles, solid line) and steepest
descent over f(λ) defined in (3.23) (triangles, dashed line).
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Fig. 4.2. Values of log(1−f(λ)) at every iteration for different starting points for the method
proposed in [3] (circles) and steepest descent over f(λ) defined in (3.23) (triangles).

5. Conclusions and future work. This work has addressed the MPA for non-
square matrix pencils (A − λB). We have considered the following structure for
matrices A,B ∈ MC(m,n):

A =
[
0 I

]
·G, B =

[
I 0

]
·G,
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with G ∈ MC(m+1, n). The matrices of the pencil are derived from matrix G. This
observation leads to a slightly different MPA formulation, as the norm of the pertur-
bation in G is considered, instead of the norm of the perturbations in A and B. The
MPA can be formulated as a minimization over the set {{λk}pk=1}. Besides, when
p = 1, this structure allows the transformation of the constrained optimization prob-
lem that must be solved to compute the solution of the MPA into an unconstrained
one. Then, well-known methods for unconstrained minimization can be used, improv-
ing the rate of convergence and simplicity of previous algorithm for the computation
of the solution.

The structure considered in this paper appears in some signal processing methods
and, more notably, in the numerical computation of the GCD of polynomials. How-
ever, once the GCD computation problem is formulated as an eigenvalue problem for
a rectangular matrix pencil, previous proposed solutions consist in matrix transforma-
tions that reveal the generalized eigenvalues. This way of proceeding is not suitable
for perturbed data, due to the ill-posedness of the transformations, while the MPA
may still yield valid results in this situation. Our work in the future will focus in this
application, comparing this method to other numerical GCD computation methods.
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Abstract. Given a sample covariance matrix, we solve a maximum likelihood problem penalized
by the number of nonzero coefficients in the inverse covariance matrix. Our objective is to find a
sparse representation of the sample data and to highlight conditional independence relationships
between the sample variables. We first formulate a convex relaxation of this combinatorial problem,
we then detail two efficient first-order algorithms with low memory requirements to solve large-scale,
dense problem instances.
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1. Introduction. We discuss a problem of model selection.1 Given n variables
drawn from a Gaussian distribution N (0, C), where the true covariance matrix C
is unknown, we estimate C from a sample covariance matrix Σ by maximizing its
log-likelihood. Following [7], setting a certain number of coefficients in the inverse
covariance matrix Σ−1 to zero, a procedure known as covariance selection, improves
the stability of this estimation procedure by reducing the number of parameters to
estimate and highlight structure in the underlying model.

Here, we focus on the problem of discovering this pattern of zeroes in the inverse
covariance matrix. We seek to trade-off the log-likelihood of the solution with the
number of zeroes in its inverse, and solve the following estimation problem:

maximize log detX − 〈Σ, X〉 − ρCard(X)

subject to αIn � X � βIn
(1.1)

in the variable X ∈ Sn, where Σ ∈ S+
n is the sample covariance matrix, Card(X)

is the cardinality of X, i.e., the number of nonzero components in X, ρ > 0 is a
parameter controlling the trade-off between log-likelihood and cardinality, and finally,
α, β > 0 fix bounds on the eigenvalues of the solution.

Zeroes in the inverse covariance matrix correspond to conditionally independent
variables in the model and this approach can be used to simultaneously determine
a robust estimate of the covariance matrix and, perhaps more importantly, discover
structure in the underlying graphical model. In particular, we can view (1.1) as a
model selection problem using Akaike (AIC, see [1]) or Bayes (BIC, see [5]) information
criterions. Both these problems can be written as in (1.1) with ρ = 2/N for the AIC
problem and ρ = 2 log(N/2)/N for the BIC problem, where N is the sample size.

∗Received by the editors September 28, 2006; accepted for publication (in revised form) by L. Van-
denberghe May 31, 2007; published electronically January 25, 2008. This research was supported by
NSF grant DMS-0625352, EUROCONTROL grant C20083E/BM/05, and a gift from Google, Inc.

http://www.siam.org/journals/simax/30-1/67098.html
†ORFE Department, Princeton University, Princeton, NJ 08544 (aspremon@princeton.edu).
‡EECS Department, UC Berkeley, Berkeley, CA 94720 (onureena@eecs.berkeley.edu, elghaoui@

eecs.berkeley.edu).
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This has applications in speech recognition (see [2, 3]) or gene networks analysis (see
[9, 8], for example).

The Card(X) penalty term makes the estimation problem (1.1) combinatorial
(NP-hard in fact), and our first objective here is to derive a convex relaxation to this
problem which can be solved efficiently. We then derive two first-order algorithms
geared towards memory efficiency and large-scale, dense problem instances.

In [3], Bilmes proposed a method for covariance selection based on choosing sta-
tistical dependencies according to conditional mutual information computed using
training data. Other recent work involves identifying those Gaussian graphical mod-
els that are best supported by the data and any available prior information on the
covariance matrix. This approach is used by [13, 9] on gene expression data. Recently,
[6, 12] also considered penalized maximum likelihood estimation for covariance selec-
tion. In contrast to our results here, [12] works on the Cholesky decomposition of X
using an iterative (heuristic) algorithm to minimize a nonconvex penalized likelihood
problem, while [6] proposes a set of large scale interior point algorithms to solve sparse
problems, i.e., problems for which the conditional independence structure is already
known.

The paper is organized as follows, in section 2, we detail our convex relaxation of
problem (1.1) and study the dual. In section 3, we derive two efficient algorithms to
solve it. Finally, in section 4 we describe some numerical results.

2. Problem setup.

2.1. Convex relaxation. Given a sample covariance matrix Σ ∈ S+
n , we can

write the following convex relaxation to the estimation problem (1.1):

maximize log detX − 〈Σ, X〉 − ρ1T |X|1

subject to αIn � X � βIn,
(2.1)

with variable X ∈ Sn, where 1 is the n-vector of ones, so that 1T |X|1 =
∑n

i,j=1 |Xij |.
The penalty term involving the sum of absolute values of the entries of X is a proxy for
the number of its nonzero elements: the function 1T |X|1 can be seen as the largest
convex lower bound on Card(X) on the hypercube, an argument used by [11] for
rank minimization. It is also often used in regression techniques, such as the LASSO
studied in [19], when sparsity of the solution is a concern. This relaxation is provably
tight in certain cases (see [10]). In our model, the bounds (α, β) on the eigenvalues
of X are fixed and user-chosen. Although we allow α = 0 and β = +∞, such bounds
are useful in practice to control the condition number of the solution.

When α = 0 and β = +∞, for ρ = 0, provided Σ � 0, problems (1.1) and (2.1)
have a unique solution X� = Σ−1, and the corresponding maximum-likelihood esti-
mate is Σ. Due to noise in the data, in practice, the sample estimate Σ may not have
a sparse inverse, even if the underlying graphical model exhibits conditional indepen-
dence properties. By striking a trade-off between the maximality of the likelihood
and the number of nonzero elements in the inverse covariance matrix, our approach is
potentially useful at discovering structure, precisely conditional independence prop-
erties in the data. This means that we have to focus on the case where the matrix X
is dense. At the same time, it serves as a regularization technique: when Σ is rank-
deficient, there is no well-defined maximum-likelihood estimate, whereas the solution
to problem (2.1) is always unique and well defined for ρ > 0, as seen later.
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2.2. Dual problem, robustness. We can rewrite the relaxation (2.1) as the
following min-max problem:

max
{X: αIn�X�βIn}

min
{U : |Uij |≤ρ}

log detX − 〈Σ + U,X〉,(2.2)

which gives a natural interpretation of problem (2.1) as a worst-case robust maxi-
mum likelihood problem with componentwise bounded, additive noise on the sample
covariance matrix Σ. The corresponding Lagrangian is given by

L(X,U, P,Q) = log detX − Tr((Σ + U + Q− P )X) − αTrP + βTrQ,

and we get the following dual to (2.1):

minimize − log det(Σ + U + Q− P ) − n + αTrP − βTrQ

subject to P,Q � 0, |Uij | ≤ ρ, i, j = 1, . . . , n,
(2.3)

in the variables U,P,Q ∈ Sn. In what follows, we denote by ‖X‖2 the largest singular
value of the matrix X and by ‖X‖F its Frobenius norm. When α = 0 and β = +∞,
the first-order optimality conditions impose X(Σ + U) = In, hence we always have

X � α(n)In with α(n) :=
1

‖Σ‖2 + nρ
;

zero duality gap also means Tr(ΣX) = n − ρ1T |X|1. Because X and Σ are both
positive semidefinite, we get

‖X‖2 ≤ ‖X‖F ≤ 1T |X|1 ≤ n/ρ,

which, together with Tr(ΣX) ≥ λmin(Σ)‖X‖2, means ‖X‖2 ≤ n/λmin(Σ). Finally
then, we must always have

X � β(n)In with β(n) := nmin

(
1

ρ
, ‖Σ−1‖2

)

and 0 < α(n) ≤ λ(X) ≤ β(n) < +∞ at the optimum. Setting α = 0 and β = +∞ in
problem (2.1) is then equivalent to setting α = α(n) and β = β(n). Since the objective
function of problem (2.1) is strictly convex when 0 < α(n) ≤ λ(X) ≤ β(n) < +∞,
this shows that (2.1) always has a unique solution.

3. Algorithms. In this section, we present two algorithms for solving problem
(2.1), one based on an optimal first-order method developed in [18], the other based
on a block-coordinate gradient method. Of course, problem (2.1) is convex and can
readily be solved using interior point methods (see [4], for example). However, such
second-order methods become quickly impractical for solving (1.1), since the corre-
sponding complexity to compute an ε-suboptimal solution is O(n6 log(1/ε)). Note,
however, that we cannot expect to do better than O(n3), which is the cost of solving
the nonpenalized problem for dense covariance matrices Σ.

3.1. Smooth optimization. The recently-developed first-order algorithms due
to [18] trade-off a better dependence on problem size against a worst dependence on
accuracy, usually 1/ε instead of its logarithm and the method we describe next has
a complexity of O(n4.5/ε). In addition, the memory requirement of these first-order
methods is much lower than that of interior-point methods, which involve forming a
dense Hessian, and hence, become quickly prohibitive with a problem having O(n2)
variables.
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Nesterov’s model. The algorithm in [18] supposes that the function to minimize
conforms to a certain representation. This is the case for our problem here, so we first
write (2.2) in the saddle-function format described in [18]:

min
X∈Q1

− log detX + 〈Σ, X〉 + ρ1T |X|1 ≡ min
X∈Q1

max
U∈Q2

f̂(X) + 〈A(X), U〉,

where we define f̂(X) = − log detX + 〈Σ, X〉, A = ρIn2 , and

Q1 := {X ∈ Sn : αIn � X � βIn} , Q2 := {U ∈ Sn : ‖U‖∞ ≤ 1} .

The adjoint of this problem, corresponding to the dual problem (2.3), is then written:

max
U∈Q2

φ(U) where φ(U) := min
X∈Q1

− log detX + 〈Σ + U,X〉.(3.1)

When a function can be represented in this saddle function format, the method de-
scribed in [18] combines two steps.

Regularization: By adding a strongly convex penalty to the saddle function rep-
resentation of f , the algorithm first computes a smooth ε-approximation of f with
Lipschitz continuous gradient. This can be seen as a generalized Moreau–Yosida reg-
ularization step (see [14], for example).

Optimal first order minimization: The algorithm then applies the optimal first-
order scheme for functions with Lipschitz continuous gradients detailed in [16] to the
regularized function. Each iteration requires efficiently computing the regularized
function value and its gradient. In all the semidefinite programming applications
detailed here, this can be done extremely efficiently, with a complexity of O(n3) and
memory requirements in O(n2). The method is only efficient if all these steps can be
performed explicitly or at least very efficiently. As we will see below, this is the case
here.

Prox-functions and related parameters. To Q1 and Q2 we now associate norms
and so-called prox-functions. For Q1, we use the Frobenius norm and a prox-function:

d1(X) = − log detX + n log β.

The function d1 is strongly convex on Q1, with a convexity parameter of σ1 = 1/β2,
in the sense that ∇2d1(X)[H,H] = Tr(X−1HX−1H) ≥ β−2‖H‖2

F for every H. Fur-
thermore, the center of the set, X0 := arg minX∈Q1

d1(X) is X0 = βIn and satisfies
d1(X0) = 0. With our choice, we have D1 := maxX∈Q1

d1(X) = n log(β/α).
To Q2, we also associate the Frobenius norm and the prox-function d2(U) =

‖U‖2
F /2. With this choice, the center U0 of Q2 is U0 = 0. Furthermore, the function

d2 is strongly convex on its domain with a convexity parameter with respect to the
2-norm σ2 = 1, and we have D2 := maxU∈Q2 d2(U) = n2/2.

The function f̂ has a gradient that is Lipschitz-continuous with respect to the
Frobenius norm on the set Q1 with Lipschitz constant M = 1/α2. Finally, the norm
(induced by the Frobenius norm) of the operator A = ρIn2 is ρ.

Smooth minimization. The method is based on replacing the objective of the
original problem, f(X), with fε(X), where ε > 0 is the desired accuracy, and fε is a
penalized function involving the prox-function d2, defined as

fε(X) := f̂(X) + max
U∈Q2

{〈X,U〉 − (ε/2D2)d2(U)}.(3.2)
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The above function turns out to be a smooth uniform approximation to f everywhere,
with maximal error ε/2. Furthermore, the function fε has a Lipschitz-continuous
gradient with Lipschitz constant given by L(ε) := M + D2‖A‖2/(2σ2ε). A specific
first-order algorithm detailed in [16] for smooth, constrained convex minimization is
then applied to the function fε to get a convergence rate in O(1/ε).

Nesterov’s algorithm. Choose ε > 0 and set X0 = βIn, the algorithm then updates
primal and dual iterates Yk and Ûk using the following steps:

1. Compute ∇fε(Xk) = −X−1 + Σ + U∗(Xk), where U∗(X) solves (3.2).
2. Find Yk = argminY ∈Q1

{〈∇fε(Xk), Y −Xk〉 + 1
2L(ε)‖Y −Xk‖2

F }.
3. Find Zk = argminZ∈Q1

{
L(ε)d1(Z)

σ1
+
∑k

i=0
i+1
2 (fε(Xi) + 〈∇fε(Xi), Z −Xi〉)

}
.

4. Update Xk = 2
k+3Zk + k+1

k+3Yk and Ûk = kÛk−1+2U∗(Xk)
(k+2) .

5. Repeat until the duality gap is less than the target precision:

− log detYk + 〈Σ, Yk〉 + ρ1T |Yk|1 − φ(Ûk) ≤ ε.

The key to the method’s success is that steps 1–3 and 5 can be performed explicitly
and only involve an eigenvalue decomposition. Step one above computes the (smooth)
function value and gradient. The second step computes the gradient mapping, which
matches the gradient step for unconstrained problems (see [17, p. 86]). Steps three and
four update an estimate sequence [17, p. 72] of fμ whose minimum can be computed
explicitly and gives an increasingly tight upper bound on the minimum of fμ. We
now present these steps in detail for our problem.

Step 1. The first step requires computing the gradient of the function

fε(X) = f̂(X) + max
u∈Q2

〈X,U〉 − (ε/2D2)d2(U).

This function can be expressed in closed form as fε(X) = f̂(X)+
∑

i,j ψμ(Xij), where

ψε(x) :=

{
|x| − (ε/4D2) if |x| ≥ (ε/2ρD2),

D2x
2/ε otherwise,

which is simply the Moreau–Yosida regularization of the absolute value and the gra-
dient of the function at X is

∇fμ(X) = −X−1 + Σ + U∗(X),

with

U∗(X) := max(min(X/μ, ρ),−ρ),

with min. and max. understood componentwise. The cost of this step is dominated
by that of computing the inverse of X, which is O(n3).

Step 2. This step involves a problem of the form

TQ1(X) = arg min
Y ∈Q1

〈∇fε(X), Y −X〉 +
1

2
L‖Y −X‖2

F ,

where X ∈ Q1 is given. This problem can be reduced to one of projection on Q1,
namely

min
Y ∈Q1

‖Y −G‖2
F ,
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where G := X − L−1∇fε(X). Using the rotational invariance of this problem, we
reduce it to a vector problem:

minλ

∑
i(λi − γi)

2 : α ≤ λi ≤ β, i = 1, . . . , n,

where γ is the vector of eigenvalues of G. This problem admits a simple explicit
solution:

λi = min(max(γi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V Tdiag(λ)V , where G = V Tdiag(γ)V is
the eigenvalue decomposition of G. The cost of this step is dominated by the cost of
forming the eigenvalue decomposition of G, which is O(n3).

Step 3. The third step involves solving a problem of the form

Z := arg max
X∈Q1

d1(X) + 〈S,X〉,(3.3)

where S is given. Again, due to the rotational invariance of the objective and feasible
set, we can reduce the problem to a one-dimensional problem:

minλ

∑
i σiλi − log λi : α ≤ λi ≤ β,

where σ contains the eigenvalues of S. This problem has a simple, explicit solution:

λi = min(max(1/σi, α), β), i = 1, . . . , n.

The corresponding solution is then Y = V Tdiag(λ)V , where S = V Tdiag(σ)V is the
eigenvalue decomposition of S. Again, the cost of this step is dominated by the cost
of forming the eigenvalue decomposition of S, which is O(n3).

Computing φ(Ûk). For a given matrix Ûk the function φ in (3.1) is computed as

φ(Ûk) = min
X∈Q1

− log detX + 〈Σ + Ûk, X〉.

This means projecting (Σ + Ûk)
−1 on Q1 only involves an eigenvalue decomposition.

Complexity estimate. To summarize, for step 1, the gradient of fε is readily com-
puted in closed form, via the computation of the inverse of X. Step 2 essentially
amounts to projecting on Q1 and requires an eigenvalue problem to be solved; like-
wise for step 3. In fact, each iteration costs O(n3). The number of iterations necessary
to achieve an objective with absolute accuracy less than ε is then given by

N(ε) := 4‖A‖1

ε

√
D1D2

σ1σ2
+

√
MD1

σ1ε
=

κ
√
n(log κ)

ε
(4nαρ +

√
ε),(3.4)

where κ = β/α bounds the solution’s condition number. Thus, the overall complexity
when ρ > 0 is in O(n4.5/ε), as claimed.

3.2. Block-coordinate gradient methods. In this section, we focus on the
particular case where α = 0 and β = +∞ (hence, implicitly α = α(n) and β =
β(n)) and derive gradient minimization algorithms that take advantage of the problem
structure. We consider the following problem:

max
X

log detX − 〈Σ, X〉 − ρ1T |X|1(3.5)
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in the variable X ∈ Sn, where ρ > 0 again controls the trade-off between log-likelihood
and sparsity of the inverse covariance matrix. Its dual is given by

minimize − log det(Σ + U) − n

subject to |Uij | ≤ ρ, i, j = 1, . . . , n,
(3.6)

in the variable U ∈ Sn. We partition the matrices X and U in block format:

X =

(
Z x

xT y

)
and U =

(
V u

uT w

)
,

where Z � 0 and U are fixed and x, u ∈ R(n−1), y, w ∈ R are the variables (row
and column) we are updating. We also partition the sample matrix according to the
same block structure:

Σ =

(
A b

bT c

)
,

where A ∈ S(n−1), b ∈ R(n−1), c ∈ R. In the methods that follow, we will update
only one column (and corresponding row) at a time and without loss of generality we
can always assume that we are updating the last one.

Block-coordinate descent. The dual problem (3.6):

minimize − log det(Σ + U) − n

subject to |Uij | ≤ ρ, i, j = 1, . . . , n,

in the variable U ∈ Sn, can be written in block format as

minimize − log det(A + V ) − log
(
(w + c) − (b + u)T (A + V )−1(b + u)

)
− n

subject to |w| ≤ ρ, |ui| ≤ ρ, i = 1, . . . , n,

in the variables u ∈ R(n−1) and w ∈ R (V is fixed at each iteration). We directly
get w = ρ so the diagonal of the optimal solution must be ρ1. The main step at each
iteration is then a box constrained quadratic program (QP):

minimize (b + u)T (A + V )−1(b + u)

subject to |ui| ≤ ρ, i = 1, . . . , n,
(3.7)

in the variable u ∈ R(n−1). To summarize, the block coordinate descent algorithm
proceeds as follows:

1. Pick the row and column to update.
2. Compute (A + V )−1.
3. Solve the box constrained QP in (3.7).
4. Repeat until duality gap is less than precision: 〈Σ, X〉 − n + ρ1T |X|1 ≤ ε.

At each iteration, we need to compute the inverse of the submatrix (A+V ) ∈ S(n−1),
but we can update this inverse using the Sherman–Woodbury–Morrison formula on
two rank-two updates; hence, it is only necessary to compute a full inverse at the first
iteration.
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Block-coordinate ascent. For a fixed Z, problem (3.5) is equivalent to

maximize log
(
y − xTZ−1x

)
− 2bTx− y(c + ρ) − 2ρ‖x‖1

subject to y − xTZ−1x > 0, y > 0,

in the variables x ∈ R(n−1), y ∈ R, where Z � 0 (given) and the Schur complement
constraints imply X � 0. We can solve for the optimal y explicitly and the problem
in x becomes

max
x

−xTQx− 2bTx− 2ρ‖x‖1,

where Q := (c + ρ)Z−1. Its dual is also box-constrained QP:

minimize (b + u)TZ(b + u)

subject to ‖u‖∞ ≤ ρ,

in the variable u ∈ R(n−1). At the optimum for this QP, we must have

x = − 1

(c + ρ)
Z(b + u), and y =

1

(c + ρ)
+

1

(c + ρ)2
(b + u)TZ(b + u),

and we iterate as above.
Smooth optimization for box-constrained QPs. The two block-coordinate methods

detailed in this section both amount to solving a sequence of box-constrained quadratic
program of the form

minimize xTAx + bTx

subject to ‖x‖∞ ≤ ρ,
(3.8)

in the variable x ∈ Rn. The objective function has a Lipschitz continuous gradient
with constant L = 2λmax(A) on the box B = {x ∈ Rn : ‖x‖∞ ≤ ρ}, where we
can define a prox function (1/2)‖x‖2 which is strongly convex with constant one and
bounded above by (1/2)nρ2 on B. From [16] or [18], we know that solving (3.8) up
to a precision ε will require at most 2ρ

√
nλmax(A)/

√
ε iterations of the first-order

method detailed in [16], with each iteration equivalent to a matrix-vector product
and a projection on the box B. This means that the total complexity of solving (3.8)
is given by

O

(
ρn2.5

√
λmax(A)

ε

)
.

Complexity estimate. Following [15], with block coordinate descent corresponding
to coordinate descent with the almost cyclic rule (defined in [15], it simply means here
that we go through each index at least once per outer iteration) and using the fact
that log det(X) satisfies the strict concavity assumptions in [15, assumption A2], we
can show that the convergence rate of the block coordinate descent method is at least
linear. Each iteration requires solving a box-constrained QP and takes O(n3log(1/ε))
operations using an interior point solver or O(n2.5/

√
ε) using the optimal first-order

scheme in [16]. We cannot use the same argument to show convergence of block
coordinate ascent but empirical performance is comparable. In practice we have
found that a small number of sweeps through all columns, independent of problem
size n, is sufficient for convergence.
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Implementation. The block coordinate descent methods implemented here cor-
respond to coordinate descent using the almost cyclic rule, alternative row/column
selection rules could improve the convergence speed. Also, each iteration of the block
coordinate descent method corresponds to two rank-two updates of the inverse matrix;
hence, the cost of maintaining the inverse submatrix using the Sherman–Woodbury–
Morrison formula is only O(n2).

4. Numerical results. In this section we test the performance of the methods
detailed above on some randomly generated examples. We first form a sparse matrix
A with a diagonal equal to one and a few randomly chosen, nonzero off-diagonal terms
equal to +1 or −1. We then form the matrix

B = A−1 + σV

where V ∈ Sn is a symmetric, i.i.d. uniform random matrix. Finally, we make B
positive definite by shifting its eigenvalues, and use this noisy, random matrix to test
our covariance selection methods.

   

 

 

 
   

 

 

 
   

 

 

 

Noisy inverse B−1Solution for ρ = 0.5Original inverse A

Fig. 4.1. Recovering the sparsity pattern. We plot the original inverse covariance matrix A,
the solution to problem (2.1), and the noisy inverse B−1.

In Figure 4.1, we plot the sparsity patterns of the original inverse covariance
matrix A, the solution to problem (2.1), and the noisy inverse B−1 in a randomly
generated example with n = 30, σ = 0.15, and ρ = 0.5. In Figure 4.2 we represent the
dependence structure of interest rates (sampled over a year) inferred from the inverse
covariance matrix. Each node represents a particular interest rate maturity and the
nodes are linked if the corresponding coefficient in the inverse covariance matrix is
nonzero (i.e., they are conditionally dependent). We compare the solution to problem
(2.1) on this matrix for ρ = 0 and ρ = 0.1 and notice that in the sparse solution the
rates appear clearly clustered by maturity.

In Figure 4.3, we study computing times for various choices of algorithms and
problem sizes. On the left, we plot CPU time to reduce the duality gap by a factor 10−2

versus problem size n, on randomly generated problems, using the coordinate descent
code and the optimal first-order for solving box QPs. On the right, we plot duality gap
versus CPU time for both smooth minimization and block-coordinate algorithms for a
randomly generated problem of size n = 250. For the smooth minimization code, we
set α = 1/λmax(B) and we plot computing time for both β = 1/(2λmin(B)) (smooth.
opt. 1/2) and β = 2/λmin(B) (smooth. opt. 2). In the examples of Figure 4.3, we
notice that the numerical cost of our methods grows experimentally as O(n3).
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Fig. 4.2. We plot the network formed using the solution to problem (2.1) on an interest rate
covariance matrix for ρ = 0 (left) and ρ = 0.1 (right). In the sparse solution the rates appear clearly
clustered by maturity.
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Fig. 4.3. Computing time. Left: We plot CPU time to reduce the duality gap by a factor
10−2 versus problem size n, on randomly generated problems, using the coordinate descent code and
the optimal first-order algorithm for solving box QPs (dashed line, circles), smooth minimization
(dotted line, squares), and a simple conjugate gradient method with a Polak–Ribiere update, without
preconditioning (solid line, stars). Right: We plot the duality gap versus CPU time for both smooth
minimization and block-coordinate algorithms for a problem of size n = 250.
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WAVEFRONT RECONSTRUCTION METHODS FOR ADAPTIVE
OPTICS SYSTEMS ON GROUND-BASED TELESCOPES∗

JOHNATHAN M. BARDSLEY†

Abstract. The earth’s atmosphere is not a perfect media through which to view objects in
outer-space; turbulence in the atmospheric temperature distribution results in refractive index vari-
ations that interfere with the propagation of light. As a result, wavefronts are nonplanar when they
reach the ground. The deviation from planarity of a wavefront is known as phase error, and it is
phase error that causes the refractive blurring of images. Adaptive optics systems seek to remove
phase error from incoming wavefronts. In ground-based astronomy, an estimate of the phase error
in a wavefront is typically obtained from wavefront gradient measurements collected by a Shack–
Hartmann sensor. The estimate is then used to create a counter wavefront, e.g., using a deformable
mirror that (approximately) removes the phase error from the incoming wavefronts. The problem of
reconstructing the phase error from Shack–Hartmann gradient measurements requires the solution
of a large linear system whose form is defined by the configuration of the sensor. We derive this
system and present both the regular least squares and minimum variance approaches to its solution.
The most effective existing approaches are then presented alongside new computational methods,
and comparisons are made.

Key words. adaptive optics, wavefront reconstruction, minimum variance estimation
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1. Introduction. The standard mathematical model for image formation in
ground-based astronomy is

(1.1) d(x, y) =

∫
R2

k(x, y; ξ, η)f(ξ, η) dξdη.

Here f is the object being viewed; d is the image of f seen by the telescope; and
k is the point spread function (PSF), which characterizes the blurring effects of the
imaging system. In traditional approaches, the PSF characterizes the diffractive blur
of the telescope as well as the refractive blur of the atmosphere. Adaptive optics sys-
tems, however, seek to remove the refractive effects of the atmosphere prior to image
formation. If this is done exactly, so-called diffraction limited imaging is obtained,
which maximizes angular resolution and sensitivity.

The idea behind adaptive optics can be illustrated using the spatially invariant
PSF model

(1.2) k[φ](x, y) =
∣∣∣F−1

{
P (x, y)eiφ(x,y)

}∣∣∣2 ,
which is obtained using techniques from Fourier optics [5]. Here P (x, y) is the tele-
scope’s pupil function, and φ(x, y) denotes the phase error, or simply the phase, and

∗Received by the editors November 16, 2006; accepted for publication (in revised form) by
J. G. Nagy June 15, 2007; published electronically February 6, 2008. This work was done dur-
ing the author’s visit to the University of Helsinki, Finland in 2006-2007 under the University of
Montana Faculty Exchange Program. This work was partially supported by the NSF under grant
DMS-0504325.

http://www.siam.org/journals/simax/30-1/67506.html
†Department of Mathematical Sciences, University of Montana, Missoula, MT 59812 (bardsleyj@

mso.umt.edu).

67



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

68 JOHNATHAN M. BARDSLEY

η
Incoming Optical Wave Front

Region of Variable Refractive Index

Phase Shifted Wave Front

1
η

2
ηk

Pupil

Image

0 0.5 1
0

5

10

15

20

25
Diffraction Limited PSF

0 0.5 1
0

1

2

3

4

5
Phase perturbed PSF

0 0.2 0.4 0.6 0.8 1
−1

0

1
Phases

Fig. 1.1. One-dimensional phase error schematic. On the left, the effects of refractive
index variations in the earth’s atmosphere are illustrated. On the right, where both diffraction
limited and phase perturbed PSFs are plotted, the effects of phase errors on the corresponding
PSFs are demonstrated.

is defined to be the deviation from planarity of the wavefront at the point (x, y).
For simulation and analysis, we will assume that P (x, y) is 1 inside the pupil and 0
otherwise, though in practice this will not always be the case as a telescope’s mirror
can get dirty.

Adaptive optics systems seek to remove the phase error φ from the incoming
wavefronts. If done exactly, the resulting PSF then has the form

(1.3) k[0](x, y) =
∣∣F−1 {P (x, y)}

∣∣2 ,
in which case the diffraction limited image

(1.4) dDL(x, y)
def
=

∫
R2

k[0](x− ξ, y − η)f(ξ, η) dξdη

is what is seen by the telescope.
Phase errors arise due to index of refraction variations in the atmosphere. A

one-dimensional schematic of this process is given on the left in Figure 1.1. Since
the refractive index—denoted by ηi in the schematic—determines the speed of prop-
agation of the wavefront, variations in the refractive index result in wavefront per-
turbations or phase errors. To see the effects of phase errors on the PSF, on the
right-hand side in Figure 1.1 we plot two PSFs—one when phase errors characteristic
of atmospheric turbulence are present, and one when the phase error is zero.

The phase can be estimated in a number of ways [2]. The most common approach
in ground-based astronomy is to use the Shack–Hartmann sensor, which collects mea-
surements of the gradient of the incoming wavefronts and then seeks to reconstruct the
phase from those measurements. The phase estimate is then used to create a counter
wavefront distortion φDM via the deformation of an optical component known as a
deformable mirror (DM). If the PSF has the form (1.2), then the phase corrected PSF
will have the form

(1.5) k[φ + φDM](x, y) =
∣∣∣F−1

{
P (x, y)ei(φ+φDM)(x,y)

}∣∣∣2 .
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Ideally, the DM created counter wavefront satisfies φDM = −φ so that the resulting
PSF has diffraction limited form (1.3). In practice, however, an accurate approxima-
tion of φ suffices.

In this paper, our focus is on the problem of estimating the phase from measure-
ments of the wavefront gradient. We assume that the gradient data g is collected by
a Shack–Hartmann sensor. The corresponding discrete phase φ will then satisfy the
stochastic linear equation

(1.6) g = Γφ + n,

where Γ is a discrete gradient matrix, whose form is determined by the configuration of
the Shack–Hartmann sensor, and n is the noise vector. Early and existing approaches
to solving this problem involve minimizing the least squares function ||Γφ − g||2.
However, for large-scale adaptive optics systems, least squares solutions can yield
unsatisfactory results, and the minimum variance estimator is preferred [6]. Minimum
variance estimation is a Bayesian statistical approach in which a prior probability
density is assumed on the phase. In our case, it can be accurately assumed that φ is
a realization of a Gaussian random vector with mean 0 and known covariance matrix
Cφ. This, together with (1.6) and the assumption that the noise vector n is Gaussian
with mean 0 and covariance matrix σ2I, yields a linear system of the form

(1.7) (ΓTΓ + σ2Cφ
−1)φ = ΓTg.

The problem of efficiently solving (1.7), or, equivalently, of minimizing the penal-
ized least squares function ||Γφ−g||2 +σ2φTCφ

−1φ, has seen much recent attention.
An efficient direct method for the solution of (1.7) using sparse matrix techniques is
explored in [6]. However, the most computationally efficient approaches have involved
the use of multigrid to precondition conjugate gradient iterations [9, 10]. In this paper,
we introduce two new approaches for approximately solving (1.7). The first involves
the use of a symmetric positive definite approximation of ΓTΓ as a preconditioner
for conjugate gradient iterations. The second approach is completely different and
involves first computing the least squares solution of minimum norm φMNLS = Γ†g,
where “†” denotes pseudoinverse. The minimum norm solution is then denoised and
stabilized via the solution of a linear system motivated by (1.7).

The paper is organized as follows. In section 2, we present the linear system that
arises from the use of the Shack–Hartmann sensor; we derive the minimum variance
linear system (1.7); and we discuss approximations of the covariance matrix Cφ.
Computational methods are presented in section 3 and tested in section 4. We end
with conclusions in section 5.

2. Wavefront reconstruction from discrete gradient measurements. In
this section, we present the wavefront reconstruction problem that arises when the
Shack–Hartmann wavefront sensor is used. The Shack–Hartmann sensor collects mea-
surements of the gradient of incoming wavefronts of light emitted by the object being
viewed by the telescope. It consists of an array of lenslets, each of which focuses the
light within its aperture, and, typically, a charge coupled device (CCD) camera that
records the position of the focal point of the light within each lenslet. A measurement
of the average gradient of the wavefront over the lenslet aperture is then given by
the position of the focal point. A schematic of the Shack–Hartmann sensor in one
dimension is given in Figure 2.1. A more detailed description with further references
can be found in [2].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

70 JOHNATHAN M. BARDSLEY

�

�

�

Perfect

Wavefront

�

�

�

�

�

�

�

�

�

�

�

�

Lenslet

Array

Focal

Plane

�����
�����
�����

�����

�����

�����

Perfect Wavefront

�

�

�

Distorted

Wavefront

�

�

�

�

�

�

�

�

�

�

�

�

Lenslet

Array

Focal

Plane

�����

�����
�����

�����

Distorted Wavefront

Fig. 2.1. One-dimensional Shack–Hartman wavefront sensor schematic. The position of
the focal points determines the average derivative of the wavefront, and hence of the phase,
over each lenslet aperture.
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Fig. 2.2. Fried geometry for the (i, j)th lenslet. The wavefront sensor yields a measure-
ment of the gradient of the phase at (xi, yj). The values of the phase at the half grid points,
i.e., at the corners of the apertures, are then sought.

The standard computational methodology for reconstructing the phase from
Shack–Hartmann gradient data was introduced by Fried in [4], where, from the gra-
dient measurements, which are assumed to be centered within each lenslet array, the
value of the phase at the corners is computed. This is the so-called Fried geometry
and is illustrated in Figure 2.2. Assuming a square geometry and uniform computa-
tional grid with grid points {(xi, yj)}ni,j=1, and denoting ∇φ(xi, yj) = (φx,i,j , φy,i,j),
we can approximate φ at the half grid points via the following two formulas:

φx,i,j ≈
1

2

[
(φi+ 1

2 ,j−
1
2
− φi− 1

2 ,j−
1
2
) + (φi+ 1

2 ,j+
1
2
− φi− 1

2 ,j+
1
2
)
]
,(2.1)

φy,i,j ≈
1

2

[
(φi− 1

2 ,j+
1
2
− φi− 1

2 ,j−
1
2
) + (φi+ 1

2 ,j+
1
2
− φi+ 1

2 ,j−
1
2
)
]
.(2.2)

Here we have assumed a grid spacing Δx = Δy = 1. We note that in practice, the
corners of the lenslet aperture frequently correspond to the points on the deformable
mirror of the adaptive optics system where the deformations are actuated.

By column stacking the n × n array of the values of φ at the half grid points,
one obtains an n2 × 1 vector φ. The equations on the right-hand side of (2.1) and
(2.2) can then be written in matrix-vector forms Γxφ and Γyφ, respectively. If the
n × n × 2 array of gradient measurements is also column stacked, an n2 × 2 array
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⎡
⎣ −1 0 −1

0 4 0
−1 0 −1

⎤
⎦

⎡
⎣ 0 −1 0

−1 4 −1
0 −1 0

⎤
⎦

Fig. 2.3. Grid representations of the Fried Laplacian (on the left) and the Hudgin Lapla-
cian (on the right).

g results. The unknown phase can then be reconstructed by solving the stochastic
linear system

(2.3) g = Γφ + n,

where Γ = [Γx,Γy]
T and n ∼ N(0, σ2I). Throughout the paper, the notation y ∼

N(μ,C) will mean that y is a random draw from a Gaussian random vector with

mean μ ∈ R
n2

and covariance matrix C ∈ R
n2×n2

.

2.1. Least squares wavefront reconstruction. For small-scale wavefront re-
construction problems, the least squares solution of (2.3), given by minimizing

min
φ

‖Γφ− g‖2
2,

is known to provide excellent results [6]. One can equivalently solve the normal
equations

(2.4) ΓTΓφ = ΓTg.

The matrix ΓTΓ corresponds to a nonstandard discretization of the Laplacian oper-
ator Δ, with the grid representation given on the left in Figure 2.3 and homogeneous
Neumann boundary conditions. We will call this the Fried discrete Laplacian. The
standard discretization of the Laplacian has the grid representation given on the right
in Figure 2.3. We note that this is the discrete Laplacian that results from what is
known in the adaptive optics community as Hudgin geometry [13] and is therefore
referred to as the Hudgin discrete Laplacian [19]. We will use this terminology in
what follows.

Fried geometry yields more robust phase estimates than does Hudgin geometry
[20]. However, the null-space of the Fried Laplacian is larger than that of the Hudgin
Laplacian. In particular, it contains what is known as the waffle mode, which is the
n× n array with entries

(2.5) [φWM]ij = (−1)i+j .

In what follows, we will also use φWM to denote the corresponding n2 × 1 column
stacked vector. We say that a vector φ contains waffle mode if

φTφWM �= 0.

Waffle mode has been observed in operational adaptive optics systems [14], and hence,
its presence in the null-space of the Fried Laplacian is not of only academic interest.

Before continuing, we prove an interesting relationship between φWM and the
Hudgin discrete Laplacian with homogeneous Dirichlet, homogeneous Neumann, and
periodic boundary conditions.
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Theorem 2.1. If homogeneous Neumann or periodic boundary conditions are
used to build the n2 × n2 Hudgin discrete Laplacian L, then the waffle mode φWM

solves

(2.6) max
φ

φTLφ

‖φ‖2
.

If homogeneous Dirichlet boundary conditions are used, then φWM converges to the
solution of (2.6) as n → ∞.

Proof. First, by Gerschgorin’s circle theorem, the eigenvalues of L satisfy 0 ≤ λ ≤
8 for each of the three types of boundary conditions. Thus 0 ≤ φTLφ/‖φ‖2 ≤ 8.

In the case of both periodic and homogeneous Neumann boundary conditions,
φT

WMLφWM/‖φWM‖2 = 8, and hence φWM solves (2.6).
In the case of homogeneous Dirichlet boundary conditions, we note that L differs

from the discrete Laplacian with periodic boundary conditions in that it has 0 in
place of −1 in 4n locations. A straightforward calculation together with the fact that
‖φWM‖2 = n2 then yields φT

WMLφWM/‖φWM‖2 = 8 − 4/n → 8, and hence φWM

converges to the solution of (2.6) as n → ∞.
We note that for large-scale problems 8 − 4/n ≈ 8, and hence, φWM maximizes,

or nearly maximizes, (2.6) in all three cases. This suggests the use of regularization
by the Laplacian to remove waffle mode and other high frequency errors in the phase
estimates. As we will see in the next section, such an approach can be motivated
statistically when the minimum variance approach is taken.

2.2. Minimum variance wavefront reconstruction. The preferred approach
for stabilizing least squares phase estimation is to compute a minimum variance esti-
mate for φ (c.f. [18]). Minimum variance estimation can be viewed as the analogue of
least squares estimation in the Bayesian setting. As we will see, the resulting equa-
tions are similar. In the minimum variance framework, we assume that the phase
satisfies

(2.7) φ ∼ N(0,Cφ),

where the covariance Cφ is specified a priori. The minimum variance estimator can
then be defined as follows.

Definition 2.2. The minimum variance linear estimator of φ from g is given
by

φMV = B̂g,

where

B̂ = arg min
B∈Rn×m

E(‖Bg − φ‖2).

Here E denotes the expected value function.
In our case, the minimum variance estimator has an elegant closed form, which

we state in the next theorem. Standard proofs of this theorem use notation from
probability theory. Here we present a proof, outlined in [18], from a matrix analysis
viewpoint.

Theorem 2.3. Let g be data arising from model (2.3) with n ∼ N(0, σ2I) and
φ ∼ N(0,Cφ). Suppose in addition that Cφ is nonsingular and that n and φ are
independent. Then the minimum variance linear estimator of φ from g is given by

(2.8) φσ
MV =

(
ΓTΓ + σ2Cφ

−1
)−1

ΓTg.
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Proof. First, we note that

E(‖Bg − φ‖2) = trace
(
E[(Bg − φ)(Bg − φ)T ]

)
= trace

(
BE[ggT ]BT − BE[gφT ] − E[φgT ]BT + E[φφT ]

)
.

Then, using the distributive property of the trace function and the identity

d

dB
trace(BTC) =

(
d

dB
trace(BC)

)T

= C,

we see that dE(‖Bg − φ‖2)/dB = 0 when

B̂ = E[φgT ]E[ggT ]−1.

Now, since φ and n are independent, E[φnT ] = E[nφT ] = 0. Hence, using (2.3), we
obtain

E[φgT ] = E[φ(Γφ + n)T ]

= E[φφT ]ΓT .

Similarly,

E[ggT ] = E[(Γφ + n)(Γφ + n)T ]

= ΓE[φφT ]ΓT + E[nnT ].

Thus, since E[φφT ] = Cφ and E[nnT ] = σ2I, we have

B̂g = CφΓT
(
ΓTCφΓ + σ2I

)−1

g

=
(
ΓTΓ + σ2Cφ

−1
)−1

ΓTg.

The last equality follows from straightforward algebraic manipulation.
Thus the minimum variance wavefront estimate can be obtained by solving the

linear system

(2.9)
(
ΓTΓ + σ2Cφ

−1
)
φ = ΓTg

or, equivalently, by minimizing the penalized least squares function

(2.10) ‖Γφ− g‖2
2 + σ2φTCφ

−1φ.

Note, then, that the minimum variance estimator can be viewed as a Tikhonov esti-
mator, with quadratic regularization term σ2φTCφ

−1φ.

2.3. Incorporating the telescope’s pupil. For simplicity of implementation,
computations are typically done on a square computational grid, even though the
telescope pupil geometry is usually either circular or annular. This information is
incorporated into the problem formulation using the pupil mask matrix M defined by

[M]ii =

{
1, i inside the pupil,
0 otherwise.
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We then modify the linear stochastic model (2.3) as follows:

(2.11) Mg = MΓφ + n,

where MΓ
def
= [MΓx,MΓy]

T . Following the minimum variance approach outlined
above, the penalized least squares function (2.10) takes the form

(2.12) ‖M(Γφ− g)‖2
2 + σ2φTCφ

−1φ,

and the linear system (2.9) is re-expressed as

(2.13)
(
ΓTMΓ + σ2Cφ

−1
)
φ = ΓTMg.

The corresponding regular least squares normal equations are given by

(2.14) ΓTMΓφ = ΓTMg.

2.4. Approximating the phase covariance. The phase covariance Cφ must
be chosen so that it is both physically realistic and amenable to fast computational
methods. We call attention to the fact that for an actual adaptive optics system,
algorithms for solving (2.9) must do so in real time.

Perhaps the most standard approximation for Cφ is to assume that it has the
form

(2.15) CVK
φ = F∗ΛF,

where F is the two-dimensional discrete Fourier transform matrix, “∗” denotes conju-
gate transpose, and the matrix Λ is diagonal with entries coming from the von Karman
spatial power spectral density of the atmospheric refractive index fluctuations, with
universal −11/3 inverse power law:

(2.16) [Λ]k,k =
c2

[|k|2 + 1/L2
0]

11/6
.

Here k denotes spatial frequency, L0 is the turbulence outer-scale, which prevents an
unphysically infinite amount of energy at the origin, and c is the phase screen strength
(c.f. [16]).

However, given the desire for real time computations for large-scale lenslet arrays
on very high-order adaptive optics systems, a sparse covariance approximation is
desirable. Such an approximation was introduced in [6]. It exploits the fact that

|k|−11/3 ≈ |k|−4.

In particular, using the fact that the biharmonic, or squared Laplacian, operator
“ Δ2 ” has spectrum |k|4, the following discrete approximation of the covariance can
be used:

(2.17) CBH
φ = c0 L−2,

where L is a discrete Laplacian matrix. The constant c0 in (2.17) can be physically
interpreted as the strength of the turbulence and is chosen in our simulations so that

(2.18) E[φT (CVK
φ )−1φ] = E[φT (CBH

φ )−1φ]

holds.
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Fig. 2.4. Random draws from zero mean Gaussian random vectors with (on the left)
von Karman covariance defined by (2.15) and (on the right) inverse of squared-Laplacian
covariance defined in (2.17).

In order to visually compare the two covariance approximations (2.15) and (2.17),
we plot random draws from the zero mean Gaussian random vectors with these as the
covariance matrices in Figure 2.4. They clearly exhibit similar characteristics.

Remark 1. Using covariance approximation (2.17) in (2.12) corresponds to reg-
ularization by the �2 norm of the Laplacian, i.e., to adding the regularization function
(σ2/c0)‖Lφ‖2 to the regular least squares function ‖M(Γφ− g)‖2. Recall that this is
what was suggested in the remarks following Theorem 2.1.

3. Numerical methods. In the early papers of Fried [4] and Hudgin [13], the
Gauss–Seidel iteration was used for numerically solving the normal equations (2.14).
In [17], symmetric Gauss–Seidel is implemented. However, it is well known that
iterative methods such these converge slowly in practice. Such methods are effective,
however, if used within a multigrid framework or as preconditioners (given that they
are symmetric) for conjugate gradient iterations. The use of multigrid for solving
(2.14) is explored in [1, 15].

Direct methods for (2.14) are made feasible by the fact that ΓTMΓ is very sparse
and is fixed for a specific telescope. In [12], the least squares solution of minimum norm
is computed via the pseudoinverse of MΓ, which we denote (MΓ)†. The pseudoinverse
can be efficiently approximated using the Cholesky factorization. In particular, noting
that

(MΓ)† = lim
ε→0+

(ΓTMΓ + ε I)−1ΓTM,

one can compute a Cholesky factorization of ΓTMΓ + ε I for ε small, e.g., the square
root of machine epsilon (≈ 10−8). Because it will be useful to us later, we give a
detailed description of this approach now. After performing a reordering of indices
using MATLAB’s symamd function, ΓTMΓ + ε I has the form

(3.1) Ã
def
=

[
A + ε I 0

0 ε I

]
,
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where A is sparse and symmetric positive semidefinite. We can then compute the
Cholesky factorization Ã = CTC. Assuming, without loss of generality, that Ã =
ΓTMΓ+εI, the minimum norm least squares solution can be efficiently and accurately
approximated via

(3.2) φMNLS = (MΓ)†Mg ≈ C−1C−TΓTMg.

Finally, since ΓTMΓ depends only on the inherent structure of the telescope, the
above Cholesky factorization can be computed offline, and hence, the cost of computing
minimum norm least squares solutions using this approach is restricted to the compu-
tation of ΓTMg and to the applications of C−1 and C−T . Also, due to the presence
of the pupil mask matrix M and the use of a sparse reordering of indices, the Cholesky
factorization is very sparse, resulting in very efficient computations of φMNLS.

In [6], it is shown that for an N × N Hudgin Laplacian, the scaling law for
the number of floating point operations (flops) needed for its Cholesky factorization
(after sparse reordering) is N3/2. For the Fried Laplacian, the number of flops needed
for its Cholesky factorization (again after sparse reordering) should be very nearly
the same. Furthermore, the presence of the pupil will further reduce computational
requirements. We emphasize again that this Cholesky factorization need only be
computed once.

For adaptive optics systems with extremely large lenslet arrays, the minimum
variance estimate φσ

MV obtained by solving (2.13) is preferable to φMNLS. An added
difficulty arises, however, due to the presence of Cφ. Until recently, the von Karman
covariance approximation (2.15), (2.16) was standard. The fact that this is a full
matrix made direct solutions of (2.13) infeasible. However, the sparse biharmonic
approximation (2.17) presented in [6] allowed for a direct approach using a Cholesky
factorization of

(3.3) ΓTMΓ + (σ2/c0)L
2,

where L is a discretized Laplacian matrix. However, the Cholesky factorization must
be recomputed as σ2/c0 changes, which makes the direct approach less desirable for
minimum variance estimation.

3.1. Preconditioned conjugate gradient methods. The preconditioned con-
jugate gradient method (PCG) is an iterative method for minimizing quadratic func-
tions with symmetric positive semidefinite Hessian matrices [18], such as is the case
for (2.12). The implementation of PCG requires the solution of a linear system of the
form

(3.4) Pz = v

at each iteration, where P is the symmetric positive definite preconditioning matrix or,
simply, the preconditioner. For the resulting implementation of PCG to be efficient,
solutions of (3.4) must be efficiently computable.

Thus far, the most computationally efficient approach for minimizing (2.12) is to
let z in (3.4) be what results following the application of one multigrid v-cycle [3]
applied to the linear system

(
ΓTMΓ + σ2Cφ

−1
)
z = v.
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The corresponding preconditioning matrix P is made symmetric either by using a
symmetric smoother such as Jacobi or symmetric Gauss–Seidel or by using Gauss–
Seidel with forward substitution for the presmoothing iterations and an equal number
of Gauss–Seidel iterations with backward substitution for the postsmoothing step.
The resulting algorithm, which we denote MGPCG (multigrid PCG), was applied
for the von Karman covariance approximation (2.15), (2.16) in [10] and for the bi-
harmonic covariance approximation (2.17) in [9], with further analysis in [19]. The
sparsity of the discrete biharmonic makes the latter implementation the more effi-
cient of the two. The effectiveness of multigrid in this setting is not surprising when
one considers that ΓTMΓ is a discrete Laplacian matrix and that Cφ

−1 either is
or is well-approximated by a discrete biharmonic matrix. Multigrid is known to be
very effective for solving linear systems involving both the discrete Laplacian and the
discrete biharmonic matrices.

A preconditioner that has not been used for PCG applied to the problem of
minimizing (2.12) is

(3.5) P
def
=

[
A + ε I 0

0 I

]
,

where A is as defined in (3.1). As in that case, we compute a Cholesky factoriza-
tion CTC of P. Since P is noise independent, this can be done off-line. Thus the
application of P−1 requires only one forward and one backward substitution. We will
call P in (3.5) the least squares preconditioner, since in this case P is the coefficient
matrix for the regular least squares normal equations, and the resulting method the
least squares PCG (LSPCG).

3.2. The denoised least squares method. In this subsection, we introduce
a new approach for obtaining approximate solutions of (2.13). First, we denote the
Hudgin discrete Laplacian with periodic boundary conditions by L. Then, we have

(3.6) L = F∗diag(λ1, . . . , λn2)F,

where λ1 ≤ λ2 ≤ · · · ≤ λn2 are the eigenvalues of L, and F denotes the discrete
Fourier transform matrix with F∗ its conjugate transpose. We note that then λ1 = 0
corresponds to the constant eigenvector of L, and λn2 = 8 corresponds to the waffle
mode eigenvector φWM (recall Theorem 2.1).

Multiplying both sides of (2.13) by the pseudoinverse of ΓTMΓ, we obtain

(3.7) ((ΓTMΓ)†ΓTMΓ + (σ2/c0)(Γ
TMΓ)†L2)φ = φMNLS,

which can in turn be solved to obtain a smoothed, or denoised, approximation of
φMNLS.

We ignore for the moment the pupil mask matrix M and consider the matrix
product (ΓTΓ)†L. Recall that the Fried discrete Laplacian ΓTΓ has the grid repre-
sentation given in Figure 2.2. Note that after a rotation of the computational grid
by π/4 radians, the grid representation of ΓTΓ will match that of a Hudgin discrete
Laplacian, but with a grid spacing that is larger by a factor of

√
2. Taking this into

account, we approximate the Fried discrete Laplacian as follows:

(3.8) ΓTΓ ≈ F∗diag(λ1, . . . , λr, 0, . . . , 0)F,

where the λi’s are as in (3.6), and r chosen so that

(3.9) λr < 8 − 1

4
√

2
≤ λr+1.
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Note that φWM has a period of 4 on the computational grid and of 4
√

2 on the rotated
grid—hence our choice of truncation rule. Furthermore, our own computational ex-
periments indicate that (3.9) is optimal in the sense that it minimizes the error in the
phase reconstructions that result when the method we now present is used.

From (3.8), we know that within the telescope’s pupil,

(3.10) ΓTMΓ ≈ F∗diag(λ1, . . . , λr, 0, . . . , 0)F.

Hence,

(ΓTMΓ)†ΓTMΓ ≈ F∗ diag(11, . . . , 1r, 0, . . . , 0)F,(3.11)

(ΓTMΓ)†L2 ≈ F∗diag(λ1, . . . , λr, 0, . . . , 0)F.(3.12)

This leads to the following approximation of (3.7):

(3.13) F∗DFφ = φMNLS,

where D is diagonal with elements

(3.14) [D]ii =

{
1 + (σ2/c0)λi, λi < r,

0, λi ≥ r.

Note that (3.13), (3.14) bears some resemblance to a filtered SVD approximation
[18, 11] of (3.7).

The denoised minimum norm least squares solution can then be efficiently com-
puted via

(3.15) φDMNLS = F∗D†FφMNLS,

where D† is the pseudoinverse of D.
As we will see, this approach is effective in practice. However, it also has the

benefit of being simple to implement and very computationally efficient. Furthermore,
it can be easily incorporated into adaptive optics systems that compute regular least
squares solutions other than φMNLS. In particular, a general least squares solution
φLS can be denoised via

(3.16) φGDLS = F∗D†FφLS,

where “GDLS” stands for “gradient denoised least squares.” In the next theorem, we
show that φGDLS will not contain waffle mode even if φLS does. This suggests that
(3.16) should be considered as a method for removing waffle mode from least squares
solutions in operational adaptive optics systems [14].

We end the section with a proof that the least squares solution of minimum norm,
the minimum variance solution, and the denoised least squares solution do not contain
waffle mode.

Theorem 3.1. The least squares solution of minimum norm φMNLS = (MΓ)†Mg,
the minimum variance solution φσ

MV defined in (2.8), and the gradient denoised least
squares method (GDLS) solution obtained by computing (3.16) for any least squares
solution φLS do not contain the waffle mode.

Proof. The null-space of MΓ contains φWM. The result for φMNLS then follows
from the fact that the range of (MΓ)† and the null-space MΓ only trivially intersect.
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Fig. 4.1. Noisy gradient data. The x and y components of the gradient data computed
via (2.3) are seen on the left and right, respectively.

For the minimum variance solution, we note that φT
WMCφ

−1φWM > 0 for either
choice of Cφ. Noting that MΓφWM = 0, it follows immediately that the minimizer
of (2.12) does not contain waffle mode.

From (3.16), (3.14), (3.9), and the fact that φWM is an eigenvector of L with
eigenvalue 8, it follows that F∗D†FφWM = 0. Thus φDLS will not contain waffle
mode.

4. Numerical experiments. We now test the effectiveness of the above appro-
aches on simulated Shack–Hartman sensor data. We simulate a phase profile by taking
a random draw from the Gaussian random vector N(0,CKV

φ ) with physically realistic
values for the parameters in (2.16). The phase screen used in our first experiment is
the 128 × 128 array plotted on the left in Figure 2.4. The noisy gradient data shown
in Figure 4.1 was obtained using (2.11) with n an i.i.d. Gaussian random vector with
variance chosen so that the signal-to-noise ratio (SNR) is 20, which is what was used
in [19]. Note that

SNR :=
‖g‖2

E(‖n‖2)
=

‖g‖2

trace(E[nnT ])
=

‖g‖2

2Npupil σ2
,

where Npupil is the number of pixels within the telescope’s pupil. For a comprehensive
comparison, we also generate noisy gradient data at SNRs of 50, 10, and 5.

In our comparisons, we apply LSPCG and MGPCG to problem (2.12) with co-
variance (2.17). Our implementation of MGPCG used two iterations of Gauss–Seidel
with forward substitution for the presmoothing iterations and two iterations of Gauss–
Seidel with backward substitution for the postsmoothing iterations. The grid transfer
operator used full-weighting with homogeneous Dirichlet boundary conditions for the
restriction and a constant times its transpose for interpolation. See [3] for details on
this implementation. We also apply the GDLS method. In all cases, c0 was computed
using (2.18).

Reconstructions at SNR = 20 are given in Figure 4.2, and convergence results are
plotted in Figure 4.3. We note that more than two iterations of MGPCG and more
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Fig. 4.2. True phase on top; reconstruction obtained with one iteration of LSPCG on the
upper right; reconstruction obtained with three iterations of MGPCG iterations on the lower
left; and reconstruction obtained using GDLS on the lower right.

than one iteration of LSPCG result in, effectively, no additional reduction in relative
error. In each plot, we denote the GDLS curve as constant due to the fact that it
yields a single estimate. Since it is accuracy in the approximation of the true phase
φtrue that we are concerned with, we plot the relative error

||φ∗ − φtrue||
||φtrue||

,

where φ∗ is the phase estimate. For the PCG methods, φ∗ = φk, where k is the PCG
iteration index, whereas for GDLS, φ∗ = φDMNLS.

The results in Figure 4.3 indicate that while two iterations of MGPCG yields
the smallest relative error in every case, both LSPCG and GDLS are competitive.
Furthermore, the reconstructions obtained by GDLS and by one iteration of LSPCG
are very similar to those obtained by MGPCG. This can be seen, for SNR = 20,
in Figure 4.2, where the true phase and the reconstructions obtained using a single
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Fig. 4.3. Relative error plots for LSPCG, MGPCG, and GDLS at SNRs of 50, 20, 10,
and 5.

iteration of LSPCG and three iterations of MGPCG are given.

In Table 4.1 we give the average CPU time for each method over three consecutive
runs on n × n grids with n = 32, 64, 128, 256, and 512. In each case the SNR was
taken to be 20. This table shows that both the LSPCG and GDLS solutions can
be obtained much more efficiently than the MGPCG solutions—at least using our
implementations of these methods—and that the computation of φDMNLS is the most
efficient. In fact, the values in the table indicate that the GDLS estimates are obtained
50–100 times more efficiently than those obtained using two iterations of MGPCG.
This together with the facts that GDLS produces reconstructions with low relative
error (see Figure 4.3) and that GDLS and MGPCG reconstructions are very similar
(see Figure 4.2) suggest that GDLS is an approach that deserves attention.

We note that the choice of the discrete Fourier transform in the decomposition
(3.10) will yield ringing artifacts at the boundaries in the phase reconstructions. We do
not see this in the reconstructions presented here because there is sufficient distance
between the pupil boundary and the boundary of the computational domain (see
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Table 4.1

CPU times in seconds for various methods on an n× n computational grid.

n MGPCG 1 MGPCG 2 LSPCG GDLS

32 0.16 0.20 0.023 0.0020
64 0.27 0.38 0.032 0.0073

128 0.76 1.15 0.11 0.014
256 3.22 5.05 0.32 0.078
512 15.82 23.85 0.78 0.45

Figure 4.2); however, ringing may present a problem in practice. One way to overcome
this would be to instead use a discrete cosine, or sine, transform decomposition, which
enforces continuity, or differentiability, respectively, at the boundary. However, we do
not pursue this here.

Finally, we acknowledge that the comparisons presented here are not completely
comprehensive. Tests on a wider range of data, including wavefront data generated
with more accurate turbulence models, e.g., the full Navier–Stokes equations, and real
Shack–Hartmann sensor data, should also be done. However, we do not pursue such a
study here, as our intention is only a proof of concept. For this, we have used a testing
methodology that is standard in the adaptive optics community [6, 9, 10, 19] and hence
feel justified in concluding that our methods are worthy of further consideration.

5. Conclusions. We have presented a detailed discussion of the problem of
wavefront, or phase, reconstruction from Shack–Hartmann wavefront gradient data.
This included a derivation of a discrete, stochastic linear system relating the gradi-
ent measurements to the underlying discrete phase φ; a derivation of the minimum
variance estimator for φ given the prior probability density φ ∼ N(0,Cφ); and a
discussion of estimates for the covariance Cφ.

Computational methods for the phase reconstruction problem were then pre-
sented. First, an efficient method for computing an accurate approximation of the
minimum norm least squares solution was given; it used a Cholesky factorization
with sparse reordering. Then the current gold standard for accuracy and efficiency,
the multigrid preconditioned conjugate gradient method (MGPCG), was compared
with two new approaches presented in this paper—the so-called least squares precon-
ditioned conjugate gradient method (LSPCG) and the gradient denoised least squares
method (GDLS). The results indicate that though MGPCG yields lower values for
the relative error, the methods introduced here, and, in particular, GDLS, are more
efficient and yield comparable results. The implementation of GDLS used in our com-
parisons utilized the efficient method for computing the minimum norm least squares
solution φMNLS mentioned above, at a cost of two sparse linear system backsolves.
The denoised phase estimate φDMNLS was then computed at a computational cost of
only two discrete Fourier transforms, making GDLS a very efficient approach.

We also presented results relating what is known in the adaptive optics community
as waffle mode to standard discretizations of the Laplacian operator and showed that
the minimum norm least squares solution, the minimum variance solution, and the
denoised least squares solutions do not contain waffle mode.
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FUNCTIONS PRESERVING NONNEGATIVITY OF MATRICES∗
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Abstract. The main goal of this work is to determine which entire functions preserve non-
negativity of matrices of a fixed order n—i.e., to characterize entire functions f with the property
that f(A) is entrywise nonnegative for every entrywise nonnegative matrix A of size n× n. Toward
this goal, we present a complete characterization of functions preserving nonnegativity of (block)
upper-triangular matrices and those preserving nonnegativity of circulant matrices. We also derive
necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of
symmetric matrices. We also show that some of these latter conditions characterize the even or odd
functions that preserve nonnegativity of symmetric matrices.
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1. Motivation. The purpose of this paper is to investigate which entire func-
tions preserve nonnegativity of matrices of a fixed order. More specifically, we consider
several classes of structured matrices whose structure is preserved by entire functions
and characterize those entire functions f with the property that f(A) is entrywise
nonnegative for each entrywise nonnegative matrix A of size n × n. The characteri-
zations that we obtain might be of independent interest in matrix theory and other
areas of mathematics. One of our own motivations behind our investigation is its
relevance to the inverse eigenvalue problem for nonnegative matrices.

The long-standing inverse eigenvalue problem for nonnegative matrices is the
problem of determining, given an n-tuple (multiset) Λ of complex numbers, whether
there exists an entrywise nonnegative matrix A whose spectrum σ(A) is Λ. The
literature on the subject is vast, and we make no attempt to review it. The interested
reader is referred to books [25] and [1], expository papers [3], [9], [18], [19], and
references therein, as well as to some recent papers [23], [4], [21], [30], [31], [32],
[20], [26].

The necessary conditions for a given n-tuple to be realizable as the spectrum of
a nonnegative matrix known so far for arbitrary values of n can be divided into three
groups: conditions for nonnegativity of moments, Johnson–Loewy–London inequali-
ties, and Newton’s inequalities.

Given an n-tuple Λ, its moments are defined as follows:

sm(Λ) : =
∑
λ∈Λ

λm, m ∈ N.

If Λ = σ(A) for some nonnegative matrix A, then sm(Λ) is nothing but the trace
tr (Am) and therefore must be nonnegative. Another basic condition follows from the
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Perron–Frobenius theory [27], [11]: the largest absolute value maxλ∈Λ |λ| must be the
Perron eigenvalue of a realizing matrix A and therefore must itself be in Λ. Finally,
the multiset Λ must be closed under complex conjugation, being the spectrum of
a real matrix A. Interestingly, the last two conditions are in fact not independent
conditions but follow from the nonnegativity of moments, as was shown by Friedland
in [10]. Thus, there turns out to be just one set of basic conditions:

sm(Λ) ≥ 0 for m ∈ N.

The next set of necessary conditions was discovered independently by Loewy and
London in [22] and by Johnson in [17]. These conditions relate moments among
themselves as follows:

smk (Λ) ≤ nm−1skm(Λ), k,m ∈ N.

Newton’s inequalities were conjectured in [14] and proved for M -matrices in [13].
An M -matrix is a matrix of the form rI − A, where A is a nonnegative matrix,
r ≥ �(A), and �(A) is the spectral radius of A:

�(A) : = max
λ∈σ(A)

|λ|.

If M is an M -matrix of order n, then the normalized coefficients cj(M) of its charac-
teristic polynomial defined by

det(λI −M) =:

n∑
j=0

(−1)j
(
n

j

)
cj(M)λn−j

must satisfy Newton’s inequalities

c2j (M) ≥ cj−1(M)cj+1(M), j = 1, . . . , n− 1.

Since the coefficients cj(M) are determined entirely by the spectrum of M , and the
latter is obtained from the spectrum of a nonnegative matrix A by an appropriate
shift, Newton’s inequalities form yet another set of conditions necessary for an n-
tuple to be realizable as the spectrum of a nonnegative matrix. The above three sets
of conditions, i.e., nonnegativity of moments, Johnson–Loewy–London inequalities,
and Newton’s inequalities, are all independent of each other but are not sufficient for
realizability of a given n-tuple (see [13]).

Quite a few sufficient conditions are also known (see, e.g., [37], [19], [10], [3]) as
well as certain techniques for perturbing or combining realizable n-tuples into new
realizable n- or m-tuples (where m ≥ n) (see, e.g., [34], [33], [31]). Also, necessary
and sufficient conditions on an n-tuple to serve as the nonzero part of the spectrum
of some nonnegative matrix are due to Boyle and Handelman [2].

Finally, it follows from the Tarski–Seidenberg theorem [38, 29] that all realizable
n-tuples form a semialgebraic set (see also [16]); i.e., for any given n, there exist only
finitely many polynomial inequalities that are necessary and sufficient for an n-tuple
Λ to be realizable as the spectrum of some nonnegative matrix A (this observation
was communicated to us by Friedland).

Indeed, each realizable n-tuple Λ = (λ1, . . . , λn) is characterized by the condition

∃ A ≥ 0 : det(λI −A) =
n∏

j=1

(λ− λj).
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The last condition is equivalent to each elementary symmetric function σj(Λ) being
equal to the jth coefficient of the characteristic polynomial of A multiplied by (−1)j ,
i.e., to the sum of all principal minors of A of order j, for j = 1, . . . , n. Since the set of
all nonnegative matrices is a semialgebraic set in n2 entries of the matrix and since each
sum of all principal minors of A of order j is a polynomial in the entries of A, the lists of
coefficients of characteristic polynomials of nonnegative matrices form a semialgebraic
set, and hence the n-tuples whose elementary symmetric functions match one of those
lists also form a semialgebraic set by the Tarski–Seidenberg theorem.

However, despite so many insights into the subject, and despite the results ob-
tained so far, the nonnegative inverse eigenvalue problem remains open. In fact, the
problem remains open when specialized to several important classes of structured
matrices—for instance, the class of entrywise nonnegative symmetric matrices.

Note that the three sets of conditions on an n-tuple Λ that we discussed above, i.e.,
nonnegativity of moments, the Johnson–Loewy–London inequalities, and the Newton
inequalities, are necessary conditions for the realizability of Λ as the spectrum of a
symmetric n × n matrix with nonnegative entries (provided, of course, that all the
entries of Λ are now real). A significant fraction of this paper will be devoted to an
idea that has relevance to the inverse eigenvalue problem for nonnegative symmetric
matrices. It is an idea that was first expressed by Loewy and London in [22]. When
adapted to symmetric matrices, it may be stated as follows: Suppose a primary
matrix function f is known to map nonnegative symmetric matrices of some fixed
order n into themselves. Thus f(A) is nonnegative whenever A is. Since f(σ(A)) =
σ(f(A)), both the spectrum σ(A) and its image under the map f must then satisfy
the aforementioned conditions for realizability. This enlarges the class of necessary
conditions for the symmetric nonnegative inverse eigenvalue problem. Describing this
larger class would require knowing exactly what functions f preserve nonnegativity of
such matrices (of a fixed order). Toward this end, we provide a characterization of all
the even and odd entire functions that preserve entrywise nonnegativity of nonnegative
symmetric matrices.

Along the way, we also obtain complete characterizations of all entire functions
that preserve nonnegativity of the following classes of structured matrices:

• triangular and block-triangular matrices and
• circulant matrices.

We ought to add here that, for the above classes of structured matrices, our results
do not have a bearing on the nonnegative inverse eigenvalue problems associated to
them. In fact, the solutions of the latter problems are quite straightforward. To be
precise, an n-tuple Λ is the spectrum of an n × n triangular matrix if and only if
all the entries of Λ are nonnegative. As for circulants, the eigenvalues of a circulant
matrix A are determined by its first row a := [a0 a1 . . . an−1] (see [7]), and, in fact,
there is a constant matrix W (i.e., independent of a and A) such that σ(A) = aW.
Thus the realizable n-tuples in this case are of the form aW, a ∈ R

n
+. Nevertheless,

we feel that the problem of characterizing the functions that preserve nonnegativity
of the above classes of matrices can be of interest, independently of the nonnegative
inverse eigenvalue problem.

2. Outline. This paper is organized as follows. We make several preliminary
observations in section 4. Before focusing our attention on aspects of the symmetric
nonnegative inverse eigenvalue problem, we study the structured matrices just dis-
cussed. In section 5, we characterize the class of functions preserving nonnegativity
of triangular and block triangular matrices. It turns out that these are characterized
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by nonnegativity conditions on their divided differences over the nonnegative reals.
Next, in section 6, we obtain a characterization of functions preserving nonnegativity
of circulant matrices. This characterization is quite different from that in section 5; it
involves linear combinations of function values taken at certain nonreal points of C.
In section 7, we obtain a complete characterization of the class Fn for small values
of n.

The remainder of the paper is essentially devoted to functions that preserve non-
negativity of symmetric matrices. In section 8.1, we review existing results in that
direction. In particular, we discuss the restriction of [24, Corollary 3.1] to entire
functions, which claims to provide a characterization of entire functions that preserve
entrywise nonnegativity of symmetric matrices of a fixed order. We point out that,
while this result is true when restricted to nonnegative definite nonnegative symmetric
matrices, the condition occurring in that result is not sufficient for an entire function
to preserve nonnegativity of all symmetric matrices. The techniques leading to [24,
Corollary 3.1], however, turn out to be very useful. We use these techniques, along
with some new ideas, to obtain necessary conditions and sufficient conditions and
characterizations of the even and odd entire functions that preserve nonnegativity
of symmetric matrices of a fixed order. This is the content of sections 8.2 and 8.3.
Because of a gap between the necessary and the sufficient conditions, which we also
point out in section 8.2, the results of that section do not provide a characterization
of all functions preserving nonnegativity of symmetric matrices. We end the paper
with a list of several open problems in section 9 and suggest various approaches to
their solution that we have not explored in this paper.

3. Notation. We use standard notation R
m×n for real matrices of size m×n,

R+ for nonnegative reals, Z+ for nonnegative integers, A ≥ 0 (A > 0) to denote that
a matrix A is entrywise nonnegative (positive), and σ(A) to denote the spectrum of
A. For x ∈ R, we use �x� to denote the greatest integer that is less than or equal
to x.

4. Preliminaries. The main goal of the paper is to characterize functions f
such that the matrix f(A) is (entrywise) nonnegative for any nonnegative matrix A
of order n. Since the primary matrix function f(A) is defined in accordance with
values of f and its derivatives on the spectrum of A (see, e.g., [15, sections 6.1, 6.2]),
we want to avoid functions that are not differentiable at some points in C. Therefore,
we restrict ourselves to functions that are analytic everywhere in C, i.e., to entire
functions. Thus we consider the class

Fn : ={f entire : A ∈ R
n×n, A ≥ 0 =⇒ f(A) ≥ 0}.

Note right away that the classes Fn are ordered by inclusion.
Lemma 1. For any n ∈ N, Fn ⊇ Fn+1.
Proof. Let A be a nonnegative matrix of order n, and let f ∈ Fn+1. Consider

the block diagonal matrix B : = diag(A, 0) obtained by adding an extra zero row and
column to A. Since f(B) = diag(f(A), 0), the matrix f(A) must be nonnegative.
Thus f ∈ Fn.

Recall that any entire function can be expanded into its Taylor series around any
point in C and that the resulting series converges everywhere (see, e.g., [5]). We will
mostly focus on Taylor series of functions in Fn centered at the origin. We start with
some simple observations regarding a few initial Taylor coefficients of such a function.

Proposition 2. Let f(z) =
∑∞

j=0 ajz
j be a function in Fn. Then, aj ≥ 0 for

j = 0, . . . , n− 1.
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Proof. For n = 1, the statement follows from evaluating f at 0. If n > 1 and
f ∈ Fn, then evaluate the function f at the matrix

A : =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · 0 1

0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since

f(A) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−2 an−1

0 a0 a1 · · · an−3 an−2

0 0 a0 · · · an−4 an−3

...
...

...
. . .

...
...

0 0 0 · · · a0 a1

0 0 0 · · · 0 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

the entries a0, . . . , an−1 of f(A) must be nonnegative. This finishes the proof.
Corollary 3. A function f is in Fn for all n ∈ N if and only if it has the form

f(z) =
∑∞

j=0 ajz
j with aj ≥ 0 for all j ∈ Z+.

Proof. One direction follows from Proposition 2. The other direction is trivial:
if all terms in the Taylor expansion of f around the origin are nonnegative, then
f(A) combines powers of a nonnegative matrix A using nonnegative coefficients, so
the resulting matrix is nonnegative. Here we make use of the standard fact [15,
Theorem 6.2.8] that the matrix power series

∑∞
j=0 ajA

j converges to f(A).
Remark. It must be noted that Proposition 2 cannot be a necessary condition for

an entire function to belong to Fn. This is easy to see; fix an n ∈ N and set

F (x) = −xn +

n−1∑
j=0

ajx
j ,

where we choose aj ≥ 0, j = 0, . . . , n − 1. Then, there exists an x0 > 0 such that
F (x) < 0 for all x ∈ (x0,∞). If we set A = rI for some r ∈ (x0,∞), then A
is entrywise nonnegative, while the diagonal entries of F (A) are negative. Hence,
although aj ≥ 0 for j = 0, . . . , n− 1, F does not preserve nonnegativity.

To conclude this section, we make two more general observations.
Lemma 4. An entire function f belongs to Fn if and only if it maps positive

matrices of order n into nonnegative matrices.
Proof. This is simply due to the continuity of f , since the set of strictly positive

matrices is dense in the set of all nonnegative matrices of order n.
Lemma 5. For any primary matrix function f, any permutation matrix P, and

any diagonal matrix D with positive diagonal elements, f(A) is nonnegative if and
only if f(PDA(PD)−1) is nonnegative.

Proof. Note that (PD)f(A)(PD)−1 = f(PDA(PD)−1) and that both matrices
PD and (PD)−1 are nonnegative. So, f(A) is nonnegative if and only if the matrix
f(PDA(PD)−1) is nonnegative.

We now analyze three superclasses of our class Fn:
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• entire functions preserving nonnegativity of upper-triangular matrices,
• entire functions preserving nonnegativity of circulant matrices, and
• entire functions preserving nonnegativity of symmetric matrices.

5. Preserving nonnegativity of (block) triangular matrices. We first dis-
cuss functions preserving nonnegativity of upper- (or lower-)triangular matrices. The
characterization that we obtain makes use of the notion of divided differences. The
divided difference (see, e.g., [8]) of a smooth function f at points x1, . . . , xk (which
can be thought of as an ordered sequence x1 ≤ · · · ≤ xk) is usually defined via the
recurrence relation

f [x1, . . . , xk] : =

⎧⎨
⎩

f [x2,...,xk]−f [x1,...,xk−1]
xk−x1

, x1 �= xk,

f (k−1)(x1)/(k − 1)!, x1 = xk,

and where f [x] : =f(x). Divided differences play a large part in this paper. We shall,
however, make no attempt to review the results on divided differences that we shall
draw upon, especially since they are quite readily accessible. The interested reader is
referred to [8].

Theorem 6. An entire function f preserves nonnegativity of upper-triangular
matrices of order n if and only if its divided differences of order up to n are nonnegative
over R+, i.e.,

f [x1, . . . , xk] ≥ 0 for x1, . . . , xk ≥ 0, k = 1, . . . , n,(1)

or, equivalently, that all derivatives of f of order up to n−1 are nonnegative on R+.
Proof. Sufficiency. Let A=:(aij) be a nonnegative upper-triangular matrix. Sup-

pose a function f satisfies (1). By [28], [35] (see also [36]), the elements of the matrix
f(A) can be written explicitly as

f(A)ij =

⎧⎪⎨
⎪⎩

f(aii), i = j,∑
i<i1<···<ik<j aii1 · · · aikjf [aii, ai1i1 , . . . , aikik , ajj ], i < j,

0, i > j.

(2)

The divided differences appearing in the sum on the right-hand side are of order not
exceeding n; hence all the summands, and therefore the sums, are nonnegative.

Necessity. We proceed by induction on n. If f preserves nonnegativity of upper-
triangular matrices of order n, it does so also for matrices of order n−1. Thus, by our
inductive hypothesis, (1) holds up to order n− 1. To see that all divided differences
of order n are also nonnegative over nonnegative reals, consider the matrix A whose
first upper diagonal consists of ones, whose main diagonal consists of n arbitrary
nonnegative numbers x1, . . . , xn, and whose other entries are zero. Then, (2) shows
that f(A)1n = f [x1, . . . , xn] and must be nonnegative.

Finally, since all divided differences of a fixed order k at points in a domain D
are nonnegative if and only if f (k−1)(x) is nonnegative for every point x ∈ D [8], we
see that condition (1) is equivalent to all derivatives of f of order up to n−1 being
nonnegative on R+. This finishes the proof.

The proofs of (2) in [35] and [28] are based on the following observation.
Result 7 (see [35], [28]). A block triangular matrix of the form

M =

[
A B
0 a

]
, a ∈ C \ σ(A),
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is mapped to the matrix

f(M) =

[
f(A) (A− aI)−1(f(A) − f(a)I)B

0 f(a)

]

by a function f .
One can prove an analogous statement in the block triangular case.
Proposition 8. Let f be an entire function, and let

M =

[
A B
0 C

]
, σ(A) ∩ σ(C) = ∅.

Then

f(M) =

[
f(A) f(A)X −Xf(C)

0 f(C)

]
,

where X is the (unique) solution to the equation

AX −XC = B.

Proof. Let X be a solution of the Sylvester equation AX − XC = B. Since
the spectra of A and C are disjoint, this solution is unique [15, section 4.4]. Then,
M = T−1 diag(A,C)T , where

T =

[
I X
0 I

]
.

Hence f(M) = T−1 diag(f(A), f(C))T , which proves the proposition.
As an immediate corollary, we obtain an indirect characterization of functions

preserving nonnegativity of block triangular matrices with two diagonal blocks.
Corollary 9. An entire function f preserves nonnegativity of block upper-

triangular matrices of the form

[
A B
0 C

]
, A ∈ R

n1×n1 , C ∈ R
n2×n2 ,

if and only if
(a) f ∈ FN , where N : = max{n1, n2}; and
(b) f(A)X −Xf(C) ≥ 0 for every A ∈ R

n1×n1 , B ∈ R
n1×n2 , C ∈ R

n2×n2 such
that A,B,C ≥ 0, σ(A) ∩ σ(C) = ∅, and for the (unique) matrix X satisfying
the equation AX −XC = B.

Proof. For f to preserve nonnegativity of blocks A and C, it has to belong
to FN (keeping in mind Lemma 1). The remainder of our assertion follows from
Proposition 8 and the fact that the matrices with nonnegative blocks A, B, C, such
that the spectra of A and C are disjoint, are dense in the set of all block upper-
triangular matrices.

The above proposition, however, does not allow for an explicit formula of the
type (1) as in Theorem 6.

Remark. Note that the results of this section characterize functions preserving
nonnegativity of the (block) lower-triangular matrices as well.
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6. Preserving nonnegativity of circulant matrices. A circulant matrix (see,
e.g., [7]) A is determined by its first row (a0, . . . , an−1) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 · · · an−1

an−1 a0 a1 · · · an−2

an−2 an−1 a0 · · · an−3

...
...

...
. . .

...

a1 a2 a3 · · · a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

All circulant matrices of size n are polynomials in the basic circulant matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0

...
...

...
. . .

...

1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

which implies in particular that any function f(A) of a circulant matrix is a circulant
matrix as well. Moreover, the eigenvalues of a circulant matrix are determined by its
first row (see [7]) by the formula

⎧⎨
⎩

n−1∑
j=0

ωkjaj : k = 0, . . . , n− 1

⎫⎬
⎭ , where ω : =e2πi/n.

Hence the eigenvalues of f(A) are

⎧⎨
⎩f

⎛
⎝ n−1∑

j=0

ωkjaj

⎞
⎠ : k = 0, . . . , n− 1

⎫⎬
⎭ .

Thus, the elements (f0, . . . , fn−1) of the first row of f(A) can be read off from its
spectrum:

fl =
1

n

n−1∑
k=0

ω−lkf

⎛
⎝n−1∑

j=0

ωjkaj

⎞
⎠ , l = 0, . . . , n− 1.

This argument proves the following theorem.
Theorem 10. For an entire function f to preserve nonnegativity of circulant

matrices of order n, it is necessary and sufficient that for l = 0, . . . , n− 1,

n−1∑
k=0

ω−lkf

⎛
⎝n−1∑

j=0

ωjkaj

⎞
⎠ ≥ 0 whenever aj ≥ 0, j = 0, . . . , n− 1,(3)

where ω = e2πi/n.
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7. Characterization of Fn for small values of n. We now focus on the
function classes Fn for small values of n. Recall the inclusion Fn+1 ⊆ Fn from
Lemma 1, which means that all conditions satisfied by the functions from Fn get
inherited by the functions from Fn+1. Thus we need to find out precisely how to
strengthen the conditions that determine Fn to get to the next class Fn+1.

7.1. The case n = 1. A function f is in F1 if and only if f maps nonnegative
reals into themselves. While this statement is in a way a characterization in itself, if f
is an entire function with finitely many zeros, we can give a description of the form that
f takes. For such f , the proposition below serves as an alternative characterization.

Proposition 11. A function f having finitely many zeros is in F1 if and only
if it has the form

f(z) = g(z)
∏
α,β

((z + α)2 + β2)
∏
γ

(z + γ),(4)

where the α’s and the β’s are arbitrary reals, the γ’s are nonnegative, and g is an
entire function that has no zeros in C and is positive on R+.

Proof. First note that since f takes real values over the nonnegative reals, all its
zeros occur in conjugate pairs. Moreover, while the multiplicity of the real negative
zeros is not restricted in any way, the nonnegative zeros must occur with even mul-
tiplicities. This produces exactly the factors recorded in (4), with nonnegative zeros
corresponding to β = 0. After factoring out all the linear factors, we are left with an
entire function—which we call g(z)—that has no zeros and takes only positive values
on R+. This gives us the expression (4).

Remark. Incidentally, all polynomials f that take only positive values on R+ are
characterized by a theorem due to Poincaré and Pólya (see, e.g., [6, p. 175]): there
exists a number N ∈ Z+ such that the polynomial (1 + z)Nf(z) must have positive
coefficients. Since we include nonpolynomial functions in our class F1, and since
we allow functions to have zeros in R+, the Poincaré–Pólya characterization is not
directly relevant to our setup.

7.2. The case n = 2. We just saw that functions in F1 are characterized by
one inequality, viz.

f(x) ≥ 0 ∀ x ≥ 0.(5)

In this subsection we will see that functions in F2 are characterized by two inequalities,
one involving a divided difference. We recall two preliminary observations, Lemmas 4
and 5 that were proved in section 4. Their specialization to the case n = 2 gives the
following corollary.

Corollary 12. An entire function f belongs to F2 if and only if it maps positive
symmetric matrices of order 2 into nonnegative matrices.

Proof. A strictly positive 2× 2 matrix A can be symmetrized by using the trans-
formation DAD−1, where D is a diagonal matrix with positive diagonal elements.
Thus, Lemmas 4 and 5 imply that f(A) is nonnegative for all strictly positive, and
hence for all nonnegative, matrices A of order 2 if and only if f(A) is nonnegative for
all symmetric matrices.

Now we are in a position to prove a characterization theorem for the class F2.
Theorem 13. An entire function f is in F2 if and only if it satisfies the condi-

tions

f(x + y) − f(x− y) ≥ 0 ∀ x, y ≥ 0,(6)
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(x + y − z)f(x− y) + (z − x + y)f(x + y) ≥ 0 ∀ x ≥ z ≥ 0, y ≥ x− z,(7)

or, equivalently, if f satisfies (6) and the condition

(x + y)f(x− y) + (y − x)f(x + y) ≥ 0 ∀ y ≥ x ≥ 0.(8)

Proof. If f ∈ F2, then, in particular, f preserves nonnegativity of nonnegative
circulant matrices. Thus, the conditions (3) are necessary for f to belong to F2.
Observe that the condition (6) is one of the two necessary conditions (3) in case n = 2
(taking a0 = x and a1 = y). Therefore, we need to check that the condition (7) is
also necessary and that both together are sufficient. Then we also need to check that
conditions (6) and (7) are equivalent to conditions (6) and (8).

By Corollary 12, we can restrict ourselves to the case when A is a positive sym-
metric matrix, i.e., when

A =

[
a11 b

b a22

]
, a11, b, a22 > 0.

Since the value of f at A coincides with the value of its interpolating polynomial of
degree 1 with nodes of interpolation chosen at the eigenvalues of A [15, sections 6.1,
6.2], we get

f(A) = f [r1]I + f [r1, r2](A− r1I),

where

rj : =
a11 + a22

2
+ (−1)j

√
(a11 − a22)2 + 4b2

2
, j = 1, 2.

So, the off-diagonal entries of f(A) are equal to

f [r1, r2]b,

while the diagonal entries are

f [r1, r2](ajj − r1) + f(r1), j = 1, 2.

Writing

x : =
a11 + a22

2
,

y : =

√
(a11 − a22)2 + 4b2

2
,

z : =min(a11, a22),

we see that the characterization for F2 consists precisely of conditions (6) and (7).
It remains to prove that (6) and (7) are equivalent to (6) and (8). By simply

taking z = 0 in (7), we see that (7) implies (8). So let us now assume (6) and (8). We
begin by stating a simple auxiliary fact. Taking x = 0 and y > 0 in (6) and (8), we
get f(y) ± f(−y) ≥ 0 for all y > 0. We conclude from this that f(y) ≥ 0 whenever
y ≥ 0, i.e., that f satisfies (5).
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First consider y lying in the range x− z ≤ y ≤ x. In this case, we get

(x + y − z)f(x− y) + (z − x + y)f(x + y)

= (y − (x− z))(f(x + y) − f(x− y)) + 2yf(x− y) ≥ 0 for x ≥ z ≥ 0.

The nonnegativity of the second term above is a consequence of (5), since x − y is
nonnegative in this case. Now if y ≥ x, then (6) and (8) simply imply that

(x + y − z)f(x− y) + (z − x + y)f(x + y)

= ((x + y)f(x− y) + (y − x)f(x + y)) + z(f(x + y) − f(x− y)) ≥ 0

for y ≥ x ≥ z ≥ 0.

The last two inequalities show that (6) and (8) imply (6) and (7). This finishes the
proof.

8. Preserving nonnegative symmetric matrices. We now focus on the char-
acterization problem for the class of entire functions which preserve nonnegativity of
symmetric matrices. We begin by recalling known facts about functions which pre-
serve nonnegative symmetric matrices that are in addition nonnegative definite, i.e.,
have only nonnegative eigenvalues.

8.1. Preserving nonnegative definite nonnegative symmetric matrices.
Interestingly, the condition necessary and sufficient for preserving nonnegative sym-
metric matrices that are nonnegative definite turns out to be exactly the same as the
condition for preserving upper- (or lower-)triangular nonnegative matrices.

The characterization of functions which preserve the class of nonnegative definite,
entrywise nonnegative symmetric matrices is due to Micchelli and Willoughby [24].
We next state a version of their result that is useful for our purposes.

Result 14 (version of [24, Corollary 3.1]). An entire function f preserves the
class of nonnegative definite, entrywise nonnegative symmetric matrices if and only
if all the divided differences of f of order up to n are nonnegative over R+, i.e., f
satisfies (1) or, equivalently, all derivatives f (j) of f up to order n−1 are nonnegative
on R+.

The proof of Result 14 in [24] relies on two facts. The first is that f(A) coincides
with the interpolating polynomial of f , with nodes at the eigenvalues of A, evaluated
at A, i.e., that

f(A) = f [r1]I+f [r1, r2](A−r1I)+ · · ·+f [r1, . . . , rn](A−r1I) · · · (A−rn−1A).(9)

The second fact is the entrywise nonnegativity of all matrix products

(A− r1I) · · · (A− rjI), j = 1, . . . , n− 1,

which holds under the assumption that the eigenvalues r1, . . . rn of A are ordered

r1 ≤ r2 ≤ · · · ≤ rn.

Observe, however, that condition (1) is not sufficient for a function to preserve
nonnegativity of all nonnegative symmetric matrices. Indeed, let n = 2, and let

f(x) = 1 + x +
1

2
x2 − 2

3
x3 +

1

4
x4.
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This function satisfies the condition (1) with n = 2, but it maps the matrix

[
0 M
M 0

]
,

which is not nonnegative definite, to a matrix with negative off-diagonal entries when
M > 0 is chosen to be sufficiently large. In fact, any M >

√
3/2 will produce a matrix

with negative entries.
Motivated by Result 14, we would therefore like to find out what conditions

are necessary and sufficient for a function to preserve nonnegativity of nonnegative
symmetric matrices. We begin, in the next subsection, by analyzing even and odd
functions.

8.2. Even and odd functions preserving nonnegativity of symmetric
matrices. Using the Micchelli–Willoughby result, i.e., Result 14 from the previous
section, and an auxiliary result from [12], we shall obtain a characterization of even
and odd functions which preserve nonnegativity of symmetric matrices. Our proof
below will require the notion of a Jacobi matrix and that of a symmetric antibidiagonal
matrix. A Jacobi matrix is a real, nonnegative definite, tridiagonal symmetric matrix
having positive subdiagonal entries. A matrix A is called a symmetric antibidiagonal
matrix if it has the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 an

0 0 · · · an−2 an−1

...
... ·

...
...

0 an−2 · · · 0 0

an an−1 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, a1, . . . , an ∈ R.(10)

We make use of the next two results from [24] and from [12].
Result 15 (see [24]). A matrix function f preserves nonnegativity of symmetric

nonnegative definite matrices of order n if and only if it maps Jacobi matrices of order
n into nonnegative matrices or, equivalently, if the divided differences of f up to order
n satisfy (1) for each ordered n-tuple x1 ≤ x2 ≤ · · · ≤ xn of eigenvalues of a Jacobi
matrix.

The above result is not stated in precisely these words in [24], but it is easily
inferred—it lies at the heart of the proof of [24, Theorem 2.2]. In addition, we shall
also need the following result.

Result 16 (Corollary 3 in [12]). Let M be a positive real n-tuple. Then, there
exists a Jacobi matrix that realizes M as its spectrum and has a symmetric antibidi-
agonal square root of the form (10) with all aj’s positive.

We are now in a position obtain a characterization of even and odd matrix func-
tions that are of interest to us.

Theorem 17. An even entire function f(z) =: g(z2) preserves nonnegativity of
symmetric matrices of order n if and only if the divided differences of g up to order n
are nonnegative on R+, i.e., if g satisfies (1). An odd function f(z) =: zh(z2) preserves
nonnegativity of symmetric matrices of order n if and only if h satisfies (1).

Proof. Let f be even. Then, f(z) = g(z2) for some entire function g. If a matrix
A is entrywise nonnegative symmetric, then A2 is entrywise nonnegative, symmetric,
and nonnegative definite. By Result 14, if g satisfies (1), then g(A2) is nonnegative.
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To prove the converse, consider an arbitrary n-tuple M of positive numbers. We can
think of M as being ordered

M = (x1, . . . , xn), x1 ≤ · · · ≤ xn.(11)

By Result 16, there exists a nonnegative symmetric antibidiagonal matrix A such that
A2 is a Jacobi matrix with spectrum M. Then, by Result 15, the divided differences of
g must be nonnegative when evaluated at the first k points of M for each k = 1, . . . , n.
This implies, by the standard density reasoning, that all divided differences of g must
be nonnegative over R+.

Now let f be odd. Then, f(z) = zh(z2) for some entire function h. If all the
divided differences of h up to order n are nonnegative, then by the same argument
as above, h(A2) is nonnegative for each symmetric nonnegative matrix A, and multi-
plication of h(A2) by a nonnegative matrix A produces a nonnegative matrix again.
To prove the converse, we use induction and a technique from [24]. Since f has to
preserve nonnegativity of symmetric matrices of order n−1 as well, we can assume
the nonnegativity of the divided differences of orders k = 1, . . . , n−1. To prove that
the nth divided difference is nonnegative, let M be an arbitrary positive n-tuple (11).
As above, by Result 16, there exists a symmetric antibidiagonal matrix A such that
A2 is a Jacobi matrix with spectrum M. By [24], formula (9) shows that the (1, n)
entry of the function h(A2) is a positive multiple of f [x1, . . . , xn], and hence the (1, 1)
entry of the product h(A2)A is again a positive multiple of f [x1, . . . , xn]. Thus the
nth divided difference has to be nonnegative as well, which finishes the proof.

This theorem provides a rather natural characterization of even and odd functions
that preserve nonnegativity of symmetric matrices in terms of their divided differences.
However, the “natural” idea, that the even and odd parts of any entire function that
preserves nonnegativity of symmetric functions must be also nonnegativity-preserving,
turns out to be wrong. Here is an example that illustrates why that may not be the
case.

Example 18. Let

f(z) : =α + βz − z3 + z5 + γz6,

where β > 1/4 and α, γ > 0 are chosen to be so large that f(x) ≥ 0 for all x ∈ R and
f ′(x) ≥ 0 for all x ∈ R+. Then, f preserves nonnegativity of symmetric matrices of
order 2, but its odd part fodd does not.

Proof. The function f satisfies conditions (6) and (8). Indeed, since f ≥ 0 on R,
we have

(t + s)f(−t) + tf(t + s) ≥ 0 ∀ s, t ≥ 0,

which is equivalent to condition (8). Now, the odd part of f is given by

fodd(z) = βz − z3 + z5 =: zh(z2).

Since β > 1/4, h(x) > 0 for all x ∈ R. Since f is monotone increasing on R+, we have

f(s + t) − f(−s) ≥ f(s) − f(−s) = 2fodd(s) ≥ 0 ∀ s, t ≥ 0,

which yields condition (6). Thus, by Theorem 13, f preserves nonnegativity of sym-
metric matrices of order 2. However,

h′(x) = 2x− 1 < 0 for x < 1/2.
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Therefore, by Theorem 17, fodd does not preserve nonnegativity of symmetric func-
tions of order 2.

We conclude this section with a simple observation about even and odd parts of
a nonnegativity-preserving function.

Proposition 19. If an entire function f preserves nonnegativity of symmetric
functions of order n, then its odd and even parts fodd and feven preserve nonnegativity
of matrices of order �n/2�.

Proof. For n even, consider matrices of the form

A =

[
0 B
B 0

]
,

and for n odd, matrices of the form

A = diag

([
0 B
B 0

]
, 0

)
,

where B is an �n/2�×�n/2� symmetric nonnegative matrix. Since

f(A) =

[
feven(B) fodd(B)

fodd(B) feven(B)

]
for n even,

f(A) = diag

([
feven(B) fodd(B)

fodd(B) feven(B)

]
, 0

)
for n odd,

we see that feven and fodd must preserve nonnegativity of symmetric functions of
order �n/2�.

8.3. Other necessary conditions. Results from [12] allow us to derive an
additional set of necessary conditions. The motivation behind these conditions is as
follows. We believe that the power of Results 15 and 16—or rather, the methods behind
those results—have not been exhausted by Theorem 17. Our next theorem is presented
as an illustration of this viewpoint. On comparison with Theorem 13, we find that
the conditions derived in our next theorem constitute a complete characterization for
the functions of interest in the n = 2 case. To derive these new necessary conditions,
we will need the following two results.

Result 20 (Theorem 1 in [12]). A real n-tuple Λ can be realized as the spectrum
of a symmetric antibidiagonal matrix (10) with all aj’s positive if and only if Λ =
(λ1, . . . , λn) satisfies

λ1 > −λ2 > λ3 > · · · > (−1)n−1λn > 0.

Lemma 21. Let A be a symmetric antibidiagonal matrix of order n, and let Ap
ij

denote the (i, j) entry of Ap. Then the following hold:
(a) The (i, j) entry of A2q−1 is zero whenever 2 ≤ i + j ≤ (n− q + 1), q ≥ 1.
(b) The (i, j) entry of A2q is zero whenever 1 + q ≤ j − i ≤ n− 1, q ≥ 1.
(c) Adopting the notation in (10) for the entries of A,

A2q−1
1,n−q+1 = anan−1 . . . an−2q+2, 1 ≤ q ≤ �(n + 1)/2�,(12)

A2q
1,1+q = anan−1 . . . an−2q+1, 1 ≤ q ≤ �n/2�.(13)
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Proof. We proceed by induction on q. Note that (a), (b), and (c) are obvious
when q = 1. Let us now assume that (a) and (b) are true for some q < n − 3. Note
that since A is antibidiagonal,

A2q+1
ij = A2q

i,n−j+1An−j+1,j + A2q
i,n−j+2An−j+2,j .(14)

However, if i + j ≤ (n− (q + 1) + 1), then

(n− j + 2) − i ≥ (n− j + 1) − i ≥ q + 1.

Applying our inductive hypothesis on (b), we conclude from the above inequalities
that the right-hand side of (14) reduces to zero when i+ j ≤ (n− (q + 1) + 1). Thus,
(a) is established for q + 1.

We establish (b) for q + 1 in a similar fashion. We note that

A2q+2
ij = A2q+1

i,n−j+1An−j+1,j + A2q+1
i,n−j+2An−j+2,j .(15)

When j − i ≥ 1 + (q + 1), then

i + (n− j + 1) ≤ i + (n− j + 2) ≤ n− (q + 1) + 1.

Since we just established (a) for q+1, the above inequalities tell us that the right-hand
side of (15) reduces to zero when j − i ≥ 1 + (q + 1). Thus, (b) too is established for
q + 1. By induction, (a) and (b) are true for all relevant q.

Part (c) now follows easily by substituting i = 1 and j = n− q into (14) to carry
out the inductive step for (12), and by substituting i = 1 and j = q + 2 into (15) to
carry out the inductive step for (13).

We can now present the aforementioned necessary conditions.
Theorem 22. If an entire function f preserves nonnegativity of symmetric ma-

trices of order n, n ≥ 2, then, for each ordered n-tuple (x1, . . . , xn), where

x1 > −x2 > x3 > · · · > (−1)n−1xn > 0,(16)

f must satisfy

f [x1, . . . , xn] ≥ 0,(17)

and for each k = 1, . . . , n, f must satisfy

f [x1, . . . , xk−1, xk+1, . . . , xn] −

⎛
⎝∑

j �=k

xj

⎞
⎠ f [x1, . . . , xn] ≥ 0.(18)

Proof. We choose an n-tuple (x1, . . . , xn) that satisfies (16). By Result 20, there
is a symmetric antibidiagonal matrix of the form (10), with all aj ’s positive, whose
spectrum is (x1, . . . , xn). Let us express f(A) using the formula (9), with the substi-
tutions rj = xj , j = 1, . . . , n. Then, in view of Lemma 21, the (1, �n/2� + 1) entry of
f(A) is anan−1 . . . a2f [x1, . . . , xn]. Since f preserves nonnegativity, and all the aj ’s
are positive, f [x1, . . . , xn] has to be nonnegative. This establishes (17).

To demonstrate (18), we look at the entries of f(A) that are adjacent to the
(1, �n/2� + 1) entry that was considered above. Let us fix a k = 1, . . . , n. This time,
however, in using formula (9) to express f(A), we make the following substitutions:

rj =

⎧⎨
⎩

xj if j < k,

xj+1 if k ≤ j < n,

xk if j = n.
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Our analysis splits into two cases.
Case 1. n is odd. In this case, let us look at the (1, �n/2� + 2) entry of f(A). By

Lemma 21, and the fact that n is odd, the only power of A that contributes to this
entry is An−2. Consequently

f(A)1,�n/2	+2 = {f [x1, . . . , xk−1, xk+1, . . . , xn] −

⎛
⎝∑

j �=k

xj

⎞
⎠ f [x1, . . . , xn]}An−2

1,�n/2	+2

= anan−1 . . . a3{f [x1, . . . , xk−1, xk+1 . . . , xn] −

⎛
⎝∑

j �=k

xj

⎞
⎠ f [x1, . . . , xn]}.

Since f preserves nonnegativity, (18) follows from the above equalities.
Case 2. n is even. In this case, we focus on the (1, �n/2�) entry of f(A). We

recover (18) by arguing exactly as above.
In either case, (18) is established, which concludes our proof.
We conclude this section by showing that a subset of the necessary conditions

derived above are in fact sufficient to characterize those entire functions that preserve
nonnegativity of 2 × 2 symmetric matrices. Specifically, we show that

f [x1, x2] ≥ 0 and

f(x2) − x2f [x1, x2] ≥ 0 ∀x1 > −x2 > 0

imply the conditions (6) and (8). This is achieved simply by taking some y > x > 0,
making the substitutions x1 = y + x and x2 = x− y, and then invoking continuity to
obtain (6) and (8) for all y ≥ x ≥ 0.

9. Open problems and further ideas. We conclude this paper by listing some
ideas that we did not pursue but that may lead to further progress.

One can consider matrices that preserve nonnegativity of other classes of struc-
tured matrices, such as Toeplitz or Hankel. However, since these classes are not
invariant under the action of an arbitrary matrix function, their matrix functions can
be quite difficult to analyze. Also, the eigenstructure of some structured matrices is
rather involved, which could be an additional obstacle.

Theorem 1.3 of [35] gives an interesting formula for f(A) when f is a polynomial,
which therefore must also be true for entire functions. Precisely, if A is a matrix with
minimal polynomial p0 and C is the companion matrix of p0, then

f(A) =
n∑

j=1

f(C)j1A
j−1.

In particular, f(A) is nonnegative whenever the first column of f(C) is nonnegative.
It would be worthwhile to find out what functions have this property.

Note that the set Fn contains positive constants and is closed under addition,
multiplication, and composition. We are not aware of any work on systems of entire
functions (or even polynomials) that satisfy this property. Perhaps one could describe
a minimal set of generators (with respect to these three operations) that generate such
a system.

For example, in the case n = 1, the generators are positive constants, the func-
tion p1(x) = x, plus all quadrics of the form (x − a)2, a > 0. Incidentally, the set
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of polynomials with nonnegative coefficients is generated by positive constants and
p1(x) = x. We do not have a characterization of generators for n ≥ 2.

In particular, Fn is a semigroup with respect to any of these operations, so some
general results on semigroups may prove to be useful in our setting. Also note that
the set of nonnegative matrices of order n, on which Fn acts, is also a semigroup
(closed under addition and multiplication), which could also be of potential use.

Finally, both Fn and the set of nonnegative matrices of order n are also cones,
so the problem might also have a cone theoretic form. If we consider polynomials
instead of entire functions, we can further restrict ourselves to polynomials of degree
bounded by a fixed positive integer. Then, we will obtain a proper cone, whose
extreme directions may be of interest. The general problem then can also be looked
upon in an appropriate similar setting.
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Abstract. Matrices with a skew-symmetric part of low rank arise in many applications, including
path following methods and integral equations. This paper explores the properties of the Arnoldi
process when applied to such a matrix. We show that an orthogonal Krylov subspace basis can be
generated with short recursion formulas and that the Hessenberg matrix generated by the Arnoldi
process has a structure, which makes it possible to derive a progressive GMRES method. Eigenvalue
computation is also considered.

Key words. low-rank perturbation, iterative method, solution of linear system, eigenvalue
computation

AMS subject classifications. 65F10, 65F15

DOI. 10.1137/060668274

1. Introduction. This paper discusses the Arnoldi process applied to a large
matrix A ∈ R

n×n with a skew-symmetric part

A−A∗ =

s∑
k=1

fkg
∗
k, fk, gk ∈ R

n,(1.1)

of low rank s. In particular, we assume that s � n. The superscript ∗ denotes
transposition and, when applicable, complex conjugation. We present our results for
matrices A and vectors fk and gk with real entries; however, our algorithms also can
be applied to matrices and vectors with complex entries.

Linear systems of equations

Ax = b(1.2)

with large matrices of this kind arise in path following methods, from integral equa-
tions as well as from certain boundary value problems for partial differential equations.

The generalized minimal residual (GMRES) method is one of the most popular
iterative methods for the solution of large linear systems of equations with a non-
symmetric matrix. The standard implementation of GMRES is based on the Arnoldi
process; see, e.g., Saad [15, section 6.5]. Application of j steps of the Arnoldi process
to the matrix A with initial vector r0 �= 0 yields the decomposition

AVj = VjHj + hje
∗
j ,(1.3)

where Vj = [v1, v2, . . . , vj ] ∈ R
n×j and hj ∈ R

n satisfy V ∗
j Vj = Ij , V

∗
j hj = 0, and

v1 = r0/‖r0‖. Moreover, Hj ∈ R
j×j is an upper Hessenberg matrix. Throughout
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this paper Ij denotes the identity matrix of order j, ek denotes the kth column of an
identity matrix of appropriate order, and ‖ ·‖ denotes the Euclidean vector norm. For
ease of discussion, we will assume that j is small enough so that the decomposition
(1.3) with the stated properties exists.

When hj �= 0, we can express (1.3) in the form

AVj = Vj+1H̄j ,(1.4)

where vj+1 = hj/‖hj‖ and

Vj+1 = [Vj , vj+1] ∈ R
n×(j+1), H̄j =

[
Hj

‖hj‖e∗j

]
∈ R

(j+1)×j .

The computation of the Arnoldi decompositions (1.3) or (1.4) of a general n× n
matrix A requires the evaluation of j matrix-vector products with A and of about
j2/2 inner products with n-vectors. The latter demands O(nj2) arithmetic floating
point operations (flops) and may dominate the computational work. The Arnoldi
process determines the columns of Vj in order and requires access to all the previ-
ously generated columns to compute the next one; in particular, all the columns of
Vj have to be stored; see, e.g., Saad [15, section 6.3] for a thorough treatment of
the Arnoldi process. Computation of the jth iterate by GMRES also requires the
whole matrix Vj to be available. To limit the demand of computer memory, GMRES
is often restarted periodically, say, every m steps. This restarted GMRES method
is denoted by GMRES(m). Restarting may reduce the rate of convergence of GM-
RES significantly.

In section 2, we show that the property (1.1) of A makes it possible to determine
the columns vk of Vj with a short recursion formula, the number of terms of which
depends on s in (1.1) but can be bounded independently of k. The recursion formula
allows the computation of all the columns of Vj in only O(nj) flops. Moreover, the
computation of vk for large k does not require access to all the previously computed
columns of Vj . Section 3 discusses the structure of the Hessenberg matrix Hj in
(1.3) when A satisfies (1.1) and presents a fast algorithm for determining the Arnoldi
decomposition (1.4).

The short recursion formula for the columns of Vj and the structure of Hj make
it possible to derive a progressive GMRES method for the solution of linear systems
(1.2) with a matrix that satisfies (1.1). Such a method is described in section 4. The
storage requirement of the method, as well as the computational effort per iteration,
are bounded independently of the number of iterations j. This makes it possible to
apply the method without periodic restarts. Computed examples are presented in
section 5 and concluding remarks can be found in section 6.

Recently, Barth and Manteuffel [4] presented iterative methods of conjugate gra-
dient type for linear systems of equations of the kind considered in the present
paper. Specifically, they considered linear systems of equations with a generalized
B-normal(�,m) matrix. This type of matrix is characterized by the existence of poly-
nomials p� and qm of degrees � and m, respectively, such that the matrix

A†qm(A) − p�(A)

is of low rank, where A† = B−1A∗B and B is a Hermitian positive definite matrix.
The matrix A† is the adjoint of A with respect to the B-inner product

〈u, v〉B = u∗Bv.
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In the terminology of Barth and Manteuffel [4] matrices A that satisfy (1.1) are
generalized I-normal(1, 0) matrices.

Barth and Manteuffel [4] derived their methods by generalizing the recurrence
relations for orthogonal polynomials on the unit circle. The latter type of recurrence
relations had previously been applied to iterative methods in [11, 12]; see also Arnold
et al. [2] for a recent application to QCD computations. The derivation of our it-
erative methods for (1.2) differs from the derivation by Barth and Manteuffel [4] of
their schemes in that we do not apply properties of orthogonal polynomials on the
unit circle. Iterative methods for linear systems of equations with a matrix, whose
symmetric part is positive definite and easily invertible, are described by Concus and
Golub [7] and Widlund [18].

2. Generation of an orthogonal Krylov subspace basis. Introduce the
Krylov subspace

Kj(A, b) = span{b, Ab,A2b, . . . , Aj−1b},(2.1)

which we assume to be of dimension j. The columns of the matrix Vj in (1.3) form
an orthonormal basis of Kj(A, b).

Let fk and gk be the vectors in (1.1) and define the matrices

F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs],(2.2)

which we may assume to be of full rank; otherwise we can reduce s. We express (1.1)
as

A−A∗ = FG∗(2.3)

and note that

FG∗ = −GF ∗.(2.4)

It follows from (2.4) and the fact that F and G are of full rank that s is even and
that there is a unique matrix C ∈ R

s×s, such that

G = FC.(2.5)

The fact that s is even can be seen by substituting (2.5) into (2.4). This yields
C∗ = −C. Therefore, when s is odd, C is singular and G is not of full rank. Use
of the representation (2.5) of G reduces the computational work in the algorithms
presented in sections 3 and 4.

Example 2.1. In many applications that involve a matrix A with a skew-symmetric
part of low rank, the matrix is given in the form

A = M +

s/2∑
k=1

fkg
∗
k

with M ∈ R
n×n symmetric. Then (1.1) can be expressed as

A−A∗ =

s/2∑
k=1

fkg
∗
k −

s/2∑
k=1

gkf
∗
k

and we may choose

F = [f1, f2, . . . , fs/2, g1, g2, . . . , gs/2], C =

[
0 −Is/2

Is/2 0

]
.
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Introduce the vectors

f�,k = VkV
∗
k f�, 1 ≤ � ≤ s, 1 ≤ k ≤ j.(2.6)

Then

f�,k ∈ Kk(A, r0), f�,k − f� ⊥ Kk(A, r0).(2.7)

Moreover, for each �, the f�,k satisfy the recursion{
f�,k = f�,k−1 + vkv

∗
kf�, k = 2, 3, . . . , j,

f�,1 = v1v
∗
1f�.

(2.8)

Let

v′k = A∗vk +

s∑
�=1

g∗� vk(f� − f�,k).(2.9)

Then (1.1) gives

v′k −Avk =

s∑
�=1

g∗� vk(f� − f�,k) − (A−A∗)vk = −
s∑

�=1

g∗� vkf�,k.(2.10)

We may assume that Avk �∈ Kk(A, r0), because otherwise range(Vk) is an invariant
subspace of A, which contains the solution of the linear system (1.2); see, e.g., Saad
[15, section 6.5.4] for details. The following properties of v′k are a consequence of the
above discussion.

Proposition 2.2. Let v′k be defined by (2.9) and assume that dimKk+1(A, r0) =
k + 1. Then

v′k ∈ Kk+1(A, r0) \ Kk(A, r0), v′k ⊥ Kk−2(A, r0).(2.11)

Proof. The requirement that Kk+1(A, r0) be of dimension k + 1 secures that
Avk �∈ Kk(A, r0). Equation (2.7) yields that v′k−Avk ∈ Kk(A, r0), and this establishes
the left-hand side of (2.11).

It follows from the Arnoldi decomposition (1.3) that vk ⊥ Av� for 1 ≤ � ≤ k − 2,
or, equivalently, that A∗vk ⊥ v� for 1 ≤ � ≤ k−2. The latter property, in combination
with (2.7) and (2.9), shows the orthogonality relation (2.11).

Equation (2.10) yields the expression

v′k = Avk −
s∑

�=1

g∗� vkf�,k,(2.12)

which we use to evaluate v′k. Orthogonalization against the vectors vk−1 and vk, and
normalization of the resulting vector, gives the Arnoldi vector vk+1. In what follows
we will write this operation more explicitly as

v′k = tk+1,kvk+1 + tk,kvk + tk−1,kvk−1, k ≥ 1,(2.13)

where

tk−1,k = v∗k−1v
′
k, tk,k = v∗kv

′
k, tk+1,k = v∗k+1v

′
k,(2.14)

with v0 = 0 and tk+1,k = ‖v′k − tk,kvk − tk,k−1vk−1‖ > 0. The computations for
generating the orthogonal Krylov subspace basis, and for determining the matrix H̄j

in (1.4), are summarized in Algorithm 3.2 of the following section.
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3. Structure of the Hessenberg matrices. This section discusses the struc-
ture of the matrices Hj = [hk,�] and H̄j = [hk,�] in the Arnoldi decompositions (1.3)
and (1.4), respectively. It is convenient to introduce the following terminology. For
an integer m, the m-diagonal of a matrix B = [bk,�] consists of all entries of the form
bk,k+m. The m-upper (m-lower) triangular part of B is the submatrix comprising all
entries on and above (below) the m-diagonal. For instance, the upper Hessenberg
matrices Hj and H̄j have vanishing (−2)-lower triangular parts. Note that the (−2)-
upper triangular part is not triangular.

Proposition 3.1. Let F̂j = V ∗
j F and Ĝj = V ∗

j G, where F and G are the
matrices in (2.3) and j ≥ s. Then the upper Hessenberg matrix Hj in the Arnoldi
decomposition (1.3) satisfies

Hj −H∗
j = F̂jĜ

∗
j , ĜjF̂

∗
j = −F̂jĜ

∗
j ,(3.1)

i.e., Hj has a skew-symmetric part of rank s. Moreover, Hj and F̂jĜ
∗
j have the same

2-upper triangular parts.
Proof. It follows from (1.3) and (2.3) that

Hj = V ∗
j AVj = V ∗

j (A∗ + FG∗)Vj = H∗
j + F̂jĜ

∗
j ,

which shows (3.1). Since the (−2)-lower triangular part of Hj vanishes, (3.1) yields
the 2-upper triangular part of Hj .

The proposition shows that Hj is an order-(1, s + 1) quasi-separable matrix; see,
e.g., Eidelman, Gohberg, and Olshevsky [9] for a recent discussion on this kind of
matrix.

We turn to the entries in the tridiagonal part of H̄j . In accordance with (2.14),
we define the matrix T̄j = [tm,k] ∈ R

(j+1)×j with entries tm,k = v∗mv′k. Notice that T̄j

is tridiagonal by Proposition 2.2. Substitution of (2.6) into (2.12) gives

v′k = Avk −
s∑

�=1

(g∗� vk)VkV
∗
k f� = Avk − VkV

∗
k FG∗vk = Avk − VkF̂kĜ

∗
kek,

and, taking into account that e∗mF̂kĜ
∗
kek = e∗mF̂jĜ

∗
jek for m ≤ k ≤ j, we get for the

entries hm,k = v∗mAvk of H̄j the formula

hm,k =

⎧⎪⎨
⎪⎩

tk+1,k, m = k + 1,

tm,k + e∗mF̂jĜ
∗
jek, k − 1 ≤ m ≤ k,

e∗mF̂jĜ
∗
jek, 1 ≤ m < k − 1.

(3.2)

Thus, the matrix F̂jĜ
∗
j contributes to the upper triangular part of H̄j , and the ma-

trix T̄j , which expresses the orthogonalization of the vectors v′k, contributes to the
tridiagonal part; in MATLAB notation, we have

H̄j = T̄j + triu(F̂jĜ
∗
j , 0).

Combining (2.9) with (2.7) yields

v∗mv′k = v∗mA∗vk = (v∗kAvm)∗, 1 ≤ m ≤ k,

and comparison with (2.14) gives

tk−1,k = tk,k−1 > 0, tk,k = h∗
k,k.(3.3)
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We describe an algorithm for the computation of the matrices H̄j and Vj+1 in
the decomposition (1.4), assuming that the decomposition exists. The matrix H̄j is

represented in decomposed form (3.2) by the matrices F̂j , Ĝj , and T̄j , which in the
algorithm are represented without subscript j. The subscripts used in the algorithm
denote row and column indices. Thus, F̂k,: denotes the kth row of the matrix F̂j . At

iteration k, we let F̃ = [f1,k, f2,k, . . . , fs,k].
Algorithm 3.2. Generation of the matrices H̄j and Vj+1.
Input: A ∈ R

n×n, F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs] ∈ R
n×s, r0 ∈ R

n, j;
Output: T̄ = [t�,k] ∈ R

(j+1)×j, F̂ , Ĝ ∈ R
(j+1)×s, Vj+1 = [v1, v2, . . . , vj+1] ∈

R
n×(j+1);

1. F̃ := 0;
2. v1 := r0/‖r0‖;
3. for k = 1 : j

4. F̂k,: := v∗kF ; Ĝk,: := v∗kG;

5. F̃ := F̃ + vkF̂k,:;

6. v′ := Avk − F̃ Ĝ∗
k,:;

7. if k > 1 then
8. tk−1,k := v∗k−1v

′; v′ := v′ − tk−1,kvk−1;
9. endif
10. tk,k := v∗kv

′; v′ := v′ − tk,kvk; tk+1,k := ‖v′‖; vk+1 := v′/tk+1,k;
11. endfor
We note that the computational effort of line 4 of the algorithm can be essentially

halved by using the representation (2.5) of G.
Algorithm 3.2 can be applied to compute approximations of a few extreme eigen-

values and associated eigenvectors of A similarly to the standard implementation of
the Arnoldi process. Certain eigenvalues of Hj are used to approximate selected
eigenvalues of A. The structure of Hj therefore is of interest.

Remark 3.3. Given a unitary matrix Q ∈ C
j×j , it follows from Proposition 3.1

that for the matrix

S = Q∗HjQ,

we have Σ := S − S∗ = Q∗F̂jĜ
∗
jQ, i.e., S has a skew-symmetric part of rank s.

If S has an additional sparsity structure, then we may derive results similarly to
Proposition 3.1. For instance, the matrix S in the Schur normal form of Hj is upper
triangular, and thus S may be written as a diagonal matrix plus the 1-upper tri-
angular part of the matrix Σ. Similarly, the matrix S obtained after one step of
the QR-algorithm is upper Hessenberg and therefore may be written as a tridiagonal
matrix plus the 2-upper triangular part of the matrix Σ.

We recall that in the QR-algorithm for eigenvalue computations the unitary factor
Q is chosen such that R = Q∗Hj is upper triangular.

Remark 3.4. Consider the QR-decomposition Hj = QR with orthogonal Q and
upper triangular R. Here also the matrix R has a structure: since Q∗ is known to
be of lower Hessenberg form (see, e.g., the considerations of the next section), we
see from Proposition 3.1 that the 3-upper triangular part of Q∗(Hj − F̂jĜj) contains
only zeros, or, in other words, the 3-upper triangular parts of Rj and of the matrix

Q∗F̂jĜj of rank s coincide.
The structure makes it possible to compute the matrix R in O(j) flops, by repre-

senting Hj in terms of the tridiagonal part of Hj and the matrices F̂j and Ĝj , and by

representing R in terms of its 0-, 1-, and 2-diagonals and the matrices Q∗F̂j and Ĝj .
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Since the computation of R does not play a role in subsequent considerations, we omit
the details.

4. A progressive GMRES algorithm. Let x0 ∈ R
n be an approximate so-

lution of (1.2). GMRES determines a new approximate solution xj of (1.2), such
that

‖Axj − b‖ = min
x∈x0+Kj(A,r0)

‖Ax− b‖, xj ∈ x0 + Kj(A, r0).(4.1)

The standard implementation of GMRES determines a correction of x0, i.e., xj =
x0 + Vjxj , by substituting the decomposition (1.4) with r0 = b−Ax0 into (4.1); see,
e.g., Saad [15, section 6.5] for details. This gives the equivalent minimization problem

min
y∈Rj

‖H̄jy − e1‖r0‖ ‖,(4.2)

with solution yj ∈ R
j .

We solve the least-squares problem (4.2) by using the QR-factorization H̄j =
Qj+1R̄j , where Qj+1 ∈ R

(j+1)×(j+1) is orthogonal (or unitary in the case of complex
A, b) and

R̄j =

[
Rj

0

]
∈ R

(j+1)×j ,(4.3)

with Rj ∈ R
j×j upper triangular. Let us first recall in the following paragraph

and Proposition 4.1 the well-known construction of a QR-decomposition of the upper
Hessenberg matrix H̄j for a general matrix A. Subsequently, we explain in Proposi-
tion 4.2 how the structure of the matrix A helps us to derive a progressive form of
GMRES.

Following Saad [15, Chapter 6.5.3], we determine the matrix Qj+1 by applying a
product of Givens rotations to H̄j . Let Q1 = [1] and define, for k = 1, 2, . . . , j,

Q∗
k+1 = Ωk+1

[
Q∗

k 0

0 1

]
, Ωk+1 =

⎡
⎢⎣

Ik−1 0 0

0 c∗k sk

0 −sk ck

⎤
⎥⎦ ,(4.4)

with sk ≥ 0 and s2
k + |ck|2 = 1 such that Ωk+1 is unitary (and reduces to a classical

Givens rotation in the case of real data). Using the nested structure of H̄j = [hk,�],
i.e., the fact that H̄j−1 is the leading j × (j − 1) principal submatrix of H̄j , yields

Q∗
j+1H̄j = Ωj+1

[
Q∗

j H̄j−1 Q∗
jHjej

0 hj+1,j

]
= Ωj+1

⎡
⎢⎣

Rj−1 ∗
0 τj

0 hj+1,j

⎤
⎥⎦ ,

with

τj = e∗jQ
∗
jHjej .(4.5)

Since multiplication by Ωj+1 affects only the last two rows, the matrices Rj and R̄j

also have a nested substructure:

R̄j =

[
R̄j−1 ∗

0 0

]
, Rj =

[
Rj−1 ∗

0 ∗

]
.
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We have the following formulas for the coefficients cj , sj of Ωj+1 and for the entries
of Q∗

j+1.
Proposition 4.1. There holds

sj =
tj+1,j√

t2j+1,j + |τj |2
≥ 0, cj =

τj√
t2j+1,j + |τj |2

,(4.6)

where tj+1,j = hj+1,j is the last subdiagonal entry of H̄j and τj is given by (4.5).
The first j rows of Q∗

j+1 are obtained by padding a zero on the right-hand side of the
corresponding rows of Q∗

j . In particular, Q∗
j+1 is of lower Hessenberg form, with its

lower triangular part coinciding with the lower triangular part of a rank-one matrix.
Moreover, for j ≥ 3,

e∗j+1Q
∗
j+1 = [ −sje

∗
jQ

∗
j , cj ] = [ ∗ , sjsj−1cj−2 , −sjcj−1 , cj ].(4.7)

Proof. The proof is obtained by direct calculations.
We are in a position to describe a progressive recurrence relation for the GMRES

residual rj , a simplified recurrence for its norm, as well as a simplified expression for
the quantity τj defined by (4.5). In particular, the progressive GMRES algorithm
does not require the entries of the matrices Rj , H̄j , and Qj+1. Only the ck, sk of the
Givens rotations (4.4) and the quantities occurring in the recurrence relation for the
Arnoldi vectors vk are needed.

Proposition 4.2. Let rj denote the residual vector associated with xj, i.e.,

rj = b−Axj ,(4.8)

and define recursively

γj = −sjγj−1, j ≥ 1,(4.9)

where γ0 = ‖r0‖. Then γj = (−1)j ‖rj‖. Moreover,

rj = s2
jrj−1 + γjc

∗
jvj+1, j ≥ 1.(4.10)

Finally, define the vectors pj ∈ R
s recursively by

p∗j = −sj−1p
∗
j−1 + cj−1e

∗
j F̂j , j ≥ 2,(4.11)

and p∗1 = F̂1. Then we get for the scalar τj defined by (4.5) the expression

τj = cj−1tj,j − sj−1cj−2tj−1,j + p∗j Ĝ
∗
jej , j ≥ 2,(4.12)

with c0 = 1 and τ1 = t∗1,1.
Proof. We start by establishing the formula

rj = γjVj+1Qj+1ej+1.(4.13)

A different proof is presented by Saad [15, Proposition 6.9]. From the definition
of GMRES, we have that rj = P⊥

AKj(A,r0)
r0, where PAKj(A,r0) denotes the orthog-

onal projector onto AKj(A, r0) and P⊥
AKj(A,r0)

= I − PAKj(A,r0) denotes the or-

thogonal projector onto the complement. Denote by Q̄j ∈ R
(j+1)×j the matrix

made up of the first j columns of Qj+1. From (1.4) and (4.3), we obtain that
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AVj = Vj+1Qj+1R̄j = Vj+1Q̄jRj . Since Rj is invertible, we see that an orthonormal
basis of AKj(A, r0) is given by the columns of Vj+1Q̄j , implying that

rj = r0 − PAKj(A,r0)r0 = Vj+1Qj+1Q
∗
j+1V

∗
j+1r0 − Vj+1Q̄jQ̄

∗
jV

∗
j+1r0

= Vj+1(Qj+1Q
∗
j+1 − Q̄jQ̄

∗
j )e1‖r0‖ = Vj+1Qj+1ej+1e

∗
j+1Q

∗
j+1e1‖r0‖.

It follows from (4.7) and (4.9) that

γ0 e
∗
j+1Q

∗
j+1e1 = γ0(−sj) e

∗
jQ

∗
je1 = · · · = γ0(−sj)(−sj−1) . . . (−s1) = γj .

This establishes (4.13). Since Vj+1Qj+1 has orthonormal columns and sk ≥ 0 by
Proposition 4.1, we may conclude by taking norms in (4.13) that |γj | = ‖rj‖ = (−1)jγj .

The updating formula (4.10) is now an immediate consequence of (4.13): by (4.7),

rj = γjVj+1[−sje
∗
jQ

∗
j , cj ]

∗ = −sj
γj

γj−1
rj−1 + γjc

∗
jvj+1.

It remains to show (4.12). From (4.7) and (4.11) we conclude by recurrence on j that

p∗j = e∗jQ
∗
j F̂j , j ≥ 1.

The structure of Hj , together with (4.7) and (4.13), yields for j ≥ 2 that

τj = e∗jQ
∗
jHjej

= e∗jQ
∗
j

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

...

0

tj−1,j

tj,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ F̂jĜ
∗
jej

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= [−sj−1cj−2, cj−1]

[
tj−1,j

tj,j

]
+ p∗j Ĝ

∗
jej .

When j = 1, we get by using Q1 = [1] and (3.3) that τ1 = h1,1 = t∗1,1.
By applying a suitable linear operator L, such that Lrk = xk for 0 ≤ k ≤ j + 1,

to the recurrence relation (4.10) of the residuals, we obtain an updating formula for
the GMRES iterates in terms of the auxiliary vectors zk = Lvk and w�,k = Lf�,k,
which together with the recursive computation of these new vectors is described in
the following proposition.

Proposition 4.3. Let dimKj+1(A, r0) = j + 1 and define recursively

w�,k = w�,k−1 + v∗kf�zk, 0 < k ≤ j,(4.14)

zk+1 = − 1

tk+1,k

(
vk + tk,kzk + tk−1,kzk−1 +

s∑
�=1

g∗� vkw�,k

)
, 1 < k ≤ j,(4.15)

together with the initializations

w�,0 = 0, z1 =
x0

γ0
, z2 = − 1

t2,1
(v1 + t∗1,1z1).(4.16)

Then we have for 0 < k ≤ j the updating formula

xk = s2
kxk−1 + γkc

∗
kzk+1.(4.17)
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Proof. Consider the QR-factorization

[r0, Ar0, . . . , A
jr0] = Vj+1Sj+1,

i.e., Sj+1 ∈ R
(j+1)×(j+1) is upper triangular and invertible by assumption on j. The

projector

P = Vj+1Sj+1(Ij+1 − e1e
∗
1)S

−1
j+1V

∗
j+1

satisfies

P

(
j∑

k=0

αkA
kr0

)
=

j∑
k=1

αkA
kr0, (I − P )

(
j∑

k=0

αkA
kr0

)
= α0r0.

As a consequence, defining the linear operator L by

Lv =
r∗0(I − P )v

r∗0r0
x0 −A−1Pv,

we get for any u ∈ Kj(A, r0) that

L(b−A(x0 + u)) = x0 + u.

In particular, we obtain Lrk = xk for 0 ≤ k ≤ j, as claimed above. In order to see
that the vectors zk+1 and w�,k defined by

zk+1 = Lvk+1, w�,k = Lf�,k, 0 ≤ k ≤ j,

can be computed via the relations (4.14)–(4.16), we argue by recurrence on k: applying
L to the relations f�,0 = 0, v1 = r0/γ0 = (b− Ax0)/γ0, and Av1 = h2,1v2 + h1,1v1 =
t2,1v2 + t∗1,1v1, respectively, leads to the initializations (4.16). Similarly, for (4.14)
we apply L to (2.8), and (4.15) is obtained by applying L both to (2.12) and (2.13),
where we notice that L(Avk) = −vk. Finally, the recurrence relation (4.17) for the
GMRES iterates follows by applying L to (4.10).

Let Wj = [w1,j , w2,j , . . . , ws,j ] ∈ R
n×s. Then (4.14) can be written as

Wj = Wj−1 + zje
∗
j F̂j , W1 =

x0

γ0
F̂1,

and

s∑
�=1

g∗� vj w�,j = WjĜ
∗
jej .

Algorithm 4.4 below works with the matrices Wj rather than with their columns indi-
vidually. The notation of Algorithm 4.4 follows that of Algorithm 3.2. In particular,
the matrices Wj are stored in W .

Algorithm 4.4. Progressive GMRES.
Input: A ∈ R

n×n, F = [f1, f2, . . . , fs], G = [g1, g2, . . . , gs] ∈ R
n×s, b, x0 ∈ R

n;
Output: GMRES iterates xj ∈ R

n;
% initialization
1. r0 := b−Ax0; γ0 := ‖r0‖;
2. v1 := r0/γ0; z1 := x0/γ0;
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% j = 1
3. F̂1,: := v∗1F ; Ĝ1,: := v∗1G;

4. p∗1 := F̂1,:; F̃ := v1F̂1,:; W := x0F̂1/γ0;

5. v′ := Av1 − F̃ Ĝ∗
1,:;

6. t1,1 := v∗1v
′; v′ := v′ − t1,1v1;

7. t2,1 := ‖v′‖; v2 := v′/t2,1;
8. τ1 := t∗1,1;

9. c1 := τ1/(|τ1|2 + t22,1)
1/2; s1 := t2,1/(|τ1|2 + t22,1)

1/2; γ1 := −s1γ0;
10. z2 := −(v1 + t∗1,1z1)/t2,1; x1 := s2

1x0 + γ1c
∗
1z2;

% j > 1
11. for j = 2, 3, . . . until convergence

12. F̂j,: := v∗jF ; Ĝj,: := v∗jG;

13. p∗j := −sj−1p
∗
j−1 + cj−1F̂j,:; F̃ := F̃ + vjF̂j,:; W := W + zjF̂j,:;

14. v′ := Avj − F̃ Ĝ∗
j,:;

15. tj−1,j := v∗j−1v
′; v′ := v′ − tj−1,jvj−1;

16. tj,j := v∗j v
′; v′ := v′ − tj,jvj; tj+1,j := ‖v′‖; vj+1 := v′/tj+1,j;

17. τj := cj−1tj,j − sj−1cj−2tj−1,j + p∗j Ĝ
∗
j,:;

18. cj := τj/(|τj |2 + t2j+1,j)
1/2; sj := tj+1,j/(|τj |2 + t2j+1,j)

1/2; γj := −sjγj−1;

19. zj+1 := −(vj + tj,jzj + tj−1,jzj−1 + WĜ∗
j,:)/tj+1,j;

20. xj := s2
jxj−1 + γjc

∗
jzj+1;

21. endfor
Iterations with GMRES are typically terminated when the residual vector (4.8)

is sufficiently small, e.g., when

‖rj‖/‖r0‖ ≤ ε(4.18)

for a user-specified value of ε. This stopping criterion can be easily evaluated, since
Algorithm 4.4 computes γj , with |γj | = ‖rj‖, in each iteration. If the residual vectors
are desired in each iteration, then one can add the relation (4.10) on line 10 (for j = 1)
and on line 20 of the algorithm. Stopping criteria of the type (4.18) have recently
been discussed by Paige et al. [13, 14]. In particular, the initial vector x0 should be
chosen so that ‖r0‖ ≤ ‖b‖ and preferably as the zero-vector.

In order to make the connection between Algorithm 4.4 and the preceding dis-
cussion clearer, vectors are equipped with subscripts in the algorithm. However, only
the most recently generated vectors p∗j and xj have to be stored simultaneously, and
only the two most recently generated vectors vj , vj−1 and zj , zj−1 have to be stored

at any given time. Only the jth rows of the matrices F̂ and Ĝ have to be stored
simultaneously. The matrices F̃ and W have to be stored and require n × s storage
locations each. Moreover, representations of the matrices A, F , and G have to be
stored. Ignoring the storage for the latter, the storage requirement for Algorithm 4.4
is bounded by (2s+ 6)n+O(sj) storage locations. The computational work per iter-
ation is bounded independent of j; it is O(n) flops in addition to the arithmetic work
required for the evaluation of Avj . In the special case when s = 0, Algorithm 4.4
simplifies to a minimal residual method for the solution of linear systems of equations
with a symmetric, possibly indefinite, matrix.

We conclude this section with a comment on FOM, an iterative method that is
closely related to GMRES; see Saad [15, section 6.4]. The jth iterate determined by
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FOM, xFOM
j ∈ x0 + Kj(A, r0), satisfies

b−AxFOM
j ⊥ Kj(A, r0).

From, e.g., [15, section 6.5.5] we know that the iterate xFOM
j exists if and only if

|sj | = ‖rj−1‖/‖rj‖ < 1, which is equivalent to cj �= 0, where sj and cj are entries of
the Givens rotation Ωj+1; see (4.4). In this case, the relation between xFOM

j and the
GMRES iterate xj is given by

xj = s2
j xj−1 + (1 − s2

j )x
FOM
j ;

see Saad [15, section 6.5.5] for details. A comparison with (4.10) shows that

xFOM
j =

γj
cj

zj+1,

i.e., the vectors zj+1 are FOM iterates up to normalization.

5. Computed examples. Linear systems of equations (1.2) with matrices of
the form

A =

[
A1,1 A1,2

A2,1 A2,2

]
∈ R

n×n,

with a symmetric leading principal submatrix A1,1 ∈ R
(n−�)×(n−�) and A1,2, A

∗
2,1 ∈

R
(n−�)×�, A2,2 ∈ R

�×�, arise in many applications. Example 5.1 outlines a path
following method that gives rise to matrices of this kind, and Examples 5.2–5.4 discuss
the solution of integral equations. All computations were carried out in MATLAB
with machine epsilon about 2 · 10−16.

Example 5.1. We are interested in computing the solution u of the nonlinear
boundary value problem

−Δu− λ exp(u) = 0 in S,(5.1)

u = 0 on ∂S(5.2)

as a function of the parameter λ, where Δ denotes the Laplacian, S the unit square,
and ∂S its boundary. This problem is known as the Bratu problem and is a common
test problem for path following methods. We discretize S by a uniform grid with
(�−1)2 interior grid points (sk, tk), where tk = sk = k/�, 1 ≤ k < �, and approximate
the Laplacian by the standard five-point stencil. This yields a system of (� − 1)2

nonlinear equations

G(w, λ) = 0,(5.3)

where the entries of the vector w ∈ R
(�−1)2 are approximations of the function u at

the grid points. Numerous techniques for computing w(λ) as λ is increased from, say,
λ0 to λ1 are available; see, e.g., [1, 5, 6] and the references therein.

The matrix ∂G/∂w is singular at turning points (w, λ) of the path λ → (w(λ), λ),
and one often introduces an auxiliary parameter η in order to be able to traverse
these points. Thus, let λ = λ(η) and assume that w(λ(η̂)) is available, where
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λ0 ≤ λ(η̂) ≤ λ1. We would like to determine λ(η̂ + δη) and w(λ(η̂ + δη)). Intro-
duce the function

L(w, λ, δη) = d∗(w − w(λ(η̂))) + c(λ− λ(η̂)) − δη(5.4)

for some d ∈ R
(�−1)2 and c ∈ R. The choice of d and c will be commented on below.

Let (w(j), λ(j)) be an available approximation of the solution of

G(w, λ) = 0,

L(w, λ, δη) = 0.
(5.5)

Newton’s method can be used to determine an improved approximation

(w(j+1), λ(j+1)) = (w(j) + δw, λ(j) + δλ)

of the solution (w(λ(η̂ + δη)), λ(η̂ + δη)) of (5.5), where δw and δλ satisfy

[
G

(j)
w G

(j)
λ

d∗ c

][
δw

δλ

]
=

[
−G(j)

−L(j)

]
,(5.6)

with

G(j) = G(w(j), λ(j)), L(j) = L(w(j), λ(j), δη),

G
(j)
w = ∂

∂wG(w(j), λ(j)), G
(j)
λ = ∂

∂λG(w(j), λ(j)).

The vector d should be chosen to make the matrix in (5.6) nonsingular even when Gw is
singular. This allows simple turning points to be traversed. The parameter η is some-
times chosen to be arc length or pseudo–arc length of the curve λ → (w(λ), λ). The
quantities d, c in (5.4) then may be defined by, e.g., d = dw(λ(η̂))/dη, c = dλ(η̂)/dη.

To illustrate the performance of Algorithm 4.4, we discretize (5.1) on a uniform
grid with � = 26. The matrix in (5.6) then is of size 626×626. We choose λ = exp(η)−1
and seek to determine the solution of (5.5) with δη = 10, starting with w(0) = 0 and

λ(0) = 0, i.e., x0 = 0 in Algorithm 4.4. Then G
(0)
w is the negative discrete Laplacian,

G
(0)
λ = −[1, 1, . . . , 1]∗, G(0) = 0, and L(0) = −δη. We let c = 1 and, since ∂w/∂η

is the largest at the center of the unit square, we choose d = e(�−1)2/2. This defines
the matrix in (5.6), which we will refer to as A. It has skew-symmetric part of rank
s = 2; cf. (1.1). We choose

f1 = [1, 1, . . . , 1, 0]∗ − e(�−1)2/2, f2 = e(�−1)2+1, g1 = f2, g2 = −f1

in the computations.
Algorithm 4.4 reduces the residual error from 10 (= |δη|) to 1.84 · 10−7 in 50

iterations. In the present example, the numerical values of ‖b − Ax50‖, ‖r50‖ as
computed by (4.10), and |γ50| agree to at least five significant digits. Solution of (5.6)
by a direct method gave xdirect with ‖xdirect − x50‖ = 1.42 · 10−10. Let x′

50 denote
the approximate solution determined by standard GMRES,1 and let r′50 = b− Ax′

50.
Then ‖r′50‖ = 1.84 ·10−7, ‖xdirect−x′

50‖ = 1.42 ·10−10, and ‖x′
50−x50‖ = 4.90 ·10−12.

1Standard GMRES refers to the commonly used GMRES implementation based on the Arnoldi
process with orthogonalization of the Arnoldi vectors by the modified Gram–Schmidt method.
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Fig. 5.1. Residual norms for Algorithm 4.4 applied to the data of Example 5.1. For comparison,
we show both the norm of the exact residuals ‖b − Axk‖ (symbol �) and the recursively computed
residual norms |γk| (symbol �), as well as the norm of the residuals r′k (symbol ◦) obtained by
standard GMRES, which are all of the same size. In contrast, restarted GMRES(10) (symbol ×)
fails to converge.

Figure 5.1 shows the residual errors for standard GMRES and Algorithm 4.4.
Let xk denote the iterates computed by Algorithm 4.4 and let γk be the recursively
evaluated quantities in the algorithm, such that (in exact arithmetic) |γk| = ‖b−Axk‖.
Figure 5.1 displays |γk|, referred to as fast GMRES (recursive), as well as the evaluated
norms ‖b − Axk‖, referred to as fast GMRES (exact), for 0 ≤ k ≤ 50. The |γk| are
seen to be accurate approximations of ‖b−Axk‖. Moreover, the latter quantities are
of the same size as the residual norms produced by standard GMRES.

Convergence is slow during the first 15 iterations and can be sped up by the use
of a preconditioner. Note that a symmetric positive definite preconditioner would not
change the rank of the skew-symmetric part.

Algorithm 4.4 requires about the same computer storage as GMRES restarted
every 2s+6 iterations. The latter method is referred to as restarted GMRES(2s+6).
We also compare Algorithm 4.4 to restarted GMRES(2s+6). For the present example
restarted GMRES(2s + 6) with s = 2 fails to converge; see Figure 5.1.

Both standard and restarted GMRES are implemented using modified Gram–
Schmidt orthogonalization of the Arnoldi vectors. Algorithm 4.4 explicitly orthog-
onalizes each new Arnoldi vector vk+1 only against the two most recently gener-
ated vectors, vk and vk−1. Therefore, the orthogonality properties of the matrices
Vk = [v1, v2, . . . , vk] determined by standard GMRES and Algorithm 4.4 in finite
precision arithmetic may differ. Figure 5.2 displays the quantities ‖Ik − V ∗

k Vk‖2, for
1 ≤ k ≤ 50, for matrices Vk determined by standard GMRES and Algorithm 4.4. In
this example, the columns of the matrices Vk determined by Algorithm 4.4 are closer
to orthonormal than those determined by standard GMRES.

Example 5.2. The integral equation

γ u(α) +
1

π

∫ 1

−1

d

d2 + (α− β)2
u(β)dβ = f(α), −1 ≤ α ≤ 1,(5.7)

with γ = 1 and d a positive constant, is known as Love’s integral equation. It arises
in electrostatics; see, e.g., Baker [3, p. 258]. Let f(α) = (1 + α)1/2, let d = 1/10, and
discretize (5.7) by a Nyström method based on the composite trapezoidal rule with
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Fig. 5.2. Orthonormality of the Arnoldi vectors for Example 5.1: ‖Ik − V ∗
k Vk‖2 as a function

of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦).
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Fig. 5.3. Residual norms for Algorithm 4.4 applied to the data of Example 5.2. For comparison,
we show both the norm of the exact residuals ‖b−Axk‖ (symbol �) and the recursive residual norms
|γk| (symbol �), which are of the same size. The norm of the residuals r′k obtained by standard
GMRES (symbol ◦) and by restarted GMRES(14) (symbol ×) are also displayed.

equidistant nodes αk = βk = (k− 1)/(n− 1), 1 ≤ k ≤ n, n = 300. This gives a linear
system of equations with a matrix of the form

A = γI + KD,(5.8)

where K is a symmetric Toeplitz matrix and D = diag[1/2, 1, 1, . . . , 1, 1/2]. The
skew-symmetric part of A therefore is of rank s = 4. The memory requirement of
Algorithm 4.4 is about the same as for restarted GMRES(14).

Figure 5.3 shows the residual errors for Algorithm 4.4 as given by |γk| and
‖b−Axk‖ for 0 ≤ k ≤ 12, as well as the corresponding residual errors for standard
GMRES. The initial approximate solution is x0 = 0. The iterations are terminated as
soon as the residual error for standard GMRES is of norm smaller than 1 · 10−12.
Convergence is rapid both for Algorithm 4.4 and standard GMRES, and the methods
produce iterates with residual errors of nearly the same size.
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Fig. 5.4. Orthonormality of the Arnoldi vectors for Example 5.2: ‖Ik − V ∗
k Vk‖2 as a function

of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦).

Figure 5.4 is analogous to Figure 5.2 and shows that the Arnoldi vectors generated
by Algorithm 4.4 are slightly closer to being orthonormal than the Arnoldi vectors
determined by standard GMRES.

The nonsymmetric matrix KD in (5.8) is the discretization of a compact integral
operator. It has many eigenvalues close to the origin. Therefore the matrix (5.8)
has many eigenvalues close to γ, which has the value one in Example 5.2. In the
following examples, we will reduce γ. This reduces the rate of convergence and illus-
trates that, differently from Examples 5.1 and 5.2, the Arnoldi vectors determined by
Algorithm 4.4 may be less close to orthonormal than the Arnoldi vectors determined
by the Arnoldi process in the standard GMRES implementation.

Example 5.3. We modify the integral equation (5.7) of Example 5.2 by setting
γ = 0.1. This change of γ reduces the rate of convergence. Discretization is carried
out in the same manner as in Example 5.2. We use the same initial approximate
solution and stopping criterion as in Example 5.2.

Figure 5.5 displays the norm of the residual errors for Algorithm 4.4, standard
GMRES, and restarted GMRES(14) and is analogous to Figure 5.3. Figure 5.5 shows
the residual errors r21 and r22 determined by Algorithm 4.4 to be of slightly larger
norm than the corresponding residual errors determined by standard GMRES. The
cause for this can be found in Figure 5.6(a), which shows the quantities ‖Ik −V ∗

k Vk‖2

for 1 ≤ k ≤ 22. The figure shows the Arnoldi vectors computed by Algorithm 4.4
to be slightly less close to orthonormal than are the Arnoldi vectors determined by
standard GMRES.

Figure 5.6(b) displays ‖Im+1 − V ∗
m−k:kVm−k:k‖2 as a function of k for m =

1, 2, . . . , 5, thus measuring the orthonormality between the last m+1 Arnoldi vectors
computed by Algorithm 4.4. Orthonormality is lost fairly rapidly for m ≥ 3.

Example 5.4. We modify the integral equation (5.7) of Examples 5.2 and 5.3 by
setting γ = 0.01. This change of γ reduces the rate of convergence compared with
Example 5.3. Discretization is carried out in the same manner as in Examples 5.2
and 5.3, and we use the same initial approximate solution and stopping criterion as
in those examples.

Figure 5.7 displays the norm of the residual errors for Algorithm 4.4, standard
GMRES, and restarted GMRES(14) and is analogous to Figure 5.5. Figure 5.7 shows
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Fig. 5.5. Residual norms for Algorithm 4.4 applied to the data of Example 5.3. For comparison,
we display both the norm of the exact residuals ‖b − Axk‖ (symbol �) and the recursive residual
norms |γk| (symbol �), which are of the same size, and slightly smaller than those obtained for
restarted GMRES(14) (symbol ×). The norms of the residuals r′k determined by standard GMRES
(symbol ◦) are somewhat smaller for k ≥ 21.
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Fig. 5.6. Orthonormality of the Arnoldi vectors for Example 5.3: (a) ‖Ik − V ∗
k Vk‖2 as a

function of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦). (b) From bottom to
top, ‖Im+1 − V ∗

m−k:kVm−k:k‖2 as a function of k for m= 1, 2, . . . , 5 for Algorithm 4.4.

Algorithm 4.4 to reduce the norm of the residual error slower than standard GMRES,
but faster than restarted GMRES(14).

The reason for the slower convergence of Algorithm 4.4 is the loss of orthonor-
mality of the Arnoldi vectors generated by the algorithm. The latter is illustrated by
Figures 5.8.

Examples 5.3 and 5.4 illustrate that the iterates determined by Algorithm 4.4 may
converge slower to the solution than the iterates determined by standard GMRES.
A reason for this appears to be that the Arnoldi vectors generated by Algorithm 4.4
may be far from orthonormal; see Example 5.4. The loss of orthogonality and its effect
on the convergence of GMRES has received considerable attention in the literature;
see, e.g., [8, 10, 13, 14, 16, 17]. For instance, Simoncini and Szyld [16] recently pointed
out that loss of orthogonality does not prevent a near-optimal rate of convergence,
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Fig. 5.7. Residual norms for Algorithm 4.4 applied to the data of Example 5.3. For comparison,
we show both the norm of the exact residuals ‖b−Axk‖ (symbol �) and the recursive residual norms
|γk| (symbol �), which are of the same size, and smaller than those obtained by restarted GMRES(14)
(symbol ×). The norms of the residuals r′k obtained by the standard GMRES (symbol ◦) are much
smaller for k ≥ 30.
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Fig. 5.8. Orthonormality of the Arnoldi vectors for Example 5.3: (a) ‖Ik − V ∗
k Vk‖2 as a

function of k for Algorithm 4.4 (symbol �) and standard GMRES (symbol ◦). (b) From bottom to
top, ‖Im+1 − V ∗

m−k:kVm−k:k‖2 as a function of k for m= 1, 2, . . . , 5 for Algorithm 4.4.

provided that each new Arnoldi vector generated has a sufficiently large angle with
the space spanned by the already available Arnoldi vectors. Example 5.4 suggests
that the loss of orthogonality also may reduce this angle.

6. Conclusion. Linear systems of equations with a matrix that satisfies (1.1)
with a small value of s arise in a variety of applications. For many, but not all, linear
systems of equations of this kind, Algorithm 4.4 converges like standard GMRES,
but requires less computer storage and arithmetic work. In all our experiments,
Algorithm 4.4 converges faster than restarted GMRES(2s+6), which demands roughly
the same amount of computer storage as Algorithm 4.4.

Acknowledgment. We would like to thank a referee for comments.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

120 BERNHARD BECKERMANN AND LOTHAR REICHEL

REFERENCES

[1] E. L. Allgower and K. Georg, Numerical Continuation Methods, Springer, Berlin, 1990.
[2] G. Arnold, N. Cundy, J. van den Eshof, A. Frommer, S. Krieg, Th. Lippert, and
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squares, and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl., 28 (2006),
pp. 264–284.
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GRAPH CLUSTERING VIA A DISCRETE UNCOUPLING PROCESS∗

STIJN VAN DONGEN†

Abstract. A discrete uncoupling process for finite spaces is introduced, called the Markov Clus-
ter Process or the MCL process. The process is the engine for the graph clustering algorithm called
the MCL algorithm. The MCL process takes a stochastic matrix as input, and then alternates ex-
pansion and inflation, each step defining a stochastic matrix in terms of the previous one. Expansion
corresponds with taking the kth power of a stochastic matrix, where k ∈ N. Inflation corresponds
with a parametrized operator Γr, r ≥ 0, that maps the set of (column) stochastic matrices onto
itself. The image ΓrM is obtained by raising each entry in M to the rth power and rescaling each
column to have sum 1 again. In practice the process converges very fast towards a limit that is in-
variant under both matrix multiplication and inflation, with quadratic convergence around the limit
points. The heuristic behind the process is its expected behavior for (Markov) graphs possessing
cluster structure. The process is typically applied to the matrix of random walks on a given graph
G, and the connected components of (the graph associated with) the process limit generically allow
a clustering interpretation of G. The limit is in general extremely sparse and iterands are sparse in
a weighted sense, implying that the MCL algorithm is very fast and highly scalable. Several math-
ematical properties of the MCL process are established. Most notably, the process (and algorithm)
iterands posses structural properties generalizing the mapping from process limits onto clusterings.
The inflation operator Γr maps the class of matrices that are diagonally similar to a symmetric
matrix onto itself. The phrase diagonally positive semi-definite (dpsd) is used for matrices that are
diagonally similar to a positive semi-definite matrix. For r ∈ N and for M a stochastic dpsd matrix,
the image ΓrM is again dpsd. Determinantal inequalities satisfied by a dpsd matrix M imply a
natural ordering among the diagonal elements of M , generalizing the mapping of process limits onto
clusterings. The spectrum of Γ∞M is of the form {0n−k, 1k}, where k is the number of endclasses of
the ordering associated with M , and n is the dimension of M . This attests to the uncoupling effect
of the inflation operator.

Key words. stochastic uncoupling, graph clustering, Markov graph, Markov matrix, diagonal
similarity, positive semi-definite matrices, circulant matrices
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1. Introduction. The subject of study is a parametrized algebraic process called
the Markov Cluster Process (MCL process), which is the engine of a cluster algorithm
for graphs, accordingly named the MCL algorithm. The algorithm is nothing more
than a shell in which parameters are set, the MCL process is computed, and the result
is interpreted. The process itself is defined on the space of stochastic matrices. Given
a graph G, the algorithm employs the process by applying it to the matrix of random
walks on G.

The MCL algorithm [11, 12] was first applied in the field of protein family de-
tection [18]. In this setting, proteins are nodes in a graph where the edge weights
are derived from BLAST (Basic Local Alignment Search Tool) scores between pro-
tein amino-acid sequences. Following [18], the algorithm has been widely applied in
bioinformatics, in a diversity of settings and applications.
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A number of publications have used MCL for large scale single species or cross-
species protein and gene family analysis, e.g., [15, 16, 28, 38, 52, 60]. Other protein-
related MCL applications in bioinformatics are large scale sequence space analy-
sis [19, 37], hybrid MCL/single-link clustering [29], orthologous groups [41], kinase
proteins [24], secreted proteins [7], eye proteins [39], mobile genetic elements [40],
protein interaction networks [5, 54], and protein function determination [61]. Addi-
tionally, MCL has been applied in corpus linguistics [13, 14, 25], content-based image
retrieval [32], peer-to-peer network analysis [57], and social network analysis [46].

Factors aiding the adoption of the MCL algorithm include (a) It generates well-
balanced flat (nonhierarchic) clusterings. (b) It is intrinsically a bootstrapping method.
Seeding information cannot and need not be supplied, especially not the number of
clusters. (c) It has a natural parameter (inflation) affecting cluster granularity. (d) It
is amenable to sparse graph/matrix implementation techniques, implying good scala-
bility. (e) Mathematical results tie MCL process iterands, the cluster interpretation,
inflation, and the number of clusters together.

The focus of the present work is largely on (e), the mathematical results de-
scribing in a qualitative manner how the MCL process exposes cluster structure in
graphs. Issues of scaling and implementation are discussed, and in two examples
the MCL process and its clustering characteristics are visualized. Relationships with
other mathematical frameworks are established, and several conjectures are made.
Comparison with other clustering approaches fall outside the scope of this exposition.
The field of bioinformatics is very active in this respect, and the reader is referred to
the references given above.

The MCL process is simple to compute and lends itself to drastic scaling by a
regime of pruning, as the limits are in general extremely sparse and the iterands sparse
in a weighted sense. It is convenient to distinguish between the process and the algo-
rithm, in order to separate mathematical issues from such issues as implementation
and scaling (i.e., computing an approximated process in order to gain speed). Sec-
tion 6 contains a succinct discussion of how an MCL implementation can efficiently
compute a slightly perturbed MCL process.

The structure of the article is as follows. The clustering heuristic is briefly intro-
duced in the next section. The MCL process is fully described and the interpretation
of a process limit as a clustering of the input graph is given. This is sufficient to define
the MCL algorithm. A summary is given of some issues concerning convergence and
the interpretation of limits as clusterings. Several matrix excerpts from one partic-
ular process are shown in section 3, including its limit. In section 4 various lemmas
and theorems concerning MCL iterands are given. The process consists of alterna-
tion of two operators, expansion, and inflation. Both operators preserve the class of
stochastic matrices that are diagonally similar to a symmetric matrix. These matrices
are called diagonally symmetric. Several of their properties are listed. If a matrix is
diagonally similar to a positive semi-definite matrix, then it is called a diagonally pos-
itive semi-definite, abbreviated dpsd. Under certain weak conditions many iterands
are guaranteed to be dpsd. Section 5 introduces structure theory for dpsd matrices.
Such a matrix possesses structural properties inducing a canonical mapping from the
matrix onto a directed acyclic graph, generalizing the mapping from MCL limits onto
overlapping clusterings. The structure theory also yields a qualitative statement on
the working of the inflation operator in terms of the matrix spectrum. Implementa-
tion is discussed in section 6, and conclusions, further research, and related research
make up the last section.
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2. Preliminaries. The MCL process consists of alternation of matrix expansion
and matrix inflation, where expansion means taking the power of a matrix using
the usual matrix product, and inflation (denoted Γr) means taking the Hadamard
power with coefficient r of a stochastic matrix and subsequently scaling its columns
to have sum 1 again. The clustering heuristic associated with the process is that a
dense region in a graph corresponds with a node set S for which pairs of elements
in S have the property that there are relatively many higher length paths completely
contained in S itself. By matrix expansion the higher step transition probabilities are
obtained; by matrix inflation large probabilities are promoted, and small probabilities
are demoted. It is to be expected that probabilities that correspond with edges
connecting different dense regions will suffer the most from the process of alternating
expansion and inflation. Indeed, iteration of the two operators leads to a limit that
is meaningful considering the original heuristic.

The inflation operator Γr is defined for arbitrary nonnegative matrices, in a
columnwise manner. This implies that column stochastic matrices will be used rather
than row stochastic matrices, which is merely a matter of preference and convention.
There are no restrictions on the matrix dimensions to fit a square matrix, because this
allows Γr to act on both matrices and vectors. There is no restriction that the input
matrices be stochastic, since it is not strictly necessary, and the extended applicability
is sometimes useful. Following the terminology used in [8] and [27], a nonnegative
matrix is called column allowable if all its columns have at least one nonzero entry.
The next definition prepares for the definition of the MCL process.

Definition 2.1. Denote the operator which raises a square matrix A to the tth
power, by Expt. Thus, ExptA = At.

This definition is put in such general terms because the class of dpsd matrices
(to be introduced later) allows the introduction of fractional matrix powers in a well-
defined way.

Definition 2.2. Let r be a real positive number, and let M ∈ R≥0
m×n be

nonnegative column allowable. The image of M under the parametrized operator Γr

is defined by setting

(ΓrM)pq = (Mpq)
r /

m∑
i=1

(Miq)
r.

In the setting of the MCL process, positive values r have a sensible interpreta-
tion attached to them. Values of r between 0 and 1 increase the homogeneity of the
argument probability vector (matrix), whereas values of r between 1 and ∞ increase
the inhomogeneity. In both cases, the ordering of the probabilities is not disturbed.
Negative values of r invert the ordering, which is not of apparent use. With ⊗ de-
noting the Kronecker product, the identities Expr(A ⊗ B) = Expr(A) ⊗ Expr(B)
and Expr(Exps(A)) = Exprs(A) hold. Similarly, Γr(A ⊗ B) = Γr(A) ⊗ Γr(B)
and Γr(Γs(A)) = Γrs(A) are true.

Definition 2.3. Define Γ∞ by Γ∞M = limr→∞ ΓrM .
This definition is meaningful, and it is easy to derive the structure of Γ∞M .

Each column q of Γ∞M has k nonzero entries equal to 1/k, (k depending on q),
where k is the number of elements that equal maxp Mpq, and the positions of the
nonzero entries in Γ∞M [1, . . . , n|q] correspond with the positions of the maximal
entries in M [1, . . . , n|q]. Following [44], if x denotes a real vector of length n, then
x[1] ≥ x[2] ≥ · · · ≥ x[n] denote the entries of x in decreasing order.
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Definition 2.4. Let x, y be nonnegative vectors of dimension n. The vector y
is said to majorize x, denoted as x ≺ y, if

k∑
i=1

y[i] ≥
k∑

i=1

x[i] k = 1, . . . , n,(2.1)

n∑
i=1

y[i] =

n∑
i=1

x[i].(2.2)

Lemma 2.5. For a stochastic vector x and parameters r, s ∈ R>0, r < s, one has
that Γr(x) ≺ Γs(x).

The proof of this lemma is straightforward [11].
Definition 2.6. An MCL process with input matrix M , where M is a stochastic

matrix, is determined by M and two sequences e(i), r(i), where ei ∈ N, ei > 1 and ri ∈
R, ri ≥ 0. It is written that

(2.3) (M, e(i), r(i)).

Associated with an MCL process, (M, e(i), r(i)) is an infinite sequence of matrices M(i),
where M1 = M , M2i = Expei(M2i−1), and M2i+1 = Γri(M2i), i = 1, . . . ,∞.

It must be stressed that the MCL process has no stochastic interpretation. The
heuristic on which it is grounded uses stochastic terminology, but each MCL pro-
cess (M, e(i), r(i)) is (for varying M) really a rather complex dynamical system based
on the alternation of two operators, expansion and inflation. The fact that expansion
and inflation distribute over the Kronecker yields the following lemma.

Lemma 2.7. The MCL process distributes over the Kronecker product.
Note. In practice, clustering with the MCL algorithm is best done with all

expansion values ei set to two. The reasoning behind this is pragmatic, as inflation
can be used to control the mixing properties of the process, whereas expansion is
computationally costly. Applying (columnwise) pruning in order to scale the process
renders prolonged expansion virtually useless. Nevertheless it seems best to formulate
the MCL process in the general terms of Definition 2.6, as this supplies a natural
framework for questions and conjectures (section 7). The canonical mapping between
graphs with nonnegative weights and nonnegative matrices is given below. In order to
work with column stochastic matrices, an arbitrary choice is made to identify matrix
columns with lists of neighbors.

Definition 2.8. The associated graph of a square nonnegative matrix A of
dimension n is a graph on n nodes labeled {1, . . . , n}, where there is said to be an arc
going from q to p with weight Apq iff Apq > 0.

The following theorem is preparatory to the mapping from nonnegative idempo-
tent matrices to overlapping clusterings in Definition 2.11. Its proof is given in [11]
and can also be derived from the decomposition of nonnegative idempotent matrices
given in [2, p. 65]. It represents a very basic result on the structural properties of
nonnegative idempotent matrices. Theorem 5.4 will show a more general structure to
be present in MCL iterands, so that in the setting of the MCL process Theorem 2.9
becomes a limiting case of Theorem 5.4. It will be shown that for M stochastic dpsd
a finite power of the matrix Γ∞(M) is idempotent (section 5).

Theorem 2.9 (see Theorem 1 in [11, p. 18]). Let M be a nonnegative col-
umn allowable idempotent matrix of dimension n, and let G be its associated graph.
For s, t, nodes in G, write s → t if there is an arc in G from s to t. By definition,
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s → t ⇐⇒ Mts 
= 0. Let α, β, γ be nodes in G. The following implications hold:

(α → β) ∧ (β → γ) =⇒ α → γ,(2.4)

(α → α) ∧ (α → β) =⇒ β → α,(2.5)

α → β =⇒ β → β.(2.6)

The theorem basically states that the graph associated with the matrix consists
for one part of subgraphs that are complete, with all nodes having loops as well.
The other part consists of nodes without loops that, given a complete subgraph, are
connected either to all or to none of the nodes in that subgraph. It is convenient to
introduce the notions of attractor and attractor system. The second is a (maximal)
complete subgraph, and the first is a node in such a subgraph.

Definition 2.10. Let G be the associated graph of a nonnegative column allow-
able idempotent matrix M of dimension n, with nodes labeled 1, . . . , n. The node α is
called an attractor if Mαα 
= 0. If α is an attractor, then the set of nodes reachable
from α is called an attractor system.

By Theorem 2.9, each attractor system in G induces a weighted subgraph in G
that is complete. These subgraphs form the cores of the clustering associated with a
(nonnegative idempotent) matrix M as stated below. An attractor system is simply
extended with all the nodes that reach it.

Definition 2.11. Let M be a nonnegative column allowable idempotent matrix
of dimension n, and let G be its associated graph on the node set V = {1, . . . , n}. Let
Ei, i = 1, . . . , k be the different attractor systems of G. For v ∈ V write v → Ei if there
exists e ∈ Ei with v → e. The (possibly) overlapping clustering C = {C1, . . . , Ck},
associated with M , is defined by

(2.7) Ci = Ei ∪
{
v ∈ V | v → Ei

}
.

Theorem 2.9 implies that v → f for all f ∈ Ei.
The simplest example of a limit matrix inducing overlap is the matrix below,

giving rise to the clustering {1, 3}, {2, 3}:
⎛
⎝1 0 1/2

0 1 1/2
0 0 0

⎞
⎠ .

Combining the previous simple results, it is possible to rewrite each nonnegative
column allowable idempotent matrix M as a form PTAP , where P is a permutation
matrix, and

A =

⎛
⎜⎝

B1 f11 f12 . . . f1l

. . .
.
.
.

.

.

.
.
.
.

.

.

.
Bk fk1 fk2 . . . fkl

0 . . . 0 0 0 . . . 0

⎞
⎟⎠ .

Each matrix Bi is square, has rank one with all columns identical, contains only
positive entries, and there are no other nonzero entries in the corresponding columns
of A. Each matrix Bi corresponds with an attractor system, and k is the number of
resulting clusters. Each fij is a column vector with the same number of (row) entries
as Bi. Either all entries in fij are zero or they are all nonzero, and for each j at
least one fij is nonzero. If the vector fij is nonzero, then it corresponds with a node
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(identified by j) that is in the cluster defined by the attractor system corresponding
with Bi. If fij is nonzero for more than one i, then those i determine clusters that
overlap in the node identified by j.

In practice, cluster overlap is very rare. The phenomenon is inherently unstable,
in the sense that applying the MCL process to a perturbation of a limit matrix that
induces overlap leads the process to converge to a limit no longer inducing overlap.
A node previously in overlap will then be associated with just one of the multiple
clusters it was associated with before [12]. All current evidence suggests that cluster
overlap implies the existence of a graph automorphism of the graph associated with
the input matrix, leaving the overlapping part invariant and mapping the overlapping
clusters onto each other. In the simple example above, the automorphism would send
(1, 2, 3) to (2, 1, 3).

The phenomenon of attractor systems of cardinality greater than one is also un-
stable in nature, but a small perturbation of a matrix limit having such a system
will not change the associated clustering (assuming that the parameter r of Γr is
bounded). The main reason for this is that if J is a stochastic matrix of rank one
and E is a perturbation matrix (with zero column sums) of sufficiently small norm,
then (restricting attention to a special case) Exp2(Γ2(J + E)) is of the form J ′ + E′,
with J ′ stochastic of rank one and the norm of E′ being of order square the norm of E.
Current evidence also suggests that attractor systems of cardinality greater than one
imply the existence of a set of automorphisms by which each of the attractors (of one
system) can be mapped to any of the other. An example is shown in Figure 3.2 for
the graph in Figure 3.1. In this case, the automorphism would leave all nodes in place
except for interchanging 9 and 11.

Assuming that ei equals two and ri is bounded eventually, it is true that the
MCL process converges quadratically in the neighborhood of matrices that (i) are
MCL-invariant, that is, invariant both under expansion (multiplication) and inflation,
and (ii) have in each column one entry equal to 1 and all other entries equal to 0.
This is straightforward (though tedious) to verify—proofs are given in [11]. The issue
is somewhat clouded by the fact that the process may also converge towards a limit
matrix that does not satisfy condition (ii). A small perturbation of such a matrix is
amplified by the inflation operator so that the sequence of iterands departs from it.

The MCL algorithm consists of three steps. First, given an arbitrary input
graph G, loops are added resulting in a graph informally denoted as G+Δ. Some re-
marks on the necessity of this step are made in the next section. How weights are cho-
sen for the loops to be added is the responsibility of the algorithm. Subsequently, an
MCL process is applied to the matrix of random walks associated with G+Δ. Third,
the limit thus computed is interpreted as a clustering according to Definition 2.11.
One can obtain a fast, robust, and well-scaling implementation of the MCL algorithm
at http://micans.org/mcl/, which allows a simple type of parametrization: The ex-
pansion values ei are all set to 2 and the inflation values ri can assume two values,
changing once from the first to the second value.

In general the limit of an MCL process is extremely sparse, as the inflation oper-
ator is a force driving towards sparse columns. MCL iterands tend to be sparse in a
weighted sense, and this supplies the means to scale the MCL algorithm drastically
by incorporating a regime of pruning into the MCL process (cf. section 6).

The natural way to use the MCL process for the purpose of clustering a graph is
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by applying it to the matrix which represents the standard concept of a random walk
on the graph, where loops have been added to the graph. This matrix is obtained as
the incidence matrix multiplied by the diagonal matrix of inverse column (row) sums,
so that the product is column (row) stochastic. If the graph is undirected, then the
resulting stochastic matrix is diagonally similar to a symmetric matrix.

3. Examples.

Example I. In Figure 3.2, four excerpts are given of an MCL process. These are
the input matrix M , the iterand M3 = Γ2M

2, the iterand M5 = Γ2(Γ2M
2·Γ2M

2), and
the stable limit denoted LM . The process consists entirely of alternation of Exp2 and
Γ2. The graph H associated with M is depicted in Figure 3.1. Every node in H has a
loop; these are all left out in the figure. Weights are omitted as well. Note that there
exists a diagonal matrix d such that Md is symmetric. This implies that d−1/2Md1/2

is symmetric and thus the spectrum of M is real. Interpreting LM according to Defi-
nition 2.11 yields the clustering {{1, 6, 7, 10}, {2, 3, 5}, {4, 8, 9, 11, 12}}. It is necessary
to add loops to the nodes before applying MCL in order to prevent a result reflecting
the bipartite characteristics of H. Without adding loops, the resulting MCL pro-
cess limit yields the clustering {{1, 5, 10}, {2, 6, 7}, {3, 4, 8, 9, 11, 12}}. This is in line
with the heuristic underlying the process: The probabilities that are initially boosted
correspond with 2-step paths in H.

1 2 3 4

5

6 7 8 9

10 11 12

1 2 3 4

5

6 7 8 9

10 11 12

Fig. 3.1. On the left a graph H, on the right the graph associated with the limit of an MCL pro-
cess applied to H, loops added to H. Dark circles signify attractors; nodes 9 and 11 form an attractor
system (refer to section 5). Compare with the matrix iterands and limit matrix in Figure 3.2 and
with Figure 3.3, and see the discussion in Example I.

Example II. Figure 3.3 depicts different iterands of an MCL process triggered
by a geometric graph. This graph was first used in [21] as a test case for graph
partitioning. It is shown in the upper left of the figure. Two nodes are connected if
their distance is at most

√
8 Euclidean units. The edge weights were taken inversely

proportional to the Manhattan distance, and loops were added to each node with a
weight equal to the largest weight found in the edges in which it participates. The
matrix of random walks on this graph was input to an MCL process in which the
sequence e(i) assumed the constant 2 everywhere, and the sequence r(i) assumed the
constant 1.3 everywhere.

The other graphs in Figure 3.3 represent a pictorial representation of four MCL
iterands (stochastic matrices) and the limit in the lower right. The degree of shading
of a bond between two nodes indicates the maximum value of the corresponding
transition probabilities taken over the two directions. The darker the bond, the larger
the maximum. The degree of shading of a node indicates the total sum of incoming
transition probabilities. Thus, a dark bond between a white node and a black node
indicates that the maximum transition probability is found in the direction of the
black node, and that the probability attached to the reverse arc is negligible. The
limit graph, depicted in the lower right, contains all necessary information needed for
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.200 0.250 −− −− −− 0.333 0.250 −− −− 0.250 −− −−
0.200 0.250 0.250 −− 0.200 −− −− −− −− −− −− −−
−− 0.250 0.250 0.200 0.200 −− −− −− −− −− −− −−
−− −− 0.250 0.200 −− −− −− 0.200 0.200 −− 0.200 −−
−− 0.250 0.250 −− 0.200 −− 0.250 0.200 −− −− −− −−

0.200 −− −− −− −− 0.333 −− −− −− 0.250 −− −−
0.200 −− −− −− 0.200 −− 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 0.200 −− −− 0.200 0.200 −− 0.200 −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333

0.200 −− −− −− −− 0.333 0.250 −− −− 0.250 −− −−
−− −− −− 0.200 −− −− −− 0.200 0.200 −− 0.200 0.333
−− −− −− −− −− −− −− −− 0.200 −− 0.200 0.333

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.380 0.087 0.027 −− 0.077 0.295 0.201 −− −− 0.320 −− −−
0.047 0.347 0.210 0.017 0.150 0.019 0.066 0.011 −− 0.012 −− −−
0.014 0.210 0.347 0.055 0.150 −− 0.016 0.046 0.009 −− 0.009 −−
−− 0.027 0.087 0.302 0.062 −− −− 0.184 0.143 −− 0.143 0.083

0.058 0.210 0.210 0.055 0.406 −− 0.083 0.046 0.009 0.019 0.009 −−
0.142 0.017 −− −− −− 0.295 0.083 −− −− 0.184 −− −−
0.113 0.069 0.017 −− 0.062 0.097 0.333 0.011 −− 0.147 −− −−
−− 0.017 0.069 0.175 0.049 −− 0.016 0.287 0.143 −− 0.143 0.083
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278

0.246 0.017 −− −− 0.019 0.295 0.201 −− −− 0.320 −− −−
−− −− 0.017 0.175 0.012 −− −− 0.184 0.288 −− 0.288 0.278
−− −− −− 0.044 −− −− −− 0.046 0.120 −− 0.120 0.278

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Γ2M2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.448 0.080 0.023 0.000 0.068 0.426 0.359 0.000 0.000 0.432 0.000 −−
0.018 0.285 0.228 0.007 0.176 0.006 0.033 0.005 0.000 0.007 0.000 0.000
0.005 0.223 0.290 0.022 0.173 0.000 0.010 0.017 0.003 0.001 0.003 0.001
0.000 0.018 0.059 0.222 0.040 0.000 0.001 0.187 0.139 0.000 0.139 0.099
0.027 0.312 0.314 0.028 0.439 0.005 0.054 0.022 0.003 0.010 0.003 0.001
0.116 0.007 0.001 0.000 0.004 0.157 0.085 0.000 −− 0.131 −− −−
0.096 0.040 0.013 0.000 0.037 0.083 0.197 0.001 0.000 0.104 0.000 0.000
0.000 0.012 0.042 0.172 0.029 0.000 0.002 0.198 0.133 0.000 0.133 0.096
0.000 0.001 0.015 0.256 0.009 −− 0.000 0.266 0.326 0.000 0.326 0.346
0.290 0.021 0.002 0.000 0.017 0.323 0.260 0.000 0.000 0.316 0.000 −−
0.000 0.001 0.015 0.256 0.009 −− 0.000 0.266 0.326 0.000 0.326 0.346
−− 0.000 0.001 0.037 0.000 −− 0.000 0.039 0.069 −− 0.069 0.112

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Γ2(Γ2M2 · Γ2M2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000 −− −− −− −− 1.000 1.000 −− −− 1.000 −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− 1.000 1.000 −− 1.000 −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−
−− −− −− 0.500 −− −− −− 0.500 0.500 −− 0.500 0.500
−− −− −− −− −− −− −− −− −− −− −− −−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Limit LM resulting from iterating (Γ2 ◦Exp2) with initial matrix M , which is the matrix of random
walks associated with the graph in Figure 3.1.

Entries marked “−−” are either zero because that is the exact value they assume (this is true for
the first two matrices) or because the computed value fell below the machine precision.

Fig. 3.2. Iteration of (Γ2 ◦ Exp2).
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Geometric input graph Inflation 1.3, MCL iterand 2

Inflation 1.3, MCL iterand 4 Inflation 1.3, MCL iterand 8

Inflation 1.3, MCL iterand 12 Inflation 1.3, MCL limit

Fig. 3.3. Visualization of successive stages of the MCL process applied to the upper left graph,
with ei = 2 and ri = 1.3 for every iteration i (cf. Definition 2.6). The meaning of the grey values
of bonds and nodes are explained in section 3. At most 24 neighbors are shown for each node.
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constructing the MCL-invariant limit matrix. Dark nodes in this graph are attractors.

The examples in Figures 3.3 and 3.2 indicate that the MCL process has remarkable
convergence properties, regarding the structural properties of its iterands. Consider-
ing this evidence, to some extent an analogy is suggested with the normal Markov
process.

Assuming that the associated graph of the input matrix M is strongly connected
and contains at least one loop, it follows by Perron–Frobenius theory that 1 is the
only eigenvalue of M of modulus 1 and that it is simple.

By considering the spectrum of the powers Mk it follows that the normal Markov
process converges towards a rank-one idempotent matrix, having spectrum {0n−1, 1}.
In the example shown in Figure 3.2 the process also converges towards an idempo-
tent limit. The multiplicity of its eigenvalue 1 is 3, however, equaling (of course)
the number of strongly connected components in the associated graph of the limit.
Section 4 will give some insight into the spectral phenomena that play a role in the
MCL process by focusing attention onto two classes of stochastic matrices.

4. Properties of the inflation operator and stochastic dpsd matrices. At
first sight the inflation operator seems hard to get a grasp on mathematically, though
its behavior for vectors is well understood. Lemma 2.5 states that for a stochastic
vector x and parameters r, s ∈ R>0, r < s, one has that Γr(x) ≺ Γs(x), where ≺
denotes the majorization relationship. This implies that the orbit Γrx, (r > 0) is
fairly well understood, since the limiting cases Γrx, r → ∞ and Γrx, r ↓ 0 are also
easily derived. However, majorization results for vectors do not carry over to matrices
in such a way that statements can be made about algebraic properties of two matrices
subject to a columnwise majorization relationship. In [44] this issue is discussed at
length.

To some extent it is possible to give a qualitative account of the behavior of the
inflation operator, using structural properties of the matrices in a particular class pre-
served by inflation. Several preparatory results are derived in the current section. In
the following section simple structure theory is developed, explaining the uncoupling
effect of the inflation operator in qualitative terms.

In general ΓrM can be described in terms of a Hadamard matrix power that
is postmultiplied with a diagonal matrix. For a restricted class of matrices there
is an even stronger connection with the Hadamard product. These are the class of
stochastic diagonally symmetric matrices and a subclass of the latter, the class of
stochastic diagonally positive semi-definite matrices.

The Hadamard (entrywise) product of two matrices A and B that have the same
dimensions is written A◦B and satisfies [A◦B]pq = ApqBpq. The entrywise Hadamard
power with exponent r of a matrix A is written A◦r and satisfies [A◦r]pq = Apq

r.

The concept of diagonal symmetrizability can easily be transferred to complex
matrices, and most of the results in this paper can be derived in that more general
setting. This is not needed in the MCL setting and hence the definitions and results
here are simply stated for real matrices.

Definition 4.1. A square matrix A is called diagonally symmetric if it is diag-
onally similar to a symmetric matrix, that is, if there exists a positive vector x such
that the product Diag(x)

−1
A Diag(x) is symmetric.

The following useful identity is easy to verify.

Lemma 4.2. For a matrix A as in Definition 4.1, the identity Diag(x)
−1

A Diag(x)

= [A ◦AT ]
◦1/2

holds.
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Definition 4.3. A square matrix is called diagonally positive semi-definite if
it is diagonally similar to a positive semi-definite matrix, then it is called diagonally
positive definite if it is diagonally similar to a positive definite matrix. The phrases
are respectively abbreviated as dpsd and dpd.

Remark. If M is diagonally symmetric stochastic, and y is such that M Diag(y)
is symmetric, then My = y; thus y represents the equilibrium distribution of M . In
the theory of Markov chains, a stochastic diagonally symmetric matrix is called time
reversible or said to satisfy the detailed balance condition (see, e.g., [43] and [59]). A
slightly more general definition and different terminology was chosen here. The main
reason is that the term “time reversible” is coupled tightly with the idea of studying
a stochastic chain via (powers of) its associated stochastic matrix, and is also used
for continuous-time Markov chains. The MCL process studied in this article does
not have a straightforward stochastic interpretation, and the relationship between an
input matrix and the subsequent iterands is much more complex. Moreover, it is
natural to introduce the concepts of a matrix being diagonally similar to a positive
(semi-) definite matrix; clinging to “time reversible” in this abstract setting would be
both contrived and unhelpful. The proposed phrases seem appropriate, since several
properties of symmetric and psd matrices remain valid in the more general setting of
diagonally symmetric and dpsd matrices. Lemma 4.4 lists the most important ones,
which are easy to verify. Probably all of these results are known.

In the following, submatrices of a matrix A are written A[u|v], where u denotes
a list of row indices, and v denotes a list of column indices.

Lemma 4.4. Let A be diagonally symmetric of dimension n, let α be a list
of distinct indices in the range 1, . . . , n, and let k and l be different indices in the
range 1, . . . , n. Let x be such that S = Diag(x)

−1
A Diag(x) is symmetric, and

thus A = Diag(x)S Diag(x)
−1

. Let λi be the eigenvalues of A (and S), and let ai be
the diagonal entries of A.

(a) A[α|α] = Diag(x)[α|α] S[α|α] Diag(x)[α|α]−1, in particular, the diagonal
entries of A equal the diagonal entries of S. This implies that the majorization
relationship between eigenvalues and diagonal entries for symmetric matrices
carry over to diagonally symmetric matrices: The spectrum of A majorizes
the vector of diagonal entries of A, translating to the inequalities below:

k∑
i=1

λ[i] ≥
k∑

i=1

a[i] k = 1, . . . , n.

Together with the first equality this implies that diagonally symmetric matrices
satisfy the same interlacing inequalities for bordered matrices as symmetric
matrices do.

(b) If A is dpsd and Akk = 0, then the kth row and the kth column of A are zero.
If A is dpsd and detA[kl|kl] = 0, then row k and row l are proportional, and
column k and column l are proportional.

(c) If A is dpsd, then, for each k ∈ N, there exists a unique dpsd matrix B
such that Bk = A. This matrix is defined by setting B = Diag(x)QΛ1/kQH

Diag(x)
−1

, where QΛQH is a unitary diagonalization of S, Λ is the diagonal
matrix of eigenvalues of S, and Λ1/k is the matrix Λ with each diagonal entry
replaced by its real nonnegative kth root. This implies that for dpsd A, the
fractional power At, t ∈ R≥0, can be defined in a meaningful way.
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(d) If A, B are both of dimension n and diagonally symmetric, dpsd, dpd, then
the Hadamard product A ◦B is diagonally symmetric, dpsd, dpd.

Proof. Most statements are easy to verify. For extensive discussion of the ma-
jorization relationship between diagonal entries and eigenvalues of symmetric (or her-
mitian) matrices, as well as results on interlacing inequalities, see [3, 34, 35]. The
first statement in (b) follows from the fact that principal minors (of dimension 2) are
nonnegative. The second statement can easily be proven by first considering the case
where A is symmetric. The determinant detA[klm|klm] of an extended submatrix
equals zero and rewriting the constituent terms yields proportionality as stated in (b).
The result for dpsd matrices follows trivially. For (c) it is sufficient to use the fact
that QΛ1/kQH is the unique positive semi-definite kth root of S [34, p. 405]. State-

ment (d) follows from the identity (Diag(x)
−1

A Diag(x)) ◦ (Diag(y)
−1

B Diag(y)) =

Diag(x ◦ y)−1
(A ◦B)Diag(x ◦ y) and the fact that the analogous statements for sym-

metric matrices are true—known under the denomination of Schur product theorem
[34, p. 458].

Remark. The two most notable properties that do not generalize from symmetric
matrices to diagonally symmetric matrices are the absence of an orthogonal basis of
eigenvectors for the latter, and the fact that the sum of two diagonally symmetric
matrices is in general not diagonally symmetric as well.

Statements (a) and (b) in Lemma 4.4 are used in associating a directed acyclic
graph with each dpsd matrix in Theorem 5.4. First, the behavior of the inflation
operator on diagonally symmetric and dpsd matrices is described.

Theorem 4.5. Let M be a square column allowable diagonally symmetric matrix
of dimension n, and let Diag(x) be the diagonal matrix with a positive diagonal such

that the matrix S = Diag(x)
−1

M Diag(x) is symmetric, and let r be real. Define the
positive vector z by setting zk = xk

r(
∑

i Mik
r)1/2, and the positive rank-one symmet-

ric matrix T by setting Tkl = 1/(
∑

i Mik
r)1/2(

∑
i Mil

r)1/2. The following statement
holds:

Diag(z)
−1

( ΓrM) Diag(z) = S
◦r ◦ T.

Thus ΓrM is diagonally similar to a symmetric matrix.
Proof. Define the vector t by tk =

∑
i Mik

r. Then

ΓrM = M
◦r

Diag(t)
−1

= (Diag(x) S Diag(x)
−1

)
◦r

Diag(t)
−1

= Diag(x)
◦r

S
◦r

(Diag(x)
◦r

)−1 Diag(t)
−1

= Diag(t)
1/2

Diag(t)
−1/2

Diag(x)
◦r

S
◦r

(Diag(x)
◦r

)−1Diag(t)
−1/2

Diag(t)
−1/2

= (Diag(t)
1/2

Diag(x)
◦r

) (Diag(t)
−1/2

S
◦r

Diag(t)
−1/2

) (Diag(t)
1/2

Diag(x)
◦r

)−1.

Since the matrix Diag(t)
−1/2

S◦rDiag(t)
−1/2

equals S◦r ◦T , the lemma holds.
Corollary 4.6. Let M be square column allowable diagonally symmetric, and

let z, S, and T be as in Theorem 4.5.
(i) The matrix ΓrM is diagonally symmetric for all r ∈ R.
(ii) If M is dpsd, then ΓrM is dpsd for all r ∈ N. If M is dpd, then ΓrM is

dpd for all r ∈ N.
Proof. Statement (i) follows immediately from Theorem 4.5. Statement (ii) fol-

lows from the fact that a Hadamard product of matrices is positive (semi-) definite if
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each of the factors is positive (semi-) definite. Moreover, if at least one of the factors
is positive definite, and none of the other factors has a zero diagonal entry, then the
product is positive definite (see, e.g., [35, p. 309], or [23]). These are basic results in
the theory of Hadamard products, an area now covered by a vast body of literature.
Standard references in this area are [3, 35]. It should be noted that r ∈ N is in general
a necessary condition [35, p. 453].

Theorem 4.7. Let M be diagonally symmetric stochastic, and consider the
MCL process (M, e(i), r(i)).

(i) All iterands of this process have real spectrum.
(ii) If ri = 2 eventually, and ei = 2 eventually, then the iterands of the process

(M, e(i), r(i)) are dpsd eventually.
These statements1 follow from the fact that Exp2 maps diagonally symmetric

matrices onto dpsd matrices and from Corollary 4.6. �

Theorem 4.7 represents a qualitative result on the MCL process. Under fairly
basic assumptions the spectra of the iterands are real and nonnegative. In [11] it was
furthermore proven that the MCL process converges quadratically in the neighbor-
hood of nonnegative MCL-invariant matrices. These combined facts indicate that the
MCL process has a sound mathematical foundation. Still, much less can be said about
the connection between successive iterands than in the case of the discrete Markov
process.

The question now rises whether the MCL process can be further studied aiming
at quantitative results. It was seen that ΓrM , r ∈ N can be described in terms of a
Hadamard product of positive semi-definite matrices relating the symmetric matrices
associated with M and ΓrM (in Theorem 4.5). There are many results on the spectra
of such products. The results are generically in terms of a majorization relationship
such as

k∑
i=1

σi(A ◦B) ≤
k∑

i=1

fi(A)σi(B), k = 1, . . . , n.

Here σi() denotes the i-largest singular value, and fi(A) may stand (among others)
for the i-largest singular value of A, the i-largest diagonal entry of A, the i-largest
Euclidean column length, or the i-largest Euclidean row length. Well-known references
in this field are [3, 35]. Unfortunately such inequalities go the wrong way in a sense.
Since the inflation operator has apparently the ability to press several large eigenvalues
towards 1, what is needed are inequalities of the type

k∑
i=1

σi(A ◦B) ≥ (something nice here).

However, the number of eigenvalues pressed towards 1 by Γr can be any number
including zero (noting that one eigenvalue 1 is always present). Moreover, Γr also
has the ability to press small eigenvalues towards zero. Clearly, one cannot expect to
find inequalities of the “≥” type without assuming additional characteristics of M .
It is shown in the next section that the classic majorization relation formulated in

1Clearly the condition under (ii) can be weakened; it is only necessary that ei is at least one
time even for an index i = k such that ri ∈ N for i ≥ k. However, the assumptions under (ii) can be
viewed as a standard way of enforcing convergence in a setting genuinely differing from the discrete
Markov process.
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Lemma 4.4 (a) between the eigenvalues and diagonal entries of a dpsd matrix, plus a
classification of the diagonal entries of a dpsd matrix, gives useful information on the
relationship between eigenvalues of a stochastic dpsd matrix and its image under Γr.

5. Structure in dpsd matrices. The main objective for the remainder of this
paper is to establish structure theory for the class of dpsd matrices and study the
behavior of Γ∞ using these results. It will be shown that for stochastic dpsd M the
spectrum of the matrix Γ∞ is of the form {0n−k, 1k}, where k is related to a structural
property of M . Throughout this section two symbols are used that are associated with
a dpsd matrix A, namely the symbol � which denotes an arc relation defined on the
indices of A, and the symbol ∼ which denotes an equivalence relation on the indices
of A. It should be clear from the context which matrix they refer to. All results in
this section are stated in terms of columns; the analogous statements in terms of rows
hold as well.

Definition 5.1. Let A be dpsd of dimension n, and let k and l be different
indices in the range 1, . . . , n.

(i) Define the equivalence relation ∼ on the set of indices {1, . . . , n} by k ∼ l ≡
columns k and l of A are scalar multiples of each other via scalars on the
complex unit circle.

(ii) Define the arc relation � on the set of indices {1, . . . , n}, for p 
= q, by q �
p ≡ |Apq| ≥ |Aqq|.

(iii) Let E and F be different equivalence classes in {1, . . . , n}/ ∼. Extend the
definition of � by setting F � E ≡ ∃e ∈ E,∃f ∈ F [f � e]. By definition
of � and ∼, the latter implies that ∀e′ ∈ E,∀f ′ ∈ F [f ′ � e′].

Lemma 5.2. Let A be dpsd of dimension n, and let k and l be distinct indices in
the range 1, . . . , n. Then

l � k ∧ k � l implies k ∼ l.

This follows from Lemma 4.4 (b) and the fact that the assumption implies det
A[kl|kl] = 0. The following lemma prepares for a mapping of dpsd matrices onto
directed acyclic graphs.

Lemma 5.3. Let A be dpsd of dimension n, suppose there exist k distinct
indices pi, i = 1, . . . , k, k > 1, such that p1 � p2 � . . . � pk � p1. Then
p1 ∼ p2 ∼ . . . ∼ pk, and thus all pi, i = 1, . . . , k are contained in the same equivalence
class in {1, . . . , n}/ ∼. Furthermore, if A is real nonnegative, then the subcolumns
A[p1 . . . pk|pi] are a scalar multiple of the all-one vector of length k.

Proof. Without loss of generality, assume 1 � 2 � . . . � k � 1. The following
inequalities hold, where the left-hand side inequalities follow from the inequalities
implied by detA[i i+1] ≥ 0 and i � i + 1,

|Ai i+1| ≤ |Ai+1 i+1| ≤ |Ai+2 i+1|
|Ak−1 k| ≤ |Akk| ≤ |A1k|
|Ak1| ≤ |A11| ≤ |A21|.

Now let x be positive such that xqApq = xpAqp. On the one hand, |Akk| ≤ |A1k|. On
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the other hand,

|Akk| ≥ |Ak−1 k|

= xk−1

xk
|Ak k−1|

≥ xk−1

xk
|Ak−2 k−1|

= xk−1

xk

xk−2

xk−1
|Ak−1 k−2|

. . .

≥ xk−1

xk

xk−2

xk−1
. . . x1

x2
|Ak1|

= x1

xk
|Ak1|

= |A1k|.

This implies that |Ak−1 k| = |Akk| = |A1k| and the identities |Ai−1 i| = |Aii| = |Ai+1 i|
are established by abstracting from the index k. From this it follows that detA[i, i+
1|i, i + 1] = 0, and consequently i ∼ i + 1 for i = 1, . . . , k − 1 by Lemma 5.2. The
identities |Ai−1 i| = |Aii| = |Ai+1 i| also imply the last statement of the lemma.

Lemma 5.2 can now be generalized towards Theorem 5.4.
Theorem 5.4. Let A be dpsd of dimension n.

The arc � defines a directed acyclic graph (DAG) on {1, . . . , n}/ ∼.

Note that the theorem is stated in a columnwise manner. The analogous state-
ment for rows is of course also true. The proof of this theorem follows from Lemma 5.3.

Theorem 5.5. Let M be stochastic dpsd of dimension n. Let D be the directed
graph associated with Γ∞M defined on {1, . . . , n}/ ∼ according to Definition 5.1,
which is acyclic according to Theorem 5.4. Let d be the depth of D, that is, the length
of a longest path in D. Let k be the number of nodes in {1, . . . , n}/ ∼ which do not
have an outgoing arc in D. These nodes correspond with (groups of) indices p for
which Mpp is maximal in column p.

The spectrum of Γ∞M equals {0n−k, 1k}.

The matrix (Γ∞M)d is idempotent.

Proof. For the duration of this proof, write SA for the symmetric matrix to which
a diagonally symmetric matrix A is similar. For the first statement, consider the
identity

S(ΓrM) = [ΓrM ◦ (ΓrM)T ]
◦1/2

given in Lemma 4.2. The matrices ΓrM and SΓrM have the same spectrum. Now,
let r approach infinity. The identity is in the limit not meaningful, since Γ∞M is
not necessarily diagonalizable, and thus the left-hand side may not exist in the sense
that there is no symmetric matrix to which Γ∞M is similar. However, the identity

[spectrum of Γ∞M = spectrum of [Γ∞M ◦ (Γ∞M)T ]
◦1/2

] does remain true, since
the spectrum depends continuously on matrix entries [34, p. 540], and both limits
exist. Thus, it is sufficient to compute the spectrum of S∞, which is defined as

S∞ = [Γ∞M ◦ (Γ∞M)T ]
◦1/2

.
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Note that the nonzero entries of Γ∞M correspond with the entries of M which are
maximal in their column. Whenever [Γ∞M ]kl 
= 0 and [Γ∞M ]lk 
= 0, it is true
that k � l and l � k. Now consider a column q in S∞, and assume that all nonzero
entries in column q of S∞ are enumerated S∞piq 
= 0, for i = 1, . . . , t. It follows
that q � pi ∧ pi � q for all i, thus q ∼ pi for all i, and S∞[p1 . . . pt|p1 . . . pt] is a
positive submatrix equal to t−1Jt, where Jt denotes the all-one matrix of dimension
t. This implies that S∞ is block diagonal (after permutation), with each block cor-
responding with an equivalence class in {1, . . . , n}/ ∼ which has no outgoing arc in
the � arc relation. Each block contributes an eigenvalue 1 to the spectrum of S∞.
Since the spectrum of S∞ equals the spectrum of Γ∞M , and there are assumed to
be k equivalence classes with the stated properties, this proves the first statement.

A second approach proves both the first and the second statement. Consider Γ∞M
and the DAG D associated with it. Each index i for which [Γ∞M ]ii 
= 0 must be
in an endclass of D because Γ∞ annihilates all but the maximal elements in each
column. Moreover, the nonzero diagonal block (possibly 1-dimensional) associated
with such an index is idempotent. This implies that Γ∞M can be decomposed into
an idempotent part (consisting of the diagonal block) and a nilpotent part (the rest).
Some calculations now verify that (Γ∞M)d is idempotent, where d is the depth of
D.

Theorems 5.4 and 5.5 shed light on the structure and the spectral properties of
the iterands of the MCL process. Theorem 5.4 also gives the means to associate an
overlapping clustering with each dpsd iterand of an MCL process, simply by defining
the endnodes of the associated DAG as the unique cores of the clustering, and adding
to each set of attractors all nodes that reach it.

Consider a discrete Markov process with dpsd input matrix M . Then the dif-
ference Mk − M l, k < l, is again dpsd (they have the same symmetrizing diagonal
matrix, and the spectrum of Mk −M l is nonnegative). From this it follows that all
sequences of diagonal entries M (k)

ii, for fixed diagonal position ii, are nonincreasing.
In contrast, given a stochastic dpsd matrix M , the Γr operator, r > 1, (in the setting
of dpsd matrices) always increases some diagonal entries (at least one). The sum of
the increased diagonal entries, of which there are at least k if k is the number of
endnodes of the DAG associated with both M and ΓrM , is a lower bound for the
sum of the k largest eigenvalues of ΓrM (see Lemma 4.4 (a)).

The MCL process converges quadratically in the neighborhood of the MCL-
invariant stable states. Proving (near-) global convergence seems to be a difficult
task. I do believe, however, that a strong result will hold, where a provision has to be
made for a special class of matrices, here dubbed flip-flop matrices. A flip-flop ma-
trix M satisfies Γ2M = M1/2. There exists a family of positive semi-definite flip-flop
matrices of the form aIn + (1 − a)n−1Jn, n ∈ N [12]. The simplest example is found
in the case n = 3, where substituting a = 1/2 in the form yields a flip-flop matrix.
For such a matrix it is relatively easy to prove that a small perturbation lands it on a
trajectory away from the flip-flop state (with respect to alternation of Exp2 and Γ2)
[12]. It can be noted that flip-flop matrices and circulant matrices in general form
sets that are invariant under MCL iterations.

Conjecture 1. All MCL processes (M, e(i), r(i)), with ei = 2, ri = 2 eventually,
converge towards an MCL-invariant limit, provided M is irreducible, stochastic, dpsd,
and cannot be decomposed as a Kronecker product of matrices in which one of the
terms is a flip-flop matrix.

The requirement of irreducibility is present in order to exclude matrices that are
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a direct sum of smaller-dimensional matrices.

6. Implementation and scalability. A mature C implementation of the MCL
algorithm is available from http://micans.org/mcl/. This implementation is used in all
of the references cited in the introduction. It scales subquadratically given conditions
set forth below.

A fast implementation requires that the requirement of exact computation is
dropped. For any interesting class of real-life graphs scaling towards tens of thou-
sands of nodes and beyond, exact computation requires O(N2) memory resources
and O(N3) time steps, where N is the number of nodes in the input graph, reflecting
the basic costs of matrix multiplication. Even for sparse graphs, MCL iterands will fill
rapidly as interesting graphs tend to be well-connected and have only few connected
components.

The key observation is that in the presence of cluster structure, columns of MCL
iterands generally possess a very skewed (weight) distribution of entries. The majority
of the stochastic mass of any column is contained in a minority of the total set of
nonzero entries (of that column), as inflation keeps the leveling power of expansion
(multiplication) in check. In the MCL process limits, the matrix columns generally
are extremely skewed, with a single nonzero entry per column (equaling one). This
implies that MCL iterands never stray very far from the skewed weight distribution
just described, and it suggests a way to compute a perturbed process that is tractable.
That is to simply throw away some of the smallest entries, preferably adding to only
a small percentage of the column weight, and rescale the remaining entries to have
sum one again. This is the setup in the implementation described here.

The implementation uses a standard sparse matrix implementation where only
nonzero entries are stored in arrays representing stochastic matrix columns (known
as compressed column or column-major storage). During matrix multiplication, each
new column is computed separately. First, the new column is computed exactly and
nothing is disregarded. Then, the smallest entries are removed in a two-stage process
where first entries smaller than a fixed threshold are removed, and then entries are
recovered if the threshold turns out to be too severe, or more entries are removed
if the threshold turns out to be insufficiently severe. The selection and recovery of
entries is efficiently done using max and min heaps. The final assembly of entries is
rescaled to have sum one. The implementation tracks how much mass is kept for each
column during each iteration, and extensively reports on pruning characteristics.

This procedure has not yet been subjected to numerical analysis. The task ap-
pears to be nontrivial if a relationship with the effect on process limits is to be
established, due to the general difficulties in analyzing the (nonlinear) MCL process.
However, experiments on smaller graphs (with up to thousands of nodes) that allow
exact computation indicate that perturbing the process in this manner has very minor
impact on the resulting clusterings. The pruning reports in the setting of protein fam-
ily analysis indicate rather limited pruning of stochastic mass. Additionally, nodes
requiring severe pruning can be pruned in advance from the graph to allow for a more
precise computation. In this respect, data preprocessing may aid MCL the same way
it aids approaches to other large scale computational challenges.

Typically for large graphs of several hundreds of thousands of nodes, a maxi-
mum K of inbetween 1000−2000 entries per column is kept. Newly computed columns
may contain a number of nonzero entries L amounting to tens of thousands, and select-
ing the largest K entries from those L using threshold pruning and selection/recovery
with min/max heaps has time requirements of order O(L log(K)).
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7. Conclusions, further research, and related research. The MCL process
presented here appears to be both of practical and mathematical interest. A clear re-
lationship was established between dpsd matrices, a DAG (defined on indices column
or rowwise) that can be associated with every such matrix (Theorem 5.4), and the ef-
fect of the inflation operator on column stochastic dpsd matrices (Theorem 5.5). The
DAG defined on column indices of dpsd matrices generalizes the mapping of nonneg-
ative MCL-invariant matrices onto overlapping clusterings, and allows the association
of an overlapping clustering with each dpsd matrix. In the MCL process, the inflation
step effectively strengthens the associated DAG structure, the expansion step may
change it. Many interesting and difficult questions remain. A worthy long standing
goal is to prove or disprove Conjecture 1. Two more conjectures are made after the
following list of objectives.

(i) For a fixed MCL process (·, e(i), r(i)), what can be said about the basins of
attraction of the MCL process. Are they connected?

(ii) What can be said about the union of all basins of attraction for all limits
corresponding with the same overlapping clustering (i.e., differing only in the
distribution of attractors)?

(iii) Can the set of limits reachable from a fixed nonnegative matrix M for all
MCL processes (M, e(i), r(i)) be characterized? Can it be related to a struc-
tural property of M?

(iv) Given a node set I = {1, . . . , n} and two directed acyclic graphs D1 and D2

defined on I, under what conditions on D1 and D2 does there exist a dpsd
matrix M such that the DAGs associated with M according to Theorem 5.4,
via rows and columns, respectively, equals D1 and D2? What if M is also
required to be column stochastic?

(v) Under what conditions do the clusters in the cluster interpretation of the
limit of a convergent MCL process (M, e(i), r(i)) correspond with connected
subgraphs in the associated graph of M?

(vi) For M dpsd, in which ways can the DAG associated with M2 be related to
the DAG associated with M?

(vii) Is it possible to specify a subclass S of the stochastic dpsd matrices and
a subset R′ of the reals larger than N, such that ΓrM is in S if r ∈ R′

and M ∈ S?

Remark. The following is a relaxation of (iv): Given any DAG D is there a sym-
metric positive semi-definite matrix S such that D is the DAG associated with S (via
either columns or rows)? This is easily answered in the affirmative via a constructive
and inductive argument, working backwards from sinks to sources, at each step bor-
dering the previously obtained matrix with zeros and adding a suitably constructed
rank-one matrix.

Remark. There is no obvious nontrivial hypothesis regarding item (vi), unless
such a hypothesis takes quantitative properties of M into account. This is because the
breaking up of strongly connected components that can be witnessed in the MCL pro-
cess is always reversible—uncoupling can only happen in the limit. With respect to
(v), I conjecture the following.

Conjecture 2. Given a clustering C associated with a limit of an MCL process
with dpsd input matrix M , its clusters correspond with subsets of the node set of the
associated graph of M that induce connected subgraphs in M .

Next, consider an MCL process (M, e(i)
c
= 2, r(i)

c
= 2), with M dpsd, that

converges towards an MCL-invariant matrix L, and let G be the associated graph
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of M . The observations in section 2 suggest the following conjecture. Note that a
graph automorphism of G implies the existence of a permutation matrix P such that
M = PMPT .

Conjecture 3. Each attractor system in L implies that for any pair of ele-
ments (k, l) in the attractor system there is a graph automorphism of G mapping
k onto l.

Each instance of two overlapping clusters in L implies the existence of a nontrivial
graph automorphism of G, leaving the overlapping part of the two clusters invariant
and mapping the remaining part of one of them onto the remaining part of the other.

There are several lines of research that may inspire answers to the questions
posed here. However, for none of them the connection seems so strong that existing
theorems can immediately be applied. The main challenge is to further develop the
framework in which the interplay of Γr and Exps can be studied. Hadamard-Schur
theory was discussed in section 4. Perron-Frobenius theory, graph partitioning by
eigenvectors (e.g., [55] and [56]), and work regarding the second largest eigenvalue of
a graph (e.g., [1] and [9]), are a natural source of inspiration, and so is the theory
of Perron complementation and stochastic complementation as introduced by Meyer
([47] and [48]). There are also papers that address the topic of the structure of
matrices which have the subdominant eigenvalue close to the dominant eigenvalue ([30]
and [53]). It should be noted that in the former paper matrices are studied that do
not have nonnegative spectrum. In the setting of dpsd matrices, much stronger results
can be expected to hold regarding the relationship between uncoupling measures and
spectrum. The literature on the subject of diagonal similarity does not seem to
be of immediate further use, as it is often focused on scaling problems (e.g., [17]
and [33]). For the study of flip-flop equilibrium states the many results on circulant
matrices are likely to be valuable, for example the monograph [10], and the work on
group majorization in the setting of circulant matrices in [26]. It may also be fruitful
to investigate the relationship with Hilbert’s distance and the contraction ratio for
positive matrices, as studied in [4, 6, 8, 27, 58].
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A DIVIDE-AND-CONQUER METHOD FOR THE TAKAGI
FACTORIZATION∗
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Abstract. This paper presents a divide-and-conquer method for computing the symmetric sin-
gular value decomposition, or Takagi factorization, of a complex symmetric and tridiagonal matrix.
An analysis of accuracy shows that our method produces accurate Takagi values and orthogonal Tak-
agi vectors. Our preliminary numerical experiments have confirmed our analysis and demonstrated
that our divide-and-conquer method is much more efficient than the implicit QR method even for
moderately large matrices.
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1. Introduction. The Takagi factorization of a complex symmetric matrix A
can be written as [7]

A = V ΣV T ,

where V is a unitary matrix, V T is the transpose of V , and Σ is a nonnegative diagonal
matrix. The columns of V are called the Takagi vectors of A and the diagonal elements
of Σ are its Takagi values. Since V T = V̄ H , where V̄ denotes the complex conjugate
of V , the Takagi factorization is a symmetric form of the singular value decomposition
(SVD); but there are differences. A pair of left-right singular vectors are unique up to
a complex scaling factor with unit modulus, while the Takagi vectors are unique up to
a sign change. Therefore, if vi is a Takagi vector, then (vi, v̄i) is a pair of left-right
singular vectors, but a left singular vector is not necessarily a Takagi vector; see an
example below.

Similar to the computation of the SVD, a standard algorithm for computing
the Takagi factorization consists of two stages. The first stage reduces a complex
symmetric matrix A of order n to a complex symmetric tridiagonal matrix:

(1) A = PTPT ≡ P

⎡
⎢⎢⎢⎢⎣

a1 b1 0

b1
. . .

. . .

. . .
. . . bn−1

0 bn−1 an

⎤
⎥⎥⎥⎥⎦PT ,

where P is a unitary matrix of order n and T is tridiagonal. For example, the Lanczos
tridiagonalization method with partial orthogonalization [9, 12] can be used. The
second stage computes the Takagi factorization T = QΣQT of the complex symmetric
tridiagonal T . Combining the two stages, we have

A = P (QΣQT )PT = V ΣV T ,
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where V = PQ.
In this paper, we focus on the computation of the Takagi factorization of the com-

plex symmetric tridiagonal T using the divide-and-conquer method based on rank-one
tearing of TTH . It is known that the divide-and-conquer method is one of the most
efficient methods for computing the eigenvalues and eigenvectors of a large, normally
of order larger than dozens, Hermitian tridiagonal matrix [3]. Apparently, the Takagi
vectors of T—that is, the columns of Q—are the eigenvectors of the positive semidef-
inite Hermitian matrix TTH , since TTH = QΣQT Q̄ΣQH = QΣ2QH . However, an
eigenvector of TTH may not be a Takagi vector of T . For example, let

T =

[
1 i
i −1

]
, where i =

√
−1;

then

TTH =

[ √
2

4 +
√

6
4 i −

√
2

2

−
√

6
4 +

√
2

4 i
√

2
2 i

] [
4 0
0 0

][ √
2

4 −
√

6
4 i −

√
6

4 −
√

2
4 i

−
√

2
2 −

√
2

2 i

]

is an eigenvalue decomposition of TTH . Using the algorithm in [10], we can obtain
the Takagi factorization

T = QΣQT =

[
−

√
2

2
1
2 + 1

2 i

−
√

2
2 i 1

2 − 1
2 i

] [
2 0
0 0

] [
−

√
2

2 −
√

2
2 i

1
2 + 1

2 i
1
2 − 1

2 i

]
.

In fact, it is shown in [7, Corollary 4.4.5] that if A is complex symmetric and the
eigenvalues of AAH are distinct, and if AAH = UΣ2UH , then there exists a diagonal
matrix D = diag(eiθ1 , . . . , eiθn) with real θi such that A = V ΣV T with V = UD.
The diagonal entries of D are determined by the relation AŪ = UΣD2. In the above
example, eiθ1 = −1/2 +

√
3 i/2 and eiθ2 = −

√
2/2 −

√
2 i/2. However, if σ2

i is a
multiple eigenvalue of AAH , then, following the proof of Theorem 4.4.3 in [7], we can
construct the Takagi vector vi corresponding to the singular value σi of A from the
eigenvector ui corresponding to σ2

i using

vi = αi(Aūi + σiui),

where αi = 1/‖Aūi + σiui‖2 is the normalization factor. The details of the transfor-
mation will be described in section 3.

The basic idea behind our method is to apply the divide-and-conquer method to
TTH to compute its eigenvectors and eigenvalues. The square roots of the eigenvalues
of TTH are the Takagi values of T . Since an eigenvector of TTH may not be a Takagi
vector of T , we then transform the eigenvectors of TTH into the Takagi vectors of T .
However, explicitly computing TTH is too expensive and also destroys the tridiagonal
structure of T . We will introduce an implicit method for computing the eigenvalue
decomposition of TTH .

The rest of this paper is organized as follows. Section 2 describes a divide-and-
conquer method for computing the eigenvalue decomposition of TTH without explic-
itly forming TTH . In section 3, we propose a method for transforming the eigenvectors
of TTH into the Takagi vectors of T . We analyze the sensitivity of the Takagi vectors
of T in section 4. Finally, our preliminary numerical experiments are demonstrated
in section 5 to show the stability, accuracy, and efficiency of our algorithm.
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2. Divide-and-conquer scheme. Let the Takagi factorization of the complex
symmetric tridiagonal matrix T in (1) be

QHTQ̄ = Σ = diag(σ1, . . . , σn) or T = QΣQT .

In the first step, we tear the tridiagonal matrix T into two tridiagonal submatrices of
half size. For simplicity, we assume that n is a power of 2 and m = n/2; then

(2) T =

[
T1 bmemeT1

bme1e
T
m T2

]
,

where

T1 =

⎡
⎢⎢⎢⎢⎣

a1 b1 0

b1
. . .

. . .

. . .
. . . bm−1

0 bm−1 am

⎤
⎥⎥⎥⎥⎦ , T2 =

⎡
⎢⎢⎢⎢⎣

am+1 bm+1 0

bm+1
. . .

. . .

. . .
. . . bn−1

0 bn−1 an

⎤
⎥⎥⎥⎥⎦ ,

and e1 and em are unit vectors, [1, 0, . . . , 0]T and [0, . . . , 0, 1]T , respectively. In this
section, we present a divide-and-conquer method for computing the eigenvalue de-
composition of TTH given the eigenvalue decompositions of T1T

H
1 and T2T

H
2 . Our

method is based on the rank-one modification of symmetric eigenvalue decomposition.

2.1. Dividing the matrix. We first establish the relations between the eigen-
values and eigenvectors of TiT

H
i , i = 1, 2, and those of TTH as follows. From (2), we

get

TTH =

[
T1 bmemeT1

bme1e
T
m T2

] [
TH

1 b̄memeT1
b̄me1e

T
m TH

2

]

=

[
T1T

H
1 + |bm|2emeTm bmemeT1 T

H
2 + b̄mT1emeT1

b̄mT2e1e
T
m + bme1e

T
mTH

1 T2T
H
2 + |bm|2e1e

T
1

]

=

[
T1T

H
1 0

0 T2T
H
2

]
+

[
|bm|2emeTm bmemeT1 T

H
2

b̄mT2e1e
T
m 0

]

+

[
0 b̄mT1emeT1

bme1e
T
mTH

1 |bm|2e1e
T
1

]

=

[
T1T

H
1 0

0 T2(Im − e1e
T
1 )TH

2

]
+

[
bmem
T2e1

] [
b̄meTm eT1 T

H
2

]

+

[
0 b̄mT1emeT1

bme1e
T
mTH

1 |bm|2e1e
T
1

]

=

[
T1(Im − emeTm)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]
+

[
bmem
T2e1

] [
b̄meTm eT1 T

H
2

]

+

[
T1em
bme1

] [
eTmTH

1 b̄meT1
]

=

[
T1(Im − emeTm)TH

1 0
0 T2(Im − e1e

T
1 )TH

2

]
+ z1z

H
1 + z2z

H
2 ,(3)
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where

z1 =

[
bmem
T2e1

]
and z2 =

[
T1em
bme1

]
.

From (3), if the eigenvalue decompositions

(4) T1T
H
1 = U1Σ

2
1U

H
1 and T2T

H
2 = U2Σ

2
2U

H
2

of the positive semidefinite Hermitian matrices T1T
H
1 and T2T

H
2 are available, then

we can find the eigenvalue decomposition of TTH by four rank-one modifications.
Thus, if the Takagi factorizations of T1 and T2 are available, then we can compute
the Takagi values of T and the eigenvectors of TTH by four rank-one modifications.
Later in section 3, we will show how to transform the eigenvectors into the Takagi
vectors.

Now, we discuss the rank-one modification. Cuppen [2, Theorem 2.1] character-
izes the eigenvalues and eigenvectors of the real symmetric rank-one modification. We
generalize it to the complex case. The proof is analogous to the one in [2], so it is
omitted.

Theorem 2.1. Suppose D2 is a real diagonal matrix diag(d2
1, . . . , d

2
n), where

d2
1 > d2

2 > · · · > d2
n, z ∈ Cn is a vector with no zero entries, and ρ > 0 a real scalar;

then the eigenvalues of the matrix D2 + ρzzH are the n roots δ2
1 > δ2

2 > · · · > δ2
n of

the rational function

(5) w(δ2) = 1 + ρzH(D2 − δ2I)−1z = 1 + ρ

n∑
j=1

|zj |2
d2
j − δ2

.

The corresponding normalized eigenvectors, g1, g2, . . . , gn of D2 + ρzzH are given
by

(6) gj = (D2 − δ2
j I)

−1z/‖(D2 − δ2
j I)

−1z‖2,

and d2
j strictly separate the eigenvalues δ2

j :

d2
n < δ2

n < d2
n−1 < δ2

n−1 < · · · < d2
1 < δ2

1 < d2
1 + ρzHz.

Applying the above theorem, we can compute the eigenvalue decomposition of
TTH from those in (4) via four rank-one modifications. Specifically, suppose that the
eigenvalue decomposition T1T

H
1 = U1Σ

2
1U

H
1 in (4) is available; then

T1(Im − emeTm)TH
1 = T1T

H
1 − T1emeTmTH

1

= U1(Σ
2
1 − (UH

1 T1em)(UH
1 T1em)H)UH

1 .

Applying Theorem 2.1 to −Σ2
1 + (UH

1 T1em)(UH
1 T1em)H , we obtain the eigenvalue

decomposition of T1T
H
1 − T1emeTmTH

1 . Similarly, the eigenvalue decomposition of
T2T

H
2 −T2e1e

T
1 T

H
2 can be obtained from T2T

H
2 = U2Σ

2
2U

H
2 by applying Theorem 2.1.

Thus, we suppose

(7) T1T
H
1 − T1emeTmTH

1 = Û1Σ̂
2
1Û

H
1 and T2T

H
2 − T2e1e

T
1 T

H
2 = Û2Σ̂

2
2Û

H
2 .

Applying the above decompositions to (3), we have

TTH =[
Û1

Û2

]([
Σ̂2

1

Σ̂2
2

]
+

[
û1

û2

] [
û1

û2

]H
+

[
v̂1

v̂2

] [
v̂1

v̂2

]H)[
Û1

Û2

]H
,(8)
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where û1 = bmÛH
1 em, û2 = ÛH

2 T2e1, v̂1 = Û1
H
T1em, and v̂2 = bmÛH

2 e1. This
shows that the eigenvalue decomposition of TTH can be obtained by two more rank-
one modifications.

The numerical computation of the rank-one modification, i.e., the roots of the
rational function (5) and the eigenvectors (6) will be treated in section 4.

2.2. Deflation. In this subsection, we remove the assumptions of distinctiveness
of the diagonal entries di and no zero entries in the modification vector z by applying
the deflation technique given in [14]. We first consider the case when z has zero
entries. It can be easily verified that (d2

i , ei) is an eigenpair of D2 + ρzzH if zi = 0.
In this case, the problem can be deflated by one for each zero entry in z. Next, we
consider the case when there are two equal diagonal elements in D2, say d2

i = d2
j . Let

P be a Givens rotation such that

P

[
zi
zj

]
=

[
∗
0

]
;

then

P

([
d2
i 0
0 d2

j

]
+

[
zi
zj

] [
zi
zj

]H)
PH =

[
d2
i 0
0 d2

j

]
+

[
∗
0

] [
∗
0

]H
.

Thus, when d2
i = d2

j for some i �= j, we can assume zi = 0 or zj = 0. So, the case of
equal diagonal elements in D is changed to the case of zero entries in z.

Due to the rounding errors, we regard two elements d2
i and d2

j equal if the differ-
ence between them is less than a predetermined tolerance tol. How do we determine
the tolerance? In our deflation procedure, when d2

i and d2
j are numerically equal, we

find a Givens rotation to transform [zi, zj ]
T into [∗, 0]T . Let c = z̄i/

√
|zi|2 + |zj |2 and

s = −z̄j/
√
|zi|2 + |zj |2; then

[
c −s
s̄ c̄

] [
d2
i

d2
j

] [
c̄ s

−s̄ c

]
=

[
d2
i

d2
j

]
+ E,

where

E = (d2
i − d2

j )

[
−|s|2 cs
c̄s̄ |s|2

]
.

We set the tolerance tol so that ‖E‖F ≤ ε ‖diag(d2
i , d

2
j )‖F when |d2

i −d2
j | ≤ tol, where

ε is the machine precision. Taking the Frobenius norm on E and diag(d2
i , d

2
j ), we get

‖E‖F =
√

2 |s| |d2
i − d2

j | and ‖diag(d2
i , d

2
j )‖F ≤

√
2 d2

max,

where dmax = max(di, dj). Thus, we set the tolerance

tol =
d2
max

|s| ε.

3. Takagi factorization. As described in the previous section, given the Takagi
factorizations of T1 and T2 in (2), we can compute the eigenvalue decomposition
TTH = UΣ2UH through four rank-one modifications. Let T = QΣQT be the Takagi
factorization of T . It is obvious that the Takagi values of T are the square roots of
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the eigenvalues of TTH . It then remains to convert the eigenvectors of TTH into the
Takagi vectors of T . Specifically, given an eigenvector ui of TTH , we want to convert
it into a vector qi satisfying T q̄i = σiqi. First, in the case when the eigenvalues are
distinct, the eigenvectors of TTH are uniquely defined up to a scaling factor with
unit modulus, which implies that the Takagi vector qi is a scalar multiple of the
corresponding eigenvector ui. Let T ūi = ξσiui for some scalar ξ such that |ξ| = 1,
denote ξ = e2iφ and define

(9) qi ≡ eiφui.

Then

T q̄i = e−iφT ūi = e−iφe2iφσiui = eiφσie
−iφqi = σiqi

as desired. Specifically, ξ can be obtained by ξ = (uH
i T ūi)/σi if σi �= 0; otherwise

ξ = 1.
Next, in the case of multiple eigenvalues, T ūi may not equal ξσiui. We construct

(10) qi = αi(T ūi + σiui),

where αi = 1/‖T ūi + σiui‖2 is the normalization factor. Then

T q̄i = αiT (T ūi + σiui) = αi(T T̄ui + σiT ūi) = αi(σ
2
i ui + σiT ūi) = σiqi.

Finally, we check the orthogonality of the Takagi vectors of T converted from
the eigenvectors of TTH . It is obvious that the orthogonality is maintained among
the Takagi vectors corresponding to distinct Takagi values because of the orthogo-
nality of the eigenvectors corresponding to distinct eigenvalues. Now, assume that
qi, . . . ,qi+k−1 are the Takagi vectors corresponding to a multiple Takagi value σi

of multiplicity k > 1. The construction of qi shows that the subspace spanned by
qi, . . . ,qi+k−1 is the same as the one spanned by ui, . . . ,ui+k−1, since qi, . . . ,qi+k−1

are the eigenvectors associated with σ2
i . Thus, qi+t (t = 0, . . . , k − 1) are orthogonal

to qj , the Takagi vector corresponding to σj , if σj �= σi. However, the Takagi vec-
tors corresponding to the equal Takagi values may lose their orthogonality. So, the
modified Gram–Schmidt orthogonalization is applied to these vectors to restore the
orthogonality. Suppose that qi+t is one of the Takagi vectors corresponding to σi com-
puted from (10), then we orthogonalize it against the previous t vectors qi, . . . ,qi+t−1

using the modified Gram–Schmidt method.
Now, we give the divide-and-conquer algorithm for computing the Takagi factor-

ization of a complex symmetric tridiagonal matrix.
Algorithm 3.1. Given a complex symmetric and tridiagonal matrix T , this

algorithm computes the Takagi factorization T = QΣQT . There are two stages in this
algorithm. The first stage computes the eigenvalue decomposition TTH = UΣ2UH ;
the second stage computes the Takagi vectors qi of T from the eigenvectors ui of TTH .

1. Partition T as (2). If T1 and T2 are small enough, then directly compute the
eigenvalue decompositions

T1T
H
1 = U1Σ1U

H
1 and T2T

H
2 = U2Σ2U

H
2 .

If T1 and T2 are large, apply this algorithm to T1 and T2.
2. Apply the deflation and the rank-one modification Theorem 2.1 to T1T

H
1 −

T1emeTmTH
1 and T2T

H
2 −T2e1e

T
1 T

H
2 to obtain their eigenvalue decompositions

(7). Thus, TTH has the form (8).
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3. Compute the eigenvalue decomposition of TTH via two rank-one modifica-
tions using the deflation and Theorem 2.1.

4. The Takagi values of T are the square roots of the eigenvalues of TTH .
5. For a single Takagi value, its corresponding Takagi vector qi is computed

using (9); for a multiple Takagi value, its Takagi vector qi is computed using
(10) and then orthogonalized against the previously computed Takagi vec-
tors corresponding to the same Takagi value by the modified Gram–Schmidt
orthogonalization.

Finally, we present a complexity comparison between the divide-and-conquer
method and the implicit QR method. Let t(n) be the number of flops required by the
divide-and-conquer method, then

t(n) = 2t(n/2) for the two small submatrices T1 and T2

+ O(n2) find the eignevalues and eigenvectors of D + ρzzH

+ 2.25cn3 update U.

Thus, updating U is the major cost in our divide-and-conquer method. Ignoring the
O(n2) terms, we get t(n) ≈ 3cn3. The constant c represents the deflation and is
much smaller than one in practice [3]. In comparison, the implicit QR method in
[10] requires about 6n3 flops. Hence, our divide-and-conquer method is more efficient
than the implicit QR method.

4. Orthogonality of Takagi vectors. In the previous section, we presented
a divide-and-conquer algorithm for computing the Takagi factorization of T . It is
based on the rank-one update of the symmetric eigenvalue decomposition. Due to the
rounding errors, the orthogonality of the eigenvectors computed by Theorem 2.1 may
be lost. In this section, we present an analysis of the orthogonality of the computed
eigenvectors and propose techniques for assuring good orthogonality. For simplicity,
we assume that the given matrix in the rank-one modification is already deflated.

First, we derive a formula for the eigenvectors gj in Theorem 2.1. Differentiating
both sides of the function w(t) in (5) with respect to t, we get

‖(D2 − δ2I)−1z‖2
2 =

n∑
j=1

|zj |2
(d2

j − δ2)2
= ρ−1|w′(δ2)|.

Then (6) can be rewritten as

(11) gj =

[
z1

d2
1 − δ2

j

,
z2

d2
2 − δ2

j

, . . . ,
zn

d2
n − δ2

j

] √
ρ√

w′(δ2
j )
.

Let δ̂2
i be a computed root of w in (5). In the following, by extending the results

in [8], we show that if the relative error in d2
j − δ̂2

i is small for all i and j, then the
computed eigenvectors gi have good orthogonality.

Theorem 4.1. Denote δ̂2
i and δ̂2

k as the computed roots of w in (5). Let the

relative errors in d2
j − δ̂2

i and d2
j − δ̂2

k be θi and θk, respectively, that is,

d2
j − δ̂2

i = (d2
j − δ2

i )(1 + θi) and d2
j − δ̂2

k = (d2
j − δ2

k)(1 + θk),

and |θi|, |θk| ≤ τ 
 1 for all j, then

|ĝH
i ĝk| = |gH

i Egk| ≤ τ(2 + τ)

(
1 + τ

1 − τ

)2

,
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where ĝi and ĝk are computed eigenvectors using (11) and E is a diagonal matrix
whose ith diagonal entry is

(12) Eii =
θi + θk + θiθk

(1 + θi)(1 + θk)

(
w′(δ2

i )w
′(δ2

k)

w′(δ̂2
i )w

′(δ̂2
k)

)1/2

.

Proof. From (11), we have

−ĝH
i ĝk

= −

⎛
⎝ n∑

j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )(1 + θi)(1 + θk)

⎞
⎠ ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

=

⎛
⎝ n∑

j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )
−

n∑
j=1

|zj |2
(d2

j − δ2
k)(d

2
j − δ2

i )(1 + θi)(1 + θk)

⎞
⎠

ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

since gH
i gk = 0. Thus, we have

|ĝH
i ĝk|

=

∣∣∣∣∣∣
n∑

j=1

(
|zj |2

(d2
j − δ2

k)(d
2
j − δ2

i )

)(
1 − 1

(1 + θi)(1 + θk)

)
ρ

(w′(δ̂2
i )w

′(δ̂2
k))

1/2

∣∣∣∣∣∣

=

∣∣∣∣∣
n∑

j=1

(
|zj |2

(d2
j − δ2

k)(d
2
j − δ2

i )

)(
θi + θk + θiθk

(1 + θi)(1 + θk)

)(
w′(δ2

i )w
′(δ2

k)

w′(δ̂2
i )w

′(δ̂2
k)

)1/2

ρ

(w′(δ2
i )w

′(δ2
k))

1/2

∣∣∣∣∣
= |gH

i Egk| ≤ ‖E‖2,

where E is a diagonal matrix, whose diagonal elements are given by (12).
On the other hand, it is easy to show that

(13)
w′(δ2

i )

w′(δ̂2
i )

=

∑n
j=1

|zj |2
(d2

j−δ2
i )2∑n

j=1
|zj |2

(d2
j−δ2

i )2(1+θi)2

≤ (1 + τ)2.

Substituting w′(δ2
i )/w

′(δ̂2
i ) in (12) with (13), we have

max(|Eii|) ≤
τ + τ + τ2

(1 − τ)2
(1 + τ)2 = τ(2 + τ)

(
1 + τ

1 − τ

)2

.

This completes the proof.
Apparently, if the roots δ2

i of w are computed in high accuracy, then the rela-

tive errors in d2
j − δ̂2

i are small, provided that the eigenvalues δ2
i are not clustered.

Consequently, from the above theorem, the computed eigenvectors ĝi have good or-
thogonality.
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We adopt the stable method in [5] for computing the roots δi of w(δ2) in (5). It is
well known that if two quantities x and y are close, then in finite-precision arithmetic
it is more accurate to compute x2 − y2 via the formula (x + y)(x − y) [6]. To avoid
explicitly calculating the differences between squared quantities, we reformulate w(δ2)
in (5) as

w(δ2) = 1 + ψi(μ) + ϕi(μ) ≡ fi(μ),

where

ψ1(μ) = 0, ϕ1(μ) =

n∑
j=1

|zj |2
(ζj − μ)(dj + di + ρμ)

,

and

ψi(μ) =

i−1∑
j=1

|zj |2
(ζj − μ)(dj + di−1 + ρμ)

, ϕi(μ) =

n∑
j=i

|zj |2
(ζj − μ)(dj + di−1 + ρμ)

,

for i > 1, and

ζj = (dj − di)/ρ, μ = (δ − di)/ρ, when δ2 ∈ (d2
i , (d2

i−1 + d2
i )/2),

ζj = (dj − di−1)/ρ, μ = (δ − di−1)/ρ, when δ2 ∈ [(d2
i−1 + d2

i )/2, d2
i−1).

In the above formulation, an important property of fi(μ) is that it can be eval-
uated accurately. Moreover, we have formulated the functions ψi(μ) and ϕi(μ) so
that explicit calculation of the differences of squares such as d2

j − d2
i and δ2 − d2

i are
avoided. There are many zero finding methods, for example, the rational interpolation
[1] and bisection and its variations [11, 13]. Following [5], our algorithm for finding
the zeros of fi(μ) is based on the rational interpolation strategy [1] and its LAPACK
implementation slasd4. Thus, from [5], the computed eigenvalues have high relative
accuracy. The eigenvectors are computed from the computed eigenvalues following
the method for computing the eigenvectors in [5], which guarantees numerical orthog-
onality. Thus, the computed Takagi vectors are numerically orthogonal since they are
obtained by converting the eigenvectors.

Finding a root of fi(μ) is an iterative process. The stopping criterion plays an
important role in the accuracy of the computed roots. Similar to [4], we propose the
stopping criterion:

(14) |fi(μ)| ≤ εn(|ψi(μ)| + |ϕi(μ)| + 1).

In the following, we show that by using this criterion, the computed roots δ̂2
i of w(δ2)

are accurate.
Since w(δ2

i ) = 0, we have

w(δ̂2
i ) = w(δ̂2

i ) − w(δ2
i ) = ρ

n∑
j=1

|zj |2

d2
j − δ̂2

i

− ρ

n∑
j=1

|zj |2
d2
j − δ2

i

= ρ(δ̂2
i − δ2

i )

n∑
j=1

|zj |2

(d2
j − δ̂2

i )(d
2
j − δ2

i )
.
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According to the stopping criterion (14), since fi(μ) can be evaluated accurately, we
have

|w(δ̂2
i )| ≤ εn

⎛
⎝1 + ρ

n∑
j=1

|zj |2

|d2
j − δ̂2

i |

⎞
⎠ ≤ ρεn

⎛
⎝ n∑

j=1

|zj |2

|d2
j − δ̂2

i |
+

n∑
j=1

|zj |2
|d2

j − δ2
i |

⎞
⎠

since 1 = −ρ
∑n

j=1
|zj |2
d2
j−δ2

i
. Without loss of generality, we assume δ2

i and δ̂2
i are in the

same interval, say (d2
i , d2

i−1). It follows that (d2
j − δ2

i )(d
2
j − δ̂2

i ) > 0. So,

|w(δ̂2
i )| = ρ|δ̂2

i − δ2
i |

n∑
j=1

|zj |2

|(d2
j − δ̂2

i )(d
2
j − δ2

i )|
≤ ρεn

⎛
⎝ n∑

j=1

|zj |2

|d2
j − δ̂2

i |
+

n∑
j=1

|zj |2
|d2

j − δ2
i |

⎞
⎠

≤ ρεn(4‖D2 + ρzzH‖2 + |δ̂2
i − δ2

i |)
n∑

j=1

|zj |2

|(d2
j − δ̂2

i )(d
2
j − δ2

i )|
,

since |d2
j − δ̂2

i |+ |d2
j − δ2

i | ≤ 2|d2
j − δ2

i |+ |δ̂2
i − δ2

i | ≤ 4‖D2 + ρzzH‖2 + |δ̂2
i − δ2

i |. From

the above equation, we can get the upper bound for |δ̂2
i − δ2

i |:

|δ̂2
i − δ2

i | ≤
4εn‖D2 + ρzzH‖2

1 − εn
.

In conclusion, we apply the rational interpolation zero finding method to fi(μ) using
the stopping criterion (14). We can then obtain accurate eigenvalues δ2

i . Provided
that the eigenvalues are not clustered, it results in the high relative accuracy of the
difference d2

i − δ̂2
i , which implies good orthogonality of the computed eigenvectors of

TTH .

5. Numerical examples. We programmed our divide-and-conquer Algorithm
3.1 in MATLAB and tested it on three types of complex symmetric and tridiagonal
matrices. Our experiments were carried out on a server with two 2.4 GHz Xeon
CPUs, 1GB RAM, and 80GB disk. The complex symmetric and tridiagonal matrices
with predetermined Takagi values were generated as follows. First, a random vector
uniformly distributed on (0, 1] was generated and sorted in descending order as a
Takagi value vector d. Then, a random unitary matrix was generated as a Takagi
vector matrix V . The product A = V ΣV T , where Σ = diag(d), was computed as
a complex symmetric matrix. Finally, a complex symmetric and tridiagonal T was
obtained by applying the Householder transformations to both sides of A. Denoting
Q̂ and d̂ as the computed Takagi vector matrix and Takagi value vector, respectively,
the error in the computed Takagi factorization was measured by

γt = ‖Q̂Σ̂Q̂T − T‖2, where Σ̂ = diag(d̂).

The error in the computed Takagi values was measured by

γv = ‖d− d̂‖2,

and the orthogonality of the computed Takagi vector matrix Q̂ was measured by

γo = ‖Q̂Q̂H − I‖2.
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Table 1

The Takagi factorization of five 256× 256 testing matrices with distinct Takagi values.

Example γo γv γt
1 1.3558E−14 3.1347E−14 4.1149E−12
2 2.1679E−14 1.0854E−14 4.3920E−12
3 9.7087E−14 8.4093E−15 1.1309E−12
4 1.1040E−14 1.2622E−14 5.5019E−12
5 3.0840E−14 1.1658E−14 1.1243E−12

Example 1. Five random complex symmetric and tridiagonal matrices of order
256 were generated as described above. In this example, the Takagi values of each
matrix were distinct. Table 1 shows that the computed Takagi values and Takagi
vectors are accurate.

Example 2. Five random complex symmetric and tridiagonal matrices of order
256 were generated. In this example, we set the five largest Takagi values equal and
the four smallest Takagi values equally. Table 2 shows the results.

Table 2

The Takagi factorization of five 256×256 testing matrices with multiple Takagi values of small
multiplicity.

Example γo γv γt
1 7.5222E−12 1.1331E−14 1.0564E−12
2 2.5397E−12 1.9208E−14 2.6242E−12
3 2.4214E−12 6.0150E−14 6.1179E−12
4 1.9582E−12 4.8421E−14 3.2142E−12
5 6.3841E−12 1.0580E−14 2.4453E−12

Table 3

The Takagi factorization of five 256× 256 testing matrices with multiple Takagi values of large
multiplicity.

Example γo γv γt
1 7.8816E−13 8.8186E−14 4.0040E−12
2 3.7709E−12 2.4154E−14 8.4231E−12
3 4.3532E−13 1.3427E−14 3.4808E−12
4 6.2713E−12 7.4803E−14 1.7887E−12
5 4.5237E−12 5.1166E−14 6.4702E−12

Example 3. Five random T of order 256 were generated. In this example, however,
we set the 31 largest Takagi values equal. Table 3 shows that the computed results
are accurate.

For performance, we tested our algorithm on random complex symmetric and
tridiagonal matrices of five different sizes. For each size, we generated five matrices
and ran our divide-and-conquer (DAC) method and the implicit QR (IQR) method
[10]. In our divide-and-conquer method, when the size of the submatrices Ti, for
i = 1, 2, in (2) is less than or equal to 10, its Takagi factorization is computed
directly by the implicit QR method. Table 4 shows the average running time and the
average factorization error γt of the five matrices of same size. The results in Table
4 demonstrate that our method is significantly more efficient than the implicit QR
method even for matrices of moderately large size.
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Table 4

The performance and accuracy comparison of the divide-and-conquer (DAC) method and the
implicit QR (IQR) method.

Running time (sec) γt
matrix size DAC method IQR method DAC method IQR method

100 1.14 1.16 1.3352E−14 2.4668E−14
200 3.01 5.47 2.0272E−12 2.9772E−14
400 9.51 26.05 1.7014E−12 6.4860E−14
800 46.88 187.05 1.1338E−11 9.0250E−14
1600 286.14 2091.12 4.2198E−11 2.1552E−13

6. Conclusion. We have proposed a divide-and-conquer method for computing
the Takagi factorization of a complex symmetric and tridiagonal matrix and presented
an analysis, which shows that our method computes accurate Takagi values and vec-
tors provided that the Takagi values are not clustered. Our preliminary experiments
have demonstrated that our method produces accurate results even for matrices with
multiple Takagi values and is much more efficient than the implicit QR method [10].
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Abstract. A higher order dynamical system of order k is called controllable if the trajectory of
the system as well as its first k− 1 derivatives can be adjusted to pass through any given point at a
finite time by choosing the input appropriately. The distance to uncontrollability is the norm of the
smallest perturbation yielding an uncontrollable system. We derive a singular value minimization
characterization for the distance to uncontrollability and present a trisection algorithm exploiting
the singular value characterization. The algorithm is devised for low accuracy and depends on the
extraction of the imaginary eigenvalues of even-odd matrix polynomials of degree 2k and size 2n
with n denoting the size of the system. The well-studied first order distance to uncontrollability can
be recovered as a special case.
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1. Introduction. A fundamental question concerning the kth order continuous
time-invariant dynamical system

(1.1) Kkx
(k)(t) + · · ·+K1x

′(t) +K0x(t) = Bu(t), x(0) = x′(0) = · · · = x(k−1) = 0

is the dimension of the subspace of reachable configurations at a given time t′ where
B ∈ C

n×m, K0,K1, . . .Kk ∈ C
n×n, x(t) ∈ C

n, and u(t) ∈ C
m. Here x(t) denotes the

state vector, u(t) denotes the control input, and c0, c1, . . . , ck−1 ∈ C
n are given initial

conditions. By a configuration at time t′ we mean the vector consisting of x(t′) as
well as its first k − 1 time derivatives at time t′. We define the space of reachable
configurations at time t′ as

Rt′ = {[ε0, ε1, . . . , εk−1] : ∃u(t) such that (1.1) satisfies

ε0 = x(t′), ε1 = x′(t′), . . . , εk−1 = x(k−1)(t′)}.

We have full control over the system (1.1) if all of the configurations can be attained
by choosing u(t) appropriately, that is

(1.2) dim(Rt′) = nk.

In this case the system (1.1) is called controllable. Otherwise, the system is called
uncontrollable. For convenience we will frequently refer to the tuple of matrices
(Kk, . . . ,K1,K0, B) as controllable whenever the system (1.1) is controllable.

Controllability of a first order system, specifically with k = 1, K1 = I (the identity
matrix) and K0 = −A (an arbitrary matrix), is well known [9] to be equivalent to
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either of the conditions

rank([B AB A2B · · · An−1B]) = n

or

(1.3) rank([A− λI B]) = n for all λ ∈ C.

A similar characterization for the controllability of a descriptor system with k =
1, K1 = E, and K0 = −A exists [7, 8]. In particular when E is nonsingular the
controllability reduces to the condition

(1.4) rank([A− λE B]) = n for all λ ∈ C.

When E is singular, the above condition needs to be accompanied by an additional
rank condition that involves the null space of E. Throughout this paper we will assume
that the leading coefficient is nonsingular and additionally, when perturbations to the
leading coefficient are allowed, the leading coefficient remains nonsingular under all
perturbations under consideration. (This condition is stated formally in Lemma 2.2.)
Under this nonsingularity assumption, the rank characterizations (1.3) and (1.4) can
be generalized to the higher order system and the nearby systems as follows. First
observe that (1.1) can be embedded into the first order system

(1.5) x̃′(t) = Ax̃(t) + Bu(t), x̃(0) =

⎡
⎢⎢⎢⎣

ck−1

ck−2

...
c0

⎤
⎥⎥⎥⎦ ,

where

x̃(t) =

⎡
⎢⎢⎢⎢⎢⎣

x(k−1)(t)
x(k−2)(t)
x(k−3)(t)

...
x(t)

⎤
⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎣

K−1
k B
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦
, and

A =

⎡
⎢⎢⎢⎢⎢⎣

−K−1
k Kk−1 −K−1

k Kk−2 . . . −K−1
k K1 −K−1

k K0

I 0 0 0
0 I 0 0
...

. . .
...

0 0 I 0

⎤
⎥⎥⎥⎥⎥⎦
.

Now the higher order system is controllable if and only if the matrix [A− λI B] has
full rank for all λ. Furthermore, for a given λ suppose

[A− λI B]

⎡
⎢⎢⎢⎣

xk−1

...
x0

y0

⎤
⎥⎥⎥⎦ = 0.

Using the definitions of A and B, it is straightforward to deduce that xj = λjx0 and

[P (λ) B]

[
x0

y0

]
= 0,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

156 EMRE MENGI

where

(1.6) P (λ) =

k∑
j=0

λjKj .

Therefore the null spaces of [A− λI B] and [P (λ) B] have the same dimension, say
l ≥ m, which means rank([A−λI B]) = nk+m− l and rank([P (λ) B]) = n+m− l.
We conclude that the controllability of the higher order system is equivalent to

(1.7) rank([P (λ) B]) = n for all λ ∈ C

which was already mentioned in [18] without derivation.
Controllability is thus a rank determination problem, which cannot be performed

reliably in the presence of rounding errors. A controllable system may still have
nearby uncontrollable systems which potentially is an indicator of a problem with the
model. Therefore in [22] for the first order system the distance to uncontrollability
was defined as

(1.8) τ(A,B) = inf{‖[ΔA ΔB]‖ : the pair (A + ΔA,B + ΔB) is uncontrollable}

with ‖ · ‖ denoting either the spectral norm or the Frobenius norm. Later Eising
[10] proved that, in both cases, the distance to uncontrollability is equivalent to a
minimization problem involving complex vectors of size n

(1.9) τ(A,B) = inf
q∈Cn,‖q‖=1

√
q∗BB∗q + q∗A(I − qq∗)A∗q

and a singular value minimization problem, i.e.,

(1.10) τ(A,B) = inf
λ∈C

σmin([A− λI B]),

where σmin denotes the smallest singular value. The most efficient computational
techniques for the distance to uncontrollability exploit the definition (1.10), though
there are hybrid-algorithms [24] developed following Eising’s characterizations that
make use of both (1.9) and (1.10). Boley observed the connection between the sen-
sitivity of the Kronecker structure of a matrix pencil and distance to uncontrollabil-
ity and based on (1.10) suggested a practical but an imprecise way to approximate
the distance by solving a standard eigenvalue problem [1]. Byers introduced classes
of algorithms working on one dimensional or two dimensional grids [5] to minimize
σmin([A − λI B]). Later Gao and Neumann [11] and He [16] modified Byers’ idea
for more efficient computation. Byers’ grid-based algorithms and its successors are
well-suited for the computation of the distance to uncontrollability with a few digits
of precision but are too costly for high accuracy. Gu’s bisection algorithm [14] is the
first technique that retrieves the global minimum for the problem (1.10) within a fac-
tor of two without depending on a grid. Gu’s algorithm later was improved by Burke,
Lewis, and Overton [3] who suggested a trisection algorithm that computes τ(A,B)
to arbitrary precision. With O(n6) complexity1 these algorithms are applicable only
to small systems. In [15], it is described how we can benefit from inverse iteration and
shift-and-invert preconditioned Arnoldi to reduce the average running time to O(n4)

1When we refer to operation counts, we assume eigenvalue computations are atomic operations
with cubic complexity.
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making the computation of the distance to uncontrollability for medium size systems
feasible. For descriptor systems the distance to uncontrollability is discussed and a
generalization of the characterization (1.10) is provided in [6].

In this work we extend the definition (1.8) for the first order system to the higher
order system (1.1) as

τ(P,B, α) = inf{‖[ΔKk · · · ΔK1 ΔK0 ΔB]‖ : the tuple

(Kk + αkΔKk, . . . ,K0 + α0ΔK0, B + ΔB) is uncontrollable},

(1.11)

where the vector α = [αk · · · α1 α0] consists of nonnegative real numbers. Notice
that with k = 1, K1 = I, K0 = −A, and α = [0 1] we recover the definition (1.8)
for the first order system. Our motivation in introducing the scaling α is mainly
to restrict the perturbations to some of the coefficient matrices, by choosing the
scaling corresponding to other coefficients to be zero. It also serves the purpose of
weighting the perturbations to the coefficients. For instance one may be interested in
perturbations in a relative sense with respect to the norm of the coefficients in which
case it is desirable to set α = [‖Kk‖ · · · ‖K1‖ ‖K0‖].

The distance to uncontrollability of the higher order system defined by (1.11)
and the embedded system (1.5) are related yet different quantities. The closest un-
controllable descriptor system to the embedded system would usually be obtained by
perturbing the block rows of A other than the first one, so the resulting uncontrollable
system does not correspond to an embedding of a higher order system. For instance
if one of the coefficient matrices, say Kj , is considerably larger than the other coeffi-
cients as well as B in norm and K−1

k Kj is close to a multiple of the identity matrix,
then small perturbations to the (j + 1)th block row of [A B] makes it rank deficient
and the embedding uncontrollable. Typically we expect that τ(A,B) < τ(P,B, α),
since in the definition of τ(A,B) we have more degrees of freedom when choosing
perturbations. Such an example where these two distances differ significantly is given
in section 4.2. It is not clear how the existing algorithms to compute τ(A,B) can be
modified to impose the constraints on perturbations to A and B so that perturbed
systems correspond to the embeddings of higher order systems.

In the next section we provide a singular value minimization characterization
for the definition (1.11). We will see that the definition (1.11) in the spectral norm
and the Frobenius norm are equivalent just as in the first order case and the char-
acterization we derive reduces to (1.10) for the first order system. The derivation
of the singular value characterization uses the rank definition of the controllability
(1.7) for the higher order system and all nearby systems which holds only if the lead-
ing coefficient is nonsingular and sufficiently away from the closest singular matrix.
The equivalent singular value characterization is typically nonconvex. A standard
optimization technique such as BFGS will converge only to a local minimum. Apply-
ing BFGS repeatedly with various starting points might occasionally fail to return a
global minimum. Therefore in section 3 we describe a trisection algorithm locating
the global minimum of the equivalent optimization problem. This algorithm is not
a generalization of the algorithm of [3], because such an approach is too expensive.
The first few steps of the new algorithm are comparatively cheap, but as we require
more accuracy the algorithm becomes computationally intensive. With a complexity

of O
(

1
arccos(1−( tol

k )2)
n3k4

)
with tol denoting the accuracy required, it is devised for

a few digits of precision. Section 4 is devoted to numerical examples illustrating the
efficiency of the algorithm.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

158 EMRE MENGI

2. Properties of the higher order distance to uncontrollability and a
singular value characterization. The set of controllable tuples is clearly a dense
subset of the whole space of matrix tuples. But this does not mean that the uncontrol-
lable tuples are isolated points. On the contrary there are uncontrollable subspaces.
For instance the system (1.1) with K0 = 0 and rank(B) < n is uncontrollable for all
Kk, . . . ,K1. Therefore we shall first see that τ(P,B, α) is indeed attained at some
(ΔKk, . . . ,ΔK0,ΔB). Note that throughout this work we usually use ‖ · ‖ for either
the spectral or the Frobenius norm interchangeably when the results hold for both of
the norms or when the type of the norm is clear from the context. At other times
we clarify the choice of norm using the notation ‖ · ‖2, ‖ · ‖F for the spectral and the
Frobenius norm, respectively.

Lemma 2.1. There exists an uncontrollable tuple (Kk+αkΔKk, . . . ,K0+α0ΔK0,
B + ΔB) such that τ(P,B, α) = ‖[ΔKk · · · ΔK0 ΔB]‖ and ‖ΔKj‖ ≤ ‖B‖ for all
j, ‖ΔB‖ ≤ ‖B‖.

Proof. The matrix [P (λ) 0] is rank deficient at the eigenvalues of P . Therefore
τ(P,B, α) ≤ ‖B‖ meaning we can restrict the perturbations to the ones satisfying
‖ΔKj‖ ≤ ‖B‖ and ‖ΔB‖ ≤ ‖B‖.

Furthermore the set of uncontrollable tuples is closed. To see this, consider any se-
quence {(K ′

k, . . . ,K
′
0, B

′)} of uncontrollable tuples. Now for any tuple in the sequence

define the associated polynomial as P ′(λ) =
∑k

j=0 λ
jK ′

j . The matrix [P ′(λ) B′] is
rank deficient for some λ, so all combinations of n columns of this matrix are linearly
dependent. Let us denote the l = (m+n

n ) polynomials associated with the deter-
minants of the combinations of n columns by p1(λ), p2(λ), . . . , pl(λ) in any order.
These polynomials must share a common root; otherwise [P ′(λ) B′] would not be
rank deficient for some λ. The common roots r1, r2, . . . , rl are continuous functions
of the tuple {(K ′

k, . . . ,K
′
0, B

′)} which means at any cluster point of the sequence
r1 = r2 = r3 = · · · = rl. This shows that the set is closed.

Since we are minimizing the spectral or the Frobenius norm over a compact set,
τ(P,B, α) must be attained at some ‖[ΔKk · · · ΔK0 ΔB]‖.

The main result of this section establishes the equivalence of τ(P,B, α) to the
solution of the singular value minimization problem

(2.1) ξ(P,B, α) = inf
λ∈C

σmin

([
P (λ)√
sα(|λ|)

B

])

when α0 �= 0, where

sα(|λ|) =

k∑
j=0

α2
j |λ|2j .

When establishing this equivalence, we seek the perturbations ΔP and ΔB yielding
a matrix function [(P +ΔP )(λ) B +ΔB] that is rank deficient at some λ. A relevant
problem is the distance to instability of a matrix polynomial which can be posed as

β(P, α)

= inf

⎧⎨
⎩‖[ΔKk ΔKk−1 . . .ΔK0]‖ : (P + ΔP )(λ) = 0, ∃λ ∈ Cb, ΔP =

k∑
j=0

αjλ
jΔKj

⎫⎬
⎭

where Cb is a closed subset of the complex plane corresponding to the unstable region
and ‖ · ‖ is the spectral norm. A simplified version of this problem with α equal to
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the vector of ones was studied in [13]. Let ∂Cb denote the boundary of the unstable
region. It is straightforward to modify Lemma 8 in [13] to deduce the equivalence of
β(P, α) with the minimization problem

inf
λ∈∂Cb

σmin

([
P (λ)√
sα(|λ|)

])
.

Another similar problem is the pseudospectrum of a matrix polynomial which consists
of the set of eigenvalues of nearby matrix polynomials. Let us formally define the ε-
pseudospectrum as

Λε(P, α)

=

⎧⎨
⎩λ ∈ C : (P + ΔP )(λ) = 0, ΔP =

k∑
j=0

αjλ
jΔKj , ‖[ΔKk ΔKk−1 · · · ΔK0]‖ ≤ ε

⎫⎬
⎭

where ‖ · ‖ denotes the spectral norm. Here we slightly depart from the original
definition suggested by Tisseur and Higham in [23] in the way the nearness to a
matrix polynomial is measured. (In [23] the norm of each of the perturbations ΔKj

is constrained to be less than ε.) The technique in [23] leads us to the singular value
characterization

Λε(P, α) =

{
λ ∈ C : σmin

([
P (λ)√
sα(|λ|)

])
≤ ε

}
.

The condition α0 �= 0, that is assumed throughout the derivations below, means
that the perturbations to K0 cannot be blocked and avoids the indeterminate case,
when sα(|λ|) = 0. At the end of this section we will present a more general equivalence
result that holds no matter what value is assigned to α as long as all of its components
are nonnegative. With this restriction on α0, ξ(P,B, α) must be attained either at a
finite λ or at ∞. The latter case is eliminated by the next lemma.

Lemma 2.2. Under the assumption that the leading coefficient of (1.1) is nonsin-
gular and remains nonsingular under perturbations with norm less than or equal to
αkξ(P,B, α) and α0 �= 0, the inequality

ξ(P,B, α) < lim
λ→∞

σmin

([
P (λ)√
sα(|λ|)

B

])

holds.
Proof. When αk = 0, the result immediately follows. When αk > 0, we have

σmin

([
Kk

αk
B

])
= lim

λ→∞
σmin

([
P (λ)√
sα(|λ|)

B

])
.

Suppose ξ(P,B, α) is attained at ∞ and therefore there exist u1, v ∈ C
n and u2 ∈ C

m

such that
[ (

Kk

αk

)∗
B∗

]
v = ξ(P,B, α)

[
u1

u2

]
,
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where [uT
1 uT

2 ]T and v have unit length. Multiplying the upper blocks by αk, the
right-hand side by v∗v and collecting all terms on the left yields[

K∗
k − αkξ(P,B, α)u1v

∗

B∗ − ξ(P,B, α)u2v
∗

]
v = 0.

Consequently a perturbation to the leading coefficient with norm at most αkξ(P,B, α)
yields the singular matrix Kk−αkξ(P,B, α)vu∗

1, which contradicts the nonsingularity
assumption.

Theorem 2.3. With the assumptions of Lemma 2.2 for the system (1.1) the
equality τ(P,B, α) = ξ(P,B, α) holds for τ defined in (1.11) both in the spectral norm
and in the Frobenius norm.

Proof. First we assume that τ(P,B, α) in (1.11) is defined in the spectral norm
and show that ξ(P,B, α) ≤ τ(P,B, α). From Lemma 2.1, there exists ΔP (λ) =∑k

j=0 αjλ
jΔKj such that

τ(P,B, α) = ‖[ΔKk · · · ΔK0 ΔB]‖

and for some λ̃ the matrix [(P + ΔP )(λ̃) B + ΔB] is rank deficient, that is

[
((P + ΔP )(λ̃))∗

B∗ + ΔB∗

]
v = 0

for some unit v ∈ C
n. We collect the perturbations on the right and divide the upper

blocks by
√
sα(|λ̃|) to obtain

⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦ v =

⎡
⎣
(
− ΔP (λ̃)√

sα(|λ̃|)

)∗

−ΔB∗

⎤
⎦ v.

Therefore

ξ(P,B, α) ≤ σmin

⎛
⎝
⎡
⎣ P (λ̃)√

sα(|λ̃|)
B

⎤
⎦
⎞
⎠

= σmin

⎛
⎝
⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦
⎞
⎠ ≤

∥∥∥∥∥∥
⎡
⎣
(

P (λ̃)√
sα(|λ̃|)

)∗

B∗

⎤
⎦ v
∥∥∥∥∥∥

=

∥∥∥∥∥∥
⎡
⎣
(

ΔP (λ̃)√
sα(|λ̃|)

)∗

ΔB∗

⎤
⎦ v
∥∥∥∥∥∥ ≤

∥∥∥∥∥∥
⎡
⎣
(

ΔP (λ̃)√
sα(|λ̃|)

)∗

ΔB∗

⎤
⎦
∥∥∥∥∥∥ =

∥∥∥∥∥∥
⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦
∥∥∥∥∥∥ .

Moreover,

⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦ = [ΔKk · · · ΔK0 ΔB]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αkλ̃
kI√

sα(|λ̃|)
0

...
...

α1λ̃I√
sα(|λ̃|)

0

α0I√
sα(|λ̃|)

0

0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where the spectral norm of the rightmost matrix is one. It follows from the Cauchy–
Schwarz inequality that

ξ(P,B, α) ≤

∥∥∥∥∥∥
⎡
⎣ ΔP (λ̃)√

sα(|λ̃|)
ΔB

⎤
⎦
∥∥∥∥∥∥ ≤ ‖[ΔKk · · · ΔK0 ΔB]‖ = τ(P,B, α).

For the reverse inequality, still using the spectral norm, we have from Lemma 2.2
that for some ϕ,

ξ(P,B, α) = σmin

([
P (ϕ)√
sα(|ϕ|)

B

])
= σmin

⎛
⎝
⎡
⎣
(

P (ϕ)√
sα(|ϕ|)

)∗

B∗

⎤
⎦
⎞
⎠

or equivalently

[
(P (ϕ))∗√
sα(|ϕ|)
B∗

]
v = ξ(P,B, α)

[
u1

u2

]
,

where v, u1 ∈ C
n, u2 ∈ C

m, and the vectors v and [uT
1 uT

2 ]T have unit length. We
multiply the right-hand side by v∗v, the upper blocks by

√
sα(|ϕ|) and collect all

terms on the left to obtain[
(P (ϕ))∗ −

√
sα(|ϕ|)ξ(P,B, α)u1v

∗

B∗ − ξ(P,B, α)u2v
∗

]
v = 0.

In other words, the matrix
[
P (ϕ) −

√
sα(|ϕ|)ξ(P,B, α)vu∗

1 B − ξ(P,B, α)vu∗
2

]

is rank deficient. If we set ΔKj =
−αj ϕ̄

jξ(P,B,α)vu∗
1√

sα(|ϕ|)
and ΔB = −ξ(P,B, α)vu∗

2 and

define ΔP (λ) =
∑m

j=0 αjλ
jΔKj , then by noting

ΔP (ϕ) =
m∑
j=0

αjϕ
jΔKj = −

√
sα(|ϕ|)ξ(P,B, α)vu∗

1

we see that

[(P + ΔP )(λ) B + ΔB]

is rank deficient at λ = ϕ. The norm of the perturbations satisfies

‖[ΔKk · · · ΔK0 ΔB]‖

= ξ(P,B, α)

∥∥∥∥∥
[
αkϕ̄

k vu∗
1√

sα(|ϕ|)
. . . α0

vu∗
1√

sα(|ϕ|)
vu∗

2

]∥∥∥∥∥ ≤ ξ(P,B, α).

Therefore τ(P,B, α) ≤ ‖[ΔKk · · · ΔK0 ΔB]‖ ≤ ξ(P,B, α) as desired.
For the claim about the equality when τ(P,B, α) is defined in the Frobenius norm,

to show ξ(P,B, α) ≤ τ(P,B, α) the proof in the first part applies noting that

ξ(P,B, α) ≤ ‖[ΔKk · · · ΔK0 ΔB]‖2 ≤ ‖[ΔKk · · · ΔK0 ΔB]‖F = τ(P,B, α).
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The second part to show τ(P,B, α) ≤ ξ(P,B, α) applies without modification.
The second part of Theorem 2.3 explicitly constructed the closest uncontrollable

system which we state in the next corollary.
Corollary 2.4. Suppose the assumptions of Lemma 2.2 hold. Let ξ(P,B, α) be

attained at λ∗, and let the vectors [uT
1 uT

2 ]T and v be the unit right and left singular
vectors corresponding to

σmin

([
P (λ∗)

sα(|λ∗|)
B

])
,

respectively, where u1, v ∈ C
n and u2 ∈ C

m. A closest uncontrollable tuple is (Kk +
αkΔKk, . . . ,K0 + α0ΔK0, B + ΔB), where

ΔKj =
−αj λ̄

j
∗ξ(P,B, α)vu∗

1√
sα(|λ∗|)

, j = 0, . . . , k

and

ΔB = −ξ(P,B, α)vu∗
2.

Finally to remove the condition that α0 �= 0, clearly τ(P,B, α) depends on α0

continuously when α0 > 0 and is continuous from the right when α0 = 0. (Consider
the distance of (Kk,Kk−1, . . . , B) to any fixed uncontrollable tuple as a function of
α0 with all other αj fixed. If such a distance function is bounded around a given α0,
then it is continuous from the right and the minimum of these continuous distance
functions is τ(P,B, α) as a function of α0.) Therefore if α0 = 0, which is particularly
the case when sα(|λ|) = 0, then the limiting value of ξ(P,B, α) from the right must
approach τ(P,B, α).

Theorem 2.5. With the conditions stated in Lemma 2.2 except that α0 is allowed
to be any nonnegative real number (possibly zero), the equality

τ(P,B, [αk, αk−1, . . . , α0]) = lim
α′

0→α+
0

ξ(P,B, [αk, αk−1, . . . , α
′
0])

holds where τ is defined in either the spectral norm or the Frobenius norm.
Specifically when τ(P,B, α) = ‖[0 0 · · ·ΔB]‖ = ‖ΔB‖, that is a closest uncon-

trollable system can be obtained just by perturbing B (this has to be the case when
α = 0), the result above amounts to a minimization problem over the vectors that
are constrained to lie in the left eigenspace of P , SP , which we can see as follows. If
we restrict the perturbations only to B and without loss of generality assume α = 0,
then the definition of the higher order distance to uncontrollability simplifies as

τ(P,B) = inf{‖ΔB‖ : v∗[P (λ) B + ΔB] = 0, ∃v ∈ C
n, λ ∈ C}

= inf{‖ΔB‖ : v∗B = −v∗ΔB, v ∈ SP }.

The last minimization problem must be attained at a ΔB such that ‖ΔB‖ = ‖v∗ΔB‖,
where v ∈ SP , because otherwise we can obtain a matrix ΔB smaller in norm by
replacing all of the singular values larger than ‖v∗ΔB‖ with 0 that still satisfies the
constraint v∗B = −v∗ΔB. Therefore the last minimization problem is equivalent to

τ(P,B) = inf{‖v∗ΔB‖ : v ∈ Sp, v
∗B = −v∗ΔB} = inf

v∈Sp

‖v∗B‖.
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Now we can verify Theorem 2.5 for this special case, as indeed

lim
α0→0+

ξ(P,B, [0 0 · · · α0]) = lim
α0→0+

inf
λ∈C

σmin

([
P (λ)

α0
B

])

= lim
α0→0+

inf
λ∈C,v∈Cn

∥∥∥∥v∗
[
P (λ)

α0
B

]∥∥∥∥ .
Furthermore as α0 → 0+, any solution pair λ, v of the minimization problem must
correspond to an eigenvalue of P and the associated left eigenvector, respectively.
Therefore the minimization problem reduces to

lim
α0→0+

ξ(P,B, [0 0 · · · α0]) = inf
v∈SP

‖v∗B‖ = τ(P,B).

3. A practical algorithm exploiting the singular value characterization.
In Theorem 2.3 we established the equality

τ(P,B, α) = ξ(P,B, α) = inf
r≥0,θ∈[0,2π)

f(r, θ)

when α0 �= 0, where

f(r, θ) = σmin

([
P (reiθ)√
sα(r)

B

])
.

When α0 = 0, the limit of ξ(P,B, α) as α0 → 0+ approaches the distance to uncon-
trollability. Therefore, in essence the computation of the distance to uncontrollability
can be achieved by minimizing f(r, θ). In this section we present a trisection algo-
rithm to minimize the function f(r, θ) in polar coordinates. Let δ1 and δ2 trisect the
interval [L,U ] containing the distance to uncontrollability (see Figure 3.1). At each
iteration the algorithm updates either the upper bound to δ1 or the lower bound to
δ2 depending on whether the δ-level set of f(r, θ)

{reiθ : f(r, θ) = δ}

is intersected by any line in the set of lines passing through the origin with slopes
multiples of η, where δ and η are determined by δ1 and δ2 as

δ = δ1, η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)
.

Above c is a positive real constant depending on the modulus of a point in the complex
plane where ξ(P,B, α) is attained and Kmax is a positive real constant depending on
the norms of the coefficient matrices. (The constants c and Kmax are defined precisely
in the paragraph preceding Theorem 3.2.) We say the angle η subtends all of the
components of the δ-level set of f , when no component has a pair of points whose
angles differ by more than η. At each iteration we verify only one of the following
(even though both of them may sometimes be true);

Fig. 3.1. The trisection algorithm keeps track of an interval [L,U ] containing ξ(P,B, α). At
each iteration either L is updated to δ2 or U is updated to δ1.
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• the δ-level set of f is not empty,
• the angle η subtends all of the components of the δ-level set of f .

By the definition of ξ(P,B, α) when the δ-level set is not empty

(3.1) δ = δ1 ≥ ξ(P,B, α)

and when η subtends all of the components of the δ-level set we will see below that

(3.2) ξ(P,B, α) > δ2

because of the choice of η and δ. The algorithm we present is inspired by the trisection
algorithm of [3] for the first order distance to uncontrollability. However, the technique
we use to verify which one of (3.1) and (3.2) holds is new and has no similarity with
the verification technique used in [3] to trisect an interval known to contain the first
order distance to uncontrollability. A straightforward modification of the technique for
the first order distance to uncontrollability would require the solution of polynomial
eigenvalue problems quadratic in size and double in degree as compared to the original
polynomial eigenvalue problem, which is too expensive even for systems of small size.

The trisection algorithm starts with the trivial upper bound U = σmin([Kk/αk B])
(or when αk = 0, U = σmin(B)) and the lower bound L = 0. At each iteration we
either update the upper bound to δ1 if the inequality (3.1) is verified or the lower
bound to δ2 if the inequality (3.2) is verified. First we need to be equipped with a
technique that checks for a given δ and θ whether there exists an r satisfying

(3.3) f(r, θ) = δ,

that is whether the line with slope θ passing through the origin, say L(θ), intersects
the δ-level set of f . Our first result in this section shows how this can be achieved by
solving a polynomial eigenvalue problem of double size and of double degree. Similar
results relating the δ-level set of g(x, y) = σmin(A − (x + yi)I), where A ∈ C

n×n,
x, y ∈ R and the imaginary eigenvalues of a matrix G(x, δ) of double size can be
found in [4] and [2]. More precisely these results suggest how to find the intersection
points of the δ-level set of g(x, y) and a vertical line; that is the results deduce that
if δ = g(x, y), then yi is an eigenvalue of G(x, δ).

Theorem 3.1. Given θ ∈ [0, 2π) and a positive real number δ, the matrix

[P (reiθ)√
sα(r)

B] has δ as a singular value if and only if the matrix polynomial of dou-

ble size Q(λ, θ, δ) =
∑2k

j=0 λ
jQj(θ, δ) has the imaginary eigenvalue ri where

Q0(θ, δ) =

[
−δα2

0I K∗
0

K0 BB∗/δ − δI

]
,

and, when l is odd,

Ql(θ, δ) =

[
0 (−1)(l+1)/2iK∗

l e
−ilθ

(−1)(l+1)/2iKle
ilθ 0

]
1 ≤ l ≤ k,

Ql(θ, δ) = 0 k + 1 ≤ l < 2k,

and, when l is even,

Ql(θ, δ) =

[
(−1)l/2+1δα2

l/2I (−1)l/2K∗
l e

−ilθ

(−1)l/2Kle
ilθ 0

]
1 ≤ l ≤ k,

Ql(θ, δ) =

[
(−1)l/2+1δα2

l/2I 0

0 0

]
k + 1 ≤ l ≤ 2k.
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Proof. The matrix [P (reiθ)√
sα(r)

B] has δ as a singular value if and only if both of the

equations

[
P (reiθ)√
sα(r)

B

] [
v1

v2

]
= δu,

⎡
⎣
(

P (reiθ)√
sα(r)

)∗

B∗

⎤
⎦u = δ

[
v1

v2

]

are satisfied. From the bottom block of the second equation we have v2 = B∗u/δ. By
eliminating v2 from the other equation, we obtain

⎡
⎢⎣ −δI

(
P (reiθ)√

sα(r)

)∗

P (reiθ)√
sα(r)

BB∗/δ − δI

⎤
⎥⎦
[

v1

u

]

=

[
−δsα(r)I

(
P (reiθ)

)∗
P (reiθ) BB∗/δ − δI

] [
v1/
√
sα(r)
u

]

=

2k∑
j=0

(ri)jQj(θ, δ)

[
v1/
√
sα(r)
u

]
= 0.

Therefore ri is an eigenvalue of Q(λ, θ, δ).

Suppose δ ≤ limλ→∞ σmin([ P (λ)√
sα(|λ|)

B]). To establish the existence of an r satis-

fying (3.3), it is sufficient that the polynomial Q(λ, θ, δ) has an imaginary eigenvalue.
When Q(λ, θ, δ) has an imaginary eigenvalue r′i, f(r′, θ) ≤ δ. Since δ ≤ f(r, θ) in the
limit as r → ∞, by the continuity of f with respect to r we deduce f(r̂, θ) = δ for
some r̂ ≥ r′.

For our trisection algorithm it suffices to check whether any of the lines L(0),L(η),
L(2η), . . . ,L(�π

η �η) intersect the δ-level set of f as illustrated in Figure 3.2. When
there is an intersection point the δ-level set is not empty; otherwise the angle η
subtends all of the components. The only part of the algorithm that is not clarified
so far is how we conclude a lower bound on ξ(P,B, α) when η subtends all of the
components, in particular the relation between δ2 in (3.2) and the pair δ and η. For
the next theorem addressing these issues let (r∗, θ∗) be a point where ξ(P,B, α) is
attained. We assume the existence of a constant c known a priori satisfying

(3.4) c ≥ max
0≤j≤k

rj∗√
sα(r∗)

= max

(
1√

sα(r∗)
,

rk∗√
sα(r∗)

)
.

Finding a constant c may be tedious in some special cases. However, when both
αk and α0 are nonzero we can set c = 1

min(α0,αk) . We furthermore use the notation

Kmax = max1≤j≤k ‖Kj‖. The algorithms in [14, 15, 3] for the first order distance
to uncontrollability benefit from an analogous result in [14] which can be stated as,
given a δ ≥ τ(A,B) for all η ∈ [0, 2(δ − τ(A,B))] there exists a pair of real numbers
x, y satisfying σmin([A− (x+ yi)I B]) = σmin([A− (x+ η+ yi)I B]) = δ. Throughout
the rest of this section we omit the parameters of ξ(P,B, α) assuming P , B, and α
are fixed.
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Fig. 3.2. To verify which one of (3.1) and (3.2) hold we check the intersection points of the
δ-level set of f and the set of lines with slopes multiples of η ranging from 0 to π. The closed curves
are the δ-level sets.

Theorem 3.2. Let

lim
λ→∞

σmin

([
P (λ)√
sα(|λ|)

B

])
≥ δ > ξ.

Given any η ∈ [0, 1
k arccos(1 − 1

2 ( δ−ξ
ckKmax

)2)], there exist r1 and r2 (depending on η)
such that

σmin

([
P (r1e

i(θ∗+η))√
sα(r1)

B

])
= δ and σmin

([
P (r2e

i(θ∗−η))√
sα(r2)

B

])
= δ.

Proof. We prove the first equality. The proof of the second equality is similar.
Assume

(3.5) σmin

([
P (rei(θ∗+η))√

sα(r)
B

])
> δ

holds for all r for an η in the interval specified. Since the singular values of a matrix
X are the eigenvalues of the symmetric matrix

[
0 X
X∗ 0

]
,
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they are globally Lipschitz with constant 1 (see Weyl’s Theorem [19, Theorem (4.3.1)])
meaning

δ − ξ < σmin

([
P (r∗e

i(θ∗+η))√
sα(r∗)

B

])
− σmin

([
P (r∗e

iθ∗)√
sα(r∗)

B

])

≤
∥∥∥∥∥
[
P (r∗e

i(θ∗+η))√
sα(r∗)

B

]
−
[
P (r∗e

iθ∗)√
sα(r∗)

B

]∥∥∥∥∥ =

∥∥∥∥∥
∑k

j=1 r
j
∗e

ijθ∗Kj(e
ijη − 1)√

sα(r∗)

∥∥∥∥∥ .

Notice that η ≤ π/k implying cos kη ≤ cos jη for j = 0, . . . , k. Therefore

kcKmax

√
2 − 2 cos kη ≥

k∑
j=1

c‖Kj

√
2 − 2 cos jη‖ ≥

∥∥∥∥∥
∑k

j=1 r
j
∗e

ijθ∗Kj(e
ijη − 1)√

sα(r∗)

∥∥∥∥∥ > δ − ξ

or

1 − 1

2

(
δ − ξ

kcKmax

)2

> cos kη.

Since the cosine function is strictly decreasing in the interval [0, π], we obtain the
contradiction that

η >
1

k
arccos

(
1 − 1

2

(
δ − ξ

kcKmax

)2
)
.

Thus, (3.5) cannot hold, so there exists r′1 satisfying

σmin

([
P (r′1e

i(θ∗+η))√
sα(r′1)

B

])
≤ δ.

The first equality must therefore hold for some r1 ≥ r′1 because of the continuity of
f(r, θ∗ + η) with respect to r and the fact that limr→∞ f(r, θ∗ + η) ≥ δ.

As we have already indicated in (3.1), we first set δ = δ1. The assignment

(3.6) η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)

leads us to the lower bound (3.2) in the case that none of the lines L(0),L(η),L(2η), . . . ,
L(�π

η �η) intersect the δ-level set of f , which we can see as follows. According to The-
orem 3.2 for all θ in the interval

(3.7)

[
θ∗ −

1

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)
, θ∗ +

1

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)]

,

the line L(θ) intersects the δ-level set of f . When none of the lines L(0),L(η),L(2η),
. . . ,L(�π

η �η) intersects the δ-level set of f , it follows that η must be greater than the

length of the interval in (3.7), that is

η =
2

k
arccos

(
1 − 1

2

(
δ1 − δ2
ckKmax

)2
)

>
2

k
arccos

(
1 − 1

2

(
δ − ξ

ckKmax

)2
)
.
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From this inequality it is straightforward to deduce the lower bound (3.2). Algorithm
1 summarizes the approach described.

As the accuracy and efficiency of the algorithm depend on the extraction of the
imaginary eigenvalues of the matrix polynomial Q(λ, θ, δ), it is worth pointing out
how these eigenvalues can be computed numerically in a reliable fashion. The ma-
trix polynomial Q(λ, θ, δ) has a special structure; its even coefficients are Hermitian,
while its odd coefficients are skew-Hermitian. The eigenvalues of polynomials with
this structure are either imaginary or in pairs (λ,−λ̄) [20]. The standard way to
solve a polynomial eigenvalue problem of size 2n and degree 2k is to reduce it to
an equivalent generalized eigenvalue problem H − λN of size 4nk by a transforma-
tion called linearization. The most widely used linearization is the companion form
[21]. In [21] vector spaces of linearizations that are generalizations of the companion
form are introduced. There are two issues one needs to consider when selecting a
linearization. First the structure must be preserved, that is the matrices H,N in
the transformation above must be Hermitian and skew-Hermitian, respectively. Sec-

Algorithm 1 Trisection algorithm for the higher order distance to uncontrollability

Call: [L,U ] ← HODU(P ,B,α,tol,c).
Input: P ∈ C

k×n×n (the matrix polynomial), B ∈ C
n×m, α ∈ R

k

(nonnegative scaling factors, not all zero), tol (desired toler-
ance), c (a positive real number satisfying (3.4)).

Output: L,U with L < U , U − L ≤ tol. The interval [L,U ] contains
the higher order distance to uncontrollability.

Initially set

U ← σmin

([
Kk

αk
B
])

if αk > 0,

U ← σmin(B) if αk = 0,

and L ← 0.
while U − L > tol do

% Trisection step
Set δ1 ← L + 2(U − L)/3 and δ2 ← L + (U − L)/3.
Set δ ← δ1 and η as defined in (3.6)
Set Intersection ← FALSE.
for θ = 0 to π in increments of η do

Compute the eigenvalues of Q(λ, θ, δ).
if Q(λ, θ, δ) has an imaginary eigenvalue then

% An intersection point is detected
Update the upper bound, U ← δ1.
Intersection ← TRUE.
Break. (Leave the for loop.)

end if
end for
if ¬Intersection then

% No intersection point is detected
Update the lower bound, L ← δ2.

end if
end while
Return [L,U ].
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ond the eigenvalues of the pencil H− λN have different condition numbers than the
eigenvalues of the matrix polynomial Q(λ, θ, δ). Ideally we must use a linearization
preserving the structure that does not degrade the conditioning of the eigenvalues of
the original problem. The linearizations in the vector spaces specified in [21] that
preserve the even-odd structure of Q(λ, θ, δ) are identified in [20]. Furthermore in
[17] it was shown that in these vector spaces there are linearizations preserving the
conditioning of the eigenvalues of Q(λ, θ, δ). How best to find such a linearization
preserving the structure and the conditioning combined with an even-odd generalized
eigenvalue solver is still under investigation. When such an implementation is used,
simple imaginary eigenvalues remain on the imaginary axis even in the presence of
rounding errors. Therefore tolerances are not needed.

At each iteration the algorithm requires the solution of the eigenvalue problems
Q(λ, 0, δ), Q(λ, η, δ), . . . , Q(λ, �π

η �η, δ), each typically at a cost of O(n3k3). The overall
complexity of an iteration is

(3.8) O

⎛
⎜⎜⎝ n3k4

arccos

(
1 − 1

2

(
δ1−δ2
ckKmax

)2
)
⎞
⎟⎟⎠ .

It is apparent that the initial iterations for which δ1−δ2 is relatively large are cheaper,
while the last iteration for which δ1 − δ2 ≈ tol/2 is the most expensive.

4. Numerical results. All of the numerical experiments in this section are
performed with MATLAB 6.5 running on a PC with 1000 MHz Intel processor and
256MB RAM.

4.1. Computing the distance to uncontrollability for first order sys-
tems. Even though it is much slower than the methods in [14, 3, 15], the trisection
algorithm suggested can be applied to estimate the first order distance to uncontrol-
lability with k = 1, K1 = I, and α = [0 1] so that perturbations to K1 = I are not
allowed. It is well known that in this case the distance to uncontrollability is attained
at a point λ∗ with |λ∗| = c ≤ 2(‖K0‖ + ‖B‖). We choose K0 as the Toeplitz matrix

⎡
⎢⎢⎣

1 3 0 0
−2 1 3 0
0 −2 1 3
0 0 −2 1

⎤
⎥⎥⎦

and B = [2 2 2 2]T . When we require an interval of length 10−2 or less, Algorithm 1
returns [0.473, 0.481] in 12 iterations which contains the distance to uncontrollability
0.477. Table 4.1 lists the cumulative running time after each iteration in seconds.
Overall we observe that reaching one digit accuracy is considerably cheaper than two
digit accuracy. When we allow the perturbations to the leading coefficient by setting
α = [1 1], there is a closer uncontrollable system at a distance of τ(P,B, α) ≤ 0.145
which is the upper bound returned by Algorithm 1.

4.2. A quadratic brake model. In [12] the vibrations of a drum brake system
are modeled by the quadratic equation

(4.1) Mx(2)(t) + K(μ)x(t) = f(t)
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Table 4.1

Total running time of the trisection algorithm after each iteration on a Toeplitz matrix and a
vector pair.

Iteration Total running time Interval [L,U ]
1 0.400 [0.000,0.667]
2 1.680 [0.222,0.667]
3 2.510 [0.222,0.519]
4 5.369 [0.321,0.519]
5 9.670 [0.387,0.519]
6 16.110 [0.431,0.519]
7 20.140 [0.431,0.489]
8 34.580 [0.450,0.489]
9 56.770 [0.463,0.489]
10 70.470 [0.463,0.481]
11 118.40 [0.469,0.481]
12 190.93 [0.473,0.481]

Table 4.2

The intervals computed by the trisection algorithm for the brake system for various μ values in
an absolute sense in the second column and in a relative sense in the third column.

μ Interval [L,U ] (Absolute) Interval [L,U ] (Relative)
0.05 [0.051,0.059] [0.038,0.046]
0.10 [0.097,0.105] [0.071,0.079]
0.15 [0.140,0.148] [0.104,0.112]
0.20 [0.184,0.191] [0.137,0.145]
0.50 [0.418,0.426] [0.325,0.333]
1 [0.676,0.684] [0.574,0.581]
10 [0.990,0.997] [0.984,0.991]
100 [0.993,1.000] [0.987,0.994]
1000 [0.993,1.000] [0.987,0.994]

with the mass and stiffness matrices

M =

[
m 0
0 m

]
, K(μ) = g

[
(sin γ + μ cos γ) sin γ −μ− (sin γ + μ cos γ) cos γ
(μ sin γ − cos γ) sin γ 1 + (−μ sin γ + cos γ) cos γ

]
.

Suppose the force on the brake system has just the vertical component determined
by the input

f(t) =

[
fx(t)
fy(t)

]
=

[
0
1

]
u(t).

For the parameters m = 5, g = 1 and γ = π
100 , we consider two cases. First by

setting α = [1 0 1], we impose equal importance on the perturbations to the mass
and stiffness matrices. Notice that for small μ and γ, the system is close to being
uncontrollable. In the second column in Table 4.2 the intervals of length 10−2 or
less containing the distance to uncontrollability returned by Algorithm 1 are provided
for various values of μ. The algorithm iterates 16 times to reach two digit accuracy.
Second we assign scaling to the perturbations proportional to the norms of the mass
and stiffness matrices, that is α = [‖M‖ 0 ‖K‖]. The intervals returned by Algorithm
1 for this second case are given in the rightmost column in Table 4.2. As expected
the distance to uncontrollability again increases with respect to μ. The system (4.1)
is closer to being uncontrollable in a relative sense than in an absolute sense.

If we allow perturbations to all coefficients with equal scaling (e.g., α = [1 1 1]),
then usually the first order distance uncontrollability of the embedded system (1.5) is
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Table 4.3

Running time of the trisection algorithm in seconds with respect to the size and order of the
systems with normally distributed coefficient matrices.

Size / order First order Quadratic Cubic
5 10 (10) 192 (12) 1237 (13)
10 83 (12) 1392 (11) 12485 (12)
15 271 (13) 6390 (14) 37324 (12)

considerably smaller than the actual value τ(P,B, α), since the perturbations are not
constrained so that the structure of the embedding can be preserved. For instance, for
the drum brake system with α = [1 1 1] and μ = 0.1, τ(P,B, α) ∈ [0.097, 0.105] (up
to two digit accuracy it does not make any difference whether we allow perturbations
to the zero coefficient K1 or not) whereas the standard unstructured distance to
uncontrollability of the embedding lies in the interval [0.012, 0.020].

4.3. Running time with respect to the size and order of the system.
We run the trisection algorithm on systems with random coefficients of various size
and order. To be precise the entries of all of the coefficient matrices are chosen from
a normal distribution with zero mean and variance one independently. Table 4.3
illustrates how the running time in seconds varies with respect to the size and order
of the system. In all of the examples intervals of length at most 10−2 containing
the absolute distance to uncontrollability (α is the vector of ones) are returned. The
numbers in parentheses correspond to the number of trisection iterations needed. The
variation in the running time with respect to the size and order is consistent with the
complexity suggested by (3.8).
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AN EQUILIBRIUM PROBLEM FOR THE LIMITING EIGENVALUE
DISTRIBUTION OF BANDED TOEPLITZ MATRICES∗

MAURICE DUITS† AND ARNO B. J. KUIJLAARS‡

Abstract. We study the limiting eigenvalue distribution of n × n banded Toeplitz matrices as
n→∞. From classical results of Schmidt, Spitzer, and Hirschman it is known that the eigenvalues
accumulate on a special curve in the complex plane and the normalized eigenvalue counting measure
converges weakly to a measure on this curve as n → ∞. In this paper, we characterize the limiting
measure in terms of an equilibrium problem. The limiting measure is one component of the unique
vector of measures that minimizes an energy functional defined on admissible vectors of measures.
In addition, we show that each of the other components is the limiting measure of the normalized
counting measure on certain generalized eigenvalues.

Key words. banded Toeplitz matrix, equilibrium problem, potential theory, limiting eigenvalue
distribution, generalized eigenvalues
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1. Introduction. For an integrable function a : {z ∈ C | |z| = 1} → C defined
on the unit circle in the complex plane, the n× n Toeplitz matrix Tn(a) with symbol
a is defined by

(1.1)
(
Tn(a)

)
jk

= aj−k, j, k = 1, . . . , n,

where ak is the kth Fourier coefficient of a,

(1.2) ak =
1

2π

∫ 2π

0

a(eiθ)e−ikθ dθ.

In this paper we study banded Toeplitz matrices for which the symbol has only a
finite number of nonzero Fourier coefficients. We assume that there exist p, q ≥ 1
such that

(1.3) a(z) =

p∑
k=−q

akz
k, ap �= 0, a−q �= 0.

Thus Tn(a) has at most p + q + 1 nonzero diagonals. As in [1, page 263], we also
assume, without loss of generality, that

(1.4) gcd {k ∈ Z | ak �= 0} = 1.
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We are interested in the limiting behavior of the spectrum of Tn(a) as n → ∞.
We use spTn(a) to denote the spectrum of Tn(a):

spTn(a) = {λ ∈ C | det(Tn(a) − λI) = 0}.

Spectral properties of banded Toeplitz matrices are the topic of the recent book [1] by
Böttcher and Grudsky. We will refer the reader to this book frequently, in particular
to Chapter 11 where the limiting behavior of the spectrum is discussed.

The limiting behavior of spTn(a) was characterized by Schmidt and Spitzer [10].
They considered the set

(1.5) lim inf
n→∞

spTn(a)

consisting of all λ ∈ C such that there exists a sequence {λn}n∈N, with λn ∈ spTn(a),
converging to λ, and the set

(1.6) lim sup
n→∞

spTn(a)

consisting of all λ such that there exists a sequence {λn}n∈N, with λn ∈ spTn(a), that
has a subsequence converging to λ. Schmidt and Spitzer showed that these two sets
are equal and can be characterized in terms of the algebraic equation

(1.7) a(z) − λ =

p∑
k=−q

akz
k − λ = 0.

For every λ ∈ C there are p + q solutions for (1.7), which we denote by zj(λ) for
j = 1, . . . , p + q. We order these solutions by absolute value, so that

(1.8) 0 < |z1(λ)| ≤ |z2(λ)| ≤ · · · ≤ |zp+q(λ)|.

When all inequalities in (1.8) are strict then the values zk(λ) are unambiguously
defined. If equalities occur, then we choose an arbitrary numbering so that (1.8)
holds. The result by Schmidt and Spitzer [10], [1, Theorem 11.17] is that

(1.9) lim inf
n→∞

spTn(a) = lim sup
n→∞

spTn(a) = Γ0,

where

(1.10) Γ0 := {λ ∈ C | |zq(λ)| = |zq+1(λ)|}.

This result gives a description of the asymptotic location of the eigenvalues. The
eigenvalues accumulate on the set Γ0, which is known to be a disjoint union of a finite
number of (open) analytic arcs and a finite number of exceptional points [1, Theorem
11.9]. It is also known that Γ0 is connected (see [13], [1, Theorem 11.19]) and that
C \ Γ0 need not be connected (see [1, Theorem 11.20], [2, Proposition 5.2]). See [1]
for many beautiful illustrations of eigenvalues of banded Toeplitz matrices.

The limiting eigenvalue distribution was determined by Hirschman [5], [1, Theo-
rem 11.16]. He showed that there exists a Borel probability measure μ0 on Γ0 such
that the normalized eigenvalue counting measure of Tn(a) converges weakly to μ0 as
n → ∞. That is,

(1.11)
1

n

∑
λ∈spTn(a)

δλ → μ0,
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where in the sum each eigenvalue is counted according to its multiplicity. The measure
μ0 is absolutely continuous with respect to the arclength measure on Γ0 and has an
analytic density on each open analytic arc in Γ0, which can be explicitly represented
in terms of the solutions of the algebraic equation (1.7) as follows. Equip every open
analytic arc in Γ0 with an orientation. The orientation induces ± sides on each arc,
where the + side is on the left when traversing the arc according to its orientation,
and the − side is on the right. The limiting measure μ0 is then given by

(1.12) dμ0(λ) =
1

2πi

q∑
j=1

(
z′j+(λ)

zj+(λ)
−

z′j−(λ)

zj−(λ)

)
dλ,

where dλ is the complex line element on Γ0 (taken according to the orientation), and
where zj±(λ), λ ∈ Γ0, is the limiting value of zj(λ

′) as λ′ → λ from the ± side of the
arc. These limiting values exist for every λ ∈ Γ0, with the possible exception of the
finite number of exceptional points.

Note that the right-hand side of (1.12) is a priori a complex measure, and it is
not immediately clear that it is in fact a probability measure. In the original paper
[5] and in the book [1, Theorem 11.16], the authors give a different expression for the
limiting density, from which it is clear that the measure is nonnegative. We prefer
to work with the complex expression (1.12), since it allows for a direct generalization
which we will need in this paper.

Note also that if we reverse the orientation on an arc in Γ0, then the ± sides
are reversed. Since the complex line element dλ changes sign as well, the expression
(1.12) does not depend on the choice of orientation.

The following is a very simple example, which, however, serves as a motivation
for the results in the paper.

Example 1.1. Consider the symbol a(z) = z + 1/z. In this case we find that
Γ0 = [−2, 2] and μ0 is absolutely continuous with respect to the Lebesgue measure
and has density

(1.13)
dμ0(λ)

dλ
=

1

π
√

4 − λ2
, λ ∈ (−2, 2).

This measure is well known in potential theory and is called the arcsine measure or
the equilibrium measure of Γ0; see, e.g., [9]. It has the property that it minimizes the
energy functional I, defined by

(1.14) I(μ) =

∫∫
log

1

|x− y| dμ(x) dμ(y),

among all Borel probability measures μ on [−2, 2]. The measure μ0 is also character-
ized by the equilibrium condition

(1.15)

∫
log |x− λ| dμ0(λ) = 0, x ∈ [−2, 2],

which is the Euler–Lagrange variational condition for the minimization problem.
The fact that μ0 is the equilibrium measure of Γ0 is special for symbols a with

p = q = 1. In that case one may think of the eigenvalues of Tn(a) as charged
particles on Γ0, each eigenvalue having a total charge 1/n, that repel each other with
logarithmic interaction. The particles seek to minimize the energy functional (1.14).
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As n → ∞, they distribute themselves according to μ0, and μ0 is the minimizer of
(1.14) among all probability measures supported on Γ0.

The aim of this paper is to characterize μ0 for general symbols a of the form (1.3)
also in terms of an equilibrium problem from potential theory. The corresponding
equilibrium problem is more complicated since it involves not only the measure μ0,
but a sequence of p + q − 1 measures

μ−q+1, μ−q+2, . . . , μ−1, μ0, μ1, . . . , μp−2, μp−1

that jointly minimize an energy functional.

2. Statement of results.

2.1. The energy functional. To state our results we need to introduce some
notions from potential theory. Main references for potential theory in the complex
plane are [8] and [9].

We will mainly work with finite positive measures on C, but we will also use
ν1 −ν2, where ν1 and ν2 are positive measures. The measures need not have bounded
support. If ν has unbounded support, then we assume that

(2.1)

∫
log(1 + |x|) dν(x) < ∞.

In that case the logarithmic energy of ν is defined as

(2.2) I(ν) =

∫
log

1

|x− y| dν(x)dν(y)

and I(ν) ∈ (−∞,+∞].
Definition 2.1. We define Me as the collection of positive measures ν on C

satisfying (2.1) and having finite energy, i.e., I(ν) < +∞. For c > 0 we define

(2.3) Me(c) = {ν ∈ Me | ν(C) = c}.

The mutual energy I(ν1, ν2) of two measures ν1 and ν2 is

(2.4) I(ν1, ν2) =

∫
log

1

|x− y| dν1(x)dν2(y).

It is well defined and finite if ν1, ν2 ∈ Me, and in that case we have

(2.5) I(ν1 − ν2) = I(ν1) + I(ν2) − 2I(ν1, ν2).

If ν1, ν2 ∈ Me(c) for some c > 0, then

(2.6) I(ν1 − ν2) ≥ 0

with equality if and only if ν1 = ν2. This is a well-known result if ν1 and ν2 have
compact support [9]. For measures in Me(c) with unbounded support, this is a recent
result of Simeonov [11], who obtained this from a very elegant integral representation
for I(ν1 − ν2). It is a consequence of (2.6) that I is strictly convex on Me(c), since

I

(
ν1 + ν2

2

)
=

1

2
(I(ν1) + I(ν2)) − I

(
ν1 − ν2

2

)

≤ 1

2
(I(ν1) + I(ν2)) for ν1, ν2 ∈ Me(c)

with equality if and only if ν1 = ν2.
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Before we can state the equilibrium problem we also need to introduce the sets

(2.7) Γk := {λ ∈ C | |zq+k(λ)| = |zq+k+1(λ)|}, k = −q + 1, . . . , p− 1,

which for k = 0 reduce to the definition (1.10) of Γ0. We will show that each Γk

is the disjoint union of a finite number of open analytic arcs and a finite number of
exceptional points. All Γk are unbounded, except for Γ0 which is compact.

The equilibrium problem will be defined for a vector of measures denoted by �ν =
(ν−q+1, . . . , νp−1). The component νk is a measure on Γk satisfying some additional
properties that are given in the following definition.

Definition 2.2. We call a vector of measures �ν = (ν−q+1, . . . , νp−1) admissible
if νk ∈ Me, νk is supported on Γk, and

(2.8) νk(Γk) =

⎧⎨
⎩

q+k
q if k ≤ 0,

p−k
p if k ≥ 0

for every k = −q + 1, . . . , p− 1.
Now we are ready to state our first result. The proof is given in section 4.
Theorem 2.3. Let the symbol a satisfy (1.3) and (1.4), and let the curves Γk be

defined as in (2.7). For each k ∈ {−q + 1, . . . , p− 1}, define the measure μk on Γk by

(2.9) dμk(λ) =
1

2πi

q+k∑
j=1

(
z′j+(λ)

zj+(λ)
−

z′j−(λ)

zj−(λ)

)
dλ,

where dλ is the complex line element on each analytic arc of Γk according to a chosen
orientation of Γk (cf. discussion after (1.12)). Then

(a) �μ = (μ−q+1, . . . , μp−1) is admissible.
(b) There exist constants lk such that

2

∫
log |λ− x| dμk(x) =

∫
log |λ− x| dμk+1(x)

+

∫
log |λ− x| dμk−1(x) + lk

(2.10)

for k = −q + 1, . . . , p − 1 and λ ∈ Γk. Here we let μ−q and μp be the zero
measures.

(c) �μ = (μ−q+1, . . . , μp−1) is the unique minimizer of the energy functional J
defined by

(2.11) J(�ν) =

p−1∑
k=−q+1

I(νk) −
p−2∑

k=−q+1

I(νk, νk+1)

for admissible vectors of measures �ν = (ν−q+1, . . . , νp−1).
The relations (2.10) are the Euler–Lagrange variational conditions for the mini-

mization problem for J among admissible vectors of measures.
It may not be obvious that the energy functional (2.11) is bounded from below.

This can be seen from the alternative representation

J(�ν) =

(
1

q
+

1

p

)
I(ν0) +

q−1∑
k=1

k(k + 1) I

(
ν−q+k

k
− ν−q+k+1

k + 1

)

+

p−1∑
k=1

k(k + 1) I

(
νp−k

k
− νp−k−1

k + 1

)
.(2.12)
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We leave the calculation leading to this identity to the reader. Under the normaliza-
tions (2.8) it follows by (2.6) that each term in the two finite sums on the right-hand
side of (2.12) is nonnegative, so that

J(�ν) ≥
(

1

q
+

1

p

)
I(ν0).

Since ν0 is a Borel probability measure on Γ0 and Γ0 is compact, we indeed have that
the energy functional is bounded from below on admissible vectors of measures �ν.

The alternative representation (2.12) will play a role in the proof of Theorem 2.3.
Yet another representation for J is

(2.13) J(�ν) =

p−1∑
j,k=−q+1

Ajk I(νj , νk),

where the interaction matrix A has entries

(2.14) Ajk =

⎧⎪⎨
⎪⎩

1 if j = k,

− 1
2 if |j − k| = 1,

0 if |j − k| ≥ 2.

The energy functional in the form (2.13) and (2.14) also appears in the theory of
simultaneous rational approximation, where it is the interaction matrix for a Nikishin
system [7, Chapter 5].

It allows for the following physical interpretation: on each of the curves Γk one
puts charged particles with total charge (q+k)/q or (p−k)/p, depending on whether
k ≤ 0 or k ≥ 0. Particles that lie on the same curve repel each other. The particles
on two consecutive curves interact in the sense that they attract each other but in a
way that is half as strong as the repulsion on a single curve. Particles on different
curves that are not consecutive do not interact with each other in a direct way.

2.2. The measures μk as limiting measures of generalized eigenvalues.
By (1.12) and Theorem 2.3 we know that the measure μ0 that appears in the minimizer
of the energy functional J is the limiting measure for the eigenvalues of Tn(a). It is
natural to ask about the other measures μk that appear in the minimizer. In our
second result we show that the measures μk can be obtained as limiting counting
measures for certain generalized eigenvalues.

Let k ∈ {−q+1, . . . , p−1}. We use Tn(z−k(a−λ)) to denote the Toeplitz matrix
with the symbol z 	→ z−k(a(z) − λ). For example, for k = 1, q = 1, and p = 2, we
have

Tn(z−k(a− λ)) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 a0 − λ a−1

a2 a1 a0 − λ a−1

a2 a1 a0 − λ a−1

. . .
. . .

. . .
. . .

a2 a1 a0 − λ a−1

a2 a1 a0 − λ
a2 a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Definition 2.4. For k ∈ {−q+1, . . . , p−1} and n ≥ 1, we define the polynomial
Pk,n by

(2.15) Pk,n(λ) = detTn(z−k(a− λ))
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and we define the kth generalized spectrum of Tn(a) by

(2.16) spk Tn(a) = {λ ∈ C | Pk,n(λ) = 0}.

Finally, we define μk,n as the normalized zero counting measure of spk Tn(a)

(2.17) μk,n =
1

n

∑
λ∈spk Tn(a)

δλ,

where in the sum each λ is counted according to its multiplicity as a zero of Pk,n.
Note that λ ∈ spk Tn(a) is a generalized eigenvalue (in the usual sense) for the

matrix pencil (Tn(z−ka), Tn(z−k)), that is, det(A− λB) = 0 with A = Tn(z−ka) and
B = Tn(z−k). If k = 0, then B = I and sp0 Tn(a) = spTn(a). If k �= 0, then B is
not invertible and the generalized eigenvalue problem is singular, causing there to be
fewer than n generalized eigenvalues. In fact, since Tn(z−k(a−λ)) has exactly n−|k|
entries a0 −λ, we easily get that the degree of Pk,n is at most n−|k| and so there are
at most n− |k| generalized eigenvalues. Due to the band structure of Tn(z−k(a−λ)),
the actual number of generalized eigenvalues is substantially smaller.

Proposition 2.5. Let k ∈ {−q + 1, . . . , p − 1}. Let Pk,n(λ) = γk,nλ
dk,n + · · ·

have degree dk,n and leading coefficient γk,n �= 0. Then

(2.18) dk,n ≤

⎧⎨
⎩

q+k
q n if k < 0,

p−k
p n if k > 0.

Equality holds in (2.18) if either k > 0 and n is a multiple of p, or k < 0 and n is a
multiple of q, and in those cases we have

γk,n =

⎧⎨
⎩

(−1)(k+1)na
|k|n/q
−q if k < 0 and n ≡ 0 mod q,

(−1)(k+1)na
kn/p
p if k > 0 and n ≡ 0 mod p.

(2.19)

We now come to our second main result. It is the analogue of the results of
Schmidt, Spitzer, and Hirschman for the generalized eigenvalues.

Theorem 2.6. Let k ∈ {−q + 1, . . . , p− 1}. Then

(2.20) lim inf
n→∞

spk Tn(a) = lim sup
n→∞

spk Tn(a) = Γk,

and

(2.21) lim
n→∞

∫
C

φ(z) dμk,n(z) =

∫
C

φ(z) dμk(z)

holds for every bounded continuous function φ on C.
The key element in the proof of Theorem 2.6 is a beautiful formula of Widom

[14] (see [1, Theorem 2.8]) for the determinant of a banded Toeplitz matrix. In the
present situation Widom’s formula yields the following. Let λ ∈ C be such that the
solutions zj(λ) of the algebraic equation (1.7) are mutually distinct. Then

(2.22) Pk,n(λ) = detTn(z−k(a− λ)) =
∑
M

CM (λ) (wM (λ))
n
,
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where the sum is over all subsets M ⊂ {1, 2, . . . , p+ q} of cardinality |M | = p−k and
for each such M we have

(2.23) wM (λ) := (−1)p−kap
∏
j∈M

zj(λ)

and (with M := {1, 2, . . . , p + q} \M)

(2.24) CM (λ) :=
∏
j∈M

zj(λ)q+k
∏
j∈M
l∈M

(zj(λ) − zl(λ))−1.

The formula (2.22) shows that for large n the main contribution comes from those M
for which |wM (λ)| is the largest possible. For λ ∈ C \ Γk there is a unique such M ,
namely

(2.25) M = Mk := {q + k + 1, q + k + 2, . . . , p + q},

because of the ordering (1.8).

2.3. Overview of the rest of the paper. In section 3 we will state some
preliminary results about analyticity properties of the solutions zj of the algebraic
equation (1.7). These results will be needed in the proof of Theorem 2.3 which is
given in section 4. In section 5 we will prove Proposition 2.5 and Theorem 2.6.
Finally, we conclude the paper by giving some examples in section 6.

3. Preliminaries. In this section we collect a number of properties of the curves
Γk and the solutions z1(λ), . . . , zp+q(λ) of the algebraic equation (1.7). For conve-
nience we define throughout the rest of the paper

Γ−q = Γp = ∅ and μ−q = μp = 0 (the zero measure).

Occasionally, we also use

z0(λ) = 0, zp+q+1(λ) = +∞.

3.1. The structure of the curves Γk. We start with a definition; cf. [1, sec-
tion 11.2].

Definition 3.1. A point λ0 ∈ C is called a branch point if a(z) − λ0 = 0 has a
multiple root. A point λ0 ∈ Γk is an exceptional point of Γk if λ0 is a branch point,
or if there is no open neighborhood U of λ such that Γk ∩U is an analytic arc starting
and terminating on ∂U .

If λ0 is a branch point, then there is a z0 such that a(z0) = λ0 and a′(z0) = 0.
Then we may assume that z0 = zq+k(λ0) = zq+k+1(λ0) for some k and λ0 ∈ Γk. For
a symbol a of the form (1.3), the derivative a′ has exactly p + q zeros (counted with
multiplicity), so that there are exactly p+ q branch points counted with multiplicity.

The solutions zk(λ) also have branching at infinity (unless p = 1 or q = 1). There
are p solutions of (1.7) that tend to infinity as λ → ∞ and q solutions that tend to 0.
Indeed, we have

(3.1) zk(λ) =

⎧⎨
⎩

ckλ
−1/q(1 + O(λ−1/q)) for k = 1, . . . , q,

ckλ
1/p(1 + O(λ−1/p)) for k = q + 1, . . . , p + q
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as λ → ∞. Here c1, . . . , cq are the q distinct solutions of cq = a−q (taken in some
order depending on λ), and cq+1, . . . , cp+q are the p distinct solutions of cp = a−1

p

(again taken in some order depending on λ).
The following proposition gives the structure of Γk at infinity.
Proposition 3.2. Let k ∈ {−q+1, . . . , p−1}\{0}. Then there is an R > 0 such

that Γk ∩ {λ ∈ C | |λ| > R} is a finite disjoint union of analytic arcs, each extending
from |λ| = R to infinity.

Proof. The proof is similar to the proof of [1, Proposition 11.8] where a similar
structure theorem was proved for finite branch points. We omit the details.

It follows from Proposition 3.2 that the exceptional points for Γk are in a bounded
set. Since the set of exceptional points is discrete we conclude that there are only
finitely many exceptional points. Then we have the following result about the struc-
ture of Γk.

Proposition 3.3. For every k ∈ {−q + 1, . . . , p − 1}, the set Γk is the disjoint
union of a finite number of open analytic arcs and a finite number of exceptional
points. The set Γk has no isolated points.

Proof. This was proved for k = 0 in [10] and [1, Theorem 11.9]. For general
k, there are only finitely many exceptional points, and the proof follows in a similar
way.

3.2. The Riemann surface. From Proposition 3.3 it follows that the curves Γk

can be taken as cuts for the p + q-sheeted Riemann surface of the algebraic equation
(1.7). We number the sheets from 1 to p + q, where the kth sheet of the Riemann
surface is

(3.2) Rk = {λ ∈ C | |zk−1(λ)| < |zk(λ)| < |zk+1(λ)|} = C \ (Γ−q+k−1 ∪ Γ−q+k).

Thus zk is well defined and analytic on Rk.
The easiest case to visualize is the case where consecutive cuts are disjoint, that

is, Γ−q+k−1 ∩ Γ−q+k = ∅ for every k = 2, . . . , p + q − 2. In that case we have that
Rk is connected to Rk+1 via Γ−q+k in the usual crosswise manner, and zk+1 is the
analytic continuation of zk across Γ−q+k.

The general case is described in the following proposition.
Proposition 3.4. Suppose A is an open analytic arc such that A ⊂ Γ−q+k, for

k = k1, . . . , k2, and A ∩ (Γ−q+k1−1 ∪ Γ−q+k2+1) = ∅. Then for k = k1, . . . , k2 + 1,
we have that the analytic continuation of zk across A is equal to zk1+k2−k+1. Thus
across A, we have that Rk is connected to Rk1+k2−k+1.

Proof. We have that

|zk1(λ)| = |zk1+1(λ)| = · · · = |zk2(λ)| = |zk2+1(λ)|

for λ ∈ A, with strict inequalities (<) for λ on either side of A. Choose an orientation
for A. Then there is a permutation π of {k1, . . . , k2 +1} such that zπ(k) is the analytic
continuation of zk from the + side of A to the − side of A.

Assume that there are k, k′ ∈ {k1, . . . , k2 + 1} such that k < k′ and π(k) < π(k′).
Take a regular λ0 ∈ A and a small neighborhood U of λ0 such that A∩U = Γ−q+k ∩
U = Γ−q+k′ ∩ U and A ∩ U is an analytic arc starting and terminating on ∂U . Then
we have a disjoint union U = U+ ∪U− ∪ (A ∩U), where U+ (U−) is the part of U on
the + side (− side) of A. The function φ defined by

φ(λ) =

⎧⎨
⎩

zk(λ)
zk′ (λ) for λ ∈ U+,

zπ(k)(λ)

zπ(k′)(λ) for λ ∈ U−
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has an analytic continuation to U and satisfies |φ(λ)| < 1 for λ ∈ U+ ∪ U− and
|φ(λ)| = 1 for λ ∈ A ∩ U . This contradicts the maximum principle for analytic
functions. Therefore π(k) > π(k′) for every k, k′ ∈ {k1, . . . , k2 + 1} with k < k′, and
this implies that π(k) = k1+k2−k+1 for every k = k1, . . . , k2+1, and the proposition
follows.

3.3. The functions wk(λ). A major role is played by the functions wk which,
for k ∈ {−q + 1, . . . , p− 1}, are defined by

(3.3) wk(λ) =

q+k∏
j=1

zj(λ) for λ ∈ C \ Γk.

Note that wk = (−1)p−ka−1
p w{1,...,k} in the notation of (2.23).

Proposition 3.5. The function wk is analytic in C \ Γk.
Proof. Since zj is analytic on Rj = C \ (Γ−q+j−1 ∪ Γ−q+j) (see (3.2)), we obtain

from its definition that wk is analytic in C \
⋃k+q

j=1 Γ−q+j . Let A be an analytic arc in
Γ−q+j \ Γk for some j < k + q. Choose an orientation on A. Since the arc is disjoint
from Γk, we have that zj+(λ) = zπ(j)−(λ), for λ ∈ A and j = 1, . . . , q + k, where π is
a permutation of {1, . . . , q+k}. Since wk is symmetric in the zj ’s for j = 1, . . . , q+k,
it then follows that

wk+(λ) = wk−(λ) for λ ∈ A,

which shows the analyticity in C \ Γk with the possible exception of isolated singu-
larities at the exceptional points of Γ−q+1, Γ−q+2, . . . , Γk−1. However, each zj , and
therefore also wk, is bounded near such an exceptional point, so that any isolated
singularity is removable.

In the rest of the paper we make frequent use of the logarithmic derivative w′
k/wk

of wk. By the fact that wk does not vanish on C\Γk and by Proposition 3.5, it follows
that w′

k/wk is analytic in C \ Γk. By Proposition 3.4 it, moreover, has an analytic
continuation across every open analytic arc A ⊂ Γk. Near the exceptional points that
are not branch points w′

k/wk remains bounded. At the branch points it can, however,
have singularities of a certain order.

Proposition 3.6. Let λ0 ∈ Γk be a branch point of Γk. Then there exists an
m ∈ N such that

(3.4)
w′

k(λ)

wk(λ)
= O

(
(λ− λ0)

−m/(m+1)
)

as λ → λ0 with λ ∈ C \ Γk.
Proof. Let 1 ≤ j ≤ q+k. We investigate the behavior of zj(λ) when λ → λ0 such

that λ remains in a connected component of C \ (Γj−1 ∪ Γj). Then zj(λ) → z0 for
some z0 ∈ C with a(z0) = λ0. Let m0 + 1 be the multiplicity of z0 as a solution of
a(z) = λ0. Then

(3.5) a(z) = λ0 + c0(z − z0)
m0+1(1 + O(z − z0)), z → z0,

for some nonzero constant c0. Therefore,

zj(λ) = z0 + O((λ− λ0)
1/(m0+1))(3.6)

and

z′j(λ) = O((λ− λ0)
−m0/(m0+1))(3.7)
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for λ → λ0 such that λ remains in the same connected component of C \ (Γj−1 ∪ Γj).
Let m be the maximum of all the multiplicities of the roots of a(z) = λ0. Then it
follows from (3.6) and (3.7) that

z′j(λ)

zj(λ)
= O((λ− λ0)

−m/(m+1))

as λ → λ0 with λ ∈ C \ Γk. Then we obtain (3.4) in view of (3.3).
We end this section by giving the asymptotics of w′

k/wk for λ → ∞.
Proposition 3.7. As λ → ∞ with λ ∈ C \ Γk, we have

(3.8)
w′

k(λ)

wk(λ)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− q+k
q λ−1 + O

(
λ−1−1/q

)
for k = −q + 1, . . . ,−1,

−λ−1 + O(λ−2) for k = 0,

−p−k
p λ−1 + O

(
λ−1−1/p

)
for k = 1, . . . , p− 1.

Proof. This follows directly from (3.1) and (3.3).

4. Proof of Theorem 2.3. We use the function wk introduced in (3.3). We
define μk by the formula (2.9) and we note that

(4.1) dμk(λ) =
1

2πi

(
w′

k+(λ)

wk+(λ)
−

w′
k−(λ)

wk−(λ)

)
dλ.

Proposition 4.1. For each k = −q + 1, . . . , p− 1, we have that μk is a measure
on Γk with total mass μk(Γk) = (q + k)/q if k ≥ 0 and μk(Γk) = (p− k)/p if k ≥ 0.

Proof. We first show that μk is a measure, i.e., that it is nonnegative on each
analytic arc of Γk. Let A be an analytic arc in Γk consisting only of regular points.
Let t 	→ λ(t) be a parametrization of A in the direction of the orientation of Γk. Then

dμk(λ) =
1

2πi

(
w′

k+(λ(t))

wk+(λ(t))
−

w′
k−(λ(t))

wk−(λ(t))

)
λ′(t)dt

=
1

2πi

(
d

dt
log

wk+(λ(t))

wk−(λ(t))

)
dt.

To conclude that μk is nonnegative on A, it is thus enough to show that

(4.2) Re log
wk+(λ)

wk−(λ)
= 0 for λ ∈ A

and

(4.3) Im log
wk+(λ)

wk−(λ)
increases along A.

Since |wk+(λ)| = |wk−(λ)| for λ ∈ A, we have (4.2) so that it only remains to prove
(4.3).

There is a neighborhood U of A such that U \ Γk has two components, denoted
U+ and U−, where U+ is on the + side of Γk and U− on the − side. It follows from
Proposition 3.4 that wk has an analytic continuation from U− to U , which we denote
by ŵk, and that |wk(λ)| < |ŵk(λ)| for λ ∈ U+, and equality |wk+(λ)| = |ŵk(λ)| holds
for λ ∈ A. Thus it follows that

∂

∂n
Re log

(
wk(λ)

ŵk(λ)

)
≤ 0 for λ ∈ A,
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where ∂
∂n denotes the normal derivative to A in the direction of U+. Then by the

Cauchy–Riemann equations we have that Im log(wk+(λ)
ŵk+(λ) ) is increasing along A. Since

ŵk+(λ) = wk−(λ) for λ ∈ A, we obtain (4.3). Thus μk is a measure.
Next we show that μk is a finite measure, which means that we have to show that

(4.4)
w′

k+(λ)

wk+(λ)
−

w′
k−(λ)

wk−(λ)

is integrable near infinity on Γk and near every branch point on Γk. This follows from
Propositions 3.7 and 3.6. Indeed, from Proposition 3.7 it follows that

(4.5)
w′

k+(λ)

wk+(λ)
−

w′
k−(λ)

wk−(λ)
= O

(
λ−1−δ

)
as λ → ∞, λ ∈ Γk,

where δ = 1/q if k < 0 and δ = 1/p if k > 0. Since δ > 0 we see that (4.4) is integrable
near infinity. For a branch point λ0 of Γk, we have from Proposition 3.6 that there
exists an m ≥ 1 such that

(4.6)
w′

k+(λ)

wk+(λ)
−

w′
k−(λ)

wk−(λ)
= O

(
(λ− λ0)

−m/(m+1)
)

as λ → λ0, λ ∈ Γk.

This shows that (4.4) is integrable near every branch point. Thus μk is a finite
measure.

Finally we compute the total mass of μk. Let D(0, R) = {z ∈ C | |z| < R}.
Then for R large enough, so that D(0, R) contains all exceptional points of Γk and
all connected components of C \ Γk (if any),

(4.7) μk(Γk ∩D(0, R)) =
1

2πi

(∫
Γk∩D(0,R)

w′
k+(λ)

wk+(λ)
dλ−

∫
Γk∩D(0,R)

w′
k−(λ)

wk−(λ)
dλ

)
,

where we have used the behavior (4.6) near the branch points in order to be able to
split the integrals. Again using (4.6) we can then turn the two integrals into a contour
integral over a contour Γ̃k,R as in Figure 4.1. The contour Γ̃k,R passes along the ±
sides of Γk ∩ D(0, R), and if we choose the orientation that is also shown in Figure
4.1 (and which is independent of the choice of orientation for Γk), then

(4.8) μk(Γk ∩D(0, R)) =
1

2πi

∫
Γ̃k,R

w′
k(λ)

wk(λ)
dλ.

The parts of Γ̃k,R that belong to bounded components of C \Γk form closed contours
along the boundary of each bounded component. By Cauchy’s theorem their contri-
bution to the integral (4.8) vanishes. The parts of Γ̃k,R that belong to the unbounded
components of C \ Γk can be deformed to the circle ∂D(0, R) with the clockwise ori-
entation. Thus if we use the positive orientation on ∂D(0, R) as in Figure 4.1, then
we obtain from (4.8)

μk(Γk ∩D(0, R)) = − 1

2πi

∮
∂D(0,R)

w′
k(λ)

wk(λ)
dλ.

Letting R → ∞ and using Proposition 3.7, we then find that μk is a measure on Γk

with total mass μk(Γk) = (q + k)/q if k ≤ 0 and μk(Γk) = (p− k)/p if k ≥ 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EIGENVALUES OF BANDED TOEPLITZ MATRICES 185

Fig. 4.1. Illustration for the proofs of Propositions 4.1 and 4.2. The solid line is a sketch of a
possible contour Γk. The dashed line is the contour Γ̃k,R, and the dotted line is the boundary of a
disk of radius R around 0.

The following proposition is the next step in showing that the measures μk from
(2.9) satisfy (2.10).

Proposition 4.2. For k = −q + 1, . . . , p− 1, we have that

(4.9)

∫
dμk(x)

x− λ
=

w′
k(λ)

wk(λ)
for λ ∈ C \ Γk

and

(4.10)

∫
log |λ− x| dμk(x) = − log |wk(λ)| + αk for λ ∈ C,

where αk is the constant

(4.11) αk =

{
log |a−q| + k

q log |a−q| if k ≤ 0,

log |a−q| − k
p log |ap| if k ≥ 0.

Proof. To prove (4.9), we follow the same arguments as in the calculation of
μk(Γk) in the end of the proof of Proposition 4.1. Let λ ∈ C \ Γk, and choose R > 0
as in the proof of Proposition 4.1. We may assume R > |λ|. Then similar to (4.7)
and (4.8) we can write∫

Γk∩D(0,R)

dμk(x)

x− λ
=

1

2πi

∫
Γ̃k,R

w′
k(x)

wk(x)(x− λ)
dx,

where Γ̃k,R has the same meaning as in the proof of Proposition 4.1; see also Figure
4.1. As in the proof of Proposition 4.1 we deform to an integral over ∂D(0, R), but
now we have to take into account that the integrand has a pole at x = λ with residue
w′

k(λ)/wk(λ). Therefore, by Cauchy’s theorem∫
Γk∩D(0,R)

dμk(x)

x− λ
=

w′
k(λ)

wk(λ)
− 1

2πi

∫
∂D(0,R)

w′
k(x)

wk(x)(x− λ)
dx.(4.12)

Letting R → ∞ and using Proposition 3.7 gives (4.9).
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Next we integrate (4.9) over a Jordan curve J in C \ Γk from λ1 to λ2,

∫ λ2

λ1

∫
Γk

1

x− λ
dμk(x) dλ = −

∫ ∫ λ2

λ1

1

x− λ
dλ dμk(x)

=

∫
(log |λ1 − x| − log |λ2 − x| + iΔJ [arg(λ− x)]) dμk(x),(4.13)

where ΔJ [arg(λ− x)] denotes the change in argument of λ− x as when λ varies over
J from λ1 to λ2. By (4.9) the integral (4.13) is equal to

∫ λ2

λ1

w′
k(λ)

wk(λ)
dλ = log |wk(λ2)| − log |wk(λ1)| + iΔJ [argwk(λ)].(4.14)

Equating the real parts of (4.13) and (4.14), we get

(4.15)

∫
(log |λ1 − x| − log |λ2 − x|) dμk(x) = − log |wk(λ1)| + log |wk(λ2)|.

Since λ1 and λ2 can be taken arbitrarily in a connected component of C \Γk, we find
that there exists a constant αk ∈ R (which a priori could depend on the connected
component) such that

(4.16)

∫
log |λ− x| dμk(x) = − log |wk(λ)| + αk

for all λ in a connected component of C \ Γk. By continuity, (4.16) extends to the
closure of the connected component, which shows that the same constant αk is valid
for all connected components. Thus (4.16) holds for all λ ∈ C.

The exact value of αk can then be determined by expanding (4.16) for large λ.
Suppose, for example, that k < 0. Then by (3.1) and (3.3)

|wk(λ)| =

q+k∏
j=1

|zj(λ)| = |a−q|(q+k)/q|λ|−(q+k)/q
(
1 + O(λ−1/q)

)

as λ → ∞. Thus

(4.17) − log |wk(λ)| =
q + k

q
log |λ| − q + k

q
log |a−q| + O(λ−1/q).

Since

(4.18)∫
log |λ− x| dμk(x) = log |λ|μk(Γk) + o(1) =

q + k

q
log |λ| + o(1) as λ → ∞,

the value (4.11) for αk follows from (4.16), (4.17), and (4.18). The argument for k > 0
is similar. This completes the proof of the proposition.

To prove part (c) of Theorem 2.3 we also need the following lemma.
Lemma 4.3. Let �ν1 = (ν1,−q+1 . . . , ν1,p−1) and �ν2 = (ν2,−q+1 . . . , ν2,p−1) be two

admissible vectors of measures. Then J(�ν1 − �ν2) is well defined and

(4.19) J(�ν1 − �ν2) ≥ 0

with equality if and only if �ν1 = �ν2.
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Proof. Since both �ν1 and �ν2 have finite energy, we find that J(�ν1 − �ν2) is well
defined. According to the alternative representation (2.12), we have

J(�ν1 − �ν2) =

(
1

q
+

1

p

)
I(ν1,0 − ν2,0)

+

q−1∑
k=1

k(k + 1)I

(
ν1,−q+k

k
− ν2,−q+k

k
− ν1,−q+k+1

k + 1
+

ν2,−q+k+1

k + 1

)

+

p−1∑
k=1

k(k + 1)I

(
ν1,p−k

k
− ν2,p−k

k
− ν1,p−k−1

k + 1
+

ν2,p−k−1

k + 1

)
.(4.20)

Using (2.6) and (2.8), we see that all terms in (4.20) are nonnegative and therefore
(4.19) holds.

Suppose now that J(�ν1 −�ν2) = 0. Then all terms in the right-hand side of (4.20)
are zero, so that

ν1,0 = ν2,0,(4.21)
ν1,−q+k

k
+

ν2,−q+k+1

k + 1
=

ν1,−q+k+1

k + 1
+

ν2,−q+k

k
for k = 1, . . . , q − 1,(4.22)

ν1,p−k

k
+

ν2,p−k−1

k + 1
=

ν1,p−k−1

k + 1
+

ν2,p−k

k
for k = 1, . . . , p− 1.(4.23)

Using (4.21) in (4.22) with k = q − 1, we find ν1,−1 = ν2,−1. Proceeding inductively
we then obtain from (4.22) that ν1,k = ν2,k for all k = −q + 1, . . . , 0. Similarly, from
(4.21) and (4.23) it follows that ν1,k = ν2,k for k = 0, . . . , p − 1, so that �ν1 = �ν2 as
claimed.

Now we are ready for the proof of Theorem 2.3.
Proof of Theorem 2.3. (a) In view of Proposition 4.1 it remains to show only that

μk ∈ Me for every k = −q + 1, . . . , p− 1. The decay estimate (4.5) implies that

∫
log(1 + |λ|) dμk(λ) < ∞.

The fact that I(μk) < +∞ follows from (4.10). Indeed,

I(μk) = −
∫∫

log |λ− x|dμk(x)dμk(λ) =

∫
(log |wk(λ)| − αk)dμk(λ),

and this is finite since μk is a finite measure on Γk with a density that decays as in
(4.5) and log |wk(λ)| is continuous on Γk and grows only as a constant times log |λ|
as λ → ∞. Thus �μ is admissible, and part (a) is proved.

(b) According to (4.10) we have

2

∫
log |λ− x| dμk(x) −

∫
log |λ− x| dμk+1(λ) −

∫
log |λ− x| dμk−1(λ)

= −2 log |wk(λ)| + 2αk + log |wk+1(λ)| − αk+1 + log |wk−1(λ)| − αk−1

= log

∣∣∣∣wk+1(λ)wk−1(λ)

wk(λ)2

∣∣∣∣ + 2αk − αk+1 − αk−1

= log

∣∣∣∣zq+k+1(λ)

zq+k(λ)

∣∣∣∣ + 2αk − αk+1 − αk−1.(4.24)
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Since |zq+k(λ)| = |zq+k+1(λ)| for λ ∈ Γk, we see from (4.24) that (2.10) holds with
constant

(4.25) lk = 2αk − αk−1 + αk+1.

Note that for k = −q+1 and k = p−1 we are using the convention that μ−q = μp = 0,
and we also have put α−q = αp = 0. This proves part (b).

(c) Let �ν = (ν−q+1, . . . , νp−1) be any admissible vector of measures. From the
representation (2.13) we get

J(�ν) = J(�μ + �ν − �μ)

= J(�μ) + J(�ν − �μ) + 2

p−1∑
j,k=−q+1

AjkI(μj , νk − μk).(4.26)

Using (2.14), we find from (4.26) that

J(�ν) = J(�μ) + J(�ν − �μ) +

p−1∑
k=−q+1

I(2μk − μk−1 − μk+1, νk − μk).(4.27)

For each k = −q + 1, . . . , p− 1, we have

I(2μk − μk−1 − μk+1, νk − μk)

=

∫ (∫
log |λ− x| d(2μk − μk−1 − μk+1)(x)

)
d(νk − μk)(λ).(4.28)

By (2.10) the inner integral in the right-hand side of (4.28) is constant for λ ∈ Γk.
Since νk and μk are finite measures on Γk with νk(Γk) = μk(Γk), we find from (4.28)
that

I(2μk − μk−1 − μk+1, νk − μk) = 0 for k = −q + 1, . . . , p− 1.

Then (4.27) shows that J(�ν) = J(�μ) + J(�ν − �μ), which by Lemma 4.3 implies that
J(�ν) ≥ J(�μ) and equality holds if and only if �ν = �μ. This completes the proof of
Theorem 2.3.

5. Proofs of Proposition 2.5 and Theorem 2.6.

5.1. Proof of Proposition 2.5. We will now prove Proposition 2.5, which
follows by a combinatorial argument.

Proof of Proposition 2.5. We prove (2.18) and (2.19) for k > 0. The case k < 0 is
similar. Let us first expand the determinant in the definition of Pk,n,

Pk,n(λ) = detTn(z−k(a− λ)) =
∑
π∈Sn

n∏
j=1

(a− λ)j−π(j)+k.(5.1)

Here Sn denotes the set of all permutation on {1, . . . , n}. By the band structure of
Tn(z−k(a− λ)) it follows that we have only nonzero contributions from permutations
π that satisfy

k − p ≤ π(j) − j ≤ q + k for all j = 1, . . . , n.(5.2)
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Define, for π ∈ Sn,

(5.3) Nπ = {j | π(j) = j + k}

and denote the number of elements of Nπ by |Nπ|. For each π ∈ Sn we have that∏n
j=1(a− λ)j−π(j)+k is a polynomial in λ of degree at most |Nπ|. So by (5.1)

(5.4) dk,n = degPk,n ≤ max
π

|Nπ|,

where we maximize over permutations π ∈ Sn satisfying (5.2).
Let π ∈ Sn satisfy (5.2). We prove (2.18) by giving an upper bound for |Nπ|.

Since
∑n

j=1(π(j) − j) = 0 we obtain

(5.5)
n∑

j=1

(π(j) − j)+ =

n∑
j=1

(j − π(j))+,

where (·)+ is defined as (a)+ = max(0, a) for a ∈ R. Each j ∈ Nπ gives a contribution
k to the left-hand side of (5.5). Therefore the left-hand side is at least k|Nπ|. By
(5.2) we have that each term in the right-hand side is at most p− k. Moreover, there
are at most n− |Nπ| nonzero terms in this sum. Combining this with (5.5) leads to

(5.6) k|Nπ| ≤
n∑

j=1

(π(j) − j)+ =

n∑
j=1

(j − π(j))+ ≤ (n− |Nπ|)(p− k).

Hence, if π is a permutation satisfying (5.2), then

(5.7) |Nπ| ≤
n(p− k)

p
.

Now (2.18) follows by combining (5.7) and (5.4).
To prove (2.19) we assume that n ≡ 0 mod p. We claim that there exists a unique

π such that equality holds in (5.7). Then equality holds in both inequalities of (5.6),
and the above arguments show that this can happen only if

π(j) = j + k or π(j) = j − p + k(5.8)

for every j = 1, . . . , n. We claim that there exists a unique such permutation, namely

(5.9) π(j) =

{
j + k if j ≡ 1, . . . , (p− k) mod p,

j − p + k if j ≡ (p− k + 1), . . . , p mod p.

To see this let π be a permutation satisfying (5.8). The numbers 1, . . . , p − k
cannot satisfy π(j) = j − p + k and thus satisfy π(j) = j + k. On the other hand,
the numbers 1, . . . , k cannot be the image of numbers j satisfying π(j) = j + k, and
thus π(j) = j − p + k for j = p − k + 1, . . . , p. So (5.9) holds for j = 1, . . . , p. This
means in particular that the restriction of π to {p+ 1, . . . , n} is again a permutation,
but now on {p + 1, . . . , n}. By the same arguments we then find that (5.9) holds for
j = p + 1, . . . , 2p, and so on. The result is that (5.9) is indeed the only permutation
that satisfies (5.8).

Finally, a straightforward calculation shows that the coefficient of λ(p−k)n/p in∏n
j=1(a − λ)j−π(j)+k with π as in (5.9) is nonzero and given by (2.19). This proves

the proposition.
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5.2. Proof of Theorem 2.6. Before we start with the proof of Theorem 2.6 we
first prove the following proposition concerning the asymptotics for Pk,n for n → ∞.

Proposition 5.1. Let Mk = {q + k + 1, . . . , p + q}. We have that

(5.10) Pk,n(λ) = (wMk
(λ))nCMk

(λ) (1 + O(exp(−cKn))) , n → ∞,

uniformly on compact subsets K of C \ Γk. Here cK is a positive constant depending
on K.

Proof. First rewrite (2.22) as

(5.11) Pk,n(λ) = (wMk
(λ))nCMk

(λ) (1 + Rk,n(λ))

with Rk,n defined by

(5.12) Rk,n(λ) =
∑

M 	=Mk

(wM (λ))nCM (λ)

(wMk
(λ))nCMk

(λ)
.

Let K be a compact subset of C\Γk. If K does not contain branch points, then there
exist A,B > 0 such that

(5.13) A < |CM (λ)| < B

for all λ ∈ K and M . Moreover, we have

(5.14)

∣∣∣∣ wM (λ)

wMk
(λ)

∣∣∣∣ ≤
∣∣∣∣ zq+k(λ)

zq+k+1(λ)

∣∣∣∣ ≤ sup
λ∈K

∣∣∣∣ zq+k(λ)

zq+k+1(λ)

∣∣∣∣ < 1

for all λ ∈ K and M �= Mk. Therefore one readily verifies from (5.11) that there exist
cK such that |Rk,n(λ)| ≤ exp(−cKn) for all λ ∈ K and n large enough. This proves
the statement in case K does not contain branch points.

Suppose that K does contain branch points. Without loss of generality, we can
assume that all branch points lie in the interior of K (otherwise we replace K by a
bigger compact set). The boundary ∂K of K is a compact set with no branch points,
and therefore (5.10) holds for ∂K by the above arguments. Since wMk

and CMk
are

analytic in K, we find by (5.11) that Rk,n is analytic in K. The maximum modu-
lus principle for analytic functions states that supz∈K |Rk,n(z)| = supz∈∂K |Rk,n(z)|,
and thereby we obtain that (5.10) also holds for K with the same constant cK =
c∂K .

We now state two particular consequences of (5.10).
Corollary 5.2. Let k ∈ {−q+ 1, . . . , p− 1}. For every compact set K ⊂ C \Γk

we have that μk,n(K) = 0 for n large enough.
Proof. Let K be a compact subset of C \ Γk. By (5.10) it follows that Pk,n has

no zeros in K for large n. Since nμk,n(K) equals the number of zeros of Pk,n in K
the corollary follows.

Corollary 5.3. Let k ∈ {−q + 1, . . . , p− 1}. We have that

lim
n→∞

∫
C

dμk,n(x)

x− λ
=

∫
Γk

dμk(x)

x− λ
(5.15)

uniformly on compact subsets of C \ Γk.
Proof. Let K be a compact subset of C \ Γk. Note that

(5.16)

∫
dμk,n(x)

x− λ
=

1

n

∑
λi∈spk Tn(a)

1

λi − λ
= −

P ′
k,n(λ)

nPk,n(λ)
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for all λ ∈ K. With Mk and cK as in Proposition 5.1 we obtain from (5.10) that

(5.17)
P ′
k,n(λ)

nPk,n(λ)
=

w′
Mk

(λ)

wMk
(λ)

+ O(1/n), n → ∞,

uniformly on K. Let us rewrite the right-hand side of (5.17). By expanding both sides
of zq(a(z) − λ) = ap

∏p+q
j=1(z − zj(λ)) and collecting the constant terms we obtain

(5.18)

p+q∏
j=1

(−zj(λ)) =
a−q

ap
.

Since λ /∈ Γk, we can split this product into two parts, take the logarithmic derivative,
and use (3.3) and (2.23) to obtain

(5.19) 0 =

q+k∑
j=1

z′j(λ)

zj(λ)
+

p+q∑
j=q+k+1

z′j(λ)

zj(λ)
=

w′
k(λ)

wk(λ)
+

w′
Mk

(λ)

wMk
(λ)

.

Combining (5.16), (5.17), and (5.19), we obtain

(5.20) lim
n→∞

∫
dμk,n(x)

x− λ
=

w′
k(λ)

wk(λ)

uniformly on K. Then (5.15) follows from (5.20) and (4.9).
Now we are ready for the proof of Theorem 2.6.
Proof of Theorem 2.6. First we prove (2.21). By Proposition 2.5 and the fact

that �μ is admissible, we get (see (2.8))

(5.21) μk,n(C) =
1

n
degPk,n ≤ μk(C)

for every n ∈ N.
Let C0(C) be the Banach space of continuous functions on C that vanish at infin-

ity. The dual space C0(C)∗ of C0(C) is the space of regular complex Borel measures
on C. By (5.21) the sequence (μk,n)n∈N belongs to the ball in C0(C)∗ centered at the
origin with radius μk(C), which is weak∗ compact by the Banach–Alaoglu theorem.
Let μk,∞ be the limit of a weak∗ convergent subsequence of (μk,n)n∈N.

By weak∗ convergence and Corollary 5.2 we obtain that μk,∞ is supported on Γk.
Combining this with (5.15) and the weak∗ convergence leads to

1

2πi

∫
Γk

dμk(x)

x− λ
=

1

2πi

∫
Γk

dμk,∞(x)

x− λ
(5.22)

for every λ ∈ C\Γk. The integrals in (5.22) are known in the literature as the Cauchy
transforms of the measures μk and μk,∞. The Cauchy transform on Γk is an injective
map that maps measures on Γk to functions that are analytic in C \ Γk (one can find
explicit inversion formulae; see, for example, the arguments in [9, Theorem II.1.4] or
the Stieltjes–Perron inversion formula in the special case Γk ⊂ R). Thus it follows
from (5.22) that μk,∞ = μk. Therefore

(5.23) lim
n→∞

μk,n = μk
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in the sense of weak∗ convergence in C0(C)∗. Thus (2.21) holds if φ is a continuous
function that vanishes at infinity.

From (5.21) and (5.23) it also follows that

(5.24) lim
n→∞

μk,n(C) = μk(C).

Then the sequence (μk,n)n∈N is tight. That is, for every ε > 0 there exists a compact
K such that μk,n(C\K) < ε for every n ∈ N. By a standard approximation argument
one can now show that (2.21) holds for every bounded continuous function φ on C.

Having (2.21) and Proposition 5.1, we can prove (2.20) as in [1, Theorem 11.17].
Indeed, the sets lim infn→∞ spk Tn(a) and lim supn→∞ spk Tn(a) equal the support of
μk, which is Γk.

6. Examples.

6.1. Example 1. As a first example, consider the symbol a defined by

(6.1) a(z) =
4(z + 1)3

27z
.

In this case we have p = 2 and q = 1. So we obtain two contours Γ0 and Γ1 with
two associated measures μ0 and μ1. This example appeared in [3], in which the au-
thors gave explicit expressions for Γ0 and μ0. The following proposition also contains
expressions for Γ1 and μ1. In what follows we take the principal branches for all
fractional powers.

Proposition 6.1. With a as in (6.1), we have that Γ0 = [0, 1] and

(6.2) dμ0(λ) =

√
3

4π

(
1 +

√
1 − λ

)1/3
+
(
1 −

√
1 − λ

)1/3
λ2/3

√
1 − λ

dλ.

Moreover, Γ1 = (−∞, 0] and

(6.3) dμ1(λ) =

√
3

4π

(
1 +

√
1 − λ

)1/3 − (√
1 − λ− 1

)1/3
(−λ)2/3

√
1 − λ

dλ.

Proof. A straightforward calculation shows that λ = 0 and λ = 1 are the branch
points.

Let λ ∈ Γ0 ∪ Γ1 and assume that λ is not a branch point. There exist y1, y2 ∈ C

such that y1 �= y2, |y1| = |y2|, and a(y1) = a(y2) = λ. Then it follows from (6.1) that
|y1 + 1| = |y2 + 1|. Therefore y1 and y2 are intersection points of a circle centered
at −1 and a circle centered at the origin. Since y1 �= y2, this means that y1 = y2

and therefore λ = a(y1) = a(y2) = a(y1) = λ, so that λ ∈ R. A further investigation
shows that a(z) − λ has three different real zeros if λ > 1. If λ < 1 and λ �= 0,
then a(z)−λ has precisely one real zero and two conjugate complex zeros. Therefore,
Γ0 ∪ Γ1 = (−∞, 1].

Now we will show that Γ0 = [0, 1] and Γ1 = (−∞, 0]. By Cardano’s formula the
solutions of the algebraic equation a(z) = λ are given by

(6.4) zj(λ) = −1 − 3λ1/3

2

(
ωj

(
1 + (1 − λ)1/2

)1/3

+ ω−j
(
1 − (1 − λ)1/2

)1/3
)
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Fig. 6.1. Illustration for Example 1: The densities of the measures μ0 (left) and μ1 (right) for

a = 4(z+1)3

27z
.

for λ ∈ [0, 1] and

(6.5)

zj(λ) = −1 +
3(−λ)1/3

2

(
ωj+2

(
1 + (1 − λ)1/2

)1/3

− ω−j−2
(
(1 − λ)1/2 − 1

)1/3
)

for λ ∈ (−∞, 0]. Here ω = e2πi/3. One can check that |z1(λ)| = |z2(λ)| < |z3(λ)| for
λ ∈ (0, 1] and |z1(λ)| < |z2(λ)| = |z3(λ)| for λ ∈ (−∞, 0). Moreover, for λ = 0 we
have z1(0) = z2(0) = z3(0) = −1. Therefore Γ0 = [0, 1] and Γ1 = (−∞, 0].

The density (6.2) was already given in [3], and (6.3) follows in a similar way.
In Figure 6.1 we plot the densities of μ0 and μ1. Note that, due to the interaction

between μ0 and μ1 in the energy functional, there is more mass of μ0 near 0 than
near 1. We also see that the singularities of the densities for μ0 and μ1 are of order
O(|λ|−2/3) for λ → 0, whereas the typical nature of a singularity in each of the
measures is a square root singularity. The stronger singularity is due to the fact that
a(z) − λ has a triple root for λ = 0.

In Figure 6.2 we plot the eigenvalues and generalized eigenvalues for n = 50. It
is known that the eigenvalues are simple and positive [3, section 2.3], which we also
see in Figure 6.2.

6.2. Example 2. For the symbol a defined by

(6.6) a(z) = z2 + z + z−1 + z−2,

we have p = q = 2. From the symmetry a(1/z) = a(z) it follows that Γ−1 = Γ1 and
μ−1 = μ1.

The interesting feature of this example is that the contours Γ0 and Γ±1 overlap.
To be precise, the interval (−9/4, 0) is contained in all three contours Γ−1,Γ0, and
Γ1. This can be most easily seen by investigating the image of the unit circle under
a. Consider

(6.7) a(eit) = 2 cos 2t + 2 cos t for t ∈ [0, 2π).

A straightforward analysis shows that for every λ ∈ (−9/4, 0) the equation a(eit) = λ
has four different solutions for t in [0, 2π). This means that the four solutions of the
equation a(z) = λ are on the unit circle, and so in particular have the same absolute
value.
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Fig. 6.2. Illustration for Example 1: The spectrum spT50(a) (top) and the generalized spectrum

sp1T50(a) (bottom) for the symbol a = 4(z+1)3

27z
.
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Fig. 6.3. Illustration for Example 2: The densities of the measures μ0 (left) and μ1 = μ−1

(right) for a(z) = z2 + z + z−1 + z−2.

The equation a(z) − λ = 0 can be explicitly solved by introducing the variable
y = z + 1/z. In exactly the same way as in the previous example one can obtain the
limiting measures. We will not give the explicit formulae, but only plot the densities
in Figure 6.3. The branch points are λ = −9/4, λ = 0, and λ = 4. The contours are
given by

(6.8) Γ0 = [−9/4, 4], Γ−1 = Γ1 = (−∞, 0].

The densities have singularities at the branch points in the interior of their sup-
ports. The singularities are felt only at one side of the branch points. Consider first
μ0, whose density has a singularity at 0. However, the limiting value when 0 is ap-
proached from the positive real axis is finite. The change in behavior of μ0 has to do
with the fact that z1 is analytic on (0, 4) but not on (−9/4, 0). Therefore we find by
(1.12) that

(6.9) dμ0(λ) =
1

2πi

(
z1

′
+(λ)

z1+(λ)
+

z2
′
+(λ)

z2+(λ)
−

z1
′
−(λ)

z1−(λ)
−

z2
′
−(λ)

z2−(λ)

)
dλ
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on (−9/4, 0) and

(6.10) dμ0(λ) =
1

2πi

(
z2

′
+(λ)

z2+(λ)
−

z2
′
−(λ)

z2−(λ)

)
dλ

on (0, 4).
For μ−1 = μ1 a similar phenomenon happens at λ = −9/4. This is a consequence

of the fact that z1 has an analytic continuation into z2 when we cross (−∞,−9/4),
but it has an analytic continuation into z4 when we cross (−9/4, 0).

6.3. Example 3. As a final example, consider the symbol

(6.11) a(z) = zp + z−q

with p, q ≥ 1 and gcd(p, q) = 1. This example appeared in [10], where the authors
mentioned that Γ0 is given by the star

(6.12) Γ0 = {rωj | j = 1, . . . , p + q, 0 ≤ r ≤ R}

with ω = e2πi/(p+q) and R = (p+ q)p−p/(p+q)q−q/(p+q). The other contours also have
a star shape, namely

(6.13) Γk = {(−1)krωj | j = 1, . . . , p + q, 0 ≤ r < ∞}

for k �= 0. Note that the star Γk for k �= 0 is unbounded.
In Figure 6.4 we plot the eigenvalues and the generalized eigenvalues for p = 2,

q = 3, and n = 50. All the (generalized) eigenvalues appear to lie exactly on the
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Fig. 6.4. Illustration for Example 3: The contours Γk and the eigenvalues and generalized
eigenvalues for T50(a) for the symbol a = z2 + z−3.
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contours. In the special case p = 1 it is known that the eigenvalues of Tn(a) lie indeed
precisely on the star (6.12) and are all simple (possibly except for 0) [4, Theorem 3.2];
see also [6] for a connection to Chebyshev-type quadrature.

6.4. Numerical stability. In Figures 6.2 and 6.4 the eigenvalues and the gen-
eralized eigenvalues of T50(a) were computed numerically. To control the stability of
the numerical computation of the eigenvalues one needs to analyze the pseudospec-
trum. For banded Toeplitz matrices the pseudospectrum is well understood [12, The-
orem 7.2]. To this date, a similar analysis of the pseudospectrum for the matrix pencil
(Tn(z−ka), Tn(z−k)) has not been carried out. See [12, section X.45] for some remarks
on the pseudospectrum for the generalized eigenvalue problem.
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ALGEBRAIC CHARACTERIZATIONS FOR POSITIVE REALNESS
OF DESCRIPTOR SYSTEMS∗

DELIN CHU† AND ROGER C. E. TAN†

Abstract. In this paper, algebraic characterizations for the positive realness of descriptor
systems are studied. It is shown that the positive realness of descriptor systems can be determined
by solving a linear matrix inequality, and hence the celebrated positive real lemma for standard
state space systems is extended to descriptor systems. In addition, the lossless positive realness of
both standard state space systems and descriptor systems is characterized explicitly based on the
controllable staircase forms of standard state space systems and the generalized controllable staircase
forms of descriptor systems, respectively.
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1. Introduction. In this paper we study the algebraic characterizations for the
positive realness of descriptor systems in circuit and control theory. Throughout this
paper, the following notation will be used:

• M > 0 (≥ 0) means that M is symmetric and positive definite (positive
semidefinite);

• M < 0 (≤ 0) means −M > 0 (≥ 0);
• j :=

√
−1, C0 := {s | s ∈ C, Re(s) = 0}, C+ := {s | s ∈ C, Re(s) > 0}.

Consider a system of the form{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(1)

where E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m. System (1) is
called a standard state space system if E = I. It is called a descriptor system (or a
generalized state space system, or a singular system) if E is singular and the pencil
(E,A) is regular (i.e., det(sE −A) �= 0 for some s ∈ C).

Definition 1. (i) System (1) is impulse-free if the pencil (E,A) is regular and

deg(sE −A) = rank(E).

(ii) System (1) is admissible if it is impulse-free and the pencil (E,A) is stable
(i.e., it has no finite generalized eigenvalues on C0 ∪ C+).

Remark 1. Let the pencil (E,A) be regular. There exist nonsingular matrices Q
and P such that

QAP =

[ n1 n2

A11 0

0 I

]
}n1

}n2

, QEP =

[n1 n2

I 0

0 N

]
}n1

}n2

,(2)
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where N is nilpotent. Then system (1) is impulse-free if and only if N = 0.
Definition 2. Let E,A ∈ Rn×n and B ∈ Rn×m.
(i) The triplet (E;A,B) is controllable if

rank
[
αE − βA B

]
= n ∀(α, β) ∈ C2\{0, 0}.

(ii) The triplet (E;A,B) is R-controllable if

rank
[
αE −A B

]
= n ∀α ∈ C.

(iii) The pair (A,B) is controllable if

rank
[
αI −A B

]
= n ∀α ∈ C.

Let

G(s) = D + C(sE −A)−1B.(3)

G(s) is the transfer function of system (1). The positive realness of system (1) can
be defined as follows.

Definition 3 (see [3]).
(i) System (1) is positive real if G(s) is analytic in C+ and

G(s) + (G(s))H ≥ 0 ∀s ∈ C+.

(ii) System (1) is lossless positive real if it is positive real and

G(jω) + (G(jω))H = 0

for all ω ∈ R with jω not a pole of G(s).
(iii) System (1) is strictly positive real if G(s) is analytic in C0 ∪ C+ and

G(jω) + (G(jω))H > 0 ∀ω ∈ R.

(iv) System (1) is extended strictly positive real if G(s) is strictly positive real and

G(j∞) + (G(j∞))H > 0.

The concept of positive realness is motivated by network theory [7]. That is, a
positive real rational function can be realized as the driving point impedance of a
passive network, and, conversely, a passive network has a driving point impedance
that is rational and positive real. As addressed in [5], reduced-order modeling tech-
niques based on Krylov subspace iterations have become popular tools to tackle the
large-scale dynamic systems that arise in the simulation of VLSI circuits [15]. These
techniques are mostly applied to very large passive networks, and then it is impor-
tant to check whether the reduced-order model preserves the passivity of the original
network. Hence, the positive realness plays a major role in circuit theory.

The positive realness is also an important concept in control theory. It has many
applications in model reference adaptive control, absolute stability of perturbed sys-
tems, robust control, inverse problem of optimal control, and flexible space structure;
see [25, 35, 26, 27, 1, 36, 14, 28, 4, 6]. The list here is far from complete.

The positive realness of standard state space systems has been studied extensively;
see [1, 3, 23, 38, 42, 2, 41]. Over the last three decades, several approaches for testing
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the positive realness of a standard state space system have been developed. Among
them, one powerful approach is to employ the celebrated positive real lemma, which
characterizes the positive realness of a standard state space system by means of a
linear matrix inequality (LMI).

The well-known positive real lemma can be stated as follows.
Lemma 4 (positive real lemma [3]). Given system (1) with E = I. Assume that

(A,B) and (AT , CT ) are controllable.
(i) System (1) is positive real if and only if there exists X ∈ Rn×n such that[

ATX + XA XB − CT

BTX − C −D −DT

]
≤ 0, X ≥ 0.(4)

(ii) System (1) is lossless positive real if and only if there exists X ∈ Rn×n such
that [

ATX + XA XB − CT

BTX − C −D −DT

]
= 0, X ≥ 0.(5)

Lemma 4 was developed in the 1960s [25, 26, 27, 1, 36] and now is also known as
the Kalman–Yakubovich lemma or the Yakubovich–Kalman–Popov–Anderson lemma.
For a detailed analysis of the implication of Lemma 4, we refer the reader to [3, 36].
In addition, the analogy of Lemma 4 for system (1) with E nonsingular can be found
in [18, 40].

The strict positive realness of standard state space systems is characterized alge-
braically in the following result, which is a generalization of Lemma 4(i).

Lemma 5 (see [29, 34]). Given system (1) with E = I. Assume that (A,B) and
(AT , CT ) are controllable. Then system (1) is strictly positive real if and only if there
exist X,L ∈ Rn×n and W ∈ Rn×m such that[

ATX + XA XB − CT

BTX − C −D −DT

]
= −

[
LT

WT

] [
L W

]
, X ≥ 0,

and furthermore (AT , LT ) is controllable and

rank

[
A− jωI B

L W

]
= n + m ∀ω ∈ R.

It is now well known that the descriptor systems have many important appli-
cations, for example, in circuit simulation, economic systems, network analysis, and
biological systems. In fact, many systems in practical applications are singular in
nature. The positive realness of descriptor systems has been considered recently un-
der various assumptions. The following interesting results have been presented in
[16, 32, 31, 45], respectively.

Theorem 6 (see [16]). (a) System (1) is positive real if the pencil (E,A) has no
finite generalized eigenvalues in C+ and the LMI[

ATX + XTA XTB − CT

BTX − C −D −DT

]
≤ 0, ETX = XTE ≥ 0,(6)

has a solution X.
(b) The positive realness of system (1) implies the existence of a solution of the

LMI (6) if the following conditions are satisfied:



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

200 DELIN CHU AND ROGER C. E. TAN

(i) the triplets (E;A,B) and (ET ;AT , CT ) are controllable;
(ii) system (1) has no nondynamic modes, i.e.,

Aker(E) ⊆ Im(E);

(iii) the expansion G(s) =
∑p

i=−∞ siMi of G(s) about s = ∞ has property

D + DT ≥ M0 + MT
0 .(7)

Theorem 7 (see [32, 31]). System (1) is admissible and extended strictly positive
real if and only if there exist matrices X ∈ Rn×n and Y ∈ Rn×m such that[

ATX + XTA ATY + XTB − CT

Y TA + BTX − C Y TB + BTY −D −DT

]
< 0, ETX = XTE ≥ 0, ETY = 0.

(8)
Theorem 8 (see [45]). System (1) is admissible, extended strictly positive real,

and D + DT > 0 if and only if there exists X ∈ Rn×n such that[
ATX + XTA (C −BTX)T

C −BTX −(D + DT )

]
< 0, ETX = XTE ≥ 0.(9)

Theorem 9 (see [45]). System (1) is admissible and extended strictly positive real
under the assumption that D + DT > 0 if and only if there exists matrix X ∈ Rn×n

such that

ATX +XTA+(C−BTX)T (D+DT )−1(C−BTX) = 0, ETX = XTE ≥ 0.(10)

The following statements are clear:
• Theorem 6 indicates that the solvability of the linear matrix inequality (6) is

sufficient and, under the additional assumption (7), also necessary for the pos-
itive realness of descriptor system (1). However, in general, the assumption
(7) may not be satisfied.

• Theorems 7–9 rely on the assumption that system (1) is impulse-free, which
is strong. In fact, if system (1) is impulse-free, then there exist nonsingu-
lar matrices P ∈ Rn×n and Q ∈ Rn×n such that (2) holds with N = 0.
Consequently,

G(s) = (D − CB) + C1(sI −A11)
−1B1,(11)

where

QB =

[
B1

B

]
}n1

}n2

, CP =
[ n1 n2

C1 C
]
.(12)

As a result, the impulse-free system (1) is extended strictly positive real if
and only if the standard state space system{

ẋ(t) = A11x(t) + B1u(t),

y(t) = C1x(t) + (D − CB)u(t)

is strictly positive real and (D−CB)+ (D−CB)T > 0. Thus, existing results
on the strictly positive realness of standard state space systems are applicable
to the extended strictly positive realness of descriptor systems.
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• If system (1) is minimal but not impulse-free, then, with the notation in (2)
and (12), we have

G(s) = (D − CB) + C1(sI −A11)
−1B1 −

n2−1∑
i=1

siCN iB

�= (D − CB) + C1(sI −A11)
−1B1.

Hence, the approaches used in [32, 31, 45] cannot be used to characterize all
forms of the positive realness of system (1).

Based on the observations above, we conclude that in Theorems 6–9 there is ob-
viously a gap between the sufficient condition and the necessary condition for the
positive realness of descriptor systems (1). To the best of our knowledge, we are not
aware of any conditions which are similar to (4) and are both necessary and sufficient
for the positive realness of descriptor systems. In this sense, Lemma 4, which is the
positive real lemma for standard state space systems, has not been extended to de-
scriptor systems in the existing literature. In this paper we further develop the work
in [16] and establish the positive real lemma for descriptor systems. It is surprising
that our matrix inequality (14) in Theorem 13 of the next section is very close to
the matrix inequality (8) in Theorem 7. However, these two inequalities play differ-
ent roles in the sense that inequality (8) can only characterize the extended strictly
positive realness of system (1) under the condition that system (1) is admissible, but
cannot characterize the positive realness of system (1) in the general setting, while
inequality (14) in the next section is not only necessary but also sufficient for the
positive realness of system (1) in the general setting. In addition, the explicit alge-
braic characterizations for the lossless positive realness of both standard state space
systems and descriptor systems will also be derived in this paper based on the control-
lable staircase forms of standard state space systems and the generalized controllable
staircase forms of descriptor systems, respectively.

2. Main results. We derive the algebraic characterizations for the positive real-
ness of descriptor systems in this section. For this purpose, we need some preliminary
lemmas.

Lemma 10 (see [3]). Let G(s) be a rational matrix of the form

G(s) = G1(s) + sM1 +

p∑
i=2

siMi, G1(∞) < ∞.

Then G(s) is (lossless) positive real if and only if G1(s) is (lossless) positive real,
M1 ≥ 0, and Mi = 0, i = 2, . . . , p.

Lemma 11. Let

(13)

N =

⎡
⎣
τ1 τ2 τ3

0 0 0
0 0 I
0 0 0

⎤
⎦

}τ1
}τ3
}τ2

, B =

⎡
⎢⎣

B12

B22

B32

⎤
⎥⎦

}τ1
}τ3
}τ2

, C =
[ τ1 τ2 τ3

C21 C22 C23

]
, τ2 ≤ τ3.

Assume that

rank
[
αN − βI B

]
= rank

[
αN − βI

C

]
=

3∑
i=1

τi ∀{α, β} ∈ C2\{0, 0}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

202 DELIN CHU AND ROGER C. E. TAN

Then

CN iB = 0, i = 2, . . . ,

3∑
i=1

τi − 1,

if and only if τ2 = τ3.
Proof. Let τ =

∑3
i=1 τi. Note that the property

rank
[
αN − βI B

]
= τ ∀{α, β} ∈ C2\{0, 0}

implies the controllability of (N ,B). Consequently, we have from [43] that

rank
[
B NB · · · N τ−1B

]
= τ.

Because N is nilpotent and N j = 0 for all integer j ≥ τ , then

CN iB = 0, i = 2, . . . , τ − 1

⇐⇒ (CN 2)N iB = 0, i = 0, 1, . . . , τ − 1

⇐⇒ CN 2
[
B NB · · · N τ−1B

]
= 0

⇐⇒ CN 2 = 0

⇐⇒
[
C22 C23

] [ Iτ3−τ2

0

]
= 0 (since τ2 ≤ τ3).

However, it is given that rank
[ αN − βI

C
]
= τ for all {α, β} ∈ C2\{0, 0}; hence, C22 is

of full column rank. Therefore, we obtain that CN iB = 0 (i = 2, . . . , τ − 1) if and
only if τ2 = τ3.

Lemma 12 (see [11, 10, 9]). Let A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n.
(i)

max
s∈C

rank

[
A− sI B

C 0

]
= n

if and only if

CAiB = 0, i = 0, 1, 2, . . . .

(ii) Assume that (A,B) is controllable. Then

max
s∈C

rank

[
A− sI B

C 0

]
= n

if and only if

C = 0.

We are now ready to characterize the positive realness of descriptor systems.
Theorem 13. Given a descriptor system (1), assume (E;A,B) and (ET ;AT ,

CT ) are controllable.
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(i) System (1) is positive real if and only if there exist X ∈ Rn×n and Y ∈ Rn×m

such that
⎧⎪⎪⎨
⎪⎪⎩

[
ATX + XTA ATY + XTB − CT

Y TA + BTX − C BTY + Y TB −D −DT

]
≤ 0,

ETX = XTE ≥ 0, ETY = 0.

(14)

(ii) System (1) is lossless positive real if and only if there exist X ∈ Rn×n and
Y ∈ Rn×m such that

⎧⎪⎪⎨
⎪⎪⎩

[
ATX + XTA ATY + XTB − CT

Y TA + BTX − C BTY + Y TB −D −DT

]
= 0,

ETX = XTE ≥ 0, ETY = 0.

(15)

(iii) System (1) is strictly positive real if and only if there exist X,L ∈ Rn×n,
Y ∈ Rn×m, and W ∈ Rn×m such that

⎧⎪⎪⎨
⎪⎪⎩

[
ATX + XTA ATY + XTB − CT

Y TA + BTX − C BTY + Y TB −D −DT

]
= −

[
LT

WT

] [
L W

]
,

ETX = XTE ≥ 0, ETY = 0.

(16)

(ET ;AT , LT ) is R-controllable, and furthermore

rank

[
A− jωE B

L W

]
= n + m ∀ω ∈ R.(17)

Proof. We prove the necessity first and then the sufficiency.

By matrix pencil theory [17], there exist nonsingular matrices P,Q ∈ Rn×n such
that (2), (12), and (13) hold. Consequently,

G(s) = D + C1(sI −A11)
−1B1 + C(sN − I)−1B

= D − CB + C1(sI −A11)
−1B1 −

n2−1∑
i=1

siCN iB.

Necessity of part (i). Let G(s) be positive real. By Lemma 10, D−CB+C1(sI −
A11)

−1B1 is positive real, and

CNB ≤ 0, CN iB = 0, i = 2, . . . , n2 − 1.

Since (E;A,B) and (ET ;AT , CT ) are controllable, it is easy to verify that (A11, B1)
and (AT

11, C
T
1 ) are controllable, and

(18)

rank
[
αN − βI B

]
= rank

[
αN − βI

C

]
= n2 =

3∑
i=1

τi ∀{α, β} ∈ C2\{0, 0}.
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Then by Lemmas 4(i) and 11, there exist X11, L1 ∈ Rn1×n1 and W1 ∈ Rn1×m such
that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

AT
11X11 + XT

11A11 = −LT
1 L1,

XT
11B1 − CT

1 = −LT
1 W1,

−(D − CB) − (D − CB)T = −WT
1 W1,

X11 ≥ 0,

(19)

and τ2 = τ3.
Because (18) means rank(C22) = rank(B32) = τ2, and the property τ2 = τ3 implies

that CNB ≤ 0 is equivalent to

C22B32 = BT
32CT

22 ≤ 0,

thus

Z23 := −CT
22BT

32(B32BT
32)

−1, X :=

⎡
⎢⎣

τ1 τ2 τ2

0 0 0

0 0 Z23

0 −ZT
23 0

⎤
⎥⎦

}τ1
}τ2
}τ3

satisfy

Z23 = ZT
23 ≥ 0

and ⎧⎪⎨
⎪⎩

N TX = X TN ≥ 0,

X + X T = 0,

N T (CT −X TB) = 0.

(20)

Moreover, we have

(21)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
A11 0

0 I

]T [
X11 0

0 X

]
+

[
X11 0

0 X

]T [
A11 0

0 I

]
= −

[
LT

1

0

] [
L1 0

]
,

[
A11 0

0 I

]T [
0

CT −X TB

]
+

[
X11 0

0 X

]T [
B1

B

]
−
[
C1 C

]T

= −
[

LT
1

0

]
W1,

[
B1

B

]T [
0

CT −X TB

]
+

[
0

CT −X TB

]T [
B1

B

]
−D −DT = −WT

1 W1,

[
I 0

0 N

]T [
X11 0

0 X

]
=

[
X11 0

0 X

]T [
I 0

0 N

]
≥ 0,

[
I 0

0 N

]T [
0

CT −X TB

]
= 0.
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Define

X = QT

[
X11 0

0 X

]
P−1, Y = QT

[
0

CT −X TB

]
(22)

and

L =

[
L1 0

0 0

]
P−1 ∈ Rn×n, W =

[
W1

0

]
∈ Rn×m.(23)

Then we have by using (2), (12), (13), and (21) that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ATX + XTA = −LTL,

ATY + XTB − CT = −LTW,

BTY + Y TB −D −DT = −WTW,

ETX = XTE ≥ 0,

ETY = 0,

i.e., (14) holds.
Necessity of part (ii). We have from the necessity proof of part (i) that

G(s) = D − CB + C1(sI −A11)
−1B1 − sCNB, τ2 = τ3, CNB ≤ 0,

and D − CB + C1(sI −A11)
−1B1 is positive real. Note that

D−CB+C1(jωI−A11)
−1B1 +(D−CB+C1(jωI−A11)

−1B1)
H = G(jω)+(G(jω))H

for all ω ∈ R with jω not a pole of G(s), and D − CB + C1(sI −A11)
−1B1 and G(s)

have the same poles; we get that D−CB+C1(sI −A11)
−1B1 is lossless positive real.

Thus, by Lemma 4(ii), there exists X11 ∈ Rn1×n1 such that
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

AT
11X11 + XT

11A11 = 0,

XT
11B1 − CT

1 = 0,

−(D − CB) − (D − CB)T = 0,

X11 ≥ 0.

Let X and Y be defined by (22). Then it is easy to verify that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ATX + XTA = 0,

ATY + XTB − CT = 0,

BTY + Y TB −D −DT = 0,

ETX = XTE ≥ 0,

ETY = 0,

i.e., (15) holds.
Necessity of part (iii). We know from the necessity proof of part (i) that τ2 = τ3,

CNB ≤ 0, and D−CB+C1(sI−A11)
−1B1 is positive real. Moreover, D−CB+C1(sI−

A11)
−1B1 is strictly positive real. So, according to Lemma 5, there exist X11, L1 ∈

Rn1×n1 and W1 ∈ Rn1×m such that (19) is satisfied, (AT
11, L

T
1 ) is controllable, and

rank

[
A11 − jωI B1

L1 W1

]
= n1 + m ∀ω ∈ R.
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Let X, Y , L, and W be defined by (22) and (23); we have that (16) holds,

rank
[
αET −AT LT

]
= rank

[
αI −AT

11 0 LT
1

0 αN T − I 0

]

= rank
[
αI −AT

11 LT
1

]
+ rank(αN T − I)

= n1 + n2 = n ∀α ∈ C,

equivalently, (ET ;AT , LT ) is R-controllable, and moreover

rank

[
A− jωE B

L W

]
= rank

⎡
⎢⎣

A11 − jωI 0 B1

0 I − jωN B
L1 0 W1

⎤
⎥⎦

= rank

[
A11 − jωI B1

L1 W1

]
+ n2

= (n1 + m) + n2 = n + m ∀ω ∈ R.

Sufficiency of part (i). In this case, (14) implies that

[
ATX + XTA ATY + XTB − CT

Y TA + BTX − C BTY + Y TB −D −DT

]
= −

[
LT

WT

] [
L W

]
(24)

for some L ∈ Rn×n and W ∈ Rn×m.
Let us first show that G(s) is analytic in C+. For this purpose, we show that the

pencil (E,A) has no finite generalized eigenvalues in C+.
By contradiction, assume that λ ∈ C+ is a finite generalized eigenvalue of the

pencil (E,A) and y ∈ Cn is a corresponding eigenvector. Then

Ay = λEy, y �= 0.(25)

So, (24) and ETX = XTE ≥ 0 yield that

0 ≥ −yHLTLy

= yH(ATX + XTA)y

= λ̄yHETXy + λyHXTEy

= 2Re(λ)yHETXy

≥ 0,(26)

which together with λ ∈ C+ gives that

XTEy = ETXy = 0.(27)

In return, we get by using (25), (26), and (27) that

XTAy = 0, Ly = 0(28)
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and

ATXy = (ATX + XTA)y −XTAy = −LTLy −XTAy = 0.(29)

Note that the pencil (E,A) is regular; thus rank
[ET

AT

]
= n. In addition, we have

shown that
[ET

AT

]
Xy = 0. Hence, we get Xy = 0. Consequently,

Cy = (Y TA + BTX + WTL)y = Y TAy = λY TEy = λ(ETY )T y = 0.

This and (25) give

[
A− λE

C

]
y = 0.

Because the controllability of (ET ;AT , CT ) implies rank
[A − λE

C

]
= n, we obtain

y = 0,

which contradicts the fact y �= 0. Therefore, the pencil (E,A) has no finite generalized
eigenvalues in C+ and thus G(s) is analytic in C+.

Next, we have using ETX = XTE that

(sE −A)HX + XT (sE −A) = LTL + 2Re(s)ETX

and

G(s) = D + C(sE −A)−1B = D + (Y TA + BTX + WTL)(sE −A)−1B

= D + Y TA(sE −A)−1B + WTL(sE −A)−1B

+ ((sE −A)−1B)H(sE −A)HX(sE −A)−1B ∀s ∈ C+,

which together with ETX = XTE and ETY = 0 yield that

G(s) + (G(s))H = BTY + Y TB + Y TA(sE −A)−1B + ((sE −A)−1B)HATY

+ [W + L(sE −A)−1B]H [W + L(sE −A)−1B]

+ 2Re(s)((sE −A)−1B)HETX(sE −A)−1B

= sY TE(sE −A)−1B + (sY TE(sE −A)−1B)H

+ [W + L(sE −A)−1B]H [W + L(sE −A)−1B]

+ 2Re(s)((sE −A)−1B)HETX(sE −A)−1B

= [W + L(sE −A)−1B]H [W + L(sE −A)−1B]

+ 2Re(s)((sE −A)−1B)HETX(sE −A)−1B(30)

for any s ∈ C+. Hence, G(s) + (G(s))H ≥ 0 because ETX = XTE ≥ 0. Therefore,
G(s) is positive real.
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Sufficiency of part (ii). By part (i) we know that G(s) is positive real. Moreover,
same as the derivation of (30), we have

G(jω) + (G(jω))H = 2Re(jω)((jωE −A)−1B)HETX(jωE −A)−1B = 0

for all ω ∈ R with jω not a pole of G(s). So, G(s) is lossless positive real.
Sufficiency of part (iii). By part (i), G(s) is positive real. Let λ ∈ C0 be a

finite generalized eigenvalue of the pencil (E,A) and let y ∈ Cn be a corresponding
eigenvector. Then (26) holds and thus Ly = 0. So, we obtain

[
λE −A

L

]
y = 0,

which together with the R-controllability of (ET ;AT , LT ) yields that

y = 0.

This contradicts the fact y �= 0. Therefore, the pencil (E,A) has no finite generalized
eigenvalues in C0. Hence, G(s) is analytic in C+ ∪ C0 because G(s) is positive real.

Next, we also have by using (17) and (30)

G(jω) + (G(jω))H = [W + L(jωE −A)−1B]H [W + L(jωE −A)−1B]

> 0 ∀ω ∈ R.

Hence, G(s) is strictly positive real.
If E = I, then Theorem 13(i) and (ii) reduce to Lemma 4(i) and (ii), respec-

tively. Hence, Theorem 13(i) and (ii) can be regarded as the positive real lemma for
descriptor systems. Therefore, we have extended the well-known positive real lemma
from standard state space systems to descriptor systems and show that the positive
realness of descriptor systems can be tested by solving a linear matrix inequality of
the form (14).

The following two corollaries are trivial consequences of the sufficiency proofs in
Theorem 13.

Corollary 14. Given a descriptor system (1), assume that the pencil (E,A) is
stable.

(i) If there exist X ∈ Rn×n and Y ∈ Rn×m such that the LMI (14) holds, then
system (1) is positive real.

(ii) If there exist X ∈ Rn×n and Y ∈ Rn×m such that the equality (15) holds,
then system (1) is lossless positive real.

(iii) If there exist X,L ∈ Rn×n, Y ∈ Rn×m, and W ∈ Rm×n such that (16) and
(17) hold and (ET ;AT , L) is controllable, then system (1) is strictly positive real.

Corollary 15. Given a descriptor system (1), assume that either (ET ;AT , CT )
is stabilizable, that is,

rank

[
αE −A

C

]
= n ∀α ∈ C0 ∪ C+,

or

rank

[
αE −A

C

]
= n
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for any finite eigenvalue α ∈ C of the pencil (E,A).

(i) If there exist X ∈ Rn×n and Y ∈ Rn×m such that the LMI (14) holds, then
system (1) is positive real.

(ii) If there exist X ∈ Rn×n and Y ∈ Rn×m such that the equality (15) holds,
then system (1) is lossless positive real.

(iii) If there exist X,L ∈ Rn×n, Y ∈ Rn×m, and W ∈ Rm×n such that (16) and
(17) hold and (ET ;AT , L) is controllable, then system (1) is strictly positive real.

In the following we derive explicit algebraic characterizations for the lossless pos-
itive realness of both standard state space systems and descriptor systems based on
the controllable staircase form theory.

Theorem 16. Given system (1) with E = I. Assume that (A,B) and (AT ,
CT ) are controllable. Let orthogonal matrix P ∈ R2n×2n be such that the pair

(PT
[ A 0

0 −AT

]
P, PT

[ B

CT

]
) is in the following controllable staircase form [39]:

PT

[
A 0

0 −AT

]
P =

[ μ1 μ2

Φ11 Φ12

0 Φ22

]
}μ1

}μ2

, PT

[
B

CT

]
=

[
Ψ1

0

]
}μ1

}μ2

,(31)

where (Φ11,Ψ1) is controllable. Denote

[
C −BT

]
P =

[ μ1 μ2

K1 K2

]
, P =

[ μ1 μ2

P11 P12

P21 P22

]
}n
}n

.(32)

Then system (1) is lossless positive real if and only if

D + DT = 0, K1 = 0, PT
11P21 ≥ 0.(33)

Furthermore, in this case, μ1 = μ2 = n, P11 is nonsingular and the matrix X in (5)
is given by

X = P21P
−1
11 .(34)

Proof. We prove the necessity first and then the sufficiency.

Necessity. Since system (1) is lossless positive real, by Lemma 4(ii),

D + DT = 0,

and there exists a matrix X ∈ Rn×n such that

ATX + XA = 0, C = BTX, X ≥ 0.

Consequently, we obtain

CAiB = BT (−AT )iCT , i = 0, 1, 2, . . . ,

i.e.,

[
C −BT

] [ A 0

0 −AT

]i [
B

CT

]
= 0, i = 0, 1, 2, . . . .
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So, we have using Lemma 12(i) that

max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

C −BT 0

⎤
⎥⎦ = 2n,

which is equivalent to

μ1 + μ2 = 2n = max
s∈C

rank

⎡
⎢⎣

sI − Φ11 −Φ12 Ψ1

0 sI − Φ22 0

K1 K2 0

⎤
⎥⎦

= μ2 + max
s∈C

rank

[
sI − Φ11 Ψ1

K1 0

]
,

i.e.,

max
s∈C

rank

[
sI − Φ11 Ψ1

K1 0

]
= μ1.

Note that (Φ11,Ψ1) is controllable, and thus Lemma 12(ii) gives

K1 = 0.

In addition,

max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

XT −I 0

⎤
⎥⎦

= max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

−XT (sI −A) + (sI + AT )XT sI + AT CT −XTB

0 −I 0

⎤
⎥⎦

= max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT 0

0 −I 0

⎤
⎥⎦ = 2n,

which gives that

μ1 + μ2 = 2n = max
s∈C

rank

⎡
⎢⎣

sI − Φ11 −Φ12 Ψ1

0 sI − Φ22 0

XTP11 − P21 XTP12 − P22 0

⎤
⎥⎦

= μ2 + max
s∈C

rank

[
sI − Φ11 Ψ1

XTP11 − P21 0

]
,

i.e.,

max
s∈C

rank

[
sI − Φ11 Ψ1

XTP11 − P21 0

]
= μ1,
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which together with the controllability of (Φ11,Ψ1) yields that

XTP11 − P21 = 0.

Therefore, the property XT = X ≥ 0 leads to

PT
11P21 = PT

11X
TP11 ≥ 0.

Sufficiency. We have using the property K1 = 0 that

max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

C −BT 0

⎤
⎥⎦

= max
s∈C

rank

⎡
⎢⎣

sI − Φ11 −Φ12 Ψ1

0 sI − Φ22 0

0 K2 0

⎤
⎥⎦ = μ1 + μ2 = 2n.

So, it follows from Lemma 12(i) that

[
C −BT

] [ A 0

0 −AT

]i [
B

CT

]
= 0, i = 0, 1, 2, . . . .

Thus,

CAi
[
B AB · · · An−1B

]

= BT (−AT )i
[
CT (−AT )CT · · · (−AT )n−1CT

]
, i = 0, 1, 2, . . . ,

which yields that for i = 0, 1, 2, . . . ,

CAi
[
B AB · · · An−1B

]
⎡
⎢⎢⎢⎢⎣

BT

BTAT

...

BT (AT )n−1

⎤
⎥⎥⎥⎥⎦

= BT (−AT )i
[
CT (−AT )CT · · · (−AT )n−1CT

]
⎡
⎢⎢⎢⎢⎣

BT

BTAT

...

BT (AT )n−1

⎤
⎥⎥⎥⎥⎦ .

Since (A,B) is controllable, it is well known [43] that

rank
[
B AB · · · An−1B

]
= n,

so,

[
B AB · · · An−1B

]
⎡
⎢⎢⎢⎣

BT

BTAT

...
BT (AT )n−1

⎤
⎥⎥⎥⎦
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is nonsingular and, further,

(35)

CAi = BT (−AT )iX,

i.e.,
[
XT −I

] [ A 0

0 −AT

]i [
B

CT

]
= XTAiB − (−AT )iCT = 0,

i = 0, 1, 2, . . . ,

in particular,

C = BTX,(36)

where

X =
[
CT (−AT )CT · · · (−AT )n−1CT

]
⎡
⎢⎢⎢⎢⎣

BT

BTAT

...

BT (AT )n−1

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
[
B AB · · · An−1B

]
⎡
⎢⎢⎢⎢⎣

BT

BTAT

...

BT (AT )n−1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

−1

.

Hence, Lemma 12(i) implies that

max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

XT −I 0

⎤
⎥⎦ = 2n.(37)

In return, we obtain that

max
s∈C

rank

[
sI − Φ11 Ψ1

XTP11 − P21 0

]

= max
s∈C

rank

⎡
⎢⎣

sI − Φ11 −Φ12 Ψ1

0 sI − Φ22 0

XTP11 − P21 XTP12 − P22 0

⎤
⎥⎦− μ2

= max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

XT −I 0

⎤
⎥⎦− μ2

= 2n− μ2 = (μ1 + μ2) − μ2

= μ1,
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which together with Lemma 12(ii) and the controllability of (Φ11,Ψ1) implies that

XTP11 − P21 = 0(38)

and

[
XT −I

]
P =

[
0 XTP12 − P22

]
,

[
XT −I

]
=

[
0 XTP12 − P22

]
PT

=
[

(XTP12 − P22)P
T
12 (XTP12 − P22)P

T
22

]
.

So, we have by taking P22 ∈ Rn×μ2 into account that

n = (rank
[
XT −I

]
P ) = rank(XTP12 − P22) ≤ μ2 = 2n− μ1,

−I = (XTP12 − P22)P
T
22,

n = rank(−I) = rank((XTP12 − P22)P
T
22) ≤ rank(PT

22) ≤ n,

i.e.,

n ≤ μ2 = 2n− μ1, n = rank(P22).(39)

Because (A,B) is controllable, μ1 in the controllable staircase form (31) must satisfy

n ≤ μ1,(40)

and we get using (39) and (40) that

n = μ1 = μ2, rank(P22) = n = μ2.

This means that P22 is nonsingular and so P11 is also nonsingular as P is orthogonal.
As a result, (38) and PT

11P21 ≥ 0 lead to

XT = P21P
−1
11 = P−T

11 (PT
11P21)P

−1
11 ≥ 0, i.e., X = P21P

−1
11 ≥ 0.(41)

Furthermore, we also have using CT = XTB = XB that

2n = max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

XT −I 0

⎤
⎥⎦ = max

s∈C
rank

⎡
⎢⎣

sI −A 0 B

0 sI + AT CT

X −I 0

⎤
⎥⎦

= max
s∈C

rank

⎡
⎢⎣

sI −A 0 B

(sI + AT )X −X(sI −A) sI + AT 0

0 −I 0

⎤
⎥⎦

= n + max
s∈C

rank

[
sI −A B

ATX + XA 0

]
,

i.e.,

n = max
s∈C

rank

[
sI −A B

ATX + XA 0

]
.
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However, (A,B) is controllable, so we must have by Lemma 12(ii) that

ATX + XA = 0.(42)

Therefore, the lossless positive realness of system (1) follows directly from the property
D + DT = 0, equalities (36), (41), and (42), and Lemma 4(ii).

We turn to consider the explicit verification of the lossless positive realness of
descriptor systems.

Theorem 17. Given a descriptor system (1), assume that (E;A,B) and (ET ;
AT , CT ) are controllable.

• Let the condensed generalized Schur forms [13, 39] of sE −A and sET −AT

be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(sE −A)V =

[ n1 n2

sE11 −A11 sE12 −A12

0 sE22 −A22

]
}n1

}n2

,

VTV T (sET −AT )UTUT =

[ n1 n2

sE11 −A11 sE12 −A12

0 sE22 −A22

]
}n1

}n2

,

(43)

where U,U , V,V are orthogonal, E11 and E11 are nonsingular, and

rank(sE22 −A22) = rank(sE22 −A22) = n2 ∀s ∈ C.(44)

Denote

U =

[ n1 n2

U11 U12

U21 U22

]
}n1

}n2

, V =

[ n1 n2

V11 V12

V21 V22

]
}n1

}n2

,(45)

[
U11 U12

0 I

]
UB =

[
B1

B2

]
}n1

}n2

, CV

[
I V12

0 V22

]
=

[ n1 n2

C1 C2

]
.

• Let orthogonal matrices Q and Q be such that

QT (sE22 −A22)Q =

⎡
⎢⎣

ζ1 ζ2 ζ3

sΛ11 − Γ11 −Γ12 −Γ13

−Γ21 0 0

−Γ31 0 −Γ33

⎤
⎥⎦

}ζ1
}ζ2
}ζ3

,(46)

where Λ11 and Γ33 are nonsingular.
• Furthermore, let the generalized controllable staircase form [33, 39] of

([
U11E11 0

0 (U11E11)
T

]
;

[
U11A11 0

0 −(U11A11)
T

]
,

[
B1

CT
1

])
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be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P
[

sU11E11 − U11A11 0

0 s(U11E11)
T + (U11A11)

T

]
P

=

[ ν1 ν2

sΘ11 − Φ11 sΘ12 − Φ12

0 sΘ22 − Φ22

]
}ν1

}ν2

,

P
[

B1

CT
1

]
=

[
Ψ1

0

]
}ν1

}ν2

,

(47)

where P and P are orthogonal and (Θ11; Φ11,Ψ1) is controllable. Set

[
C1 −BT

1

]
P =

[ ν1 ν2

K1 K2

]
, P =

[ ν1 ν2

P11 P12

P21 P22

]
}n1

}n2

.(48)

Then
(i) U11 and V22 are nonsingular, and ζ2 ≤ ζ1;
(ii) system (1) is lossless positive real if and only if the following conditions hold:

K1 = 0, PT
11(U11E11)

TP21 ≥ 0,(49)

rank

⎡
⎢⎣

A22V22 0 B2

0 (A22V22)
T CT

2

C2 BT
2 D + DT

⎤
⎥⎦ = 2n2,(50)

rank

⎡
⎢⎢⎢⎢⎢⎢⎣

A22 0 0 0 B2

−E22 A22V22 0 0 0

0 0 AT
22 −ET

22 0

0 0 0 (A22V22)
T CT

2

0 C2 −BT
2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 4n2,(51)

rank

⎡
⎢⎣

A22 0 B2

−E22 A22V22 0

0 C2 sI

⎤
⎥⎦ = 2n2 + m ∀s ∈ C+,(52)

ζ1 = ζ2.(53)

Proof. (i) First, a simple calculation yields that

EV

[
V12

V22

]
= AV

[
V12

V22

]
A−T

22 ET
22,

which with the nonsingularity of E11 and the property (44) implies that the columns

of V
[ V12

V22

]
form a basis of the eigenspace of the pencil sE − A corresponding to all

its infinite generalized eigenvalues [19]. Next, since all generalized eigenvalues of
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sE11−A11 are finite and all generalized eigenvalues of sE22−A22 are infinite, therefore
there exist unique X ∈ Rn1×n2 and Y ∈ Rn2×n1 such that

[
I X

0 I

]
U(sE −A)V

[
I Y

0 I

]
=

[
sE11 −A11 0

0 sE22 −A22

]
.

This means that the columns of V
[ Y
I

]
also form a basis of the eigenspace of the pencil

sE −A corresponding to all its infinite generalized eigenvalues. Thus,

[
Y

I

]
=

[
V12

V22

]
Z

for some nonsingular Z ∈ Rn2×n2 , and so V22 is nonsingular. Similarly, we can show
that U11 is also nonsingular.

Note that sE22 −A22 is nonsingular for all s ∈ C, and therefore ζ1 and ζ2 in (46)
must satisfy

ζ2 ≤ ζ1.

(ii) Since

[
U11 U12

0 I

]
U(sE −A)V

[
I V12

0 V22

]
(54)

=

[
sU11E11 − U11A11 0

0 sE22V22 −A22V22

]
,

we have

G(s) = D + C(sE −A)−1B

= D + C1(sU11E11 − U11A11)
−1B1 + C2(sE22V22 −A22V22)

−1B2

= D + C1(sI − (U11E11)
−1U11A11)

−1(U11E11)
−1B1

− C2(I − s(A22V22)
−1E22V22)

−1(A22V22)
−1B2

= G1(s) − sC2V−1
22 A−1

22 E22A
−1
22 B2

−
n2−1∑
k=2

skC2((A22V22)
−1E22V22)

k(A22V22)
−1B2,

where

G1(s) = D − C2(A22V22)
−1B2 + C1(sI − (E11)

−1A11)
−1(U11E11)

−1B1.

Consequently, we obtain using Lemma 10 that G(s) is lossless positive real if and only
if the following conditions hold:

(a) G1(s) is lossless positive real;
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(b) C2V−1
22 A−1

22 E22A
−1
22 B2 ≤ 0, i.e.,

{
C2V−1

22 A−1
22 E22A

−1
22 B2 = (C2V−1

22 A−1
22 E22A

−1
22 B2)

T ,

rank(sI − C2V−1
22 A−1

22 E22A
−1
22 B2) = m ∀s ∈ C+;

(c) C2((A22V22)
−1E22V22)

k(A22V22)
−1B2 = 0, i = 2, . . . , n2 − 1.

Regarding (a), (b), and (c) above, we observe the following:
(1) Equations (47) and (48) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝
[

Θ11 Θ12

0 Θ22

]−1

P
[
U11E11 0

0 I

]⎞
⎠

−1

=

[
I 0

0 (U11E11)
T

]
P

=

[
P11 P12

(U11E11)
TP21 (U11E11)

TP22

]
,

([
I 0

0 (U11E11)
T

]
P

)−1 [
E−1

11 A11 0

0 −AT
11(E11)

−T

][
I 0

0 (U11E11)
T

]
P

=

[
Θ−1

11 Φ11 Θ−1
11 Φ12 − Θ−1

11 Θ12Θ
−1
22 Φ22

0 Θ−1
22 Φ22

]
,

([
I 0

0 (U11E11)
T

]
P

)−1 [
(U11E11)

−1B1

CT
1

]
=

[
Θ−1

11 Ψ1

0

]

and

[
C1 −BT

1 (U11E11)
−T

] [ I 0

0 (U11E11)
T

]
P =

[
C1 −BT

1

]
P =

[
K1 K2

]
,

respectively. By (45) and (54), the controllability of (E;A,B) and (ET ;AT , CT ) im-
plies the controllability of (E−1

11 A11, (U11E11)
−1B1) and ((E−1

11 A11)
T , CT

1 ). According
to Theorem 16, G1(s) is lossless positive real if and only if

K1 = 0, PT
11(U11E11)

TP21 ≥ 0,

and

(D − C2(A22V22)
−1B2) + (D − C2(A22V22)

−1B2)
T = 0,

i.e., rank

⎡
⎢⎣

A22V22 0 B2

0 (A22V22)
T CT

2

C2 BT
2 D + DT

⎤
⎥⎦ = 2n2,

equivalently, if and only if the conditions (49) and (50) hold.
(2) It is also easy to see that

C2V−1
22 A−1

22 E22A
−1
22 B2 ≤ 0

if and only if the conditions (51) and (52) hold.
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(3) Since sE22−A22 is nonsingular for all s ∈ C, there exists a nonsingular matrix
Z [17] such that

Z−1(V−1
22 A−1

22 E22V22)Z =

⎡
⎢⎣

τ1 τ2 τ3

0 0 0

0 0 I

0 0 0

⎤
⎥⎦

}τ1
}τ3
}τ2

, τ2 ≤ τ3.(55)

By (45) and (54) again, the controllability of (E;A,B) and (ET ;AT , CT ) implies

rank
[
α(A22V22)

−1E22V22 − βI (A22V22)
−1B2

]

=

[
α(A22V22)

−1E22V22 − βI

C2

]
= n2

for all (α, β) ∈ C2\{0, 0}. Hence, we have using Lemma 11 that C2((A22V22)
−1

E22V22)
k(A22V22)

−1B2 = 0 (k = 2, . . . , n2 − 1) if and only if

τ2 = τ3.(56)

To find the relation between the conditions (53) and (56), let us refine the factor-
ization (46). Since A22 is nonsingular, therefore Γ12 and Γ21 in (46) are of full column
rank and full row rank, respectively, and

ζ2 ≤ ζ1.(57)

Note that A22, Γ33, and Λ11 are nonsingular, Γ12 is of full column rank, and Γ21 is of
full row rank. It is easy to see that there exist nonsingular matrices Y1 and Y2 such
that

Y1QTA22QY2 =

⎡
⎢⎢⎢⎢⎣

ζ2 ζ1 − ζ2 ζ2 ζ3

0 0 I 0

0 I 0 0

I 0 0 0

0 0 0 I

⎤
⎥⎥⎥⎥⎦

}ζ2
}ζ1 − ζ2

}ζ2
}ζ3

,

Y1QTE22QY2 =

⎡
⎢⎢⎢⎢⎣

ζ2 ζ1 − ζ2 ζ2 ζ3

Λ
(1,1)
11 Λ

(1,2)
11 0 0

Λ
(2,1)
11 Λ

(2,2)
11 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

}ζ2
}ζ1 − ζ2

}ζ2
}ζ3

,

where

rank

[
Λ

(1,1)
11 Λ

(1,2)
11

Λ
(2,1)
11 Λ

(2,2)
11

]
= rank(Λ11) = ζ1 = ζ2 + (ζ1 − ζ2).(58)
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Consequently, there exist permutation matrices Y3 and Y4 such that

Y3Y1QTA22QY2Y4 =

⎡
⎢⎢⎢⎢⎣

ζ3 ζ2 ζ1 − ζ2 ζ2

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

⎤
⎥⎥⎥⎥⎦

}ζ3
}ζ2
}ζ1 − ζ2

}ζ2

and

Y3Y1QTE22QY2Y4 =

⎡
⎢⎢⎢⎢⎣

ζ3 ζ2 ζ1 − ζ2 ζ2

0 0 0 0

0 0 Λ
(1,2)
11 Λ

(1,1)
11

0 0 Λ
(2,2)
11 Λ

(2,1)
11

0 0 0 0

⎤
⎥⎥⎥⎥⎦

}ζ3
}ζ2
}ζ1 − ζ2

}ζ2

,

which gives

(59)

(Y2Y4)
−1(Q−1A−1

22 E22Q)(Y2Y4) =

⎡
⎢⎢⎢⎢⎣

ζ3 ζ2 ζ1 − ζ2 ζ2

0 0 0 0

0 0 Λ
(1,2)
11 Λ

(1,1)
11

0 0 Λ
(2,2)
11 Λ

(2,1)
11

0 0 0 0

⎤
⎥⎥⎥⎥⎦

}ζ3
}ζ2
}ζ1 − ζ2

}ζ2

.

By a simple comparison between (59) and (55), we know by taking (57) and (58) into
account that

ζ3 = τ1, ζ2 = τ2, ζ1 = τ3.

Thus, (56) holds if and only if (53) holds.
Therefore, Theorem 17 follows.
Remark 2. The condition (52) is equivalent to stating that the pencil

⎛
⎝
⎡
⎣ 0 0 0

0 0 0
0 0 I

⎤
⎦ ,

⎡
⎣ −A22 0 −B2

E22 −A22V22 0
0 −C2 0

⎤
⎦
⎞
⎠

has no finite generalized eigenvalues on C+. Hence, it can be verified easily, as follows:
• Compute the finite generalized eigenvalues of the pencil

⎛
⎝
⎡
⎣ 0 0 0

0 0 0
0 0 I

⎤
⎦ ,

⎡
⎣ −A22 0 −B2

E22 −A22V22 0
0 −C2 0

⎤
⎦
⎞
⎠ .

If such finite generalized eigenvalues are all on C\C+, then the condition (52)
holds; otherwise, it does not hold.

Remark 3. The form (46) can be computed easily, as follows:
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• Compute the SVD of E22 [19] to get orthogonal matrices Q1 and Q1 such
that

QT
1 E22Q1 =

[ ζ1 n2 − ζ1

Λ11 0

0 0

]
}ζ1
}n2 − ζ1

,

where Λ11 is nonsingular. Set

QT
1 A22Q1 =

⎡
⎣

ζ1 n2 − ζ1

Γ11 Γ
(1)
12

Γ
(1)
21 Γ

(1)
22

⎤
⎦ }ζ1

}n2 − ζ1
.

• Compute the SVD of Γ
(1)
22 to get orthogonal matrices Q2 and Q2 such that

QT
2 Γ

(1)
22 Q2 =

[ ζ2 ζ3

0 0

0 Γ33

]
}ζ2
}ζ3

,

where Γ33 is nonsingular. Set

Γ
(1)
12 Q2 =

[ ζ2 ζ3

Γ12 Γ13

]
, QT

2 Γ
(1)
21 =

[
Γ21

Γ31

]
}ζ2
}ζ3

and

Q = Q1

[
I 0

0 Q2

]
, Q = Q1

[
I 0

0 Q2

]
.

Then QT (sE22 −A22)Q is in the form (46).

3. Conclusions. We have studied the algebraic characterizations for the positive
realness of descriptor systems in this paper. The main contributions of the present
work are as follows:

• In Theorem 13 we have algebraically characterized the positive realness of
descriptor systems by using a linear matrix inequality of the form (14) and
thus extended the well-known positive real lemma for standard state space
systems to descriptor systems.

• We have also shown in Theorems 16 and 17 that the lossless positive realness
of standard state space systems and descriptor systems can be tested easily
using the controllable staircase forms of the standard state space systems and
the generalized controllable staircase forms of descriptor systems, respectively.
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ON NUMERICAL ISSUES OF INTERIOR POINT METHODS∗

CSABA MÉSZÁROS†

Abstract. This paper concerns some numerical stability issues of factorizations in interior point
methods. In our investigation we focus on regularization techniques for the augmented system. We
derive the fundamental property of regularization and necessary conditions for the convergence of
iterative refinement. A relaxation technique is described that improves on convergence properties.
We introduce a practical, adaptive technique to determine the required amount of regularization in
numerically difficult situations. Numerical experiments on large-scale, numerically difficult linear
programming problems are presented.
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1. Introduction. During the past 15 years, interior point methods (IPMs)
proved to be efficient in practice and numerically robust for solving large-scale op-
timization problems [7, 1]. The important practical issue, the stability of the com-
putations in IPMs, deserved special attention in the literature [6, 24, 27, 26]. For
most interior point algorithms, the major computational task is to solve symmetric
systems of linear equations, which is usually done by factorization in practice. One
of the most important difficulties for IPMs is the ill-conditioning of these linear sys-
tems when the method approaches the optimal solution of the optimization problem.
It has been shown that, in general, degeneracy in the optimization problem causes
ill-conditioning, but in such a case the possible numerical errors appear to be in a sub-
space [17]. This situation can be handled well with a modified factorization scheme
by skipping columns corresponding to small pivots during numerical computations
[27, 17]. In [17] it was pointed out that ill-conditioning may also appear when the
optimal solution of the problem is scaled badly, i.e., if the values of the strictly pos-
itive components in the optimal solution vector are of different orders of magnitude.
A situation like this may easily occur in real-life optimization problems, resulting in
a breakdown of the modified factorization scheme, as demonstrated in [17]. In such a
case, a regularization technique can help to avoid numerical problems. In the present
paper regularization means that prior to the symmetric factorizations, some “small”
diagonal matrix values are replaced by “reasonably large” ones. Naturally, regular-
ization is very sensitive to the manner of how the “small” values are identified and of
how the “reasonably large” values are set.

In this paper we investigate regularization techniques. We introduce the practical
linear algebra operations of IPMs in section 2. In section 3 we introduce a regulariza-
tion scheme for the diagonal scaling matrix of IPMs and derive necessary and sufficient
conditions for the convergence of iterative refinement on the regularized system. In
section 4 we discuss special cases and describe a relaxation technique to improve the
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convergence of iterative refinement. In section 5 an adaptive scheme for the use of
regularization is described. Section 6 presents numerical results.

2. Interior point methods and symmetric factorizations. We consider the
linear programming problem and a primal-dual log barrier interior point method for
further investigations. It is to be noted that the underlying linear algebra of other
interior point approaches is fairly similar.

Let us consider the linear programming problem

min cTx,(2.1)

Ax = b,
x ≥ 0,

where x, c ∈ Rn, A ∈ Rm×n is of full row rank, and b ∈ Rm. The associated dual
problem is

max bT y,

AT y + z = c,

z ≥ 0,

where y ∈ Rm and z ∈ Rn. The logarithmic barrier problem corresponding to (2.1)
is

min cTx− μ

n∑
i=1

ln xi,(2.2)

Ax = b, x > 0,

where μ is a positive scalar barrier parameter. A log barrier IPM approaches the
optimal solution on the central path (x∗, y∗, z∗) by a sequence of barrier problems
(2.2), while the barrier parameter is decreased toward zero. Following the classical
introduction of the primal-dual log barrier method [12, 8, 25], the algorithm can be
derived by applying Newton’s method to solve the Karush–Kuhn–Tucker system of
(2.2). Present efficient implementations employ the predictor-corrector and higher-
order correction techniques [13, 1].

The computational task in each iteration of the resulting methods is the solution
of systems of linear equations

(2.3)

[
D AT

A 0

] [
Δx
Δy

]
=

[
α
β

]
,

where

D = diag
(
x−1
i zi

)
.

Later, the matrix of (2.3) is referred to as the augmented system. For the predictor-
corrector primal-dual method, two systems should be solved with the same matrix
and different right-hand sides, while higher-order methods require more solutions of
systems like the above.

In practice, a Cholesky-like decomposition of the permuted matrix is computed
as

(2.4) LΛLT = P

[
D AT

A 0

]
PT ,
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where L is lower triangular, Λ is diagonal with both positive and negative values, and
P is a permutation. Implementations either use the normal equations, for which

L =

[
D

1
2

AD− 1
2 L̂

]
, Λ =

[
I

−I

]
, P =

[
I

P̂

]
,

where L̂L̂T is the Cholesky decomposition of AD−1AT [20, 1], or alter the matrix to be
quasi-definite, so it can be factorized with any P by indefinite Cholesky factorization
[23, 22]. Our implementation uses a heuristic to select one of these two approaches.
The indefinite Cholesky factorization is used only if a reduction in the fill-in seems
possible [10]. From now on we will omit the permutation P , as it has no influence on
the algebraic properties.

During interior point iterations the diagonal values of D converge to zero or to
infinity, depending on the analytic center x∗ of the optimal face of problem (2.1):

Dii →
{

0 if x∗
i > 0,

∞ if x∗
i = 0,

resulting in increasing ill-conditioning of the augmented system. Supposing that the
original constraint matrix A is well-conditioned, in most cases ill-conditioning like
this presents no numerical difficulties, except if the solution x∗ is scaled badly; i.e.,
its positive components have a significantly different order of magnitude [17]. We
investigate this situation where the usual factorization approaches may break down.

In interior point implementations, iterative refinement is a standard technique for
improving numerical accuracy. The classical normal equations approach, where (2.3)
is reduced to

(2.5) −AD−1ATΔy = β −D−1ATα

and (2.5) is solved for Δy, is very attractive because the positive definiteness of
the matrix AD−1AT allows powerful iterative techniques, such as the preconditioned
conjugate gradient method. But we have observed that iterative methods for (2.5)
often fail in interior point implementations in numerically difficult cases. The reason
is that the matrix AD−1AT often cannot be formed accurately, so that Δy will be
inaccurate, and then Δx will be inaccurately obtained from DΔx = α − ATΔy.
Therefore, we apply iterative refinement on the augmented system, which feeds back
corrections corresponding to the residuals in the spaces of both Δx and Δy. Regarding
the pure least squares problem, this approach was justified as well by theory [3, 2].

The steps of a refinement scheme like this can be written as

solve M

[
Δx
Δy

]0

=

[
α
β

]
,

solve M

[
Δx
Δy

]
=

[
α
β

]
−M

[
Δx
Δy

]k
,(2.6)

form

[
Δx
Δy

]k+1

=

[
Δx
Δy

]k
+

[
Δx
Δy

]
,

where

M =

[
D AT

A 0

]
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and M is an approximation of M suitable for the solve operation. Later, we will
consider iterative refinement in the following standard form:

(2.7)

[
Δx
Δy

]k+1

=
(
I −M−1M

) [ Δx
Δy

]k
+

[
Δx
Δy

]0

.

In the implementation we use the IEEE standard double precision arithmetic for all
computation steps. Note that “iterative refinement” normally requires additional
precision in computing the right-hand side of (6), but here we are solving systems
involving a modified M instead of the required M . This is similar to using inaccu-
rate factors from an unstable factorization of M . In such contexts, a few steps of
“refinement” can be helpful even without extra precision.

3. Regularization. In choosing M , our approach is to modify the diagonals
of M . In this way we regularize D, the so-called diagonal scaling matrix of interior
methods. Let us suppose that scaling factors different from D are used. Let D be a
diagonal positive definite n×n matrix and consider the regularized augmented matrix

M =

[
D AT

A 0

]
.

In our approach we factorize M and apply iterative refinement to achieve the solution
of (2.3). In exact arithmetic, the iterative process converges if the eigenvalues λ of
the refinement operator satisfy

∣∣λ (
I −M−1M

)∣∣ < 1 [4]. Thus we investigate the
eigenvalues by examining the solutions of the equation

(3.1) det
(
I −M−1M − λI

)
= 0.

Since M is nonsingular, (3.1) is equivalent to

det
(
M−1

)
det (M − (1 − λ)M) = 0.

The block matrix M − (1 − λ)M can be simplified as

M − (1 − λ)M =

[
D − (1 − λ)D AT − (1 − λ)AT

A− (1 − λ)A 0

]
=

[
D − (1 − λ)D λAT

λA 0

]
.

This shows that 0 is an eigenvalue with multiplicity of at least 2m, since

det (M − (1 − λ)M) = λ2m det

[
D − (1 − λ)D AT

A 0

]
.

Thus, we can reduce (3.1) to

det

[
D − (1 − λ)D AT

A 0

]
= 0.

Now we state the main lemma.
Lemma 3.1. All eigenvalues of the matrix

(
I −M−1M

)
are real numbers.

Proof. Let us suppose that there exists a complex eigenvalue: ∃λ ∈ C \R. Since
Dii > 0, the inverse of the diagonal complex matrix (D − (1 − λ)D) exists because
its imaginary part is of full rank:

∃ (D − (1 − λ)D)
−1 ∈ Cn×n.
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We show that A (D − (1 − λ)D)
−1

AT is of full rank, which contradicts the assump-
tion. Since both λ and its complex conjugate λ̄ are eigenvalues, we can assume that
λ is of the form of λ = λ1 − iλ2, where λ2 > 0. Since for any a, b ∈ R,

(a− ib)
−1

=
a + ib

a2 + b2
,

the matrix (D − (1 − λ)D)
−1

can be written as

(D − (1 − λ)D)
−1

= F + iG,

where F is diagonal and G is diagonal positive definite. Therefore,

A (D − (1 − λ)D)
−1

AT = AFAT + iAGAT ,

and, furthermore,

rank
(
AFAT + iAGAT

)
= rank

((
AGAT

)−1
AFAT + iI

)
.

The eigenvalues of
(
AGAT

)−1
AFAT are all real numbers because it is similar to a

symmetric real matrix:

(
AGAT

)−1
AFAT ∼

(
AGAT

)−1/2
AFAT

(
AGAT

)−1/2
.

This means that the eigenvalues of the matrix
(
AGAT

)−1
AFAT + iI have the form

λ
((

AGAT
)−1

AFAT + iI
)

= r + i,

where r ∈ R. Therefore, no eigenvalue can be 0, because of the nonzero imaginary
part. This shows that A (D − (1 − λ)D)

−1
AT is of full rank for any λ ∈ C \R. Thus,

all eigenvalues of
(
I −M−1M

)
should be in R.

Theorem 3.2. All eigenvalues of the matrix
(
I −M−1M

)
are less than 1.

Proof. For λ ≥ 1, the matrix D − (1 − λ)D is positive definite and
[

D − (1 − λ)D AT

A 0

]

is of full rank. Therefore, for λ ≥ 1 (3.1) cannot be satisfied.
Theorem 3.3. All eigenvalues of the matrix

(
I −M−1M

)
are greater than or

equal to mini (1 −Dii/Dii) .
Proof. For λ < mini (1 −Dii/Dii) the matrix D − (1 − λ)D is negative definite

and [
D − (1 − λ)D AT

A 0

]

is of full rank.
Corollary 3.4. All eigenvalues of the matrix

(
I −M−1M

)
are greater

than −1 if

(3.2) max
Dii

Dii
< 2.

We can now derive sufficient conditions for the convergence of iterative refine-
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ment:
• the diagonals of D are increased arbitrarily, or
• the diagonals of D are decreased by less than 50%.

Note that the last condition is sharp, which can be demonstrated by the following
example:

A = [1, 1], D =

[
2

2

]
, D =

[
1

1

]
.

Iterative refinement does not converge because

λ

⎛
⎜⎝
⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦−

⎡
⎣ 1 0 1

0 1 1
1 1 0

⎤
⎦
−1 ⎡

⎣ 2 0 1
0 2 1
1 1 0

⎤
⎦
⎞
⎟⎠ = {0, 0, −1} .

4. Speeding up convergence. Let R = I −M−1M denote the matrix of the
iterative refinement (2.7). Observe that the following upper bound can be easily
derived regarding the absolute value of the eigenvalues of R:

(4.1) max |λ (R)| ≤ max
i

∣∣∣∣1 − Dii

Dii

∣∣∣∣ .
This upper bound helps to improve the convergence rate of iterative refinement. Our
idea is to use a relaxation technique and consider the matrix

Mγ =

[
γD AT

A 0

]

and choose γ > 0 such that

max
i

∣∣∣∣1 − Dii

γDii

∣∣∣∣
is minimized. Then, Mγ is factored and used in the iterative refinement process (2.7).

The case γ > 1 is called overrelaxation and γ < 1 is underrelaxation. Since in
our situation, usually Dii ≥ Dii, we may use underrelaxations only with γ ≤ 1. In
practice, we have Dii = Dii for several indices i, which requires that γ > 1

2 .
A relaxation technique like this can relax condition (3.2) since, for any M, it is

possible to find a large enough γ such that

max
∣∣λ (

I −M−1
γ M

)∣∣ < 1.

This means that for any positive definite diagonal D, we can determine a relaxation
parameter γ such that iterative refinement will converge to the solution of (2.3).

In practice we determine γ by solving

(4.2) min
γ

n∑
i=1

(Dii − γDii)
2
.

In this way we reduce the Frobenius distance between the original and regularized
scaling matrices.
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4.1. Further properties of the regularization. Observe that if m = n, then
R is nilpotent, i.e., ∃k ≤ m + n positive integer so that Rk = 0. Therefore, in exact
arithmetic, iterative refinement converges in a finite number of steps. The same is
true if the “regularized” columns of A are linearly independent of the other columns,
i.e., if

Dii 	= Dii =⇒ ai /∈ Span(a1, . . . , ai−1,ai+1, . . . , an).

Then, the matrix R is nilpotent, which again implies a finite number of steps for
iterative refinement in exact arithmetic.

Next, we consider a regularization scheme similar to the Tyhonov–Levenberg
regularization for LSQR [19], as used in [22]. We set

(4.3) M =

[
D AT

A −D+

]
,

where D and D+ are positive definite diagonal. The regularization D+ corresponds to
a regularization of the free variables in the dual problem [15]. We apply regularization
like this to alter M to be quasi-definite for the indefinite Cholesky factorization in
case the matrix of normal equations has significant fill [16]. For the behavior of
regularizations of this type, we investigate the eigenvalues again by examining the
solutions of

(4.4) det

[
D − (1 − λ)D λAT

λA (1 − λ)D+

]
= 0.

Since D+
ii > 0, no eigenvalue is 0 in this case. But it is easy to see that, similar to

the previous case, all solutions of (4.4) are real numbers and the same conditions for
iterative refinement are valid. In particular, all eigenvalues of R are less than 1, since
for λ ≥ 1 the matrix D − (1 − λ)D is positive definite and (1 − λ)D+ is negative

definite. Thus, (1 − λ)D+ − λ2A (D − (1 − λ)D)
−1

AT is negative definite and (4.4)
cannot hold for λ ≥ 1.

Furthermore, if D is chosen such that

max
Dii

Dii
< 2,

then all eigenvalues will be greater than −1, since for λ ≤ −1, the matrix D −
(1 − λ)D is negative definite, (1 − λ)D+ is positive definite, and (1 − λ)D+ − λ2A

(D − (1 − λ)D)
−1

AT is positive definite. This shows that dual regularization does
not affect the convergence conditions.

In [22] Saunders perturbed the diagonal of M by a small multiples of I in order to
permit the use of existing sparse Cholesky factorization software and ensure sufficient
stability. The key feature of our approach is that it is more adaptive: the diagonal
values of D and D+ can all be modified by a different amount, bounded in order to
ensure convergence of the refinement process.

Finally, let us note that a special case of regularization was discussed in [15] for
handling free variables in interior point methods. In this case zero diagonal elements
in D were replaced by positive ones. Note that condition (3.2) in this case holds for
any Dii > 0 value.
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5. Regularization in practice. In our implementation we intend to achieve
10−8 relative error in the Euclidean norm when solving system (2.3):

∥∥∥∥
[

D AT

A 0

] [
Δx
Δy

]
−
[

α
β

]∥∥∥∥ ≤ 10−8 max

(
1,

∥∥∥∥
[

α
β

]∥∥∥∥
)
.

We use a direct factorization approach with iterative refinement, which is stopped if
the desired accuracy is achieved or if the Euclidean norm of the residual increases.
The strategy for choosing D plays an important role in our approach, because it
balances stability and efficiency. Increasing the diagonals in D may result in more
stable factorizations, but may make the iterative refinement process longer. Here we
describe an adaptive procedure to determine D at each iteration.

Our practical assumption is that improving the condition of D reduces the ill-
conditioning of AD−1AT and M . Our approach sets D such that its condition number
is kept below an adaptively determined threshold with small modification of D. In
the case of the factorization of the normal equations system, modification like this
reduces the quantity cond(A)

2
cond(D), which is an upper bound for the condition

number of AD−1AT , while for the indefinite Cholesky factorization of (4.3) it reduces
the upper bound [22] on the effective condition of M̄ [21].

At iteration k, we define the tentative partition P k of the primal variables that
are positive at the optimum, as

(5.1) P k =

{
j ∈ {1, . . . , n} :

|Δxa
j |

xj
≤

|Δzaj |
zj

}
,

where (Δxa,Δza) is the primal-dual affine scaling direction at the previous iteration
[14]. Furthermore, let Nk = {1, . . . , n} \P k. We chose this indicator because it is
independent of problem scaling and has been justified by both theory and practice
[1]. Since ANkD−1

NkA
T
Nk vanishes as the IPM approaches the optimal solution, we

assume that variables defined by Nk play a less important role, and we concentrate
on the behavior of the variables defined by P k. Thus, we consider the “important”
part of the augmented system

(
DPk AT

Pk

APk 0

)
,

and monitor the quantity cond(DPk). In our regularization scheme we set DNk = DNk

and regularize DPk if necessary. We divide the interior point iteration process into two
parts. In the first part we monitor the stability during the iterations and determine
the largest value for cond(DPk), referred to as ω, that still results in numerically
“safe” computations. There is no regularization applied in this phase. The second
phase is called the “regularization phase” and it is activated if system (2.3) cannot be
solved to a numerically sufficient accuracy by iterative refinement. In this phase we
derive D from D and ω and may modify ω if necessary. Our process can be described
as follows:

1. Monitoring phase.
• Set ω = 1 and k = 0.
• At iteration k computes the affine scaling direction (2.3) [13].

– If iterative refinement converges rapidly, consider the system as nu-
merically “safe” and set ω = max (ω, cond (DPk)) . Continue with
the IPM iterations, set k ←− k + 1.
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– If iterative refinement converges, but the convergence is rather slow,
leave ω unchanged. Continue with the IPM iterations, set k ←−
k + 1.

– If iterative refinement does not converge, switch to the “regulariza-
tion phase.”

2. Regularization phase.
• Define DNk = DNk .
• Set δ = maxi∈Pk (Dii) .
• For all i ∈ P k set Dii = max (Dii, δ/ω).
• Determine γ from (4.2).
• Compute the factorization of Mγ and compute the affine scaling direc-

tion (2.3).
– If iterative refinement converges, leave ω unchanged and continue

with the IPM iterations, set k ←− k + 1.
– If iterative refinement does not converge, increase ω and restart the

computation of iteration k.

It can be observed that δ becomes large during the iterations. Note that increasing
ω in the regularization phase may be necessary to compensate for the increase of
cond(APk), relative to cond(APk−1). In our implementation we multiply ω by 10 in
a case like this. Also note that the regularization phase may be skipped if sufficient
numerical accuracy is achieved for (2.3) during all interior point iterations. This is
the case on all NETLIB [5] and QPLIB [11] problems with our solver, for example.

6. Numerical results. We demonstrate the usability of our regularization
scheme by solving numerically difficult problems. Let us note that the present NETLIB
and QPLIB problem sets do not contain any problems with numerical challenges for
modern interior point solvers, and all of these problems are easily solvable without the
regularization techniques. We assembled a set of challenging problems from academic
and industrial applications. Those available for the public can be accessed from
http://www.sztaki.hu/˜meszaros/public ftp/lptestset/. Table 6.1 gives the charac-
teristics of the problems before and after our presolve procedure. During presolve
the problem data was scaled by rows and columns as described in [18]. Note that
none of these problems was solvable by our implementation BPMPD [16] without the
described regularization scheme.

The problem statistics show that numerical difficulties are not related to the
problem size, as our test set contains small problems with a few hundred variables,
as well as large ones with up to 2 million variables.

Table 6.2 summarizes the numerical properties of the test problems. We denote
the partition (5.1) of the optimal solution by P ∗ and use notation X = diag(x1, . . . , xn).
Thus, the second column of Table 6.2 presents the ratio of the largest and smallest
primal values among the primal variables that are positive in the optimal solution.
The third column presents the condition number of the scaling matrix DP∗ at the
last iterate of the interior point method. The fourth column presents the value of
ω used for the last iteration. Finally, the iteration numbers of the monitoring and
regularization phases are given.

The results indicate that most of the problems are very badly scaled for interior
point methods, resulting in badly conditioned scaling matrices D. The results also
explain why refinement methods for the normal equation system do not work in these
cases: during the computation of AP∗D−1

P∗AT
P∗ a significant amount of information

is lost because of the bad conditioning of DP∗ . For some problems, the Cholesky
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Table 6.1

Problem statistics.

Problem Original Preprocessed
name rows columns nonzeros rows columns nonzeros

11per 19183 28071 207408 8723 15371 156746
1pren 1589 1793 25898 1035 1245 54851
asphalt 5146 4653 40660 1651 1547 89893
check1 216 158 1181 194 156 1177
check2 216 158 1181 194 156 1177
felici203 25301 33865 511720 19492 24508 459678
gmp 86968 460554 1753245 83835 371983 1595884
icplp 2161 66707 555906 1824 9152 51858
l30 2701 15380 51169 1209 13888 698704
mylp 2162 66707 618563 1824 9152 52353
sgpf3y5 30458 39867 103090 17374 26746 61460
ss75 57601 85275 413025 24581 68979 1522662
stat96v1 5997 197472 780606 867 185764 3566191
stat96v2 29091 957432 3783000 4379 917760 18340701
stat96v4 3174 62212 490473 3170 62209 469730
sa4 11101 1990672 21391159 11101 1990672 21391159
sanom 12796 231711 2427152 12368 231662 2420573
vtx202 37921 391594 2721175 31048 384536 6937717

Table 6.2

Numerical characteristics of the problems.

Problem Numerical properties Iterations
name cond(XP∗ ) cond(DP∗ ) ω monitor regul.
11per 5.6e+14 7.7e+27 2.1e+15 21 57
1pren 3.4e+16 4.6e+32 6.2e+18 14 3

asphalt 4.1e+11 8.7e+22 2.2e+17 32 6
check1 9.1e+07 5.8e+15 1.0e+15 10 17
check2 1.3e+08 2.8e+16 1.0e+15 18 13
felci203 2.0e+10 3.6e+20 1.0e+16 33 13

gmp 1.5e+17 1.5e+29 8.3e+17 44 13
icplp 4.0e+10 7.3e+19 1.2e+17 20 26
l30 4.9e+09 1.5e+20 1.0e+11 12 17

mylp 9.9e+09 5.2e+18 1.0e+14 20 9
sgpf3y5 7.5e+10 9.8e+22 1.0e+11 8 42

ss75 7.8e+13 3.8e+26 1.0e+12 13 46
stat96v1 2.5e+13 2.3e+27 1.0e+11 10 70
stat96v2 5.0e+12 2.6e+24 1.0e+11 6 61
stat96v4 4.6e+10 9.4e+20 1.0e+16 25 5

sa4 9.5e+08 2.8e+16 1.0e+15 36 3
sanom 7.6e+07 1.9e+16 1.0e+15 54 1
vtx202 1.2e+12 1.1e+24 1.6e+17 22 45

factorization is sufficiently accurate up to the last few iterations, such as on problems
stat96v4, sa4, and sanorm. On several problems, however, the Cholesky factorization
broke down at an early stage of the iteration process, leaving significant work for the
regularization phase. Problems like this include 11per, sgpf 3y5, ss75, stat96v1, and
stat96v2.

Interior point algorithms terminate when the first-order optimality conditions
are satisfied with some predetermined tolerance. This is translated to the following
conditions imposed on the relative primal and dual feasibility and the relative duality
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Table 6.3

Accuracy of the IPM solutions.

Problem Relative infeasibility Relative Average
name primal dual duality gap refinements

11per 1.7e-09 1.3e-12 4.1e-10 28.6
1pren 2.4e-10 5.7e-07 1.0e-14 44.0
asphalt 4.3e-09 3.1e-11 2.3e-09 0.0
check1 8.5e-13 1.0e-12 3.5e-08 4.7
check2 6.6e-13 2.2e-16 3.4e-09 5.5
felci203 4.8e-13 2.1e-16 5.7e-09 12.5
gmp 1.1e-05 5.7e-13 1.0e-06 48.0
icplp 5.9e-11 5.4e-16 1.6e-08 31.3
l30 6.3e-10 5.6e-12 4.7e-09 35.9
mylp 5.1e-08 1.3e-09 1.9e-09 36.0
sgpf3y5 2.5e-15 1.4e-11 3.3e-08 13.7
ss75 2.9e-13 2.4e-09 7.7e-09 36.1
stat96v1 1.0e-11 2.0e-12 3.2e-08 19.1
stat96v2 1.1e-08 2.1e-10 2.2e-07 19.1
stat96v4 3.7e-09 2.1e-17 3.0e-08 2.4
sa4 3.7e-11 8.0e-16 3.0e-09 55.7
sanom 1.1e-09 1.6e-16 8.6e-08 75.9
vtx202 1.5e-10 7.1e-09 1.3e-08 24.1

gap:

||Ax− b||
1 + ||b|| ≤ ε,

||AT y − c||
1 + ||c|| ≤ ε,

∣∣cTx− bT y
∣∣

1 + |bT y| ≤ ε,

where ε is a positive tolerance. We stopped our IPM implementation if ε of order 10−8

was achieved, or if the accuracy of the solution was not decreased by at least one order
of magnitude during the last 10 iterations. Table 6.3 displays the relative primal and
dual infeasibility and the relative duality gap at the termination. Furthermore, the
last column of Table 6.3 shows the average number of iterative refinement steps in
the regularization phase for computing the “composite” infeasible predictor-corrector
direction [9]. The results show that the desired accuracy was achieved on the ma-
jority of the problems, while the number of necessary iterative refinement steps was
kept moderate. The numerically most ill-conditioned problem appeared to be gmp,
but taking into account the condition number of DP∗ observed on this problem, the
achieved accuracy can be considered to be adequate.

Note that the iterative refinement converged in some cases very rapidly. Interest-
ingly, on problem asphalt, no refinement steps were necessary during the regularization
phase. Most of the refinement steps were necessary on problems sanomand sa4, but
these problems required only few iterations in the computationally more expensive
regularization phase. The rest of the problems required a moderate number of refine-
ments.

7. Summary. In [17] it was pointed out for interior point methods that if the
values of the strictly positive components in the primal optimal solution vector are
of different orders of magnitude, then it presents numerically challenging cases for
current implementation technology, based on the modified Cholesky decomposition.
Here we described a regularization scheme for handling this situation and for solving
numerically challenging linear programming problems. We proved that, with some
conditions for the regularization, one can compute search directions using a factoriza-
tion of the regularized system and iterative refinement. A relaxation technique was
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described whose application can relax the derived condition and may increase the rate
of convergence of the iterative refinement. We discussed several special aspects and
properties of the regularization scheme and showed that in some cases the convergence
of the iterative refinement can be guaranteed in a finite number of steps because of
the nilpotent property of the underlying transformation matrix. Based on an upper
bound on the effective condition number of the augmented system M (12), we pro-
vided an adaptive control mechanism for the regularization. Our scheme classifies the
ill-conditioned part of M in a scaling-independent way and adaptively determines the
necessary amount of regularization.

Our numerical experiments confirmed that the regularization scheme improves
the numerical stability and makes interior point implementations more robust.
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[1] E. D. Andersen, J. Gondzio, C. Mészáros, and X. Xu, Implementation of interior point
methods for large scale linear programs, in Interior Point Methods of Mathematical Pro-
gramming, T. Terlaky, ed., Appl. Math. Optim. 33, Kluwer Acad. Publ., 1996, pp. 189–252.

[2] M. Arioli, I. S. Duff, and P. P. M. de Rijk, On the augmented system approach to sparse
least-squares problems, Numer. Math., 55 (1989), pp. 667–684.

[3] A. Björk, Iterative refinement of linear least squares solutions, BIT, 8 (1967), pp. 8–30.
[4] L. Fox, An Introduction To Numerical Linear Algebra, Clarendon Press, Oxford, 1964.
[5] D. M. Gay, Electronic mail distribution of linear programming test problems, COAL Newslet-

ter, 13 (1985), pp. 10–12.
[6] P. E. Gill, M. A. Saunders, and J. R. Shinnerl, On the stability of Cholesky factorization

for symmetric quasi-definite systems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 35–46.
[7] J. Gondzio and T. Terlaky, A computational view of interior point methods for linear pro-

gramming, in Advances in Linear and Integer Programming, J. Beasley, ed., Oxford Uni-
versity Press, Oxford, 1995, pp. 103–144.

[8] M. Kojima, S. Mizuno, and A. Yoshise, A primal-dual interior point algorithm for linear
programming, in Progress in Mathematical Programming: Interior-Point Algorithms and
Related Methods, N. Megiddo, ed., Springer Verlag, New York, 1989, pp. 29–47.

[9] I. J. Lustig, R. E. Marsten, and D. F. Shanno, Computational experience with a primal-
dual interior point method for linear programming, Linear Algebra Appl., 152 (1991),
pp. 191–222.
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Abstract. In this paper we introduce a new orthogonalization method. Given a real m × n
matrix A, the new method constructs an SVD-type decomposition of the form A = ÛΣ̂V̂ T . The
columns of Û and V̂ are orthonormal, or nearly orthonormal, while Σ̂ is a diagonal matrix whose
diagonal entries approximate the singular values of A. The method has three versions: a “left-side”
orthogonalization scheme in which the columns of Û constitute an orthonormal basis of Range(A),

a “right-side” orthogonalization scheme in which the columns of V̂ constitute an orthonormal basis
of Range(AT ), and a third version in which both Û and V̂ have orthonormal columns, but the
decomposition is not exact. The new decompositions may substitute the SVD in many applications.
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1. Introduction. In this paper we introduce a new orthogonalization method.
Let A be a real m×n matrix. The new method constructs an SVD-type decomposition
of the form

A = Û Σ̂V̂ T ,

where the columns of Û and V̂ are orthonormal (or nearly orthonormal) and Σ̂ is a
diagonal matrix whose diagonal entries approximate the singular values of A. The
name of the method, “orthogotheonalization via deflation,” comes from the similarity
to Hotelling’s deflation by subtraction method. Given a symmetric positive semidef-
inite matrix S, the last method computes the eigenpairs of S, one after another in
decreasing order, using the power method to compute dominant eigenpairs of the
deflated matrices, e.g., [16], [17], [26], [32]. It is well known, however, that the con-
vergence of the power method can be very slow. This raises the question of whether
there are better ways to compute a dominant eigenpair. In the general case we need
an effective method for calculating a dominant pair of singular vectors.

Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 denote the eigenvalues of S. Then a dominant
eigenvector of S satisfies Sq = λ1q and q �= 0. The minimum norm approach proposed
in this paper computes q by solving the minimum norm problem

(1.1) minimize E(q) = ‖S − qqT ‖2
F ,

where ‖ · ‖F denotes the Frobenius matrix norm and q = (q1, q2, . . . , qn)T denotes the
vector of unknowns. An equivalent way to write (1.1) is

(1.2) minimize E(q1, . . . , qn) =

n∑
i=1

n∑
j=1

(sij − qiqj)
2,
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where sij denotes the (i, j) entry of S. If q1 is a dominant eigenvector of S, then
the vector q∗ = (λ1)

1/2q1/‖q1‖2 solves (1.1). The converse is also true: Let q∗ solve
(1.1), and then q∗ is a dominant eigenvector of S. These observations are easily
derived from the symmetric quotients equality that we establish in section 4. Here
and henceforth

‖q‖2 = (qTq)1/2 =

(
n∑

j=1

q2
j

)1/2

denotes the Euclidean vector norm. Casting the problem of calculating a dominant
eigenpair as a minimum norm problem opens the door for effective minimization
techniques. For example, minimizing E(q1, . . . , qn) by changing one variable at a time
results in a “point relaxation” algorithm that requires about the same computational
effort per iteration as the power method but enjoys a faster rate of convergence. See
[8] for computational details and numerical experiments.

A similar approach is proposed for calculating a dominant pair of singular vectors
of a real m× n matrix A. In this case we consider the minimum norm problem

(1.3) minimize F (u,v) = ‖A− uvT ‖2
F ,

where u = (u1, u2, . . . , um)T ∈ R
m and v = (v1, v2, . . . , vn)T ∈ R

n denote the vectors
of unknowns. An alternative way to write (1.3) is

(1.4) minimize F (u1, . . . , um, v1, . . . , vn) =

m∑
i=1

n∑
j=1

(aij − uivj)
2,

where aij denotes the (i, j) entry of A. To simplify our notations we make the as-
sumption that m ≥ n. In this case A has an SVD of the form

(1.5) A = UΣV T ,

where U = [u1, . . . ,um] is an m×m orthogonal matrix, V = [v1, . . . ,vn] is an n× n
orthogonal matrix, and Σ = diag{σ1, . . . , σn} is an m × n diagonal matrix. There is
no loss of generality in assuming that the singular values are nonnegative and sorted
to satisfy

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.

The columns of U are called left singular vectors, while the columns of V are called
right singular vectors. A pair of nonzero vectors that satisfy

‖û‖2 = 1, ‖v̂‖2 = 1, Av̂ = σ1û, and AT û = σ1v̂

is called a dominant singular pair. In this case the vectors u∗ = (σ1)
1/2û and

v∗ = (σ1)
1/2v̂ solve (1.3). The converse claim is also true: If the vectors u∗ and

v∗ solve (1.3), then û = u∗/‖u∗‖2 and v̂ = v∗/‖v∗‖2 form a dominant singular

pair with σ1 = ûTAv̂. These observations are a corollary of the well-known Eckart–
Young theorem, e.g., [3] or [11]. (The last theorem is also called the Schmidt–Mirsky
theorem, e.g., [28].) The rectangular quotient equality that we establish in section 5
provides an alternative way to conclude these observations.
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Recall that (1.5) implies the equality

(1.6) A =
n∑

j=1

σjujv
T
j ,

while a partial sum of the form

(1.7) B� =

�∑
j=1

σjujv
T
j

is called a low-rank approximation of order � (also called truncated SVD). The or-
thogonal decomposition proposed in this paper has similar structure and may replace
the SVD in many applications. It is especially attractive in cases when standard SVD
algorithms are not applicable.

The paper is divided into two parts. The first one concentrates on symmetric
positive semidefinite matrices. The second part extends the results to general m× n
matrices. This helps to see the motivation behind the proposed methods and the close
links between the two cases. The plan of the paper is as follows. It starts with a brief
overview of the power method and its basic features. By using deflation by subtraction
the power method is harnessed to yield a complete eigensystem of S. The modified
deflation scheme proposed in section 3 is essentially an orthogonalization process that
has important advantages over the classical deflation by subtraction process.

The second part of the paper starts by extending the Rayleigh quotient to real
m × n matrices. Given two vectors u ∈ R

m and v ∈ R
n, the rectangular Rayleigh

quotient

(1.8) ρ(u,v) = uTAv
/
(‖u‖2‖v‖2)

estimates the corresponding singular value of A. The rectangular quotient equality,
which is proved in section 5, connects the minimum norm problem (1.3) with ρ(u,v),
showing that minimizing ‖A− uvT ‖F is equivalent to maximizing ρ(u,v). The rect-
angular iterations that we propose solve this problem in an effective way. The new
orthogonalization process is introduced in section 8. An advantage of the proposed
approach is its ability to handle problems in which some entries of A are missing.
This issue is briefly discussed in section 9.

2. The power method and deflation by subtraction. As before, S denotes
a symmetric positive semidefinite matrix of order n with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0.

Let q1,q2, . . .qn denote the corresponding system of orthonormal eigenvectors. That
is, ‖qj‖2 = 1 and Sqj = λjqj for j = 1, . . . , n, and qT

i qj = 0 when i �= j. The
power method is an iterative algorithm for computing a dominant eigenpair of S.
The deflation by subtraction process enables us to harness the power method for
calculating the other eigenpairs of S. In this section we briefly overview the basic
features of these methods.

2.1. The power method. Starting with some initial unit vector p0, the kth
iteration k = 1, 2, . . . is composed of the following three steps:

1. Compute wk = Spk−1.
2. Compute ρk = pT

k−1wk.

3. Compute pk = wk

/
‖wk‖2.
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The definition of pk implies the equality

pk = Skp0

/
‖Skp0‖2,

while the starting vector has a unique presentation in the form

p0 = α1q1 + α2q2 + · · · + αnqn,

where α1, . . . , αn are real numbers. So

Skp0 = α1λ
k
1q1 + α2λ

k
2q2 + · · · + αnλ

k
nqn.

Thus, when α1 �= 0 and λ1 > λ2, the sequence {pk} converges toward q1 at a linear
rate proportional to the ratio λ2

/
λ1. The definition of ρk implies the relations

ρk+1 = pT
k Spk = (Skp0)

TS(Skp0)
/
(Skp0)

TSkp0

=

(
n∑

j=1

α2
jλ

2k+1
j

)/(
n∑

j=1

α2
jλ

2k
j

)

= λ1

(
n∑

j=1

α2
jβ

2k+1
j

)/(
n∑

j=1

α2
jβ

2k
j

)
,

where βj = λj

/
λ1, j = 1, . . . , n. The last equality shows that

0 ≤ ρk ≤ λ1 for k = 1, 2, . . . .

It is also easy to verify that

(2.1) λ1 − ρk+1 ≤ (λ2

/
λ1)

2(λ1 − ρk)

and

(2.2) 0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ ρk ≤ ρk+1 ≤ · · · ≤ λ1.

So the sequence {ρk} converges monotonously toward λ1 at a linear rate proportional
to (λ2

/
λ1)

2.
Of course, if λj is considerably smaller than λ2, then the jth component of pk

vanishes at a much faster rate. Therefore, when a large portion of p0 is related to
“small” eigenvalues, the initial rate of convergence is much faster than the asymptotic
rate, which depends on the ratio λ2

/
λ1. More precisely, assume for a moment that

α1 is not too small and that λj is a small eigenvalue that satisfies λj

/
λ1 ≤ 1/2. In

this case the size of the product qT
j pk is, at least, halved every iteration. Thus, unless

|qT
j p0| is much larger than |qT

1 p0|, the product qT
j pk actually vanishes after a small

number of iterations. In other words, unless p0 is nearly perpendicular to q1, a few
power iterations are likely to wipe out components of small eigenvectors, turning pk

into a linear combination of “large” eigenvectors. Consequently ρk provides a good
estimate of λ1 within a small number of iterations. This feature is illustrated in Table
2.1 for various distributions of eigenvalues. The test problems are defined with λ1 = 1
and αj = 1/

√
n, j = 1, . . . , n. The figures in Table 2.1 give the values of ρ5, ρ10, ρ20,

and ρ40, rounded to four decimals. Thus, for example, the second row of Table 2.1
considers the case when n = 200 and λj = (201 − j)

/
200, j = 1, . . . , 200. In this
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Table 2.1

Initial rates of convergence of the power method.

Matrix Values of ρk
λ1 = 1,
λj , j = 2, . . . , n n k = 5 k = 10 k = 20 k = 40

λj = (n + 1− j)/n 20 0.9375 0.9744 0.9929 0.9922

λj = (n + 1− j)/n 200 0.9189 0.9569 0.9786 0.9901

λj = (1/2)j−1 20 0.9995 >0.9999 >0.9999 >0.9999

λj = (1/2)j−1 200 0.9995 >0.9999 >0.9999 >0.9999

λj = (1/
√

2)j−1 20 0.9906 0.9997 >0.9999 >0.9999

λj = (1/
√

2)j−1 200 0.9906 0.9997 >0.9999 >0.9999

λj = (0.9)j−1 20 0.9492 0.9863 0.9985 >0.9999

λj = (0.9)j−1 200 0.9492 0.9863 0.9985 >0.9999

λj = (0.99)j−1 20 0.9393 0.9602 0.9802 0.9920

λj = (0.99)j−1 200 0.9136 0.9570 0.9802 0.9920

λj = (0.999)j−1 20 0.9909 0.9912 0.9919 0.9931

λj = (0.999)j−1 200 0.9353 0.9561 0.9762 0.9881

Random λj 20 0.9528 0.9722 0.9829 0.9934

Random λj 200 0.9256 0.9630 0.9814 0.9903

case the ratio λ2

/
λ1 = 0.995 dictates a slow asymptotic rate of convergence. Yet the

resulting values of ρk are ρ5 = 0.9189, ρ10 = 0.9569, ρ20 = 0.9786, and ρ40 = 0.9901.
That is, ρk provides a fair estimate of λ1 = 1 after a small number of iterations, in spite
of slow asymptotic convergence. For a detailed discussion of this feature see [21].

Although the power method is well known, the question of how to choose the
starting point p0 has no definite answer, especially when no approximation to q1 is
available. In such a case taking p0 to be a random vector is a reasonable option, e.g.,
[10], [27], or [29]. The stopping condition can be based on the error bound (4.7).

2.2. Deflating by subtraction. This method is based on the following idea.
Consider the spectral decomposition

(2.3) S =
n∑

j=1

λjqjq
T
j ,

and let the matrices S1, S2, . . . , Sn, be defined by the rule: S1 = S and

S�+1 = S� − λ�q�q
T
� , � = 1, . . . , n− 1.

Then S�, � = 1, . . . , n, is a symmetric positive semidefinite matrix whose largest
eigenvalue is λ�. The power method enables us to compute a dominant eigenpair
of S� and to construct S�+1. This way the eigenpairs of S are computed one after
another in decreasing order. The practical implementation of this idea is carried out
as follows. The deflation process is composed of (at most) n stages. The �th stage,
� = 1, . . . , n, starts with a matrix S̃� and ends with S̃�+1. (The matrix S̃� denotes a
computed estimate of S�.) At the �th deflation stage the power method is applied to
the matrix S̃� to provide an estimated dominant eigenpair of S̃�. (The starting point
and the number of iterations can be arbitrary.) Let λ̃� and q̃�, ‖q̃�‖2 = 1, denote the
computed eigenpair. Then S̃�+1 is constructed by the rule

(2.4) S̃�+1 = S̃� − λ̃�q̃�q̃
T
� .
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The idea of deflation by subtraction is often attributed to Hotelling [16], [17]. For
further discussions of this method see [26] and [32]. Parlett [26, p. 82] gives a detailed
error analysis that quantifies the change in distant eigenvalues caused by the error in
the computed dominant eigenpair.

3. Orthogonalization via deflation: The symmetric case. By starting
with Ŝ1 = S, the new deflation by subtraction process constructs a sequence of
symmetric matrices, Ŝ1, Ŝ2, . . . , Ŝ�, Ŝ�+1 . . . , where Ŝ�+1 is obtained from Ŝ� in the
following way. If Ŝ� = 0, the algorithm terminates. Otherwise, we choose a unit
vector q̂� such that

(3.1) ‖q̂�‖2 = 1 and q̂� ∈ Range(Ŝ�)

and define

(3.2) Ŝ�+1 = Ŝ� − (Ŝ�q̂�)(Ŝ�q̂�)
T
/
q̂T
� Ŝ�q̂�.

An alternative way to write (3.2) is

(3.3) Ŝ�+1 = Ŝ� − μ�u�u
T
� ,

where

(3.4) u� = Ŝ�q̂�

/
‖Ŝ�q̂�‖2 and μ� = q̂T

� Ŝ
2
� q̂�/q̂

T
� Ŝ�q̂�.

Theorem 1. Let Q̂� = [q̂1, . . . , q̂�] denote the n × � matrix whose columns are
q̂1, . . . , q̂�, and let r denote the rank of S. Then, in exact arithmetic, the following
relations hold for � = 1, 2, . . . , r:

(3.5) Q̂T
� Q̂� = I, Ŝ�+1Q̂� = 0, and Range(Q̂�) ⊆ Range(S).

Hence for � = r the columns of Q̂r constitute an orthonormal basis of Range(S),

(3.6) Ŝr+1 = 0

and

(3.7) S =
r∑

�=1

μ�u�u
T
� = UrDrU

T
r ,

where

Ur = [u1, . . . ,ur] and Dr = diag{μ1, . . . , μr}.

Proof. The proof of (3.5) is by induction on �. For � = 1 the relations in (3.5)
follow from the definitions of q̂1 and Ŝ2. Assume now that (3.5) holds for � − 1.
That is, Q̂T

�−1Q̂�−1 = I, Ŝ�Q̂�−1 = 0, and Range(Q̂�−1) ⊆ Range(S). Assume further

that q̂� and Ŝ�+1 satisfy (3.1) and (3.2). Then, clearly, Ŝ�+1q̂� = 0 and Q̂T
� S�+1 =

0. Similarly, from Q̂�−1Ŝ� = 0 and (3.1) we conclude that Q̂T
� Q̂� = I. Finally,

since q̂� ∈ Range(S) and Range(Q̂�−1) ⊆ Range(S), it follows that Range(Q̂�) ⊆
Range(S).
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At the end of the �th deflation step we are able to construct two low-rank ap-
proximations of S:

(3.8) B� = U�D�U
T
� =

�∑
j=1

μjuju
T
j

and

(3.9) B̂� = Q̂�D̂�Q̂
T
� =

�∑
j=1

ρ̂jq̂jq̂
T
j ,

where

D̂� = diag{ρ̂1, . . . , ρ̂�}

and ρ̂j denotes the Rayleigh quotient corresponding to q̂j . That is,

ρ̂j = q̂jSq̂j .

It is interesting to compare these approximations and the corresponding Hotelling
low-rank approximation

(3.10) B̃� = Q̃�D̃�Q̃
T
� =

�∑
j=1

λ̃j q̃j q̃T
j .

Our experience shows that, if both schemes use the same number of power iterations
at each deflation step, the differences between ‖S− B̃�‖F , ‖S−B�‖F , and ‖S− B̂�‖F
remain negligible until � = r. Yet the new deflation process enjoys important ad-
vantages. First, the “finite termination” property (3.6) and the “exactness” property
(3.7) provide an effective “rank-revealing” decomposition. Second, the orthogonality
of Q̂� and the resulting orthogonal decomposition (3.9) are useful in many applica-
tions. Perhaps the more striking feature of the new deflation process is that these
properties hold regardless of the quality of q̂� as a substitute for a dominant eigen-
vector of Ŝ�. Thus, for example, when q̂� is computed by applying the power method
to Ŝ�, the number of iterations does not effect these properties. Moreover, as we have
seen, a few power iterations per eigenpair are sufficient to produce a meaningful es-
timate of the spectral decomposition. Indeed, preliminary experiments that we have
done support this view; see [8].

Let us turn now to see how rounding errors affect the new deflation process.
Assume for simplicity that u� and μ� provide a fair estimate of a dominant eigenpair
of Ŝ�, � = 1, . . . , r. Then, on one hand, the size of ‖Ŝ�+1‖F is expected to be about
λ�+1 + · · · + λn. On the other hand, in floating point arithmetic the �th deflation
step (3.3) adds rounding errors into the entries of Ŝ�+1. The size of the resulting
error matrix is about the size of the matrix εμ�u�u

T
� , where ε denotes the machine

precision (or unit roundoff) in our computations. Hence the overall rounding errors
in the entries of Ŝ�+1 constitute an error matrix E�+1, whose Frobenius norm is about
ε(λ1 + · · · + λ�). That is,

(3.11) ‖E�+1‖F /‖Ŝ�+1‖F ≈ ε(λ1 + · · · + λ�)/(λ�+1 + · · · + λn).

This exposes a certain deficiency of the deflation by subtraction approach. If S is an
ill-conditioned matrix, then small eigenvalues are computed with a large relative error.
The smaller the ratio λ�+1/(λ1+· · ·+λ�), the larger the relative error in the computed
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value of λ�+1. A similar remark applies to the relative error in a computed dominant
eigenvector of Ŝ�+1.

Another feature that characterizes ill-conditioned matrices is the gradual loss of
orthogonality in the columns of Q̂�. Observe that every column of the rounding errors
matrix E�+1 is expected to have a component in Range(Q̂�) whose size is not much
smaller than the column’s size. Thus, as the ratio (3.11) becomes meaningful, the
columns of Ŝ�+1 lose their orthogonality against the columns of Q̂�. Hence the fact
that q̂�+1 belongs to Range(Ŝ�+1) is not sufficient to ensure its orthogonality against
the columns of Q̂�.

This loss of orthogonality is easily recovered by replacing (3.1) with the following
modification. Let z1 be a unit vector that belongs to Range(Ŝ�). (Here z1 denotes
our estimate to a dominant eigenvector of Ŝ�.) Then z1 is orthogonalized against
q̂1, . . . , q̂�−1, by using Gram–Schmidt orthogonalization. This way, one generates a
sequence of � vectors, z1, . . . , z�, where zi+1 is obtained from zi by the rule

(3.12) zi+1 = zi − (zTi q̂i)q̂i, i = 1, . . . , �− 1.

In practice zi+1 is overwritten on zi, so only one vector storage is needed for this
process. Once the orthogonalization process is finished, the vector q̂� which is used
in (3.1) is redefined as

(3.13) q̂� = z�/‖z�‖2.

(If ‖z�‖2 is smaller than ‖z1‖2/2, say, then z� is reorthogonalized against the columns
of Q̂�−1. However, as we have seen, a small number of power iterations is likely to
provide a fair estimate of a dominant vector of Ŝ�. In this case ‖z�‖2 is not expected
to be much smaller than ‖z1‖2, so reorthogonalization is seldom needed.)

Summarizing the above discussion we stress that rounding errors cause only tiny
perturbations to the eigenvalues of Ŝ�+1, as every eigenvalue of Ŝ�+1 lies in at least
one of the circular discs

(3.14) {λ
∣∣ |λ̂i − λ| ≤ ‖E�+1‖2}, i = 1, . . . , n,

where λ̂1, . . . , λ̂n denote the eigenvalues of Ŝ�+1 − E�+1 and

‖E�+1‖2 ≤ ‖E�+1‖F ≈ ε(λ1 + · · · + λ�).

Note also that ‖S−UrDrU
T
r ‖F is not expected to be much larger than ε(λ1+· · ·+λr).

Hence the resulting decompositions (3.8) and (3.9) provide valuable information on
S, unless one is interested in tiny eigenvalues and their eigenvectors.

4. Symmetric quotients. In this section we introduce a new quantity (the
symmetric quotient) and derive its basic features. Let u �= 0 be a given vector in R

n,
and consider the one-parameter function

(4.1) f(θ) = ‖S − θuuT ‖2
F .

Then the symmetric quotient

(4.2) γ = γ(u) = uTSu/(uTu)2

provides the value of θ which minimizes f(θ). That is,

(4.3) γ = arg minf(θ).
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The validity of (4.3) is easily verified by rewriting f(θ) in the form

f(θ) = ‖θy − z‖2
2,

where y and z are n2 vectors. This presentation implies that

arg minf(θ) = yT z/yTy.

Hence the equalities

yT z =

n∑
i=1

n∑
j=1

uiujsij = uTSu

and

yTy =

n∑
i=1

n∑
j=1

(uiuj)
2 = ‖uuT ‖2

F = (uTu)2

prove (4.3).
At this point it is instructive to compare the symmetric quotient with the corre-

sponding Rayleigh quotient

(4.4) ρ = ρ(u) = uTSu/uTu.

Recall that

(4.5) ρ = arg min g(θ),

where

(4.6) g(θ) = ‖Su − θu‖2
2.

Another useful feature of ρ(u) is the existence of an eigenvalue λ of S that satisfies
the bound

(4.7) |λ− ρ(u)| ≤ ‖Su − ρ(u)u‖2

/
‖u‖2;

see [26, p. 69]. Thus, roughly speaking, ρ(u) approximates the eigenvalue correspond-
ing to u. For a detailed discussion of the Rayleigh quotient and its properties, see
[10], [25], [26], [29], [32].

Scaling of u affects ρ(u) and γ(u) in different ways. Let α �= 0 be a given scalar.
Then

ρ(αu) = ρ(u),

but

γ(αu) = γ(u)/α2.

Moreover, define v = αu, and then

‖S − γ(v)vvT ‖2
F = ‖S − γ(u)uuT ‖2

F .
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The basic relation that connects γ(u) and ρ(u) is the symmetric quotient equality

(4.8) ‖S − γ(u)uuT ‖2
F = ‖S‖2

F − (ρ(u))2.

As we have seen, scaling of u does not affect this equality. Hence, when proving (4.8)
there is no loss of generality in assuming that ‖u‖2 = 1. In this case γ = ρ = uTSu,
‖uuT ‖F = 1, and

‖S − γuuT ‖2
F = ‖S − ρuuT ‖2

F =

n∑
i=1

n∑
j=1

(sij − ρuiuj)
2

=

n∑
i=1

n∑
j=1

[
s2
ij − 2ρsijuiuj + ρ2(uiuj)

2
]

= ‖S‖2
F − 2ρuTSu + ρ2‖uuT ‖2

F

= ‖S‖2
F − 2ρ2 + ρ2 = ‖S‖2

F − ρ2.

The meaning of the symmetric quotient equality (4.8) is that solving the minimum
norm problem (1.1) is equivalent to solving the problem

(4.9) maximize ρ(u) = uTSu/uTu.

By using the spectral decomposition (2.3) one can show that a point u∗ ∈ R
n solves

(4.9) if and only if u∗ is a dominant eigenvector of S, so the optimal value of ρ(u)
is ρ(u∗) = λ1. The proof of this claim is outlined at the end of the next section, in
which we establish similar results for rectangular matrices. Further extensions of the
symmetric quotients equality are derived in [9].

5. Rectangular quotients. In this section we consider the rectangular min-
imum norm problem (1.3), by using the notations of section 1. We shall start by
introducing a new useful quantity, the rectangular quotient. Given two nonzero vec-
tors u = (u1, . . . , um)T ∈ R

m and v = (v1, . . . , vn)T ∈ R
n, the rectangular quotient

(5.1) η = η(u,v) = uTAv/(‖u‖2
2 ‖v‖2

2)

solves the one-parameter minimization problem

(5.2) minimize f(θ) = ‖A− θuvT ‖2
F .

That is,

(5.3) η = arg minf(θ).

To prove the last statement we rewrite (5.2) in the form

(5.4) minimize f(θ) = ‖a − θw‖2
2,

where here a and w are mn-vectors. The last problem has a unique solution at the
point

θ∗ = wTa/wTw.

Hence the equalities

wTa =

m∑
i=1

n∑
j=1

uivjaij = uTAv
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and

wTw =

m∑
i=1

n∑
j=1

(uivj)
2 = ‖uvT ‖2

F = ‖u‖2
2 ‖v‖2

2

prove (5.3).
Observe that the rectangular quotient η(u,v) does not necessarily provide an

estimate of the singular value that “corresponds” to u and v. For that purpose we
introduce another quantity, the rectangular Rayleigh quotient. Let the unit vectors
û = u/‖u‖2 and v̂ = v/‖v‖2 be obtained from u and v, respectively. Then the
following three problems:

(5.5) minimize f1(θ) = ‖A− θûv̂T ‖2
F ,

(5.6) minimize f2(θ) = ‖Av̂ − θû‖2
2,

(5.7) minimize f3(θ) = ‖AT û − θv̂‖2
2,

share the same solution

(5.8) θ̂ = ûTAv̂ = uTAv/(‖u‖2 ‖v‖2).

This observation suggests that the rectangular Rayleigh quotient

(5.9) ρ = ρ(u,v) = uTAv/(‖u‖2 ‖v‖2)

approximates the singular value of A that corresponds to u and v.
Let us turn now to see how scaling affects rectangular quotients. Let α > 0 and

β > 0 be two positive real numbers. Then

ρ(αu, βv) = ρ(u,v),

η(αu, βv) = η(u,v)/(αβ),

and

‖A− η(αu, βv)(αu)(βvT )‖2
F = ‖A− η(u,v)uvT ‖2

F .

The basic feature that connects between η(u,v) and ρ(u,v) is the rectangular quotient
equality

(5.10) ‖A− η(u,v)uvT ‖2
F = ‖A‖2

F −
(
ρ(u,v)

)2

.

Since scaling of u and v does not affect this equality, there is no loss of generality in
assuming that ‖u‖2 = 1 and ‖v‖2 = 1. In this case

η = ρ = uTAv,

‖uvT ‖F = 1,

and

‖A− ηuvT ‖2
F = ‖A− ρuvT ‖2

F =

m∑
i=1

n∑
j=1

(aij − ρuivj)
2

=

m∑
i=1

n∑
j=1

[
a2
ij − 2ρaijuivj + ρ2(uivj)

2
]

= ‖A‖2
F − 2ρuTAv + ρ2‖uvT ‖2

F

= ‖A‖2
F − 2ρ2 + ρ2 = ‖A‖2

F − ρ2,
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which proves (5.10). The meaning of the rectangular quotient equality is that solving
the minimum norm problem (1.3) is equivalent to solving the problem

(5.11) maximize ρ(u,v) = uTAv/(‖u‖2 ‖v‖2).

An equivalent way to write the last problem is

maximize σ(u,v) = uTAv

subject to ‖u‖2 = 1 and ‖v‖2 = 1.
(5.12)

By using the SVD of A (see (1.5)–(1.6)) the unit vectors in problem (5.12) can be
expressed as

(5.13) u = Ũ ũ, ‖ũ‖2 ≤ 1, v = V ṽ, ‖ṽ‖2 = 1,

where ũ = (ũ1, . . . , ũn)T , ṽ = (ṽ1, . . . , ṽn)T , and Ũ is composed of the first n columns
of U . This way, (5.12) is reduced to the problem

maximize σ̃(ũ, ṽ) =

n∑
i=1

σiũiṽi

subject to

n∑
i=1

ũ2
i ≤ 1 and

n∑
i=1

ṽ2
i = 1,

(5.14)

whose solution is obtained at the points ũ = ṽ = ±e1. This shows that a pair of unit
vectors, say, u∗ and v∗, solves (5.12) if and only if u∗ and v∗ constitute a dominant
singular pair, and the corresponding optimal value is

σ(u∗,v∗) = ρ(u∗,v∗) = σ1.

6. Retrieval of singular vectors. The question discussed in this section is how
to retrieve a left singular vector from a right one, and vice versa. The aim of this note
is to point out that the ultimate retrieval rule is both a minimization process and an
orthogonalization process. This observation motivates the schemes proposed in the
next sections. Further benefits of the retrieval rules are the error bounds derived at
the end of this section.

Assume for a moment that v is a right singular vector of A that satisfies Av �= 0
and ‖v‖2 = 1. Then the corresponding left singular vector u satisfies Av = σu and
‖u‖2 = 1, where σ > 0 denotes the corresponding singular value of A. That is,

(6.1) u = Av
/
‖Av‖2

and

(6.2) σ = ‖Av‖2 = uTAv.

In the general case v is just a given estimate for a right singular vector of A that
satisfies Av �= 0. Nevertheless, as we are about to show, the above formulas remain
useful for estimating the corresponding left singular vector and the corresponding
singular value.

For this purpose we consider the problem

(6.3) minimizeF�(u) = ‖A− uvT ‖2
F ,
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where u = (u1, . . . , um)T ∈ R
m denotes the vector of unknowns. This problem is

essentially a linear least squares problem whose solution is obtained by considering
one unknown (one row) at a time. Let û = (û1, . . . , ûm)T ∈ R

m denote the unique
solution of this problem. Then, clearly,

(6.4) ûi = rTi v
/
vTv for i = 1, . . . ,m,

where rTi denote the ith row of A. In other words,

(6.5) û = Av
/
vTv.

Let r̂Ti denote the ith row of the matrix Â = A − ûvT . Then r̂Ti = rTi − ûiv
T is

obtained by orthogonalizing ri against v. Consequently r̂Ti v = 0 and Âv = 0. Of
course, if v and û are normalized to be unit vectors, then (6.5) coincides with (6.1).

A similar approach enables us to derive a right singular vector from a left one.
Assume first that u is a left singular vector of A that satisfies ATu �= 0 and ‖u‖2 = 1.
Then the corresponding right singular vector v and the corresponding singular value
σ must satisfy

(6.6) v = ATu
/
‖ATu‖2

and

(6.7) σ = ‖ATu‖2 = uTAv.

In the general case, when u is just an estimate for a left singular vector, the last
equalities provide estimates of the corresponding right singular vector v and the cor-
responding singular value. To see this point we consider the minimum norm problem

(6.8) minimize Fr(v) = ‖A− uvT ‖2
F ,

where here v = (v1, . . . , vn)T ∈ R
n denotes the vector of unknowns. In this case the

solution vector

(6.9) v̂ = ATu
/
uTu

is obtained by orthogonalizing the columns of A against u.
The retrieval formulas enable us to derive simple error bounds that resemble (4.7).

Let v̂ ∈ R
n be a given unit vector that satisfies Av̂ �= 0, and let

û = Av̂
/
‖Av̂‖2

and

σ̂ = ‖Av̂‖2 = ûTAv̂

provide the corresponding estimates of a left singular vector and a singular value,
respectively. Below we derive a bound on the distance between σ̂ and a singular value
of A. Recall that the squares of the singular values of A are the eigenvalues of ATA.
Note also that σ̂2 = v̂TATAv̂ is the symmetric Rayleigh quotient of ATA related to
v̂. Thus by using (4.7) with S = ATA we conclude the existence of a singular value
of A, σ ≥ 0, such that

|σ2 − σ̂2| ≤ ‖ATAv̂ − σ̂2v‖2.
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The last inequality can be rewritten as

|σ − σ̂| · |σ + σ̂| ≤ σ̂‖AT û − σ̂v̂‖2,

which leads to

|σ − σ̂| ≤ |σ̂
/
(σ + σ̂)| · ‖AT û − σ̂v̂‖2 ≤ ‖AT û − σ̂v̂‖2.

That is,

(6.10) |σ − σ̂| ≤ ‖AT û − σ̂v̂‖2.

The treatment of a left singular vector is done in a similar way. Let ũ ∈ R
m be

a given unit vector that satisfies AT ũ �= 0, and let

ṽ = AT ũ
/
‖AT ũ‖2

and

σ̃ = ‖AT ũ‖2 = ũTAṽ

denote the corresponding estimates of a right singular vector and a singular value,
respectively. Then similar arguments prove the existence of a singular value of A,
σ ≥ 0, such that

(6.11) |σ − σ̃| ≤ ‖Aṽ − σ̃ũ‖2.

7. Rectangular iterations. In this section we present a simple iterative algo-
rithm for solving the minimum norm problem

(7.1) minimize F (u,v) = ‖A− uvT ‖2
F .

The kth iteration, k = 1, 2, 3, . . . , starts with uk−1 and vk−1 and ends with uk and
vk. Given vk−1, the vector uk is obtained by solving the problem

minimize ϕ(u) = ‖A− uvT
k−1‖2

F .

That is,

(7.2) uk = Avk−1/v
T
k−1vk−1.

Then vk is obtained by solving the problem

minimize Ψ(v) = ‖A− ukv
T ‖2

F ,

which gives

(7.3) vk = ATuk/u
T
k uk.

Observe that the iteration (7.2)–(7.3) is essentially the retrieval rules (6.5) and
(6.9). Note also that minimizing F (u,v) by changing one variable at a time (in the
order u1, . . . , um, v1, . . . , vn) results in the same basic iteration. Furthermore, let

v̂k = vk/‖vk‖2, k = 0, 1, 2, . . . ,
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denote the corresponding sequence of unit vectors. Let the sequence ṽk, k = 0, 1, 2, . . . ,
be generated by applying the power method to ATA, with ṽ0 = v̂0 as the starting
point. Then, in exact arithmetic,

ṽk = v̂k for k = 1, 2, . . . .

Similarly, the sequence

ûk = uk/‖uk‖2, k = 1, 2, . . . ,

is obtained by applying the power method to AAT , with û1 as the starting point.
Replacing the order of u and v results in the iteration

(7.4) vk = ATuk−1/u
T
k−1uk−1

and

(7.5) uk = Avk/v
T
k vk,

which satisfies similar relations with the power method applied to AAT . In order
to distinguish between the two schemes we introduce the following terminology. The
scheme (7.2)–(7.3) is called the “left iteration,” while (7.4)–(7.5) is called the “right
iteration.” The reason for these names and the difference between the two schemes
are explained in the next section. Both iterations satisfy the equality

(7.6) (uT
k uk)(v

T
k vk) = uT

kAvk,

so the corresponding rectangular quotients satisfy

(7.7) ηk ≡ η(uk,vk) = 1

and

(7.8) ρk ≡ ρ(uk,vk) = ‖uk‖2 ‖vk‖2.

Combining these relations with the rectangular quotient equality shows that

(7.9) ‖A− ukv
T
k ‖2

F = ‖A‖2
F − (uT

k uk)(v
T
k vk).

Therefore, since the sequence {‖A−ukv
T
k ‖2

F } decreases monotonously, the sequences
{(uT

k uk)(v
T
k vk)} and {ρk} increase monotonously. Moreover, assume for simplicity

that σ1 > σ2, and let u∗ and v∗ denote the corresponding left and right dominant
singular vectors, where ‖u∗‖2 = 1 and ‖v∗‖2 = 1. Then the close links with the power
method imply that

(7.10) lim
k→∞

ûk = u∗

and

(7.11) lim
k→∞

v̂k = v∗

and that these sequences converge at a linear rate, proportional to σ2
2/σ

2
1 . A further

use of (7.6) shows that in left iterations

(uT
k uk)(v

T
k vk) = ûT

kAAT ûk,

while in right iterations

(uT
k uk)(v

T
k vk) = v̂T

kA
TAv̂k.
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Thus in both cases

lim
k→∞

ρ2
k = lim

k→∞
(uT

k uk)(v
T
k vk) = σ2

1

and

(7.12) lim
k→∞

ρk = σ1,

where the sequence {ρk} converges at a linear rate, proportional to σ2
2/σ

2
1 .

Recall, however, that the initial rate of convergence is expected to be faster than
the asymptotic rate: If the starting point u0 (or v0) is not nearly perpendicular to
u∗ (or v∗), then a few rectangular iterations are likely to provide a fair estimate of
a dominant singular triplet. If no preliminary information is available, then taking
u0 (or v0) to be the column (or row) of A that has the largest Euclidean norm is a
reasonable choice (see the next section). Note also that the error bounds (6.10) and
(6.11) provide useful stopping conditions.

8. Orthogonalization via deflation. In this section we present a new orthog-
onalization method that is called orthogonalization via deflation. By starting from
A1 = A the new method generates a sequence of matrices A1, A2, A3, . . . , where A�+1

is obtained from A� by the rule

(8.1) A�+1 = A� − σ̃�ũ�ṽ
T
� , � = 1, 2, . . . ,

where ũ� ∈ R
m and ṽ� ∈ R

n are unit vectors and σ̃� > 0 is a positive number that
estimates the corresponding singular value. Below, we describe three basic versions
of the method, which differ in the definition of the rank-one matrix σ̃�ũ�ṽ

T
� .

Left-side orthogonalization. Here ũ� is an arbitrary unit vector from Range(A�),

(8.2) ṽ� = AT
� ũ�

/
‖AT

� ũ�‖2, and σ̃� = (ũ�)
TA�ṽ�.

Right-side orthogonalization. Here ṽ� is an arbitrary unit vector from Range(AT
� ),

(8.3) ũ� = A�ṽ�

/
‖A�ṽ�‖2, and σ̃� = (ũ�)

TA�ṽ�.

Two-sides orthogonalization. Let û� and v̂� be an arbitrary pair of unit vectors
that satisfy

(8.4) û� ∈ Range(A�), v̂� ∈ Range(AT
� ), and ûT

� A�v̂� > 0.

Then here

(8.5) A�+1 = A� − (A�v̂�)(A
T
� û�)

T
/
(ûT

� A�v̂�).

That is, here (8.1) is carried out with

ũ� = A�v̂�

/
‖A�v̂�‖2,

ṽ� = AT
� û�

/
‖AT

� û�‖2,

and

σ̃� = (‖A�v̂�‖2‖AT
� û�‖2)

/
(ûT

� A�v̂�).
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To analyze the proposed methods we introduce the following notations. Let Ũ�

denote the m×� matrix whose columns are ũ1, . . . , ũ�. Let Ṽ� denote the n×� matrix
whose columns are ṽ1, . . . , ṽ�. Let D̃� denote a diagonal �× � matrix whose diagonal
entries are σ̃1, . . . , σ̃�. That is,

(8.6) Ũ� = [ũ1, . . . , ũ�], Ṽ� = [ṽ1, . . . , ṽ�], and D̃� = diag{σ̃1, . . . , σ̃�}.

Then, at the end of the �th deflation stage,

(8.7) A�+1 = A−
�∑

j=1

σ̃jũj(ṽj)
T = A− Ũ�D̃�Ṽ

T
� = A− B̃�,

where

(8.8) B̃� =

�∑
j=1

σ̃jũj(ṽj)
T = Ũ�D̃�Ṽ

T
�

may serve as a low-rank approximation of A. The differences between the three
schemes are explained below. Yet, as we shall see, the three schemes share the “ex-
actness property”

(8.9) A = ŨrD̃rṼ
T
r ,

where r = rank(A). The titles of the theorems refer to the rule which defines the
triplet {σ̃�, ũ�, ṽ�}.

Theorem 2 (left-side orthogonalization). Assuming exact arithmetic, the fol-
lowing relations hold for � = 1, . . . , r:

(8.10) Range(A�+1) ⊆ Range(A�),

(8.11) Range(Ũ�) ⊆ Range(A),

(8.12) ŨT
� A�+1 = 0,

and

(8.13) ŨT
� Ũ� = I.

Thus for � = r the columns of Ũr constitute an orthonormal basis of Range(A),

(8.14) Ar+1 = 0,

and

(8.15) A = ŨrD̃rṼ
T
r .

Proof. The proof is by induction on �. For � = 1 the relations (8.10)–(8.13) are
direct consequences of the definition of {σ̃1, ũ1, ṽ1}. Assume now that (8.10)–(8.13)
hold for �− 1. That is,

Range(A�) ⊆ Range(A),

Range(Ũ�−1) ⊆ Range(A),

ŨT
�−1A� = 0,

and

UT
�−1Ũ�−1 = I.
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On the other hand, the definition of the triplet {σ̃�, ũ�, ṽ�} implies the relations

ũ� ∈ Range(A�) ⊆ Range(A), ũT
� Ũ�−1 = 0, and ũT

� A�+1 = 0.

So combining these relations with the induction assumptions yields (8.10)–
(8.13).

Recall that Gram–Schmidt orthogonalization has three basic versions: classical
Gram–Schmidt, a column-oriented version of modified Gram–Schmidt (MGS), and a
row-oriented version of MGS. The last version is the only one that is able to incor-
porate column pivoting. Yet, in exact arithmetic and without column pivoting, all
of these versions produce the same QR factorization of A, which is closely related to
Householder QR factorization of the (m+n)×n matrix

(
0
A

)
. For a detailed discussion

of these methods see [3], [6], [7], [14], [20], [28].
Corollary 3 (relation to Gram–Schmidt orthogonalization). Consider the spe-

cial case when ũ� is parallel to a column of A� that has the largest norm. More
precisely, let cj , j = 1, . . . , n, denote the jth column of A�, and let j∗ be an index
that satisfies

‖cj∗‖2 = max{‖c1‖2, . . . , ‖cn‖2}.

Then

(8.16) ũ� = cj∗
/
‖cj∗‖2.

Assume further that the columns of A� are interchanged such that c� = cj∗ . In this
case the deflation process (8.1)–(8.2) results in the same QR factorization of A as the
pivoted row-oriented version of the MGS orthogonalization process.

Proof. By using induction on � it is easy to verify that the first � columns of A�+1

are null vectors, while the other columns of A�+1 are obtained by orthogonalizing the
columns of A� against the �th column of A�. Consequently the first �− 1 entries of ṽ�

are zeros, while the other entries are defined by the corresponding orthogonalization
factors.

Theorem 4 (right-side orthogonalization). Assuming exact arithmetic, the fol-
lowing relations hold for � = 1, . . . , r:

Range(AT
�+1) ⊆ Range(AT

� ),(8.17)

Range(Ṽ�) ⊆ Range(AT ),(8.18)

A�+1Ṽ� = 0,(8.19)

and

(8.20) Ṽ T
� Ṽ� = I.

Thus for � = r the columns of Ṽr constitute an orthonormal basis of Range(AT ),

(8.21) Ar+1 = 0,

and

(8.22) A = ŨrD̃rṼ
T
r .

Proof. The proof is achieved by using induction on �, as in Theorem 2.
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Corollary 5 (relation to Gram–Schmidt orthogonalization). Consider the spe-
cial case when ṽ� is parallel to a row of A� that has the largest norm. In this case the
right-side deflation process is identical to the pivoted-row version of MGS applied on
AT .

Theorem 6 (two-sides orthogonalization). Let the matrices Û� ∈ R
m×�, V̂� ∈

R
n×�, and D̂� ∈ R

�×� be defined by the equalities

(8.23) Û� = [û1, . . . , û�], V̂� = [v̂1, . . . , v̂�], and D̂� = diag{σ̂1, . . . , σ̂�},

where

(8.24) σ̂j = ûT
j Av̂j for j = 1, . . . , r.

Then, in exact arithmetic, the following relations hold for � = 1, . . . , r:

Range(A�+1) ⊆ Range(A�), Range(AT
�+1) ⊆ Range(AT

� ),(8.25)

Range(Û�) ⊆ Range(A), Range(V̂�) ⊆ Range(AT ),(8.26)

ÛT
� A�+1 = 0, A�+1V̂� = 0,(8.27)

ÛT
� Û� = I, and V̂ T

� V̂� = I.(8.28)

Thus for � = r the columns of Ûr and V̂r constitute orthonormal bases for Range(A)
and Range(AT ), respectively. Consequently,

(8.29) Ar+1 = 0

and

(8.30) A = ŨrD̃rṼr.

Proof. The proof is by induction on �. The key observation is that here the
deflation step (8.5) implies that

(8.31) AT
�+1û� = 0 and A�+1v̂� = 0.

From this point, continue as in the proof of Theorem 2.
The quality of the resulting factorizations, as substitutes for the SVD, depends on

the quality of the deflating triplets {σ̃�, ũ�, ṽ�}, as substitutes for a dominant triplet
of A�. As we have seen, a small number of rectangular iterations is likely to provide a
fair estimate of a dominant triplet of A�. Furthermore, the relation to pivoted MGS
suggests a natural starting point for the rectangular iterations: Take a column (or
row) of A� that has the largest Euclidean norm. Note also that the error bounds
(6.10) and (6.11) provide useful stopping conditions for the rectangular iterations.

The two-sides orthogonalization process (8.4)–(8.5) constructs two low-rank ap-
proximations of A:

(8.32) B̃� = Ũ�D̃�Ṽ
T
� =

�∑
j=1

σ̃jũjṽ
T
j

and

(8.33) B̂� = Û�D̂�V̂
T
� =

�∑
j=1

σ̂jûjv̂
T
j .
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The second decomposition has the advantage that both Û� and V̂� have orthonormal
columns, which makes it a valuable substitute for the SVD’s low-rank approximation.
The definition (8.24) of the diagonal matrix D̂� is motivated by the observation that
the diagonal entries of this matrix solve the minimum norm problem

(8.34) minimize F (σ1, . . . , σ�) =

∥∥∥∥∥∥A−
�∑

j=1

σjûjv̂
T
j

∥∥∥∥∥∥
2

F

.

Of course, if one is interested only in (8.33), then there is no need to store the matrices
Ũ� and Ṽ�.

As noted by one referee, the two-sides orthogonalization process (8.4)–(8.5) is
a special case of a more general method, the Wedderburn–Egervary rank-reducing
(WERR) process, e.g., [4], [12], [31]. By using our notations the �th step of a WERR
process has the form

(8.35) A�+1 = A� − (A�v̂�)(A
T
� û�)

T
/
(ûT

� A�v̂�), � = 1, 2, . . . ,

where the vectors û� ∈ R
m and v̂� ∈ R

n need to satisfy

(8.36) ûT
� A�v̂� �= 0.

The name “rank-reducing process” comes from the observation that

(8.37) rank(A�+1) = rank(A�) − 1,

which implies the “finite termination” property Ar+1 = 0. It is illustrated in [4] that
several important matrix factorizations belong to this class of methods. However,
to the best of our knowledge, the two-sides orthogonalization process (8.4)–(8.5) is a
new method, distinguished by the orthogonality of the matrices Û� and V̂�, which is
gained by replacing (8.36) with (8.4). That is, orthogonality is gained by choosing
the vectors û� and v̂� from Range(A�) and Range(AT

� ), respectively. Another feature
that characterizes our approach is the use of rectangular iterations to estimate a
dominant pair of singular vectors and to use the computed vectors in (8.35). It is
the incorporation of these two properties that makes the resulting decomposition a
valuable substitute for the SVD. Similar remarks apply to left-side and right-side
orthogonalizations, although the relation of these methods to the WERR process
(8.35) is somewhat less obvious.

The treatment of rounding errors is done as in the symmetric case, by using singu-
lar values instead of eigenvalues. To simplify the coming discussion we concentrate on
the left-side process (8.2), assuming that each triplet {ρ�,u�,v�} provides a fair esti-
mate of a dominant triplet of A�. The last assumption means that the size of ‖A�‖F is
about σ�+ · · ·+σn. On the other hand, in floating point arithmetic the computed ma-
trix A� contains an error matrix E� whose Frobenius norm is about ε(σ1 + · · ·+σ�−1),
where ε denotes the machine precision in our computations. That is,

(8.38) ‖E�+1‖F
/
‖A�+1‖F ≈ ε(σ1 + · · · + σ�)

/
(σ�+1 + · · · + σn).

Thus, when A is an ill-conditioned matrix, small singular values are computed with
a large relative error. Nevertheless, the overall perturbation of the singular values is
small: Let σ̃1, . . . , σ̃n denote the singular values of A�, and let σ̂1, . . . , σ̂n denote those
of A� − E�. Then from Weyl’s theorem [28, p. 69] one obtains

(8.39) |σ̂i − σ̃i| ≤ ‖E�‖2 ≤ ‖E�‖F ≈ ε(σ1 + · · · + σ�−1), i = 1, . . . , n.
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A further difficulty that arises as the ratio (8.38) grows is the gradual loss of
orthogonality. Yet, as in the symmetric case, this difficulty is easily resolved by
applying reorthogonalization. For example, in the �th step of a left-orthogonalization
process, u� is orthogonalized against u1, . . . ,u�−1. Similarly, in the �th step of a right-
orthogonalization process, v� is orthogonalized against v1, . . . ,v�−1, and so forth.

9. Missing data estimation. In this section we discuss the case when some
entries of the data matrix A are unknown. In such a situation it is often desired to
construct a low-rank estimate of A in spite of the missing data, e.g., [1], [2], [13],
[15], [30]. The minimum norm approach is easily adapted to handle this difficulty.
Consider, for example, the rectangular minimum norm problem (7.1) when some
entries of A are missing. In this case the problem to be solved is redefined as

(9.1) minimize F (u,v) =
∑

(i,j)∈K

(aij − uivj)
2,

where

K = {(i, j) | aij is known}.

That is, the sum in (9.1) is restricted to known entries of A. Let the set

Cj = {i | aij is known}

contain the row indices of known entries in the jth column of A, j = 1, . . . , n. Then
a second way to write (9.1) is

(9.2) minimize F (u,v) =
n∑

j=1

∑
i∈Cj

(aij − uivj)
2.

Similarly, let

Ri = {j | aij is known}

contain the column indices of known entries in the ith row of A, i = 1, . . . ,m. Then
a third way to write (9.1) is

(9.3) minimize F (u,v) =

m∑
i=1

∑
j∈Rj

(aij − uivj)
2.

The adaptation of the “left iteration” (7.2)–(7.3) to solve (9.1) is done in the
following way. As before, the kth iteration, k = 1, 2, 3, . . . , starts with uk−1 and
vk−1 and ends with uk and vk. Given vk−1 = (ṽ1, ṽ2, . . . , ṽn)T , the vector uk =
(û1, û2, . . . , ûm)T is obtained by solving the problem

minimize ϕ(u) =
m∑
i=1

∑
j∈Ri

(aij − uiṽj)
2.

That is,

(9.4) ûi =

( ∑
j∈Ri

aij ṽj

)/( ∑
j∈Ri

ṽ2
j

)
for i = 1, . . . ,m.
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Then vk = (v̂1, v̂2, . . . , v̂n)T is obtained by solving the problem

minimize Ψ(v) =
n∑

j=1

∑
i∈Cj

(aij − ûivj)
2.

That is,

(9.5) v̂j =

( ∑
i∈Cj

aij ûi

)/( ∑
i∈Cj

û2
i

)
for j = 1, . . . , n.

The “right iteration” (7.4)–(7.5) is adapted in a similar way.
The ability to solve (9.1) enables us to apply the deflation by subtraction process

when some entries of A are unknown. The �th stage of this process, � = 1, 2, . . . , needs

only minor changes. Let a
(�)
ij denote the (i, j) component of A�. Then the problem

(9.6) minimize F�(u,v) =
∑

(i,j)∈K

(a
(�)
ij − uivj)

2

is solved by the modified iterations described above. Let u∗ and v∗ denote the com-
puted solution of (9.6). Then A�+1 is obtained from A� by the rule

(9.7) A�+1 = A� − u∗(v∗)T = A� − ρ∗�u
∗
� (v

∗
� )

T ,

where

u∗
� = u∗/‖u∗‖2, v∗

� = v∗/‖v∗‖2, and ρ∗� = ‖u∗‖2 ‖v∗‖2.

Note that the entries of A�+1 which correspond to unknown entries of A are still
considered as unknown. Note also that the sequence

(9.8) ξ� =
∑

(i,j)∈K

(a
(�)
ij )2, � = 1, 2, . . . ,

decreases monotonously. Thus, once we reach an iteration index �∗ for which ξ�∗ is
considerably smaller than ξ1, the sum

(9.9) B�∗ =

�∗∑
�=1

ρ∗�u
∗
� (v

∗
� )

T

may serve as a low-rank approximation of A.

10. Concluding remarks. The power method, the deflation by subtraction
process, and the Rayleigh quotient are among the early tools for solving symmetric
eigenvalue problems. It is interesting, however, to ask whether these methods and
concepts can be extended for calculating the SVD of rectangular matrices. The min-
imum norm approach that we introduce gives a definite answer to this question. At
the same time it reveals new features of these tools and paves the way for modified
schemes.

The new deflation by subtraction process for symmetric matrices has clear advan-
tages over the classical method of Hotelling [16], [17], namely, the “finite termination”
property, the “exactness” property, the “orthogonality” property, and the fact that
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these features hold regardless the quality of the computed eigenpairs. One aim of
the paper is to point out that a small number of power iterations per eigenpair are
sufficient to provide a meaningful characterization of the eigensystem.

The symmetric quotient equality (4.8) is a new useful relation that directly con-
nects the minimum norm problem (1.1) and the Rayleigh quotient, showing that min-
imizing (1.1) is equivalent to maximizing the Rayleigh quotient. An extended version
of this equality sheds new light on Key Fan’s maximum principle; see [9]. The ability
to find a dominant eigenpair by solving (1.1) opens the door for effective minimization
techniques. The simple relaxation method proposed in [8] illustrates this point.

When moving to rectangular matrices, singular values take the role of eigenval-
ues, while the rectangular Rayleigh quotient (5.9) replaces the Rayleigh quotient (4.4).
The minimum norm approach enables us to see the similarity between the two cases.
The rectangular quotient equality (5.10) directly connects the minimum norm prob-
lem (1.3) and the rectangular Rayleigh quotient (5.9), showing that minimizing (1.3)
is equivalent to maximizing the rectangular Rayleigh quotient. In [9] we establish
an extended version of this equality, which adds new insight into the Eckart–Young
theorem.

At this point it is instructive to see the difference between the rectangular Rayleigh
quotient (5.9) and the generalized Rayleigh quotient proposed by Ostrowsky [23]. Let
A be a general (nonnormal) real square matrix of order n, and let u and v be two
n-vectors that satisfy u∗v �= 0, where u∗ denotes the conjugate transpose of u. Then
the “generalized Rayleigh quotient”

(10.1) ρ(u,v) = u∗Av
/
(u∗v)

is aimed to approximate an eigenvalue of A that is “common” to u and v. One
justification for this definition lies in the following observation: Let u0 and v0 be
left and right eigenvectors of A corresponding to the same eigenvalue λ0 and satisfy
u∗

0v0 �= 0. Then λ0 = ρ(u0,v0). A second justification comes from the “stationary
property” of ρ(u,v) at the point (u0,v0), e.g., [23], [25]. These features motivate the
“generalized Rayleigh quotient iteration” proposed by Ostrowsky [23], [24]. On the
other hand, unlike the other quotients, it is difficult to associate (10.1) with a certain
optimization problem. For further discussions of the generalized Rayleigh quotient
and related topics, see [22], [23], [24], [25], [32].

The “rectangular iterations” that we propose are closely related to the power
method applied to the matrices ATA and AAT . A similar power method iteration is
used in the HITS algorithm for information retrieval, e.g., [18], [19]. However, the use
of rectangular iterations has further interpretations: On one hand, it can be viewed
as iterative retrieval of singular vectors, which is carried out by successive orthogo-
nalizations. On the other hand, it is a minimization method (“point relaxation”) that
is aimed at solving the minimum norm problem (7.1). These observations add new
insight into the power method and expose new useful results. A further merit of the
minimum norm approach is that it opens the door for more sophisticated minimiza-
tion techniques. The modified scheme for missing data illustrates this point. Another
fruitful idea is the use of a line search acceleration; see [5], [8].

The task of computing an orthonormal basis for Range(A) is called “the orthonor-
mal basis problem,” e.g., [14]. This problem is often solved by applying Householder
orthogonalization, or Gram–Schmidt orthogonalization, to produce a QR factoriza-
tion of A. In practice both methods are carried out with some “column pivoting”
policy, and the basis is completely determined by this policy. See, for example, [3],
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[6], [7], [14], [28]. The “orthogonalization via deflation” method has larger freedom in
the choice of the basis: Consider, for example, the left-side orthogonalization process.
Then at the �th deflation stage, � = 1, 2, . . . , the new vector that enters the basis can
be any unit vector from Range(A�). The Gram–Schmidt orthogonalization process
uses the �th column of A�, while pivoted Gram–Schmidt chooses a column of A� that
has the largest Euclidean norm. The ultimate choice is u�, a left dominant singular
vector of A�. However, accurate computation of this vector can be “too expensive.”
The theme of the paper is to point out that a few rectangular iterations with A� are
likely to produce a fair estimate of u�. This way, the resulting orthogonal decompo-
sition provides a meaningful substitute for the SVD of A. Preliminary experiments
that we have done support this view; see [8].

The practical value of our approach lies in problems where standard SVD algo-
rithms are not applicable, as in problems with missing data. Another favorable situ-
ation arises when the rank of the approximation � is much smaller than min{m,n}.
In this case the algorithm performs only � deflation stages, which reduces the compu-
tational cost. The last situation is likely to occur when A is a large sparse matrix. In
this case A�+1 is kept in the form

A�+1 = A−
�∑

j=1

σ̃jũjṽ
T
j ,

so the matrix-vector products are able to take advantage of the sparsity pattern in A.
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THE SINKHORN–KNOPP ALGORITHM: CONVERGENCE AND
APPLICATIONS∗

PHILIP A. KNIGHT†

Abstract. As long as a square nonnegative matrix A contains sufficient nonzero elements, then
the Sinkhorn–Knopp algorithm can be used to balance the matrix, that is, to find a diagonal scaling
of A that is doubly stochastic. It is known that the convergence is linear, and an upper bound
has been given for the rate of convergence for positive matrices. In this paper we give an explicit
expression for the rate of convergence for fully indecomposable matrices. We describe how balancing
algorithms can be used to give a measure of web page significance. We compare the measure with
some well known alternatives, including PageRank. We show that, with an appropriate modification,
the Sinkhorn–Knopp algorithm is a natural candidate for computing the measure on enormous data
sets.
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1. Introduction. If a graph has the appropriate structure, we can generate a
random walk on it by taking its connectivity matrix and applying a suitable scaling
to transform it into a stochastic matrix. This simple idea has a wide range of applica-
tions. In particular, we can rank pages on the Internet by generating the appropriate
connectivity matrix G and applying a scaling induced by a diagonal matrix D of col-
umn sums so that Pc = GD−1 is column stochastic.1 Ordering pages according to
the size of the components in the stationary distribution of Pc gives us a ranking.
Roughly speaking, this is how Google’s PageRank is derived.

An alternative method of generating a random walk on G is to apply a diagonal
scaling to both sides of G to form a doubly stochastic matrix P = DGE. Of course, if
we use this approach, then the stationary distribution is absolutely useless for ranking
purposes. However, in section 5 we argue that the entries of D and E can be used
as alternative measures. We will also see that, if we apply the Sinkhorn–Knopp
(SK) algorithm on an appropriate matrix to find D and E, we can compute our new
ranking with a cost comparable to that of finding the PageRank. In order to justify
this conclusion, we need to establish the rate of convergence of the SK algorithm,
which we do in section 4. Before that, in section 2 we review pertinent details about
the SK algorithm, and in section 3 we look at the symmetric case. Our numerical
results are collected in section 6.

2. The Sinkhorn–Knopp algorithm. The SK algorithm is perhaps the sim-
plest method for finding a doubly stochastic scaling of a nonnegative matrix A. It
does this by generating a sequence of matrices whose rows and columns are normalized
alternately. The algorithm can be thought of in terms of matrices

A0 = A, A1, A2, . . . ,
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1If any of the columns are empty, we first modify G by, for example, adding a column of ones.
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whose limit is the doubly stochastic matrix we are after, or in terms of pairs of diagonal
matrices

(D0, E0), (D1, E1), (D2, E2), . . . ,

whose limit gives the desired scaling of A. We will predominantly use the second
interpretation in this paper.

To describe the algorithm more formally, we introduce the operator D : R
n →

R
n×n, where D(x) = diag(x). Starting with D0 = E0 = I, we let

rk = Dk−1AEk−1e,(2.1)

where e is a vector of ones, and Dk = D(rk)
−1. Now let

cTk = eTDkAEk−1,(2.2)

and Ek = D(ck)
−1.

Not surprisingly, the simplicity of the method has led to its repeated discov-
ery. It is claimed to have first been used in the 1930s for calculating traffic flow [5]
and appeared in 1937 as a method for predicting telephone traffic distribution [15].2

In the numerical analysis community it is most usually named after Sinkhorn and
Knopp, who proved convergence results for the method in the 1960s [22], but it is
also known by many other names, such as the RAS method [1] and Bregman’s bal-
ancing method [16]. The letters R, A, and S represent symbolically the matrices
used in decomposing the original matrix into doubly stochastic form. Many matrix
decompositions are expressed in this way (e.g., CS and QT decompositions).

Perhaps the simplest representation of the method is given in [13]. Suppose that
P = D(r)AD(c) is doubly stochastic. Manipulation of the identities Pe = e and
PT e = e gives

c = D(AT r)−1e, r = D(Ac)−1e,(2.3)

which suggests the fixed point iteration

ck+1 = D(AT rk)
−1e, rk+1 = D(Ack+1)

−1e.(2.4)

It is straightforward to show that this iteration is precisely the SK algorithm when
r0 = e. Note that this can be achieved by repeatedly issuing the commands

c = 1./(A′ ∗ r), r = 1./(A ∗ c)

in MATLAB.
Convergence of the SK algorithm depends on the nonzero structure of A. Recall

that a nonnegative matrix A has total support if A �= 0 and all its nonzero elements
lie on a positive diagonal. This rather terse definition is standard in the literature
[19, 22] but can be usefully interpreted in terms of graphs. If a graph has an adjacency
matrix with the same nonzero pattern as a matrix with total support, then every edge
in the graph is part of a circuit. A matrix is fully indecomposable if it is impossible
to find permutation matrices P and Q such that

PAQ =

[
A1 0
A2 A3

]
,

2A more detailed history of the method can be found in [7].
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with A1 square. This property is also known as the strong Hall property. Sinkhorn
and Knopp proved the following result [22].

Theorem 2.1 (Sinkhorn–Knopp). If A ∈ R
n×n is nonnegative, then a necessary

and sufficient condition that there exists a doubly stochastic matrix P of the form
DAE, where D and E are diagonal matrices with positive main diagonals, is that A
has total support. If P exists, then it is unique. D and E are also unique up to a
scalar multiple if and only if A is fully indecomposable.

A necessary and sufficient condition that the SK algorithm converges is that A
has total support.

Note that we are not claiming that D and E are unique but rather that if
D1AE1 = D2AE2 = P , then there exists α > 0 such that D1 = αD2 and E2 = αE1.

By thinking of the iteration in terms of the approximate doubly stochastic
matrices

A0, A1, A2, . . . ,

Sinkhorn and Knopp also showed that the algorithm converges whenever A has at
least one positive diagonal. For example, if we were to scale the matrix

[
a b
0 c

]

repeatedly, we would converge to the identity matrix; however, the diagonal matrices
in the identity Ak = DkAEk would diverge.

The rate of convergence of the SK algorithm has also been studied by a number
of authors. Soules [23] has shown that the algorithm is linearly convergent whenever
the original matrix has total support. However, he gives no explicit value for the rate
of convergence. Soules establishes his result by treating the algorithm as a fixed point
iteration on matrices and looking at the Jacobian matrix. Our interpretation of the
method as an iteration on vectors enables us to improve this result.

Franklin and Lorenz [11] give a bound on the rate of convergence when A > 0.
They use Hilbert’s projective metric for vectors x, y ∈ R

n
+, namely,

d(x, y) = log max
i,j

xiyj
xjyi

.

For A ∈ R
m×n
+ , we can define

θ(A) = sup{d(Ax,Ay)|x, y ∈ R
n
+} = max

i,j,k,l

aikajl
ajkail

.(2.5)

Franklin and Lorenz show that θ(A) = θ(Am) is constant for the sequence of matrices
{Am} generated by the SK algorithm with initial matrix A. They are also able to
show that the rate of convergence of the method is bounded above by

C =

(√
θ(A) − 1√
θ(A) + 1

)2

.(2.6)

This is an a priori bound on the rate of convergence, but it can be very weak in
practice. Furthermore, the result holds only for positive matrices. As the smallest
element of A approaches zero, it can be seen that C approaches 1. The result we
establish in section 4 is sharp and applies whenever A is fully indecomposable.
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It is worth noting that we can generate a stopping criterion for the SK algo-
rithm that can be computed very efficiently. We want to stop when D(rk)Ack and
D(ck)A

T rk are both close to e. After each SK step, the first of these criteria is sat-
isfied (up to round-off error) as we will have just balanced the rows of A. To get an
estimate of the error in the column sums, we note that AT rk = D(ck+1)

−1e, so in the
middle of the step we can estimate our error by computing

errk = ‖ck ◦ dk+1 − e‖1,(2.7)

where dk+1 = D(ck+1)
−1e and ◦ represents the Hadamard product.

Matrix balancing can be used as a simple technique for preconditioning a matrix.
Given a fully indecomposable matrix A ∈ R

n×n we can find two n × n diagonal
matrices D and E such that the p-norms of the rows and columns of DAE are all
equal. This idea was explored in [2, 10] as a method for finding a diagonal scaling
such that κ(DAE) � κ(A). By applying the SK algorithm to the matrix whose
(i, j)th element is |apij |, it is easily seen that the problem is essentially identical for
1 < p < ∞. The case p = ∞ is studied in [8, 20].

3. Balancing symmetric matrices. If A is symmetric, then it is natural to
look for a diagonal matrix D such that DAD is doubly stochastic. We can do this by
using the SK algorithm: If D(r)AD(c) is doubly stochastic, then so is its transpose
D(c)AD(r), and since, up to a scalar factor, the balancing is unique (by Theorem 2.1),
r = αc. If α �= 1, we can scale our limiting vectors to regain symmetry.

During the iteration, though, symmetry is lost, and an alternative approach is to
generate a sequence of symmetric iterates. The symmetric analogues of (2.3) and (2.4)
are

x = D(Ax)−1e(3.1)

and

xk = D(Axk−1)
−1e(3.2)

respectively. We note that this iteration can be coded in MATLAB by repeated
application of the single instruction x = 1./(A*x), which must make it one of the
most compact algorithms in numerical analysis!

While the iteration superficially retains symmetry, it is in fact no different from
the SK algorithm. By comparing (3.2) with (2.4) we see that, for k ≥ 0, x2k = rk
and x2k+1 = ck+1.

Conversely, we can use the iteration given by (3.2) on nonsymmetric matrices:
Simply apply it to

S =

[
0 A
AT 0

]
.(3.3)

This is more than an academic exercise. To establish the rate of convergence of the
SK algorithm we first find the convergence rate of (3.2). This will be sufficient, as in
exact arithmetic the iterates coincide.

To see this, let

xk =

[
yk
zk

]
,
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and (3.2) becomes

yk+1 =D(Azk)
−1e,(3.4)

zk+1 =D(AT yk)
−1e.(3.5)

Hence

yk+1 =D(AD(AT yk−1)
−1e)−1e,

zk+1 =D(ATD(Azk−1)
−1e)−1e.

However, from (2.4), we have

ck =D(AD(AT ck−1)
−1e)−1e,

rk =D(ATD(Ark−1)
−1e)−1e,

and we conclude that one step of the SK algorithm is equivalent to two steps of (3.2)
applied to S.

Symmetric balancing is also considered in [18], where the equation D(Ax)x = e
is solved by using a Gauss–Seidel–Newton method.

4. The rate of convergence of the Sinkhorn–Knopp algorithm. We now
consider the convergence of the symmetric SK algorithm in (3.2) by adapting as
necessary the standard tools for analysis of a fixed point iteration. At this stage, we
restrict ourselves to fully indecomposable matrices as in this case (3.2) has a unique
positive fixed point, but we will comment on the more general case (matrices with
total support) at the end of the section.

There are two complications we have to consider when trying to establish con-
vergence. The first is that, in general, the iteration does not converge as when the
SK algorithm is used on a symmetric matrix the sequences {rk} and {ck} will almost
surely converge to different limits. Eventually we oscillate between a pair of vectors
that are scalar multiples of the fixed point. However, our ultimate goal is to establish
a sharp convergence result for the general SK algorithm, and it will suffice to consider
the alternating subsequences.

The second complication is that, around the fixed point, the Jacobian matrix has
spectral radius one, and so we cannot make direct use of the contraction mapping the-
orem. However, the nature of the subspace associated with the principal eigenvector
means that this, too, can be dealt with. Soules makes similar observations regarding
the SK algorithm in [23] and proves linear convergence. As we are trying to put a
number to this rate, we cannot use Soules’s result. Instead, by using our compact
representation of the iteration, we present a simple analysis that leads to an explicit
value for the rate of convergence.

We first prove a couple of lemmas to confirm some of the statements made in the
preceding discussion.

Lemma 4.1. Suppose that A is a symmetric nonnnegative fully indecomposable
matrix. Then there is a unique positive vector x∗ such that D(x∗)AD(x∗) = P , where
P is doubly stochastic.

Proof. This is a trivial consequence of Theorem 2.1. For existence, suppose that
D(r)AD(c) = P , and let x∗ =

√
D(r)D(c)e (by symmetry r and c are collinear).

If D(x)AD(x) = D(y)AD(y), then, for some α > 0, x = αy and y = αx. Hence
x = y.

Lemma 4.2. Suppose that A is a symmetric nonnnegative fully indecomposable
matrix and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P , where
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P is doubly stochastic. Let f(x) = D(Ax)−1e. The Jacobian matrix of f(x) satisfies
the following properties:

1. For all x ∈ R
n
+, J(x) = −D(Ax)−2A.

2. For all α ∈ R+,

J(αx∗) = − 1

α2
D(x∗)PD(x∗)

−1.

Proof.
1. This can be confirmed by a straightforward componentwise calculation or by

tensor calculus. We restrict ourselves to positive vectors to ensure that Ax > 0 and
hence that D(Ax) is invertible.

2. At the fixed point, D(Ax∗) = D(x∗)
−1; hence D(A(αx∗)) = αD(x∗)

−1 and

J(αx∗) = − 1

α

2

D(x∗)
2A = D(x∗)(D(x∗)AD(x∗))D(x)−1 = − 1

α

2

D(x∗)PD(x∗)
−1.

We now consider the behavior of f(x) when x is in the neighborhood of αx∗.
Because of the alternating behavior, we consider the effects of two iterations at a
time.

Lemma 4.3. Suppose that A is a symmetric nonnnegative fully indecomposable
matrix and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P , where
P is doubly stochastic. Let f(x) = D(Ax)−1e. Let α > 0. If x̂ is in an ε-neighborhood
of αx∗, then, in an appropriate norm,

min
v∈V

‖f2(x̂) − v‖ ≤ |λ2|2ε + o(ε),(4.1)

where V is the vector space spanned by x∗.
Proof. Suppose that, for some ε > 0, x̂ = αx∗ + d, with ‖d‖ < ε. Let D = D(x∗),

and note that f(αx∗) = x∗/α and f2(αx∗) = αx∗. We can write

f2(x̂) = f(f(αx∗) + J(αx∗)d + o(ε))

= f2(αx∗) + J(x∗/α)J(αx∗)d + o(ε)

= αx∗ + (−α2DPD−1)(−α−2DPD−1)d + o(ε)

= αx∗ + DP 2D−1d + o(ε) = αx∗ + J2d + o(ε),

where J = DPD−1. As ρ(P ) = 1, we cannot use the contraction mapping theorem
to show that ‖f2(x̂) − αx∗‖ < ‖x̂− αx∗‖. However, observe that A is fully indecom-
posable; hence P is, too, and since doubly stochastic matrices with this property are
primitive [3], P has a single simple eigenvalue of modulus one. The corresponding
eigenvector of J is x∗. By using Wielandt deflation [26], we can write

J = −(x∗y
T + J0),

where

σ(J0) = σ(P ) − {1} ∪ {0} = {λ2, . . . , λn, 0}

by choosing, for example, y = x∗/x∗
Tx∗. Since J0x∗ = 0,

f2(x̂)=αx∗ + (x∗y
T + J0)

2d + o(ε)

=J2
0d + (1 + yT (J0 + I)d)x∗ + o(ε).
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Choosing our norm so that ‖J0‖ ≤ |λ2| + ε and letting v = (1 + yT (J0 + I)d)x∗
establishes (4.1).

We can conclude that, as our iterates approach the subspace spanned by x∗,
the contribution to our iterates from other directions diminishes linearly at a rate
governed by the second eigenvalue of P . The fact that we are heading for a fixed line
rather than a fixed point is sufficient for us to find the scaling we crave. Since we
already know that the SK algorithm converges, we can be sure that we eventually lie
in a neighborhood that satisfies the conditions of Lemma 4.3.

Theorem 4.4. Suppose that A is a symmetric nonnnegative fully indecomposable
matrix and that x∗ is the unique positive vector such that D(x∗)AD(x∗) = P , where P
is doubly stochastic, and let {xk} be the sequence of vectors generated by the iteration
(3.2) with x0 = e. Then for all ε > 0 there exists K1 ∈ Z such that, if k ≥ K1,
xk = αkx∗ +dk, where ‖dk‖ < ε and αk is bounded. Furthermore, there exists K2 ∈ Z

such that, if k ≥ K2,

‖dk+2‖ ≤ |λ2|2‖dk‖,
where λ2 is the subdominant eigenvalue of P .

Proof. The existence of K1 is guaranteed by Theorem 2.1 and our observation
on the equivalence of the SK algorithm and (3.2). The existence of K2 follows from
Lemma 4.3.

The result does not immediately extend to the nonsymmetric case as when we
form S by using (3.3) we lose indecomposability. This isn’t a problem though.

Theorem 4.5. If A is fully indecomposable, then the SK algorithm will converge
linearly to vectors r∗ and c∗ such that D(r∗)AD(c∗) = P , where P is doubly stochastic.
Furthermore, there exists K ∈ Z such that, if k ≥ K,∥∥∥∥

[
rk+1

ck+1

]
−
[

r∗
c∗

]∥∥∥∥ ≤ σ2
2

∥∥∥∥
[

rk
ck

]
−
[

r∗
c∗

]∥∥∥∥ ,
where σ2 is the second singular value of P .

Proof. The convergence of the algorithm is guaranteed by Theorem 2.1. To de-
termine the rate of convergence we need to adapt Lemma 4.3. Consider the spectrum
of J(x∗) when we form the matrix S by using (3.3). This will be the same as the
spectrum of

Q =

[
0 P
PT 0

]
.

The conditions imposed on A ensure that P is primitive, and hence so is PTP . Since
the spectrum of Q is the set of positive and negative square roots of the eigenvalues3

of PTP , we have an additional eigenvalue of modulus one. We need to consider how
the iteration behaves in the neighborhood of the associated subspace V.

The two eigenvectors of J(x∗) corresponding to the maximal eigenvalues take the
form

v1 =

[
r∗
c∗

]
and v2 =

[
r∗
−c∗

]
.

By assuming x̂ is in an ε-neighborhood of V, we can again show that

min
v∈V

‖f2(x̂) − v‖ ≤ |λ2(Q)|2ε + o(ε),

and |λ2(Q)| = σ2(P ).

3Or singular values of P .
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We have essentially proved the theorem; we just have to identify the iterates from
the symmetric algorithm that appear as iterates in the SK algorithm. By following
the discussion at the end of section 3 we can identify rk as the top half of x2k and
ck as the bottom half of x2k−1. This explains why the rate of convergence of the SK
algorithm is σ2

2 . SK algorithm avoids the oscillations in the symmetric algorithm as
rk and ck are formed from convergent subsequences of {xk}.

Theorem 2.1 states that the SK algorithm is convergent if A has total support,
while Theorem 4.5 applies only if A is fully indecomposable. This gap is easily rec-
onciled: If A has total support but is not fully indecomposable, then it must be a
direct sum of fully indecomposable matrices. Such a matrix can be permuted into
block diagonal form

⎡
⎢⎢⎢⎣

A1

A2

. . .

Ak

⎤
⎥⎥⎥⎦ ,

where each diagonal block is fully indecomposable. The behavior of the SK algorithm
is unaffected by permutations (unlike the symmetric variant). If we apply the SK
algorithm to the block diagonal form, then clearly the convergence in each block will
be independent of all others, and the doubly stochastic matrix we converge towards
can be written ⎡

⎢⎢⎢⎣
P1

P2

. . .

Pk

⎤
⎥⎥⎥⎦ ,

where each Pi is itself doubly stochastic and fully indecomposable. The asymptotic
rate of convergence to Pi is σ2

2(Pi). If we want to talk about an overall asymptotic
convergence, then it will be bounded above by

max
1≤i≤k

σ2
2(Pi).

However, we may not see this upper bound reached, for example, in the case that
some of the Ai are already doubly stochastic.

5. Ranking web pages. The PageRank algorithm, introduced by Brin et al. [6],
has proved to be an incredibly successful technique for ordering large sets of connected
data. In essence, the method takes a matrix G representing the connectivity of a net-
work and scales the columns so that the matrix is column stochastic.4 The stationary
distribution of this scaled matrix is then calculated, typically by using the power
method, and the size of the probabilities is used to order the nodes in the network.
A thorough description of the method and associated theory can be found in [17].
We note that the column scaling is trivial to achieve (requiring half a step of the SK
algorithm) and the main work is in computing the stationary distribution. In this
section we use the SK algorithm to compute an alternative method for ordering data
which has a similar cost to PageRank but which has two principal advantages. First,

4In our connectivity matrix the (i, j)th entry is one if there is a link from the jth node to the
ith node.
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for each node in our network we get two measures rather than one which we claim
are analogous to the authorities and hubs of Kleinberg’s Hypertext Induced Topic
Selection (HITS) algorithm [14]. Second, there is no need to treat dangling nodes dif-
ferently to any other, whereas in the PageRank algorithm it is necessary to preprocess
the connectivity matrix in some way, because otherwise the column scaling fails [21].

The guiding heuristic behind the PageRank model is simple to state, namely, that
the random walk will visit significant web pages more frequently than insignificant
ones, and the success of this graph interpretation in mimicking the subjective property
of significance is one of the main reasons behind its current ubiquity.

We offer a simple heuristic to justify our application of the SK algorithm to the
problem. Clearly the probabilities in the associated distribution tell us nothing as the
distribution is uniform.5 If we think in terms of the traffic flowing around the network
represented by G, then our aim is to balance the flow through each node. That is,
we want to scale G so that its stationary distribution is uniform or, equivalently,
so that it is doubly stochastic. Suppose then that D(r)GD(c) is doubly stochastic.
If node i in the unweighted graph draws traffic in disproportionately, then this will
have to be compensated for by ri being relatively small. Similarly, if a node has a
tendency to emit traffic, then ci will need to be relatively small. We associate the
tendency of a node to emit traffic with it being a hub, a node which points to several
sources of information on a topic. The tendency to draw in traffic is associated with
authoritativeness, a node that contains definitive information on a particular topic.
We can order the nodes with respect to each of these properties by reversing the
order of the entries of r and c. This heuristic is very similar to that behind the
ordinary gravity model in transport planning [1, 16], where the SK algorithm has
been successfully employed.

While we believe the use of the SK algorithm in web applications is new, it is
related to a technique proposed by Tomlin in [24]. Here one looks to find a vector
d such that similarity transformation induced by D(d) on the connectivity matrix
P = D−1GD fixes the sum of the entries of P and, for 1 ≤ i ≤ n,

n∑
j=1

(pij − pji) = 0.(5.1)

Tomlin argues that the authoritativeness of the jth node is proportional to the size
of dj , while the jth row/column sum can be used as a hub measure. Tomlin suggests
an iterative algorithm for computing d, the iterative step for which can be written in
MATLAB as

d = sqrt((G ∗ d)./(G′ ∗ (1./d))),

but no conditions for convergence are given although it is claimed to work in practice.
A criticism of Tomlin’s technique is that, if G is symmetric, (5.1) is satisfied with
D = I, and the method fails to identify authorities. While G will not be symmetric
in web applications, there seems to be no justification for this phenomenon.

5.1. Practicalities. On any large set of web data it is unreasonable to expect
the nodes to form a single strongly connected component, and our matrix is highly
unlikely to be fully indecomposable. Hence it is necessary to make a perturbation to
G for the SK algorithm to converge. In PageRank a damping factor is used: If P

5We can claim categorically that this is the worst possible method for ranking web pages!
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function [c, r] = sk(G, tol, g)

[n, n] = size(G);

r = ones(n,1); c = r;

d = G’*r + g*sum(r);

while norm(c.*d - 1,1) > tol

c = 1./d;

r = 1./(G*c+ g*sum(c));

d = G’*r + g*sum(r);

end

Fig. 5.1. A balancing algorithm for web ranking.

is the column stochastic scaling of the web graph, then we compute the stationary
distribution of

Pα = αP + (1 − α)eeT /n.(5.2)

Inspired by this idea, we simply make a rank one perturbation to G by adding a
constant γ to each element. Our justification for doing this is similar to that in
PageRank: If we wish to model a random crawl on the web, we have to allow a
mechanism for moving between any pair of nodes. Clearly we do not want to make
the perturbation explicitly as we want to take advantage of the sparsity in G, and
indeed it is easily avoided. By using (2.4), and the fact that all of the iterates are
positive, we can write

ck+1 = D((G + γeeT )T rk)
−1e = D(GT rk + γ‖rk‖1e)

−1e

and similarly

rk+1 = D(GT ck+1 + γ‖ck+1‖1e)
−1e.

A MATLAB program for carrying out balancing of G + αeeT by using the stopping
criterion for the SK algorithm (2.7) is given in Figure 5.1. All the user needs to supply
is the connectivity graph and a choice of tolerance and the parameter γ. The cost
of the algorithm is dominated by the two matrix-vector multiplies at each step. For
very large values of n, the cost of the transpose is likely to be significant, and the
algorithm should be adapted to work with G and GT efficiently.

The damping factor in PageRank controls the rate of convergence of the power
method by fixing the size of the second eigenvalue of Pα. This is a consequence of the
following theorem, due to Brauer [4], a simple proof of which can be found in [9].

Theorem 5.1. Let P be a column-stochastic matrix with eigenvalues

1, λ2, . . . , λn.

Then if 0 ≤ α ≤ 1, the eigenvalues of Pα, as defined in (5.2), are {1, αλ2, . . . , αλn}.
The result is also true for a more general set of rank one perturbations, but if

we restrict ourselves to this particular one, we can extend the result to determine the
singular values in the doubly stochastic case.

Corollary 5.2. Let P be a doubly stochastic matrix with singular values

1, σ2, . . . , σn.

Then if 0 ≤ α ≤ 1, the singular values of Pα are {1, ασ2, . . . , ασn}.
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Proof. Since

PT
α Pα = α2PTP +

α(1 − α)

n
(eeTP + PeeT ) +

(1 − α)2

n2
eeT eeT

= α2PTP +
2α(1 − α)

n
eeT +

(1 − α)2

n
eeT

= α2PTP +
1 − α2

n
eeT ,

the result follows by applying Theorem 5.1 to PTP .
In many applications, α is given the value 0.85, but care must be taken to ensure

that Pα sufficiently resembles P [12]. For the balancing algorithm we are unable to
prove a result as strong as Theorem 5.1. However, by using our convergence result
for the SK algorithm, we argue that the criteria for making a good choice for the
parameter γ are similar to those used in PageRank.

We can apply the Franklin–Lorenz bound (2.6) in the perturbed case to get an idea
of the effect of varying γ. Since G contains only zeros and ones we have, from (2.5),

θ(G + γeeT ) = max
i,j,k,l

(gik + γ)(gjl + γ)

(gjk + γ)(gil + γ)
≤ (1 + γ)2

γ2
,

and hence the rate of convergence can be bounded above by 1/(1 + 2g). While this
shows that we can expect the convergence of the algorithm to improve by increasing
γ, experimental evidence shows that this severely underestimates the effect of the
parameter, and a more realistic upper bound would be of the form 1/p(n, γ) for
some low degree polynomial in n and γ. Such a bound is simple to prove in certain
important special cases.

For example, suppose that P is doubly stochastic, and we use the SK algorithm
on P ′ = P + γeeT . Then D(rk)P

′D(ck) converges to Q = (1 + nγ)−1P ′, since this is
clearly a doubly stochastic diagonal scaling of P ′, and, by Theorem 2.1, such a scaling
is unique. Notice that Q = Pα, where α = (1 + nγ)−1, and so, by Corollary 5.2 and
Theorem 4.5, the SK algorithm will converge asymptotically with rate (1 + nγ)−2.
For example, choosing γ = 0.1/n gives a convergence rate of around 0.83.

6. Results. In section 4 we showed that if the SK algorithm is used on a fully
indecomposable nonnegative matrix and it converges to the doubly stochastic matrix
P , then the rate of convergence is asymptotically equal to the square of the second
singular value of P . Generally, we have found that this asymptotic convergence rate
is approached fairly quickly. This is illustrated in Figure 6.1 for three matrices. A
is the 10 × 10 upper Hessenberg matrix whose nonzero entries are all 1; B and C
are random 50× 50 matrices whose nonzero entries are uniformly distributed in [0, 1].
They are generated so that approximately 30 percent of B’s elements and 15 percent
of C’s elements are nonzero. The solid lines show the error as the iteration progresses
using (2.7); the dashed lines represent the asymptotic rates predicted by Theorem 4.5.

In section 5.1 we claimed that the rate of convergence of the SK algorithm was
significantly faster when we made a uniform rank one perturbation to the original
graph. In Figures 6.2 and 6.3 we provide evidence for our claim that the rate of
convergence of the SK algorithm on the n × n matrix A + γeeT can be bounded by
1/p(n, γ) for some low degree polynomial in n and γ.

In Figure 6.2 we show the results of varying γ on a sparse random symmetric
1000 × 1000 matrix with a positive diagonal (which ensures that the matrix is fully
indecomposable).
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Fig. 6.1. Rate of convergence of the Sinkhorn–Knopp algorithm.
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Fig. 6.2. Varying γ for a random sparse matrix.

In Figure 6.3 we show the results of varying γ on the connectivity graph for a
2002 web crawl of Stanford University websites [27]. There are 281093 nodes, and the
matrix has roughly 2 million nonzero entries. While this particular matrix has been
criticized [25] for not having a representative web structure, it usefully illustrates the
effects of varying γ. In this case, if γ = 0, the matrix is not fully indecomposable.
The lines show how convergence speeds up as we vary γ through the values 0.01/n,
0.1/n, 0.5/n, 1/n, 2/n, and 4/n.

We now investigate how our new measure compares with PageRank. In our first
example, we look at the toy example of a graph of six web pages used in [17], whose
connectivity is illustrated in Figure 6.4.

By using PageRank with α = .9, the nodes are ordered (from most significant to
least) 4, 6, 5, 2, 3, 1. By using the HITS algorithm, the order of authoritativeness is
5, 2, 6, 1, 4, 3, while the hub ordering is 3, 4, 1, 5, 6, 2. By using the algorithm in
Figure 5.1 (and with γ = 1/60) we find that our ordering of authoritativeness matches
PageRank exactly. Our ordering of the hubs differs from HITS only in that nodes
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Fig. 6.3. Varying γ for the Stanford matrix.
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Fig. 6.4. A miniature web graph.

1 and 4 are transposed. We should not expect the exact correspondence between
PageRank and our new measure to extend to larger systems as we are trying to
measure something different.

We have carried out a number of experiments on the graph of all of the links
between articles in the Wikipedia online database, collated in 2005. The resulting
graph has just over 1.1 million nodes, and there are roughly 18.3 million nonzeros
in the connectivity matrix. Figure 6.5 shows a comparison of PageRank (α = .85)
against the authorities computed by the SK algorithm (γ = .1/n). The graph shows
the proportion of nodes that are among the top N authorities and are in the top N for
high PageRank for 1 ≤ N ≤ 1000. We note the strong correlation between the two.

Finally, we investigate how well the SK algorithm allows us to distinguish between
hubs and authorities. Table 6.1 shows the top 10 or so nodes6 in the Wikipedia
dataset according to a variety of measures. The first column is ordered according to
PageRank (α = .85) and the second according to the authorities as measured with the
SK algorithm. In the third column we have filtered out authorities whose hub rating

6We have grouped certain linked terms that appeared consecutively.
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Fig. 6.5. Comparison of web measures on Wikipedia data.

Table 6.1

Highest ranked subjects in Wikipedia.

PageRank Authorities Filtered auth. Filtered hubs
United States 2000 2000 Political parties
Race (U.S. Census) Pop. density Marriage Environment topics
United Kingdom km2 U.S. State leaders
France Census 2003,2004,2005 Airlines
2005,2004,2000 Square mile UK/England 2 letter combinations
Canada Marriage Canada Masts
England Per capita income Japan Mathematicians
Cat. by country U.S. Census Australia Peerage of the UK
2003 Poverty line 2001, 2002 Record labels
Cat.:Culture Race (U.S. Census) Germany Biblical names

is particularly low. Our rationale for doing this is that if an authoritative page has
a high hub rating it will be linked to many other subjects and is therefore likely to
be of more general interest. This is precisely what we see here, where we have listed
only authorities that are also in the top 2% of hubs. The fourth column lists the top
hubs, this time filtered to include only those among the top 25% of authorities. We
note that all of the top hubs are either tables or lists.

7. Concluding remarks. The SK algorithm can be viewed (for symmetric ma-
trices) as a power method like technique for solving the matrix problem Ax = 1/x.
This connection can be seen in the similar convergence properties and costs of the
two algorithms. The results of our experiments back our claim that the SK algorithm
can be used to distinguish between hubs and authorities in web-type graphs at a cost
similar to that of PageRank. The notion of quality of an ordering is fairly subjec-
tive, but we feel that the results in Table 6.1 demonstrate that we can obtain useful
information with this approach.

In order to balance speed and quality in ordering web data with the algorithm
given in Figure 5.1, we suggest choosing the parameter γ to lie in the range .01 ≤
γn ≤ 1. Evidence that a choice in this range can be used to compute a measure in a
comparable time to PageRank is supplied by our experiments and the partial results
in section 5.1.
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A FAST NEWTON’S METHOD FOR A NONSYMMETRIC
ALGEBRAIC RICCATI EQUATION∗

DARIO A. BINI† , BRUNO IANNAZZO‡ , AND FEDERICO POLONI§

Abstract. A special instance of the algebraic Riccati equation XCX−XE−AX+B = 0 where
the n × n matrix coefficients A,B,C,E are rank structured matrices is considered. Relying on the
structural properties of Cauchy-like matrices, an algorithm is designed for performing the customary
Newton iteration in O(n2) arithmetic operations (ops). The same technique is used to reduce the
cost of the algorithm proposed by L.-Z. Lu in [Numer. Linear Algebra Appl., 12 (2005), pp. 191–
200] from O(n3) to O(n2) ops while still preserving quadratic convergence in the generic case. As a
byproduct we show that the latter algorithm is closely related to the customary Newton method by
simple formal relations. In critical cases where the Jacobian at the required solution is singular and
quadratic convergence turns to linear, we provide an adaptation of the shift technique in order to
get rid of the singularity. The original equation is transformed into an equivalent Riccati equation
where the singularity is removed while the matrix coefficients maintain the same structure as in the
original equation. This leads to a quadratically convergent algorithm with complexity O(n2) which
provides approximations with full precision. Numerical experiments and comparisons which confirm
the effectiveness of the new approach are reported.

Key words. nonsymmetric algebraic Riccati equation, Newton’s iteration, Cauchy matrix,
matrix equation, fast algorithm, M -matrix
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1. Introduction. Consider the following nonsymmetric algebraic Riccati equa-
tion (NARE) arising in transport theory:

(1.1) XCX −XE −AX + B = 0,

where A,B,C,E ∈ R
n×n are given by

(1.2) A = Δ − eqT , B = eeT , C = qqT , E = D − qeT ,

and

(1.3)

e = (1, 1, . . . , 1)T ,
q = (q1, q2, . . . , qn)T with qi = wi

2ti
,

Δ = diag(δ1, δ2, . . . , δn) with δi = 1
cti(1+α) ,

D = diag(d1, d2, . . . , dn) with di = 1
cti(1−α) .

The matrices and vectors above depend on the parameters 0 < c � 1, 0 � α < 1
and on the sequences 0 < tn < · · · < t2 < t1 < 1 and wi > 0, i = 1, 2, . . . , n, such
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†Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy (bini@

mail.dm.unipi.it).
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that
∑

i wi = 1. For more details and for the physical meaning of these parameters,
we refer the reader to [13] and to the references therein. The solution of interest is
the minimal positive one, which exists as proved by Juang and Lin in [13].

It was shown by Guo [6] that this equation falls in the class of NAREs associated
with a nonsingular M -matrix or a singular irreducible M -matrix; in fact, arranging
the coefficients as

(1.4) M =

[
E −C
−B A

]

yields an M -matrix.
For this class of AREs, several suitable algorithms exist for computing the minimal

positive solution: the Newton method [10], the logarithmic and cyclic reduction [2, 7],
and the structure-preserving doubling algorithm [9, 11]. All these algorithms share
the same order of complexity, that is, O(n3) arithmetic ops per step, and provide
quadratic convergence in the generic case.

Observing that (1.1) is defined by a linear number of parameters, it is quite
natural to aim to design algorithms which exploit the structure of the matrices and
thus have a cost of order lower than O(n3) ops.

A step in this direction has been done by Lu [15] who has designed a vector
iteration whose limit allows one to easily recover the solution. The iteration has
a computational cost of O(n2) ops per step and converges linearly for α �= 0 or
c �= 1. The linear convergence is a drawback since the algorithm in many cases
needs a large number of iterations to converge and it is outperformed by algorithms
with quadratic convergence and O(n3) ops. In fact, the same author in [14] proposes
a mixed algorithm to speed up the computation. The algorithm starts with the
linear iteration of complexity O(n2) and switches to a quadratically convergent one,
of complexity O(n3), when some conditions are satisfied.

In this paper we consider the customary Newton method applied to (1.1). By
exploiting the rank structure of the matrix coefficients, we design an algorithm for
performing the Newton step in O(n2) ops. The new approach relies on a suitable
modification of the fast LU factorization algorithm for Cauchy-like matrices proposed
by Gohberg, Kailath, and Olshevsky in [4].

The same idea is applied to implement the quadratically convergent iteration
of Lu [14] by an algorithm with cost O(n2) ops. We also provide formal relations
between the sequences generated by Lu’s and Newton’s iterations which enable one
to deduce the convergence of Lu’s algorithm directly from the well-known properties
of Newton’s method.

In the critical but still important case where the Jacobian at the solution is
singular, the convergence of Newton’s (and therefore Lu’s) iteration turns to linear;
also the mixed iteration proposed in [14] loses its quadratic convergence while the
iteration of [15] converges sublinearly.

In this case, which is encountered when α = 0, c = 1, we can get rid of the
singularity of the Jacobian and consequently all the above-mentioned drawbacks. The
idea is to apply the shift technique originally introduced by He, Meini, and Rhee [12]
and used in the framework of Riccati equations by Guo, Iannazzo, and Meini in [9]
and by Guo [7]. With this technique, we replace the original Riccati equation with a
new one having the same minimal solution as the original equation (1.1) but where
the singularity of the Jacobian is removed. We prove that the matrix coefficients
of the new equation share the same rank structure properties of the coefficients of
(1.1). This enables us to design a fast Newton iteration which preserves the quadratic
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convergence and keeps the same O(n2) complexity even in the critical case.
As a byproduct of this analysis, we find that the approximation to the minimal

solution of (1.1) that we compute from the “shifted” equation is much more accurate
than the one obtained by applying the algorithm to the original equation. More pre-
cisely, it has been shown by Guo and Higham [8] that in order to achieve high accuracy
it is necessary to use the singularity of M in the design of algorithms; otherwise, we
can expect only to achieve an accuracy of O(

√
ε), where ε is the machine precision.

With the use of the shift technique [9], the information on the singularity of M is
plugged into the algorithm, and we may achieve full accuracy in the approximation
as confirmed by the numerical experiments.

The paper is organized as follows. After some preliminaries presented in section
2, we show in section 3 how to reduce one step of Newton’s iteration for (1.1) to
the solution of a linear system with a structured matrix, and in section 4 we deal
with the problem of solving such a system in O(n2) ops. In section 5 we show that
the iteration proposed by Lu [14] shares the same displacement structure and thus
its complexity can be reduced to O(n2) as well, and we exploit the connection be-
tween it and the Newton iteration. In section 6 we deal with the critical case where
the Jacobian is singular, by using the shift technique. In section 7 we address the
main numerical stability issues, and in section 8 we present some numerical examples.
From the experiments performed so far, our method turns out to be much faster and
accurate than the existing methods. Finally, in section 9, we discuss some possible
generalizations of this algorithm together with some research lines.

2. Preliminaries. A basic tool which we use is the concept of a Cauchy-like
matrix [4]. A matrix C = (cij)i,j=1,...,n is called Cauchy-like if its elements are of the
form cij =

uivj

ri−sj
for some constants ui, vi, ri, si, i = 1, . . . , n, such that ri �= sj for

each i, j. If we define R = diag(r1, r2, . . . , rn) and S = diag(s1, s2, . . . , sn), we have
RC − CS = uvT , where u = [u1, u2, . . . , un]T and v = [v1, v2, . . . , vn]T . The operator
C �→ RC−CS is called the displacement operator, and u, vT are called the generators
of C. Generalizing, if there exist two diagonal matrices R,S such that RC −CS has
rank r, we say that C has displacement rank r. When r is small with respect to the
size of C, C is called a generalized Cauchy-like matrix with respect to the pair (R,S).

Note that, using (1.2), equation (1.1) can be rewritten as

XD + ΔX = (Xq + e)(eT + qTX);

therefore any solution X is Cauchy-like with respect to (Δ,−D) and its generators
are u = Xq + e and vT = eT + qTX.

We will also need some basic facts on M -matrices. A matrix A = (ai,j) ∈ R
n×n is

called a Z-matrix if aij � 0 for all i �= j. A Z-matrix A is called an M -matrix if there
exists a nonnegative matrix B with spectral radius ρ(B) = r such that A = cIn − B
and r � c, where In is the identity matrix of order n.

The following results are well known and can be found in [1].
Lemma 2.1. For a Z-matrix A it holds that
1. A is an M -matrix if and only if there exists a vector v > 0 such that Av � 0

or a vector w > 0 such that wTA � 0;
2. if A is nonsingular, then A is an M -matrix if and only if A−1 � 0.

Lemma 2.2. Let A be a nonsingular M -matrix; then the Schur complement of
any principal submatrix of A is a nonsingular M -matrix.

Here and hereafter, inequalities on matrices and vectors are used in the component-
wise sense.
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Another useful tool is the Sherman–Morrison–Woodbury (SMW) matrix identity
[5, p. 50].

Lemma 2.3 (SMW formula). Let D ∈ R
n×n and C ∈ R

k×k be nonsingular, and
let U ∈ R

n×k, V ∈ R
k×n. Then D−UCV is nonsingular if and only if C−1−V D−1U

is nonsingular, and it holds that

(D − UCV )−1 = D−1 + D−1U(C−1 − V D−1U)−1V D−1.

The following lemma relates the SMW formula and M -matrices.
Lemma 2.4. Let D,C,U, V be real matrices satisfying the hypotheses of Lemma

2.3, with D and C diagonal and D,C,U, V � 0. Then, D − UCV is a (nonsingular)
M -matrix if and only if C−1 − V D−1U is a (nonsingular) M -matrix.

Proof. Letting C−1 − V D−1U be a nonsingular M -matrix, the SMW formula
yields

(D − UCV )−1 = D−1 + D−1U(C−1 − V D−1U)−1V D−1,

and since all terms on the right-hand side are nonnegative, one has (D − UCV )−1 > 0,
so D−UCV is a nonsingular M -matrix by Lemma 2.1; the converse is analogous. By
a continuity argument, the result can be extended to singular M -matrices.

3. Newton’s method. Newton’s iteration applied to (1.1), for a suitable ini-
tial value X(0), generates the matrix sequence {X(k)} defined by the solution of the
Sylvester equation [10]

(3.1) (X(k+1) −X(k))(E − CX(k)) + (A−X(k)C)(X(k+1) −X(k)) = R(X(k)),

where R(X) = XCX −XE −AX + B is the Riccati operator. Using the Kronecker
product notation, this can be written as

(3.2) vecX(k+1)−vecX(k) =
(
(E−CX(k))T ⊗In+In⊗(A−X(k)C)

)−1
vecR(X(k)),

where the vec operator stacks the columns of a matrix one above the other to form
a single vector. Thus Newton’s iteration is well defined when the matrix MX(k) =
(E − CX(k))T ⊗ In + In ⊗ (A − X(k)C) is nonsingular for each k. With abuse of
notation, we call the matrix MX the Jacobian matrix at X; in fact, it is the Jacobian
matrix of the vector function − vec ◦R ◦ vec−1 at vec(X).

The following result, proved in [8] by Guo and Higham, provides sufficient condi-
tions for the convergence of the Newton method.

Theorem 3.1. Let

M =

[
E −C
−B A

]

be a nonsingular M -matrix or an irreducible singular M -matrix and let X(0) = 0.
Then Newton’s iteration (3.1) is well defined, and the sequence {X(k)} converges
monotonically to the minimal positive solution of the NARE (1.1). Moreover, the

Jacobian matrix MX(k) = (E − CX(k))T ⊗ I + I ⊗ (A − X(k)C) ∈ R
n2×n2

is a
nonsingular M -matrix for all k � 0.

Note that the problem stated in (1.2) satisfies the hypotheses of the previous
theorem: in fact, we have

M =

[
D 0
0 Δ

]
−
[

q
e

] [
eT qT

]
,
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and by Lemma 2.4 M is an M -matrix if and only if

0 � 1 −
[
eT qT

] [ D−1 0
0 Δ−1

] [
q
e

]
,

which reduces to

(3.3) 1 � eTD−1q + qTΔ−1e =

n∑
i=1

c(1 − α)

2
wi +

n∑
i=1

c(1 + α)

2
wi = c,

in view of (1.3). This fact was also observed in [6].
In the following, we will consider a slightly more general case, i.e., when the

matrix M is a generic diagonal plus rank-one matrix. Hence, (1.2) becomes

(3.4) A = Δ − ẽqT , B = ẽeT , C = q̃qT , E = D − q̃eT ,

where e, q, ẽ, q̃ are any nonnegative vectors such that M , as defined in Theorem 3.1,
is a nonsingular M -matrix or a singular irreducible M -matrix. Such generalization
will prove useful when dealing with the critical case.

Observe that Newton’s iteration for the coefficients of (1.1) defined in (3.4) can
be rewritten as

(3.5) X(k+1)D + ΔX(k+1) = −(X(k)q̃ −X(k+1)q̃)(qTX(k) − qTX(k+1))

+ (X(k+1)q̃ + ẽ)(eT + qTX(k+1));

i.e., X(k+1) is a generalized Cauchy-like matrix with displacement rank 2. This prop-
erty holds for all the iterates X(k), k � 1, of Newton’s method obtained with any
starting matrix X(0).

The Jacobian at X(k), in Kronecker product notation, takes the form

MX(k) = DT ⊗ In + In ⊗ Δ − (e + X(k)T q)q̃T ⊗ In − In ⊗ (ẽ + X(k)q̃)qT .

By setting D = DT ⊗ In + In ⊗ Δ, u(k) = ẽ + X(k)q̃, v(k) = e + X(k)T q, and

(3.6) U (k) =
[
v(k) ⊗ In In ⊗ u(k)

]
, V =

[
q̃T ⊗ In
In ⊗ qT

]
,

we can rewrite MX(k) as

(3.7) MX(k) = D − U (k)V.

Since U (k) ∈ R
n2×2n and V ∈ R

2n×n2

, the inversion of MX(k) can be reduced to the
inversion of a 2n× 2n matrix using the SMW formula:

(3.8) M−1
X(k) = D−1 + D−1U (k)(I2n − VD−1U (k))−1VD−1.

This provides a new algorithm for implementing the Newton step, denoted by Algo-
rithm 1, which relies on the function fast solve for the fast solution of the system

(3.9)
R(k)x = b,

R(k) = I2n − VD−1U (k)
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function X(k+1)=NewtonStep (X(k) )
u(k) = ẽ + X(k) ∗ q̃ ;
v(k) = e + X(k)T ∗ q ;
R(X(k)) = u(k) ∗ v(k)T −X(k)D − ΔX(k) ;
R1 = [ q̃T ⊗ In ; In ⊗ qT ] ∗ (D−1∗vec (R(X(k)) ) ) ;
R2 = f a s t s o l v e ((I2n − VD−1U (k))R2 = R1 ) ;
X(k+1) = D−1 ( vec (R(X(k)))+[v(k) ⊗ In In ⊗ u(k) ]∗R2 ) ;
return X(k+1)

end function

Algorithm 1: Fast Newton’s step.

in O(n2) ops. The function fast solve is described in the next section.
Note that since D is a diagonal matrix of size n2 ×n2, the matrix-vector product

with matrix D−1 costs O(n2) ops, and the identities

(vT ⊗ In) vec(W ) = Wv,

(In ⊗ vT ) vec(W ) = WT v

allow one to compute the remaining products in O(n2) as well. Therefore the overall
cost of Algorithm 1 is O(n2).

4. Fast Gaussian elimination for Cauchy-like matrices. We now address
the problem of solving the linear system (3.9) given the vector b and the vectors
q, u(k), v(k) such that

(4.1) R(k) = I2n −
[

q̃T ⊗ In
In ⊗ qT

]
D−1

[
v(k) ⊗ In In ⊗ u(k)

]
.

First note that under the hypotheses of Theorem 3.1, R(k) is a nonsingular M -
matrix by Lemma 2.4 applied to the nonsingular M -matrix MX(k) of (3.7). Carrying
out the products in (4.1) yields

(4.2) R(k) = I2n −
[

G(k) H(k)

K(k) L(k)

]

with

(4.3)

G(k) = diag(g
(k)
i ), g

(k)
i =

n∑
l=1

v
(k)
l q̃l

dl + δi
,

H(k) = (h
(k)
ij ), h

(k)
ij =

u
(k)
i q̃j

dj + δi
,

K(k) = (κ
(k)
ij ), κ

(k)
ij =

v
(k)
i qj

di + δj
,

L(k) = diag(l
(k)
i ), l

(k)
i =

n∑
l=1

u
(k)
l ql

di + δl
.
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Thus G(k) and L(k) are diagonal, and H(k) and K(k) are Cauchy-like. Their displace-
ment equations are

ΔH(k) + H(k)D = u(k)q̃T , DK(k) + K(k)Δ = v(k)qT .

Partition x and b according to the block structure of R(k) as x = [xT
1 , x

T
2 ]T ,

b = [bT1 , b
T
2 ]T . Performing the block LU factorization of R(k) enables one to rewrite

the system R(k)x = b as

(4.4)

[
I −G(k) −H(k)

0 S(k)

] [
x1

x2

]
=

[
b1
b̂2

]
,

where S(k) = I−L(k)−K(k)(I−G(k))−1H(k) and b̂2 = b2 −K(k)(I −G(k))−1b1. The
matrices I −G(k) and S(k) are nonsingular as they are a principal submatrix and the
Schur complement of a nonsingular M -matrix, respectively. Moreover, S(k) enjoys
the following displacement structure:

DS(k) − S(k)D = K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).

This can be easily proved since D, Δ, I − G(k), I − L(k) all commute because they
are diagonal; in fact,

DS(k) = D(I − L(k)) −DK(k)(I −G(k))−1H(k)

= (I − L(k))D + (K(k)Δ − v(k)qT )(I −G(k))−1H(k)

= (I − L(k))D + K(k)(I −G(k))−1ΔH(k) − v(k)qT (I −G(k))−1H(k)

= (I − L(k))D −K(k)(I −G(k))−1(H(k)D − u(k)q̃T ) − v(k)qT (I −G(k))−1H(k)

= S(k)D + K(k)(I −G(k))−1u(k)q̃T − v(k)qT (I −G(k))−1H(k).

Thus S(k) is a generalized Cauchy-like matrix with displacement rank 2 with respect
to the singular operator DS(k) − S(k)D. We can use this property to develop an ad
hoc variation of the Gohberg–Kailath–Olshevsky (GKO) algorithm for the fast LU
factorization of matrices with displacement structure [4]. The GKO algorithm, for a
generalized Cauchy-like matrix S with generators M1 and N1, essentially goes on as
follows (ignoring pivoting for the sake of simplicity):

1. From the generators M1, N1 of

S =

[
d1 u1

l1 S2

]
,

such that DS − SD = M1N1, recover the first row and the first column of S
and store them as the first column of L,

[
1
l1
d1

]
,

and the first row of U ,

[
d1 u1

]
,

in the LU factorization of S.
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2. Compute the generators M2, N2 of the Schur complement S2 − l1u1

d1
as

M2 = M12 −
l1
d1

m11, N2 = N12 − n11
u1

d1
,

where

M1 =

[
m11

M12

]
, N1 =

[
n11 N12

]
.

3. Apply the algorithm recursively to compute the LU factorization L2U2 of the
Schur complement S2 − l1u1

d1
; then reconstruct the factors

L =

[
1 l1

d1

0 L2

]
, U =

[
d1 u1

0 U2

]
.

The problem in our context is that d1 cannot be retrieved from the generators,
due to the singularity of the operator S �→ DS − SD. In fact, it is easy to see that
the null space of DS − SD is the set of all diagonal matrices. Thus, we need a
different method to compute and update the diagonal elements of S through the LU
factorization. Our approach consists in storing the main diagonal of S in a vector s
and updating it at each step of the Gaussian elimination as if we were performing a
customary (nonstructured) Gaussian elimination. This can be achieved at the general
step k by using the relation Sii ← Sii − LikUki. Since we have to update only n
elements at each step, the overhead of updating the diagonal is O(n2), and thus the
complete algorithm requires O(n2) ops. A simple implementation, which includes
partial pivoting, is given in Algorithm 2 and requires 10n2 ops.

function [PL,U]=fastPLU (d ,s ,M ,N )
u=[1 ,1 , . . . , 1 ] ’ ;L=U=zeros (n , n ) ;
for k=1:n
Lik=(

∑
j MijNjk )/ (di−dk ) for a l l i �= k such that ui = 1 ;

Lkk=sk i f ui = 1 ;
choose p such that |Lpk| = maxi |Lik| ;
up=0;
Ukk=Lpk ;
Lik=Lik/Ukk for a l l i such that ui = 1
Ukj=(

∑
i MpiNij )/ (dp−dj ) for a l l j = k + 1, . . . , n , j �= p ;

Ukp=sp ;
Mij=Mij − LikMpj for a l l j , i such that ui = 1 ;
Nij=Nij −NikUkj/Ukk for a l l i = 1, . . . , n , j = k + 1, . . . , n ;
si=si − LikUki for a l l i such that ui = 1 ;
return L ,U ;

end function

Algorithm 2: Fast LU factorization.

Using this algorithm, complemented with back-substitution, provides an imple-
mentation of the function fast solve(R(k)x = b) of complexity O(n2) that was used
in Algorithm 1.
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5. Lu’s iteration. Lu [14] proposed a different approach for solving the Ric-
cati equation (1.1) when the coefficients are in the form (3.4). The idea is applying
Newton’s iteration to an equation involving the displacement generators u = Xq̃ + ẽ
and v = XT q + e of the solution X. His algorithm can be expressed as the following
iteration for the sequences {û(k)}, {v̂(k)}, k � −1:

(5.1)

[
û(k+1)

v̂(k+1)

]
= (R̂(k))−1

[
ẽ− Ĥ(k)v̂(k)

e− K̂(k)û(k)

]
,

starting from û(−1) = v̂(−1) = 0 (as we will see later on, indexing from k = −1 will

simplify the subsequent analysis). Here R̂(k), Ĥ(k), and K̂(k) are defined as

R̂(k) = I2n −
[

Ĝ(k) Ĥ(k)

K̂(k) L̂(k)

]
,(5.2)

Ĝ(k) = diag(ĝ
(k)
i ), ĝ

(k)
i =

n∑
l=1

v̂
(k)
l q̃l

dl + δi
,

Ĥ(k) = (ĥ
(k)
ij ), ĥ

(k)
ij =

û
(k)
i q̃j

dj + δi
,

K̂(k) = (κ̂
(k)
ij ), κ̂

(k)
ij =

v̂
(k)
i qj

di + δj
,

L̂(k) = diag(l̂
(k)
i ), l̂

(k)
i =

n∑
l=1

û
(k)
l ql

di + δl
,

(5.3)

which are, formally, the same relations as in (4.2) and (4.3).
As a first result, since both algorithms are based on the solution of a system with

the same structure, we obtain that Algorithm 2 can also be used in the implementation
of Lu’s iteration to reduce its computational cost to O(n2). But there is a deeper
connection between the two algorithms.

Theorem 5.1. Let {û(k)}, {v̂(k)}, k � −1, be the sequences generated by Lu’s
algorithm for the NARE (1.1) with (3.4), and let {X(k)}, k � 0, be the sequence
generated by Newton’s iteration with starting point X(0) = 0 for the same problem.
Then, for all k � 0, one has

û(k) = X(k)q̃ + ẽ, v̂(k) = X(k)T q + e.

Proof. We will prove the result by induction over k. It is easy to check from the
definitions that R̂(−1) = I2n, and thus û(0) = ẽ, v̂(0) = e; therefore the base step
k = 0 holds. As a side note, this means that we can save an iteration by starting the
computation from u(0) = ẽ, v(0) = e.

Assuming by induction that û(k) = X(k)q̃ + ẽ = u(k), v̂(k) = X(k)T q + e = v(k),
we find that (4.3) and (5.2) define the same matrices; therefore, from now on, we will
drop the superscript (k) and the hat symbol to ease the notation.

We have

VD−1 vecR(X) = VD−1 vec(uvT ) − V vecX =

[
ẽ− (I −G)u
e− (I − L)v

]
,
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in view of the relations

D−1 vec(XD + ΔX) = vecX,

VD−1 vec(uvT ) =

[
Gu
Lv

]
,

which can be easily verified from the definitions of D, G, and L, where V is the matrix
defined in (3.6).

Applying the operator V to both sides of (3.2) yields

V vec(X(k+1) −X) = VD−1 vecR(X) + VD−1U(I2n − VD−1U)−1VD−1 vecR(X)

(5.4)

= (I2n + VD−1U(I2n − VD−1U)−1)VD−1 vecR(X)

= (I2n − VD−1U)−1VD−1 vecR(X),

where the last equation holds since I + M(I −M)−1 = (I −M)−1.
We recall that R = (I2n − VD−1U) and

[
û(k+1)

v̂(k+1)

]
= R−1

[
ẽ−Hu
e−Kv

]

(the latter being Lu’s iteration). Now we can explicitly compute

R

[
ûk+1 − u
v̂k+1 − v

]
=

[
ẽ−Hu
e−Kv

]
−
(
I2n −

[
G H
K L

])[
u
v

]

=

[
ẽ−Hv
e−Ku

]
−
[

u
v

]
+

[
Gu + Hv
Ku + Lv

]
=

[
ẽ− (I −G)u
e− (I − L)v

]
= VD−1 vecR(X),

and substitute it into (5.4) to get

V vec(X(k+1) −X) =

[
ûk+1 − u
v̂k+1 − v

]
.

Finally, using the definition of V in (3.6), we find that

[
ûk+1 − u
v̂k+1 − v

]
= V vec(X(k+1)−X) =

[
X(k+1)q̃ −Xq̃

X(k+1)T q −XT q

]
=

[
X(k+1)q̃ + ẽ− u
X(k+1)T q + e− v

]

and thus ûk+1 = X(k+1)q̃ + ẽ, v̂k+1 = X(k+1)T q + e.
The theorem brings deeper insight into Newton’s and Lu’s iterations. For exam-

ple, Theorem 6 of [14], which states that Lu’s iteration is well defined and converges
monotonically to the minimal solution of the NARE, can now be seen as a special
case of Theorem 3.1. Moreover, Lu’s iteration can be viewed as a structured New-
ton’s iteration exploiting the displacement structure found in (3.5). Therefore, the
two algorithms take the same number of iterations to converge, as the computation
they perform is the same. Observe also that Lu’s version of this algorithm is slightly
faster, since it updates only the 2n entries of the generators of the matrix {X(k)}
instead of all the n2 entries. For this reason, we will present only numerical results
regarding Lu’s iteration.
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6. Shift technique. In the case where (c, α) = (1, 0), the Jacobian MX appear-
ing in the Newton iteration is singular when X is the solution of the NARE. We refer
to this as the critical case. Several drawbacks are encountered in the critical case;
see the analysis of Guo and Higham in [8] for more details. The singularity of the
Jacobian does not guarantee the quadratic convergence of Newton’s iteration; in fact,
Newton’s and therefore Lu’s method converge linearly. Moreover, a perturbation O(ε)
in the coefficients of the equation leads to an O(

√
ε) variation in the solution.

These drawbacks can be easily removed by means of the shift technique originally
introduced by He, Meini, and Rhee in [12] and applied to Riccati equations in [9]
and [2].

A characterization of the critical case can be given in terms of the eigenvalues of
the matrix

(6.1) H =

[
E −C
B −A

]
,

obtained by premultiplying the M -matrix M defined in (1.4) by the matrix J =
diag(In,−In). In fact, the matrix H has a double zero eigenvalue corresponding to a
2 × 2 Jordan block (see [9] and the references therein).

The shift technique, as described in [9], consists in a rank-one correction to the

matrix H of (6.1) which gives H̃ = H + ηvpT , where η > 0, v is a right eigenvector
of H corresponding to the zero eigenvalue, and p is an arbitrary vector such that
pT v = 1.

The nice feature of this transformation is that the Riccati equation associated with
the matrix H̃ has the same minimal solution as the original one, although the new
Jacobian matrix at the solution is not singular. This removes the above-mentioned
drawbacks. Now the point is to show that it is still possible to provide a fast imple-
mentation of Newton’s iteration for the new equation obtained by means of the shift
technique. This is the goal of this section.

Under the assumptions (1.2), (1.3) a right eigenvector of H corresponding to

zero is v =
[
vT1 vT2

]T
, where v1 = D−1q, v2 = Δ−1e. This can be seen by direct

inspection using the fact that eTD−1q + qTΔ−1e = c = 1 (see (3.3)).
The rank-one correction we construct is

H̃ = H + η

[
v1

v2

]
pT ,

where 0 < η � d1 and pT =
[
eT qT

]
. It holds that pT v = 1; in fact, pT v =

eTD−1q + qTΔ−1e = 1. It is proved in [9] that H̃ has a simple zero eigenvalue.

The matrix H̃ defines the new Riccati equation

(6.2) XC̃X −XẼ − ÃX + B̃ = 0,

with

(6.3) Ã = A− ηv2q
T , B̃ = B + ηv2e

T , C̃ = C − ηv1q
T , Ẽ = E + ηv1e

T .

It is proved in [9] that the minimal nonnegative solution of (1.1) is the minimal
nonnegative solution of (6.2).

With the choice of pT = [eT qT ], H̃ remains a diagonal plus rank-one matrix as

well as M̃ = JH̃; hence, we need only prove that M̃ is an M -matrix to ensure that
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the algorithms proposed in sections 3 and 5 can be applied to (6.2). In fact, we have

M̃ =

[
D 0
0 Δ

]
−
[

q − ηv1

e + ηv2

] [
eT qT

]
,

and since we chose 0 < η � d1 < d2 < · · · < dn, and q � 0, it holds that q − ηv1 =

(In − ηD−1)q � 0; thus M̃ is a Z-matrix. By the Perron–Frobenius theorem applied
to ρI −M , there exists a vector u > 0 such that uTM = 0, and in the critical case
we have uTJv = 0 (observe that uTJ is a left eigenvector of H = JM corresponding
to the zero eigenvalue and recall that right and left eigenvectors corresponding to the
same eigenvalue in a Jordan block of dimension n � 2 are orthogonal); therefore,

uT M̃ = uTM + ηuTJvpT = 0,

and thus by part 1 of Lemma 2.1 M̃ is an M -matrix.
In this way, Newton’s iteration applied to (6.2) provides a quadratically con-

vergent algorithm of complexity O(n2) for solving the Riccati equation (1.1) in the
critical case. Moreover, since the singularity has been removed, it is expected that X,
as minimal solution of (6.2), is better conditioned with respect to the coefficients of
(1.1), and that a higher precision can be reached in the computed solution. This fact
is confirmed by the numerical experiments as shown in section 8.

7. Numerical stability. Our first concern about numerical stability is proving
that the matrix R(k) = I2n − VD−1U (k) resulting after the application of the SMW
formula to the Jacobian D − U (k)V is well-conditioned whenever the Jacobian is. In
the following analysis, we will assume that the norm

∥∥(D − U (k)V )−1
∥∥

1
is bounded,

and we will drop the superscripts (k) to simplify the notation.
Observe that 0 � D−1 � (D−UV )−1; therefore D is well-conditioned. Moreover,

one has

B−1 =

[
(D − UV )−1 0
V (D − UV )−1 I

] [
I U
0 I

]
, with B =

[
D −U
−V I

]
;

therefore B is an M -matrix and is well-conditioned. Now, R = I − VD−1U is the
Schur complement of D in B, and thus R−1 is a submatrix of B−1 [5]. This implies∥∥R−1

∥∥
1

�
∥∥B−1

∥∥
1
; hence R is well-conditioned, too.

Another stability problem could arise from the generators’ growth during the fast
Gaussian elimination step. Generator growth has been reported in some cases with
the GKO algorithm [17], especially when the starting generators are ill-conditioned.
This is not our case, since the starting generators are bounded, and no significant
generator growth has been observed during our experiments.

8. Numerical experiments. We consider the numerical examples suggested in
[10] and used also in [14]. The sequences ti and wi, which appear in the discretization
as the nodes and weights of a Gaussian quadrature method, are obtained by dividing
the interval [0, 1] into n/4 subintervals of equal length and by applying to each one
the 4-node Gauss–Legendre quadrature.

The computation has been performed with three different choices of the param-
eters (c, α), namely, (0.5, 0.5), (1 − 10−6, 10−8), and (1, 0). The latter is the critical
case, and thus the quadratic convergence of Newton’s method is not guaranteed. In
this case, the algorithms are more prone to numerical problems, since the matrices to
be inverted are near-to-singular.
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The algorithms have been implemented in Fortran 90, and the tests have been
carried out using the Lahey Fortran compiler on a Xeon biprocessor with 2.8 GHz.
We have compared Lu’s algorithm presented in [14] with its fast version based on
Algorithm 2. In the critical case, we have also made a comparison with the shifted
algorithm of section 6. To compute the step (5.1) of Lu’s algorithm we have solved a
linear system using the LAPACK la_gesv function.

Table 8.1

Comparison of CPU time in seconds of Lu’s algorithm (Lu), its fast version presented here
(LuF), and the shifted algorithm in the critical case (LuFS).

α = 0.5, c = 0.5 α = 10−8, c = 1− 10−6 α = 0, c = 1
n Lu LuF Lu LuF Lu LuF LuFS
32 0.002 0.001 0.005 0.002 0.007 0.004 0.001
64 0.009 0.002 0.028 0.009 0.040 0.015 0.005

128 0.050 0.010 0.175 0.034 0.290 0.054 0.015
256 0.401 0.053 1.369 0.167 2.253 0.278 0.074
512 4.125 0.343 14.63 1.109 21.065 1.948 0.507

1024 40.5 1.456 141.3 4.959 212.6 7.957 2.251
2048 327 5.785 1146 19.914 1850 32.478 9.061
4096 2775 28.503 9669 89.78 15974 147.3 40.917

Table 8.2

Comparison of the relative error (and in parentheses the number of steps) of Lu’s algorithm
(Lu), its fast version presented here (LuF), and the shifted algorithm in the critical case (LuFS).

α = 0.5, c = 0.5
n Lu LuF

32 4.8 · 10−16 (4) 2.3 · 10−16 (5)

256 1.6 · 10−15 (4) 4.0 · 10−16 (5)

α = 0, c = 1
n Lu LuF LuFS

32 5.2 · 10−8 (25) 4.2 · 10−8 (26) 4.4 · 10−16 (6)

256 4.6 · 10−8 (25) 8.0 · 10−8 (25) 1.2 · 10−15 (6)

In Table 8.1 we compare the timing of Lu’s algorithm, which has a computational
cost of O(n3) ops, with that of its fast version, which costs O(n2). The numerical
results highlight the different order of complexity. Observe that in the critical case
the shift technique reduces the timings even further.

In Table 8.2 we compare the relative error of the two methods and the number of
steps required. Here the error is computed as ‖X̃ −X‖1/‖X‖1, where X̃ and X are
the solution computed in double and in quadruple precision, respectively.

The stopping criterion is based on the computation of

Res =
‖uk − uk−1‖1 + ‖vk − vk−1‖1

2
.

Observe that the cost of computing Res is negligible.
As one can see, in the critical case the accuracy of the solution obtained with

the nonshifted algorithms is of the order of O(
√
ε), where ε is the machine precision,

in strict accordance with [8]. The speedup obtained is greater than 2 even for small
values of n. In the critical case with size n = 4096 our algorithm is about 390 times
faster than Lu’s original algorithm. The problems deriving from the large number of
steps and the poor accuracy are completely removed by the shift technique.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FAST NEWTON’S METHOD FOR A NONSYMMETRIC ARE 289

9. Generalizations and future work. Our algorithm can be easily extended
to the case where M is diagonal plus rank k.

A challenging issue is to prove that Lu’s iteration for this problem can be effec-
tively computed with less than O(n2) ops. Actually, the literature provides algorithms
for computing the Cauchy matrix-vector product [3] and for approximating the inverse
of a Cauchy matrix [16] with O(n log2 n) ops (superfast algorithms).

However, the bottleneck for this improvement is computing the product of D−1

by the vector v = vec(R(X(k))), which apparently requires n2 multiplications. In
fact, the size of D is n2. Observe that this problem concerns only the algorithm
presented in section 3. In fact, Lu’s version of Newton’s iteration shown in section
5 is expressed through matrix-vector products and solutions of linear systems where
the involved matrices are Cauchy-like.

If the superfast algorithms can be adapted to deal with singular displacement
operators and if the approximation and the numerical errors introduced do not destroy
the quadratic convergence of Newton’s method, then the computational cost of Lu’s
iteration could be reduced further.

Another interesting issue is the acceleration of existing algorithms like the (shifted)
structure-preserving doubling algorithm [9, 11] or the (shifted) logarithmic and cyclic
reduction [2, 7], relying once again on the specific structure of the problem.
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ON ASYMPTOTIC CONVERGENCE OF NONSYMMETRIC JACOBI
ALGORITHMS∗

CHRISTIAN MEHL†

Abstract. The asymptotic convergence behavior of cyclic versions of the nonsymmetric Ja-
cobi algorithm for the computation of the Schur form of a general complex matrix is investigated.
Similar to the symmetric case, the nonsymmetric Jacobi algorithm proceeds by applying a sequence
of rotations that annihilate a pivot element in the strict lower triangular part of the matrix until
convergence to the Schur form of the matrix is achieved. In this paper, it is shown that the cyclic non-
symmetric Jacobi method converges locally and asymptotically quadratically under mild hypotheses
if special ordering schemes are chosen, namely, ordering schemes that lead to so-called northeast
directed sweeps. The theory is illustrated by the help of numerical experiments. In particular, it is
shown that there are ordering schemes that lead to asymptotic quadratic convergence for the cyclic
symmetric Jacobi method, but only to asymptotic linear convergence for the cyclic nonsymmetric
Jacobi method. Finally, a generalization of the nonsymmetric Jacobi method to the computation of
the Hamiltonian Schur form for Hamiltonian matrices is introduced and investigated.

Key words. Schur form, nonsymmetric Jacobi algorithm, asymptotic convergence, Hamiltonian
Jacobi algorithm, Hamiltonian Schur form
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1. Introduction. Jacobi’s method [21] for the diagonalization of a symmetric
matrix A = (aij) ∈ R

n×n is a famous, successful, and easy-to-implement algorithm for
the computation of eigenvalues of symmetric matrices. No wonder that this algorithm
has been generalized or adapted to many other classes of matrices; see, among other
references, [1, 3, 5, 9, 11, 12, 13, 15, 16, 29, 34]. In this paper, we will focus on
a particular cyclic Jacobi-like algorithm for the computation of the Schur form of
a complex matrix. The basic idea of the algorithm is a direct adaption of Jacobi’s
method to the nonsymmetric case that was proposed in 1955 by Greenstadt [13] and
later was taken up and modified by various authors [4, 10, 14, 19, 24, 32]. Given a
matrix M = (mij) ∈ C

n×n, the algorithm selects in each step a pivot element mkl,
k < l in the strict lower triangular part. Then a similarity transformation with a
rotation U = (uij) ∈ C

n×n is applied to M that annihilates the entry mkl of M :

⎡
⎢⎢⎢⎢⎢⎢⎣

1
ukk ulk

1
1

ukl ull

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗
· mkl · · ∗ ∗
· · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

1
ukk ukl

1
1

ulk ull

1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗
· 0 · · ∗ ∗
· · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

Here, U coincides with the identity except for the elements ukk = ull = cosx, and
ukl = −e−iα sinx, ulk = eiα sinx for some x, α ∈ R.
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Generically, there are two choices for the transformation matrix U , and through-
out this paper, we will always choose the transformation matrix that is closest to the
identity. This corresponds to choosing always the rotation matrix with the smaller
rotation angle, a fact that is crucial for the proof of asymptotic quadratic convergence
of Jacobi’s algorithm for symmetric matrices. Concerning global convergence, this
strategy need not be the best. Actually, convergence can be accelerated by sorting
the diagonal entries of the occurring 2 × 2 submatrices, a technique that sometimes
requires the application of the rotation corresponding to the larger angle. In this
paper, however, we focus on the asymptotic convergence behavior and, therefore, we
restrict ourselves to the use of rotations corresponding to the smaller angle.

Cyclic version of Jacobi’s algorithm use a fixed sequence of pivot elements to
be annihilated in that order. If every element in the strict lower triangular part is
annihilated at least once; then the sequence of corresponding Jacobi steps on the
matrix is called a sweep, and it is repeated until convergence has been achieved.

In contrast to Jacobi’s original algorithm, its generalization to general complex
matrices has not yet become a well-known and widely used algorithm, probably mainly
for two reasons. First, neither global nor local convergence proofs of the method could
be given so far, although convergence has been observed in numerical experiments. (In
[19], Huang proved convergence of the method for the case n = 3, but the case n > 3
remains an open problem.) Second, the algorithm converges slowly and is expensive.
A flop count reveals that three sweeps of the cyclic nonsymmetric Jacobi method
are approximately as expensive as a full run of the QR algorithm as implemented
in Matlab. Moreover, the average number of sweeps needed for convergence for a
70× 70 matrix is already as high as 30, making the method 10 times more expensive
then the QR algorithm in that case. Since the average number of sweeps needed for
convergence even increases with increasing dimension of the matrix, the algorithm
seemed to be out of competition.

However, in recent years there has been renewed interest in nonsymmetric Jacobi
methods, because they can easily be adapted to the solution of structured eigenvalue
problems, e.g., of Hamiltonian eigenvalue problems [1], for generalized Hermitian
eigenvalue problems [27], for palindromic eigenvalue problems [18, 25], and for doubly
structured eigenvalue problems [11]. For those eigenvalue problems, a satisfactory
generalization of the QR algorithm is not available due to the lack of a corresponding
reduction to a structured version of the Hessenberg form in finitely many steps. (This
phenomenon is known as “Van Loan’s curse” [6].) Thus, the competition for other
algorithms is open again. In fact, a variant of the nonsymmetric Jacobi method
designed for the solution of the generalized palindromic eigenvalue problem (i.e., the
eigenvalue problem λAx = ATx) has been successfully used in [25] as an ingredient
for a structure-preserving eigensolver, where it was applied to the solution of small
(i.e., of size O(10)) eigenvalue problems with eigenvalues close to the unit circle.

On the other hand, the nonsymmetric Jacobi method converges fast for matrices
that are already close to triangular form, and thus it has the potential to become
a useful tool for the solution of parameter-depending eigenvalue problems. Indeed,
assume that A(ω) is a matrix-valued function that depends continuously on the pa-
rameter ω. Once the eigenvalue problem has solved for a specific value of ω, say, ω0,
then the transformation that reduces A(ω0) to Schur form will transform matrices
A(ω) to a form that is close to being triangular whenever ω is sufficiently close to
ω0. It may then be useful to apply a nonsymmetric Jacobi method to A(ω) to obtain
the Schur form within one or two sweeps. Finally, it was shown in [7] that Jacobi’s
algorithm for symmetric matrices is more accurate than the QR algorithm if the right
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stopping criterion is used. Extending this theory to nonsymmetric Jacobi methods
may produce a highly accurate algorithm. In this paper, however, we restrict ourselves
to the investigation of the asymptotic convergence behavior of the method.

The remainder of the paper is organized as follows. In the following section, we
explain why the convergence theory for nonsymmetric Jacobi algorithms is challenging
and different from the theory for the symmetric case. In section 3, we prove asymp-
totic quadratic convergence of the cyclic nonsymmetric Jacobi algorithm if so-called
northeast directed sweeps are used. In section 4, we investigate generalizations of
the algorithm to the solution of the Hamiltonian eigenvalue problem. In particular,
we explain why the Jacobi-like algorithm proposed in [1] does not show asymptotic
quadratic convergence and we show how convergence can be accelerated. Finally, we
illustrate the theoretical results by the results of numerical experiments in section 5.

2. Why convergence of nonsymmetric Jacobi algorithms is not obvious.
It is well known that Jacobi’s classical algorithm as well as many cyclic versions
are asymptotically quadratically convergent; see, e.g., [16, 17, 31, 35]. The same is
also known for several generalizations; see [20] for a general proof of local quadratic
convergence of Jacobi-type methods. However, these results are usually based on the
minimization of a particular smooth function in each Jacobi step. For the standard
eigenvalue problem with a Hermitian matrix M = (mij) ∈ C

n×n this smooth function
is the quantity

off(M) :=

√∑
i>j

|mij |2(2.1)

that is sometimes called off-norm. In contrast to the Hermitian case, the quantity
off(M) need not decrease in a single step of the nonsymmetric Jacobi algorithm. This
effect can be explained heuristically with the help of the following sketch:

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· ◦ ∗ ∗ ◦ ∗
· � ∗ ∗ • ∗
· · · ∗ ∗ ∗
· ◦ · · ◦ ∗
· · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

If the pivot element is chosen such that, currently, the 2 × 2 subproblem indicated
by ◦ is under investigation, then a very large entry in, e.g., the position marked with
• may lead to a temporary increase in off(M), because the element in the �-position
will be linearly combined with the element in the •-position. It is this effect which
makes the convergence analysis of nonsymmetric Jacobi methods so delicate. Indeed,
the general results of [20] cannot be applied here, because off(M) is not minimized in
each step.

At this stage, the reader might stop and ask whether it would not be advisable to
modify the algorithm in such a way that off(M) decreases monotonically. Indeed, such
generalizations have already been considered. For example, Stewart [32] proposed to
use pivot elements only from the first subdiagonal. Indeed, this avoids the effect
explained in the previous paragraph and it was shown that off(M) then decreases
monotonically. But unfortunately, it turned out that the Jacobi algorithm obtained
in this way is characterized by extreme slow convergence: it appears to be almost
stagnant. On the other hand, one may also consider variants of nonsymmetric Jacobi
algorithm that again allow pivot elements from the whole strict lower triangular part



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

294 CHRISTIAN MEHL

of the matrix but that minimize off(M) in each step rather than annihilate the pivot
element. This, however, would require the solution of a minimization problem in each
step and one would have to take into account “global information,” i.e., the knowledge
of all elements in the strict lower triangular part of the matrix would be necessary. In
contrast, the transformation annihilating the pivot element can be easily computed
from considering the corresponding 2× 2 problem only, thus only taking into account
“local information.” Consequently, a single Jacobi step of the modified method would
be much more expensive than a single Jacobi step of a cyclic nonsymmetric Jacobi
method. Thus, although off(M) does not decrease monotonically in each step, cyclic
methods seem to be the cheapest and most reliable variants of nonsymmetric Jacobi
algorithms for the general complex eigenvalue problem.

But the nonmonotone behavior of the quantity off(M) is not the only point in
which the general case differs from the symmetric case. The asymptotic convergence
behavior of a cyclic Jacobi method may be completely different for symmetric matrices
on the one hand and general complex matrices on the other hand. As an example let
us consider the cyclic Jacobi method using top-to-bottom column-by-column sweeps
given by the sequence of indices(

(2, 1), (3, 1), . . . , (n, 1), (3, 2), . . . , (n, 2), . . . , (n, n− 1)
)

(2.2)

versus the the one using bottom-to-top column-by-column sweeps given by(
(n, 1), (n− 1, 1), . . . , (2, 1), (n, 2), . . . , (3, 2), . . . , (n, n− 1)

)
.(2.3)

Both methods appear to be asymptotically quadratically convergent in the symmetric
case, while the nonsymmetric case shows quadratic convergence for the “bottom-to-
top” variant but linear convergence for the “top-to-bottom” variant. (See section 5 for
numerical experiments on this topic.) Again this effect can be explained heuristically
with the help of a sketch:

⇓
top to
bottom

⎡
⎢⎢⎢⎢⎢⎢⎣

◦ ∗ ∗ ◦ ∗ ∗
� ∗ ∗ • ∗ ∗
� · ∗ • ∗ ∗
◦ · · ◦ ∗ ∗
· · · · ∗ ∗
· · · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

⇑
bottom
to top

⎡
⎢⎢⎢⎢⎢⎢⎣

◦ ∗ ∗ ◦ ∗ ∗
· ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗
◦ · · ◦ ∗ ∗
� · · � ∗ ∗
� · · � · ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

Assume that the matrix under consideration is already close to triangular form so
that the algorithm may have reached the expected phase of quadratic convergence. If
the pivot element is chosen in such a way that the corresponding 2 × 2 subproblem
under consideration is the one displayed by the symbol ◦, then the elements marked
by � are the ones that have already been annihilated once in the current sweep. If the
top-to-bottom column-by-column sweep is used, then the current Jacobi step linearly
combines those elements with possibly large elements from the strict upper triangular
part from the matrix marked with the symbol •. On the other hand, if the bottom-to-
top column-by-column sweep is used, then the current Jacobi step linearly combines
the �-elements with elements from the strict lower triangular part, marked by the
symbol �, that are expected to be sufficiently small. Thus, the increase of modulus
of elements that have already been annihilated once may be much higher when top-
to-bottom column-by-column are used and that is exactly what can be observed in
practice. In the symmetric case, however, this observation does not apply, because
in this case also the elements in the strict upper triangular part are expected to be
sufficiently small.
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3. A proof of asymptotic quadratic convergence. Wilkinson’s proof [35]
of asymptotic quadratic convergence of the classical symmetric Jacobi method makes
extensive use of the fact that the offnorm off(M) decreases monotonically over the
steps of the algorithm. As pointed out in section 2, this is no longer true for the
nonsymmetric Jacobi method. Thus, we will have to investigate in detail the possible
changes in the moduli of the entries in the strict lower triangular part of the matrix
in a single Jacobi step. Let us introduce the following notation. Starting with the

matrix M ∈ C
n×n, let us denote by Mν = (m

(ν)
ij ) the matrix that we have obtained

after performing ν Jacobi steps. (In particular, we have M0 = M .) Moreover, we
denote

�ν := min
i �=j

∣∣∣m(ν)
i,i −m

(ν)
j,j

∣∣∣ ,(3.1)

ην := max
{
|m(ν)

ij |
∣∣∣ i, j = 1, . . . , n

}
,(3.2)

εν := max
{
|m(ν)

ij |
∣∣∣ i > j

}
,(3.3)

i.e., �ν is the smallest distance between two diagonal elements of the matrix Mν , ην
is the modulus of the largest element in modulus of Mν , and εν is the modulus of the
largest element in modulus of the strict lower triangular part of Mν . In the following,
let ν be fixed and assume we have

�ν > 0 and 4
ενην
�2
ν

< 1.(3.4)

Suppose that the (k, l)-element of Mν is the pivot element of the current ((ν + 1)st)
step of the algorithm. We then compute the unitary matrix

Q =

[
cosx −e−iα sinx

eiα sinx cosx

]
, x, α ∈ R,

that satisfies

Q∗

[
m

(ν)
ll m

(ν)
lk

m
(ν)
kl m

(ν)
kk

]
Q =

[
m

(ν+1)
ll m

(ν+1)
lk

0 m
(ν+1)
kk

]
(3.5)

and that is closest to the identity matrix among all matrices satisfying (3.5). To
obtain an estimate for the modulus of sinx, we will use the following lemma, which
is a special case of Theorem V.2.1 in [33].

Lemma 3.1. Let A ∈ C
2×2 such that

A =

[
a η
ε b

]
, where 4

|ε|·|η|
|a− b|2 < 1.

Then there exists a unique eigenvector v of A satisfying

v =

[
1
p

]
and |p| < 2

ε

|a− b| .

Using this lemma and taking into account (3.4), it is clear that the parameter x
in Q satisfies | sinx| < 2εν/�ν . If the transformation induced by Q is applied to Mν ,
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then it acts only on elements in the kth and lth rows and columns of Mν . For the
elements that have been altered in Mν+1, we obtain that

m
(ν+1)
lj = m

(ν)
lj cosx + m

(ν)
kj e

−iα sinx,

m
(ν+1)
kj = m

(ν)
kj cosx−m

(ν)
lj eiα sinx,

m
(ν+1)
il = m

(ν)
il cosx + m

(ν)
ik eiα sinx,

m
(ν+1)
ik = m

(ν)
ik cosx−m

(ν)
il e−iα sinx

for i, j = 1, . . . , n. Using these identities and using | cosx| ≤ 1 and | sinx| < 2εν/�ν ,

we obtain that |m(ν+1)
ij | ≤ wij , where wij is given in the following table:

wij j < l j = l l < j < k j = k k < j

i < l |m(ν)
ij | ην+1 |m(ν)

ij | ην+1 |m(ν)
ij |

i = l |m(ν)
ij | + 2

ε2ν
�ν

ην+1 ην+1 ην+1 ην+1

l < i < k |m(ν)
ij | |m(ν)

ij | + 2 ενην

�ν
|m(ν)

ij | ην+1 |m(ν)
ij |

i = k |m(ν)
ij | + 2

ε2ν
�ν

0 |m(ν)
ij | + 2 ενην

�ν
ην+1 ην+1

k < i |m(ν)
ij | |m(ν)

ij | + 2
ε2ν
�ν

|m(ν)
ij | |m(ν)

ij | + 2
ε2ν
�ν

|m(ν)
ij |

(3.6)

In this table, we can see the effect that has been heuristically explained in section 2.
If we are in the stage that εν 	 ην , i.e., our matrix under consideration is already
close to triangular form, then the modulus of entries in the strict lower triangular
part in positions (i, j) with j < l or k < i may have increased by 2ε2

ν/�ν only, while
the modulus of entries in positions (i, j) with l ≤ j and i ≤ k may have increased
by 2ηνεν/�ν 
 2ε2

ν/�ν . Thus, the sweep should start from the lower left corner of
the lower triangular part and then proceed to the northeast in order to guarantee
that entries that have been eliminated once are increased by at most 2ε2

ν/�ν . This
motivates the following definition.

Definition 3.2. Let n ∈ N, N = n(n−1)
2 and S =

(
(i1, j1), (i2, j2) . . . , (iN , jN )

)
be a finite sequence (i.e., an N -tuple) of pairs (iν , jν) ∈ {1, 2, . . . , n} × {1, 2, . . . , n},
where iν > jν for ν = 1, . . . , N . Then S is called an northeast directed sweep sequence
if

ν < μ ⇒ (iν > iμ or jν < jμ)

for all ν, μ ∈ {1, . . . , N}. A sweep of the nonsymmetric Jacobi algorithm that picks
the pivot elements in the order given by a northeast directed sweep sequence is called
a northeast directed sweep.

Particular example of northeast directed sweep sequences are given by the se-
quence (2.3) that induces a bottom-to-top column-by-column sweep or by the se-
quence(

(n, 1), (n− 1, 1), (n, 2), (n− 2, 1), (n− 1, 2), (n, 3), . . . , (2, 1), (3, 2), . . . , (n, n− 1)
)
.

We continue by analyzing how the values of εν , ην , and �ν have changed after one
Jacobi step (regardless what kind of sweep is used). Since εν ≤ ην , we obtain from
the discussion above that

εν+1 ≤ εν

(
1 + 2

ην
�ν

)
.(3.7)
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We could also produce a bound for ην+1, but for our purpose it is sufficient to note
that ημ is bounded by ‖M‖F for any μ ∈ N ∪ {0}. It remains to investigate how
�ν has changed. Therefore, we have to investigate in particular the changes on the
diagonal of Mν . Clearly, we have

m
(ν+1)
ll = m

(ν)
ll (1 − sin2 x) + m

(ν)
kl e

−ia sinx cosx + m
(ν)
lk eia sinx cosx + m

(ν)
kk sin2 x,

m
(ν+1)
kk = m

(ν)
ll sin2 x−m

(ν)
kl e

−ia sinx cosx−m
(ν)
lk eia sinx cosx + m

(ν)
kk (1 − sin2)x.

Thus, we obtain m
(ν+1)
ll = m

(ν)
ll + Δl, m

(ν+1)
kk = m

(ν)
kk + Δk, where

|Δl| = |Δk|
≤

∣∣m(ν)
ll sin2 x

∣∣ +
∣∣m(ν)

kl e
−ia sinx cosx

∣∣ +
∣∣m(ν)

lk eia sinx cosx
∣∣ +

∣∣m(ν)
kk sin2 x

∣∣
≤ ην ·4

ε2
ν

�2
ν

+ εν ·2
εν
�ν

+ ην ·2
εν
�ν

+ ην ·4
ε2
ν

�2
ν

≤ 2

(
ε2
ν

�ν
+ 4ην

ε2
ν

�2
ν

+ ην
εν
�ν

)
.

It follows that |m(ν+1)
ii −m

(ν+1)
jj | ≥ |m(ν)

ii −m
(ν)
jj | − |Δl| − |Δk| for all i, j = 1, . . . , n,

and thus

�ν+1 ≥ �ν − 4

(
ε2
ν

�ν
+ 4ην

ε2
ν

�2
ν

+ ην
εν
�ν

)
.(3.8)

Using the above, we will now show that the cyclic nonsymmetric Jacobi method
using northeast directed sweeps is quadratically convergent if the matrix under con-
sideration is sufficiently close to triangular form.

Theorem 3.3. Let M = (mij) ∈ C
n×n, and let Mν = (m

(ν)
ij ) denote the matrix

that is obtained from M after performing ν Jacobi steps of the cyclic nonsymmetric
Jacobi method using northeast directed sweeps. Let δ0, respectively, δμ be the largest
modulus of an element in the strict lower triangular part of M = M0, respectively, of
the matrix that is obtained from M after having completed μ sweeps, i.e.,

δμ := max
{
|m(μN)

ij |
∣∣∣ i > j

}
, μ ∈ N ∪ {0}.(3.9)

Moreover, set N := n(n− 1)/2 and

η := ‖M‖F , � :=
1

2
min
i �=j

|mii −mjj |, δ := 2δ0

(
1 + 2

η

�

)N

.(3.10)

If � > 0 and if δ0 is sufficiently small such that

δη

�2
<

1

4
,

δ2

�
+ 4η

δ2

�2
+ η

δ

�
≤ �0

4N
, 2

Nδ2

�
≤ δ0,(3.11)

then for all μ ∈ N ∪ {0}, we have that

δ(μ+1)N ≤
(

1 + 2
η

�

)2N
2N

�
δ2
μN ,

i.e., the cyclic nonsymmetric Jacobi method using northeast directed sweep converges
quadratically over the number of sweeps.
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Proof. Let ην , εν , and �ν be defined as in (3.1)–(3.3). Then we have

δμ = εμN and � =
�0

2
.

From (3.7) and (3.8) we obtain that εν (and �ν , respectively) may increase (or de-
crease, respectively) in each Jacobi step. We first show by induction that this in-
crease (decrease, respectively) remains under control, i.e., that for μ ∈ N ∪ {0} and
p = 0, . . . , N , we have that

εμN ≤ δ0
2μ

, �μN ≥ �0 −
μ∑

j=1

�0

2j+1
> �, and(3.12)

εμN+p ≤ εμN

(
1 + 2

η

�

)p

, �μN+p ≥ �μN − p
�0

2μ+1N
.(3.13)

(μ, p) = (0, 0): There is nothing to prove.
(μ, p) ⇒ (μ, p+ 1): Let p ≤ N . By the induction hypothesis for (μ, p) and (μ, 0),

we have that

εμN+p ≤ εμN

(
1 + 2

η

�

)p

≤ δ0
2μ

(
1 + 2

η

�

)p

≤ δ

2μ+1
(3.14)

using (3.10) and

�μN+p ≥ �μN − p
�0

2μ+1N
≥ �0 −

μ∑
j=1

�0

2j+1
−N

�0

2μ+1N
= �0 −

μ+1∑
j=1

�0

2j+1
> �.(3.15)

Now assume p < N . Then we obtain using (3.7), (3.8), (3.14), and (3.15) and the
induction hypothesis that

εμN+p+1 ≤ εμN+p

(
1 + 2

ημN+p

�μN+p

)
≤ εμN+p

(
1 + 2

η

�

)
≤ εμN

(
1 + 2

η

�

)p+1

;

�μN+p+1 ≥ �μN+p − 4

(
ε2
μN+p

�μN+p
+ 4ημN+p

ε2
μN+p

�2
μN+p

+ ημN+p
εμN+p

�μN+p

)

≥ �μN − p
�0

2μ+1N
− 4

(
δ2

(2μ+1)2�
+ 4η

δ2

(2μ+1)2�2
+ η

δ

2μ+1�

)

≥ �μN − p
�0

2μ+1N
− 4

2μ+1

(
δ2

�
+ 4η

δ2

�2
+ η

δ

�

)

≥ �μN − (p + 1)
�0

2μ+1N
.

(
by (3.11)

)
.

(μ, p) ⇒ (μ+1, 0): For obtaining a bound for ε(μ+1)N , let us note that during the
(μ+1)st sweep each entry (i, j) in the strict lower triangular part of the current pencil
is set to zero at one step. Afterward, during the remainder of the sweep, it is affected
k < N times in the steps, say, μN + 
1, . . . , μN + 
k, where k and 
1, . . . , 
k depend
on i, j. Since a northeast directed sweep is used, we obtain from table (3.6) that the
modulus of the (i, j)-element of the matrix M((μ+1)N) obtained after completing the
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(μ + 1)st sweep is bounded by

|m((μ+1)N)
ij | ≤ 2

ε2
μN+�1

�μN+�1

+ · · · + 2
ε2
μN+�k

�μN+�k

≤
N∑

p=1

2
ε2
μN+p

�μN+p
≤ N

(
δ

2μ+1

)2
2

�
,(3.16)

because k ≤ N and εμN+p ≤ δ/2μ+1 and �μN+p ≥ � for p = 0, . . . , N . Since the
right-hand side of (3.16) is independent of the indices i and j, we then obtain

ε(μ+1)N ≤ N

(
δ

2μ+1

)2
2

�
≤ δ0

(2μ+1)2
≤ δ0

2μ+2
.(3.17)

This concludes the proof of (3.12) and (3.13). Now observe that (3.13) implies that

εμN+p ≤ εμN

(
1 + 2

η

�

)N

= δμ

(
1 + 2

η

�

)N

for p = 0, . . . , N . Using this inequality instead of (3.14), we obtain analogously
to (3.17) that

δμ+1 = ε(μ+1)N ≤
N∑

p=1

2
ε2
μN+p

�μN+p
≤ Nδ2

μ

(
1 + 2

η

�

)2N
2

�
,

which concludes the proof.
Theorem 3.3 guarantees asymptotic quadratic convergence in terms of the largest

modulus εν of subdiagonal entries. Since the so-called offnorm

off(Mν) :=

√∑
i>j

|m(ν)
ij |2

is bounded by εν ≤ off(Mν) ≤
√
Nεν , we also obtain asymptotic quadratic conver-

gence in terms of the offnorm.
Remark 3.4. Note that in general the assumption � > 0 in Theorem 3.3 cannot

be weakened in order to guarantee convergence. Consider, for example, the matrix

M =

⎡
⎣ 1 1 0

0 1 1
ε 0 1

⎤
⎦ ,

where ε > 0 is arbitrarily small. Then the sequence of matrices generated by the non-
symmetric Jacobi method becomes periodic as long as exact arithmetic is performed:

⎡
⎣ 1 1 0

0 1 1
ε 0 1

⎤
⎦ �

⎡
⎣ 1 0 ε

1 1 0
0 1 1

⎤
⎦ �

⎡
⎣ 1 1 0

0 1 ε
1 0 1

⎤
⎦ �

⎡
⎣ 1 0 1

ε 1 0
0 1 1

⎤
⎦

⎡
⎣ 1 1 0

0 1 1
ε 0 1

⎤
⎦ �

⎡
⎣ 1 ε 0

0 1 1
1 0 1

⎤
⎦ �

⎡
⎣ 1 0 1

1 1 0
0 ε 1

⎤
⎦ �

⎡
⎣ 1 1 0

0 1 1
ε 0 1

⎤
⎦ .

However, if finite precision arithmetic is used, then roundoff errors break the period-
icity and the algorithm starts to converge. For example, with ε = 1/100 our Matlab
implementation of the algorithm needed eight sweeps for convergence.
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4. Hamiltonian Jacobi methods. As pointed out in the introduction, the
nonsymmetric Jacobi method may not be competitive in comparison to the highly
efficient QR algorithm. However, this changes if one is interested in structure-
preserving algorithms for the solution of structured eigenvalue problems. As an ex-
ample, we consider the Hamiltonian eigenvalue problem. A matrix H ∈ C

2n×2n is
called Hamiltonian if

HTJ + JH = 0, where J = J2n =

[
0 In

−In 0

]
,

or, equivalently, if

H = (hij) =

[
A C
D −AT

]
, where A,C,D ∈ C

n×n, C = CT , D = DT .(4.1)

In some sources, matrices H ∈ C
2n×2n satisfying H∗J +JH = 0 are called Hamilton-

ian. For the sake of clear distinction, we refer to such matrices as complex conjugate
Hamiltonian matrices, while we call matrices satisfying (4.1) complex transpose Hamil-
tonian matrices. The real and complex conjugate Hamiltonian eigenvalue problems
have been extensively studied in the literature; see, e.g., [22, 28] and the references
therein. Also, the complex transpose Hamiltonian eigenvalue problem has attracted
some attention in recent years due to its relation to the so-called palindromic eigen-
value problem that arises in an application in the vibration analysis of rail tracks; see
[18, 26, 25].

The solution of the Hamiltonian eigenvalue problem is in general tackled by
computing condensed forms under unitary symplectic similarity transformations, i.e.,
transformations of the form H �→ U−1HU , where U ∈ F

2n×2n is unitary and sym-
plectic, i.e., it satisfies U�JU = J , where � = T in the real Hamiltonian and complex
transpose Hamiltonian case and � = ∗ in the complex conjugate Hamiltonian case.
It is easy to check that unitary symplectic similarity transformations preserve the
Hamiltonian structure, i.e., if H is Hamiltonian, then so is U−1HU . The condensed
form one is aiming at is the Hamiltonian Schur form. A Hamiltonian matrix H is
said to be in Hamiltonian Schur form if

H =

[
R B
0 −R�

]
,(4.2)

where � = T or � = ∗, respectively. This form can always be achieved for complex
transpose Hamiltonian matrices. For complex conjugate Hamiltonian matrices, it can
be achieved if there are no eigenvalues on the imaginary axis [23].

What makes the Hamiltonian eigenvalue problem challenging is the fact that
although a Hamiltonian QR algorithm, i.e., a structure-preserving version of the QR
algorithm, has been developed [2], a preliminary structure-preserving reduction to a
Hessenberg-like form is missing—a phenomenon that is known in the literature as Van
Loan’s curse [6, 30]. Thus, the Hamiltonian QR algorithm is in general not efficient,
because it is of complexity O(n4), and so, the competition is open for other kinds of
structure-preserving algorithms.

In [3] and [1] Jacobi-like algorithms for Hamiltonian matrices have been proposed.
Both algorithms are based on the solution of 4 × 4 subproblems in each Jacobi step.
Byers [3] follows the idea of Stewart [32] of using only a selected set of pivot elements
which results in an extreme slow convergence behavior. Therefore, we omit a detailed
discussion of the first algorithm and focus on the algorithm proposed in [1] as well
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as on a direct generalization of the nonsymmetric Jacobi method to Hamiltonian
matrices which results in a Hamiltonian Jacobi method that is based on the solution
of 2 × 2 subproblems in each step.

We restrict our attention to complex transpose Hamiltonian matrices. (A gener-
alization of the discussion to the case of complex conjugate Hamiltonian matrices is
possible, but more involved, because one has to take into account the fact that some
of the subproblems may not be solvable. This is because reduction to Hamiltonian
Schur form is not always possible in the complex conjugate Hamiltonian case if there
are eigenvalues on the imaginary axis.) Our transformation matrices are supposed to
be unitary and symplectic, so they must have the form

U =

[
U1 −U2

U2 U1

]
, U1, U2 ∈ C

n×n,

where U∗
1U1 + U∗

2U2 = In and UT
2 U1 − UT

1 U2 = 0.
The reason 4 × 4 subproblems instead of 2 × 2 problems are considered in the

algorithm proposed in [1] becomes obvious from the following sketch:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • • ∗ ∗ • • ∗
· � • ∗ ∗ • • ∗
· · · ∗ ∗ ∗ ∗ ∗
· · · · ∗ · · ·
· ◦ ◦ · ∗ • ◦ ·
· ◦ ◦ · ∗ • • ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If the element displayed by � has been chosen as pivot element, then the 4×4 submatrix
displayed by the symbols ◦ and • is the smallest Hamiltonian submatrix that contains
the pivot element. (Here, ◦ refers to elements in the subproblem that are annihilated,
while • stands for entries that may remain large in norm.) For details concerning
the solution of the 4 × 4 subproblem, see [1]. (The discussion in [1] involves complex
conjugate Hamiltonian matrices only, but the generalization to the complex transpose
Hamiltonian case is straightforward.) Among all possible transformation matrices, we
once again choose the one that is closest to the identity in order to enable asymptotic
quadratic convergence.

A sweep of the Hamiltonian Jacobi algorithm as proposed in [1] is then given by
the following sequence of indices, where the quadrupel of indices (i, j, k, l) refers to
the 4 × 4 subproblem consisting of the rows and columns i, j, k, l:

(1, 2, n +1, n + 2), (1, 3, n +1, n + 3), . . . , (1, n, n +1, 2n),(4.3)

(2, 3, n + 2, n + 3), (2, 4, n + 2, n + 4), . . . , (n−1, n, 2n−1, 2n).

Indeed, one easily checks that each pivot element is eliminated at least once during
the sweep. On the other hand, the elements in the (j, n+ j) positions are annihilated
n − 1 times in each sweep, a fact that cannot be avoided when Hamiltonian 4 × 4
subproblems are considered. In the following, we will refer to the cyclic Hamiltonian
Jacobi algorithm as proposed in [1] as Hamiltonian 4-Jacobi when sweeps based on
the sequence of indices (4.3) are used. As an example, we display such a sweep for an
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8 × 8 Hamiltonian matrix in the sketch below:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • ∗ ∗ • • ∗ ∗
◦ • ∗ ∗ • • ∗ ∗
· · ∗ ∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗ ∗
◦ ◦ · · • ◦ · ·
◦ ◦ · · • • · ·
· · · · ∗ ∗ ∗ ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ∗ • ∗ • ∗ • ∗
· ∗ ∗ ∗ ∗ ∗ ∗ ∗
◦ · • ∗ • ∗ • ∗
· · · ∗ ∗ ∗ ∗ ∗
◦ · ◦ · • · ◦ ·
· · · · ∗ ∗ · ·
◦ · ◦ · • ∗ • ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ • • ∗ ∗ •
· ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗ ∗ ∗
◦ · · • • ∗ ∗ •
◦ · · ◦ • · · ◦
· · · · ∗ ∗ · ·
· · · · ∗ ∗ ∗ ·
◦ · · ◦ • ∗ ∗ •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • • ∗ ∗ • • ∗
· ◦ • ∗ ∗ • • ∗
· · · ∗ ∗ ∗ ∗ ∗
· · · · ∗ · · ·
· ◦ ◦ · ∗ • ◦ ·
· ◦ ◦ · ∗ • • ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • ∗ • ∗ • ∗ •
· · ∗ ∗ ∗ ∗ ∗ ∗
· ◦ · • ∗ • ∗ •
· · · · ∗ · · ·
· ◦ · ◦ ∗ • · ◦
· · · · ∗ ∗ ∗ ·
· ◦ · ◦ ∗ • ∗ •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · • • ∗ ∗ • •
· · ◦ • ∗ ∗ • •
· · · · ∗ · · ·
· · · · ∗ ∗ · ·
· · ◦ ◦ ∗ ∗ • ◦
· · ◦ ◦ ∗ ∗ • •

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Next we consider a Jacobi-like algorithm for Hamiltonian matrices that is based on
the solution of 2× 2 subproblems. (This algorithm is related to the algorithm JIGH2
in [27] that was designed for the solution of the generalized Hermitian eigenvalue
problem.) In this algorithm, we have to distinguish between pivot elements that are
on the diagonal of C in (4.1) and those that are not. Indeed, if we select a pivot
element hn+k,k from the diagonal of C, then there is a corresponding Hamiltonian
2 × 2 subproblem that contains this element, as indicated in the following sketch:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 u2

1
1

1
−u2 u1

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • ∗ ∗ ∗ • ∗ ∗
· · ∗ ∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗ ∗
· · · · ∗ · · ·
· ◦ · · ∗ • · ·
· · · · ∗ ∗ ∗ ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 −u2

1
1

1
u2 u1

1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This 2×2 subproblem can be solved as in the nonsymmetric Jacobi method for general
complex matrices by choosing x, α ∈ R such that

Q =

[
u1 −u2

u2 u1

]
=

[
cosx −e−iα sinx

eiα sinx cosx

]

annihilates the pivot element hn+k,k and is the matrix that is closest to the identity
among all matrices that do so. If the matrix U is then obtained from the 2n × 2n
identity matrix by substituting ukk = un+k,n+k = u1, and uk,n+k = −u2, un+k,k = u2,
we find that U is not only unitary, but also symplectic and thus the transformation
with U will preserve the Hamiltonian structure of H.

The situation is different when the pivot element is not on the diagonal of C as
then there is no Hamiltonian 2× 2 subproblem that contains the given pivot element.
To be specific, let hk� be a pivot element satisfying 
 < k ≤ n or n+ 
 < k ≤ 2n, i.e.,
the pivot element is in the strict lower triangular part of either the block A or the
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block C in (4.1). As in the previous we then compute the matrix

Q =

[
u1 −u2

u2 u1

]
=

[
cosx −e−iα sinx

eiα sinx cosx

]
(4.4)

that triangularizes the 2×2 submatrix Ĥ consisting of the elements h��, h�k, hk�, and
hkk and that is closest to the identity among all matrices of the form (4.4) that do so.
Note that Q is not only unitary but also symplectic. However, when embedding Q into
an 2n × 2n matrix U by setting U to be the identity matrix except for the elements
u�� = u1, u�k = −u2, uk� = u2, ukk = u1, then the resulting matrix U is unitary,
but not symplectic, so we have to set un+�,n+� = u1, un+�,p = −u2, up,n+� = u2, and
up,p = u1, where p = n + k if k ≤ n and p = k − n if n + 
 < k ≤ 2n to make it
unitary and symplectic. Let us investigate this in detail. Denote A = (aij), C = (cij),
D = (dij), where the submatrices A,C,D are given as in (4.1), and consider first the
case k ≤ n, i.e., we have

Ĥ =

[
a�� a�k
ak� akk

]
,

and thus the pivot element is from the strict lower triangular part of A. The situation
is depicted in the following sketch, where the pivot element is displayed with the
symbol ◦ and the subproblem Ĥ is marked with the symbols ◦ and •:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 u2

−u2 u1

1
1

u1 u2

−u2 u1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • • ∗ ∗ ∗ ∗ ∗
· ◦ • ∗ ∗ ∗ ∗ ∗
· · · ∗ ∗ ∗ ∗ ∗
· · · · ∗ · · ·
· · · · ∗ + � ·
· · · · ∗ + + ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 −u2

u2 u1

1
1

u1 −u2

u2 u1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Due to the special structure of U , we find that a second 2 × 2 subproblem given by

H̃ =

[
hn+�,n+� hn+�,n+k

hn+k,n+� hn+k,n+k

]
=

[
−a�� −ak�
−a�k −akk

]
= −ĤT

is solved as well. This subproblem is depicted in the sketch above by the symbols
+ and �, where the symbol � display the element that will be annihilated by the
transformation with U . Indeed, H̃ will be transformed as[

u1 u2

−u2 u1

]
H̃

[
u1 −u2

u2 u1

]
= −QT ĤTQ = −(Q∗ĤQ)T =

[
∗ 0
∗ ∗

]
.

We have a similar situation for the case n + 
 < k ≤ 2n, i.e., when the pivot element
is from the strict lower triangular part of C. Again, besides

Ĥ =

[
a�� c�k
dk� −akk

]
,

a second subproblem H̃ is solved when the transformation with U is applied. Here,
we have

H̃ =

[
hk−n,k−n hk−n,n+�

hn+�,k−n hn+�,n+�

]
=

[
akk c�k
dk� −a��

]
= −JT

2 ĤTJ2, J2 =

[
0 1
−1 0

]
,
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since ck� = c�k and dk� = d�k. Then, H̃ will be transformed as

Q∗H̃Q = (JT
2 QTJ2)(−JT

2 ĤTJ2)(J
T
2 QJ2) = −JT

2 (Q∗ĤQ)TJ2 =

[
∗ ∗
0 ∗

]
,

where we used that Q is both unitary and symplectic, i.e., Q = JT
2 Q−TJ2 = JT

2 QJ2.
The situation is depicted in the sketch below, where Ĥ is displayed by the symbols ◦
and • and H̃ is displayed by the symbols � and +:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 u2

u1 u2

1
1

−u2 u1

−u2 u1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· • ∗ ∗ ∗ ∗ • ∗
· · + ∗ ∗ + ∗ ∗
· · · ∗ ∗ ∗ ∗ ∗
· · · · ∗ · · ·
· · � · ∗ + · ·
· ◦ · · ∗ ∗ • ·
· · · · ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
u1 −u2

u1 −u2

1
1

u2 u1

u2 u1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Again, ◦ and � stand for the elements that are annihilated by the transformation
with U .)

It becomes clear from this discussion that it is sufficient to annihilate all elements
in the strict lower triangular parts of A and C during one sweep. But how should a
sweep be organized? The answer follows by noting that the Hamiltonian matrix H
as in (4.2) is in Hamiltonian Schur form if and only if the matrix

FHF =

[
R BFn

0 −FnR
TFn

]
, F =

[
In 0
0 Fn

]
, Fn =

⎡
⎣ 0 1

. .
.

1 0

⎤
⎦(4.5)

is in Schur form. Here, Fn denotes the flip matrix, i.e., the matrix with ones on the
southeast northwest diagonal and zeros elsewhere. (It is straightforward to check that
a matrix L is lower triangular if and only if FnLFn is upper triangular.) If we then
carry out a Hamiltonian sweep given by the sequence of indices

((n+1, 1), (n+2, 1), . . . , (2n, 1), (n, 1), (n−1, 1), . . . , (2, 1), (n+2, 2), (n+3, 2), . . . , (2n, n)),

then given the fact that most of the time two elements are annihilated during a single
Jacobi step, we find that the elements are annihilated in the order

((n+1, 1), (n+2, 1), (n+1, 2), (n+3, 1), (n+1, 3), . . . , (2n, 1), (n+1, n),

(n, 1), (n+1, 2n), (n−1, 1), (n+1, 2n−1), . . . , (2, 1), (n+1, n+2),

(n+2, 2), (n+3, 2), (n+2, 3), . . . , (2n, n)).

It is then straightforward to check that this corresponds to a northeast directed sweep
on the matrix FHF , and thus the Hamiltonian Jacobi algorithm for H using a Hamil-
tonian sweep corresponds to the nonsymmetric Jacobi algorithm for FHF using a
special northeast directed sweep. Therefore, by Theorem 3.3 we expect asymptotic
quadratic convergence for the Hamiltonian Jacobi algorithm when Hamiltonian sweeps
are used, and this is exactly what can be observed in numerical experiments. We de-
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pict one Hamiltonian sweep for the case n = 3:⎡
⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ • ∗ ∗
· ∗ ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗
◦ · · • · ·
· · · ∗ ∗ ·
· · · ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ ∗ • ∗
· + ∗ + ∗ ∗
· · ∗ ∗ ∗ ∗
· � · + · ·
◦ · · ∗ • ·
· · · ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

• ∗ ∗ ∗ ∗ •
· ∗ ∗ ∗ ∗ ∗
· · + + ∗ ∗
· · � + · ·
· · · ∗ ∗ ·
◦ · · ∗ ∗ •

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

• ∗ • ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗
◦ · • ∗ ∗ ∗
· · · + · �
· · · ∗ ∗ ·
· · · + ∗ +

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

• • ∗ ∗ ∗ ∗
◦ • ∗ ∗ ∗ ∗
· · ∗ ∗ ∗ ∗
· · · ∗ · ·
· · · ∗ + �
· · · ∗ + +

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· • ∗ ∗ • ∗
· · ∗ ∗ ∗ ∗
· · · ∗ · ·
· ◦ · ∗ • ·
· · · ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· • ∗ ∗ ∗ •
· · + ∗ + ∗
· · · ∗ · ·
· · � ∗ + ·
· ◦ · ∗ ∗ •

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· • • ∗ ∗ ∗
· ◦ • ∗ ∗ ∗
· · · + � ·
· · · + + ·
· · · ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎣

∗ ∗ ∗ ∗ ∗ ∗
· ∗ ∗ ∗ ∗ ∗
· · • ∗ ∗ •
· · · ∗ · ·
· · · ∗ ∗ ·
· · ◦ ∗ ∗ •

⎤
⎥⎥⎥⎥⎥⎥⎦

The Hamiltonian Jacobi algorithm based on the solution of 2× 2 subproblems will be
referred to as Hamiltonian 2-Jacobi if Hamiltonian sweeps are used.

Let us return to the Hamiltonian 4-Jacobi. Surprisingly, only linear asymptotic
convergence of the method can be observed, as we will see in section 5. This behavior
can be explained by looking at the order in which the pivot elements are annihilated.
One easily finds that, for example, the pivot element in the (2, 1)-position is annihi-
lated in the step preceding the annihilation of the element in the (3, 1)-position. Thus,
the sweep given by the sequence of indices (4.3) does not correspond to a northeast
directed sweep on the matrix FHF . In order to ensure this, we have to modify the
sequence of indices as

(1, 2, n+1, n+2), (1, 3, n+1, n+3), . . . , (1, n−1, n+1, 2n−1), (1, n, n+1, 2n),

(1, n−1, n+1, 2n−1), . . . , (1, 3, n+1, n+3), (1, 2, n+1, n+2),(4.6)

(2, 3, n+2, n+3), . . . , (2, n, n+2, 2n), . . . , (2, 3, n+2, n+3), . . . , (n−1, n, 2n−1, 2n).

Here, the majority of pivot elements is annihilated at least twice during a sweep, but
the order in which the pivot elements are annihilated the last time during a sweep is
now

((n+1, 1), (n+2, 1), . . . , (2n, 1), (n, 1), (n−1, 1), . . . , (2, 1), (n+2, 2), (n+3, 2), . . . , (2n, n)),

which corresponds to a northeast directed sweep on the matrix FHF . We refer to
the Hamiltonian Jacobi method based on the solution of 4 × 4 subproblems using
sweeps given by the sequence of indices (4.6) as improved Hamiltonian 4-Jacobi. By
the discussion above, we now expect asymptotic quadratic convergence of the method,
and this is what can be observed in experiments; see section 5.

Concerning the computational effort, one can roughly say that one sweep of the
improved Hamiltonian 4-Jacobi is approximately twice as expensive as the Hamil-
tonian 4-Jacobi. On the other hand, one sweep of the Hamiltonian 2-Jacobi needs
approximately 80% of the number of flops (floating point operations) of one sweep of
the Hamiltonian 4-Jacobi (and thus about 40% of the number of flops of one sweep
of the improved Hamiltonian 4-Jacobi).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

306 CHRISTIAN MEHL

5. Numerical experiments. We implemented the cyclic nonsymmetric Jacobi
algorithm in Matlab Version 7 and ran it on a PC with a Pentium III processor (800
MHz). As a stopping criterion we used maxoff(A) := maxi>j |aij | < 10eps ‖A‖2.

First, the nonsymmetric Jacobi method was run for 100 random complex matrices
(generated with the Matlab command randn) of size n×n, where n = 10, 20, . . . , 150,
after normalization to spectral norm equal to one; see Figure 5.1.
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Fig. 5.1. Test for 100 random matrices of different sizes.

The solid line in Figure 5.1 displays the average number of sweeps needed for
convergence for random complex matrices while the dashed line displays the corre-
sponding number for Hermitian matrices. Thus, the method runs much faster for
Hermitian matrices than for general complex matrices, an effect that had already
been observed by Eberlein [10]. The dotted lines display the maximal and minimal
number of sweeps that were needed for convergence for random complex matrices;
e.g., for n = 100 the algorithm needed between 21 and 30 sweeps. The distribution
of the number of sweeps for the tests on 100 × 100 matrices is shown in Figure 5.2.
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Fig. 5.2. Distribution of number of sweeps needed for convergence.
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Figure 5.3 displays the typical convergence behavior of the nonsymmetric Jacobi
algorithm for a random complex matrix of size 50 × 50 using top-to-bottom sweeps
versus using bottom-to-top sweeps.
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Fig. 5.3. Typical convergence behavior for general matrices.

In both cases, the algorithm starts with a phase of “sorting elements” that is
characterized by almost stagnation. As expected, it can be observed that maxoff(A)
does not decrease monotonically over the number of sweeps. The phase of almost
stagnation is followed by the phase of convergence. As predicted by the theory,
the convergence rate becomes asymptotically quadratic in the case of bottom-to-
top sweeps. However, the convergence rate appears to be only linear in the case of
top-to-bottom sweeps.

The situation is completely different when the algorithm is applied to a Hermitian
matrix. Figure 5.4 shows the typical convergence behavior of the nonsymmetric Jacobi
algorithm for a 50×50 Hermitian matrix. There is hardly any difference in the conver-
gence behavior of the algorithm when using bottom-to-top sweeps compared to using
top-to-bottom sweeps and both methods show asymptotic quadratic convergence.
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Fig. 5.4. Typical convergence behavior for Hermitian matrices.
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A second test has been run for 100 matrices close to Schur form. For this, 100 ran-
dom complex n×n matrices have been generated and normalized to norm one. Then,
the Schur form has been computed by using the Matlab function schur, and a random
perturbation of norm 1/100 has been added. Then the nonsymmetric Jacobi algorithm
has been run on the perturbed Schur form. The results are displayed in Figure 5.5.
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Fig. 5.5. Test for 100 matrices close to Schur form.

Once again, the solid line displays the average number of sweeps that were needed
for convergence, while the dotted lines display the maximal and minimal number of
needed sweeps. Even for matrices of size 150 × 150, the algorithm needs only about
five sweeps for convergence, because the entries in the strict lower triangular part of
the matrices are of magnitude of order 1/100 compared to the entries in the upper
triangular part, and thus the hypothesis of Theorem 3.3 is very likely to be satisfied
so that we may have a quadratic rate of convergence right from the beginning.

Figure 5.6 displays the typical convergence behavior of the nonsymmetric Jacobi
algorithm for a matrix of size 50×50 that is close to Schur form. While the algorithm
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Fig. 5.6. Typical convergence behavior for matrices close to Schur form.
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almost immediately enters the phase of quadratic convergence when using bottom-
to-top sweeps, the convergence rate appears once again to be only linear when using
top-to-bottom sweeps. Next, we tested the performance of the Hamiltonian Jacobi
algorithms described in section 4 for 100 random Hamiltonian matrices normalized to
spectral norm equal to one for the sizes 2n = 10, 20, . . . , 100.

Figure 5.7 displays the average number of sweeps that was needed for convergence.
The Hamiltonian 2-Jacobi performs similarly to the nonsymmetric Jacobi algorithm
for general complex matrices as expected. On the other hand, the Hamiltonian 4-
Jacobi needs a much larger number of sweeps. This changes drastically when passing
to the improved Hamiltonian 4-Jacobi.
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Fig. 5.7. Test for 100 random Hamiltonian matrices of different sizes.

Figure 5.8 displays the typical convergence behavior of the Hamiltonian Jacobi
methods. As expected, the Hamiltonian 2-Jacobi and the improved Hamiltonian 4-
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Fig. 5.8. Typical convergence behavior for Hamiltonian matrices.
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Jacobi show asymptotic quadratic convergence. On the other hand, the asymptotic
convergence rate of the Hamiltonian 4-Jacobi appears to be only linear, which ex-
plains the large average number of sweeps that is needed for convergence. Although
the improved Hamiltonian 4-Jacobi method needs the least number of sweeps for con-
vergence in general, the Hamiltonian 2-Jacobi turns out to be the most efficient version
of the Hamiltonian Jacobi methods because the cost of one sweep of the Hamiltonian
2-Jacobi is only about 40% of the cost of one sweep of the improved Hamiltonian
4-Jacobi.

6. Conclusions. We have revisited the nonsymmetric Jacobi algorithm for the
computation of the Schur form of a general complex matrix. In particular, asymptotic
quadratic convergence of the cyclic version of the method can be proved if northeast
directed sweeps are used. Other sweeps, in turn, seem to lead to a linear convergence
rate only. Based on this convergence theory, we were able to explain why the conver-
gence behavior of the Hamiltonian Jacobi algorithm proposed in [1] is less satisfactory
than expected and what can be done to overcome this inconvenience.

Still, there are many aspects that have not yet been investigated. First, a proof of
global convergence is still missing. Then, the convergence behavior of the algorithm
is not yet optimal, because the initial phase of almost stagnation is very long and
the phase of quadratic convergence is entered rather late. Therefore, preconditioning
methods should be introduced and investigated in order to improve the convergence,
like it has been done for example, for a Jacobi algorithm for computing the singular
value decomposition; see [8]. Another important issue is parallelization. Since the so-
lution of 2×2 subproblems requires only local information, it is possible to implement
parallel version of Jacobi-like algorithms, as already considered in [10]. However, the
discussion in section 2 shows that further investigation is necessary as a naive parallel
implementation of the algorithm may lead to a loss of the property of asymptotic
quadratic convergence.

Acknowledgment. I would like to thank Heike Fassbender for valuable discus-
sions and for giving helpful comments on an earlier draft of the paper.
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[7] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix Anal.

Appl., 13 (1992), pp. 1204–1245.
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A CLASS OF SPARSE UNIMODULAR MATRICES GENERATING
MULTIRESOLUTION AND SAMPLING ANALYSIS FOR DATA OF

ANY LENGTH∗

N. D. ATREAS† , C. KARANIKAS† , AND P. POLYCHRONIDOU†

Abstract. We introduce a class of sparse unimodular matrices Um of order m×m, m = 2, 3, . . . .
Each matrix Um has all entries 0 except for a small number of entries 1. The construction of Um

is achieved by iteration, determined by the prime factorization of a positive integer m and by new
dilation operators and block matrix operators. The iteration above gives rise to a multiresolution
analysis of the space Vm of all m-periodic complex-valued sequences, suitable to reveal information at
different scales and providing sampling formulas on the multiresolution subspaces of Vm. We prove
that the matrices Um are invertible, and we present a recursion equation to compute the inverse
matrices. Finally, we connect the transform induced by the matrix Um with the underlying natural
tree structure and random walks on trees.

Key words. sparse matrices, multiresolution analysis, sampling theory, tree structures
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1. Introduction. The evolution of large digital libraries has dramatically trans-
formed the processing, storage, and retrieval of information (see [2]). In order to
handle a large amount of information, we need fast computations and storage saving,
and the role of sparse matrices to both aforementioned requirements becomes very
important. Since sparse matrices have a “small” number of nonzero elements, a vari-
ety of techniques have been developed for storing and processing them efficiently (see
[4], [8]). Sparse matrices are used mainly in combinatorics and in application areas
such as graph theory, for describing a low density of significant data or connections,
and for numerical solution of linear partial differential equations, where the partial
differentiable operators are approximated by finite difference operators, giving rise
to a system of equations which involves a sparse coefficient matrix. It is natural to
wonder whether we can build sparse matrices for extracting local information.

One of the widely used tools for extracting local information is multiresolution
analysis (MRA). A multiresolution analysis of a Hilbert space V is a nested sequence of
closed, shift invariant subspaces {Vi ⊂ Vi+1 : i = 0, 1, 2 . . .} of V whose union is dense
in V such that the subspaces Vi are scaled versions of each other under the action
of a dilation operator D : Vi → Vi+1. As a consequence, each subspace Vi reveals
information at different scales/resolutions, and the resolution of the subspace Vi+1

is higher than the resolution of the subspace Vi (see [5] for an overview of MRAs on
various spaces). We notice here that most MRAs provide sampling formulas associated
to the subspaces Vi (see [9], [10]). In [1], we presented the sampling formula associated
to the subspaces Vi of a MRA of the space of pM -periodic sequences. Recall that an
M -dimensional subspace W of a space V of sequences of length N has a sampling
basis {s0, . . . , sM−1}, if there exist M positive integers 0 ≤ n1 < · · · < nM < N such
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that for any sequence t = {t1, . . . , tN} ∈ W we have

t(n) =
M−1∑
j=0

t(nj)sj(n), 0 ≤ n ≤ N − 1.

In particular, we say that W has a sampling sequence s, if there exist M positive
integers 0 ≤ n1 < · · · < nM < N such that for any sequence t ∈ W we have

t(n) =

M−1∑
j=0

t(nj)s(n− nj), 0 ≤ n ≤ N − 1.

In both cases, we say that W is a sampling subspace of V .
Another tool used for extracting local information is a tree transform. Local

information in a tree is stored in nodes, starting with a root node and ending with
terminal nodes called leaves. For example, a binary tree transform associated to data
T = {t1, . . . , t2N } is a collection of numbers:

α = {αn,k(T ), k = 1, . . . , 2n, n = 0, . . . , N}.

The collection α has a binary tree structure with N + 1 resolution levels. Each
resolution level cuts T into 2n equal pieces. If we denote

T (n, k) = {ts, s = (k − 1)2N−n + 1, . . . , k2N−n},

then the number a0,1(T ) corresponds to the initial node of the tree; the number
an,k(T ) corresponds to the k-node of the nth generation and encodes the information
associated to the subset T (n, k). In [7], one of the authors has developed a discrete
tree transform (DTT), which has been used for a pattern recognition process
(see [3]).

In order to build our sparse matrices Um of order m × m, we exploit the basic
properties of a MRA construction on matrices.

In section 2, a construction is presented for Um in different scales by an itera-
tion process, determined by the prime factorization of a positive integer m : m =
p1p2 . . . pN (p1 ≥ p2 . . . ≥ pN ) and by repetitive dilation and block-matrix opera-
tions (see Definitions 1–6). Our construction starts with the matrix Um(0) = {1}.
Um(n+ 1) is a block matrix obtained from joining two matrices: a matrix derived by
a dilation process on Um(n) and a properly selected permutation matrix. In the Nth
scale the resulting matrix Um(N) = Um is a (0, 1)-matrix admitting the following
properties:

• It is a unimodular matrix (see Proposition 1);
• the inverse matrix (Um)−1 is also a sparse matrix with entries 1, 0,−1 con-

structed by a recursion equation on matrices, which can be easily implemented
via an algorithm (see Theorem 1).

In section 3, we see that the matrices Um encode local information. In fact:
• in Definition 7 we see that the matrix Um gives rise to a multiresolution

analysis {W0 ⊂ . . . ⊂ WN = Vm} of the space Vm of all m-periodic complex-
valued sequences. The subspaces Wi are spanned by properly selected row
vectors of Um and display information at different resolution levels. In addi-
tion, in Theorem 2 we prove that the resolution subspaces Wi are sampling
subspaces, and we present the sampling formula for Wi.
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• The transform Lm : Vm → Vm, Lm(t) = Umt has tree structure. In fact, in
(8) we established its connection with the discrete tree transform given in [7].

2. Construction and properties of Um. Notation (see also [6]): Let Mn,m

be the set of all n × m matrices over the field of complex numbers. If n = m, then
Mn,m is abbreviated to Mn. We shall use the symbolism A = [Aij ] to denote a matrix
A with elements Aij . The notation

Ai = {Aij : j = 1, . . . ,m}

shall be used to denote the i-row of a matrix A ∈ Mn,m, and often it will be referred
to as the ith row vector of the matrix A. We use the notation AT to denote the
transpose of a matrix A. A square matrix A ∈ Mn is invertible, if there is a unique
square matrix A−1 ∈ Mn called the inverse matrix of A such that AA−1 = In, where
In is the identity matrix. A matrix having a small number of nonzero elements is
called sparse. P ∈ Mn is a permutation matrix, if it is formed from the identity
matrix In by reordering its columns (or rows). The determinant of a permutation
matrix P is given by:

Det(P ) = sgn σ,

where σ = {σ(i) : i = 1, . . . , n} is the permutation of its columns and the signature
sgn σ equals (−1)r, where r is the number of transpositions of pairs of columns that
must be composed to build up the permutation. In practice, in order to estimate r
we compute the number of elements σ(i) : σ(1) > σ(i), i = 2, . . . , n, then we compute
the number of elements σ(i) : σ(2) > σ(i), i = 3, . . . , n, etc., and finally we sum
all previously computed numbers. A square matrix with determinant ±1 is called
unimodular.

The ceiling of a real number x shall be denoted by �x� = inf {n ∈ Z : x ≤ n}
(Z is the set of integers). If p, q are natural numbers, we denote by Mod(p, q) the
remainder on division of p by q, and we shall use the symbolism [q]p = {q+ tp : t ∈ Z}
to denote the residue class of q modulo p.

We consider the unique (up to a rearrangement of factors) prime factorization of
a positive integer m:

m = p1p2 . . . pN ,(1)

where p1 ≥ p2 ≥ · · · ≥ pN , and we denote:

J(0) = 1, J(n) =
n∏

i=1

pi, n = 1, . . . , N,(1a)

A(i) =
N∏
r=i

pr, i = 1, . . . , N, A(N + 1) = 1.(1b)

We define the following dilation operators Dp and Hp on the set Mn,m, where p =
2, 3, . . . .

Definition 1. Let Dp : Mn,m → Mn,pm such that

Dp(M) =
{
Mi,� j

p�, i = 1, . . . , n, j = 1, . . . , pm
}
.
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Notice that Dp can be written as a block matrix:

Dp(M) =

⎛
⎜⎝

Dp(M11) . . . Dp(M1m)
...

. . .
...

Dp(Mn1) . . . Dp(Mnm)

⎞
⎟⎠ ,(2)

where Dp(Mij) ∈ M1,p: Dp(Mij) = {Mij ,Mij , . . . ,Mij}.
Examples:

D2

((
a11 a12

a21 a22

))
=

(
a11 a11 a12 a12

a21 a21 a22 a22

)
,

D3

((
a11 a12

a21 a22

))
=

(
a11 a11 a11 a12 a12 a12

a21 a21 a21 a22 a22 a22

)
.

Definition 2. Let Hp : Mn,m → Mpn,m :

Hp(M) =

{
M� i

p�,j , whenever i ∈ [0]p,

0, whenever i /∈ [0]p,
i = 1, . . . , pn, j = 1, . . . ,m

}
.

Examples:

H2

((
a11 a12

a21 a22

))
=

⎛
⎜⎜⎝

0 0
a11 a12

0 0
a21 a22

⎞
⎟⎟⎠ , H3

((
a11 a12

a21 a22

))
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0
a11 a12

0 0
0 0
a21 a22

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Definition 3. Let S(., . . . , .) : Mn1,m × · · · × Mnk,m → Mn1+···+nk,m be the
following block-matrix operation:

S(M1, . . . ,Mk) =

⎛
⎜⎝

M1

...
Mk

⎞
⎟⎠ .

Definition 4. Let Qp : Mn,m → Mpn,pm (p ≥ 1) be the following block-matrix
operator:

Qp(M) =
M ⊕ · · · ⊕M︸ ︷︷ ︸

p-times
=

⎛
⎜⎝

M O
. . .

O M

⎞
⎟⎠ ,(3)

where ⊕ is the direct sum of matrices and O is the zero matrix of order n×m.
Definition 5. Let p1, p2, be positive integers such that p2 > 1. We define the

following matrix R(p1, p2) ∈ Mp1(p2−1),p1p2
:

R(p1, p2) = S
(
Q1 (ep2

1 ) , . . . , Qp1

(
ep2

p2−1

))
,

where ep2

i is the ith row vector of the identity matrix Ip2 .
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Examples: Let p1 = 2, p2 = 2; then e2
1 = {1, 0}, O = {0, 0} and

R(2, 2) = Q2

(
e2
1

)
=

(
e2
1 O

O e2
1

)
=

(
1 0 0 0
0 0 1 0

)
.

Let p1 = 2, p2 = 3; then e3
1 = {1, 0, 0}, e3

2 = {0, 1, 0}, O = {0, 0, 0}, and

R(2, 3) = S
(
Q2

(
e3
1

)
, Q2

(
e3
2

))
=

⎛
⎜⎜⎝

e3
1 O

O e3
1

e3
2 O

O e3
2

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎠ .

Remark 1. (i) Let r, s be positive integers. It is easy to see that DrDs(M) =
Drs(M). The same is also true for the operators Hp and Qp.

(ii) Since the matrix Qp1

(
ep2
p2

)
has not been used for the construction of the

matrix R(p1, p2), we have (R(p1, p2)).,lp2
= 0, for any l = 1, . . . , p1.

Definition 6. We consider the prime factorization (1) of a positive integer m,
and we define a sequence of block matrices Um(n) ∈ MJ(n) (J(n) is defined in (1a)),
where n = 0, . . . , N , by using the following iteration:

Um(n) =

⎧⎨
⎩

{1}, n = 0,
S (Dp1 (Um(0)) , R(1, p1)) , n = 1,

S (Dpn
(Um(n− 1)) , R (J(n− 1), pn)) , n = 2, . . . , N.

In the case where n = N , we shall write Um(N) = Um.
Examples:

Up(1) =

(
Dp({1})
R(1, p)

)
=

⎛
⎜⎜⎜⎜⎝

1 1 . . . 1 1
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎠ .(4)

Let m = 12 = p1p2p3, where p1 = 3, p2 = 2, p3 = 2; then N = 3, and we have

U12(1) =

⎛
⎝1 1 1

1 0 0
0 1 0

⎞
⎠, U12(2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
, U12(3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now let j = 1, . . . , pn − 1, and we define the following column matrices V pn

j = {vpn

kj :
k = 1, . . . , pn}:

vpn

kj =

⎧⎨
⎩

1 whenever k = j,
−1 whenever k = pn,
0 elsewhere.

(5)
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Proposition 1. Let {pn : n = 1, . . . , N} be a decreasing sequence of prime
factors of a positive integer m as in (1) with the corresponding sequence J(n) defined
in (1a), and then

Det (Um(n)) =

{
(−1)p1+1, n = 1,

(−1)qnDet(Um(n− 1)), n = 2, . . . , N,

where qn = pn−1
4 J(n− 1) (J(n) − pn + 4); thus the matrices Um(n) are unimodular.

Proof. For n = 1, we use (4) to get Det(Um(1)) = (−1)1+p1Det(M1,p1), where
M1,p1 is a minor of the matrix Um(1). Since M1,p1 = Ip1−1, we get Det(Um(1)) =
(−1)1+p1 .

Let n > 1, and let epn

i be the ith row vector of the identity matrix Ipn ; we consider
the following block matrix C(n) ∈ MJ(n):

C(n) =
(

QJ(n−1)

((
epn
pn

)T)
QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

) )
,

where the block submatrices QJ(n−1)((e
pn
pn

)T ) and QJ(n−1)

(
V pn

j

)
, j = 1, . . . , pn − 1,

are in MJ(n),J(n−1) (the column matrices V pn

j are given in (5)). The block-matrix
multiplication Um(n)C(n) derives the following block diagonal matrix (for a proof of
(6), see Appendix A):

Um(n)C(n) =

⎛
⎜⎜⎜⎝

Dpn
(Um(n− 1))

QJ(n−1) (epn

1 )
...

QJ(n−1)

(
epn

pn−1

)

⎞
⎟⎟⎟⎠

(
QJ(n−1)

((
epn
pn

)T)
QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

) )

=

⎛
⎜⎜⎜⎝

Um(n− 1) O
IJ(n−1)

. . .

O IJ(n−1)

⎞
⎟⎟⎟⎠ ,

(6)

where the zero matrix O in the right-hand side of (6) belongs in MJ(n−1). As a result
we get

Det(Um(n)) Det(C(n)) = Det(Um(n− 1)).

The computation of Det(C(n)) is equivalent to computing Det(K(n)), where

K(n) =
(

QJ(n−1)

((
epn
pn

)T)
QJ(n−1)

(
(epn

1 )
T
)

. . . QJ(n−1)

((
epn

pn−1

)T) )

is a block matrix in MJ(n) resulting from C(n) by replacing each block submatrix
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QJ(n−1)

(
V pn

j

)
with the linear combination:

QJ(n−1)

(
V pn

j

)
+ QJ(n−1)

((
epn
pn

)T)
= QJ(n−1)

((
epn

j

)T)
, j = 1, . . . , pn − 1.

K(n) is a permutation matrix, so Det(K(n)) = sgn σn, where σn is the permutation
of its columns, and thus

Det(Um(n)) = sgn σn Det(Um(n− 1)).

The permutation σn = {σn(1), . . . , σn(J(n))} of the columns of the matrix K(n) can
be written as:

σn = Υ0,n

pn−1⋃
i=1

Υi,n,

where Υ0,n = {tpn : 1 ≤ t ≤ J(n − 1)} and Υi,n = {i + tpn : 0 ≤ t ≤ J(n − 1) −
1}, i ≥ 1. In Appendix B we prove that sgn σn = (−1)qn , where qn = pn−1

4 J(n −
1) (J(n) − pn + 4), and we complete the proof.

Theorem 1. The inverse matrix of Um(n) is given by the following recursion
equation:

(Um(n))
−1

=

{
{1}, n = 0,(

Hpn

(
(Um(n− 1))

−1
)

QJ(n−1)(V
pn

1 ) . . . QJ(n−1)(V
pn

pn−1)
)
, n = 1, . . . , N .

Proof. We multiply both sides of (6) with the block diagonal matrix

⎛
⎜⎜⎜⎝

(Um(n− 1))
−1

O
IJ(n−1)

. . .

O IJ(n−1)

⎞
⎟⎟⎟⎠ ,

whose block submatrices are in MJ(n−1), and we deduce that the inverse matrix

(Um(n))
−1

results from the following block-matrix multiplication:

(Um(n))
−1

=
(
QJ(n−1)

((
epn
pn

)T)
QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

))

·

⎛
⎜⎜⎜⎝

(Um(n− 1))
−1

O
IJ(n−1)

. . .

O IJ(n−1)

⎞
⎟⎟⎟⎠

=
(
QJ(n−1)

((
epn
pn

)T) · (Um(n− 1))
−1

QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

))

=
(
Hpn

(
IJ(n−1)

)
· (Um(n− 1))

−1
QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

))

=
(
Hpn

(
(Um(n− 1))

−1
)

QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

))
.
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Example:

(
U12(2)

)−1
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 1 0 −1 0 0
0 0 0 0 1 0
0 0 1 0 −1 0
0 0 0 0 0 1
1 −1 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
U12(3)

)−1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 1 0 −1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 −1 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 1
1 −1 −1 0 0 −1 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. The matrices Um and multiresolution-type sampling spaces. Let Vm

be the space consisting of all m-periodic complex-valued sequences, where m satisfies
the prime factorization (1), i.e., m = p1p2 . . . pN , where p1 ≥ p2 ≥ · · · ≥ pN , and
then there exists a unique sequence of scalars α = {αn : n = 1, . . . ,m} such that any
element t = {t(n) : n = 1, . . . ,m} ∈ Vm can be written as:

t =

m∑
i=1

αiU
m
i ,

where Um
i is the ith row vector of the matrix Um. In addition, there holds αi = 〈t(.),

((Um)−1).,i〉, where 〈., .〉 is the usual inner product of Vm.
Definition 7. Let {J(n) : n = 1, . . . , N} be defined in (1a), and we say that the

sequence {W0 ⊂ · · · ⊂ WN = Vm} of subspaces of Vm such that the set {Um
r : r =

1, . . . , J(i)} spans Wi is a multiresolution analysis of the space Vm.
Let

B(i) =

⎛
⎜⎝

Um
1
...

Um
J(i)

⎞
⎟⎠ , i = 0, . . . , N,(7)

then B(i) ∈ MJ(i),m, and the following applies.

Lemma 1. B(i) = S
(
Dm ({1}) ,

{
DA(k+2) (R(J(k), pk+1)) , k = 0, . . . , i− 1

})
,

i ≥ 1, where the sequence {A(i) : i = 1, . . . , N} has been defined in (1b).
Proof. From the recursion equation of Definition 6, we have

for n = 1 : Um(1) = S (Dp1 ({1}) , R(1, p1)) ,

for n = 2 : Um(2) = S (Dp1p2
({1}) , Dp2

(R(1, p1)) , R(J(1), p2)) , . . . ,

for n = N : Um = S (Dm ({1}) , Dp2...pN
(R(1, p1)) , Dp3...pN

(R(J(1), p2)) , . . . ,

DpN
(R(J(N − 2), pN−1)) , R(J(N − 1), pN ))

= S
(
Dm ({1}) , DA(2) (R(J(0), p1)) , . . . , DA(N+1) (R(J(N − 1), pN ))

)
.
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We observe that Dm ({1}) ∈ M1,m, DA(2) (R(J(0), p1)) ∈ Mp1−1,m, . . . , DA(i+1)

(R(J(i− 1), pi)) ∈ MJ(i)−J(i−1),m, and we have the result.
Theorem 2. Each subspace Wi (i = 0, . . . , N) of Definition 7 is a sampling

subspace; i.e., any sequence t = {t(n) : n = 1, . . . ,m} ∈ Wi can be written as

t(n) =

J(i)∑
k=1

t (kA(i + 1)) c (n− (k − 1)A(i + 1)) ,

where c(n) =
{

1, n = 1, . . . , A(i + 1)
0, elsewhere

and the sequence {A(k) : k = 1, . . . , N + 1} is as

in (1b).
Proof. Since the space Wi is the span of the first J(i) rows of the matrix Um,

there exists a sequence of scalars d = {d1, . . . , dJ(i)}:

t =

J(i)∑
k=1

dkU
m
k = dB(i),

where the matrix B(i) is defined in (7). From Lemma 1 and (2) we deduce that

B(i) = DA(i+1) (Mi) ,

where

Mi = S
(
DJ(i) ({1}) ,

{
Dpk+2...pi

(R(J(k), pk+1)) , k = 0, . . . , i− 2
}
,

R(J(i− 1), pi)) , i ≥ 1,

Mi ∈ MJ(i), and we use Definition 1 to get

t = dB(i) = dDA(i+1) (Mi) =

{
d (Mi).,

⌈
n

A(i+1)

⌉ : n = 1, . . . ,m

}
.

We define αj = d (Mi).,j (j = 1, . . . , J(i)), so we have

t(n) =

{
a⌈ n

A(i+1)

⌉ : n = 1, . . . ,m

}
.

Let c(n) =
{

1, n = 1, . . . , A(i + 1)
0, elsewhere

be an m-periodic sequence; then we can write:

t(n) =

J(i)∑
k=1

αkc(n− (k − 1)A(i + 1)),

and we observe that whenever n = sA(i + 1), s = 1, . . . , J(i), then

t(sA(i + 1)) =

J(i)∑
k=1

αkc((s− (k − 1))A(i + 1)) =

J(i)∑
k=1

αkδs−(k−1),1 = αs,

so the theorem is proved.
Example: Let t = {t1, . . . , t12}. Since 12 = 3 2 2, we have p1 = 3, p2 = 2,

and p3 = 2, and the matrix U12 is presented above. Obviously, A(1) = 12, A(2) = 4,
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A(3) = 2, so if Pi(t) is the orthogonal projection of t into the subspaces Wi, i = 0, 1, 2,
then by Theorem 2 we have

P0(t) = {t12, t12 . . . , t12},

P1(t) = {t4, t4, t4, t4, t8, t8, t8, t8, t12, t12, t12, t12},

P2(t) = {t2, t2, t4, t4, t6, t6, t8, t8, t10, t10, t12, t12}.

Remark 2. By working as in Lemma 1 we can see that:

(Um)
−1

=
(
Hm ({1})

{
HA(i+2)

(
QJ(i)(V

pi+1

k )
)
, k = 1, . . . , pi+1 − 1, i = 0, . . . , N − 1

} )
,

so the first column of (Um)−1 has only one nonzero entry ((Um)−1)m,1 = 1. All other
columns result from dilation and translation of the column vector defined in (5); thus
all columns of (Um)−1 have always two nonzero entries 1 and −1.

Finally, we establish a connection of the linear invertible transform: Tm : Cm →
Cm, Tm(x) = Umx, with the DTT, which is a standard way in computer science
and elsewhere for organizing information (see [7]). Recall that for any nonnegative
collection of data x = {xr : r = 1, . . . ,m}, where m satisfies (1), the structure of
DTT consists of N generations, with J(n)-branches in each generation, which we call
walks:

an,k =

⎧⎪⎨
⎪⎩

0 if R
(
n− 1,

⌈
k
pn

⌉)
= 0,

R(n,k)

R(n−1,� k
pn
�) if R

(
n− 1,

⌈
k
pn

⌉)
�= 0,

n = 1, . . . N, k = 1, . . . , J(n),

where R(n, k)(x) =
∑kA(n+1)

r=(k−1)A(n+1)+1 xr and J(n) and A(n) are as in (1a) and (1b),

respectively. The connection of the linear transform Tm with the DTT is obtained
throughout the following estimation:

R(n, k) =

⎧⎪⎪⎨
⎪⎪⎩

(Tm(x)) (1) if n = 0,

(Tm(x))
(
k − � k

pn
�+ 2

)
if k /∈ [0]pn and n = 1,

(Tm(x))
(
J(n− 1) + � k

pn
�+ J(n− 1)Mod(k − 1, pn)

)
if k /∈ [0]pn and n > 1,

R
(
n− 1,

⌈
k
pn

⌉)
−
∑k−1

i=k−pn+1
R(n, i), if k ∈ [0]pn

(8)

for k = 1, . . . , J(n).

Appendix A. Let epn

i be row vectors of the identity matrix Ipn
, and V pn

j , j =
1, . . . , pn − 1, are column matrices defined in (5); then

⎛
⎜⎜⎜⎝

Dpn (Um(n− 1))
QJ(n−1) (epn

1 )
...

QJ(n−1)

(
epn

pn−1

)

⎞
⎟⎟⎟⎠
(

QJ(n−1)

((
epn
pn

)T)
QJ(n−1) (V pn

1 ) . . . QJ(n−1)

(
V pn

pn−1

) )

=

⎛
⎜⎜⎜⎝

Um(n− 1) O
IJ(n−1)

. . .

O IJ(n−1)

⎞
⎟⎟⎟⎠ .
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Proof. It suffices to prove that
(i) Dpn(Um(n− 1))QJ(n−1)((e

pn
pn

)T ) = Um(n− 1);
(ii) Dpn(Um(n − 1))QJ(n−1)(V

pn

j ) = O, k = 1, . . . , pn − 1, where O is the zero
matrix in MJ(n−1);

(iii) QJ(n−1)(e
pn

k )QJ(n−1)((e
pn
pn

)T ) = O, k = 1, . . . , pn − 1, where O is the zero
matrix in MJ(n−1);

(iv) QJ(n−1)(e
pn

j )QJ(n−1)(V
pn

l ) = δj,lIJ(n−1), j, l = 1, . . . , pn − 1, and δj,l is Kro-
necker’s delta.

Indeed we have the following:
(i) We use (2) and (3) to perform the following block-matrix multiplication:

Dpn (Um(n− 1))QJ(n−1)

((
epn
pn

)T)
=

[
Dpn

(
(Um(n− 1))i,j

) (
epn
pn

)T ]J(n−1)

i,j=1

= Um(n− 1).

(ii) We observe that all column matrices V pn

j have zero mean, so the block-matrix
multiplication leads to:

Dpn
(Um(n− 1))QJ(n−1)

(
V pn

j

)
=

[
Dpn

(
(Um(n− 1))k,l

)
V pn

j

]J(n−1)

k,l=1
.

Since Dpn((Um(n − 1))k,l)V
pn

j = (Um(n − 1))k,l
∑pn

r=1 v
pn

rj = 0, we have the
result.

(iii) The obvious consequence of the fact that epn

k

(
epn
pn

)T
= 0, k = 1, . . . , pn − 1.

(iv) QJ(n−1)

(
epn

j

)
QJ(n−1) (V pn

l ) =

(
epn

j V pn

l O
. . .

O epn

j V pn

l

)
,

j, l = 1, . . . , pn − 1. Since epn

j V pn

l =
∑pn

k=1 δk,jv
pn

k,l = δj,l, we get the
result.

Appendix B. Let σn be the permutation defined in Proposition 1, then sgn σn =
(−1)qn , where qn is the number of all inversions in the permutation σn and qn equals
to

qn =
pn − 1

2
J(n− 1)

(
1 + J(n− 1) +

pn − 2

2
(J(n− 1) − 1)

)
.

Proof. A pair of elements (σn(i), σn(j)) is called an inversion, if i < j and σn(i) >
σn(j). The number of elements less than i to the right of i in σn gives the ith element of
the inversion vector IVσn corresponding to σn, and qn equals the sum of all inversion
vector elements.

The last column of the following matrix gives the elements of the inversion vector:

i σn(i) Inversion vector elements
IVσn (i)

1, . . . , J(n − 1) ipn i(pn − 1)

J(n − 1) + 1, . . . , 2J(n − 1) 1 + Mod(i − 1, J(n − 1))pn Mod(i − 1, J(n − 1))(pn − 2)

. . . . . . . . .

(pn − 2)J(n − 1) + 1, . . . , (pn − 1)J(n − 1) pn − 2 + Mod(i − 1, J(n − 1))pn Mod(i − 1, J(n − 1))

(pn − 1)J(n − 1) + 1, . . . , J(n) pn − 1 + Mod(i − 1, J(n − 1))pn 0 for all i’s
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Now we have sgn σn = (−1)qn , where

qn =

J(n)∑
i=1

IVσn(i) =

J(n−1)∑
i=1

i(pn − 1) +

2J(n−1)∑
i=J(n−1)+1

Mod(i− 1, J(n− 1))(pn − 2) + · · ·

= (pn − 1)

J(n−1)∑
i=1

i + (pn − 2)

J(n−1)−1∑
i=1

i + · · · +
J(n−1)−1∑

i=1

i

= (pn − 1)
J(n− 1) (1 + J(n− 1))

2
+

J(n− 1) (J(n− 1) − 1)

2

(pn − 2)(pn − 1)

2
,

and elementary calculations yield the result.
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OPTIMIZING THE COUPLING BETWEEN TWO ISOMETRIC
PROJECTIONS OF MATRICES∗
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Abstract. In this paper, we analyze the coupling between the isometric projections of two
square matrices. These two matrices of dimensions m × m and n × n are restricted to a lower k-
dimensional subspace under isometry constraints. We maximize the coupling between these isometric
projections expressed as the trace of the product of the projected matrices. First we connect this
problem to notions such as the generalized numerical range, the field of values, and the similarity
matrix. We show that these concepts are particular cases of our problem for special choices of m,
n, and k. The formulation used here applies to both real and complex matrices. We characterize
the objective function, its critical points, and its optimal value for Hermitian and normal matrices,
and, finally, give upper and lower bounds for the general case. An iterative algorithm based on the
singular value decomposition is proposed to solve the optimization problem.

Key words. trace maximization, generalized numerical range, isometry, singular value decom-
postion
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1. Introduction. The problem of projection of matrices in lower-dimensional
subspaces is of great interest for a large field of applications. The projection of
matrices provides an easier visualization and comprehension of the initial problem and
is often used to reduce the complexity of some computational problems. Moreover
the coupling between these projections can reveal some particularities inherent to the
data which can be analyzed and interpreted.

We consider the coupling or similarity between two “projected” matrices A and
B, respectively, of dimensions m×m and n×n, expressed as the real part of the trace
of the product of the isometric projections U∗AU and V ∗BV :

� tr(U∗AUV ∗B∗V )(1.1)

under the constraint that U∗U = V ∗V = Ik, where Ik denotes the identity matrix
of dimension k, with k ≤ min(m,n). In this paper, we will consider both real and
complex matrices. The notation will be different for the real and complex cases, i.e.,
T and ∗, respectively for the transpose and complex conjugate transpose, the real
inner product and real-valued inner product, respectively, for the real and complex
case (see the notations in section 2.1). In particular, for real matrices, the coupling
we consider is the following:

tr(UTAUV TBTV ).(1.2)
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Most results are developed for the complex case. When results are different for the
real and complex problems, we explicitly mention this; otherwise, we consider only
the complex problem.

This is a generic problem which can be linked to various applications treated
in the literature and which has been studied extensively in a variety of contexts for
particular dimensions of the projection and of the matrices. A first field of application
for real matrices lies in the analysis of graphs. The notion of the graph similarity
matrix, which is a matrix that expresses how similar the nodes of two graphs are,
has recently been introduced in [2]. For undirected graphs, the similarity matrix is
the product of the isometries U and V T maximizing (1.2) where A and B are real
symmetric adjacency matrices and which is obtained with k equal to one. The graph
similarity matrix is, e.g., useful for the development of efficient search engines or
the automatic extraction of synonyms in a dictionary. Another important task in
graph analysis is that of graph matching, which is a fundamental problem in pattern
recognition and in shape and image analysis (see, e.g., [6] for an overview of graph
matching techniques). A common class of methods in graph matching is the spectral
methods in which spectral properties of characteristic matrices are used to compare
the graphs. The spectral method developed in [4] combines a projection technique and
a clustering algorithm to match the graphs in a lower-dimensional subspace. It can be
shown that the step of projection used by the authors is equivalent to maximizing (1.2)
for symmetric matrices A and B. A second field of application where relevant matrices
are complex concerns experiments in quantum mechanics and in particular the task of
maximizing the signal intensity in coherent ensemble spectroscopy (see, e.g., [7], [9],
[16]). Indeed, the spectroscopic experiments require optimal unitary transformations
of a given initial operator onto a target operator maximizing the overlap between
these two operators. From a mathematical point of view, maximizing this overlap
is equivalent to maximizing an expression similar to (1.1) where all of the matrices
are square. The optimal value constitutes a transfer bound called the generalized
numerical radius of A.

In the linear algebra literature, problem (1.1) has also been studied for particular
cases and dimensions, and it hence constitutes an extension of a variety of known
problems. For the case where all of the matrices are square, this problem corresponds
to the generalized numerical range. See, e.g., [13] or [14] for a survey on the properties
of the generalized numerical range. For the scalar case, which corresponds to a one-
dimensional projection, the expression (1.1) is equivalent to the product of the field
of values of two matrices (see, e.g., [12]). In this paper we consider matrices A and B
of different dimensions and an arbitrary dimension k. We treat also the complex and
real cases.

There exist many numerical algorithms to maximize (1.1) for particular dimen-
sions of the matrices (e.g., [1], [3], [7], [9]). We develop here a simple recursive
algorithm valid for the general case, i.e., for complex or real problems and for all
dimensions of the matrices. Characterizations of the fixed points of the algorithm are
presented.

The paper is organized as follows. In section 2, we introduce some notations. In
section 3, we define the problem considered in the paper which consists of maximizing
an expression similar to (1.1). We recall some important results from the literature
that we can link to our problem. The first one concerns square matrices and appears
in the field of the generalized numerical range and in the context of semidefinite
programming relaxations. The second case is about one-dimensional projections and
is linked to the field of values of matrices. We extend also some of these results. The
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main new results are in section 4, where we characterize the critical points of the
problem. Then we focus on the case of Hermitian and normal matrices, and we give
lower and upper bounds for the optimal value. In section 5, we propose a simple
algorithm to solve the optimization problem. Some numerical experiments are also
presented. The last section 6 summarizes the results and describes some directions
for future research.

2. Notations. In this section, we introduce some notations used in the paper.
The first part treats the complex and real-valued inner product of matrices. The
second part summarizes some definitions and results about gradients of functions
with matrix arguments. Finally, the definitions of an isometry and of an isometric
projection are given.

2.1. Inner product. Let R
m×n and C

m×n denote the set of all m× n real and
complex matrices, respectively, and let XT , X̄, and X∗ represent, respectively, the
transpose, the complex conjugate, and the complex conjugate transpose of X. The
inner product between matrices is defined as follows. For X, Y ∈ R

m×n, the real
inner product is denoted by

(2.1) 〈X,Y 〉 =

m∑
i=1

n∑
j=1

XijYij

and can be linked to the trace function of a matrix:

〈X,Y 〉 = tr(XY T ) = tr(XTY ).

For complex matrices X, Y ∈ C
m×n, another inner product often useful in optimiza-

tion is the real-valued inner product defined by:

(2.2) 〈X,Y 〉H = 〈�(X),�(Y )〉 + 〈�(X),�(Y )〉,

where �(X) and �(X) represent the real and the imaginary part of X, respectively.
This inner product can be linked again to the trace

〈X,Y 〉H = � tr(X∗Y )

and satisfies the following properties:

(2.3) 〈X,Y 〉H = 〈Y ∗, X∗〉H = 〈X∗, Y ∗〉H .

For complex vectors x, y ∈ C
n, the real-valued inner product is defined similarly by:

(2.4) 〈x, y〉H =

n∑
i=1

�(x̄iyi) = 〈�(x),�(y)〉 + 〈�(x),�(y)〉.

2.2. Gradients. Let f : C
m×n → R be a differentiable real-valued function with

matrix argument X. Then the first-order approximation of f at a point X can be
expressed as

f(X + Δ) = f(X) + 〈∇f(X),Δ〉H + o(‖Δ‖),(2.5)

where the gradient ∇f(X) is the m×n matrix whose (i, j) entry is ∂f(X)
∂Xi,j

. As particular

examples, we provide some gradients of inner-product functions with respect to a
matrix X:

∇〈A,X∗X〉H = X(A + A∗),(2.6)

∇〈X∗AX,B〉H = AXB∗ + A∗XB.(2.7)
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2.3. Isometry and isometric projection. Let A ∈ C
m×m and U ∈ C

m×k,
k ≤ m, be given. If U∗U = Ik, with Ik the identity matrix of dimension k, then U is
called an isometry and U∗AU is called an isometric projection of A.

3. Main known results and some extensions of these results. For A ∈
C

m×m and B ∈ C
n×n, we consider the following problem:

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H ,(3.1)

where U ∈ C
m×k and V ∈ C

n×k, with k ≤ min(m,n). If the matrices A and B
are real, one could restrict U and V to be real also which is then a different problem
expressed by:

max
UT U=Ik
V T V =Ik

〈UTAU, V TBV 〉.(3.2)

It will be clear, depending on the context, which case we consider. Since the algebraic
structure of the constraints and the objective function is the same, most results for
both problems will be essentially the same. Let us remark that, for k = min(m,n),
(3.1) is equivalent to

max
Q∗Q=In

〈Q∗AQ,B〉H ,(3.3)

where Q = UV ∗ is an isometry of dimension m × n. The general problem is then
reduced to an optimization problem over only one variable Q.

This problem has largely been studied for particular dimensions of m,n, and
k. Section 3.1 contains results for k = m = n, while section 3.2 summarizes some
properties for k = 1.

3.1. Square matrices U and V . In the case where m, n, and k are equal, U
and V are square matrices, and the problem is reduced to (3.3). This problem has
been studied in a variety of contexts. In the rest of the section, we summarize some
important results for the generalized numerical range (or C-numerical range) and for
semidefinite programming relaxations providing bounds on the problem. To link the
notations used in the literature for this problem with (3.3), we point out that

〈Q∗AQ,B〉H = � (tr(AQB∗Q∗)) = � (tr(B∗Q∗AQ)) .

3.1.1. C-numerical range. The problem (3.3) is equivalent to maximizing the
real part of the C-numerical range of A (or generalized numerical range) introduced
by [8] and defined by

(3.4) WC(A) := {tr(C∗Q∗AQ) : Q is unitary}.

See, e.g., [13] for a survey on the properties of the C-numerical range. In the literature
it is pointed out that the C-numerical range and in particular its geometry can be
quite complicated. For all A ∈ C

n×n, WC(A) is convex if C is Hermitian or if C is
normal with its eigenvalues colinear in the complex plane. Moreover, for general A
and C, WC(A) is always star-shaped with respect to the star-center (trA)(trC)/n [5]
but not necessarily convex. For example, [19] gave an example in which C is normal
but not Hermitian and where WC(A) is not convex. Upper bounds on the size of
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WC(A) are given in [9]. In the general case there is no closed formula for computing
the C-numerical range. One can only come up with an approximation. For example,
[9] provides a gradient flow leading to a numerical algorithm to approach the set of
critical points of �(tr(C∗Q∗AQ)). See also [3] and [7].

The C-numerical range has been studied by many authors in the past few decades
and has many domains of applications, e.g., in quantum dynamics for the study of the
efficiency of polarization or coherence transfer between quantized states under unitary
transformations. This application is equivalent to computing the C-numerical radius
of A for certain sparse nilpotent matrices C and A (e.g., [7], [9], [16]). Some authors
have also used the numerical range to study problems on norms of operators (see,
e.g., [15]).

3.1.2. Semidefinite programming relaxations.
Real matrices. In the case of real and symmetric matrices A and B, the problem

(3.3) is reduced to a classical problem called the quadratically constrained quadratic
program defined over orthogonal matrices:

μP = max
QTQ=I

tr(AQBQT ).(3.5)

This problem can be solved exactly, and the optimal value is obtained by performing
spectral decompositions of A and B (see, e.g., [1] or [18]). Let us suppose that the
orthogonal diagonalizations of A, B are A = UDAU

T and B = V DBV
T , respectively,

where the eigenvalues in DA and in DB are ordered in a nondecreasing fashion. Then
the optimal value of (3.5) is trDADB , and the optimal solution is obtained by using
the orthogonal matrices that yield the diagonalizations, i.e., Qopt = UV T .

For real matrices and by a reasoning similar to the one developed in [20], we con-
struct the following primal problem νP and its semidefinite programming relaxation
νD:

νP = max
QT Q=I

QQT =I

tr(AQBTQT ),

νD = min trS + trT(3.6)

such that (s.t.)
B ⊗A

2
+

BT ⊗AT

2
− S ⊗ I − I ⊗ T � 0,

S = ST ,
T = TT ,

where S and T are the symmetric matrices of Lagrange multipliers used to relax
the constraints QTQ = I and QQT = I and ⊗ denotes the Kronecker product. The
redundant constraint QQT = I is added in order to close the duality gap for symmetric
matrices A and B. Indeed, for symmetric A and B, it is proved that strong duality
holds; νP = νD [1]. A few examples show that there can be a nonzero duality gap
in the case of arbitrary matrices which are not symmetric. Strong duality does not
hold in this case, but this semidefinite relaxation provides an upper bound νD for the
problem we consider νP ≤ νD. See section 5.3.2 for an example where a duality gap
occurs.

Complex matrices. A complex matrix A = AR+jAI , with j =
√
−1, of dimension

n× n can be represented by a real matrix Ã of dimension 2n× 2n of the form:

Ã =

(
AR AI

−AI AR

)
.(3.7)
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For a Hermitian matrix A, Ã is symmetric, while, for a unitary matrix Q, Q̃ is
orthogonal. If the matrices A, B, and Q ∈ C

n×n are represented by the matrices Ã,
B̃, and Q̃ ∈ C

2n×2n, respectively, we obtain the following link between the two trace
functions:

2� tr(AQB∗Q∗) = tr(ÃQ̃B̃T Q̃T ).(3.8)

One can easily prove this relation by developing the two terms of the equality. The
problem (3.5) in terms of complex matrices is thus equivalent to maximizing

max
Q̃T Q̃=I

1

2
tr(ÃQ̃B̃T Q̃T )(3.9)

expressed in terms of real matrices. The dual method developed previously for real
matrices can then be applied in the same way and provides an upper bound for the
problem.

For Hermitian matrices A and B, strong duality holds because the representations
Ã and B̃ are symmetric, and then the gap between the primal and dual problems is
zero. In this case, we know that the solution is simply the trace of the product of the
diagonal matrices of the eigenvalues of Ã and B̃ ordered in an adequate way trDÃDB̃ .
By developing the expressions one can easily see that trDÃDB̃ = 2 trDADB . The
optimal value obtained for Hermitian matrices is then the product of the eigenvalues
of the matrices. For general complex matrices A and B, the dual problem provides
only an upper bound for the initial problem.

3.2. The one-dimensional case. When k equals one, the matrices U and V are
reduced to vectors u and v, respectively, and the problem (3.1) becomes

max
u∗u=1
v∗v=1

〈u∗Au, v∗Bv〉H .(3.10)

This problem is related to the notion of the field of values. The field of values of a
matrix A (also known as the numerical range) is defined by [12]

F (A) := {x∗Ax : x ∈ C
n, x∗x = 1}.

The problem is then reduced to obtaining the maximum of the products of the ele-
ments from the fields of values of A and of B.

The field of values is known to be a convex subset of the complex plane, while the
product of two fields of values F (A)F (B) is generally not a convex set. We provide a
simple counterexample.

Example 1. Let

A =

(
1 0
0 j

)
, B =

(
−1 0
0 −j

)
.

Then F (A) is the line segment joining 1 and j, and F (B) is the line segment joining
−1 and −j. Thus F (A)F (B) is not a convex set since 1, −1 ∈ F (A)F (B) and 0 /∈
F (A)F (B).

In the real and Hermitian cases, we obtain the exact optimal value of the function.
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3.2.1. Hermitian case. For a Hermitian matrix A, the field of values is the
interval

[λmin (A) , λmax (A)] ,

with λmin(A) and λmax(A) the smallest and largest eigenvalues of A, respectively. The
solution of (3.10) is then the product of the adequate extremal (smallest and largest)
eigenvalues of the Hermitian matrices A and B depending on their signs. The solutions
u and v providing the optimum are the eigenvectors of A and B corresponding to the
eigenvalues providing the solution, respectively.

3.2.2. Real case. For a real matrix A, the field of values could be complex in
general. The real field of values associated with a real square matrix A is defined by
[12]

FR(A) := {xTAx : x ∈ R
n, xTx = 1}.

If we notice that FR(A) = FR(AH), with AH = A+AT

2 the symmetric part of A, then
it is sufficient to consider only the symmetric part of the matrix in order to study
the real field of values. FR(A) is the real interval joining the smallest and the largest
eigenvalues of AH and is thus always convex. The solution of (3.10), for A, B, u,
and v real, is then the product of the adequate extremal eigenvalues of AH and BH

depending on their signs.
In the particular case of real symmetric matrices, this scalar case can be linked

to the concept of the similarity matrix S introduced in [2]. This matrix expresses
how similar vertices of two graphs are and is defined as a particular fixed point of the
iteration

Sk+1 =
ASkB

T + ATSkB

‖ASkBT + ATSkB‖F
,(3.11)

with the Frobenius norm ‖.‖F =
√
〈., .〉 and where A and B, representing the ad-

jacency matrices of the graphs, have nonnegative elements. In the case where the
adjacency matrix of one graph is normal, the similarity matrix has rank one and can
then be decomposed into the product of two vectors u and v, S = uvT , and it satisfies
the equation ρS = ASBT + ATSB [2]. In the case of undirected graphs which are
characterized by symmetric adjacency matrices, u and v are the Perron vectors of A
and B. The solutions u and v of (3.10) are then those giving the similarity matrix S.
In general S is not of rank one, but we will see in section 5.1 an algorithm to solve
the corresponding optimization problem. The similarity matrix can be linked to our
problem and is obtained as the limit of the normalized iterates Auiv

T
i B

T +ATuiv
T
i B.

4. The general case. In this section we provide some results obtained for the
general problem

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H ,(4.1)

where A ∈ C
m×m, B ∈ C

n×n, U ∈ C
m×k, and V ∈ C

n×k, with k ≤ min(m,n).
We derive first the expressions for the critical points of the optimization problem.

Then we consider some particular cases, i.e., when one matrix is Hermitian and when
the two matrices are normal. An upper and a lower bound to the general problem are
also obtained by decomposing the problem into the sum of two Hermitian problems.
Let us mention that the techniques used in the rest of the section are quite similar to
the ones used in [9].
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4.1. Critical points. We consider the following problem:

max
U∗U=Ik
V ∗V =Ik

F (U, V ),(4.2)

where the objective function

(4.3) F (U, V ) = 〈U∗AU, V ∗BV 〉H =
1

2
[〈U∗AU, V ∗BV 〉H + 〈U∗A∗U, V ∗B∗V 〉H ]

according to the trace properties (2.3). The problem is equivalent to maximizing the
coupling between two constrained matrices A and B. This is an optimization problem
of a continuous function F (U, V ) on a compact domain. In particular, the constraint
set constitutes a smooth manifold as a product of two compact Stiefel manifolds (see,
e.g., [10]). There always exists a solution U and V optimizing the function such that
the first-order conditions are satisfied.

The first-order optimality conditions for (4.2) can be derived from the Lagrangian
L(U, V,X, Y )

(4.4)
L(U, V,X, Y ) =

1

2
[〈U∗AU, V ∗BV 〉H + 〈U∗A∗U, V ∗B∗V 〉H

+ 〈X, I − U∗U〉H + 〈Y, I − V ∗V 〉H ],

where X and Y are Hermitian matrices of Lagrange multipliers for the isometry
constraints. Partial gradients of L with respect to (U, V ) according to (2.6) and (2.7)
lead to the following first-order optimality conditions:

∇UL = AU (V ∗B∗V ) + A∗U (V ∗BV ) − UX = 0,

∇V L = BV (U∗A∗U) + B∗V (U∗AU) − V Y = 0

or, equivalently,

UX = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Y = BV (U∗A∗U) + B∗V (U∗AU),

and of course the constraints U∗U = V ∗V = I. It easily follows from this that
X = Y . If we decompose X = Y by an eigendecomposition ÛΛÛ∗, where Û ∈ C

k×k

is an unitary matrix, then we can replace U by UÛ and V by V Û which amounts to
changing the bases in which we describe the spaces Im(U) and Im(V ), the images
of U and V . In this particular coordinate system the above first-order conditions
would have a real diagonal matrix Λ with ordered diagonal elements λi ≥ λi+1,
i = 1, . . . , k − 1:

(4.5)
UΛ = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Λ = BV (U∗A∗U) + B∗V (U∗AU).

4.2. Case where one matrix is Hermitian. If A is Hermitian or A = A∗,
the maximum of (4.1) is achieved for matrices U and V corresponding, respectively,
to the dominant eigenvectors of A and (B + B∗). Moreover UΛV ∗ is exactly of rank
k. In other words, in this case the problem is decoupled regarding the matrices A and
B, and the solutions U and V satisfy

(4.6)
AU = UAsub,

(B + B∗)V = V Bsub,
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where Asub and Bsub are diagonal matrices of dimension k whose elements are the
dominant eigenvalues of A and (B+B∗), respectively. The following theorem provides
a characterization of the maximum of (4.1).

Theorem 4.1. If A = A∗,

max
U∗U=Ik
V ∗V =Ik

〈U∗AU, V ∗BV 〉H =
1

2
max
π1,π2

(
k∑

i=1

απ1(i)βπ2(i)

)
,(4.7)

where α1, . . . , αm and β1, . . . , βn are the real eigenvalues of A and (B+B∗) and π1(.)
and π2(.) permutations of 1, . . . ,m and 1, . . . n, respectively.

Proof. The solution (U, V ) satisfies the equations for the critical points

(4.8)
Λ = U∗AUV ∗(B + B∗)V,

Λ = V ∗(B + B∗)V U∗AU,

which point out that the two matrices U∗AU and V ∗(B + B∗)V commute and are
thus simultaneously diagonalizable under the same unitary transformation W such
that

(4.9)
W ∗U∗AUW = DA,

W ∗V ∗(B + B∗)VW = DB .

The expressions in (4.8) become

(4.10)
W ∗ΛW = Λ̂ = DADB ,

W ∗ΛW = Λ̂ = DBDA,

where Λ̂ is diagonal as a product of two diagonal matrices DA and DB . In this
coordinate system, the critical point condition (4.5) can be expressed as

uiλi = Auiβi,

viλi = (B + B∗)viαi,

where αi and βi are the eigenvalues of A and (B + B∗), respectively. If λi �= 0, it is
obvious that ui and vi are eigenvectors of A and (B+B∗), respectively. The matrices
U and V providing the optimum are thus composed of the dominant eigenvectors. If
λi = 0, the above formulas do not imply that both ui and vi are eigenvectors, since
only one of αi and βi needs to be zero, but it easy to see that one can choose both ui

and vi to be eigenvectors without altering the objective function.
It follows from (4.8) and (4.10) that the value of F for a critical point is equal to

the trace of

(4.11)
1

2
W ∗U∗AUV ∗(B + B∗)VW.

The maximal value for all of the critical points is therefore obtained by

(4.12)
1

2
max
π1,π2

(
k∑

i=1

απ1(i)βπ2(i)

)
,

where α1, . . . , αm and β1, . . . , βn are the real eigenvalues of A and (B+B∗) and π1(.)
and π2(.) permutations of 1, . . . ,m and 1, . . . n, respectively.
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Let us remark that, in the square case (k = m = n), Theorem 4.1 is a well-known
fact (see, e.g., [1]). In practice, problem (4.12) can be solved by the following theorem
(see Figure 4.1 for the notations).

Lemma 4.2. Let {αi, i = 1, . . . ,m} and {βi, i = 1, . . . , n} be the eigenvalues of
A and (B + B∗), respectively, ordered in a decreasing fashion. Let m+ and m− be
the number of nonnegative (positive or zero) and negative eigenvalues of A and n+

and n− the number of nonnegative and negative eigenvalues of (B + B∗), and let
k+ = min(m+, n+), k− = min(m−, n−), and l = k − (k+ + k−).

If k ≤ k+ + k−, the couples of eigenvalues yielding (4.12) are obtained as follows.
Take the k+ products formed with {(αi, βi), i = 1, . . . , k+} and the k− products formed
with {(αm−i+1, βn−i+1), i = 1, . . . , k−} whose values are all nonnegative. Order the
values of these products in a decreasing fashion, and keep the pairs of eigenvalues
producing the k largest products.

If k > k+ +k−, take the k+ +k− pairs as explained above whose products all have
a nonnegative value. The l remaining pairs will give products of negative values which
have to be as small as possible in absolute value. These pairs are the following:{

(αm+−i+1, βn++l−i+1), i = 1, . . . , l if k− = m−,

(αm++l−i+1, βn+−i+1), i = 1, . . . , l if k− = n−.
(4.13)

Proof. Let us put the points {αi, i = 1, . . . ,m} and {βi, i = 1, . . . , n} on two
parallel axes and connect the elements of the selected couples by a line (see Figure
4.1). The optimal couples satisfy two properties.

1. The elements have to be coupled such that no crossing between the pairs
appears. In other words, only parallel couplings are allowed. Indeed, if we consider
the couples (αp, βq) and (αr, βs), with p > r, q > s, i.e., αp ≤ αr and βq ≤ βs, we
have

αpβq + αrβs − αpβs − αrβq = (αp − αr)(βq − βs) ≥ 0.

The combination of the two couples (αp, βq) and (αr, βs) produces therefore a larger
value than the value obtained for (αp, βs) and (αr, βq).

2. The pairs formed by elements of the same sign have to be chosen first, since
their product is nonnegative and therefore larger than a product of two elements of
different sign.

Following these two properties, one can easily see that, for k ≤ k++k−, the couples
of eigenvalues producing (4.12) are the couples formed by the extremal eigenvalues
of A and (B + B∗). Indeed these products are all nonnegative and maximize the
function.

For k > k+ + k−, we take into account as well negative products that have to be
as small as possible in absolute value for all of the combinations of eigenvalues. Two
cases may occur: k− = m− or k− = n−. We consider k− = m− (see Figure 4.1), and
the reasoning for k− = n− is similar. In this case, the first k+ +k− pairs are the pairs
formed by elements of the same sign according to the second property. The l remaining
couples are formed as expressed by (4.13), which takes into account the first property
of no crossing between the elements. This expression also takes into account that
only the elements closest to zero are kept. Indeed, permuting any element from this
set with an element farther from zero will give a product, of negative value, greater
in absolute value. For example, if we take αm+−3 instead of αm+−2 in Figure 4.1,
we obtain the couple αm+−3βn++1, which is smaller than αm+−2βn++1. By reasoning
similarly for all of the elements, one proves that only the elements closest to zero yield
(4.12).
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Fig. 4.1. Representation of the eigenvalues αi of A and βi of B with their numbering (on the
top) and of the k adequate couples for finding the maximal combination (4.12) (on the bottom).

4.3. Sum of two Hermitian problems. The square matrices A and B can
always be decomposed into

A = AH + jAS , B = BH + jBS ,

where the matrices AH = A+A∗

2 and AS = A−A∗

2j are Hermitian matrices. The
objective function can also then be decomposed into a sum of two Hermitian problems

1

2
〈U∗AHU, V ∗BHV 〉H +

1

2
〈U∗ASU, V

∗BSV 〉H .(4.14)

This expression of the objective function provides an upper bound for the optimal
value. This bound is expressed in the following corollary.

Corollary 4.3. By Theorem 4.1, an upper bound for (4.2) where F (U, V ) is
expressed by (4.14) is

(4.15)
1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
max
π1,π2

(
k∑

i=1

αS
π1(i)

βS
π2(i)

)
,

with αH
i and βH

i the eigenvalues of AH and BH , respectively, and αS
j and βS

j the
eigenvalues of AS and BS, respectively. π1(.) and π2(.) are permutations of 1, . . . ,m
and 1, . . . n, respectively.

Let us point out that the permutations π1 and π2 in these two terms at the
respective maxima can be different. A lower bound can also be found by choosing the
matrices U and V optimizing one of the two Hermitian problems and by calculating the
value of (4.14) for this pair of matrices (U, V ). For example, if we take U1, V1 optimum



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COUPLING BETWEEN ISOMETRIC PROJECTIONS OF MATRICES 335

for 1
2 〈U∗AHU, V ∗BHV 〉H , the optimal solution is lower and upper bounded by

1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
〈U∗

1ASU1, V
∗
1 BSV1〉H

≤ max
U∗U=Ik
V ∗V =Ik

1

2
〈U∗AHU, V ∗BHV 〉H +

1

2
〈U∗ASU, V

∗BSV 〉H(4.16)

≤ 1

2
max
π1,π2

(
k∑

i=1

αH
π1(i)

βH
π2(i)

)
+

1

2
max
π1,π2

(
k∑

i=1

αS
π1(i)

βS
π2(i)

)
.

4.4. Case of two normal matrices. In the case of normal matrices A and B
(i.e., AA∗ = A∗A and BB∗ = B∗B), the optimal value for the objective function
can be found for k = 1 and k = m = n. For general k ≤ min(m,n), only an
upper bound for the optimal value of the problem can be obtained. The following
developments are based on the fact that all normal matrices are diagonalizable under
unitary transformation. We can thus make the matrices A and B diagonal matrices
DA and DB by unitary transformations, with DA = DAR

+ jDAI
and DB = DBR

+
jDBI

, where the subscripts R and I denote, respectively, the real and imaginary parts
of the matrices. In the rest of the section, αi, i = 1, . . . ,m, and βi, i = 1 . . . , n, are
the eigenvalues of A and B, respectively.

4.4.1. One-dimensional case.
Theorem 4.4. For k = 1 and for A and B normal matrices,

(4.17) max
u∗u=1
v∗v=1

〈u∗DAu, v
∗DBv〉H = max

i,j
�(αiβj).

Proof. For k = 1, and by using the diagonalization of the normal matrices A and
B, the maximization (4.1) can be expressed as follows:

(4.18) max
u∗u=1
v∗v=1

〈u∗DAu, v
∗DBv〉H .

This problem is equivalent to

max �
(

n∑
i=1

μiαi

)(
m∑
i=1

νiβi

)

(4.19)
s.t.

∑
i

μi = 1,

∑
i

νi = 1,

μi ≥ 0, νi ≥ 0,

where μi = |ui|2 and νi = |vi|2 are nonnegative real numbers. This amounts to
optimizing the real part of the products of convex combinations of the eigenvalues
of A and B. This problem is a bilinear form with respect to μi and νi. If we fix
μi, the problem is linear in νi and amounts to a linear programming problem. The
feasible set forms a polyhedron, and the optimal solution is situated on a vertex of
this polyhedron (or on a face of the polyhedron). We then apply the same reasoning
for μi to obtain the optimal solution. The problem is then equivalent to finding the
indices i and j maximizing

max
i,j

�(αiβj) = max
i,j

(αiRβjR + αiIβjI ),(4.20)

where the subscripts R and I denote, respectively, the real and imaginary parts.
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This problem can be solved in O(mn) operations by merely trying out all products.

4.4.2. Square matrices.
Theorem 4.5. For k = m = n and for A and B normal matrices,

(4.21) max
Q∗Q=I

〈Q∗AQ,B〉H = max
π2

n∑
i=1

(αiRβπ2(i)R + αiIβπ2(i)I ),

where π2(.) is a permutation of 1, 2, . . . , n.
Proof. By using again the diagonalization of the matrices, the maximization can

be expressed as follows:

max
Q∗Q=I

(〈Q∗DAR
Q,DBR

〉H + 〈Q∗DAI
Q,DBI

〉H) .(4.22)

If we develop the first term in the function and we define dAR
= diag(DAR

), dBR
=

diag(DBR
), αiR and βiR the elements i of dAR

and dBR
, and qi the row i of Q, we

obtain

〈Q∗DAR
Q,DBR

〉H =

n∑
i=1

〈|qi|2, dAR
〉βiR .

The last expression is equivalent to

〈Q̂dAR
, dBR

〉H ,

where Q̂ij = |Qij |2. Q̂ is an orthostochastic1 matrix and hence a type of doubly

stochastic matrix, i.e., Q̂ij ≥ 0 for all i, j and Q̂e = Q̂T e = e, with e the vector whose
entries are all equal to 1. The fact that the row and column sums are all +1 follows
from the fact that the rows and columns of Q are all Euclidean unit vectors. From
Birkhoff’s theorem (see [11]), Q̂ is a convex combination of permutation matrices, i.e.,

Q̂ =
∑n!

i=1 ciPi, with
∑n!

i=1 ci = 1 and ci > 0. The above quantity 〈Q̂dAR
, dBR

〉 is
real, and then the problem (4.22) is bounded by the maximum of

〈Q̂dAR
, dBR

〉 + 〈Q̂dAI
, dBI

〉(4.23)

for all Q̂ doubly stochastic matrices. We are optimizing over the set of doubly stochas-
tic matrices, but the solution is a permutation matrix and hence corresponds to a
permutation matrix Q as well. The maximal value of (4.23) is the solution of a
corresponding linear programming problem. This value is simply

max
π2

n∑
i=1

(αiRβπ2(i)R + αiIβπ2(i)I ),(4.24)

where π2(.) is a permutation of 1, 2, . . . , n.
In the case of Hermitian matrix A or B, the problem simplifies further and is

equivalent to optimizing

〈Q̂dAR
, dBR

〉

because the eigenvalues of a Hermitian matrix are real. We retrieve then the original
problem developed in section 4.2.

1A square matrix X of the form X = U ◦ Ū (i.e., X is the Hadamard product of U with itself,
Xij = U2

ij) for some unitary U is said to be orthostochastic.
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Table 4.1

Summary of the results and bounds obtained for particular matrices and dimensions.

Dimensions Matrices Optimum/Upper bound

k = m = n A Hermitian, B
arbitrary

Optimum: maximal combination of the eigenvalues of A
and (B + B∗) (4.7): 1

2
maxπ1,π2 (

∑k
i=1 απ1(i)βπ2(i))

A, B normal Optimum: maximal combination of the eigenvalues of A
and B (4.24): maxπ2

∑n
i=1(αiRβπ2(i)R

+ αiIβπ2(i)I
)

A, B arbitrary Bound: solution of the semidefinite programming relaxation
νD (3.6) or (4.15).

k = 1 A, B real Optimum: product of the adequate extremal eigenvalues of
the symmetric parts of A and B (section 3.2.2)

A, B Hermitian Optimum: product of the adequate eigenvalues of A and B
(section 3.2.1)

A, B normal Optimum: maximal combination of the real and imaginary
parts of an eigenvalue of A and an eigenvalue of B (4.20):
maxi,j (αRi

βRj
+ αIiβIj )

A, B arbitrary Bound: maximal sum of the products of the adequate
extremal eigenvalues of the Hermitian and skew-Hermitian
parts of A and B (4.15)

k ≤ min(m,n) A Hermitian, B
arbitrary

Optimum: maximal sum of the products of k eigenvalues of
A and (B + B∗) (4.7): 1

2
maxπ1,π2 (

∑k
i=1 απ1(i)βπ2(i))

A, B normal Bound: maximal sum of the combinations of the real and
imaginary parts of k eigenvalues of A and B (4.25):

maxπ1,π2

∑k
i=1(απ1(i)R

βπ2(i)R
) +

maxπ1,π2

∑k
i=1(απ1(i)I

βπ2(i)I
)

A, B arbitrary Bound: maximal sum of the combinations of the eigenvalues
of k Hermitian and skew-Hermitian parts of A and B (4.15):
1
2

maxπ1,π2 (
∑k

i=1 α
H
π1(i)β

H
π2(i)) +

1
2

maxπ1,π2 (
∑k

i=1 α
S
π1(i)β

S
π2(i))

4.4.3. General case. In the general case of normal matrices A ∈ C
m×m and

B ∈ C
n×n, for 1 ≤ k ≤ min(m,n) an upper bound for the general problem (4.1) can

be found. We optimize the function

max
U∗U=Ik
V ∗V =Ik

(〈U∗DAR
U, V ∗DBR

V 〉H + 〈U∗DAI
U, V ∗DBI

V 〉H) .

An upper bound to this problem is then

max
π1,π2

k∑
i=1

(απ1(i)Rβπ2(i)R) + max
π1,π2

k∑
i=1

(απ1(i)Iβπ2(i)I ),(4.25)

where αiR and βiR are the elements of diag(DAR
) and diag(DBR

), respectively, and
αiI and βiI the elements of diag(DAI

) and diag(DBI
), respectively. This problem is

combinatorial and differs from (4.24).

4.5. Summary of optimal values and bounds. Table 4.1 summarizes the
results and the bounds for the problem (4.1) developed in the previous sections.
These results and bounds depend on the kind of matrices and their sizes.

5. Numerical computation. In this section we present first an iterative algo-
rithm to find a critical point of (4.1). We then show the equivalence between the fixed
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points of the iteration and the critical points of (4.1). At the end of the section, we
present some numerical experiments of the algorithm applied to nilpotent matrices.

5.1. Algorithm. The proposed algorithm to solve (4.1) is based on the following
relations:

F (U, V ) = 〈U∗AU, V ∗BV 〉H

=
1

2
〈UV ∗, AUV ∗B∗ + A∗UV ∗B〉H

=
1

2
(〈UV ∗, AUV ∗B∗ + A∗UV ∗B + sUV ∗〉H − sk)

resulting from the properties (2.3) and where s is a constant scalar. Let us now define
the linear map Ms(X) = AXB∗ +A∗XB + sX, and then the problem of maximizing
F (U, V ) is equivalent to the following constrained maximization problem:

max
X

G(X) = 〈X,Ms(X)〉H s.t. X = UV ∗, U∗U = V ∗V = Ik.(5.1)

An algorithm for this problem is given in this section, but it relies on a few interme-
diate results. In order to show the uniqueness of the iterates of our algorithm, we will
need the following two lemmas.

Lemma 5.1. Let the singular value decomposition of the matrix M ∈ C
m×n be

partitioned as

M =
[
P1 P2

] [ Σ1 0
0 Σ2

] [
Q1 Q2

]∗
,

with P1 ∈ C
m×k, P2 ∈ C

m×(m−k), Q1 ∈ C
n×k, Q2 ∈ C

n×(n−k), Σ1 ∈ R
k×k, and

Σ2 ∈ R
(m−k)×(n−k) and where k ≤ min(m,n). Then the product P1Q

∗
1 is unique if

σmin(Σ1) > σmax(Σ2) for k < min(m,n) and if σmin(Σ1) > 0 for k = min(m,n).
Proof. This is a well-known result, discussed, e.g., in [12, Theorems 3.1.1 and

3.1.1’].
Notice that the pairs of matrices (P1, Q1) are not unique but are all given by

(P1R,Q1R), where R is a unitary matrix commuting with Σ1. But the degree of
freedom R disappears in the product P1Q

∗
1.

Lemma 5.2. Let ai, bi ∈ R, i = 1, . . . ,m, and let b1 ≥ b2 ≥ · · · ≥ bm ≥ 0. If∑m
i=1 ai ≤ k, k ≤ m, and 0 ≤ ai ≤ 1, i = 1, . . . ,m, then

m∑
i=1

aibi ≤
k∑

i=1

bi.

The upper bound is achieved if ai = 1, i ≤ k, and ai = 0, i > k. Moreover, this is the
unique solution achieving the upper bound if bk > bk+1 (k < m) or bk > 0 (k = m).

Proof. The inequality results from Proposition B.7 for majorized sequences in
[17] by remarking that

∑m
i=1 aibi = bTa and

∑k
i=1 bi = bT v, with

v = (1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
m−k

).

The upper bound is achieved if
∑k

i=1(1 − ai)bi =
∑m

i=k+1 aibi. The terms are
all nonnegative because bi ≥ 0 and 0 ≤ ai ≤ 1 for i = 1, . . . ,m. The condition∑m

i=1 ai ≤ k implies that

k∑
i=1

ai ≤ k − ε,

m∑
i=k+1

ai ≤ ε,
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with 0 ≤ ε. Therefore

k∑
i=1

(1 − ai)bi ≥ bk

k∑
i=1

(1 − ai) ≥ bkε

and

m∑
i=k+1

aibi ≤ bk+1ε.

If bk > bk+1 (or bk > 0 if k = m), the equality
∑k

i=1(1 − ai)bi =
∑m

i=k+1 aibi is thus
achieved if and only if ε = 0, i.e., all of the terms equal 0. This happens if a = v,
which is the unique solution.

We now propose an algorithm to solve (5.1) by using an iteration

Xi+1 = arg max
X

〈X,Ms(Xi)〉H

which is analyzed in the following theorem.
Theorem 5.3. Let Ms(Xi) ∈ C

m×n be given by

Ms(Xi) = AXiB
∗ + A∗XiB + sXi, Xi = UiV

∗
i , U

∗
i Ui = Ik = V ∗

i Vi,

with A ∈ C
m×m, B ∈ C

n×n, Ui ∈ C
m×k, and Vi ∈ C

n×k, where k ≤ min(m,n), and
s a constant which is strictly larger than smin := 4‖A‖2‖B‖2. Assume that Ms(Xi)
has an ordered singular value decomposition

Ms(Xi) =
[
P1 P2

] [ Σ1 0
0 Σ2

] [
Q1 Q2

]∗
= PΣQ∗,(5.2)

with P1 ∈ C
m×k, P2 ∈ C

m×(m−k), Q1 ∈ C
n×k, Q2 ∈ C

n×(n−k), Σ1 ∈ R
k×k, and

Σ2 ∈ R
(m−k)×(n−k). Let also U ∈ C

m×k, V ∈ C
n×k be isometries. Then

max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H =

k∑
i=1

σi(Ms)(5.3)

where {σi(Ms)} is the set of singular values of Ms(Xi) ordered in a decreasing way.
Moreover the maximizing solution X is unique and equals P1Q

∗
1.

Proof. We first show that σk(Ms) > smin/2 and σk+1(Ms) ≤ smin/2 and hence
that there is a gap between σk(Ms) and σk+1(Ms). This is proved as follows. The
k leading singular values of sXi are given by s and the others by 0, and the largest
singular value σ1(M0) of M0(Xi) = AXiB

∗ + A∗XiB is upper bounded by smin/2
because

σ1(M0) = ‖AXiB
∗ + A∗XiB‖2

≤ ‖AXiB
∗‖2 + ‖A∗XiB‖2

≤ ‖A‖2‖B‖2 + ‖A‖2‖B‖2 = 2‖A‖2‖B‖2 = smin/2.

We now apply the perturbation result (Theorem 3.3.16 in [12]) to MS(Xi) = M0(Xi)+
sXi and obtain

σk+1(Ms) ≤ σk+1(sXi) + σ1(M0) ≤ smin/2
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and

σk(Ms) ≥ σk(sXi) − σ1(M0) > smin/2.

We have

〈X,Ms(Xi)〉H = 〈X,PΣQ∗〉H = 〈P ∗XQ,Σ〉H ,

and the following two problems are equivalent:

max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H = max
X̃=ŨṼ ∗

Ũ∗Ũ=Ik=Ṽ ∗Ṽ

〈X̃,Σ〉H ,

where Ũ = P ∗U and Ṽ = Q∗V . Without loss of generality, we assume that n ≤ m
(otherwise the proof is very similar). Then

(5.4) 〈X̃,Σ〉H =

n∑
i=1

�(X̃ii)σi(Ms) ≤
n∑

i=1

|X̃iiσi(Ms)| ≤
n∑

i=1

σi(X̃∗Σ) ≤
k∑

i=1

σi(Ms)

according to Formula 3.3.10b and Lemma 3.3.1 in [12]. Moreover, since Ũ and Ṽ are
isometries, we have

0 ≤ |X̃ii| ≤ 1, i = 1, . . . , n,

and, by a reasoning similar to (5.4) with a matrix Ms(Xi) for which σi(Ms) = 1, i =
1, . . . , n,

n∑
i=1

|X̃ii| ≤ k.

According to Lemma 5.2,
∑n

i=1 |X̃ii|σi(Ms) =
∑k

i=1 σi(Ms) in (5.4) when |X̃ii| = 1

for i = 1, . . . , k and |X̃ii| = 0 for i > k. The upper bound in (5.4) is achieved if
all inequalities are equalities. This implies that �(X̃ii) = |X̃ii| = 1, i = 1, . . . , k,
and �(X̃ii) = |X̃ii| = 0, i > k, i.e., if and only if X̃ii = 1, i = 1, . . . , k, and
X̃ii = 0, i > k. Since X̃ = Ũ Ṽ ∗ and Ũ and Ṽ are isometries, it happens only when
X̃ = Ũ Ṽ ∗ = P ∗UV ∗Q =

(Ik 0
0 0

)
, i.e., when X = UV ∗ = P1Q

∗
1. The conditions of

Lemma 5.1 are satisfied, and the solution X is therefore unique.
The proposed iterative algorithm to solve (4.1) is then the following one. Choose

initial isometries U0, V0, and, for i ≥ 0 until convergence, compute

Xi+1 = fs(Xi) = arg max
X=UV ∗

U∗U=Ik=V ∗V

〈X,Ms(Xi)〉H ,(5.5)

where we assume that σk(Ms) > σk+1(Ms), which is always satisfied by choosing
adequately s. Theorem 5.3 gives the maximizing solution and shows that it is unique.
In practice, we apply the following procedure in which we switch again to the formu-
lation in terms of U and V : Choose initial isometries U0 and V0 and a value for s,
and, for i = 0, 1, . . . until convergence, compute the SVD:

[
Ui+1 U⊥

] [ Σ1 0
0 Σ2

] [
Vi+1 V⊥

]∗
= AUiV

∗
i B

∗ + A∗UiV
∗
i B + sUiV

∗
i .
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When the product UiV
∗
i converges (i.e., when ‖UiV

∗
i − Ui+1V

∗
i+1‖ → 0), there exists

a diagonal matrix Λ = Σ1 − sIk such that

UΛV ∗ = AUV ∗B∗ + A∗UV ∗B − U⊥Σ2V
∗
⊥,(5.6)

where U⊥ and V⊥ are matrices such that every column of U⊥ (resp., V⊥) is orthogonal
to every column of U (resp., V ). Σ2 is a diagonal matrix with elements which are all
smaller than the elements of Σ1. The scalar s must be larger than smin = 4‖A‖2‖B‖2.
The convergence is not proved, but in all experiments the process always converged
linearly to a solution.

Remark 1. An indication that the method has typically linear convergence can
be seen from the case k = 1 and one of the matrices Hermitian (say, A = A∗) (with
|α1| ≥ |αi|, i = 1, . . . ,m, |β1| ≥ |βi|, i = 1, . . . , n, and α1β1 > 0 to simplify the
reasoning; indeed the parameter s could then be zero). In this particular case, the
iteration becomes

(5.7) ui+1σi+1v
∗
i+1 = Auiv

∗
i (B + B∗)

because the right-hand side is exactly of rank one. This algorithm corresponds to the
combination of two power methods for A and B + B∗. Linear convergence is thus
guaranteed. The reasoning could be extended for arbitrary k ≤ min(m,n) and for
s = 0 in the iteration.

5.2. Relation to the optimization problem. In this part we show that solv-
ing the iteration (5.5) is equivalent to solving the optimization problem (4.1), whose
critical points are expressed by (4.5).

Theorem 5.4. Let s ≥ smin in Ms(UV ∗). Then every fixed point of fs(UV ∗)
yields a pair (U, V ) that is a critical point of F (U, V ). Conversely, every critical point
(U, V ) of F (U, V ) yields a fixed point UV ∗ of fs(UV ∗).

Proof. Let UV ∗ be a fixed point of fs(UV ∗). Then according to Theorem 5.3

UΣ1V
∗ + U⊥Σ2V

∗
⊥ = AUV ∗B∗ + A∗UV ∗B + sUV ∗.

Multiply this matrix by V and its Hermitian conjugate by U to get

U(Σ1 − sIk) = AUV ∗B∗V + A∗UV ∗BV,

V (Σ1 − sIk) = BV U∗A∗U + B∗V U∗AU.

This is nothing but the condition for a critical point (U, V ) of F (U, V ) (see (4.5)).
Conversely, let (U, V ) be a critical point of F (U, V ), and then

UΛ = AU(V ∗B∗V ) + A∗U(V ∗BV ),

V Λ = BV (U∗A∗U) + B∗V (U∗AU),

where we have chosen the diagonal ordered form for Λ (see (4.5)). Then, if we define
Σ1 = Λ + sI, with s > 4‖A‖2‖B‖2,

UΣ1 = Ms(UV ∗)V, Σ1V
∗ = U∗Ms(UV ∗).

These equations express that the diagonal elements of Σ1 are singular values of
Ms(UV ∗) and that the columns of U and V are corresponding right and left sin-
gular vectors. Hence there exists an SVD

Ms(UV ∗) =
[
U U⊥

] [ Σ1 0
0 Σ2

] [
V V⊥

]∗
,
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Table 5.1

Conjectured values for (5.10) given in [9].

n 1 2 3 4 5 6

fmax
n 2 4 4(1 +

√
3) 8(1 +

√
3) 16(1 +

√
3) + 4

√
5 32(1 +

√
3) + 8

√
5

where Σ2, U⊥, V⊥ contain the remaining singular values and vectors of Ms(UV ∗)
(where we can choose to order the diagonal elements of Σ2 as well). Moreover
σmin(Σ1) > 2‖A‖2‖B‖2 ≥ σmax(Σ2) (see proof of Theorem 5.3). This is the con-
dition for a fixed point UV ∗ of fs(UV ∗), according to Theorem 5.3.

Remark that, for arbitrary matrices A and B, local minima and local maxima
can exist, and then the algorithm may not always converge to the global optimum of
the function.

5.3. Numerical experiments. As an illustration of the algorithm, we consider
the problem of maximizing (4.1) in the case of special nilpotent matrices An and Bn.
For any n ∈ N, the nilpotent (2n+1 × 2n+1) matrices are recursively defined by

An =

(
Nn 0
0 Nn

)
, Bn =

(
0 0
I2n 0

)
,(5.8)

with Im the m×m identity matrix and Nn given inductively by

Nn =

(
Nn−1 0
I2n−1 Nn−1

)
, N0 = 0.(5.9)

The matrices U and V are chosen of the same dimension 2n+1 × 2n+1. The problem
(3.1) is equivalent to maximizing the C-numerical range of An

max
Q∗Q=I

〈Q∗AnQ,Bn〉H .(5.10)

In [9], the authors provide conjectured maximal values of the function, depending on
n. These values are represented in Table 5.1 and have been proved to be correct for
n = 1, 2.

5.3.1. Numerical values by application of the algorithm. We apply the
algorithm given in section 5.1 for nilpotent matrices An and Bn defined above (for
n = 1, . . . , 6). Initial unitary matrices U0 and V0 are randomly generated. The results
are presented in Figure 5.1. Each plot combines the trajectories for three different
initial values. The function

residual = fmax
n − max

U∗U=I
V ∗V =I

〈U∗AnU, V
∗BnV 〉H(5.11)

is plotted on a logarithmic scale against the number of iterations. The values of fmax
n

are taken from the above conjecture. The termination criteria we used for the different
plots are represented in Table 5.2. We observe a convergence to a maximum defined
by the values of the conjecture given in [9].

5.3.2. Duality gap. In this part we show that a duality gap can occur for the
problem (3.6) in the case of nonsymmetric matrices. Consider (3.6) for nilpotent
matrices A3 and B3. In the assumption that the conjecture in [9] is true, νP =
4(1 +

√
3) = 10.92. The value obtained for the dual problem is νD = 11. That proves

that a nonduality gap can occur, i.e., νP ≤ νD.
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Fig. 5.1. Minimization of the residual (5.11) by application of the SVD algorithm.
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Table 5.2

Termination criteria for the plots.

n Residual or Number of steps

1 < 10−6 > 1000
2 < 10−6 > 1000
3 < 10−6 > 1000
4 < 10−5 > 1000
5 < 10−4 > 1000
6 < 10−3 > 1000

6. Conclusion. In this paper, we analyze the coupling between two restricted
matrices under isometry constraints. Our problem provides a method to project
simultaneously the matrices in a subspace of arbitrary dimension k and can be applied
to both real and complex matrices. We indicate that it is an extension of various
problems found in the literature. Many applications can arise from this formulation.

We present some mathematical properties of the problem and we characterize the
maximal coupling for particular matrices such as Hermitian or normal matrices. In
general only an upper bound can be found theoretically.

We develop an iterative algorithm in order to reach the optimum, and we char-
acterize the fixed points. This algorithm is very simple to implement and is based on
the singular value decomposition. Because this problem is not convex, the analysis of
convergence and stability of the fixed points is difficult to realize.

Investigations of mathematical properties and applications of the similarity be-
tween restricted matrices can be pursued in several directions. A deeper analysis of
the convergence of the algorithm is worthwhile to consider. We outline in the rest of
the section a nonexhaustive list of some possible improvements and future research
directions.

The first possible improvement concerns the convergence of the algorithm. Exper-
imentally we observe a linear convergence to the optimum, but this convergence has
not yet been proved and remains an important point to develop in the future. Second,
because the problem is not convex, the analysis of the stability of the fixed points and
the study of their basins of attraction are not easy to obtain. This last point is thus a
delicate but interesting task to explore. From a more applied point of view, another
topic of interest is to investigate how the mathematical concepts proposed here can
be used, possibly in modified form, for applications in various areas. Some research
for the use of the algorithm in the graph matching problem has been initiated but
still needs further investigation. We can conclude that the problem envisaged in this
paper gives rise to the study of interesting mathematical properties but also to various
applications in different areas.

Acknowledgment. The authors thank the anonymous referee whose enormous
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CONVERGENCE OF THE DOMINANT POLE ALGORITHM AND
RAYLEIGH QUOTIENT ITERATION∗
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Abstract. The dominant poles of a transfer function are specific eigenvalues of the state space
matrix of the corresponding dynamical system. In this paper, two methods for the computation
of the dominant poles of a large scale transfer function are studied: two-sided Rayleigh quotient
iteration (RQI) and the dominant pole algorithm (DPA). First, a local convergence analysis of DPA
will be given, and the local convergence neighborhoods of the dominant poles will be characterized
for both methods. Second, theoretical and numerical results will be presented that indicate that
for DPA the basins of attraction of the dominant pole are larger than those for two-sided RQI. The
price for the better global convergence is only a few additional iterations, due to the asymptotically
quadratic rate of convergence of DPA, against the cubic rate of two-sided RQI.

Key words. eigenvalues, eigenvectors, dominant poles, two-sided Rayleigh quotient iteration,
dominant pole algorithm, subspace accelerated Newton method, rate of convergence, transfer func-
tion, modal model reduction

AMS subject classification. 65F15

DOI. 10.1137/060671401

1. Introduction. The transfer function of a large scale dynamical system often
has only a small number of dominant poles compared to the number of state variables.
The computation of the dominant poles that are specific eigenvalues of the system
matrix, and the corresponding modes, requires specialized eigenvalue methods. In
[15] Newton’s method is used to compute a dominant pole of single input single
output (SISO) transfer function: the dominant pole algorithm (DPA). In two recent
publications this algorithm is improved and extended to a robust and efficient method
for the computation of the dominant poles and modes of large scale SISO [23] and
MIMO [22] transfer functions.

This paper is concerned with the convergence behavior of DPA. First, DPA will
be related to the two-sided or generalized Rayleigh quotient iteration (RQI) [18, 20].
A local convergence analysis will be given, showing the asymptotically quadratic rate
of convergence. Furthermore, for systems with a symmetric state-space matrix, a
characterization of the local convergence neighborhood of the dominant pole will be
presented for both DPA and RQI. The results presented in this paper are sharp (in
some sense), in contrast to those found in the literature, for example, by Ostrowski
[17, 18] for DPA, and by Beattie and Fox [5] for RQI. Second, theoretical and numerical
results indicate that for DPA the basins of attraction of the most dominant poles are
larger than for two-sided RQI. In practice, the asymptotically quadratic (DPA) instead
of cubic rate (two-sided RQI) of convergence costs about two or three iterations.

The outline of this paper is as follows. Definitions and properties of transfer
functions and dominant poles and further motivation are given in section 2. The
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dominant pole algorithm (DPA) and its relation to the two-sided Rayleigh quotient
iteration (RQI) are discussed in section 3. In section 4 the local convergence of DPA
is analyzed. The basins of attraction of DPA and two-sided RQI are studied in section
5. Section 6 concludes the paper.

2. Transfer functions and poles. The motivation for this paper comes from
dynamical systems (A,E,b, c, d) of the form

(2.1)

{
Eẋ(t) = Ax(t) + bu(t),
y(t) = c∗x(t) + du(t),

where A,E ∈ R
n×n, E may be singular but the pencil (A,E) is regular, b, c,x(t) ∈

R
n, and u(t), y(t), d ∈ R. The vectors b and c are called the input and output vectors,

respectively. The transfer function H : C −→ C of (2.1) is defined as

(2.2) H(s) = c∗(sE −A)−1b + d.

The poles of transfer function (2.2) are a subset of the eigenvalues λi ∈ C of the
matrix pencil (A,E). An eigentriplet (λi,vi,wi) is composed of an eigenvalue λi of
(A,E) and corresponding right and left eigenvectors vi,wi ∈ C

n:

Avi = λiEvi, vi �= 0,

w∗
iA = λiw

∗
iE, wi �= 0.

It is well known that left and right eigenvectors corresponding to distinct eigenvalues
are E-orthogonal: w∗

iEvj = 0 if λi �= λj .
If the pencil is nondefective, then the eigentriplets may be selected such that the

first ñ eigenvalues are distinct and finite (λi �= λj if i �= j, i, j ≤ ñ):

b =

ñ∑
i=1

βiEvi + β∞Av∞, and c =

ñ∑
i=1

γiE
∗wi + γ∞A∗w∞;

i.e., b and c determine the eigenvectors to be selected in the eigenspaces {v | Av =
λiEv} and {w | w∗A = λiw

∗E}, respectively. The vectors v∞ and w∞ are in the
kernel of E and E∗, respectively. They correspond to the eigenvalue at ∞. It is
assumed that both vi and wi are nonzero and at least one of the coefficients βi or γi
is nonzero. The right and left eigenvectors vi and wi with w∗

iEvi �= 0 corresponding
to finite eigenvales are assumed to be scaled so that w∗

iEvi = 1.
The transfer function H(s) can be expressed as a sum of residues Ri ∈ C [14]:

(2.3) H(s) =

ñ∑
i=1

Ri

s− λi
+ R∞ + d,

where the residues Ri are

Ri = (c∗vi)(w
∗
i b),

R∞ (which is often zero) is the constant contribution of the poles at infinity, and
ñ ≤ n is the number of finite first order poles (to be assumed to be numbered first).
Note that Ri = 0 if w∗

iEvi = 0.
Although there are different indices of modal dominance [2, 10, 23, 29], the fol-

lowing [11] will be used in this paper.
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Fig. 2.1. The left figure shows the Bode plot of the transfer function (n = 66 states) of the
New England test system [15], together with the Bode plot of the k = 11th order modal equivalent,
constructed by projecting the system onto the modes of the 6 most dominant poles, which may belong
to complex conjugated pairs. The right figure shows part of the complex plane with part of the pole
spectrum (dominant poles are marked by asterisks, other poles by plus-signs), together with the initial
shifts for which DPA (marked yellow and red grid points) and two-sided RQI (light-blue and red)
converge to the most dominant pole λ = −0.467 ± 8.96i. Dark blue regions denote convergence to
less dominant poles. Real (imaginary) parts of initial shifts are at the horizontal (vertical) axis.

Definition 2.1. A pole λi of H(s) with corresponding right and left eigenvectors
vi and wi (w∗

iEvi = 1) is called the dominant pole if |Ri| > |Rj | for all j �= i.
An approximation of H(s) that consists of k < n terms with |Rj | above some

value determines the effective transfer function behavior [25] and is also known as the
transfer function modal equivalent (assuming R∞ = 0):

Hk(s) =

k∑
j=1

Rj

s− λj
+ d.

More generally, a pole λi is called dominant if |Ri| is not very small compared
to |Rj | for all j �= i. A dominant pole can be well observable and controllable in the
transfer function. Its presence can be observed in the Bode plot corresponding to (2.2)
(see Figure 2.1), which is a plot of |H(iω)| against ω ∈ R: in this example, peaks occur
at frequencies ω close to the imaginary parts of the dominant poles of H(s). The height
of the peaks, and the controllability/observability of the (dominant) pole that causes
the peak, also depends on the size of the real part of that pole (cf. (2.3)). Therefore,
in light of model order reduction by modal truncation, Definition 2.1 may not be
suitable, and a characterization in terms of |Ri|/|Re(λi)| might be more appropriate.
The purpose of this paper, however, is to analyze the convergence of the dominant
pole algorithm (DPA) [15], described in the following section, and compare it to the
convergence of the RQI. For this purpose, Definition 2.1 will do. For an overview of
model order reduction techniques, see [3].

The dominant poles are specific (complex) eigenvalues of the pencil (A,E) and
usually form a small subset of the spectrum of (A,E). They can be located any-
where in the spectrum; see also Figure 2.1. The two algorithms to compute poles
(eigenvalues) that will be discussed in this paper, DPA and two-sided RQI, both start
with an initial shift s0 but behave notably differently: as can be seen in Figure 2.1,
DPA converges to the most dominant pole for many more initial shifts than two-sided
RQI (marked by yellow and red points, and light-blue and red points, respectively;
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red denotes convergence for both DPA and two-sided RQI, while dark-blue denotes
convergence to less dominant poles). In section 5 more of such figures will be pre-
sented and for all figures the following holds: the larger the yellow areas (compared to
light-blue areas), the better the performance of DPA over two-sided RQI. The typical
behavior of DPA will be discussed in more detail in sections 4 and 5.

In both DPA and two-sided RQI, the generalized two-sided Rayleigh quotient plays
a central role. This quotient is defined as follows (cf. [18, 20]).

Definition 2.2. The generalized two-sided Rayleigh quotient ρ(x,y) is given by
ρ(x,y) ≡ ρ(x,y, A,E) ≡ y∗Ax/y∗Ex, provided y∗Ex �= 0.

Note that y∗Ex can be zero even if E is nonsingular.
Since the dominance of a pole is independent of d (where d is as in (2.3)), without

loss of generality d = 0 in the following.

3. The dominant pole algorithm (DPA). The poles of transfer function (2.2)
are the λ ∈ C for which lims→λ |H(s)| = ∞. Consider now the function G : C −→ C:

G(s) =
1

H(s)
.

For a pole λ of H(s), lims→λ G(s) = 0. In other words, the poles are the roots of
G(s), and a good candidate to find these roots is Newton’s method. This idea is the
basis of DPA [15] (and can be generalized to MIMO systems as well; see [16, 22]).

The derivative of G(s) with respect to s is given by

(3.1) G′(s) = −H ′(s)

H2(s)
.

The derivative of H(s) with respect to s is

(3.2) H ′(s) = −c∗(sE −A)−1E(sE −A)−1b.

Equations (3.1) and (3.2) lead to the following Newton scheme:

sk+1 = sk − G(sk)

G′(sk)

= sk +
1

H(sk)

H2(sk)

H ′(sk)

= sk − c∗(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b
.(3.3)

The formula (3.3) was originally derived in [6, 7]. Using xk = (skE − A)−1b and
yk = (skE − A)−∗c, the Newton update (3.3) can also be written as the generalized
two-sided Rayleigh quotient ρ(xk,yk), provided y∗

kExk �= 0:

sk+1 = sk − c∗(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b

=
c∗(skE −A)−1A(skE −A)−1b

c∗(skE −A)−1E(skE −A)−1b

=
y∗
kAxk

y∗
kExk

.
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Algorithm 1. The dominant pole algorithm (DPA).

INPUT: System (A,E,b, c), initial pole estimate s0, tolerance ε � 1
OUTPUT: Dominant pole λ and corresponding right and left eigenvectors v and w
1. Set k = 0
2. while not converged
3. Solve xk ∈ C

n from (skE −A)xk = b
4. Solve yk ∈ C

n from (skE −A)∗yk = c
5. Compute the new pole estimate

sk+1 = sk − c∗xk

y∗
kExk

=
y∗
kAxk

y∗
kExk

6. The pole λ = sk+1 with v = xk and w = yk has converged if

‖Axk − sk+1Exk‖2 < ε

7. Set k = k + 1
8. end while

An implementation of this Newton scheme is represented in Algorithm 1. It is also
known as the dominant pole algorithm [15].

The two linear systems that need to be solved in steps 3 and 4 of Algorithm 1
can be efficiently solved using one LU -factorization LU = skE − A, by noting that
U∗L∗ = (skE−A)∗. In this paper it will be assumed that an exact LU -factorization is
available, although this may not always be the case for real-life examples, depending
on the size and condition of the system. If an exact LU -factorization is not available,
one has to use inexact Newton schemes, such as inexact RQI and Jacobi–Davidson
style methods [24, 13, 26], a topic that is described in [21].

With rk ≡ Axk− sk+1Exk and ΔA ≡ 1
y∗
kExk

rky
∗
kE, (sk+1,xk) is an exact (right)

eigenpair of the pencil (A−ΔA,E), showing that the so-called backward error can be
bounded by ‖ΔA‖2 ≤ 1

|y∗
kExk|‖rk‖2 ‖E∗yk‖2. This expression can be used to adopt

the stopping criterions in Algorithm 1 (step 6) and Algorithm 2 (step 7) to accommo-
date for a backward error less than ε‖A‖2. Symmetric versions, treating xk and yk

equally, are possible; other, more convenient, norms such as ‖·‖∞ can be selected, and
perturbations on E can be allowed as well. For a thorough discussion, see [9] and [12].

3.1. DPA and two-sided Rayleigh quotient iteration (RQI). In Algo-
rithm 2, the two-sided RQI [18, 20] is shown. The only difference with DPA is that
the right-hand sides in steps 3 and 4 of Algorithm 1 are kept fixed, while the right-hand
sides in steps 4 and 5 of Algorithm 2 are updated at every iteration.

While the use of the fixed right-hand sides drops the asymptotic convergence rate
from cubic to quadratic, it is exactly this use of fixed right-hand sides that causes the
typical better convergence to dominant poles, as will be shown later. In that light
the quadratic instead of cubic local convergence, that in practice makes only a small
difference in the number of iterations, is even more acceptable. Moreover, based on
criteria in [5, 27] for switching from inverse iteration to RQI, one could define similar
criteria to switch from DPA to two-sided RQI in the final phase of the process, to save
some iterations. However, such techniques are not considered in this paper, since the
primary goal is to study the convergence behavior.
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Algorithm 2. Two-sided Rayleigh quotient iteration (RQI)

INPUT: System (A,E,b, c), initial pole estimate s0, tolerance ε � 1
OUTPUT: Pole λ and corresponding right and left eigenvectors v and w
1. x0 = (s0E −A)−1b, y0 = (s0E −A)−∗c, and s1 = ρ(x0,y0)
2. Set k = 1
3. while not converged
4. Solve xk ∈ C

n from (skE −A)xk = Exk−1/‖xk−1‖2

5. Solve yk ∈ C
n from (skE −A)∗yk = E∗yk−1/‖yk−1‖2

6. Compute the new pole estimate

sk+1 = ρ(xk,yk) =
y∗
kAxk

y∗
kExk

7. The pole λ = sk+1 has converged if

‖Axk − sk+1Exk‖2 < ε

8. Set k = k + 1
9. end while

4. Local convergence analysis. The generalized two-sided Rayleigh quotient
(Definition 2.2) has some well-known basic properties (see [18, 20]):

• Homogeneity: ρ(αx, βy, γA, δE) = (γ/δ)ρ(x,y, A,E) for α, β, γ, δ �= 0.
• Translation invariance: ρ(x,y, A− αE,E) = ρ(x,y, A,E) − α.
• Stationarity (all directional derivatives are zero): ρ = ρ(x,y, A,E) is station-

ary if and only if x and y are right and left eigenvectors of (A,E), respectively,
with eigenvalue ρ and y∗Ex �= 0.

4.1. Asymptotically quadratic rate of convergence. In [20, p. 689] it is
proved that the asymptotic convergence rate of two-sided RQI is cubic for nondefective
matrices. Along the same lines it can be shown that the asymptotic convergence rate
of DPA is quadratic. For the eigenvalue, this also follows from the fact that DPA
is an exact Newton method, but for the corresponding left and right eigenvectors
the following lemma is needed, which gives a useful expression for (ρk+1 − λ) (using
sk+1 ≡ ρk ≡ ρ(xk,yk, A,E) from now on).

Lemma 4.1. Let v and w be right and left eigenvectors of (A,E) with eigenvalue
λ, i.e., (A− λE)v = 0 and w∗(A− λE) = 0, and w∗Ev = 1. Assume that w∗b �= 0
and c∗x �= 0, and let ρk be given and not an eigenvalue of the pencil (A,E). Let
τk, ωk ∈ C be scaling factors so that the solutions xk and yk of

(ρkE −A)xk = τkb and (ρkE −A)∗yk = ωkc(4.1)

are of the form

xk = v + dk and yk = w + ek,(4.2)

where w∗Edk = e∗kEv = 0. Then with u ≡ (I−Evw∗) b
w∗b and z ≡ (I−E∗wv∗) c

v∗c ,
it follows that

u = (ρk − λ)−1(ρkE −A)dk ⊥ w and z = (ρk − λ)−∗(ρkE −A)∗ek ⊥ v,
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and with ρk+1 = y∗
kAxk/(y

∗
kExk), one has that

(4.3) ρk+1 − λ = (ρk − λ)μk, where μk =
e∗kEdk − e∗ku

1 + e∗kEdk
.

Note that u and z do not change during the iteration.
Proof. Substitution of (4.2) into (4.1) and multiplication from the left by w∗ and

v∗, respectively, give

τk =
ρk − λ

w∗b
and ωk =

(ρk − λ)∗

v∗c
.

It follows that

(ρkE −A)dk = (ρk − λ)(I − Evw∗)
b

w∗b
≡ (ρk − λ)u ⊥ w

and

(ρkE −A)∗ek = (ρk − λ)∗(I − E∗wv∗)
c

v∗c
≡ (ρk − λ)∗z ⊥ v,

where u and z are independent of the iteration. With ρk+1 = y∗
kAxk/(y

∗
kExk), it

follows that

ρk+1 − λ =
y∗
k(A− λE)xk

y∗
kExk

=
e∗k(A− λE)dk

1 + e∗kEdk
.

Note that e∗k(A−λE)dk = e∗k(A−ρkE)dk +(ρk−λ)e∗kEdk = (ρk−λ)(e∗kEdk−e∗ku),
which shows (4.3).

This lemma will be used in the proof of the following theorem, which shows
the asymptotically quadratic rate of convergence of DPA, and expression (4.3) in
particular will be used to derive the local convergence neighborhoods of DPA and
RQI in section 4.2.

Theorem 4.2. Let v and w be right and left eigenvectors of (A,E) with eigen-
value λ, i.e., (A−λE)v = 0 and w∗(A−λE) = 0, and w∗Ev = 1. Then limk→∞ xk =
v and limk→∞ yk = w if and only if sk+1 = ρk = ρ(xk,yk) approaches λ. The con-
vergence rate is asymptotically quadratic in case of convergence.

Proof. The proof is an adaptation of the proofs in [20, p. 689] and [13, p. 150].
The main difference here is that for DPA the right-hand sides of the linear systems
are kept fixed during the iterations. Let the iterates xk and yk (see Lemma 4.1) be
of the form

xk = v + dk and yk = w + ek,

where w∗Edk = e∗kEv = 0 and w∗Ev = 1. Put dk = (ρk−λ)d̃k with (ρkE−A)d̃k =
u, and ek = (ρk−λ)∗ẽk with (ρkE−A)∗ẽk = z. Let V and W be the associated right
and left eigenspaces for λ. Then there are two orthogonal decompositions of C

n:

C
n = V ⊕ (E∗W)⊥ = (EV)⊥ ⊕W,

and it can be shown that for all z ∈ C, one has (zE − A) : (E∗W)⊥ −→ W⊥ and
(zE −A)∗ : (EV)⊥ −→ V⊥. Since these mappings are onto for all z sufficiently close
to λ, there is a neighborhood N of λ and a constant m > 0 such that

‖(zE −A)s‖ ≥ m‖s‖ and ‖(zE −A)∗t‖ ≥ m‖t‖
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for all z ∈ N , s ∈ (E∗W)⊥, and t ∈ (EV)⊥. It follows that if ρk → λ, then for
sufficiently large k

‖dk‖ ≤ |ρk − λ|
m

‖u‖,(4.4)

and similarly

‖ek‖ ≤ |ρk − λ|
m

‖z‖,(4.5)

and dk and ek, and d̃k and ẽk, are bounded. Hence, xk → v and yk → w if ρk → λ.
The converse follows from the continuity of the Rayleigh quotient if and only if xk → v
and yk → w.

To prove the asymptotically quadratic rate of convergence, first note that

ρk+1 − λ = ρ(xk,yk) = (ρk − λ)2
ẽ∗k(A− λE)d̃k

1 + (ρk − λ)2ẽ∗kEd̃k

,

and hence

(4.6) |ρk+1 − λ| = (ρk − λ)2|ẽ∗k(A− λE)d̃k| + O((ρk − λ)4),

which proves that ρk converges quadratically toward λ.
The boundedness of d̃k and ẽk implies that, for ρk sufficiently close to λ,

|ρk − λ|2|ẽ∗kEdk| ≤
1

2
.

This leads to an estimate of |ρk+1−λ| by 2|ρk−λ|2|ẽ∗k(A−λE)d̃k| = |e∗k(A−λE)dk|.
A combination with (4.4) leads to

‖v − xk+1‖ = ‖dk+1‖

≤ ‖A− λE‖ ‖u‖
2m

‖v − xk‖‖w − yk‖

for k sufficiently large, and similarly, a combination with (4.5) leads to

‖w − yk+1‖ = ‖ek+1‖

≤ ‖A− λE‖ ‖z‖
2m

‖v − xk‖‖w − yk‖,

which proves the asymptotically quadratic convergence.

4.2. Convergence neighborhood. In this section it will be assumed that A is
a symmetric matrix and that E = I. In [17] Ostrowski characterizes the convergence
neighborhood of the iteration

(4.7) (A− ρkI)xk = τkb, k = 0, 1, . . . ,

for symmetric matrices A, where ρ0 is arbitrary, ρk+1 = ρ(xk, A) ≡ ρ(xk,xk, A,E)
(k > 0), and τk is a scalar so that ‖xk‖2 = 1. It can be seen that DPA for symmetric
matrices (with E = I, b = c),

(4.8) (ρkI −A)xk = τkb, k = 0, 1, . . . ,
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is similar, and hence Ostrowski’s approach can be used to characterize the local con-
vergence neighborhood of DPA for symmetric matrices A with c = b = (b1, . . . , bn)T .
In fact, a larger convergence neighborhood of DPA will be derived here. This result
gives insight into the typical convergence behavior of DPA.

Since the two-sided Rayleigh quotient and (4.7), (4.8) are invariant under uni-
tary similarity transforms, without loss of generality A will be a diagonal matrix
diag(λ1, . . . , λn) with λ1 < · · · < λn. Note that Rj = ‖b‖2 cos2 ∠(vj ,b) and that λJ

with J = argmaxj(cos(∠(vj ,b))) is the dominant pole. The main results of this pa-
per, sharp bounds for the convergence neighborhoods of DPA and RQI, respectively,
are stated in Theorems 4.3 and 4.4, respectively. The proofs are given in section 4.2.1.

Theorem 4.3. Let (λ,v) be an eigenpair of A. In the DPA iteration for A and
b with initial shift ρ0, let xk and τk be such that

‖xk‖ = 1, (ρkI −A)xk = τkb with ρk+1 ≡ x∗
kAxk (k ≥ 0),

and put γ = minλi �=λ |λi − λ|. Put αk ≡ |ρk−λ|
γ and α̃k ≡ αk

1−αk
. If

(4.9) α0 < αdpa ≡ 1

1 + ζ2
with ζ ≡ tan∠(v,b),

then ρk → λ (k → ∞), and for all k ≥ 0, it follows that

α̃k+1ζ
2 ≤

(
α̃kζ

2
)2

< 1.

With c ≡ cos ∠(v,b) one has c2 = 1
1+ζ2 , and hence condition (4.9) is equivalent

to |ρ0−λ|
γc2 < 1. In the setting of this paper, Ostrowski’s convergence condition [17,

equation (19), p. 235] is given by

|ρ0 − λ|
γc2

≤ 1

2
min

(
1

2(1 − c2)
,

1

c2

)
.

Because 1
2 min( 1

2(1−c2) ,
1
c2 ) ≤ 3

4 < 1, it is clear that the convergence neighborhood

{ρ0 | condition (4.9) holds} that follows from Theorem 4.3 is larger than that from
Ostrowski’s condition.

In [17, p. 239], the convergence neighborhood of standard RQI,

(4.10) (A− ρkI)xk = τkxk−1, k = 0, 1, . . . ,

where x−1 arbitrary, ρk+1 = ρ(xk, A) (k > 0), and τk is a scalar so that ‖xk‖2 = 1, is
derived. Here a sharper bound is derived.

Theorem 4.4. Let (λ,v) be an eigenpair of A. In the RQI iteration for A and
b with initial shift ρ0 and x−1 = b, let xk and τk be such that

‖xk‖ = 1, (ρkI −A)xk = τkxk−1 with ρk+1 ≡ x∗
kAxk (k ≥ 0),

and put γ = minλi �=λ |λi−λ|. Put αk ≡ |ρk−λ|
γ , α̃k ≡ αk

1−αk
, and ζk+1 ≡ tan∠(v,xk). If
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(4.11) α0 < αrqi ≡
1

1 + ζ
with ζ ≡ ζ0 ≡ tan∠(v,b),

then ζ1 < 1, |ρ1 − λ| < 1
2γ, ρk → λ (k → ∞), and, for all k ≥ 0,

α̃k+1 ≤ (α̃kζk)
2, ζk+1 ≤ α̃kζk, α̃k+1ζk+1 ≤ (α̃kζk)

3 ≤ 1.

Note that the last inequality in the theorem also shows the cubic rate of conver-
gence of RQI.

In [5, Thm. 1] it is shown that, with γb = β−α a known gap in the spectrum of A
(for instance, γ = minλi �=λ |λ−λi|), if ρ1 < (α+β)/2 and ‖r1‖ = ‖Ax0 −ρ1x0‖ ≤ γb,
then ρk < (α + β)/2 for k ≥ 1, and similarly for the case ρ1 > (α + β)/2. The first
condition of this theorem implies that |ρ1 − λ| < γ/2, while ‖r1‖ ≤ γ is possible only
if ∠(v,x0) < 45◦. In other words, ζ < 1 and |ρ1 − λ|/γ < 1/2 < 1/(1 + ζ). As can be
learned from the proof of Theorem 4.4 in section 4.2.1, this is the situation after one
iteration step. Theorem 4.4 seems to allow a weaker start. To see this, consider the
two-dimensional example A = diag(−1, 1). With ρ0 = 0.01, x−1 = b = [

√
2/2,

√
2/2],

and x0 = (A−ρ0I)
−1x−1, it follows that |λ−ρ0| < 1 and condition (4.11) is satisfied,

while ‖r1‖ = ‖Ax0 − ρ1x0‖ ≈ 1.03 > 1. Hence, the result in Theorem 4.4 is sharper.
The results of Theorems 4.3 and 4.4 are sharp in the following sense.
Theorem 4.5. The convergence statement in both Theorems 4.3 and 4.4 is sharp:

to be more precise, there is a vector b such that for each ρ0 between λ and λi0 , the
ρk of Theorem 4.3 (Theorem 4.4) converges toward λ if and only if |ρ0 − λ| < αdpa

(< αrqi, respectively). Here i0 is such that γ = |λi0 − λ|.
Proof. Let b = cv + cjvi0 . For ease of notation, write (λ1,v1) = (λ,v) and

(λ2,v2) = (λi0 ,vi0).

With αi
0 ≡ |ρ0 − λi|/γ and ζ

(i)
0 ≡ tan∠(vi,b) (i = 1, 2), one has that α

(2)
0 = 1 −

α
(1)
0 and ζ

(1)
0 = 1/ζ

(2)
0 . Therefore, if α

(1)
0 > γ/(1+(ζ

(1)
0 )p), then α

(2)
0 < γ/(1+(ζ

(2)
0 )p)

(p = 1, 2), and Theorem 4.3 (take p = 2) and Theorem 4.4 (take p = 1) guarantee
convergence toward λ2.

If α
(1)
0 = γ/(1 + (ζ

(1)
0 )p), then α

(2)
0 = γ/(1 + (ζ

(2)
0 )p), and, as can be seen in the

proof of the corresponding theorem, the contraction statement in the theorem holds
for both λ = λ1 and λ = λ2. This implies stagnation of the sequence of |ρk −λ|.

Note that it is actually proved that Theorem 4.5 is correct for any nontrivial b
in the two-dimensional subspace spanned by v and vj with j such that γ = |λj − λ|.

In Figure 4.1, αdpa and αrqi (see equations (4.9) and (4.11), respectively) are
plotted for c2j , where cj = cos ∠(v,b). As c2j increases, i.e., as mode j becomes more
dominant, both local convergence neighborhoods increase and α → 1, while the bound
for the DPA neighborhood is larger for c2j > 1/2, or ∠(v,b) < 45◦.

The price one has to pay for the cubic convergence is the smaller local convergence
neighborhood of the dominant pole, as it becomes more dominant, for RQI. While
DPA emphasizes the dominant mode at every iteration by keeping the right-hand side
fixed, RQI takes advantage of this only in the first iteration, and for initial shifts too far
from the dominant pole, the dominant mode may be damped out from the iterates
xk. In that sense, RQI is closer to the inverse power method or inverse iteration,
which converges to the eigenvalue closest to the shift, while DPA takes advantage of
the information in the right-hand side b.

Because the results are in fact lower bounds for the local convergence neighbor-
hood, theoretically speaking, no conclusions can be drawn about the global basins
of attraction. But the results strengthen the intuition that for DPA the basin of
attraction of the dominant pole is larger than that for RQI.
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Fig. 4.1. Bounds of the local convergence neighborhood for DPA (dashed) and best-case RQI
(solid). If, with γ = mini�=j |λi − λj |, one has |λj − ρ�| ≤ αγ for some �, then the sequence of ρk
converges to λj . Here, α = αdpa or α = αrqi. Along the horizontal axis c2j is varied between 0 (b

is orthogonal to vj) and 1 (b is a multiple of vj): cj ≡ cos ∠(vj ,b).

4.2.1. Proofs of Theorems 4.3 and 4.4. The following two lemmas provide
expressions and bounds that are needed for the proofs of Theorems 4.3 and 4.4.

Lemma 4.6. Let v be an eigenvector of A = AT with eigenvalue λ with ‖v‖ = 1,
and let τk ∈ R be a scaling factor so that the solution xk of

(ρkI −A)xk = τkb

is of the form

(4.12) xk = v + dk,

where v∗dk = 0, and let z = (ρk − λ)−1(ρkI − A)dk. Then ρk+1 = x∗
kAxk/(x

∗
kxk)

satisfies

ρk+1 − λ = (ρk − λ)μk,

where

(4.13) μk =
d∗
kdk − d∗

kz

1 + d∗
kdk

.

Proof. The result follows from Lemma 4.1, by noting that A = AT and E =
I.

Lemma 4.7. Under the assumptions of Lemma 4.6, put γ = minλi �=λ |λi − λ|,
c = cos ∠(v,b), ζ = ‖z‖, αk = |ρk−λ|

γ , and α̃k = αk/(1 − αk). The following
statements hold:

(4.14) αk < 1 ⇒ ‖dk‖ ≤ α̃kζ,
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and if αk ≤ c = 1/
√

1 + ζ2, then

(4.15) αk < 1 ⇒ α̃k+1 ≡ αk+1

1 − αk+1
≤ (α̃kζ)

2.

Proof. Put ζk = ‖dk‖. Then by (4.13)

|μk| ≤ φ(ζk), where φ(τ) ≡ ζτ + τ2

1 + τ2
(τ ∈ R).

The function φ is increasing on [0, τmax], where τmax = (1 +
√

1 + ζ2)/ζ, or, using

c ≡ cos ∠(v,b) = 1/
√

1 + ζ2, τmax =
√

(1 + c)/(1 − c), and 0 ≤ φ ≤ 1+c
2c on (0,∞).

Since ‖(A− ρk)
−1|v⊥‖ ≤ |1/(γ − |λ− ρk|)|, it follows that

ζk ≡ ‖dk‖ ≤ |ρk − λ|‖(A− ρk)
−1|v⊥‖‖z‖ ≤ |ρk − λ|

|γ − |ρk − λ|| =
αk

1 − αk
ζ,

which proves (4.14). The statement that if αk ≤ c = 1/
√

1 + ζ2, then ζk ≤ α̃kζ ≤
τmax and

(4.16) |μk| ≤ φ(ζk) ≤ φ(α̃kζ) ≤
α̃k + α̃2

k

1 + α̃2
kζ

2
ζ2 =

αkζ
2

(1 − αk)2 + α2
kζ

2

now follows from the observation that αkζ/(1 − αk) ≤ τmax if and only if αk ≤
1/
√

1 + ζ2 = c. Furthermore, if αk ≤ c = 1/
√

1 + ζ2, then

(4.17) |μk| ≤ 1 if α̃kζ
2 ≤ 1

(
⇔ αk ≤ 1

1 + ζ2
= c2

)
.

This follows readily from φ(α̃kζ) ≤ 1, statement (4.14), and the definition α̃k =
αk/(1 − αk).

Finally, statement (4.15) follows from the fact that (4.16) and (4.15) imply αk+1 ≤
(α̃kζ)

2/(1 + (α̃kζ)
2).

Note that it is essential that the function φ is increasing, since this allows us to
use upper bound (4.14) to also handle the denominator in (4.13), leading to (4.16).

In the two-dimensional case, the estimate in (4.16) is sharp (equality), since both
z and dk are in the same direction (orthogonal to v). Furthermore, in (4.17), |μ| ≤ 1
if and only if α̃kζ

2 ≤ 1.
Proof of Theorem 4.3. Note that ζ ≡ ζ0 is the same in all iterations, and recall

that αk ≡ |ρk − λ|/γ. Since c2 = 1/(1 + ζ2), condition (4.9) implies α0(1 + ζ2) < 1,
and by induction and (4.15) of Lemma 4.7, it follows that

(4.18) α̃k+1ζ
2 ≤ (α̃kζ

2)2 if α̃0ζ
2 ≤ 1 (k ≥ 0),

which implies convergence if α̃0ζ
2
0 < 1.

Proof of Theorem 4.4. Note that ζk+1 = tan∠(v,xk) changes every iteration,
and recall that αk ≡ |ρk − λ|/γ and α̃k = αk/(1 − αk). Condition (4.11) implies
α0 < 1/(1 + ζ) or, equivalently, α̃0ζ0 < 1. By (4.15) it follows that ζ1 < 1 and
α1 < 1/2, or, equivalently, |ρ1 − λ| < γ/2, as announced in the discussion following
Theorem 4.4. Since α̃kζk < 1 implies that αk < 1/

√
1 + ζ2

k , results (4.14) and (4.15)
of Lemma 4.7 can be applied to obtain

α̃k+1 ≤ (α̃kζk)
2 and α̃k+1ζk+1 ≤ (α̃kζk)

3

if α̃kζk < 1. Here it is used that (4.14) reads in this context as ζk+1 ≤ α̃kζk. Since
α̃0ζ0 < 1, an induction argument shows the cubic rate of convergence.
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4.3. General systems. Theorems 4.3 and 4.4 can readily be generalized for
normal matrices, but it is difficult to obtain such bounds for general matrices without
making specific assumptions. To see this, note that it is difficult to give sharp bounds
for (4.3) in Lemma 4.1. However, the following theorem states that DPA is invariant
under certain transformations and helps in getting more insight into DPA for general,
nondefective systems (A,E,b, c).

Theorem 4.8. Let (A,E) be a nondefective matrix pencil, and let X,Y ∈ C
n×n

be of full rank. If DPA(A,E,b, c, s0) produces the sequence (xk,yk, sk+1), then
DPA(Y ∗AX,Y ∗EX,Y ∗b, X∗c, s0) produces the sequence (X−1xk, Y

−1yk, sk+1), and
vice versa.

Proof. If x = xk is the solution of

(sE −A)x = b,

then x̃ = x̃k = X−1x is the solution of

(sY ∗EX − Y ∗AX)x̃ = Y ∗b,

and vice versa. Similar relations hold for y = yk and ỹ = ỹk = Y −1y. Noting that

sk+1 =
ỹ∗Y ∗AXx̃

ỹ∗Y ∗EXx̃
=

y∗Ax

y∗Ex
= sk+1

completes the proof.
Let W and V have as their columns the left and right eigenvectors of (A,E),

respectively, i.e., AV = EV Λ and W ∗A = ΛW ∗E, with Λ = diag(λ1, . . . , λn). Fur-
thermore, let W and V be scaled so that W ∗EV = Δ, where Δ is a diagonal matrix
with δii = 1 for finite λi and δii = 0 for |λi| = ∞. According to Theorem 4.8,
DPA(A,E,b, c) and DPA(Λ,Δ,W ∗b, V ∗c) produce the same pole estimates sk. In
b̃ = W ∗b and c̃ = V ∗c, the new right-hand sides, one recognizes the contributions to
the residues Ri = c̃ib̃i = (c∗vi)(w

∗
i b). The more dominant pole λi is, the larger the

corresponding coefficients b̃i and c̃i are, and, since (Λ,Δ) is a diagonal pencil, the
larger the chance that DPA converges to the unit vectors ṽ = ei and w̃ = ei, which
correspond to the right and left eigenvectors vi = V ei and wi = Wei, respectively.

As observed earlier, DPA emphasizes the dominant mode every iteration by keep-
ing the right-hand sides fixed and thereby can be expected to enlarge the convergence
neighborhood also for general systems, compared to two-sided RQI. In practice, the
quadratic instead of cubic rate of local convergence costs at most 2 or 3 iterations. Nu-
merical experiments confirm that the basins of attraction of the dominant eigenvalues
are larger for DPA, as will be discussed in the following section.

5. Basins of attraction and typical convergence behavior. It is not straight-
forward to characterize the global convergence of DPA, not even for symmetric ma-
trices (see [17, pp. 236–237]). Basins of attraction of RQI in the three-dimensional
case are studied in [1, 4, 19], while in [5, 27] local convergence neighborhoods are
described. Because the DPA residuals rk = (A − ρkI)b are not monotonically de-
creasing (in contrast to the inverse iteration residuals rk = (A− σI)xk and the RQI
residuals rk = (A − ρkI)xk; see [5, 19, 20]), it is not likely that similar results can
be obtained for DPA. Numerical experiments, however, may help us to get an idea of
the typical convergence behavior of DPA and may show why DPA is to be preferred
over two-sided RQI for the computation of dominant poles.
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Fig. 5.1. Convergence regions for DPA (solid borders) and RQI (dashed), and the theoretical
DPA border (dash-dot; see Theorem 4.3) for the matrix A = diag(−1, s, 1) for s = 0 (left) and
s = 0.8. The regions of convergence to λ2 = s for DPA and RQI, respectively, are enclosed between
the lower and upper borders of DPA and RQI, respectively. The regions of convergence to λ1 = −1
(λ3 = 1) are below (above) the lower (upper) border.

An unanswered question is how to choose the initial shift of DPA. An obvious
choice is the two-sided Rayleigh quotient s0 = (c∗Ab)/(c∗Eb). This choice will work
in the symmetric case A = A∗, E = I, c = b. In the general nonsymmetric case this
choice will not always be possible: the vectors b and c are often very sparse (only
O(1) nonzero entries), and, moreover, it may happen that c∗Eb = 0. In that case
the initial shift should be based on heuristics. For two-sided RQI, an obvious choice
is to take as the initial vectors x0 = b and y0 = c, but similarly, if y∗

0Ex0 = 0,
this fails. Therefore, in the following experiments an initial shift s0 will be chosen
and the (normalized) initial vectors for two-sided RQI are x0 = (A − s0E)−1b and
y0 = (A− s0E)−1c; see Algorithm 2.

All experiments were executed in MATLAB 7 [28]. The criterion for convergence
was ‖Axk − sk+1Exk‖2 < 10−8.

5.1. Three-dimensional symmetric matrices. Because RQI and DPA are
shift and scaling invariant, the region of all 3 × 3 symmetric matrices can be
parametrized by A = diag(−1, s, 1), with 0 ≤ s < 1 due to symmetry (see [19]).
In order to compute the regions of convergence of RQI and DPA (as defined in (4.7),
(4.8)), the algorithms are applied to A for initial shifts in the range (−1, 1)\{s}, with
c = b = (b1, b2, b3)

T , where 0 < b2 ≤ 1 and b1 = b3 =
√

(1 − b22)/2. In Figure 5.1 the
results are shown for s = 0 and s = 0.8. The intersections ρ = ρλ1 and ρ = ρλ3 at
b2 = b with the borders define the convergence regions: for −1 ≤ ρ0 < ρλ1 there is
convergence to λ1 = −1, for ρλ1 ≤ ρ0 < ρλ3 there is convergence to λ2 = s, while for
ρλ3

≤ ρ0 ≤ 1 there is convergence to λ3 = 1.
For the case s = 0 it can be observed that (see vertical lines) for 0 ≤ b2 � 0.5,

the convergence region to the dominant extremal eigenvalues is larger for DPA. For
0.5 � b2 ≤ 1/

√
3 ≈ 0.577, the point at which λ2 becomes dominant, the convergence

region of RQI is larger. However, for b2 � 0.5, the convergence region of λ2 is
clearly larger for DPA. Note also that the theoretical (lower bound αdpaγ of the) local
convergence neighborhood for DPA (Theorem 4.3) is even larger than the practical
convergence neighborhood of two-sided RQI for b2 � 0.8.

A similar observation can be made for the case s = 0.8. There, due to the de-
centralized location of λ2, the figure is not symmetric and the region of convergence
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Fig. 5.2. Convergence regions for DPA and two-sided RQI for the example of section 5.2. The
center of the domain is the pole λ ≈ −20.5 ± 1.1i, with residue norm |R| ≈ 6.2 · 10−3. Yellow and
red points (light-blue and red points) mark initial shifts for which convergence to the target takes
place for DPA (two-sided RQI); dark-blue points denote convergence to less dominant poles. Real
(imaginary) parts of initial shifts are at the horizontal (vertical) axis. Horizontal and vertical strides
are 15/250 and 6/250, respectively.

of λ2 is clearly larger for DPA. For 0 ≤ b2 � 0.35, DPA and RQI appear to be very
sensitive to the initial shift. While the convergence region for λ1 was similar to the
case s = 0, convergence for −0.1 � ρ0 � 0.8 was irregular in the sense that for initial
shifts in this interval both λ2 and λ3 could be computed; hence the regions are shown
only for b2 � 0.35. Because the theoretical lower bounds are much smaller, since
d = mini �=j |λi−λj | = 0.2, and make the figure less clear, they are not shown (the the-
oretical DPA border still crosses the practical two-sided RQI border around b2 ≈ 0.9).

It is almost generic that, apart from a small interval of values of b2, the area of
convergence of the dominant eigenvalue is larger for DPA than for RQI. The following
example discusses a large scale general system.

5.2. A large scale example. This example is a test model of the Brazilian
Interconnect Power System (BIPS) [23, 22]. The sparse matrices A and E are of
dimension n = 13, 251 and E is singular. The input and output vectors b and c have
only one nonzero entry, and, furthermore, cTEb = 0; the choice x0 = b and y0 = c is
not practical; see the beginning of this section. The pencil (A,E) is nonnormal and
the most dominant poles appear in complex conjugated pairs. It is not feasible to
determine the convergence regions for the entire complex plane, but the convergence
behavior in the neighborhood of a dominant pole can be studied by comparing the
found poles for a number of initial shifts in the neighborhood of the pole, for both
DPA and two-sided RQI (Algorithms 1 and 2). The result is shown in Figure 5.2.

Initial shifts for which DPA and two-sided RQI converge to the target (the most
dominant pole λ ≈ −20.5 ± 1.1i) or its complex conjugate are marked by yellow
and red points, and light-blue and red points, respectively. Red grid points denote
convergence to the most dominant pole for both DPA and two-sided RQI. Dark-blue
grid points denote convergence to a less dominant pole.
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In Figure 5.2 the target is the most dominant pole of the system. It can be clearly
observed that for DPA the number of initial shifts that converge to the dominant pole
(yellow and red points) is larger than for two-sided RQI (light-blue and red points).
The basin of attraction of the dominant pole is larger for DPA: except for regions in
the neighborhood of other relatively dominant poles (see, for instance, the poles in
the interval (−28,−24) on the real axis), there is convergence to the most dominant
pole. For DPA typically the size of the basin of attraction increases with the relative
dominance of the pole, while for two-sided RQI the effect is less strong; cf. Theorem
4.3, Theorem 4.4, and the discussion in section 4.2. The figure is symmetric with
respect to the real axis: if for initial shift s0, DPA (two-sided RQI) produces the
sequence (xk,yk, sk+1) converging to (v,w, λ), then for s̄0 it produces the sequence
(x̄k, ȳk, s̄k+1) converging to (v̄, w̄, λ̄).

It can be seen that for many initial shifts (yellow points) DPA converges to the
most dominant pole, but two-sided RQI does not. On the other hand, for a very
small number of initial shifts (light-blue points), two-sided RQI converges to the most
dominant pole while DPA does not. This is a counterexample for the obvious thought
that if two-sided RQI converges to the dominant pole, then DPA also converges to it.

The average number of iterations needed by DPA to converge to the most dom-
inant pole was 7.2, while two-sided RQI needed an average number of 6.0 iterations.
The average numbers over the cases where both DPA and two-sided RQI converged
to the most dominant pole were 6.1 and 5.9 iterations, respectively.

Similar behavior is observed for other systems and transfer functions. Although
the theoretical and experimental results do not provide hard evidence in the sense that
they prove that the basin of attraction of the dominant pole is larger for DPA than
for two-sided RQI, they at least indicate an advantage of DPA over two-sided RQI.

5.3. PEEC example. The PEEC system [8] is a well-known benchmark system
for model order reduction applications. One of the difficulties with this system of order
n = 480 is that it has many equally dominant poles that lie close to each other in a
relatively small part, [−1, 0]× [−10i, 10i], of the complex plane. This explains why in
Figure 5.3 for only a relatively small part of the plane there is convergence (marked
by yellow and red, and light-blue and red, for DPA and two-sided RQI, respectively)
to the most dominant pole λ ≈ −0.14 ± 5.4i.

Although the difference is less pronounced than in the previous examples, DPA
still converges to the most dominant pole in more cases than two-sided RQI, and
the average residue norm of the found poles was also larger: Rdpa

avg ≈ 5.2 · 10−3 ver-

sus Rrqi
avg ≈ 4.5 · 10−3. Again a remarkable observation is that even for some initial

shifts very close to another pole, DPA converges to the most dominant pole, while two-
sided RQI converges to the nearest pole; e.g., for initial shift s0 = 5i DPA converges
to the most dominant pole λ ≈ −0.143 + 5.38i with |R| ≈ 7.56 · 10−3, while two-sided
RQI converges to the less dominant pole λ ≈ −6.3 ·10−3 +4.99i with |R| ≈ 3.90 ·10−5.

The average number of iterations needed by DPA to converge to the most dom-
inant pole was 9.8, while two-sided RQI needed an average number of 7.9 iterations.
The average numbers over the cases where both DPA and two-sided RQI converged
to the most dominant pole were 9.4 and 7.7 iterations, respectively.

Another nice observation is the appearance of fractal boundaries, typical for New-
ton processes.

6. Conclusions. The theoretical and numerical results confirm the intuition,
and justify the conclusion, that the dominant pole algorithm (DPA) has better global
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Fig. 5.3. Convergence regions for DPA and two-sided RQI. The target is the dominant pole
λ ≈ −0.14 ± 5.4i, with residue norm |R| ≈ 7.6 · 10−3. Yellow and red points (light-blue and red
points) mark initial shifts for which convergence to the target takes place for DPA (two-sided RQI);
dark-blue points denote convergence to less dominant poles. Real (imaginary) parts of initial shifts
are at the horizontal (vertical) axis. Horizontal and vertical strides are both 3/200.

convergence than two-sided Rayleigh quotient iteration (RQI) to the dominant poles
of a large scale dynamical system. The derived local convergence neighborhoods of
dominant poles are larger for DPA, as the poles become more dominant, and numerical
experiments indicate that the local basins of attraction of the dominant poles are larger
for DPA than for two-sided RQI.

Both DPA and two-sided RQI need to solve two linear systems at every iteration.
The difference between DPA and two-sided RQI is that DPA keeps the right-hand sides
fixed to the input and output vectors of the system, while two-sided RQI updates the
right-hand sides at every iteration. The more dominant a pole is, the bigger the
difference in convergence behavior between DPA and two-sided RQI. The other way
around, for considerably less dominant poles, the basins of attraction are much smaller
for DPA than for two-sided RQI. This could be observed in cases where the initial
shift was very close to a less dominant pole and DPA converged to a more dominant
pole, while two-sided RQI converged to the nearest, less dominant pole.

The fact that DPA has an asymptotically quadratic rate of convergence, against
a cubic rate for two-sided RQI, is of minor importance, since this has only a very local
effect and hence leads to a small difference in the number of iterations (typically a
difference of 1 or 2 iterations).
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[9] V. Frayssé and V. Toumazou, A note on the normwise perturbation theory for the regular
generalized eigenproblem Ax = λBx, Numer. Linear Algebra Appl., 5 (1998), pp. 1–10.

[10] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice–Hall, Englewood Cliffs,
NJ, 1995.

[11] A. M. A. Hamdan and A. H. Nayfeh, Measures of modal controllability and observability for
first- and second-order linear systems, J. Guidance Control Dynam., 12 (1989), pp. 421–
428.

[12] D. J. Higham and N. J. Higham, Structured backward error and condition of generalized
eigenvalue problems, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 493–512.

[13] M. E. Hochstenbach and G. L. G. Sleijpen, Two-sided and alternating Jacobi-Davidson,
Linear Algebra Appl., 358 (2003), pp. 145–172.

[14] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[15] N. Martins, L. T. G. Lima, and H. J. C. P. Pinto, Computing dominant poles of power

system transfer functions, IEEE Trans. Power Syst., 11 (1996), pp. 162–170.
[16] N. Martins and P. E. M. Quintão, Computing dominant poles of power system multivariable

transfer functions, IEEE Trans. Power Syst., 18 (2003), pp. 152–159.
[17] A. M. Ostrowski, On the convergence of the Rayleigh quotient iteration for the computation

of the characteristic roots and vectors. I, Arch. Ration. Mech. Anal., 1 (1958), pp. 233–241.
[18] A. M. Ostrowski, On the convergence of the Rayleigh quotient iteration for the computation of

the characteristic roots and vectors. III, Arch. Ration. Mech. Anal., 3 (1959), pp. 325–340.
[19] R. D. Pantazis and D. B. Szyld, Regions of convergence of the rayleigh quotient iteration

method, Numer. Linear Algebra Appl., 2 (1995), pp. 251–269.
[20] B. N. Parlett, The Rayleigh quotient iteration and some generalizations for nonnormal ma-

trices, Math. Comp., 28 (1974), pp. 679–693.
[21] J. Rommes, Methods for Eigenvalue Problems with Applications in Model Order Reduction,

Ph.D. thesis, Utrecht University, Utrecht, The Netherlands, 2007.
[22] J. Rommes and N. Martins, Efficient computation of multivariable transfer function dominant

poles using subspace acceleration, IEEE Trans. Power Syst., 21 (2006), pp. 1471–1483.
[23] J. Rommes and N. Martins, Efficient computation of transfer function dominant poles using

subspace acceleration, IEEE Trans. Power Syst., 21 (2006), pp. 1218–1226.
[24] G. L. G. Sleijpen and H. A. van der Vorst, A Jacobi–Davidson iteration method for linear

eigenvalue problems, SIAM J. Matrix Anal. Appl., 17 (1996), pp. 401–425.
[25] J. R. Smith, J. F. Hauer, D. J. Trudnowski, F. Fatehi, and C. S. Woods, Transfer function

identification in power system application, IEEE Trans. Power Syst., 8 (1993), pp. 1282–
1290.

[26] A. Stathopoulos, A case for a biorthogonal Jacobi–Davidson method: Restarting and correc-
tion equation, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 238–259.

[27] D. B. Szyld, Criteria for combining inverse and Rayleigh quotient iteration, SIAM J. Nu-
mer. Anal., 25 (1988), pp. 1369–1375.

[28] The MathWorks, Inc., MATLAB 7, The MathWorks, Natick, MA, 2005.
[29] A. Varga, Enhanced modal approach for model reduction, Math. Model Systems, 1 (1995),

pp. 91–105.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 364–374

COMMENTS ON “JORDAN CANONICAL FORM
OF THE GOOGLE MATRIX”∗

GANG WU† AND YIMIN WEI‡

Abstract. The Google matrix is a Web hyperlink matrix which is given by P (α) = αP+(1−α)E,
where P is a row stochastic matrix, E is a row stochastic rank-one matrix, and 0 < α < 1. In this
paper we explore the analytic expression of the Jordan canonical form and point out that a theorem
due to Serra-Capizzano (cf. Theorem 2.3 in [SIAM J. Matrix Anal. Appl., 27 (2005), pp. 305–312])
can be used for estimating the condition number of the PageRank vector as a function of α now
viewed in the complex field. Furthermore, we give insight into a more efficient scaling matrix in
order to minimize the condition number.
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1. Preliminaries. An important problem in Web searches is determining the
importance of each page. The major ingredient in determining the order to display
Web pages is PageRank [4]. The PageRank vector is the stationary distribution of
the Google matrix, a stochastic and irreducible matrix whose dimension can reach
109 [1, 7, 11].

Analysis of the PageRank formula provides an interesting topic for the PageRank
problem [6, 8, 9, 10]. Recently, Horn and Serra-Capizzano [6] and Serra-Capizzano
[8, 9] determined the analytic expression of the Jordan canonical form of the Google
matrix. Theorem 2.3 in [8] (see also Theorem 8.2 in [9]) is quoted as follows, which
depicts the eigenvalues and invariant subspace of the Google matrix.

Theorem 1. Let P be a row stochastic matrix of size n, let α ∈ (0, 1), and let
E = evH be a row stochastic rank one matrix of size n with e the vector of all ones
and with v an n-sized vector representing a probability distribution, i.e., vi ≥ 0 and
||v||1 = 1. Consider the matrix P (α) = αP + (1 − α)E and let P = XJ(1)X−1,
X = [e, x2, . . . , xn], Y = (X−1)H = [y1, y2, . . . , yn],

J(α) =

⎡
⎢⎢⎢⎢⎢⎣

1
αλ2 α · ∗

. . .
. . .

αλn−1 α · ∗
αλn

⎤
⎥⎥⎥⎥⎥⎦
,
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and

J(α) = D−1

⎡
⎢⎢⎢⎢⎢⎣

1
αλ2 ∗

. . .
. . .

αλn−1 ∗
αλn

⎤
⎥⎥⎥⎥⎥⎦
D, D = diag(1, α, . . . , αn−1),(1)

with ∗ denoting a value that can be 0 or 1. Then we have

P (α) = ZJ(α)Z−1, Z = XR−1,(2)

and, in addition, the following facts hold.
• 1 ≥ |λ2| ≥ · · · ≥ |λn| and λ2 = 1 if P is reducible and its graph has at least

two irreducible closed sets.
• We have

R = I + e1w
H , wH = (0, w2, . . . , wn),

where

w2 = (1 − α)vHx2/(1 − αλ2),

wj =
[
(1 − α)vHxj + [J(α)]j−1,jwj−1

]
/(1 − αλj), j = 3, 4, . . . , n.

We mention that in the original paper by Serra-Capizzano, there is a typo since
D and D−1 are exchanged in (1). The following corollary due to Serra-Capizzano [8,
Corollary 2.4] gives an analytic expression of the PageRank vector.

Corollary 2. With the notation of Theorem 1, the PageRank vector [yJ(α)]H

is given by

[yJ(α)]H = yH1 +

n∑
j=2

wjy
H
j .(3)

As was pointed out in [8], a strong challenge posed by formula (3) is the possibility
of using vector extrapolation for obtaining the expression of [yJ(1)]H . The idea of the
extrapolation procedure is to start from values of [yJ(α)]H for some different values of
α (possibly far from 1), then to compute the unknowns appearing in (3), and finally
to compute [yJ(1)]H . This subject is under investigation in [2, 3].

2. On the condition number of the PageRank vector. Recall from (1) and
(2) that the PageRank vector [yJ(α)]H is the first row of the matrix DZ−1 = DRX−1,
that is, [yJ(α)]H = eH1 (DRX−1). If we denote W = XR−1D−1, then formula (3) can
be rewritten as

[yJ(α)]H ·W = eH1 .(4)

It is well known that the sensitivity of the linear system (4) is closely related to the
condition number κ(W ) of W [5], where

κ(W ) = ||W || ||W−1||
= ||XR−1D−1|| ||DRX−1||
≤ κ(X) · κ(DR).
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Therefore, W will be ill-conditioned, provided either X or DR is ill-conditioned.
We have the following theorem on the conditioning of DR with respect to ∞-norm.

Theorem 3. Under the above notation, if D = diag(1, α, . . . , αn−1) and 0 < α <
1, then

κ∞(DR) = max
{(

1 +

n∑
j=2

|wj |
)(

1 +

n∑
j=2

|wj |
αj−1

)
,

1

αn−1

(
1 +

n∑
j=2

|wj |
)}

,(5)

where

|w2| =
(1 − α)|vHx2|

|1 − αλ2|
,

and

|wj | ≤ αj−2 · (1 − α)|vHx2|
|(1 − αλ2) · · · (1 − αλj)|

+ αj−3 · (1 − α)|vHx3|
|(1 − αλ3) · · · (1 − αλj)|

+ · · · + (1 − α)|vHxj |
|1 − αλj |

, j = 3, 4, . . . , n.

Specifically, if P is diagonalizable, then

κ∞(DR) ≥
(
1 +

n∑
j=2

(1 − α)|vHxj |
|1 − αλj |

) (
1 +

n∑
j=2

(1 − α) · |vHxj |
αj−1 · |1 − αλj |

)
.(6)

Proof. Since

R =

⎡
⎢⎢⎢⎣

1 w2 · · · wn

1
. . .

1

⎤
⎥⎥⎥⎦ ,

it is easy to verify that

R−1 =

⎡
⎢⎢⎢⎣

1 −w2 · · · −wn

1
. . .

1

⎤
⎥⎥⎥⎦ , DR =

⎡
⎢⎢⎢⎢⎢⎣

1 w2 w3 · · · wn

α
α2

. . .

αn−1

⎤
⎥⎥⎥⎥⎥⎦
,

and

R−1D−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 −w2/α −w3/α
2 · · · −wn/α

n−1

1/α
1/α2

. . .

1/αn−1

⎤
⎥⎥⎥⎥⎥⎦
.

Therefore,

||DR||∞ = 1 +

n∑
j=2

|wj |, ||R−1D−1||∞ = max
{

1 +

n∑
j=2

|wj |
αj−1

,
1

αn−1

}
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMMENTS ON “JORDAN CANONICAL FORM OF THE GOOGLE MATRIX” 367

and

κ∞(DR) = ||DR||∞||R−1D−1||∞

= max
{(

1 +

n∑
j=2

|wj |
)(

1 +

n∑
j=2

|wj |
αj−1

)
,

1

αn−1

(
1 +

n∑
j=2

|wj |
)}

.

Recall from Theorem 1 that

w2 =
(1 − α)vHx2

1 − αλ2
, w3 =

(1 − α)vHx3 + (α · ∗)w2

1 − αλ3
,

where ∗ stands for either 0 or 1. Notice that

|w3| ≤
(1 − α)|vHx3| + α · |w2|

|1 − αλ3|

= α · (1 − α)|vHx2|
|(1 − αλ2)(1 − αλ3)|

+ (1 − α) · |vHx3|
|1 − αλ3|

.

Inductively, suppose that

|wj−1| ≤ αj−3 · (1 − α)|vHx2|
|(1 − αλ2) · · · (1 − αλj−1)|

+ αj−4 · (1 − α)|vHx3|
|(1 − αλ3) · · · (1 − αλj−1)|

+ · · · + (1 − α)|vHxj−1|
|1 − αλj−1|

.

From Theorem 1, we obtain

wj =
[
(1 − α)vHxj + (α · ∗)wj−1

]
/(1 − αλj),

so

|wj | ≤
(1 − α)|vHxj | + α · |wj−1|

|1 − αλj |

≤ αj−2 · (1 − α)|vHx2|
|(1 − αλ2) · · · (1 − αλj)|

+ αj−3 · (1 − α)|vHx3|
|(1 − αλ3) · · · (1 − αλj)|

+ · · · + α
(1 − α)|vHxj−1|

|(1 − αλj−1)(1 − αλj)|
+

(1 − α)|vHxj |
|1 − αλj |

, j = 3, 4, . . . , n.

Specifically, when P is diagonalizable, it follows from (5) that

κ∞(DR) ≥
(
1 +

n∑
j=2

|wj |
)(

1 +

n∑
j=2

|wj |
αj−1

)
,(7)

and recall from Theorem 2.1 in [8] that

|wj | =
(1 − α)|vHxj |

|1 − αλj |
, j = 2, 3, . . . , n,(8)

and (6) is obtained from combining (7) and (8).
Theorem 3 indicates that DR may be ill-conditioned as the number n in (5) and

(6) is often very huge, being the total number of Web pages (in millions or billions).
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Consequently, W can be ill-conditioned in practice. Actually, one is not recommended
to use (3) directly. One reason is that the dimension n is huge, and the expression
in (3) is simplified by replacing n with a much smaller value m [3]. Theorem 3 gives
another reason: as we have just observed, W may be ill-conditioned even if X is well-
conditioned and α is far from 1, which implies that a small change in W can give a
dramatic change in the PageRank vector.

However, we would like to point out that the results presented in Theorem 3 are
not so strong. In Theorem 1, the matrix D is chosen as diag(1, α, . . . , αn−1). In fact,
the scaling matrix is not unique. For instance, if we choose D̂ = diag(1, α1−n, . . . , α−1),
then DJ(α)D−1 = D̂J(α)D̂−1. So it is interesting to take into account the more effi-
cient scaling matrix D (which is not unique at all) in order to decrease the estimate
of the condition number discussed in Theorem 3.

3. How to use clever choices of the scaling matrix. The conditioning for
nonnegative α less than one is known to be bounded by 2/(1 − α) [7]. Therefore the
interest of this paper is for α outside the unit cycle (i.e., α ∈ C and |α| > 1 [6, 9]), and
to find interesting results one should use clever choices of the scaling matrix D that
minimizes the condition number. That is, we consider how to define a new matrix D̃
such that

κ∞(D̃R) = min
D is diagonal
and nonsingular

κ∞(DR),(9)

with the constraint that

DJ(α)D−1 = D̃J(α)D̃−1 = Ĵ ,(10)

where Ĵ is the Jordan canonical form of P (α).
However, determining an optimal matrix of minimal conditioning is a very com-

plicated task, and the result is problem dependent. In this paper we give insight
into three special cases, and the results extend easily to cover the general case, at
the cost of much heavier notation. We assume from now on that α ∈ C, |α| > 1,
and 1 − αλj �= 0 (j = 2, 3, . . . , n) so that wj can be well defined; see Theorem 1.
Furthermore, we emphasize that all the analysis given below also applies to the case
when α ∈ C, |α| < 1.

Let 1, λ2, . . . , λn be the eigenvalues of P . Then we have from Theorem 1 that the
eigenvalues of P (α) are 1, αλ2, . . . , αλn. Suppose that |λ2| = |λ3| = · · · = |λp| = 1,
and |λj | < 1, j ≥ p + 1. It follows from Theorem 8.2 (ii) of [6] (see also Theorem
7.2 (ii) of [9]) that αλ2, αλ3, . . . , αλp are (semi)simple eigenvalues of P (α), thus the
Jordan canonical form of P (α) takes the form

Ĵ = [1] ⊕ [αλ2] ⊕ · · · ⊕ [αλp] ⊕ Jn1(αν1) ⊕ · · · ⊕ Jnk
(ανk)(11)

and

J(α) = [1] ⊕ [αλ2] ⊕ · · · ⊕ [αλp] ⊕ αJn1(ν1) ⊕ · · · ⊕ αJnk
(νk),(12)

where

Jni(νi) =

⎡
⎢⎢⎢⎣

νi ∗
. . .

. . .

νi ∗
νi

⎤
⎥⎥⎥⎦ ∈ Cni×ni , i = 1, 2, . . . , k,

and {ν1, ν2, . . . , νk} ⊂ {λ2, λ3, . . . , λn}.
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Case 1. Jni
(ανi) = diag(ανi, . . . , ανi), i = 1, 2, . . . , k.

In this case, P (α) is diagonalizable, and for any nonsingular diagonal matrix D
there holds J(α) = D−1ĴD. We have the following theorem.

Theorem 4. If P (α) is diagonalizable, then the optimal scaling matrix can be
chosen as

D̃ = diag
(
1, 1 +

n∑
j=2

|wj |, . . . , 1 +

n∑
j=2

|wj |
)
,(13)

and the minimal condition number is

κ∞(D̃R) = 1 + 2

n∑
j=2

|wj |.(14)

Proof. Without loss of generality, let D = diag(1, d2, . . . , dn) with dj �= 0, j =
2, 3, . . . , n. So we have

DR =

⎡
⎢⎢⎢⎣

1 w2 · · · wn

d2

. . .

dn

⎤
⎥⎥⎥⎦ ,

and

||DR||∞ = max
{

1 +

n∑
j=2

|wj |, max
2≤j≤n

|dj |
}
.

On the other hand,

R−1D−1 =

⎡
⎢⎢⎢⎣

1 −w2/d2 · · · −wn/dn
1/d2

. . .

1/dn

⎤
⎥⎥⎥⎦

and

||R−1D−1||∞ = max
{

1 +

n∑
j=2

|wj/dj |,
1

min2≤j≤n |dj |

}
.

(a) If max2≤j≤n |dj | ≤ 1 +
∑n

j=2 |wj |, then

κ∞(DR) = max

{(
1 +

n∑
j=2

|wj |
)(

1 +

n∑
j=2

|wj/dj |
)
,

1 +
∑n

j=2 |wj |
min2≤j≤n |dj |

}
.(15)

So as to minimize the condition number, we have to pick min2≤j≤n |dj | as large as
possible. As a result, min2≤j≤n |dj | = max2≤j≤n |dj | = 1 +

∑n
j=2 |wj | is a reasonable

choice.
(b) If max2≤j≤n |dj | ≥ 1 +

∑n
j=2 |wj |, then

κ∞(DR) = max

{
max

2≤j≤n
|dj |

(
1 +

n∑
j=2

|wj/dj |
)
,

max2≤j≤n |dj |
min2≤j≤n |dj |

}
.(16)
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So as to minimize the condition number, we have to set max2≤j≤n |dj | and
max2≤j≤n |dj |
min2≤j≤n |dj |

as small as possible. As a result, min2≤j≤n |dj | = max2≤j≤n |dj | = 1 +
∑n

j=2 |wj | is a
reasonable choice, and (14) is a direct conclusion from (15) or (16).

Case 2.

Jni(ανi) =

⎡
⎢⎢⎢⎣

ανi 1
. . .

. . .

ανi 1
ανi

⎤
⎥⎥⎥⎦ ∈ Cni×ni , i = 1, 2, . . . , k.

In this case, all the eigenvalues ανi (i = 1, 2, . . . , k) of P (α) are defective, where
{ν1, ν2, . . . , νk} ⊂ {λp+1, λp+2, . . . , λn}, and

J(α) = diag(1, αλ2, . . . , αλp) ⊕

⎡
⎢⎢⎢⎣

αλp+1 α
. . .

. . .

αλn−1 α
αλn

⎤
⎥⎥⎥⎦

and

Ĵ = diag(1, αλ2, . . . , αλp) ⊕

⎡
⎢⎢⎢⎣

αλp+1 1
. . .

. . .

αλn−1 1
αλn

⎤
⎥⎥⎥⎦ .

We consider the scaling matrix of the form D = diag(1, . . . , 1, δp+1, . . . , δn) ∈
Cn×n. The following lemma gives a necessary and sufficient condition for the matrix
D satisfying J(α) = D−1ĴD.

Lemma 5. Let D = diag(1, . . . , 1, δp+1, . . . , δn) ∈ Cn×n be any nonsingular ma-
trix. Then

J(α) = D−1ĴD ⇐⇒ δj = αδj−1, j = p + 2, p + 3, . . . , n.(17)

Proof. Note that J(α) = D−1ĴD ⇐⇒ DJ(α) = ĴD. On the one hand,

D · J(α) = diag(1, αλ2, . . . , αλp) ⊕

⎡
⎢⎢⎢⎣

αδp+1λp+1 αδp+1

. . .
. . .

αδn−1λn−1 αδn−1

αδnλn

⎤
⎥⎥⎥⎦ .

On the other hand,

Ĵ ·D = diag(1, αλ2, . . . , αλp) ⊕

⎡
⎢⎢⎢⎣

αδp+1λp+1 δp+2

. . .
. . .

αδn−1λn−1 δn
αδnλn

⎤
⎥⎥⎥⎦ ,

and (17) is obtained trivially by comparing the superdiagonal of the two matri-
ces.
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Therefore, it follows from Lemma 5 that D takes the form

D = diag(1, . . . , 1, δp+1, αδp+1, . . . , α
n−p−1δp+1), δp+1 �= 0,(18)

and the problem of defining the optimal matrix D̃ resorts to determining an appro-
priate value δp+1.

Theorem 6. Let the scaling matrices take the form (18). Suppose that α ∈
C, |α| > 1, and let η = (1 +

∑n
j=2 |wj |)/|α|n−p−1. Then in Case 2 the “optimal”

matrix can be chosen as

D̃ = diag(1, . . . , 1, η, αη, . . . , αn−p−1η),(19)

and the “minimal” condition number is

κ∞(D̃R) = max

{(
1 +

n∑
j=2

|wj |
)(

1 +

p∑
j=2

|wj |
)

+

n∑
j=p+1

|wjα
n−j |, |α|n−p−1

}
.(20)

Proof. For any nonsingular matrix D = diag(1, . . . , 1, δp+1, αδp+1, . . . ,
αn−p−1δp+1), we have

DR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 · · · wp wp+1 · · · wn

. . .

1
δp+1

. . .

αn−p−1δp+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which implies

||DR||∞ = max
{

1 +

n∑
j=2

|wj |, |αn−p−1δp+1|
}
,

since |α| > 1. On the other hand,

R−1D−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −w2 · · · −wp −wp+1/δp+1 · · · −wn/(α
n−p−1δp+1)

1
. . .

1
1/δp+1

. . .

1/(αn−p−1δp+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

||R−1D−1||∞ = max

{
1 +

p∑
j=2

|wj | +
n∑

j=p+1

∣∣∣ wj

αj−p−1δp+1

∣∣∣, 1

|δp+1|

}
.

(a) If |δp+1| ≤ (1 +
∑n

j=2 |wj |)/|α|n−p−1, then

κ∞(DR) = max

{(
1 +

n∑
j=2

|wj |
)[

1 +

p∑
j=2

|wj | +
1

|δp+1|

n∑
j=p+1

∣∣∣ wj

αj−p−1

∣∣∣ ],(21)

(
1 +

n∑
j=2

|wj |
) 1

|δp+1|

}
.
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In order to minimize the condition number, we have to choose |δp+1| as large as
possible. Since |δp+1| ≤ (1 +

∑n
j=2 |wj |)/|α|n−p−1, we can choose |δp+1| = (1 +∑n

j=2 |wj |)/|α|n−p−1 ≡ η.

(b) If |δp+1| ≥ (1 +
∑n

j=2 |wj |)/|α|n−p−1, then

(22)

κ∞(DR) = max

{
|α|n−p−1|δp+1|

(
1 +

p∑
j=2

|wj |
)

+

n∑
j=p+1

|wjα
n−j |, |α|n−p−1

}
.

In order to minimize the condition number, it is desirable to choose |δp+1| as small
as possible. Since |δp+1| ≥ (1 +

∑n
j=2 |wj |)/|α|n−p−1, we can choose |δp+1| = (1 +∑n

j=2 |wj |)/|α|n−p−1 = η. It is easy to see that (20) is a direct result of choosing

|δp+1| = (1 +
∑n

j=2 |wj |)/|α|n−p−1 in (21) or (22).
Case 3.

Jni(ανi) =

⎡
⎢⎢⎢⎢⎢⎣

ανi 0
ανi 1

. . .
. . .

ανi 1
ανi

⎤
⎥⎥⎥⎥⎥⎦
∈ Cni×ni , i = 1, 2, . . . , k.

Let D = diag(Ip, D1, . . . , Dk), where Ip is the p× p identity matrix and

Di = diag(di1 , di2 , . . . , dini
) ∈ Cni×ni , i = 1, 2, . . . , k,

are nonsingular matrices. Similar to the proof in Case 2, we have

D · J(α) = Ĵ ·D ⇔ Di · αJni(νi) = Jni(ανi) ·Di ⇔ di3 = αdi2 , . . . , dini
= αdini−1

,

i = 1, 2, . . . , k,

so D takes the form

D = Ip ⊕ diag(1, d12 , . . . , α
n1−2d1n1

) ⊕ · · · ⊕ diag(1, dk2 , . . . , α
nk−2dknk

).(23)

For simplicity, we consider Di of the form Di = diag(1, δ, αδ, . . . , αni−2δ), i =
1, 2, . . . , k. Consequently,

D = Ip ⊕ diag(1, δ, . . . , αn1−2δ) ⊕ · · · ⊕ diag(1, δ, . . . , αnk−2δ), δ �= 0.(24)

Partition the first row of R−1 conformably with D

[1,−w2, . . . ,−wn] =
[
Up, V1, . . . , Vk

]
,

where Up = [1,−w2, . . . ,−wp], Vi ≡ [w̃i1 , . . . , w̃ini
] ∈ Cni , and {w̃in1

, . . . , w̃ini
} ⊂

{−wp+1, . . . ,−wn}, i = 1, 2, . . . , k. We have the following theorem.
Theorem 7. Let the scaling matrix takes the form (24). Suppose that α ∈ C, |α| >

1, and denote nq = max1≤i≤k

{
ni

}
and μ = (1+

∑n
j=2 |wj |)/|α|nq−2. Then in Case 3

the “optimal” matrix can be chosen as

D̃ = Ip ⊕ diag(1, μ, αμ, . . . , αn1−2μ) ⊕ · · · ⊕ diag(1, μ, αμ, . . . , αnk−2μ),(25)
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and the “minimal” condition number is

(26)

κ∞(D̃R) = max

{(
1 +

n∑
j=2

|wj |
)(

1 +

p∑
j=2

|wj | +
k∑

i=1

|w̃i1 |
)

+ |α|nq−2Δ, |α|nq−2

}
,

where Δ =
∑k

i=1

(
|w̃i2 | + |w̃i3 |/|α| + · · · + |w̃ini

|/|α|ni−2
)
.

Proof. For any matrix D that takes the form (24), we have

DR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 w2 · · · wp · · · · · · wn

1
. . .

1
D1

. . .

Dk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

||DR||∞ = max
{

1 +

n∑
i=2

|wi|, |α|nq−2|δ|
}
,

where nq = max1≤i≤k

{
ni

}
. It is easy to verify that

R−1D−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −w2 · · · −wp V1D
−1
1 · · · VkD

−1
k

1
. . .

1
D−1

1

. . .

D−1
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

so we get

||R−1D−1||∞ = max

{
||Up||1 +

k∑
i=1

||ViD
−1
i ||1,

1

|δ|

}
.

Note that

ViD
−1
i =

[
w̃i1 , w̃i2/δ, . . . , w̃ini

/(αni−2δ)
]

and

||ViD
−1
i ||1 = |w̃i1 | +

1

|δ|
(
|w̃i2 | + |w̃i3 |/|α| + · · · + |w̃ini

|/|α|ni−2
)
, i = 1, 2, . . . , k.

Therefore,

k∑
i=1

||ViD
−1
i ||1 =

k∑
i=1

|w̃i1 | +
1

|δ|

k∑
i=1

(
|w̃i2 | + |w̃i3 |/|α| + · · · + |w̃ini

|/|α|ni−2
)
.
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(a) If |δ| ≤ (1 +
∑n

j=2 |wj |)/|α|nq−2, then

κ∞(DR) =
(
1 +

n∑
j=2

|wj |
)

max

{
||Up||1 +

k∑
i=1

||ViD
−1
i ||1,

1

|δ|

}
.(27)

In order to minimize the condition number, we have to choose |δ| as large as possible.
Since |δ| ≤ (1+

∑n
j=2 |wj |)/|α|nq−2, we can choose |δ| = (1+

∑n
j=2 |wj |)/|α|nq−2 ≡ μ.

(b) If |δ| ≥ (1 +
∑n

j=2 |wj |)/|α|nq−2, then

κ∞(DR) = max

{
|αnq−2δ|

(
||Up||1 +

k∑
i=1

||ViD
−1
i ||1

)
, |α|nq−2

}
.(28)

In order to minimize the condition number, it is desirable to choose |δ| as small as pos-
sible. Since |δ| ≥ (1+

∑n
j=2 |wj |)/|α|nq−2, we can choose |δ| = (1+

∑n
j=2 |wj |)/|α|nq−2

= μ, and (26) is a direct conclusion from (27) or (28).
Remark. In [9], Serra-Capizzano proposed that the “optimal” diagonal matrix of

minimal conditioning can be chosen as

D̆ = Ip ⊕ diag(1, α, . . . , αn1−1) ⊕ · · · ⊕ diag(1, α, . . . , αnk−1),

which is obviously different from ours since the diagonal elements of the two matrices
are different; see (25). Moreover, it seems that our choice is more general.
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THE METRIC NEARNESS PROBLEM∗
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Abstract. Metric nearness refers to the problem of optimally restoring metric properties to
distance measurements that happen to be nonmetric due to measurement errors or otherwise. Met-
ric data can be important in various settings, for example, in clustering, classification, metric-based
indexing, query processing, and graph theoretic approximation algorithms. This paper formulates
and solves the metric nearness problem: Given a set of pairwise dissimilarities, find a “nearest” set
of distances that satisfy the properties of a metric—principally the triangle inequality. For solving
this problem, the paper develops efficient triangle fixing algorithms that are based on an iterative
projection method. An intriguing aspect of the metric nearness problem is that a special case turns
out to be equivalent to the all pairs shortest paths problem. The paper exploits this equivalence and
develops a new algorithm for the latter problem using a primal-dual method. Applications to graph
clustering are provided as an illustration. We include experiments that demonstrate the computa-
tional superiority of triangle fixing over general purpose convex programming software. Finally, we
conclude by suggesting various useful extensions and generalizations to metric nearness.

Key words. matrix nearness problems, metric, distance matrix, metric nearness, all pairs
shortest paths, triangle inequality
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1. Introduction. Most applications make some assumptions about the prop-
erties that the input data should satisfy. Due to measurement errors, noise, or an
inability to gather data completely, an application may receive data that does not
conform to its requirements. For example, imagine taking measurements as a part of
some experiment. The theory suggests that the quantities measured should represent
distance values amongst points in a discrete metric space. However, measurements
being what they are, one ends up with a set of numbers that do not represent ac-
tual distance values, primarily because they fail to satisfy the triangle inequality. It
might be beneficial to somehow optimally massage the measurements to obtain a set
of “nearest” distance values that obey the properties of a metric.

It could also happen that experimental expenses and difficulties prevent one from
making all the measurements. Before this incomplete set of measurements can be
used in an application it might need to be tweaked, preferably minimally. As before,
obtaining a “nearest” set of distance values (measurements) seems to be desirable.

Both scenarios above lead to the metric nearness problem: Given a set of input
distances, find a “nearest” set of output distances that satisfy the properties of a
metric. The notion of nearness is quantified by the function that measures distortion
between the input and output distances.

Matrix nearness problems [10] offer a natural framework for pursuing the above-
mentioned ideas. If there are n points, we may collect the measurements into an
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n × n symmetric matrix whose (j, k) entry represents the distance between points j
and k. Then we seek to approximate this matrix by another (say M) whose entries
satisfy the triangle inequalities. That is, mij ≤ mik + mkj for every triple (i, k, j).
Any such matrix will represent the distances among n points in some metric space.
We calculate approximation error with a distortion measure that depends on how the
corrected matrix should relate to the input matrix. For example, one might prefer
to change a few entries significantly or to change all the entries a little. This paper
considers metric nearness problems that use vector norms for characterizing distortion.

There is no analytic solution to the metric nearness problem. Fortunately this
problem lends itself to a convex formulation, whereby developing algorithms for solv-
ing it becomes much easier. However, despite the natural convexity of the formu-
lations, the large number of triangle inequality constraints can make traditional ap-
proaches or general purpose convex programming software much too slow. This paper
provides solutions to the metric nearness problem that exploit its inherent structure
for efficiency gains.

The remainder of this paper is structured as follows. Section 1.1 highlights the
principal contributions of this paper. Section 2 develops a convex formulation of
the metric nearness problem. Following that, section 3 provides efficient triangle
fixing algorithms for solving the metric nearness problems described in section 2. An
interesting connection of metric nearness with the all pairs shortest paths (APSP)
problem is studied in section 4. This connection leads to a curious new primal-dual
algorithm for APSP (Algorithm 4.1).

Applications of metric nearness to clustering are discussed in section 5. Experi-
ments highlighting running time studies and comparisons against the CPLEX software
are given in section 6.1, whereas experiments illustrating the behavior of the primal-
dual metric nearness algorithm are the subject of section 6.2.

Section 7.1 discusses some variations to the metric nearness problem that may
also be studied. Section 7.2 describes possible future work and extensions to this
paper, while two open problems are mentioned in section 7.3. Finally, section 7.4
summarizes related work and concludes this paper.

1.1. Contributions of this paper. In preliminary work [7], the authors pre-
sented the basic ideas about convex formulations of metric nearness and triangle fixing
algorithms. However, many of the details necessary for understanding and actually
implementing the triangle fixing algorithms were missing. This paper fills that gap by
presenting a detailed derivation for �1 (consequently �∞) and �2 norm–based metric
nearness problems. Pseudocode for both the �1 and �2 problems is given along with
the derivations.

When one allows only decreasing changes to the input, then metric nearness
becomes equivalent to the APSP problem [22]. This paper studies this decrease-only
version of metric nearness, and consequently obtains a new primal-dual algorithm for
solving the APSP problem. This algorithm possesses some interesting characteristics
related to its convergence behavior that are discussed in this paper.

The paper discusses applications to the Max-Cut problem. We also developed
efficient C++ code for metric nearness that outperforms CPLEX by factors of up to
30, and it may be requested from the authors.

2. Problem formulation. We begin our formulation with a few basic defini-
tions. We define a dissimilarity matrix to be a symmetric, nonnegative matrix with a
zero diagonal. Such matrices are used to represent pairwise proximity data between
objects of a certain type. A distance matrix is defined to be a dissimilarity matrix
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whose entries satisfy the triangle inequalities. Specifically, M is a distance matrix if

mij ≥ 0, mii = 0, mij = mji,

and

mij ≤ mik + mkj for distinct triples (i, k, j).

We remark that symmetry, while part of the definition of a metric, is not crucial to
our algorithms; asymmetry can be handled at the expense of doubling the running
time and storage.

The distance matrices studied in this paper are assumed to arise from measuring
interpoint distances between n points in a pseudometric space (i.e., two distinct points
can lie at zero distance from each other). Consequently, distance matrices contain
N =

(
n
2

)
parameters, and we denote the set of all n × n distance matrices by MN .

We observe that the set MN is a closed, convex polyhedral cone.
Assume that the input is a dissimilarity matrix D. Metric nearness seeks a

distance matrix M that is closest to D, with respect to some measure of “closeness.”
Formally, we seek a matrix M so that

(2.1) M ∈ argmin
X∈MN

‖X −D‖,

where ‖ · ‖ is a norm. Though it is possible to use any norm in the metric nearness
problem (2.1), we restrict our attention to the vector �p norms, wherein we treat the
strict upper triangular part of our matrices as vectors.

Theorem 2.1 (attainment of minimum). The functional f(X) = ‖X − D‖
always attains its minimum on MN . Moreover, every local minimum is a global
minimum.

Proof. The latter claim follows immediately from the convexity of f . It remains
to show that f(X) always attains its minimum on the cone MN . For convenience, we
pass to the function g(Y ) = ‖Y ‖. Notice that if g attains a minimum on MN −D,
then f(X) attains a minimum on MN . The function g is a closed convex function,
and it is homogeneous of degree one, so we can compute its recession function as

(g0+)(Y ) = lim
h→0

(g(hY ) − g(0))/h = lim
h→0

g(hY )/h = g(Y ).

But g is nonnegative, so its only directions of recession are directions in which it is
constant. Since MN−D is a closed, polyhedral cone, we may apply [23, Theorem 27.3]
to conclude that g attains a minimum on this cone, whereby f attains its minimum
on MN .

2.1. Metric nearness for the �2 norm. We start with a formulation for the
vector �2 norm–based metric nearness problem. Given the input dissimilarity matrix
D = [dij ] (where dij = dji), we wish to obtain a distance matrix X that minimizes
the squared error

1

2

∑
i<j

(xij − dij)
2.

Note that the sum above ranges over i < j, since the involved matrices are symmetric
and have a zero diagonal.
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Let Tn be the set of 3
(
n
3

)
triples, each of which corresponds to a triangle inequality

that the entries of an n× n distance matrix must satisfy. Formally,

(2.2) Tn = {(i, j, k), (j, k, i), (k, i, j) : 1 ≤ i < k < j ≤ n},

where the triple (i, k, j) corresponds to the triangle inequality

xij ≤ xik + xkj .

With the introduction of an auxiliary matrix E = X−D that represents the changes
to the original dissimilarities, the �2 metric nearness problem can be rewritten as the
following quadratic program:

minimize
eij

1

2

∑
i<j

e2
ij(2.3)

subject to eij − eik − ekj ≤ dik + dkj − dij = vikj for all (i, k, j) ∈ Tn.(2.4)

The triangle inequality constraints are encoded by (2.4). Since the �2 norm is strictly
convex, the solution to (2.3) is unique. The variable vikj quantifies the violation in
the (i, k, j) triangle inequality. Note that nonnegativity of xij need not be enforced
explicitly as it is implied by the triangle inequalities.

2.2. Metric nearness for the �1 and �∞ norms. When measuring approxi-
mation error using the �1 norm, we wish to minimize

(2.5)
∑
i<j

|eij |,

where eij = xij − dij as in the previous section. However, to write the problem as a
linear program, we need to introduce additional variables fij = |eij |. The resulting
problem is the following linear program:

minimize
eij ,fij

∑
i<j

(
1 · fij + 0 · eij

)
(2.6)

subject to
eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn,

−eij − fij ≤ 0, 1 ≤ i < j ≤ n,
eij − fij ≤ 0, 1 ≤ i < j ≤ n.

(2.7)

The fact that fij = |eij | is accomplished by the last two sets of inequalities in (2.7).

Similarly, for the �∞ nearness problem, we introduce a variable ζ = maxij |eij |
that represents the vector �∞ norm of E. The �∞ nearness problem becomes

minimize
eij ,ζ

ζ +
∑
i<j

0 · eij(2.8)

subject to
eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn,

−eij − ζ ≤ 0, 1 ≤ i < j ≤ n,
eij − ζ ≤ 0, 1 ≤ i < j ≤ n.

(2.9)

The last two sets of inequalities in (2.9) express the fact |eij | ≤ ζ for all i and j.
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2.3. Metric nearness for �p norms. Metric nearness may be easily formulated
for �p norms, where 1 < p < ∞. The problem is the following convex program:

minimize
eij

1

p

∑
i<j

|eij |p

subject to eij − eik − ekj ≤ vikj for all (i, k, j) ∈ Tn.

Since the �p norms are strictly convex for 1 < p < ∞, the associated metric
nearness problems have unique solutions. There is a basic intuition for choosing p
when solving the nearness problems. The �1 norm error is computed as the absolute
sum of changes to the input matrix, while �∞ reflects only the maximum absolute
change. The other �p norms interpolate between these two extremes. Thus, a small
value of p typically results in a solution that prefers a few large changes to the original
data, while a large p typically results in a solution with many small changes. In
practice, however, the �1, �2, and �∞ problems are computationally easier to solve than
those using arbitrary �p norms. Thus, we focus primarily on these three problems.

3. Triangle fixing algorithms. The previous section formulated the metric
nearness problem as a quadratic program for the �2 norm, as a linear program for �1
and �∞ norms, and as a convex program for �p norms. Using off-the-shelf software for
these formulations might appear to be an attractive way to solve the corresponding
problems. However, it turns out that the computational time and storage require-
ments of such an approach can be prohibitive. An efficient algorithm must exploit
the inherent structure offered by the triangle inequalities. In this section, we develop
triangle fixing algorithms, which take advantage of this structure to efficiently solve
the problem for �p norms. These algorithms iterate through the triangle inequalities,
optimally enforcing any inequality that is not satisfied. While enforcing the triangle
inequalities, one needs to introduce appropriate correction terms to guide the iterative
algorithm to the globally optimal solution. The details are provided below.

3.1. Triangle fixing for �2 metric nearness. Our approach for solving (2.3)
is iterative, and is based on the technique described in [2]. Collecting all the eij values
into vector e and the violation amounts vijk into v, problem (2.3) may be rewritten
as

min
e

1

2
eTe

subject to Ae ≤ v,
(3.1)

where matrix A encodes the triangle inequalities (2.4), whereby each row of A has
one +1 entry and two −1 entries.

The Lagrangian of (3.1) is

L(e,z) =
1

2
eTe + 〈z,Ae− v〉,

where z is the dual vector. A necessary condition for optimality of (3.1) is

(3.2)
∂L

∂e
= 0 =⇒ e = −ATz, z ≥ 0.

Using (3.2) we see that the dual problem corresponding to (3.1) is

(3.3) max
z≥0

g(z) = −1

2
zTAATz − zTv.
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Algorithm 3.1. Metric nearness for �2 norm.

Metric Nearness L2(D, κ)
Input: Dissimilarity matrix D, tolerance κ
Output: M = argminX∈MN

‖X − D‖2.
{Initialize the primal and the dual variables}
eij ← 0 for 1 ≤ i < j ≤ n
(zijk, zjki, zkij) ← 0 for 1 ≤ i < k < j ≤ n
δ ← 1 + κ
while (δ > κ) {convergence test}

foreach triangle inequality (i, k, j)
v ← dik + dkj − dij {Compute violation}
θ∗ ← 1

3
(eij − eik − ekj − v) (�)

θ ← max{θ∗,−zikj} {Stay within half-space of constraint}
eij ← eij − θ, eik ← eik + θ, ekj ← ekj + θ (��)
zikj ← zikj + θ {Update dual variable}

end foreach
δ ← sum of changes in the eij values

end while
return M = D + E

We solve (3.1) iteratively, wherein we initialize both e and z to zero as this
choice satisfies (3.2). At each subsequent iteration we update the dual vector z one
coordinate at a time, thereby resulting in a dual coordinate ascent procedure, while
maintaining (3.2). Assume that the dual variable corresponding to inequality (i, k, j)
is updated, i.e., z′ikj = zikj + θ. Then the corresponding update to the primal is

obtained via (3.2), i.e., e′ = e−θaikj (using the fact that e′ = −ATz′), where aikj is
the column vector containing the entries of the (i, j, k) row of A. Recall that aikj has
only three nonzero entries corresponding to the edges (i, j), (i, k), and (k, j). Thus,
the update to e amounts to “fixing” (enforcing) one triangle inequality at a time,
hence the name of our procedure. The parameter θ is computed by solving

max
θ

g(z + θ1ikj)

subject to zikj + θ ≥ 0,
(3.4)

where 1ikj indicates the standard basis vector that is zero in all positions except the
ikj entry, which equals unity. Using (3.2) and (3.3), we may rewrite (3.4) as

max
θ

g(z) − 1

2
‖aikj‖2θ2 + (aT

ikje− vikj)θ

subject to θ ≥ −zikj .
(3.5)

Consider optimizing (3.5) in an unconstrained manner. It is easily seen that

(3.6) θ∗ =
1

‖aikj‖2
(aT

ikje− vikj) =
1

3
(aT

ikje− vikj)

is the maximum. If θ∗ ≥ −zikj , we are done; otherwise the maximum of (3.5) will be
achieved at θ = −zikj . Thus, we obtain θ = max{θ∗,−zikj} as the answer to (3.5).
Algorithm 3.1 puts together all these ideas to give the complete iterative triangle
fixing procedure.
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Remarks. The procedure derived above ensures that at each iteration g(z′) ≥
g(z), i.e., it is a dual coordinate ascent procedure. Following [2], it can be shown that
in the limit, the Ae ≤ v constraints are satisfied. Since (3.2) is also maintained at
each step, the KKT conditions, which are necessary and sufficient for this problem,
are satisfied in the limit. Thus, the triangle fixing procedure converges to the optimal
solution of (3.1). In fact, Algorithm 3.1 is an efficient version of Bregman’s method
for minimizing a convex function subject to linear inequality constraints [2]. Our
algorithm exploits the structure of the problem to obtain its efficiency.

3.2. Triangle fixing for �1 and �∞. Triangle fixing is somewhat less direct
for the �1 and �∞ problems. The reason these norms pose an additional challenge
is because they are not strictly convex; the convergence of the basic triangle fixing
procedure depends on the strict convexity of the norm used. We illustrate only the
�1 case; the development for �∞ takes the same course.

With the introduction of vector and matrix notation, the �1 matrix nearness
problem may be rewritten as

min
e,f

0Te + 1Tf

subject to Ae ≤ v, −e− f ≤ 0, e− f ≤ 0.
(3.7)

The auxiliary variable f is interpreted as the elementwise absolute value of e. The
violations to the triangle inequalities are again given by the vector v.

To solve the linear program (3.7) without sacrificing the advantages of triangle
fixing we replace it with an equivalent quadratic program. This replacement hinges
upon a connection between linear and quadratic programs that may be motivated by
the observation

argming ‖g + ε−1c‖2 = argming (gTg + 2ε−1gT c + ε−2cT c) ≈ argming gT c

if ε is chosen to be sufficiently small (so that the 2ε−1gT c term dominates the objective
function). The following theorem, which follows from a result of [17, Theorem 2.1-a-i],
makes the above connection concrete.

Theorem 3.1 (�1 metric nearness). Let g = [e;f ] and c = [0;1] be partitioned
conformally. If (3.7) has a solution, then there exists an ε0 > 0, such that for all
ε ≤ ε0,

(3.8) argmin
g∈G

‖g + ε−1c‖2 = argmin
g∈G�

‖g‖2,

where G is the feasible set for (3.7) and G� is the set of optimal solutions to (3.7).
The minimizer of (3.8) is unique.

From (3.7) one can see that the triangle inequality constraints involve only e and
not f . This circumstance permits us to use triangle fixing once again. As before,
we go through the constraints one by one. The first 3

(
n
3

)
constraints are triangle

constraints and are handled by triangle fixing. The remaining 2
(
n
2

)
absolute value

constraints are very simple and thus are enforced easily.
For the �2 case, the dual variables (corresponding to each constraint) were repre-

sented by the vector z. For (3.8), we let the dual variables be [z; λ; μ]; vector z cor-
responds to the triangle inequalities, while vectors λ and μ correspond to −e−f ≤ 0
and e− f ≤ 0, respectively. Together, nonnegative values of z, λ, and μ correspond
to the feasible set G alluded to by Theorem 3.1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

382 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

Algorithm 3.2. Metric nearness for �1 norm.

Metric Nearness L1(D, ε, κ)
Input: Dissimilarity matrix D; tolerance κ; �1 parameter ε
Output: M ∈ {argminX∈MN

‖X − D‖1}
{Initialize primal and dual variables}
eij ← 0; fij = −ε−1 for 1 ≤ i < j ≤ n {Primal variables}
(zijk, zjki, zkij) ← 0 for 1 ≤ i < k < j ≤ n {Dual variables – triangles}
λij ← πij ← 0 for 1 ≤ i < j ≤ n {Dual variables – Other}
δ ← 1 + κ
while (δ > κ) {convergence test}

Do triangle fixing on the eij as in Algorithm 3.1
{Enforce −e − f ≤ 0 and e − f ≤ 0 as follows}
μ ← 1

2
(e + f) {Projection parameters}

θ ← min{μ,λ} {Update amount}
λ ← λ − θ {Update dual vector corr. to −e − f ≤ 0}
e ← e − θ; f ← f − θ {Update primal variables}
ν ← 1

2
(f − e)

θ ← min{ν,π} {Update amount}
π ← π − θ {Update dual vector corr. to e − f ≤ 0}
e ← e + θ; f ← f − θ {Update primal variables}
{Update convergence test parameter}
δ ← sum of absolute changes in eij .

end.

Our augmented triangle fixing procedure is as follows. First we initialize e, f , z,
λ, and μ so that the first order optimality conditions derived from (3.8) are initially
true. Thereafter, we enforce constraints one by one to ensure that the dual functional
corresponding to (3.8) is increasing and that first order optimality conditions are main-
tained. Written out as Algorithm 3.2, this procedure becomes an efficient adaptation
of Bregman’s method, thereby, after a sufficient number of iterations, converging to
the globally optimal solution.

Remarks. Algorithm 3.2 depends on the parameter ε that governs convergence
to the true optimal solution. It is an open problem to obtain an ε that guarantees
convergence. However, upon experimentation with random dissimilarity matrices we
found that setting ε−1 ≈ maxij dij worked well, i.e., led to convergence, for Algo-
rithm 3.2. Furthermore, from Theorem 3.1 we know that there exists a range within
which ε can lie, and in practice running Algorithm 3.2 a small number (2–3) of times
(with early stopping to save time) helps to determine a suitable value for ε for an
arbitrary input matrix.

3.3. Triangle fixing for other �p norms. We can go a step further and extend
triangle fixing to solve the metric nearness problem for all �p (1 < p < ∞) norms.
The problem may be compactly stated as

(3.9) min
e

1

p
‖e‖pp subject to Ae ≤ v.

Recall that for �2 metric nearness, at each iterative step we obtained e′ from
e by solving (3.2) after updating the dual variables z in a single coordinate. This
update to e may be viewed as the result of an orthogonal projection of e onto the
hyperplane defined by 〈aikj , e

′〉 = vikj (ignoring inequalities for the moment). For the
�p norm problem, we must instead perform a generalized projection, called a Bregman
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projection, which involves solving the problem

(3.10) mine′ ϕ(e′) − ϕ(e) − 〈∇ϕ(e), e′ − e〉 such that 〈aikj , e
′〉 = vikj ,

where ϕ(x) = 1
p ‖x‖pp. We use (∇ϕ(x))i = sgn(xi) |xi|p−1 to determine the projection

(3.10) by solving

(3.11) ∇ϕ(e′) = ∇ϕ(e) + μaikj so that 〈aikj , e
′〉 = vikj .

Since aikj has only three nonzero entries, once again e needs to be updated in only
three components. Therefore, in Algorithm 3.1 we may replace (�) by an appropriate
numerical computation of the parameter μ, and replace (��) by the computation of
the new value of e as resulting from (3.11). As before, each iteration maintains the
necessary condition ∂L(e,z)/∂e = 0 while correcting the dual vector z, and the
overall algorithm converges to the optimum of (3.9).

4. Metric nearness and APSP. The APSP problem [3] is an important and
well-studied problem in graph theory that still continues to interest researchers. For a
given weighted graph G, APSP computes an associated matrix of distances M whose
entry mij gives the weight of a shortest path between vertices i and j. Optionally,
shortest paths between all pairs of vertices corresponding to these distances are also
obtained.

On the surface, APSP appears to have no connection with the metric nearness
problem. However, it turns out that APSP can be viewed as a special case of metric
nearness. We develop this connection below. Note that in the previous sections we
considered only symmetric matrices. However, in this section we consider asymmetric
distance matrices, which are more natural for the APSP problem, as they correspond
to directed graphs.

4.1. The relation of metric nearness to APSP. Let the input be a weighted
complete directed graph. We represent this graph by the (nonsymmetric) matrix D,
where dij denotes the edge weight of edge (i, j). On D we perform a restricted version
of metric nearness that permits only decreasing changes to the dij values. Curiously
this decrease-only version of metric nearness is equivalent to APSP.

Lemma 4.1 (decrease-only metric nearness is APSP). Let MA ∈ MN be the
APSP solution for D. Then MA is also the nearest “decrease-only” metric solution.
In fact, any metric solution M ∈ MN that is elementwise smaller than D is also
smaller than MA, i.e., for all M ∈ MN , if M ≤ D, then M ≤ MA.

A proof of this lemma may be found in Appendix A.1. This connection between
APSP and decrease-only metric nearness (DOMN) suggests that the latter may be
solved by using any off-the-shelf algorithm for APSP. More interestingly, one can turn
the problem around and obtain a new method to solve APSP by solving the DOMN
problem. In this section, we present a new algorithm for APSP based on solving a
linear programming formulation of DOMN.

APSP for dense graphs is commonly performed using the Floyd–Warshall algo-
rithm, which has a complexity of Θ(n3). Unlike the Floyd–Warshall algorithm, which
proceeds by fixing the triangles of the graph in a predetermined order, our DOMN
algorithm fixes triangles in a data-dependent order. Empirically, our algorithm con-
verges more quickly to the solution than the Floyd–Warshall algorithm does, despite
having the same asymptotic worst-case behavior.
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4.2. The linear programming formulation of DOMN and its dual. Lemma
4.1 suggests that APSP solves the DOMN problem regardless of the norm used to
measure the error. We, however, focus on the �1 norm problem along with its lin-
ear programming formulation. The linear program is interesting both because it is a
novel formulation for solving APSP and because its dual allows us to construct short-
est paths, if desired. We apply the primal-dual technique for solving the resulting
linear programs and obtain a new APSP algorithm as a consequence.

4.2.1. Formulation. Let X represent a decrease-only distance matrix corre-
sponding to the input matrix D. Then the entries of X must satisfy,

xij ≤ dij for all (i, j),(4.1)

xij ≤ xik + xkj for all (i, k, j).(4.2)

Finding the matrix with the least �1 perturbation requires solving the problem

minimize
xij

∑
ij

(dij − xij) subject to (4.1) and (4.2).

Note that we are dealing directly with the values xij rather than the error values
eij = dij − xij , as we did in sections 2.1 and 2.2. Since the dij are fixed we may
replace this minimization by the equivalent problem

(4.3)

maximize
xij

∑
ij

xij

subject to xij ≤ dij for all (i, j),
xij − xik − xkj ≤ 0 for all (i, k, j).

The dual problem corresponding to (4.3) is

(4.4)

minimize
πij

∑
ij

πijdij

subject to πij +
∑
k 	=i,j

(γikj − γijk − γkij) = 1 for all (i, j),

πij ≥ 0 for all (i, j),
γikj ≥ 0 for all (i, k, j),

where the dual variables πij and γikj correspond to the decrease-only constraints (4.1)
and the triangle inequality constraints (4.2), respectively.

It is illustrative to cast the linear program (4.4) as a network flow problem, in
which we must satisfy a demand for a single unit of flow between every pair of vertices
i and j. We can accomplish this by either sending the flow directly via the edge (i, j)
(which corresponds to setting πij = 1) or bypassing the edge (i, j) and routing through
some other vertex k (which corresponds to setting γikj = 1); in the latter case, we
increase the demand for flow between (i, k) and (k, j) by 1.

We note that while there is a unique optimal solution to the linear program (4.3),
the linear program (4.4) has several optimal solutions, some of which involve noninte-
gral assignments to the γikj variables. This nonuniqueness is not unexpected, because
while there is only one value that the shortest distance between two nodes in M can
attain, there can be several shortest paths that achieve this distance value (paths
which may contain many intermediate nodes, each of which allows a γikj variable to
assume a positive assignment).
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4.3. A primal-dual algorithm for DOMN/APSP. We apply the primal-
dual method [19, 16] to solve the linear programs for DOMN, and thereby obtain a new
algorithm for APSP. Most treatments of the primal-dual method have a minimization
of the primal problem and a maximization of the dual problem. Thus we will call
(4.3) the dual problem, and (4.4) the primal problem. The primal-dual method begins
with a feasible solution to the dual that is improved at each step by optimizing an
associated restricted primal problem. In our case, we find it easier to optimize the
associated restricted dual, whereby our method proceeds as follows:

1. Begin with a feasible solution to the dual problem. One such feasible solution
is to set each xij to the smallest dij value.

2. Find the set P consisting of those constraints that do not have any additional
slack. The decrease-only constraint xij ≤ dij (corresponding to dual variable
πij) will be in P iff xij = dij , and the triangle constraint xij − xik − xkj ≤ 0
(corresponding to dual variable γikj) will be in P iff xij = xik + xkj .

3. Find a solution to the associated restricted dual

(4.5)

maximize
∑
ij

uij

subject to uij ≤ 0 if πij ∈ P,
uij − uik − ukj ≤ 0 if γikj ∈ P,

uij ≤ 1 for all (i, j).

The solution uij to the associated restricted dual identifies which variables
can be increased while maintaining dual feasibility.

4. If uij = 0, then the current value of xij is the optimal dual variable assign-
ment. Otherwise, improve the xij assignment by adding εuij to xij , where ε
is as large as possible while still maintaining dual feasibility. Return to step 2
with the new xij assignment.

By characterizing the solution of the associated restricted dual and the calculation
of ε for the DOMN problem, we can give an efficient primal-dual algorithm. Observe
that the solution to the associated restricted dual is that uij = 1 if the edge (i, j)
is increasable, and 0 otherwise. Computing ε is equivalent to determining which
of the increasable edges has the least capacity for increase. Rather than use linear
programming to determine the increasable edge set and computing ε explicitly, we can
track upper bounds uij in addition to the lower bounds tracked by the xij variables.
These upper bounds start as the dij values, but are reduced as edges become triangle
constrained. Then the increasable set is simply the set of edges for which xij < uij ,
and ε is the difference between the lower bound of edges in the increasable set and
the largest upper bound. Algorithm 4.1 implements these optimizations. I, the set of
increasable edges, is the complement of P .

4.4. Priority queue DOMN algorithm. Algorithm 4.1 requires O(n4) time,
but we can do better by noticing that the only time the lower bounds are used is to
check the condition ue = le. For edges (i, j) not in I, we have uij = lij , whereas
all edges (i, j) in I have lij equal to the smallest upper bound. Therefore, we can
replace I with a priority queue ordered by upper bound, and we do not need to keep
track of lower bounds at all (even though the original dual variable values xij were
lower bounds). Algorithm 4.2 implements these changes and requires only O(n3)
time when implemented using a Fibonacci heap. Like the Floyd–Warshall algorithm,
Algorithm 4.2 considers all edges in some order, and then fixes all triangles involving
that edge. However, the Floyd–Warshall algorithm uses a fixed data-independent
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Algorithm 4.1. DOMN: simple O(n4) implementation.

Domn Alg1(D)
Input: Dissimilarity matrix D
Output: M = APSP (D).
{Initialization}
uij ← dij for all i, j {Initial upper bounds}
xij ← min

e′∈E
ue′ {Initial lower bounds}

I ← E {Initial set of increasable edges}
while (I �= ∅)

foreach (i, j) ∈ I with uij = xij

I ← I − {(i, j)} {(i, j) is no longer increasable}
foreach k �= i, j

uik = min(uik, uij + ujk) {Update upper bounds}
end foreach

end foreach
foreach (i, j) ∈ I

xij ← min
e′∈I

ue′ {Update lower bounds}
end foreach

end while
return M where mij = xij

Algorithm 4.2. DOMN: improved O(n3) implementation.

Domn Alg2(D)
Input: Dissimilarity matrix D
Output: M = APSP (D).
{Initialization}
uij ← dij for all i, j {Initial upper bounds}
Q.Enqueue

(
(i, j), uij

)
for all (i, j) {Put all edges in priority-queue}

while (Q �= ∅)
(i, j) ← Q.First() {Remove edge with lowest upper bound}
foreach k �= i, j

uik = min(uik, uij + ujk) {Update upper bounds}
Q.UpdatePriority

(
(i, k), uik

)
{Reorder priority queue}

end foreach
end while
return M where mij = uij

order, whereas our algorithm uses a data-dependent order. As a result, our algorithm
converges to the APSP/DOMN solution more rapidly, even though it still requires
O(n3) time to complete.

5. An application to clustering. The metric nearness problem can be used
to develop efficient algorithms for clustering that provide guarantees on the quality of
the output in comparison with the optimal clustering. The Max-Cut problem offers
an especially attractive example. A cut of a graph is a partition of the vertices into
two disjoint sets, and the value of a cut is the total weight of all edges that cross the
partition. Max-Cut simply asks for the cut of a graph with maximum value. If the
size of each edge weight is proportional to the dissimilarity between the two vertices,
solving Max-Cut can be interpreted as finding the best clustering of the vertices into
two sets.
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For a general set of weights, Max-Cut is hard enough [20] that the solution
cannot be well approximated in polynomial time (unless P = NP) [1]. On the other
hand, for weights that do satisfy the triangle inequality, de la Vega and Kenyon have
exhibited a randomized algorithm that can approximate the solution arbitrarily well
in polynomial time [5]. That is, for a given ε > 0, their method can (with high
probability) compute in polynomial time a cut whose value is no smaller than (1− ε)
times the value of the optimal cut. Of course, the time complexity grows quickly as
ε shrinks.

Metric nearness plays an important role here. First, we approximate the original
graph by a metric graph. Then we use the fast algorithm to produce a nearly optimal
cut of the metric graph. The same cut of the original graph also has a nearly optimal
value, which can be bounded in terms of the approximation error from the metric
nearness problem.

Theorem 5.1. Suppose that D is a dissimilarity matrix and that M is a distance
matrix. If S is a cut of M whose value exceeds (1− ε) maxcut(M), then we have the
bounds

cutS(D) ≥ (1 − ε) maxcut(D) −
(
1 − ε

2

)
‖M −D‖1 and(5.1)

cutS(D) ≥ 1 − ε

‖M/D‖∞ ‖D/M‖∞
maxcut(D),(5.2)

where “/” represents elementwise division and ‖·‖∞ denotes the �∞ norm that ignores
the matrix diagonal. If mjk = djk = 0, then the infinity norm also ignores the (j, k)
entry of its argument.

To find the optimal M for bound (5.1), we simply solve the �1 metric nearness
problem. The optimal M for (5.2) cannot be obtained without solving a nonconvex
optimization problem.

Proof. For a set of vertices S, the value of the corresponding cut is computed by
the linear function

cutS(D) =
∑
j∈S

∑
k/∈S

djk.

The maximum cut just optimizes this functional over all subsets S of the vertex set
{1, 2, . . . , n}:

maxcut(D) = max
S

∑
j∈S

∑
k/∈S

djk.

Obviously, cutS(D) ≤ maxcut(D). It can be shown that maxcut(| · |) is a matrix
norm. In particular, it satisfies the triangle inequality for norms. It is also clear that

maxcut(|T |) ≤ 1

2

∑
j 	=k

|tjk| =
1

2
‖T ‖1

for any symmetric matrix T with a zero diagonal.

Let us begin with bound (5.1). Suppose that S is a (1 − ε)-optimal cut of M .
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Then

cutS(D) = cutS(M) + cutS(D −M)

≥ (1 − ε) maxcut(M) − cutS(|D −M |)

≥ (1 − ε) maxcut(D + (M −D)) − 1

2
‖D −M‖1

≥ (1 − ε) (maxcut(D) − maxcut(|M −D|)) − 1

2
‖M −D‖1

≥ (1 − ε) maxcut(D) − (1 − ε/2) ‖M −D‖1.

The proof for the bound (5.2) follows a similar outline. First, we implicitly define
a relative error matrix E with the relation M = D�E. We assume that mjk = 0 iff
djk = 0 to ensure that E can be defined. If not, the resulting error bound would be
trivial anyway. Let r = min{ejk : djk = 0} and R = max{ejk : djk = 0}. For any zero
entry of D, take the corresponding entry of E in the range [r,R]. In what follows, we
use “/” for elementwise division.

Next, observe that

cutS(M) = cutS(D �E) =
∑
j∈S

∑
k/∈S

djk ejk

≤ max
j 	=k

ejk
∑
j∈S

∑
k/∈S

djk

≤ ‖E‖∞ cutS(D).

Similarly,

maxcut(D) = maxcut(M/E) ≤ ‖1/E‖∞ maxcut(M).

Then we compute

cutS(D) ≥ cutS(M)

‖E‖∞

≥ 1 − ε

‖E‖∞
maxcut(M)

≥ 1 − ε

‖E‖∞ ‖1/E‖∞
maxcut(D).

This technique can be extended to other types of problems that are computa-
tionally easier for metric graphs [12]. Mettu and Plaxton have also considered fast
algorithms for clustering “nearly metric” data, but their approach relies instead on
weak versions of the triangle inequality [18]. Fast approximation algorithms for vari-
ous other metric problems such as k-median, MAX-TSP, etc., are discussed in [13];
our method allows extending these approximation algorithms to nonmetric data.

6. Experiments. We implemented metric nearness in C++ wherein we coded
Algorithms 3.1 and 3.2. In this section we describe some experiments based on our
implementation. All experiments were carried out in double precision on a P4/2.5GHz
processor machine with 2GB RAM, running Linux.
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Fig. 6.1. Running time comparison between CPLEX and the �2 triangle fixing algorithm.

6.1. Running time. In this section we show some running time comparisons
between CPLEX—a state-of-the-art linear and quadratic optimization software—and
our implementations of triangle fixing. Our results clearly indicate the superiority
of triangle fixing over CPLEX. For these experiments, we used random dissimilarity
matrices of dimensions up to 100 × 100. The final values of the objective function
achieved by CPLEX and our implementation agreed to five significant digits.

Figure 6.1 compares CPLEX quadratic programming to our implementation of
�2 triangle fixing (see Algorithm 3.1). From the figure one can see that the triangle
fixing procedure is up to 30 times faster than CPLEX’s fastest method for solving
the metric nearness quadratic program. Our experiments suggest that the �2 triangle
fixing procedure scales as O(n3).

For �1 metric nearness, we compared CPLEX’s fastest algorithm for metric near-
ness (determined by running all six choices available and selecting the fastest timing),
and our implementation of the augmented triangle fixing procedure for solving the
�1 metric nearness problem. Our implementation runs up to 15 times faster than
CPLEX, as indicated by Figure 6.2. As suggested previously, we used ε = maxij dij
for our experiments.

6.2. Decrease only metric nearness/APSP experiments. Although the
Floyd–Warshall algorithm and the primal-dual algorithm, Algorithm 4.2, both have
an asymptotic runtime of O(n3), the latter converges more quickly to the answer for
certain classes of problems. Floyd–Warshall chooses an order of triangles to correct
without any guidance, whereas the primal-dual algorithm prefers to correct triangles
that include shorter edges. We can certainly imagine a problem instance where the
violating triangles have longer edges, and in this case the preference for shorter edges
does not help.

For randomly generated test cases, however, our primal-dual algorithm does con-
verge more quickly than Floyd–Warshall. To illustrate this observation, we generated
random matrices of dimension 200×200 that had a zero diagonal and entries between
0.1 and 10. We then determined the correct answer before running both algorithms,
halting the computation at each iteration to determine the distance between the cur-
rent distance matrix and the final metric. Distance was computed as the l1 vector



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

390 J. BRICKELL, I. S. DHILLON, S. SRA, AND J. A. TROPP

40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

Size of input matrix (n x n)

R
un

ni
ng

 ti
m

e 
(s

ec
s)

CPLEX
L

1
 Triangle Fixing

Fig. 6.2. Running time comparison between CPLEX and augmented triangle fixing (�1).
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Fig. 6.3. Convergence comparison of Floyd–Warshall and the primal-dual algorithm

distance. Figure 6.3 gives these results, which clearly show the primal-dual algorithm
converging faster than Floyd–Warshall.

To determine the approximate time to convergence as a function of n, we gen-
erated n × n matrices for values of n from 25 to 225. Figure 6.4 plots the number
of iterations required to converge for both Floyd–Warshall and the primal dual algo-
rithm. The exponents in the big-O notation runtimes were approximated by fitting
the curve to the best a · nb approximation. While Floyd–Warshall takes the entire
O(n3) time to converge, the primal-dual algorithm converges in about O(n2.8) time.
Even more striking is Figure 6.5, which plots the number of iterations the algorithms
required to nearly converge (where nearly converging means being within 0.5∗n of the
metric solution). Here Floyd–Warshall still required O(n3) time, but the primal-dual
algorithm needed only about O(n2.5) time.

Unfortunately, we cannot yet take advantage of this rapid convergence to improve
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Fig. 6.4. Iterations to converge for Floyd–Warshall and the primal-dual algorithm. Each
iteration represents O(n) computations.
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Fig. 6.5. Iterations to nearly converge for Floyd–Warshall and the primal-dual algorithm. Each
iteration represents O(n) computations.

the runtime of the APSP primal-dual algorithms. Ideally, we could terminate the
algorithm when we had modified enough edges to cause the graph to be a metric.
After the graph is a metric, there are no triangles in violation, so the additional steps
of the algorithm do not modify the graph in any way. However, we are unaware of
any computationally efficient way to solve the problem of metricity. That is, given a
graph, return “true” if the graph is a metric, and “false” otherwise. One way to solve
this is to run APSP on the graph, and then check to see if any edges were shortened.
This observation yields an upper bound of O(APSP ) on the metricity problem. It
follows that we cannot terminate the APSP primal-dual algorithms early, even if they
have converged to the correct result, because testing for the termination condition
has the same complexity as the problem itself.

7. Discussion. Metric nearness is a rich problem. In this paper we formally
introduced the problem and derived iterative algorithms for solving it for the vector
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�p norms. A special case of metric nearness was shown to be equivalent to the all
pairs shortest paths problem, which led to a new algorithm for APSP. We studied ap-
plications of metric nearness to Max-Cut clustering. Experimental results illustrate
the computational advantages of triangle fixing over generic optimization methods.

7.1. Variations. One may derive numerous variations of the metric nearness
problem. The simplest of these involve the modification of the triangle inequality
constraints in some interesting manners. These variations are all easily solved using
our framework. Examples follow.

1. In section 4 we discussed metric nearness with the restriction that permit-
ted only decreasing changes to the entries of the input dissimilarity matrix.
Similarly, one may also look at the problem where only increasing changes
are permitted. Geometric or graph theoretic interpretations of this problem
remain to be considered.

2. When performing metric nearness on nonsymmetric input graphs, one can
choose either not to impose symmetry (as we did in the decrease-only section)
or to impose symmetry. The latter case introduces additional constraints, but
can be solved in our framework with only slight modifications.

3. Some applications may desire rank or order constraints to be enforced. That
is, if the input satisfies dij < dpq, then we also require mij < mpq. Such
a requirement can be useful in scenarios where the relative ordering of the
dissimilarity values has a significance for the underlying application.

4. Box constraints, i.e., constraints of type lij ≤ mij ≤ uij . Such constraints
can be useful when a true metric, as opposed to a pseudometric, is desired
(achieved by setting lij > 0). Upper bounds on the distance values may be
utilized to prevent certain undesirable solutions.

5. Enforcement of λ-triangle inequalities that take the form λijmij ≤ λikmik +
λkjmkj . Since the structure of the inequalities remains unaltered, this prob-
lem can also be solved by triangle fixing.

Other variations involve generalization of the basic problem. The most important
of such generalizations is one that introduces a weighting scheme to the problem. Here
we propose to obtain a distance matrix M such that

M ∈ argmin
X∈MN

‖W � (X −D)‖,

where ‖·‖ is a norm, � denotes the elementwise matrix product, and W is a weighting
matrix (a symmetric nonnegative matrix). The weight matrix reflects our confidence
in the entries of D. When each dij represents a measurement with variance σ2

ij , we

might set wij = 1/σ2
ij . If an entry of D is missing, one can set the corresponding

weight to zero (however, the resulting problem loses strict convexity, whereby one
should set this weight to a small value instead of zero).

7.2. Future work. Metric nearness is a relatively new problem. Many aspects
could form a basis for future work and further consideration. The most immediate
concerns that interest us are as follows:

1. Extensions to triangle fixing; for example, one may speed up the procedure
by fixing all the independent triangle inequalities in parallel. One could also
attempt to fix a few dependent triangle inequalities at the same time, and
such an approach will result in a dual block coordinate ascent scheme [27].

2. Studying the convergence of the triangle fixing algorithms at least for the �2
case. If possible, it would be interesting to furnish a proof of convergence for
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our algorithms that is independent of the convergence of the more general
Bregman’s method.

3. Exploring applications of metric nearness, e.g., applications to constrained
clustering or various other applications that make use of proximity data and
would profit from having metric data.

7.3. Open problems. Two interesting open problems spring out of metric near-
ness. First is the metricity problem that seeks to verify if the input dissimilarity
matrix is actually a distance matrix. Some related work that probabilistically tests
metric properties of an input dissimilarity matrix can be found in [21]. Whether the
metric verification problem has the same complexity as the metric nearness problem
remains to be ascertained. Second is the search for faster algorithms for the general
metric nearness problem. Along with faster algorithms, the possibility of guaranteed
polynomial-time (noniterative procedures) algorithms still remains.

7.4. Related work. Metric nearness is a relatively new problem that was in-
troduced by the authors, where preliminary work includes [6, 7].

The most relevant research appears in recent papers of Roth et al. [24, 25]. They
observe that machine learning applications often require metric data, and they propose
a technique for converting general dissimilarity data into metric data. Their method,
constant-shift embedding, increases all the dissimilarities by an equal amount to pro-
duce a set of Euclidean distances (i.e., a set of numbers that can be realized as the
pairwise distances among an ensemble of points in a Euclidean space). The size of the
translation depends on the data, so the relative and absolute changes to the dissimi-
larity values can be large. Our approach is completely different. We seek a consistent
set of distances that deviates as little as possible from the original measurements. In
our approach, the resulting set of distances can arise from an arbitrary metric space;
we do not restrict our attention to obtaining Euclidean distances. In consequence, we
expect metric nearness to provide superior denoising. Moreover, our techniques can
also learn distances that are missing entirely.

The technique of shifting the spectrum leads to an omission of the information
carried by the negative eigenvalues of the input matrix. Laub and Müller [15] explore
how the negative part of the spectrum could code for relevant features of the underly-
ing data. Their method once again is based around computing an embedding, which
is different from metric nearness, since the latter aims to only obtain a metric and
constructs no embedding.

There is at least one other method for inferring a metric that proposes a tech-
nique for learning a Mahalanobis distance for data in R

s [28], that is, a metric
dist(x,y) =

√
(x− y)TG(x− y), where G is an s × s positive semidefinite ma-

trix. The user specifies that various pairs of points are similar or dissimilar. Then
the matrix G is computed by minimizing the total squared distances between similar
points while forcing the total distances between dissimilar points to exceed one. The
article provides explicit algorithms for the cases where G is diagonal and where G is
an arbitrary positive semidefinite matrix. In comparison, the metric nearness problem
is not restricted to Mahalanobis distances; it can learn a general discrete metric. It
also allows us to use specific distance measurements and to indicate our confidence
in those measurements (by means of a weight matrix), rather than forcing a binary
choice of “similar” or “dissimilar.”

The metric nearness problem may appear similar to metric multidimensional scal-
ing [14], but we emphasize that the two problems are distinct. The latter problem
endeavors to find an ensemble of points in a prescribed metric space—usually a Eu-
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clidean space—such that the distances between these points are close to the set of
input distances. In contrast, metric nearness does not seek an embedding—it does
not impose any hypotheses on the underlying space other than requiring it to be a
metric space. For more details on Euclidean distance matrices, see [9, 10, 26].

Related to metrics are ultrametrics; a distance matrix M is said to be an ultra-
metric if mij ≤ max{mik,mkj} for every distinct triple of indices (i, k, j). It is known
that finding the nearest (in �1 and �2 norms) ultrametric to a given input matrix
is NP-complete [4]. However, the �∞-nearest ultrametric can be computed in O(n2)
time [8]. Hubert, Arabie, and Meulman [11] consider the problem of representing a
dissimilarity matrix by a sum of matrices having a particular form, including a form
that restricts the matrices to being ultrametrics.

Appendix. More on metric nearness. This appendix includes additional
informative material pertinent to metric nearness.

A.1. Metric nearness and APSP. Lemma A.1 formalizes the equivalence
between a “decrease-only” version of metric nearness and APSP. This equivalence
was originally suggested by [22].

Lemma A.1 (decrease only metric nearness is APSP). Let MA ∈ MN be the
APSP solution for D. Then MA is also the nearest “decrease-only” metric solution.
Furthermore, for any M ∈ MN , if M ≤ D, then M ≤ MA.

Proof. We prove the last statement of the lemma, noting that it immediately
implies the rest.

Assume the edge weights mA
ij of MA are sorted in increasing order, and that the

least-weighted edge for which M exceeds MA is mij , i.e., mij > mA
ij . Since MA is an

APSP solution for D, each edge weight mA
ij either equals dij or is the sum of weights

of edges involved in a shortest path of length less than dij , as shown in Figure A.1.

Fig. A.1. Shortest path between i and j via k.

In the figure, k is some intermediate vertex on a shortest path from i to j. The
zig-zag lines denote paths from i → k and k → j. Since M is a metric solution,
mij ≤ mik + mkj . Now mA

ik ≤ mA
ij and mA

kj ≤ mA
ij , since mA

ij = mA
ik + mA

kj . By

our assumption mij > mA
ij is the first place where a component of M exceeds a

component of MA (taken in sorted order), hence mik ≤ mA
ik and mkj ≤ mA

kj , which

in turn implies that mij ≤ mA
ij . We have arrived at a contradiction to our initial

assumption, which completes the proof of our claim.

A.1.1. Equivalence of APSP to DOMN. Lemma A.1 shows that the optimal
assignment of the xij variables in linear program (4.3) is the same as the distances
given by the APSP solution. In this section, we will investigate an equivalence between
the optimal assignment of the πij and γikj variables in linear program (4.4) and the
paths given by the APSP solution.
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DOMN from APSP. Given an APSP solution, we construct an optimal solution
to the DOMN problem (4.3) using the following procedure:

• If the edge (i, j) is used by n shortest paths, then set πij = n.
• If the edge (i, j) is used by n shortest paths en route to node k, then set
γijk = n.

Feasibility of the above assignment. Clearly the nonnegativity constraints πij ≥ 0
and γikj ≥ 0 are satisfied. We must show that the constraint

πij +
∑
k 	=i,j

(γikj − γijk − γkij) = 1

is satisfied for all edges (i, j).
For vertex pairs i and j in which the shortest path from i to j is the edge (i, j), this

assignment will be consistent with the constraint because all shortest paths involving
the edge (i, j) fall into one of three categories: the path from i to j, paths to j that
end with the edge (i, j), and paths to another vertex k that pass through the edge
(i, j). The latter two categories contribute both a +1 and a −1 to the constraint,
while the first category contributes a +1, resulting in a net sum of 1.

For vertex pairs i and j in which the shortest path from i to j begins with the
edge (i, k), this assignment is also consistent with the constraint. There are two types
of shortest paths ending at node j and using edge (i, k): the path that starts at i, and
paths that start at a node l and pass through (i, k) before finishing at j. The latter
type of path contributes both a +1 and a −1 to the constraint, while the first type
contributes a +1 for a total of 1.

Optimality of the assignment. Under the proposed variable assignment procedure,
the objective function for (4.4) is the sum of all path distances. Because the paths
were taken from an APSP solution, this objective is minimized.

APSP from DOMN. Given a optimal solution to (4.4), we construct an APSP
solution using the following procedure:

• If πij is positive, then the edge (i, j) is a shortest path from i to j.
• If γikj is positive, then there is a shortest path from i to j that passes through

k; we may recursively find the shortest paths from i to k and from k to j.
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COMPUTATION OF LARGE INVARIANT SUBSPACES USING
POLYNOMIAL FILTERED LANCZOS ITERATIONS WITH

APPLICATIONS IN DENSITY FUNCTIONAL THEORY∗

C. BEKAS† , E. KOKIOPOULOU‡ , AND YOUSEF SAAD§

Abstract. The most expensive part of all electronic structure calculations based on density func-
tional theory lies in the computation of an invariant subspace associated with some of the smallest
eigenvalues of a discretized Hamiltonian operator. The dimension of this subspace typically depends
on the total number of valence electrons in the system, and can easily reach hundreds or even thou-
sands when large systems with many atoms are considered. At the same time, the discretization of
Hamiltonians associated with large systems yields very large matrices, whether with planewave or
real-space discretizations. The combination of these two factors results in one of the most significant
bottlenecks in computational materials science. In this paper we show how to efficiently compute a
large invariant subspace associated with the smallest eigenvalues of a symmetric/Hermitian matrix
using polynomially filtered Lanczos iterations. The proposed method does not try to extract individ-
ual eigenvalues and eigenvectors. Instead, it constructs an orthogonal basis of the invariant subspace
by combining two main ingredients. The first is a filtering technique to dampen the undesirable
contribution of the largest eigenvalues at each matrix-vector product in the Lanczos algorithm. This
technique employs a well-selected low pass filter polynomial, obtained via a conjugate residual-type
algorithm in polynomial space. The second ingredient is the Lanczos algorithm with partial reorthog-
onalization. Experiments are reported to illustrate the efficiency of the proposed scheme compared
to state-of-the-art implicitly restarted techniques.

Key words. polynomial filtering, conjugate residual, Lanczos algorithm, density functional
theory
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1. Introduction and preliminaries. Ab initio electronic structure calcula-
tions, in the framework of density functional theory (DFT) [8, 11], have proven re-
markably accurate in providing a wealth of information concerning several important
physical properties of complex materials. However, DFT calculations are extremely
demanding and have stretched our computational capabilities to their very limits.
Therefore, advances in better simulation techniques and algorithms receive much at-
tention in this very active field of research.

The core problem in DFT calculations is the solution of the time-independent
Schrödinger equation

(1) A�Ψ� = EΨ�,
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where � is the charge density of the electrons distribution, A� is the Hamiltonian
operator, Ψ� are the wavefunctions, and E is the energy of the system. Observe that
this is a nonlinear eigenvalue problem, since the Hamiltonian and the wavefunctions
depend upon each other through the charge density �. Recent decades have seen
many methods that attempt to efficiently solve (1). All of them utilize some sort of
iteration which aims to improve some initially selected wavefunctions so that at the
end of the iteration the approximate energy E is as small as possible, or in other
words the solution of (1) is self-consistent.

The charge density �(r) at a point r in space is calculated from the eigenfunctions
Ψi of the Hamiltonian A via the formula

(2) �(r) =

no∑
i=1

|Ψi(r)|2,

where the summation is taken over all occupied states (valence electrons) no of the
system under study. This is a crucial calculation in DFT since the potential V of the
Hamiltonian A = ∇2 + V depends on the charge density �, which in turn depends
on the eigenvectors Ψi of A (see (2)), and, as a result, an iterative loop is required
to achieve self-consistence. Computing the charge density �(r) via (2) requires eigen-
vectors, though it is more accurate to say that what is needed is an orthogonal basis
of the invariant subspace associated with the no algebraically smallest eigenvalues of
the Hamiltonian. This is because �(r) is invariant under orthogonal transformations
of the basis of eigenfunctions {Ψi}. If the symmetric matrix A is the discretization
of the Hamiltonian A and the vectors ψi are the corresponding discretizations of the
eigenfunctions Ψi(r) with respect to r, then the charge densities are the diagonal
entries of the “functional density matrix”

(3) P = QnoQ
�
no

with Qno = [ψ1, . . . , ψno ].

Specifically, the charge density at the jth point rj is the jth diagonal entry of P .
In fact, any orthogonal basis Q which spans the same subspace as the eigenvectors
ψi, i = 1, . . . , no, can be used. This observation has led to improved schemes which
do not focus on extracting individual eigenvectors. For example, [1] showed that
the semiorthogonal basis computed by the Lanczos algorithm with partial reorthog-
onalization can be used in order to extract accurate approximations to the charge
density. This scheme results in substantial savings relative to schemes which rely on
the full reorthogonalization of the Lanczos vectors and the accurate calculations of
the eigenvectors. When using standard diagonalization software, much attention is
paid to obtaining accurate eigenvectors, at a cost that is often quite high. If one
focuses on invariant subspaces, all that is needed is that a good basis of the subspace
be computed, but this basis does not need to be a basis of accurate eigenvectors.
For example, a set of m vectors which are linearly independent and which are known
to have no components in the undesired eigenvectors will constitute such a basis,
and an orthonormal basis can be obtained from it if we want to compute the charge
density �. Approximate eigenvectors can be extracted from this basis (by a Rayleigh–
Ritz projection process) but this is not necessary. Shifting the focus from individual
eigenvectors to bases of invariant subspaces can reduce the cost considerably.

In simple terms, the problem considered in this paper can be stated as follows.
Given a real symmetric (or complex Hermitian) matrix A ∈ R

n×n with eigenval-
ues λ1 ≤ λ2 ≤ · · · ≤ λn, compute the invariant subspace Sno associated with the
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eigenvalues which do not exceed a certain limit γ. In electronic structures, γ is the
Fermi energy level and the interval [a, γ] contains the (algebraically) smallest occu-
pied eigenstates λ1, . . . , λno . We assume that we are given an interval [α, β] which
(tightly) contains the spectrum of A. The nature of the algorithms used in this paper
also requires that α ≥ 0. If this is not satisfied, we shift matrix A by a scalar σ so that
A + σI does not have any negative eigenvalues. Methods for computing an interval
[α, β] when this is not readily available are discussed in section 3.1.

When the number of desired eigenvalues is rather small, say on the order of a few
dozen, the problem can be addressed by a number of successful algorithms. Among
these is an extensively used general purpose method based on implicitly restarted Lan-
czos iterations [33], and implemented in the software package ARPACK [16]. However,
the problem becomes much harder in the case when we seek to compute the invari-
ant subspace associated with a large number of eigenvalues that reach deep into the
interior of the spectrum of the matrix at hand. Indeed, in electronic structure calcu-
lations, the dimension of the corresponding invariant subspace is equal to the number
of occupied states no, which typically depends upon the number of free electrons of
the system under study. Current state-of-the-art calculations may involve hundreds
or even thousands of states. In addition, the dimension n of the Hamiltonian A also
depends on the number of atoms and the topology of the system and is typically on
the order of a few hundred thousand to several million.

The method proposed in this paper exploits two distinct and complementary tools
to address the problem stated above. The first is a filtering technique which is used
to dampen the undesirable contribution of the largest eigenvalues at each matrix-
vector product in the Lanczos algorithm. This technique employs a well-selected
low pass filter polynomial, obtained via a conjugate residual- (CR-)type algorithm
in polynomial space. The second ingredient is the Lanczos algorithm with partial
reorthogonalization. The main rationale for this approach is that filtering will help
reduce the size of the Krylov subspace required for convergence, and this will result
in substantial savings both in memory and in computational costs.

Earlier papers presented these two tools in the literature. For example, the fil-
ter polynomial used here is borrowed from [28], and earlier variants were used in
[12] and [6]. The use of the partial reorthogonalization Lanczos (PR-Lanczos) was
suggested in [1]. However, one of the difficulties with the method in [1] is that very
large bases are often required. Thus, the goal of the present paper is to show how
to effectively combine these two distinct and powerful tools, namely, polynomial fil-
tering on the one hand and PR-Lanczos on the other, to solve the difficult problem
of extracting large invariant subspaces. The motivation for using polynomial filter-
ing in various applications, including computing large invariant subspaces, was also
discussed in [28].

1.1. Previous work. An alternative viewpoint which appears in existing DFT
codes is to replace diagonalization by “direct minimization,” which in effect amounts
to computing the subspace of minimum trace, i.e., an orthogonal basis Q = [q1, . . . , qn0 ]
such that tr(QTAQ) is minimum. In fact, many publications of the mid 1990s focused
on avoiding orthogonality, which turned out to be hard to achieve. A method that was
explicitly based on “trace-minimization” was proposed by Sameh and Wisniewski [30]
as far back as 1982. Many methods used in planewave codes are variants of the same
theme and are similar to subspace iteration and trace-min iteration. They begin with
a certain subspace of size no (or close) and then improve each vector individually
while the others are fixed. Clearly, when iterating on the ith vector, orthogonality
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must be enforced against the first i− 1 vectors. While this does not refer directly to
eigenvectors, the algorithm implicitly computes these eigenvectors individually.

Other codes offered an alternative to this type of scheme in the form of the
block-Davidson algorithm. When planewave bases are used, it is easy to precondition
the eigenvalue problem for a number of reasons [25]. For example, preconditioners
for eigenvalue problems in which planewaves are used can be easily extracted from
matrices which use lower-dimensional representations of the Hamiltonian, i.e., Hamil-
tonians obtained from using fewer planewaves and extended to higher dimensions in
some simple way. The lower-dimensional Hamiltonians have good representatives of
the desired eigenvectors of the higher-dimensional ones, and this class of precondi-
tioners can be quite effective in this context. In real-space methods, the situation is
quite different. In this case, we found that preconditioning the eigenvalue problem is
much harder [29]. Generally the gains with the standard preconditioners that were
attempted were small, and these are outweighed by the additional cost of applying
the preconditioner and by the loss of the 3-term recurrence of the Lanczos procedure.
Specifically, one can potentially use the Lanczos procedure with an inexpensive form
of reorthogonalization, but this is no longer possible with the Davidson approach,
which requires a full orthogonalization at each step. In [1] we explored this approach.
The Lanczos algorithm was adapted in a number of ways, the most important of which
was to replace the reorthogonalization step by a partial reorthogonalization scheme
[15, 24, 31, 32].

The use of matrix polynomials and filtering has been used in other ways, and
the idea has played a prominent role in linear scaling and related methods; see, for
example, [9, 10, 17, 21, 22]. In some cases, these methods will consist of computing
the entire density matrix (3) [21] or a small part of it as an approximation [10].

1.2. The Lanczos procedure. The Lanczos algorithm [14] (see also [3, 4, 7,
24, 26]) builds a sequence of vectors q1, q2, . . . , qm which form an orthonormal basis
Qm ∈ R

n×m of the Krylov subspace

(4) Km(A, q1) = span{q1, Aq1, A
2q1, . . . , A

m−1q1},

where q1 is an arbitrary (typically random) initial vector with ‖q1‖ = 1. As is well
known, this sequence of vectors satisfies the 3-term recurrence

(5) βi+1qi+1 = Aqi − αiqi − βiqi−1.

Note that each step of the Lanczos algorithm requires the matrix A only in the form
of matrix-vector products, which can be quite appealing in some situations, such as
when A is available in stencil form.

If Qm = [q1, . . . , qm] and if Tm denotes the symmetric tridiagonal matrix

(6) Tm =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β2

β2 α2 β2

. . .
. . .

. . .

βm−1 αm−1 βm

βm αm

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the scalars αi, βi are computed by the Lanczos algorithm, then it can be verified
that AQm = QmTm + βm+1qm+1e

�
m, where em is the mth column of the canonical

basis and qm+1 is the last vector computed by the Lanczos algorithm.
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The eigenvalues of matrix A are approximated by those of matrix Tm. The
Lanczos algorithm quickly yields good approximations to extremal eigenvalues of A.
In contrast, convergence is typically much slower for the interior of the spectrum [24].

2. Computing large eigenspaces with the Lanczos procedure. In the
situation when large eigenspaces are to be computed by the Lanczos algorithm, the
number m of Lanczos steps required for all the desired eigenvectors to converge can
be quite large. Therefore, if the algorithm is to be applied without any form of
restarting or preconditioning, then we will have to deal with two related demands:
(1) the need to apply some form of reorthogonalization to the Lanczos vectors [1, 15,
24, 31, 32], and (2) the need to store the Lanczos basis Qm because it is needed by
the reorthogonalization steps. The first constraint increases computational cost, and
some care must be exercised for the reorthogonalization process not to become too
expensive. The second raises the issue of memory costs. Storing the Lanczos basis
Qm will require a large memory size, and may even force one to resort to secondary
storage.

Note that reorthogonalization will ultimately require all basis vectors to be fetched
from main memory and that the cost of orthogonalizing the vector qk against all pre-
vious ones will incur a cost of O(kn), which yields a quadratic total cost of O(m2n)
when summed over m steps. This cost will eventually overwhelm any other compu-
tation done, and it is the main reason why so many attempts have been made in the
past to avoid or reduce the orthogonalization penalty in electronic structures codes;
see, e.g., [5, 13, 18, 19, 36].

Note also that there is an additional severe penalty due to memory traffic as
the size of the system increases, because modern processors work at a much faster
rate than memory subsystems. It was argued in [1] that memory requirements do
not necessarily pose a significant problem for the matrix sizes encountered and the
machines typically in use for large calculations. For example, storing 2000 vectors of
length 1 million requires “only” 16 GB of memory, which is certainly within reach of
most high-performance computers.1 However, for larger calculations this will be an
enormous burden and out-of-core algorithms would be needed.

2.1. Use of partial reorthogonalization. A remarkable property of the Lan-
czos algorithm is that, in theory (exact arithmetic), it computes a basis of the Krylov
subspace, which is orthonormal. This is done with a simple 3-term recurrence. How-
ever, in practice, i.e., in the presence of finite precision arithmetic (e.g., double pre-
cision floating point arithmetic), the basis vectors quickly start to lose orthogonality.
The onset of loss of orthogonality is sudden and takes place as soon as one or more
eigenvectors start converging, as was discovered in the seminal work of Paige [23].
As soon as this happens, the orthogonality is completely lost very rapidly, indicating
an unstable underlying computation. As an illustration, consider the Hamiltonian
(n = 17077) corresponding to Si10H16, which was obtained by the real-space code
PARSEC.2 We test the orthogonality of the bases Qi, i = 1, . . . ,m, with m = 200
by computing the norm ‖Q�

i Qi − Ii‖2, where Ii is the identity matrix of size i. The
left plot in Figure 1 illustrates the rapid deterioration of orthogonality among basis
vectors.

A number of existing reorthogonalization schemes are often employed to remedy
the problem. The simplest of these consists of a full reorthogonalization approach,

1In modern high-performance computers this will typically be available in a single node.
2http://www.ices.utexas.edu/parsec/index.html
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Fig. 1. Levels of orthogonality of the Lanczos basis for the Hamiltonian (n = 17077) corre-
sponding to Si10H16. Left: Lanczos without reorthogonalization. Right: Lanczos with partial re-
orthogonalization. The number of reorthogonalizations was 34 with an additional 3400 inner vector
products.

whereby the orthogonality of the basis vector qi is enforced against all previous vectors
at each step i. This means that the vector qi, which in theory is already orthogo-
nal against q1, . . . , qi−1, is orthogonalized (a second time) against these vectors. In
principle, we no longer have a 3-term recurrence, but this is not an issue as the cor-
rections are small and usually ignored (see, however, Stewart [34]). However, full
reorthogonalization can be a costly procedure.

An alternative is partial reorthogonalization, which attempts to reorthogonalize
only when it is deemed necessary. The goal is not so much to guarantee that the
vectors are exactly orthogonal as to ensure that they are at least nearly orthogonal.
Typically, the loss of orthogonality is allowed to grow to roughly the square root of the
machine precision before a reorthogonalization is performed. A result by Simon [31]
ensures that we can get fully accurate approximations to the Ritz values (eigenvalues
of the tridiagonal matrix Tm) in spite of a reduced level of orthogonality among the
Lanczos basis vectors. Furthermore, a key to the successful utilization of this result is
the existence of clever recurrences which allow us to estimate the level of orthogonality
among the basis vectors [15, 32]. It must be stressed that the cost of updating the
recurrence is very modest. Let ωi,j = q�i qj denote the “loss of orthogonality” between
any basis vectors qi and qj . Then the following is the so-called ω-recurrence [32]:

(7) βiωi+1,j = (αj − αi)ωi,j + βj−1ωi,j−1 − βi−1ωi−1,j ,

where the scalars αi and βi, i = 1, . . . , are identical to the ones computed by the
Lanczos algorithm.

Thus, we can cheaply and efficiently probe the level of orthogonality of the current
vector (say qi) and determine whether a reorthogonalization step against previous ba-
sis vectors is required. The right plot in Figure 1 illustrates the corresponding level
of orthogonality when partial reorthogonalization is applied. Only 34 reorthogonal-
ization steps were required, compared with the 200 that would have been required if
full reorthogonalization was employed.

It was shown in [1] that partially reorthogonalized Lanczos combined with tech-
niques that avoid explicit computation of eigenvectors can lead to significant savings
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in computing charge densities for electronic structure calculations. Partial reorthog-
onalization will play a key role in the algorithm to be described in the next section.

2.2. Polynomial acceleration and restarting techniques. The above dis-
cussion strongly suggests that it is critical to use a Lanczos basis that is as small as
possible. In order to achieve this, we can apply the Lanczos process not to the original
matrix A but rather on a matrix p(A), where p(t) is a polynomial of small degree,
designed to be close to zero for large eigenvalues and close to one for the eigenvalues
of interest. Of course, polynomial acceleration in Krylov techniques is not a new idea
(see, for example, [26] and the references therein). Typically, the goal is to restart
the Lanczos procedure after a fixed number of iterations with a starting vector from
which unwanted eigendirections have been filtered out. In this paper we follow a dif-
ferent approach. We do not employ any restarts, but rather filter each matrix-vector
product in the Lanczos process using a small number of CR-type iterations with the
matrix A. As can be expected, the proposed scheme will require a much smaller
number of basis vectors than without filtering. However, each matrix-vector product
is now more costly. Experiments will show that the trade-off is in favor of filtering.

Observe that in exact arithmetic, if the starting vector q1 is orthogonal to an
eigenvector ψj , then the Krylov subspace Km will never have any components in ψj ,
regardless of the number of steps m. Restarting techniques utilize this property to
speed up the computation of the desired invariant subspace. The goal is to pro-

gressively construct a starting vector q
(k)
1 , which at each restart k will have larger

components in desired eigendirections, and smaller ones in undesired eigendirections.
In contrast to the standard Lanczos procedure, the dimension of the Krylov subspace
is not allowed to grow indefinitely. When a maximum number of iterations Mmax

is reached, a new starting vector q
(k+1)
1 is selected and the process is restarted; see

[26, 33] for details.
Whether explicit or implicit, restarting can be designed to filter out eigendirec-

tions corresponding to eigenvalues λj > λno
. The goal is to accelerate convergence

towards the algebraically smallest eigenvalues. However, round-off will cause eigendi-
rections in the largest eigenvalues to quickly reappear. This is illustrated in Figure 2.
The matrix that is tested corresponds to a second order finite difference approxima-
tion of the two-dimensional Laplace differential operator. The starting vector is the
sum

q1 =

no∑
k=1

ψi

of the eigenvectors corresponding to the smallest no = 200 eigenvalues of the matrix.
The left plot of Figure 2 illustrates that at the first step of the Lanczos procedure,
the vector q1 is orthogonal (up to machine precision) to the unwanted eigenvectors.
However, it takes only m = 13 steps of Lanczos for the coefficients in the largest
eigenvectors to start dominating the last basis vector qm.

What happened can be easily explained. Let ε denote the machine precision and
assume that 〈q1, ψi〉 = ε for a given eigenvector ψi with i > no. Recall that the
Lanczos vector qm+1 is of the form qm+1 = zm(A)q1, where zm is a polynomial of
degree m, called the (m + 1)st Lanczos polynomial. The sequence of polynomials
zk, k = 1, . . . ,m, is orthogonal with respect to a certain discrete inner product.
Since the initial vector has very small components in the eigenvectors associated with
eigenvalues λi > λno

, it is to be expected that the Lanczos polynomial zm is such
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Fig. 2. Coefficients of the last basis vector qm of the Lanczos procedure (no partial reorthog-
onalization was required) for the discretization of the Laplacian, when the starting vector does not
have any components in undesired eigenvectors. Left: one step. Right: m = 13 steps.

that zm(λi) 	 1 for i > no. Therefore, we will have

〈qm+1, ψi〉 = 〈zm(A)q1, ψi〉
= 〈q1, zm(A)ψi〉
= zm(λi)〈q1, ψi〉
= zm(λi)ε.(8)

As a result, the small component ε will be amplified by the factor zm(λi), which is
likely to be very large.

The situation can be remedied by replacing A by an operator of the form B =
p(A), where p(λi) is small. If B is used in the Lanczos algorithm, then note that every
time we multiply q by B, a component in the direction ψi that is small (relative to
the others) will remain small.

Before we state the result in detail, we must recall that in inexact arithmetic, the
Lanczos relation (5) is replaced by a relation of the form

(9) Aqi = βi+1qi+1 + αiqi + βiqi−1 − zi,

where zi is an error vector which, in general, remains small.
Lemma 2.1. Consider any eigenvalue λ > λno and let ψ be its associated eigen-

vector and δ ≡ p(λ). Assume that the sequence {qi} satisfies the model (9) and define

εψi = 〈ψ, zi〉. Then the scalar sequence σi = 〈qi, ψ〉 satisfies the recurrence

(10) βi+1σi+1 + (αi − δ)σi + βiσi−1 = εψi

and, assuming βm+1e
�
1 (Tm − δI)−1em �= 0, then the component σm+1 of qm+1 along

ψ can be expressed as

(11) σm+1 =
ε�m(Tm − δI)−1e1 − σ1

βm+1e�m(Tm − δI)−1e1
,
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in which εm = [εψ1 , ε
ψ
2 , . . . , ε

ψ
m]� and Tm is the tridiagonal matrix (6).

Proof. Let B ≡ p(A). We begin with the relation

Bqi = βi+1qi+1 + αiqi + βiqi−1 − zi.

Taking the inner product with ψ yields

〈Bqi, ψ〉 = βi+1〈qi+1, ψ〉 + αi〈qi, ψ〉 + βi〈qi−1, ψ〉 − εψi .

Since Bψ = δψ, this readily yields the expression (10).
Define the vector sm = [σ1, σ2, . . . , σm]�. We can rewrite the relations (10) for

i = 1, . . . ,m in matrix form as

(Tm − δI)sm = εm − βm+1σm+1em,

which yields the relation sm = (Tm − δI)−1εm − βm+1σm+1(Tm − δI)−1em. Now, we
add the condition that σ1 is known:

σ1 = e�1 sm = e�1 (Tm − δI)−1εm − βm+1σm+1e
�
1 (Tm − δI)−1em,

from which we obtain the desired expression (11).
The main point of the above lemma is that it explicitly provides the amplification

factor for the coefficient in the direction ψ in terms of computed quantities. This
factor is the denominator of the expression (11). Note that in exact arithmetic, the
vector εm is zero and the initial error of σ1 in the direction of ψ is divided by the factor
βm+1e

�
1 (Tm − δI)−1em. We can obtain a slightly simpler expression by “folding” the

term σ1 into the vector εm. This is helpful if σ1 is of the same order as the εψi ’s as it
simplifies the expression. Set

ε̂m = εm − σ1(Tm − δI)e1.

Note that only εψ1 and εψ2 are modified into ε̂ψ1 = εψ1 − (α1 − δ)σ1 and ε̂ψ2 = εψ2 − β2σ1,

while the other terms remain unchanged, i.e., ε̂ψi = εψi for i > 2. Then (11) becomes

(12) σm+1 =
ε̂�m(Tm − δI)−1e1

βm+1e�m(Tm − δI)−1e1
.

Let us consider the unfavorable scenario first. When B ≡ A then Tm is simply
the tridiagonal matrix obtained from the Lanczos algorithm and δ is an eigenvalue of
A. Assume that λ = λn, the largest (unwanted) eigenvalue. Even if q1 has very small
components in the direction of λ, convergence will eventually take place (see (8)),
and Tm will tend to have an eigenvalue close to λ, so (Tm − δI)−1e1 ≡ ym is close
to an eigenvector of Tm associated with its largest eigenvalue. As is well known,
the last components of (converged) eigenvectors of Tm will tend to be much smaller
than the first ones. Therefore, if ε̂m is a small random vector, then σm will become
larger and larger because the numerator will converge to a certain quantity while the
denominator will converge to zero.

The use of a proper inner polynomial p(t) prevents this from happening early by
ensuring that convergence towards unwanted eigenvalues does not take place. In this
situation δ is an eigenvalue of B among many others that are clustered around zero,
so convergence is considerably slower towards the corresponding eigenvector. By the
time convergence takes place, the desirable subspace will have already been computed.
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βγ 

Fig. 3. The Heaviside function for the interval [γ, β].

3. The filtered Lanczos procedure. Partial reorthogonalization can signifi-
cantly extend the applicability of Lanczos in electronic structure calculations (see [1]),
but there are computational issues related to the use of very long Lanczos bases when
a large invariant subspace is sought. These issues can be addressed by employing
polynomial filtering in the Lanczos procedure.

In exact arithmetic, the ideal solution to this problem is to use an initial vector
which is filtered so that it has no eigencomponents associated with λi, i > no. How-
ever, we saw earlier that in the course of the Lanczos procedure, components along
the largest eigenvectors will quickly return. We discussed the reasons for this behavior
and suggested a simple remedy which consists of replacing the matrix-vector product
Aqi in the usual Lanczos algorithm by p(A)qi, where p(t) is a low-degree polynomial
filter that approximates the Heaviside function (see Figure 3). The interval [γ, β]
contains all the unwanted (largest) eigenvalues, which are approximately mapped by
p(t) to zero.

All that is required to implement the proposed filtered Lanczos scheme is to
substitute the matrix-vector product Aqi with a function P(A, qi, d) which evaluates
the product of the matrix polynomial p(A) with the vector qi. Let d be the degree
of the polynomial p(t). Then the cost per step of the filtered Lanczos procedure,
compared with the plain Lanczos procedure, is d additional matrix-vector products.

Observe that the filtered Lanczos process constructs an approximate invariant
subspace for the matrix p(A) which is also an invariant subspace for A itself. However,
while the restriction of p(A) on the orthogonal Lanczos basis Qm is a tridiagonal
matrix, i.e., Q�

mp(A)Qm = Tm is tridiagonal, this is no longer true for A, i.e.,

(13) Q�
mAQm = T̃m,

where T̃m is in general dense. The eigenvalues of A are approximated by those of T̃m,
while the eigenvalues of Tm approximate those of p(A). However, A and p(A) have the
same eigenvectors. Thus, if we consider the matrix of normalized eigenvectors Y of
Tm and Ỹ of T̃m, respectively, then approximations to the eigenvectors of A are given
either by the columns of the matrices QmY or QmỸ . Furthermore, approximations
to the eigenvalues of A are available from the eigenvalues of T̂m = Y �Q�

mAQmY .
Similarly to the Lanczos procedure, the basis vectors qi in the filtered Lanczos
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procedure are also expected to rapidly lose orthogonality. Thus, the partial reorthogo-
nalization techniques of section 2.1 will prove to be particularly useful in the practical
deployment of the method.

The larger the degree of the polynomial p(t), the closer it can be made to the
Heaviside function. On the other hand, using a larger degree d will induce a higher
computational cost. It is important to note that in practice we do not seek to approx-
imate the Heaviside function everywhere on its domain of definition. We would like
the polynomial p(t) to take small values on the region of the unwanted eigenvalues.
Section 4 discusses a CR-type iteration that achieves this goal. In order to describe
the filtered Lanczos iteration, it suffices for the time being to consider the application
of the filtering polynomial as a “black box” function P(A, qi, d).

3.1. The algorithm. In order to compute a basis for an invariant subspace Sno

for the no algebraically smallest eigenvalues of matrix A, we assume that we are given
an interval (γ, β], which contains all the unwanted eigenvalues λj > λno . Assuming
that the matrix A does not have any negative eigenvalues, it suffices to consider only
the left endpoint γ of the interval. In electronic structure calculations, the problem
is often a variation of this one, in that we wish to compute an invariant subspace
associated with the no smallest eigenvalues. However, there is an outer loop, and
previous information can be used to obtain a good interval on which to restrict the
search. There are also instances where the number of eigenvalues no is unknown, but
rather we are given an upper bound γ for the eigenvalues that need to be considered.

Starting vector. It is important that the starting vector q1 be free of compo-
nents in the undesired eigenvectors. To this end we apply a high-degree polynomial
filter ph on a random vector q̃, such that q1 = ph(A)q̃. The degree of this first polyno-
mial can be quite high (say dh = 200 or so) to get a good elimination of the undesired
components. A systematic way to stop this initial iteration is to monitor the norm of
the residual of the CR iteration, which indicates how well the sequence of the orthog-
onal CR polynomials approximate the base filter function. Once this norm, which is
cheap to compute (see section 4.1), falls below a user-specified tolerance, the iteration
is stopped. This in turn will guarantee that unwanted large eigendirections have been
adequately dampened.

Bounding intervals. If we are not given an interval [α, β] that tightly contains
the eigenvalues, then we employ a number of unrestarted Lanczos iterations in order
to obtain approximations for the bounds α and β. In practice, the number of these
iterations is kept low. Let r1 and rn be the residual vectors for the approximate
extremal eigenvalues λ̃1 and λ̃n of matrix A obtained from a few Lanczos steps. Then
we use the practical bounds α̃ = λ̃1 − ‖r1‖ and β̃ = λ̃n + ‖rn‖. If α̃ is negative,
then we shift the Hamiltonian so as to make all its eigenvalues positive. The “interval
of wanted eigenvalues” is user-defined. Standard “self-consistent field” iterations in
electronic structure methods are inherently nonlinear iterations and as such infor-
mation from previous iterations can be exploited to obtain a good estimate for the
wanted interval. At the beginning of the self-consistent field loop, there are adequate
initializations based on superposition of atomic wavefunctions that can be exploited.
The “unwanted” interval is readily defined from the above.

Inner polynomial transformation. The main Lanczos iteration will be per-
formed with a filter polynomial of A, i.e., the Lanczos algorithm is run with B = p(A).
The degree d of p is much smaller than that of ph, in order to reduce the overall cost.
Typically d ≡ 8.
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Convergence criterion. Equally important in limiting the computational cost
is the convergence test. Let (λ̃i, x̃i) be an approximate eigenpair, where xi = Qmyi
and (λ̃i, yi) is an eigenpair of the dense matrix T̃m (13). Then it is natural to monitor
the norm of the residual ri = Ax̃i − λ̃ix̃i. It is well known (see, e.g., [24]) that

‖ri‖ = ‖Ax̃i − λ̃ix̃i‖ = |βm+1| |ymi |,

where ymi is the last element of the eigenvector yi. In order to reduce the computa-
tional cost as well as the memory load, we opt to avoid calculating the eigenvectors
yi at every step. Thus, we choose to monitor, during the iteration, the sum of the
eigenvalues λ̃i of matrix T̃k, which correspond to those eigenvalues of A that are
smaller than the upper bound γ, sk =

∑
λ̃i<γ λ̃i. Only when the change in the sum

sk, in comparison to sk−1, is less than a user-defined tolerance do we calculate the
eigenvectors yi and thus check convergence by means of the residual norms ‖ri‖. If
all residual norms are adequately small, then we stop the iteration. Otherwise, we
continue the iteration and repeat the process. Further savings are achieved by not
performing the convergence test for sk at every Lanczos step, but only infrequently,
for example, at fixed intervals.

Computation of the projection matrix T̃m. Observe that

(14) T̃i = Q�
i+1AQi+1 = [Qi qi+1]

�A[Qi qi+1] =

[
Q�

i AQi Q�
i Aqi+1

q�i+1AQi q�i+1Aqi+1

]
.

Thus, matrix T̃m can be computed incrementally during the course of the algorithm.
Obviously, if T̃m is updated at every step i, then no additional memory is required.
However, a more efficient BLAS 3 implementation is possible if we postpone the update
of T̃m and rather perform it at fixed intervals (which can be made to coincide with
the intervals at which convergence is checked). This will come at the expense of a few
additional vectors in memory. In particular, we will have to store the vectors Aqi+1

for a number of consecutive steps.
Figure 4 shows a high-level algorithmic description of the filtered Lanczos itera-

tion.

4. Polynomial filters. This section focuses on the problem of defining and
applying the polynomial filter. Details on the algorithms described here can be found
in [28]. We begin with a brief summary of filtering techniques when solving linear
systems of equation by “regularization” [20]. In regularized solution methods, one
seeks to find an approximate solution to the linear system Ax = b by inverting A only
in the space associated with the largest eigenvalues, leaving the other part untouched.
As was explained in [28], computing a filtered solution amounts to computing a vector
s(A)b whose residual vector p(A)b = b−As(A)b is a certain filter polynomial, typically
one that is computed to be close to 1 for small eigenvalues and close to 0 for larger
eigenvalues. In other words, it would resemble the desired filter polynomial, such as
the one shown on the right of Figure 7.

The approximate solutions produced by Krylov subspace methods for solving a
linear system Ax = b are of the form sj(A)r0, where sj is a polynomial of degree ≤ j.
The corresponding residual vector is pj+1(λ) = 1−λsj(λ). This polynomial is of degree
j + 1 and has value 1 at λ = 0. In standard (unfiltered) methods one attempts to
make the polynomial λsj(λ) close to the function 1 on the (discrete) set of eigenvalues.
Chebyshev methods attempt to make the polynomial λs(λ) close to the function 1,
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Filtered Lanczos Algorithm.

(*Input*)
Matrix A ∈ R

n×n, starting vector q1, ‖q1‖2 = 1,
polynomial filter function P(A, q, d) that approximates the step function,
high polynomial degree dh, stride strd, upper bound γ

(*Output*)
Eigenvalues of A smaller than γ and orthogonal basis Q = [q1, q2, . . .] for
the invariant subspace associated with these eigenvalues

1. Set β1 = 0, q0 = 0
2. Thoroughly filter initial vector q1 = P(A, q1, dh), q1 = q1/‖q1‖
3. for i = 1, . . .
4. wi = P(A, qi, dl) − βiqi−1

5. αi = 〈wi, qi〉
6. wi = wi − αiqi
7. βi+1 = ‖wi‖2

8. if (βi+1 == 0) then stop

9. qi+1 = wi/βi+1

10. if rem(i, strd) == 0 then

11. Compute last row/column of matrix T̃i = Q�
i AQi

11. Compute all eigenvalues λ̃j of T̃i such that λ̃j < γ

12. Compute si =
∑

λ̃i<γ λ̃i

13. if (|(si − si−1)/si−1| < tol) then
14. Calculate residuals ‖ri‖ and if all ‖ri‖ < tol then break
15. end
16. end

Fig. 4. The filtered Lanczos algorithm. The inner product for vectors is denoted by 〈., .〉.

uniformly, on the (continuous) set [α, β] containing the spectrum (with 0 < α < β). A
number of other methods have been developed which attempt to make the polynomial
λs(λ) close to the function 1, in some least-squares sense, on the interval [α, β].

In the standard CR algorithm (see, e.g., [27]), the solution polynomial sj mini-
mizes the norm ‖(I −As(A))r0‖2, which is nothing but a discrete least-squares norm
when expressed in the eigenbasis of A:

‖(I −As(A))r0‖2 =

[
N∑
1

(1 − λis(λi))
2

]1/2

≡ ‖1 − λs(λ)‖D.

It is possible to write a CR-like algorithm which minimizes ‖1 − λs(λ)‖g for any
least-squares norm associated with a (proper) inner product of polynomials

〈p, q〉g.

The related generic CR algorithm is given in Figure 5.
It can be easily shown that the residual polynomial pj generated by this algorithm

minimizes ‖p(λ)‖g among all polynomials of the form p(λ) = 1 − λs(λ), where s is
any polynomial of degree ≤ j − 1. In other words, pj minimizes ‖p(λ)‖g among all
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Generic Conjugate Residual Algorithm.

1. Compute r0 := b−Ax0, p0 := r0, π0 = p0 = 1
2. Compute λπ0

3. for j = 0, 1, . . . , until convergence:
4. αj := 〈pj , λpj〉g/〈λπj , λπj〉g
5. xj+1 := xj + αjpj
6. rj+1 := rj − αjApj pj+1 = pj − αjλπj

7. βj := 〈pj+1, λpj+1〉g〈pj , λpj〉g
8. pj+1 := rj+1 + βjpj πj+1 := pj+1 + βjπj

9. Compute λπj+1

10. end

Fig. 5. Generic CR algorithm.

polynomials p of degree ≤ j, such that p(0) = 1. In addition, the polynomials λπj are
orthogonal to each other.

In order to add filtering to the above algorithm, note that filtering amounts to
minimizing some norm of φ(λ) − λs(λ), where φ is the given filter function. One
must remember that φ(A)v is not necessarily easy to evaluate for a given vector v. In
particular, φ(A)r0 may not be available.

The relation between regularized filtered iterations and polynomial iterations,
such as the one we are seeking for the eigenvalue problem, may not be immediately
clear. Observe that the residual polynomial pm(t) can be used as a filter polynomial
for a given iteration. For example, the residual polynomial shown on the right of
Figure 7, which is of the form p(λ) = 1 − λs(λ), can be used for computing all
eigenvalues in the interval [0, 1.7]. The dual filter 1 − p(λ) has small values in [0, 1.7]
and can be used to compute the invariant subspace associated with the eigenvalues
in the interval [2.3, 8], though this may possibly require a large subspace. Notice that
one of the main difficulties with this class of techniques is precisely the issue of the
dimension of the subspace, as there is no inexpensive way of knowing in advance how
many eigenvalues there are in a given interval.

4.1. Corrected CR algorithm. The standard way of computing the best poly-
nomial is to generate an orthogonal sequence of polynomials and expand the least-
squares solution in it. This approach was taken in [6] and more recently in [12].

The formulation of the solution given next is based on the following observation.
The polynomials associated with the residual vectors of the (standard) CR algorithm
are such that {λπj} is an orthogonal sequence of polynomials, and so it can be used as
an intermediate sequence in which to express the solution. We can generate the resid-
ual polynomial which will help obtain the pi’s: the one that would be obtained from
the actual CR algorithm, i.e., the same r vectors as those of the generic CR algorithm
(see Figure 5). It is interesting to note that with this sequence of residual vectors,
which will be denoted by r̃j , it is easy to generate the directions pi which are the same
for both algorithms. The idea becomes straightforward: obtain the auxiliary residual
polynomials p̃j that are those associated with the standard CR algorithm and exploit
them to obtain the πi’s in the same way as in the CR algorithm. The polynomials λπj

are orthogonal and therefore the expression of the desired approximation is the same.
The algorithm is described in Figure 6, where now p̃j is the polynomial associated
with the auxiliary sequence r̃j .
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Filtered Conjugate Residual Polynomials Algorithm.

1. Compute r̃0 := b−Ax0, p0 := r̃0 π0 = p̃0 = 1
2. Compute λπ0

3. for j = 0, 1, . . . , until convergence:
4. α̃j := 〈p̃j , λp̃j〉w/〈λπj , λπj〉w
5. αj := 〈φ, λπj〉w/〈λπj , λπj〉w
6. xj+1 := xj + αjpj
7. r̃j+1 := r̃j − α̃jApj p̃j+1 = p̃j − α̃jλπj

8. βj := 〈p̃j+1, λp̃j+1〉w/〈p̃j , λp̃j〉w
9. pj+1 := rj+1 + βjpj πj+1 := p̃j+1 + βjπj

10. Compute λπj+1

11. end

Fig. 6. The filtered CR polynomials algorithm.

The only difference with a generic CR-type algorithm (see, e.g., Figure 5) is that
the updates to xj+1 use different coefficients αj from the updates to the vectors r̃j+1.
Observe that the residual vectors r̃j obtained by the algorithm are just auxiliary
vectors that do not correspond to the actual residuals rj = b − Axj . Needless to
say, these actual residuals, the rj ’s, can also be generated after line 5 (or 6) from
rj+1 = rj −αjApj . Depending on the application, it may or may not be necessary to
include these computations.

The solution vector xj+1 computed at the jth step of the corrected CR algorithm
is of the form xj+1 = x0 + sj(A)r0, where sj is the jth degree polynomial:

(15) sj(λ) = α0π0(λ) + · · · + αjπj(λ).

The polynomials πj and the auxiliary polynomials p̃j+1(λ) satisfy the orthogonality
relations,

(16) 〈λπj(λ), λπi(λ)〉w = 〈λp̃j(λ), p̃i(λ)〉w = 0 for i �= j.

In addition, the filtered residual polynomial φ−λsj(λ) minimizes ‖φ−λs(λ)‖w among
all polynomials s of degree ≤ j − 1.

It is worth mentioning that there is an alternative formula for αj , which is

(17) αj = α̃j −
〈1 − φ, λπj〉
〈λπj , λπj〉

,

whose merit, relative to the expression used in line 4 of the algorithm, is that it clearly
establishes the new algorithm as a corrected version of the generic CR algorithm of
Figure 5. In the special situation when φ ≡ 1, αi = α̃i, and the two algorithms
coincide as expected.

4.2. The base filter function. The solutions computed by the algorithms just
seen consist of generating polynomial approximations to a certain base filter function
φ. It is generally not a good idea to use φ as the step function because this function is
discontinuous and approximations to it by high-degree polynomials will exhibit very
wide oscillations near the discontinuities. It is preferable to take as a “base” filter,
i.e., the filter which is ultimately approximated by polynomials, a smooth function
such as the one illustrated in Figure 7.
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Fig. 7. A typical filter function φ and its dual filter 1− φ.

The filter function in Figure 7 can be a piecewise polynomial consisting of two
pieces: A function which increases from 0 to 1 when λ increases smoothly from 0 to
γ, and the constant function unity in the interval [γ, β]. Alternatively, the function
can begin with the value 0 in the interval [0, γ1], then increase smoothly from 0 to 1
in a second interval [γ1, γ2], and finally take the value 1 in [γ2, β]. This second part
of the function (the first part for the first scenario) bridges the values 1 and 1 by a
smooth function and was termed a “bridge function” in [6].

A systematic way of generating base filter functions is to use bridge functions
obtained from Hermite interpolation. The bridge function is an interpolating polyno-
mial (in the Hermite sense) depending on two integer parameters m0,m1 and denoted
by Θ[m0,m1] which satisfies the following conditions:

(18)
Θ[m0,m1](0) = 0; Θ′

[m0,m1]
(0) = · · · = Θ

(m0)
[m0,m1]

(0) = 0,

Θ[m0,m1](γ) = 1; Θ′
[m0,m1]

(γ) = · · · = Θ
(m1)
[m0,m1]

(γ) = 0.

Thus, Θ[m0,m1] has degree m0+m1+1 and m0, m1 define the degree of smoothness
at the points 0 and α, respectively. The ratio m1

m0
determines the localization of the

inflection point. Making the polynomial increase rapidly from 0 to 1 in a small interval
can be achieved by taking high-degree polynomials, but this has the effect of slowing
down convergence toward the desired filter, as it causes undesired oscillations. Two
examples are shown in Figures 8 and 9.

Once the base filter is selected, the filtered CR algorithm can be executed. It
remains, however, to define the inner products. Details on the weight functions and the
actual techniques for computing inner products of polynomials can be found in [28].
We only mention that it is possible to avoid numerical integration by defining the inner
products by using classical weights (e.g., Chebyshev) in each subinterval of the whole
interval where the base filter is defined. Since the base filter is a standard polynomial
in each of these subintervals, inner products in these intervals can be evaluated without
numerical integration. This, in effect, is equivalent to using Gaussian quadrature in
each of these subintervals.

The support of the bridge function, an interval in which the base function drops
from 1 to 0, can be determined by the interval of wanted eigenvalues and the largest
eigenvalue of the matrix. We already discussed how to get the required bounds for
the largest and smallest eigenvalues of A from a few steps of the Lanczos algorithm.
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Fig. 8. The base filter Θ[4,4] in [0, 2] and one in [2, 8] (left) and its polynomial approximation
of degree 15 (right).
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Fig. 9. The base filter Θ[10,2] in [0, 2] and one in [2, 8] (left) and its polynomial approximation
of degree 15 (right).

The bridge interval should be large enough so as to include all the eigenvalues of the
wanted set, but not so large as to contain too many unwanted eigenvalues. In prac-
tice, augmenting the interval of wanted eigenvalues slightly only minimally hampers
performance but helps improve the robustness of the procedure.

There are a number of parameters which can be exploited to yield a desired filter
polynomial. In addition to the degrees of the polynomials m0,m1, one can also define
the weight functions differently. For example, more or less emphasis can be placed
in each subinterval. Our experience shows that using an equal weighting scheme for
each subinterval is a very reasonable choice for most applications, including electronic
structure calculations.

5. Numerical experiments. This section reports on a few numerical experi-
ments with matrices taken from electronic structure calculations and from the
Harwell–Boeing collection. Two other good reference points for a useful compar-
ison would be the partially reorthogonalized Lanczos (which was used in [1]) and
the implicitly restarted Lanczos iteration as it is implemented in the popular pack-
age ARPACK [16, 33]. We compare these two algorithms with the filtered Lanczos
(F. Lanczos) algorithm with partial reorthogonalization.
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All the experiments which follow were performed on an SGI Origin 2000 system
using a single R12000 processor at 300 MHz clock. The filtered Lanczos code is
available from the authors upon request. F. Lanczos is implemented purely in C
while ARPACK is implemented in Fortran 77. The Lanczos algorithm with partial
reorthogonalization is based in the Fortran 77 code PLANSO [35]. The convergence
tolerance was set to 10−10 for all methods. Notice that although in electronic structure
calculations the convergence tolerance is typically taken 2–3 orders of magnitude
larger, F. Lanczos (similar to ARPACK and Lanczos) can be used for other applications
as well (this is why we include the test matrix from the Harwell–Boeing collection). In
order to conduct a rather strict test we have chosen the above convergence tolerance.
For ARPACK the maximum dimension of the Lanczos basis was always set equal to
twice the number of requested eigenvalues. Thus, the number of implicit QR steps in
ARPACK was equal to the number of the wanted eigenvalues. We point out that these
settings are typically used in ARPACK.

For F. Lanczos the number of filtered Lanczos iterations for the initial vector
was set to 200, while the degree of the inner CR polynomial was 8. In the latest
(stabilized) version of the code we use 2 intervals for the base function: one for the
wanted and another for the unwanted ones. The degrees m1,m2 for the smooth base
function are set to m1 = 5 and m2 = 15. The number of Lanczos iterations for the
determination of the bounding interval [α, β] for the spectrum was determined by a
convergence tolerance of 10−6. The above settings were the same for all test cases.

For partial reorthogonalization we used the default parameters defined in the
PLANSO code. It is worth mentioning that the maximum loss of orthogonality allowed
was set to the square root of the machine precision.

In implicitly restarted techniques, such as those implemented in ARPACK, a basis
of length equal to the number of required eigenvalues is updated at each restart.
Thus, such methods are not designed to compute all eigenvalues in a given interval.
This, of course, is in contrast to the filtered Lanczos iteration, as well as to the
unrestarted Lanczos algorithm. In order to facilitate a performance comparison we
have used the following setting: for each test matrix, we are interested in a given
number of its algebraically smallest eigenvalues. We compute these using ARPACK.
Then we use the filtered Lanczos iteration and the unrestarted Lanczos iteration
with partial reorthogonalization to compute all eigenvalues that are smaller than or
equal to the largest of the requested eigenvalues computed by ARPACK. Of course,
this comparison is not carried out on completely equal terms. However, our goal
is to demonstrate that a strategy of exchanging memory accesses with additional
matrix-vector products can significantly lower the overall computational cost. This
was previously shown in [1], however, at the important expense of additional memory,
relative to implicitly restarted techniques. The experiments that follow clearly show
that the filtered Lanczos iteration can achieve both goals: it can operate on limited
memory while significantly reducing the overall computational cost.

Test matrices. We have used four matrices from electronic structure calcula-
tions for the tests. These are Hamiltonians obtained from a real-space code [2]. In
addition, we have also used a test matrix, namely, the Andrews matrix, from the
University of Florida sparse matrix collection,3 so as to give an example of applicabil-
ity of our method in other applications as well. Table 1 provides the characteristics
of the test matrices. For the Hamiltonians the number of the requested eigenvalues

3http://www.cise.ufl.edu/research/sparse/
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Table 1

Characteristics of test matrices: nnz is the total number of nonzeros, so the last column shows
the average number of nonzeros per row.

Matrix Size n nnz nnz/n
Si10H16 17077 875923 51.3
Ge99H100 94341 6332795 67.2
Ge87H76 94341 5963003 63.2
Si34H36 97569 5156379 52.8
Andrews 60000 760154 12.7

generally correspond to physical properties of the corresponding molecular system.
For example, Si10H16 has 28 occupied states, while Si34H36 has 86, Ge87H76 has 212,
and Ge99H100 has 248. In order to test the scalability of the methods under study,
we requested additional eigenvalues as well. For the matrix Andrews we arbitrarily
requested 100–400 eigenvalues. We point out that all statistics for the F. Lanczos

algorithm include an initial call to the unrestarted Lanczos algorithm, with partial
reorthogonalization, in order to approximate (upper and lower) bounds for the ex-
tremal eigenvalues. Observe that our choice of matrices spans different degrees of
sparsity in order to demonstrate the effect of the latter on the overall cost, since the
F. Lanczos algorithm makes heavy use of matrix-vector products.

Discussion. The experimental results clearly illustrate that the F. Lanczos al-
gorithm achieves significant improvements over the other two competing methods.
The performance improvement becomes more evident as the number of requested
eigenvalues increases.

All of our test matrices are sparse. However, the degree of sparsity (as measured
by the average number of nonzeros per row, shown in the last column of Table 1)
differs significantly between the “denser” Ge99H100 Hamiltonian and the “sparser”
Andrews matrix. A careful look in the results illustrated in Table 2 clearly suggests
that the improvements in run-times of the F. Lanczos algorithm over ARPACK is more
pronounced for the sparser test matrices. Thus, although the number of matrix-vector
products in F. Lanczos increases relative to ARPACK, a significant gain results from
avoiding the updating of a large number of eigenvectors, which standard methods do
at every step.

The use of partial reorthogonalization is indeed beneficial in both F. Lanczos and
Partial Lanczos. However, the main advantage of F. Lanczos is the reduction of traffic
in memory. For example, let us look at the case of Si34H36 and no = 200 (last row
of subtable, Table 2). Observe that F. Lanczos uses 640 basis vectors, while Partial
Lanczos has to move 3580 basis vectors from memory. For ARPACK we have 30 restarts,
and at each restart the algorithm will “touch” 400 vectors (twice the number of sought
eigenvalues); thus we have a total of at least 12000 basis vectors moving between
memory and CPU (including other costs such as full reorthogonalization).

In electronic structure calculations the required accuracy is close to 0.5 · 10−6,
which is larger than the semiorthogonality level of 10−8 that is ensured by partial re-
orthogonalization. However, in applications that have stricter accuracy requirements,
semiorthogonality of basis vectors may not be adequate. If this is the case, then we
can use full reorthogonalization in F. Lanczos. Of course, we can expect the benefits
over ARPACK to reduce somewhat; however, the major improvement which results from
the small basis of F. Lanczos and its unrestarted nature, and thus its much lesser use
of memory, is still there. On the other hand, using a large convergence tolerance could
prove tricky in ARPACK as this code relies on deflation techniques in order to improve
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Table 2

Summary of experimental results for all 5 test matrices. MV denotes the total number of matrix-
vector products, which for the Lanczos algorithm with partial reorthogonalization is also the dimen-
sion of the Lanczos basis used. For the F. Lanczos algorithm, the numbers in parentheses in the MV

column denote the dimension of the Lanczos basis. RTH denotes the number of reorthogonalization
steps. RES is the number of restarts for ARPACK. MEM denotes the required memory in Mbytes and t

is the total time in secs. Finally, no is the number of requested eigenvalues.

Andrews

F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

100 3320 (290) 130 133 330 1390 111 636 530 1616 24 92 2000
200 6110 (600) 186 275 803 2360 213 1080 1633 2769 21 183 6682
300 8270 (840) 224 385 1364 3120 298 1428 2976 3775 19 275 13572
400 10610 (1100) 267 504 2274 3970 393 1817 4997 4978 19 366 23762

Si10H16
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

28 1144 (100) 21 13 48 539 16 72 24 592 27 7.5 58
50 1864 (180) 40 23 86 930 35 124 61 1039 31 13.3 187
150 4384 (460) 86 60 244 1940 97 259 273 2129 21 40 1111
200 5284 (560) 88 73 315 2190 114 292 360 2676 20 53 1847

Si34H36
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

86 2317 (230) 42 171 778 1440 36 1098 605 1537 24 131 2877
100 3127 (320) 54 238 1105 1810 50 1380 907 2164 32 152 4800
150 4657 (490) 102 365 1799 2880 96 2195 2191 3085 32 229 9993
200 6007 (640) 134 476 2496 3580 129 2729 3431 3803 30 305 16099

Ge87H76
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

212 4476 (470) 88 338 1895 2710 88 1951 1993 2867 20 306 12145
300 8256 (890) 172 641 4130 4010 153 2887 4448 4673 25 432 28359
424 11406 (1240) 240 893 6624 5740 252 4132 9804 6059 23 611 51118

Ge99H100
F. Lanczos Partial Lanczos ARPACK

no MV RTH MEM t MV RTH MEM t MV RES MEM t

248 5194 (550) 102 396 2379 3150 109 2268 2746 3342 20 357 16454
350 8794 (950) 178 684 4648 4570 184 3289 5982 5283 24 504 37371
496 12934 (1410) 270 1015 8374 6550 302 4715 13714 6836 22 714 67020

convergence. Thus, poorly converged (large) eigenvectors will reenter in the iteration,
slowing convergence towards small eigenvalues.

In comparison with the unrestarted partially reorthogonalized Lanczos procedure,
observe that the filtered Lanczos method always requires far less memory. In fact, the
amount of additional memory in comparison to ARPACK is quite modest. Typically, the
new method will require a Lanczos basis with length close to three times the number
of computed eigenvalues. We also observe that for rather dense matrices and small
number of eigenvalues (i.e., Si34H36 and Si10H16) the unrestarted Lanczos method
with partial reorthogonalization is the fastest of the three methods. However, when
a large invariant subspace is sought, then the unrestarted Lanczos method will tend
to require a long basis, ultimately causing even infrequent reorthogonalizations and a
significant increase in memory traffic, and to dramatically prolong the run-times.

6. Conclusions. This paper presented a filtered Lanczos iteration for comput-
ing large invariant subspaces associated with the algebraically smallest eigenvalues
of very large and sparse matrices. In contrast to restarted techniques (e.g., ARPACK),



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

POLYNOMIAL FILTERED LANCZOS ITERATIONS 417

which repeatedly update a fixed number of basis vectors, filtered Lanczos is allowed to
augment the search subspace until all eigenvalues smaller than a predetermined upper
bound have converged. The loss of orthogonality of the Lanczos basis vectors is treated
by a partial reorthogonalization scheme [31]. One technique which filtered Lanczos
and explicit/implicit restarted Krylov subspace algorithms have in common is the
use of filtering polynomials, designed to dampen eigencomponents along “unwanted”
parts of the spectrum. However, while restarted techniques apply these polynomials
periodically (i.e., at each restart), the filtered Lanczos procedure applies a fixed, pre-
computed, low-degree polynomial of A to the working Lanczos vector, which amounts
to a polynomial preconditioning technique applied to A. We showed that if the un-
wanted eigendirections are thoroughly filtered from the starting vector of the Lanczos
algorithm, then the application of the aforementioned small-degree polynomial suc-
cessfully prevents the unwanted directions from reappearing into the iteration, thus
expediting convergence towards the desired invariant subspace. Earlier work (see,
e.g., [28]) showed how one can design a CR-type iteration that efficiently applies a
low pass filter in order to solve regularized linear systems. The low-degree polynomial
which is involved in this procedure is used in the filtered Lanczos algorithm.

Experimental evidence clearly shows that the new method achieves significant per-
formance improvements over the most sophisticated restarted technique (i.e., ARPACK),
while at the same time incurring very modest additional memory requirements. These
gains in efficiency are obtained by essentially trading the repeated and costly updates
of the working eigenbasis, which is inherit in restarted techniques, for additional
matrix-vector products. Thus, the method will work quite well whenever matrix-
vector products are not expensive.

Acknowledgments. This work would not have been possible without the avail-
ability of excellent source codes for diagonalization. Specifically, our experiments
made use of the PLANSO code developed by Wu and Simon [35] and the ARPACK code of
Lehoucq, Sorensen, and Yang [16]. The first author would like to thank A. Stathopou-
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methods.
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A FAST METHOD FOR FINDING THE GLOBAL SOLUTION OF
THE REGULARIZED STRUCTURED TOTAL LEAST SQUARES

PROBLEM FOR IMAGE DEBLURRING∗

AMIR BECK† , AHARON BEN-TAL‡ , AND CHRISTIAN KANZOW§

Abstract. Given a linear system Ax ≈ b over the real or complex field, where both A and b
are subject to noise, the total least squares (TLS) problem seeks to find a correction matrix and a
correction right-hand side vector of minimal norm which makes the linear system feasible. To avoid
ill posedness, a regularization term is added to the objective function; this leads to the so-called
regularized TLS problem. A further complication arises when the matrix A and correspondingly
the correction matrix must have a specific structure. This is modeled by the regularized structured
TLS (RSTLS) problem. In general this problem is nonconvex and hence difficult to solve. However,
the RSTLS problem arising from image deblurring applications under reflexive or periodic boundary
conditions possesses a special structure where all relevant matrices are simultaneously diagonalizable
(SD). In this paper we introduce an algorithm for finding the global optimum of the RSTLS problem
with this SD structure. The devised method is based on decomposing the problem into single vari-
able problems and then transforming them into one-dimensional unimodal real-valued minimization
problems which can be solved globally. Based on the uniqueness and attainment properties of the
RSTLS solution we show that a constrained version of the problem possesses a strong duality result
and can thus be solved via a sequence of RSTLS problems.

Key words. structured total least squares, nonconvex optimization, image deblurring, unimodal
functions, simultaneously diagonalizable matrices
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1. Introduction. Given a linear system Ax ≈ b over the real or complex field,
where both the matrix A and the right-hand side vector b are subjected to noise,
the total least squares (TLS) problem seeks to minimize the sum of squared norms
of the perturbations to both the model matrix and vector ‖E‖2 + ‖w‖2 subject to
the condition that the perturbed system holds: (A + E)x = b + w. Although this
problem is nonconvex, it can be solved efficiently and globally by using a spectral
decomposition of the augmented matrix (A,b); see [14, 20].

In many applications, the matrix A has a specific linear structure, e.g., Toeplitz
or Hankel, which imposes a requirement on the perturbation matrix E to possess a
corresponding special structure. The TLS solution does not take into account this
requirement, and consequently the structured TLS (STLS)1 attracted intensive re-
search; see, e.g., [1, 29, 34, 28, 25, 22]. The formulation of the STLS problem is
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1In some papers the STLS problem is also called constrained total least squares.
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(STLS):

min
E,x,w

‖E‖2 + ‖w‖2

s.t. (A + E)x = b + w,
E ∈ L,

where L is a linear subspace. We remark that there are several generalizations of the
above STLS formulation that are able to deal with multiple right-hand sides (that is,
b and x are matrices) [23], structure of the right-hand side noise vector w [23], and
other norms such as l1, l∞ [34], and weighted l2 norms [24].

The STLS problem is a nonconvex problem, and thus finding its global solution is
in general a difficult task. There are only a few exceptions to this state of affairs. For
block circulant structures with unstructured blocks the corresponding STLS problem
can be solved by decomposing the problem into several smaller TLS problems using
the discrete Fourier transform [6]. Another tractable case arises when some of the
columns of A are error-free while the others are subjected to noise. This problem is
called the generalized TLS problem or mixed LS-TLS problem, and its solution can
be obtained by computing a QR factorization of A and then solving a TLS problem
of reduced dimension [19]. A more general problem is the restricted TLS problem
introduced in [21]. There it is assumed that (E,w) = D1ẼC1, where D1 and C1 are

known matrices and Ẽ is unknown. As was shown in [21], by choosing the matrices
D1 and C1 appropriately, the restricted TLS problem contains as special cases any
weighted least squares (LS), generalized LS, TLS, and generalized TLS problems.
The restricted TLS problem can be solved by using the restricted singular value
decomposition [37].

In this paper we consider yet another tractable class of STLS problems in which
the global solution can efficiently be found. We deal with structures in which all of
the matrices in L are square and can be diagonalized by a certain fixed orthogonal
(or unitary in the complex case) matrix. These structures are called simultaneously
diagonalizable (SD) structures. The motivation for considering such structures stems
from image deblurring problems with spatially invariant point spread functions (PSF).
For two-dimensional image deblurring problems it is well known that the matrix de-
scribing the blur operator can be diagonalized by a two-dimensional discrete Fourier
transform matrix when periodic boundary conditions are assumed. For reflexive bound-
ary conditions with symmetric PSF the corresponding matrix can be diagonalized by
a two-dimensional discrete cosine transform matrix. Similar structures can be found
in one-dimensional deconvolution problems. Section 2 contains a brief review of these
structures.

A characteristic feature of image deblurring problems is that the matrix A is
ill-conditioned, and as a result the STLS solution usually has a huge norm and as
such is meaningless. Regularization is required in order to stabilize the solution.
For the unstructured TLS problem several regularization methods are well known.
Among them are truncation methods [11, 17] and Tikhonov regularization [13, 7], in
which a quadratic penalty is added to the objective function or a quadratic constraint
bounding the size of the solution norm is added to the problem [36, 33, 13, 8, 5].

For the STLS problem, Tikhonov regularization seems to be the most popular
method. The resulting problem is called the regularized STLS problem (RSTLS) and
is given by

(RSTLS):

min
E,x,w

‖E‖2 + ‖w‖2 + ρ‖Lx‖2

s.t. (A + E)x = b + w,
E ∈ L.
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Common choices for L are the identity or a matrix approximating the first or second
order derivative operator [16, 13, 18].

The RSTLS problem for structures arising in image deblurring was studied in
several works. In [27] periodic boundary conditions are considered. By using the
discrete Fourier transform the problem is decomposed into many complex-valued
single-variable problems. The complex univariate problems are solved as two-variable
nonconvex problems over the real domain by using the Davidon–Fletcher–Powell op-
timization algorithm.

In [31] an iterative algorithm of quasi-Newton form is applied for the RSTLS
problem for reflexive boundary conditions that exploits the diagonalization properties
of the associated matrices. The work [32] extends the structured total least norm
algorithm [34] to include regularization, and image deblurring examples are discussed.
This approach was also advocated in [12] for image deblurring problems with separable
PSFs and in [26] for problems with zero boundary conditions.

In all of the above-mentioned works the optimization problems that need to be
solved are nonconvex, and consequently the devised algorithms are not guaranteed to
converge to a global optimum but rather to a stationary point. The main contribution
of the present paper is the introduction of a method capable of obtaining the global
minimum of the RSTLS problem for SD structures.

The paper is organized as follows. In section 2 we present a precise problem for-
mulation followed by a brief review of the essential ingredients from image deblurring.
The decomposition of the RSTLS problem into single-variable real- or complex-valued
problems is discussed in section 3. These univariate problems are not necessarily uni-
modal, but we show in section 4 that they can be transformed into single-variable
real-valued unimodal problems. Attainment and uniqueness conditions are also ob-
tained. In section 5 we concentrate on circulant structures and show that, when the
data are real-valued, there exists at least one real-valued optimal solution (although
the corresponding single-variable problems are complex-valued). In section 6 we tackle
the constrained version of the RSTLS problem, called CSTLS, and show that, based
on the derived uniqueness properties and on a strong duality result, the constrained
problem can be solved by a sequence of RSTLS problems. The paper ends in section
7 with detailed descriptions of the numerical algorithms and a demonstration of our
method as applied to an image deblurring problem. A MATLAB implementation and
documentation of the RSTLS and CSTLS methods for image deblurring problems
with either periodic or reflexive boundary conditions can be found in [38].

1.1. Notation. A vector or matrix is called real-valued (complex-valued) if all
of its entries are real (complex). For a complex scalar a, the complex conjugate is
denoted by ā. Given a matrix A (a vector v), the complex conjugate is denoted by A∗

(v∗). For a real-valued matrix Q, the complex conjugate Q∗ translates to the usual
transpose QT , and unitarity translates to orthogonality: QTQ = I. The root of −1
is denoted by i =

√
−1. For a given vector v, ‖v‖ denotes the Euclidean norm of v,

and, for a matrix A, ‖A‖ denotes the Frobenius norm of the matrix. The Kronecker
product of two matrices A and B is denoted by A ⊗ B.

2. RSTLS for simultaneously diagonalizable structures.

2.1. Problem formulation. The RSTLS problem can be written as follows:

(2.1) (RSTLS):

min ‖E‖2 + ‖w‖2 + ρ‖Lx‖2

s.t. (A + E)x = b + w,
E ∈ L,
x ∈ F

n,w ∈ F
m,
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where A ∈ F
m×n and b ∈ F

m, with F being either the real or the complex number
field (R or C, respectively). The parameter ρ is a positive real number, and the set
L is a linear subspace of the set of all m× n matrices F

m×n. As was discussed in the
introduction, this formulation was considered in several papers; see, e.g., [27, 31, 32,
12, 26].

In this paper we consider the case in which m = n and L is a linear subspace
of the set of all n × n matrices diagonalizable by a given unitary matrix. That is,
L = LQ, where

(2.2) LQ = {Q∗diag(λ)Q : λ ∈ F
n},

with Q being a given unitary matrix (i.e., Q∗Q = I). Such a structure is called a SD
structure, with unitary transform. In our derivations we also assume that A,L ∈ LQ.
This particular structure is also discussed in, e.g., [27, 31].

In section 3 we will show that, as opposed to most structures, the RSTLS problem
with an SD structure can be solved globally and efficiently. Before doing so, we will
describe some image deblurring examples in which SD structures appear.

2.2. SD structures associated with image deblurring. We will now present
four classes of SD structures that arise naturally in image deblurring problems. In
addition to two-dimensional images, we will also consider one-dimensional signals and
refer to them as “one-dimensional images.” Before examining the four classes, we
briefly review some essential facts and notation from image processing.

Many image deblurring problems can be modeled as g = Sf , where g ∈ R
n is the

blurred image and f ∈ R
n is the unknown true image, whose size is assumed to be

the same as the one of g. The matrix S describes the blur operator. In the case of
spatially invariant blurs, Sf is usually a convolution of a corresponding PSF and the
true image f .

The structure of the matrix S depends on the choice of boundary conditions,
that is, the underlying assumptions on the image outside the field of view. Three
very popular boundary conditions are (i) zero boundary conditions, in which all pixels
outside the borders are assumed to be zero, (ii) periodic boundary conditions, in which
it is assumed that the image repeats itself in all directions, (iii) reflexive (Neumann)
boundary conditions, in which it is assumed that the scene outside of the boundaries
is an image mirror of the image boundaries.

Let us illustrate the three types of boundary conditions. First, in the one-
dimensional case consider the image ⎛

⎝1
2
3

⎞
⎠ ,

and then for zero, periodic, and reflexive boundary conditions the larger image looks
like ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
2
3
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
1
2
3
1
2
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2
1
1
2
3
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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respectively. In the two-dimensional case if we consider the image

⎛
⎝1 2 3

4 5 6
7 8 9

⎞
⎠ ,

then for zero, periodic, and reflexive boundary conditions the larger image looks like

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 2 3 0 0 0
0 0 0 4 5 6 0 0 0
0 0 0 7 8 9 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9
1 2 3 1 2 3 1 2 3
4 5 6 4 5 6 4 5 6
7 8 9 7 8 9 7 8 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1
3 2 1 1 2 3 3 2 1
6 5 4 4 5 6 6 5 4
9 8 7 7 8 9 9 8 7
9 8 7 7 8 9 9 8 7
6 5 4 4 5 6 6 5 4
3 2 1 1 2 3 3 2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

respectively. The structure of the matrix S depends on the underlying boundary con-
ditions. Here we consider spatially invariant blurs which, as was already mentioned,
imply that the blur is a convolution of given a PSF with the true (larger) image. For
one-dimensional problems the PSF is just a vector p ∈ R

d with an associated center
c ∈ {1, 2, . . . , d}. The convolution operation is then:

gi =

d∑
j=1

pjfi+c−j , i = 1, . . . , n,

where f ∈ R
d is the true image. Notice that the above formula uses values of f

beyond the boundaries (indices smaller than 1 and larger than n), but these values
are determined by the boundary conditions. For example, consider a one-dimensional
image of length three: f = (f1, f2, f3)

T , and let the PSF array be p = (p1, p2, p3)
T

with c = 2. Then the blurred image g depends on the true image f via the relation
g = Sf , where

S =

⎛
⎝p2 p1 0
p3 p2 p1

0 p3 p2

⎞
⎠ ,

⎛
⎝p2 p1 p3

p3 p2 p1

p1 p3 p2

⎞
⎠ ,

⎛
⎝p2 + p3 p1 0

p3 p2 p1

0 p3 p2 + p1

⎞
⎠

for zero, periodic, and reflexive boundary conditions, respectively. Note that the
above three matrices have different structures (Toeplitz, circulant, and Toeplitz-plus-
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Hankel). We now discuss four SD structures arising from one- and two-dimensional
problems with either periodic or reflexive boundary conditions:2

1. Circulant [10]. For one-dimensional images with periodic boundary condi-
tions, the structure of the model matrix is circulant, i.e., has the form

S =

⎛
⎜⎜⎜⎝
s1 s2 · · · sn
sn s1 · · · sn−1

...
...

...
s2 s3 · · · s1

⎞
⎟⎟⎟⎠ .

All n×n circulant matrices are diagonalizable by the unitary discrete Fourier
transform (DFT) matrix Fn given by

Fn =

(
1√
n
ω(j−1)(k−1)

)n

j,k=1

,

where ω = e
2πi
n . Multiplications of the DFT matrix Fn with vectors, as well

as eigenvalue computation of circulant matrices, can be done very efficiently
by using the fast Fourier transform (FFT) with a complexity of O(n log n).

2. Block circulant with circulant blocks [2]. For two-dimensional images of size
m × n with periodic boundary conditions, the model matrix has a block
circulant matrix with circulant blocks (BCCB) structure:

S =

⎛
⎜⎜⎜⎝

C1 C2 . . . Cn

Cn C1 . . . Cn−1

...
...

...
C2 C3 . . . C1

⎞
⎟⎟⎟⎠ ,

where C1, . . . ,Cn are m ×m circulant matrices. All BCCB matrices of the
above size are diagonalizable by the unitary two-dimensional DFT matrix
Fn ⊗ Fm. As in the circulant case, computations with BCCB matrices can
be performed by using the FFT.

3. Toeplitz-plus-Hankel [30]. For one-dimensional images with reflexive
boundary conditions and symmetric PSF, the matrix S has a Toeplitz-plus-
Hankel structure of the form [30]

T (s) + H(s),

where, for a given vector s = (s1, . . . , sn)T ∈ R
n, T (s) is the symmetric

Toeplitz matrix whose first column is s and H(s) is the Hankel matrix whose
first and last columns are (s1, s2, . . . , sn, 0)T and (0, sn, . . . , s2, s1)

T , respec-
tively. All Toeplitz-plus-Hankel matrices of the above form are diagonalizable
by the orthogonal discrete cosine transform (DCT) matrix Cn given by

Cn =

(√
(2 − δk1)/n cos

π(2j − 1)(k − 1)

2n

)n

j,k=1

,

where, for two indices i and j, δij denotes the Kronecker sign. Multiplica-
tions of the DCT matrix Cn with vectors, as well as eigenvalue computation

2We do not consider in this paper the zero boundary condition as it does not lead to an SD
structure.
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of circulant matrices, can be done very efficiently by using the fast cosine
transform (FCT) with a complexity of O(n log n).

4. BTTB+BTHB+BHTB+BHHB structure [15, 30]. For two-dimen-
sional images of size m × n with reflexive boundary conditions and a sym-
metric PSF, the matrix S is a sum of a BTTB (block Toeplitz with Toeplitz
blocks), BTHB (block Toeplitz with Hankel blocks), BHTB (block Hankel
with Toeplitz blocks), and BHHB (block Hankel with Hankel blocks) ma-
trices. All matrices of this form are diagonalizable by the orthogonal two-
dimensional DCT matrix Cn ⊗ Cm. We note that the symmetry condition
does occur in practice, for example, the Gaussian model for atmospheric tur-
bulence blur, out-of-focus blurs, and certain classes of Moffat blurs [15].

We have thus described four SD structures arising from one- and two-dimensional
deblurring problems. The first two classes correspond to F = C (since the DFT matrix
is complex-valued), and the last two classes correspond to F = R. Coming back to
the RSTLS problem, we note that it is very natural to assume that the boundary
conditions also apply to the regularization operator, and we can thus assume that
L ∈ LQ.

3. Decomposition of the RSTLS problem for SD structures. We begin
by showing that the RSTLS problem (2.1) with an SD structure can be decomposed
into n one-dimensional minimization problems.

Theorem 3.1. Consider the RSTLS problem (2.1) with m = n and L = LQ (see
(2.2)), where Q ∈ F

n×n is a given unitary matrix. Suppose that A,L ∈ LQ, and let
α, l be the eigenvalues of A and L defined by the relations

(3.1) QAQ∗ = diag(α), QLQ∗ = diag(l).

Then any solution to the RSTLS problem is given by x = Q∗x̂, where, for every
i = 1, . . . , n, the ith component of x̂, x̂i, is an optimal solution to the one-dimensional
problem

(3.2) min
x̂i

{
|αix̂i − b̂i|2
1 + |x̂i|2

+ ρ|li|2|x̂i|2
}
,

where b̂ = Qb. The optimal matrix E is given by

(3.3) E = Q∗diag(r)Q,

where

(3.4) ri = − x̂i(αix̂i − b̂i)

1 + |x̂i|2
.

Proof. By using the relation w = (A + E)x − b, we can rewrite (2.1) as the
following problem in the variables E and x:

min
E,x

{‖E‖2 + ‖(A + E)x − b‖2 + ρ‖Lx‖2 : E ∈ LQ,x ∈ F
n},

which, by the unitarity property of Q, is the same as

(3.5)
min
E,x

{‖QEQ∗‖2 + ‖Q(A + E)Q∗Qx − Qb‖2 + ρ‖QLQ∗Qx‖2 : E ∈ LQ,x ∈ F
n}.
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Since E ∈ LQ, we can make the change of variables QEQ∗ = diag(r), where
r ∈ F

n is an unknown variables vector. By combining this with (3.1) we conclude
that (3.5) can be reformulated as

min
r,x̂

{‖diag(r)‖2 + ‖diag(α + r)x̂ − b̂‖2 + ρ‖diag(l)x̂‖2 : r, x̂ ∈ F
n},

where x̂ = Qx, and more explicitly as

min
r,x̂

{
n∑

i=1

(|ri|2 + |(αi + ri)x̂i − b̂i|2 + ρ|li|2|x̂i|2) : r, x̂ ∈ F
n

}
.

The above optimization problem is separable with respect to the pairs of variables

(r1, x̂1), (r2, x̂2), . . . , (rn, x̂n),

implying that, for every i, the optimal (ri, x̂i) is the solution to the two-dimensional
problem

(3.6) min
ri,x̂i

{
|ri|2 + |(αi + ri)x̂i − b̂i|2 + ρ|li|2|x̂i|2 : ri, x̂i ∈ F

}
.

Next, we fix x̂i and minimize with respect to ri. The result is

ri = − x̂i(αix̂i − b̂i)

1 + |x̂i|2
.

By substituting the above expression back into the objective function of (3.6) with
some simple algebraic manipulations, we arrive at the following equivalent problem
in the single variable x̂i:

min
x̂i

{
|αix̂i − b̂i|2
1 + |x̂i|2

+ ρ|li|2|x̂i|2
}
,

establishing the result.

4. Solution and analysis of the RSTLS problem for SD structures. In
this section we study the one-dimensional (1D) problems (3.2) arising in the decom-
position of the RSTLS problem. We show in section 4.1 that, although these problems
are not unimodal,3 they can be transformed into (strictly) unimodal problems and
consequently solved efficiently and globally. This is especially crucial in image de-
blurring applications in which there are hundreds of thousands or even millions of 1D
problems to be solved. Based on the uniqueness and attainment properties of the 1D
problems, corresponding conditions for the RSTLS problem are established in section
4.2.

4.1. Solution of the single-variable problem. Our goal in this section is to
analyze the one-dimensional problem (3.2) and to devise an efficient solution method
for solving it. Consider the problem

(4.1) min
x∈F

{
f(x) =

|ax− b|2
1 + |x|2 + |c|2|x|2

}
,

3A function f : I → R, I ⊆ R being a closed interval, is (strictly) unimodal if it has a unique
local minimizer on I and is (strictly) decreasing from the left boundary of the interval to this unique
minimum and (strictly) increasing from the minimum to the right boundary of the interval.
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Fig. 1. The objective function of problems (4.5) (left) and (4.6) (right).

where a, b, c ∈ F. If c �= 0, then the objective function is coercive, and consequently
its minimum is attained. The objective function of (4.1) is not unimodal (cf. Figure
1) and thus finding its global minimum efficiently is in principle a hard task. We will
show in the next result that it can be solved via the minimization problem

(4.2) min
y≥0

{
g(y) ≡

|a|2y − 2|ab|√y + |b|2
1 + y

+ |c|2y
}

in the real nonnegative variable y. Before stating the result we briefly recall that for
a real number x ∈ R the sign function is defined by

sgn (x) ≡

⎧⎨
⎩

1 x > 0,
0 x = 0,
−1 x < 0,

and for a complex number z ∈ C the sign function is given by

sgn (z) ≡
{ z

|z| z �= 0,

0 z = 0.

Lemma 4.1 (equivalence of problems (4.1) and (4.2)). Consider problem (4.1)
with a, b, c ∈ F. Then

(i) If ab �= 0, then ỹ is an optimal solution of (4.2) if and only if x̃ = sgn (āb)
√
ỹ

is an optimal solution of (4.1).
(ii) If ab = 0, then ỹ is an optimal solution of (4.2) if and only if x̃ = z

√
ỹ is an

optimal solution of (4.1) for every z ∈ F satisfying |z| = 1.
Proof. Let x̃ be an optimal solution of (4.1). Then by the optimality of x̃ we have

f(x̃) ≤ f(zx̃) for every z ∈ F satisfying |z| = 1,

which is the same as

|ax̃− b|2
1 + |x̃|2 + |c|2|x̃|2 ≤ |a(zx̃) − b|2

1 + |zx̃|2 + |c|2|zx̃|2.

The latter inequality reduces to

(4.3) 
((1 − z)ab̄x̃) ≥ 0.
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We will now show that ab̄x̃ is a nonnegative real number. This is obviously true
if x̃ = 0. Otherwise, we split the analysis into two cases:

Case I. If ab �= 0, then substituting

z =
ab̄x̃

|ab̄x̃|

into (4.3) yields


(ab̄x̃) ≥ |ab̄x̃|,

implying that ab̄x̃ is a nonnegative real number and, in particular, that sgn (x̃) =
sgn (āb).

Case II. If ab = 0, the function f satisfies f(zx) = f(x) for every x, z ∈ F such
that |z| = 1 and thus zx̃ is also an optimal solution for every z satisfying |z| = 1.

A conclusion from the above two cases is that if the minimum of (4.1) is attained
at a nonzero solution, then there must be at least one optimal solution x̃ for which
sgn (x̃) = sgn (āb); consequently, we can make the change of variables x = sgn (āb)

√
y

which transforms problem (4.1) into (4.2).
Remark 4.1. Consider problem (4.1) with F = C but with real data, i.e., a, b, c ∈

R. Then a direct consequence of Lemma 4.1 is that if the optimal set of (4.1) is
nonempty, then there must exist at least one real-valued optimal solution.

The following simple lemma establishes some key properties of problem (4.2). In
particular, it is shown that problem (4.2) is strictly unimodal (in all interesting cases)
and thus can be solved efficiently. This is in fact the main motivation for transforming
problem (4.1) into (4.2).

Lemma 4.2 (properties of problem (4.2)). Consider problem (4.2) with a, b, c ∈ F.
Then

(i) the objective function g(y) of (4.2) is quasi-convex4 over [0,∞);

(ii) if c �= 0 and ỹ is an optimal solution of (4.2); then ỹ ≤ |b|2
|c|2

(iii) the solution of (4.2) is attained and unique if and only if (a, c) �= (0, 0);
(iv) if (a, c) �= (0, 0), then the objective function g(y) of (4.2) is strictly unimodal

over [0,∞).
Proof. (i) We need to show that the level set {y : g(y) ≤ α} is convex. Indeed,

{y ≥ 0 : g(y) ≤ α} = {y ≥ 0 : (|a|2 + |c|2 − α)y − 2|ab|√y + |c|2y2 + |b|2 − α ≤ 0}.

The latter is the zero level set of a convex function and hence convex.
(ii) Note that for y ≥ 0

g(y) =
(|a|√y − |b|)2

1 + y
+ |c|2y ≥ |c|2y.

Therefore, for y > |b|2
|c|2 we have

g(y) ≥ |c|2y > |b|2 = g(0),

showing that there are no optimal solutions for (4.2) larger than |b|2
|c|2 .

4A function f : I → R (I ⊆ R being an interval) is quasi-convex if all of its level sets {x ∈ I :
f(x) ≤ α} are convex.
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(iii) First consider the case (a, c) = (0, 0). Then g(y) = |b|2/(1 + y). Hence it
follows either that g does not attain a minimum (if b �= 0) or that the minimum
(namely, all y ≥ 0) is nonunique (if b = 0). Now consider the case (a, c) �= (0, 0). We
split the analysis into two subcases.

Subcase I. If c �= 0, then limy→∞ g(y) = ∞, implying the attainment of the mini-
mum. To show the uniqueness of the minimum in this case, assume in contradiction
that the optimal solution of (4.2) is not unique. Then since the optimal set is convex
(by quasi convexity) we conclude that the optimal set is an interval I ⊆ [0,∞) with
a nonempty interior. Denote the optimal value by f∗. Then

g(y) = f∗ for every y ∈ I,

which can be explicitly written as

(|a|2 + |c|2 − f∗)y − 2|ab|√y + |c|2y2 + |b|2 − f∗ = 0 for every y ∈ I.

By making the change of variables z =
√
y, we obtain

(4.4) (|a|2 + |c|2 − f∗)z2 − 2|ab|z + |c|2z4 + |b|2 − f∗ = 0 for every z ∈ J,

where J = {z : z2 ∈ I} is an interval with a nonempty interior. However, (4.4) is
impossible since an univariate quartic equation has at most four roots and thus cannot
have an infinite number of roots.

Subcase II. Suppose that c = 0. Then a �= 0, and it is easy to see that g attains
a unique minimum at |b|2/|a|2.

(iv) Since (a, c) �= (0, 0), we know from part (iii) that g attains a unique global
minimum on the interval [0,∞). Hence it remains to show that it is strictly decreasing
from the origin to this minimum and strictly increasing when we go from this minimum
to plus infinity. Suppose that this is not true. Then the function g must have a
stationary point in (0,∞) which is different from the unique minimum. However, we
will show that, for any y > 0 such that g′(y) = 0, we automatically have g′′(y) > 0;
hence this stationary point y is at least a local minimum and, therefore, must be equal
to the unique minimum of g on the interval [0,∞). Elementary differentiation gives

g′(y) =
(|a|√y − |b|)(|a| 1√

y + |b|)
(1 + y)2

+ |c|2.

Now let ỹ > 0 be such that g′(ỹ) = 0. Then

g′′(ỹ) = − 2

(1 + ỹ)3
(|a|

√
ỹ − |b|)

(
|a| 1√

ỹ
+ |b|

)
+

|a||b|
2(1 + ỹ)2

√
ỹ

(
1 +

1

ỹ

)

g′(ỹ)=0
=

2|c|2
1 + ỹ

+
|a||b|

2(1 + ỹ)2
√
ỹ

(
1 +

1

ỹ

)
> 0,

where the positivity of the last expression comes from the fact that (a, c) �= (0, 0);
hence this last expression can be equal to zero only if both c = 0 and b = 0, but then,
by taking into account that ỹ is also a stationary point, we would obtain a = 0 as
well, in contrast to (a, c) �= (0, 0).

The most important property of the function g is its strict unimodality (as stated
in Lemma 4.2 (iv)). The strict unimodality property implies that there are no non-
global local minima and thus enables us to invoke efficient one-dimensional solvers for
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y−1)2

1+y
from Remark 4.2.

(strictly) unimodal functions that are guaranteed to converge to the global minimum.
The following example illustrates this property.

Example 1. Consider problem (4.1) with F = R, a = 2, b = 5, and c = 1. In this
case, problems (4.1) and (4.2) are given by

(4.5) min
x

{
(2x− 5)2

1 + x2
+ x2

}

and

(4.6) min
y≥0

{
4y − 20

√
y + 25

1 + y
+ y

}
,

respectively. The plots of the two functions are given in Figure 1.
Clearly, the objective function in (4.5) is not unimodal and indeed possesses a

nonglobal local minimizer. The global solution of (4.5) is x̃ = 1.5606 (given in four-
digit accuracy). The objective function in (4.6) is, as guaranteed by Lemma 4.1, an
unimodal function. The global minimum is ỹ = 2.4354, and the relation x̃ =

√
ỹ

holds.
Remark 4.2. A natural question here is whether g is even more than quasi-convex,

namely, convex. The answer to this question is negative. For example, for a = b = 1
and c = 0, the function g is clearly nonconvex as can be seen from Figure 2. Note,
however, that this figure also illustrates the quasi convexity of g.

Combining Lemmas 4.1 and 4.2, we are now able to state the basic properties of
problem (4.1).

Lemma 4.3 (uniqueness for problem (4.1)). The optimal solution of problem
(4.1) is uniquely attained if and only if one of the following two conditions holds:

(i) a �= 0.
(ii) a = 0, c �= 0, and |b| ≤ |c|.
Proof. We will split the analysis into four cases:
Case I. a �= 0 and b �= 0. By Lemma 4.2(iii), since a �= 0, the optimal solution of

(4.2) is uniquely attained. Moreover, since ab �= 0, then by Lemma 4.1, there is a one-
to-one correspondence between optimal solutions of (4.1) and (4.2) (via the relation
x̃ = sgn (āb)

√
ỹ), implying the uniqueness and attainment of the optimal solution of

(4.1).
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Case II. a �= 0 and b = 0. The objective function of (4.2) in this case is strictly
increasing, implying that the unique optimal solution of (4.2) is ỹ = 0 and hence that
the unique optimal solution of (4.1) is x̃ = 0.

Case III. a = 0 and b �= 0. By Lemma 4.2(iii), to guarantee the uniqueness
and attainment of the optimal solution of (4.2) we must further assume that c �= 0.
The solution of (4.1) is unique if and only if the optimal solution ỹ of (4.2) is zero
(otherwise, z

√
ỹ will be an optimal solution of (4.1) for every z satisfying |z| = 1).

By the unimodality of g, the optimal solution is 0 if and only if g′(0) ≥ 0, which is
equivalent to |b| ≤ |c|.

Case IV. a = 0 and b = 0. Again, as in the previous case, we further assume that
c �= 0. Here it is evident that the unique optimal solution is x̃ = 0.

By combining the four cases we obtain the result.

4.2. Uniqueness and attainment of the RSTLS solution. The result in
section 4.1 collectively can be summed up in the following result.

Theorem 4.1. Consider the RSTLS problem (2.1) with m = n and L = LQ (see

(2.2)), where Q ∈ F
n×n is a given unitary matrix. Let b̂ = Q∗b. Suppose further

that A,L ∈ LQ, and let α, l be the eigenvalues of A and L given by the relations:

(4.7) Q∗AQ = diag(α), Q∗LQ = diag(l).

Then the solution to the RSTLS problem is uniquely attained if and only if for each
i = 1, . . . , n one of the following two conditions is satisfied:

(i) αi �= 0.

(ii) αi = 0, li �= 0, and |b̂i| ≤
√
ρ|li|.

Proof. Note that the optimal E is uniquely defined via the optimal x by (3.3) and
(3.4). Therefore, the uniqueness and/or attainment properties of the optimal solution
of (2.1) amount to uniqueness and/or attainment of the single-variable problems (3.2),
which combined with Lemma 4.3 establishes the result.

Theorem 4.1 provides conditions for the optimal solution of the RSTLS problem
to be uniquely attained. Based on this, we can derive a simpler condition:

(4.8) Null(A) ∩ Null(L) = {0},

which is sufficient for attainment of the optimal solution and necessary for the unique
attainment of the optimal solution, as shown in the following theorem.

Theorem 4.2. Consider the setting of Theorem 4.1. Then
(i) if the optimal solution of (2.1) is uniquely attained, then condition (4.8) is

satisfied;
(ii) if condition (4.8) is satisfied, then the optimal solution set of (2.1) is nonempty;
(iii) if A is nonsingular, then the solution of (2.1) is uniquely attained.
Proof. (i) Note that by Theorem 4.1 a necessary condition for the optimal solution

of (2.1) to be uniquely attained is that |αi|2 + |li|2 �= 0 for every i, that is, αi and
li are not both zero for any given i. The eigenvalues of the matrix A∗A + L∗L are
exactly |αi|2 + |li|2, implying that A∗A + L∗L is nonsingular; therefore,

Null(A) ∩ Null(L) = Null(A∗A + L∗L) = {0}.

(ii) Assume that condition (4.8) holds. By Theorem 3.1, it is enough to show
that for every i = 1, . . . , n the one-dimensional problem (3.2) has at least one optimal
solution. Now by Lemma 4.1 it is sufficient to establish the attainment of the solution
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of

(4.9) min
y≥0

{
|αi|2y − 2|αib̂i|

√
y + |b̂i|2

1 + y
+ ρ|li|2y

}

for every i = 1, . . . , n, where αi, b̂i, and li are defined in the premise of Theorem 3.1.
By Lemma 4.2(iii), this is guaranteed if (αi, li) �= (0, 0) for every i, which, as shown
in the proof of (i), is equivalent to condition (4.8).

(iii) It follows from the nonsingularity of A that all of its eigenvalues are nonzero,
which, by Theorem 4.1, implies that the solution of (2.1) is uniquely attained.

The following example shows by suitable counterexamples that the assumptions
used in Theorem 4.2 are sufficient, but not necessary, for the corresponding statements
to be true.

Example 2. (i) Consider problem (2.1) with n = m = 1, A = (0), L = (1), b =
(2), ρ = 1, and F = R. Then condition (4.8) holds, but problem (2.1) has the two
solutions (E, x) = (1, 1) and (E, x) = (−1,−1). This shows that the unique attain-
ment of a solution of problem (2.1) is sufficient for condition (4.8) to hold but not
necessary.

(ii) Consider problem (2.1) with n = m = 1, A = (0), L = (0), b = (0), ρ = 1,
and F = R. Then every vector (E, x), with E = 0 and x ∈ R arbitrary, is a solution
of problem (2.1), although condition (4.8) does not hold. Hence this condition is
sufficient for problem (2.1) to have a nonempty solution set but not necessary.

It is interesting to compare the above conditions to the corresponding attain-
ment/uniqueness conditions for the regularized least squares problem:

(RLS): min ‖Ax − b‖2 + ρ‖Lx‖2.

The optimal solution of (RLS), as opposed to the solution of the RSTLS problem,
is always attained; it is unique if and only if condition (4.8) holds. This is in contrast
to the RSTLS problem where condition (4.8) is only a necessary condition for unique
attainment of the solution.

5. The RSTLS problem with circulant structure. The RSTLS problem
(2.1) with L = LFn

(Fn being the n× n DFT matrix) corresponds to problems with
circulant-structured matrices. Here the underlying number field is F = C since the
matrix Fn is complex-valued. However, in many applications the data A,b, and L are
real-valued. The main result in this section is that if the optimal set of the RSTLS
problem is nonempty, then there exists at least one real-valued optimal solution.
Therefore, there is no drawback in analyzing the RSTLS problem over the complex
field even when the data are real-valued.

Theorem 5.1. Consider the RSTLS problem with F = C,L = LFn , with Fn

being the n × n DFT matrix. Assume that A, b, and L are real-valued, that is,
A ∈ R

n×n,b ∈ R
n, and L ∈ R

n×n. If the optimal set of (RSTLS) is nonempty, then
there exists at least one optimal real-valued solution.

Proof. We will require the following notation:

A = {z ∈ C
n : z1 ∈ R, zj+1 = zn+1−j for every j = 1, . . . , n− 1}.

To simplify the notation we omit the subscript in the n× n DFT matrix and denote
it by F rather than by Fn. The proof is based on the following three claims:

(i) Let w = Fv for some v ∈ R
n. Then w ∈ A.
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(ii) Let α be the vector of eigenvalues of a real-valued circulant matrix A. Then
α ∈ A.

(iii) Let z ∈ A. Then F∗z ∈ R
n.

Proof of (i). First,

w1 = (Fv)1 =
1√
n

n∑
i=1

vi,

proving that w1 ∈ R. Next, for every j = 1, . . . , n− 1 we have

(5.1) wj+1 = (Fv)j+1 =

n∑
i=1

Fj+1,ivi =
1√
n

n∑
i=1

ωj(i−1)vi.

On the other hand,

wn+1−j = (Fv)n+1−j =

n∑
i=1

Fn+1−j,ivi =
1√
n

n∑
i=1

ω(n−j)(i−1)vi

=
1√
n

n∑
i=1

ωj(i−1)vi
(5.1)
= wj+1.

Proof of (ii). Let (s1, s2, . . . , sn) be the first row of A. The jth eigenvalue of the
circulant matrix A is given by αj =

∑n
i=1 ω

(i−1)(j−1)si. Then

α1 =

n∑
i=1

si ∈ R

and

αn+1−j =

n∑
i=1

ω(i−1)(n−j)si =

n∑
i=1

ω(i−1)jsi = αj+1

for every j = 1, . . . , n− 1. Thus, α ∈ A.
Proof of (iii). For every i = 1, 2, . . . , n:

√
n(F∗w)i =

√
n

n∑
j=1

Fj,iwj =

n∑
j=1

ω−(i−1)(j−1)wj

w∈A
= w1 +

n∑
j=2

ω−(i−1)(j−1)wn+2−j = w1 +

n∑
j=2

ω(i−1)(n+1−j)wn+2−j

k←n+2−j
= w1 +

n∑
k=2

ω(i−1)(k−1)wk =
√
n

n∑
k=1

Fk,iwk

=
√
n

n∑
k=1

Fk,iwk =
√
n (F∗w)i.

By Theorem 3.1, an optimal solution of the RSTLS problem is given by x = F∗x̂,
where x̂i, the ith component of x̂, is an optimal solution of (3.2). Recall that b̂ = Fb
for real-valued b and that α and l are the eigenvalues vectors of the real-valued
circulant matrices A and L, respectively. Therefore, by properties (i) and (ii), b̂,α, l ∈



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

434 AMIR BECK, AHARON BEN-TAL, AND CHRISTIAN KANZOW

A. Hence, x̂1 is the solution of (3.2) with i = 1 and with real data, which by Remark
4.1 implies that x̂1 is real. Moreover, for every j = 1, . . . , n − 1, x̂j and x̂n+1−j are
the optimal solutions of

min
x̂j+1

{
|αj+1x̂j+1 − b̂j+1|2

1 + |x̂j+1|2
+ ρ|lj |2|x̂j |2

}
,

min
x̂n+1−j

{
|αj+1x̂n+1−j − b̂j+1|2

1 + |x̂n+1−j |2
+ ρ|lj+1|2|x̂n+1−j |2

}
,

respectively. Therefore, we can always choose the optimal solutions of these problems
to satisfy x̂n+1−j = x̂j+1. Thus, for the mentioned choice x̂ ∈ A and by property (iii)
this proves that x = F∗x̂ is real-valued.

Remark 5.1. It can be shown by using the same methodology employed in the
proof of Theorem 5.1 that there always exists a real-valued solution for the RSTLS
problem with Q = Fn⊗Fm (BCCB structure) whenever A,L, and b are real-valued.

The following two examples demonstrate the validity of Theorem 5.1.
Example 3. Let Q = F3 (3 × 3 circulant matrices) and

A =

⎛
⎝1 2 3

3 1 2
2 3 1

⎞
⎠ , b =

⎛
⎝4

5
6

⎞
⎠ , L =

⎛
⎝ 1 −1 0

0 1 −1
−1 0 1

⎞
⎠ , ρ = 1.

Then

α = diag(F3AF∗
3) =

⎛
⎝ 6
−1.5 − 0.866025i
−1.5 + 0.866025i

⎞
⎠ ,

b̂ = F3b =

⎛
⎝ 8.660254
−0.866025 + 0.5i
−0.866025 − 0.5i

⎞
⎠ , l =

⎛
⎝ 0

1.5 − 0.866025i
1.5 + 0.866025i

⎞
⎠ .

The vector x̂ consisting of the optimal solutions the three arising optimization prob-
lems is

x̂ =

⎛
⎝ 1.443375

0.143941 − 0.249314i
0.143941 + 0.249314i

⎞
⎠ ,

and the optimal solution

x = F∗
3x̂ =

⎛
⎝0.999543

0.999543
0.500913

⎞
⎠

is indeed real.
Example 4. Consider the RSTLS problem with Q = F3 (3×3 circulant matrices)

and

A =

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ , b =

⎛
⎝2

4
6

⎞
⎠ , L =

⎛
⎝ 1 −1 0

0 1 −1
−1 0 1

⎞
⎠ , ρ = 1.
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Then

α = diag(F3AF∗
3) =

⎛
⎝3

0
0

⎞
⎠ , b̂ = F3b =

⎛
⎝ 6.928203
−1.732050 + i
−1.732050 − i

⎞
⎠ .

In this example the optimal solutions of the arising one-dimensional problems are
not unique, and they consist of the collection of vectors x̂ of the form:

x̂ =

⎛
⎝ 2.309401

0.393319z1

0.393319z2

⎞
⎠ ,

where z1 and z2 are complex numbers satisfying |z1| = |z2| = 1. Correspondingly,
the set of optimal solutions of (RSTLS) consists of all vectors F∗

3x̂, where x̂ is of the
above form and is thus equal to

{(a + z1b + z2c, a + bz1ω̄ + cz2ω, a + bz1ω + cz2ω̄)T : |z1| = |z2| = 1},

where a = 2.309401, b = 0.393319, and ω = e
2πi
3 . The above set certainly contains

complex-valued optimal solutions, but, if we choose z1 = z̄2, we obtain a subset of
real-valued optimal solutions:

{
1√
3
(a + 2 cos(θ)c, a + 2 cos(θ + 2π/3)c, a + 2 cos(θ − 2π/3)b)T : 0 ≤ θ ≤ 2π

}
.

6. Solution of the CSTLS problem with SD structure. When the regu-
larization is made by adding a constraint rather than by penalization, the problem
becomes

(6.1) (CSTLS):

min
E,x

‖E‖2 + ‖(A + E)x − b‖2

s.t. ‖Lx‖2 ≤ α,
E ∈ LQ,
x ∈ F

n,

where α > 0. We will show that the CSTLS problem can be solved by a sequence of
RSTLS problems using a dual approach. We assume throughout this section that A is
nonsingular. This assumption prevails in many image deblurring problems, although
the matrix is often extremely ill conditioned.

The Lagrangian dual problem of (6.1) is given by

(6.2) max
λ≥0

q(λ),

where

(6.3)
q(λ) = min

E,x
‖E‖2 + ‖(A + E)x − b‖2 + λ(‖Lx‖2 − α)

s.t. E ∈ LQ,x ∈ F
n.

Therefore, evaluating a value of the dual objective function amounts to solving a
single RSTLS problem which can be solved efficiently as shown in the previous sec-
tions. Since A is nonsingular, then by Theorem 4.2 (iii), the optimal solution of (6.3)
is uniquely attained for all λ ≥ 0, and we denote it by (xλ,Eλ). The function q has
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several important properties which are summarized in Lemma 6.1 below. The differ-
entiability property of q (part (ii) of Lemma 6.1), relies on the uniqueness property
and on the following well known result [9, Proposition 6.1.1].

Theorem 6.1. Let f and g be continuous functions defined on a compact set X.
Let

h(λ) ≡ min
x∈X

{f(x) + λg(x)} , λ ∈ [λ1, λ2],

and assume that there exists a unique minimizer xλ to the above optimization problem
for every λ ∈ [λ1, λ2] denoted by xλ. Then h is differentiable for every λ ∈ (λ1, λ2)
and h′(λ) = g(xλ).

In our case the compactness assumption is not satisfied; however, this difficulty
can be avoided. We will use the following notation:

s(x,E) = ‖E‖2 + ‖(A + E)x − b‖2,

t(x,E) = ‖Lx‖2 − α,

Y = {(x,E) : x ∈ F
n,E ∈ LQ}.

Then, in this notation, the CSTLS problem can be written as

(6.4) min
x,E

{s(x,E) : t(x,E) ≤ 0, (x,E) ∈ Y }.

Lemma 6.1. Consider the function q given by (6.3). Then
(i) q is concave over [0,∞);
(ii) q(λ) is differentiable for every λ > 0 and q′(λ) = ‖Lxλ‖2 − α;
(iii) limλ→∞ q(λ) = −∞.
Proof. (i) q(λ) is the pointwise minimum of functions which are linear in λ and

hence concave.
(ii) Let λ̃ > 0, and let λ2 > λ1 > 0 be two positive numbers for which λ̃ ∈ (λ1, λ2).

The dual objective can be written as

(6.5) q(λ) = min{s(x,E) + λt(x,E) : (x,E) ∈ Y }.

From the nonsingularity of A and Theorem 4.2(iii) it follows that there exists a
unique minimizer to the above problem which we denote by (xλ,Eλ). By Theorem
3.1 it follows that xλ = Q∗yλ, where the ith component of yλ, yλi , is the solution to

min
yi

{
|αiyi − b̂i|2
1 + |yi|2

+ ρλ|li|2|yi|2
}
.

If li = 0, then yλi = b̂i
αi

(αi �= 0 for every i as an eigenvalue of a nonsingular matrix).
Otherwise,

ρλ|li|2|yλi |2 ≤ |αiy
λ
i − b̂i|2

1 + |yλi |2
+ ρλ|li|2|yλi |2 ≤ |αi0 − b̂i|2

1 + 02
+ ρλ|li|202 = |b̂i|2,

so that |yλi |2 ≤ |b̂i|2
ρλ|li|2 . Consequently, for every λ ∈ [λ1, λ2],

|yλi |2 ≤

⎧⎨
⎩

∣∣∣ b̂iαi

∣∣∣2 li = 0,

|b̂i|2
ρλ1|li|2 li �= 0.
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Hence, yλ is bounded for every λ ∈ [λ1, λ2] showing that xλ = Q∗yλ is also bounded
over [λ1, λ2]; that is, there exists β > 0 for which ‖xλ‖ ≤ β, λ ∈ [λ1, λ2]. Moreover,
by the relation between the optimal E and the optimal x given by (3.3) and (3.4),
it follows that Eλ is also bounded over [λ1, λ2]; namely, there exists γ > 0 for which
‖Eλ‖ ≤ γ. The dual objective function can thus be written as

q(λ) = min{s(x,E) + λt(x,E) : (x,E) ∈ Ỹ },

where

Ỹ = {(x,E) : x ∈ F
n,E ∈ LQ, ‖x‖ ≤ β, ‖E‖ ≤ γ}

is a compact set. Therefore, by Theorem 6.1, q is differentiable over (λ1, λ2) and in
particular at λ̃ and q′(λ̃) = t(xλ̃,Eλ̃) = ‖Lxλ̃‖2 − α.

(iii) Since E = 0,x = 0 is feasible for (6.3), we obtain

q(λ) ≤ ‖b‖2 − λα,

establishing that q(λ) → −∞ as λ → ∞.
We will now show that, despite the nonconvexity of the CSTLS problem, strong

duality holds.
Theorem 6.2 (strong duality for CSTLS). Let λ∗ > 0 be a maximizer of (6.2).

Then q(λ∗) is equal to the optimal value of the primal problem (6.1), and (xλ∗ ,Eλ∗)
is the optimal solution of (6.1).

Proof. Since λ∗ > 0 is the optimal solution of (6.2) and q is differentiable by
Lemma 4.2(ii), we have ‖Lxλ∗‖2 − α = q′(λ∗) = 0. Therefore, xλ∗ is a feasible
solution of the primal problem (6.1), and

q(λ∗) = s(xλ∗ ,Eλ∗) + λ∗(‖Lxλ∗‖2 − α) = s(xλ∗ ,Eλ∗),

which, from basic duality theory, implies that λ∗ and (xλ∗ ,Eλ∗) are the dual and
primal optimal solutions, respectively.

The optimal λ∗ is a root of the nondecreasing function q′(λ) and can thus be
found via a simple bisection procedure.

7. Implementation and a numerical example.

7.1. Implementation. The core of the numerical method for solving the RSTLS
problem is the solution of n single-variable problems of the form (4.1). Since the
number of these 1D problems might be huge (for example, for a two-dimensional
1024×1024 image, there are more than one million problems), it is imperative to find
the global solution of each of them. The method will produce an erroneous solution
even if one of the 1D problems is not solved correctly.

From numerical considerations the algorithm is split into two phases. In the first
phase, we find the optimal solution of (4.2) up to a moderate tolerance ε (in our
experiments ε = 10−4). That is, the output of the first phase is an interval [�, u], with
u − � < ε, in which the optimal solution of (4.2) is guaranteed to reside. The goal
of the first phase is to find a “small enough” interval in which the global solution is
guaranteed to reside. Since in the course of the change of variables x = sgn (āb)

√
y

the accuracy of the solution might be reduced from ε to
√
ε, a second phase is invoked

in which we seek the global minimizer x∗ of the problem

(7.1) min
x

{
|a|2x2 − 2|ab|x + |b|2

1 + x2
+ |c|2x2

}
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in the interval [
√
�,
√
u] up to a tolerance ε2. The interval [

√
�,
√
u] is small enough

so that for all practical purposes the function in (7.1) is unimodal over [
√
�,
√
u] and

the global optimal solution given by sign(āb)x∗ is obtained. A detailed description of
the algorithm follows.

Algorithm SOLVE1D(a, b, c).

input a, b, c ∈ C

output x - an optimal solution of (4.1).
comments 1. It is assumed that a and c are not both zero.

2. The functions f1 and f2 called in the solver are given by

f1(x; a, b, c) = (|a|
√
x−|b|)2

1+x + |c|2x,

f2(x; a, b, c) = (|a|x−|b|)2
1+x2 + |c|2x2.

If c is equal to zero up to some tolerance, then the output of the algorithm is b/a;
otherwise, the upper bound is chosen.
if c < 10−8

x = b
a

stop
else

u =
∣∣ b
c

∣∣2
end if
� = 0
s = sgn (āb)
Phase I. Activating an unimodal solver on the function f1

while (u− �)> ε
x− = 2

3� + 1
3u

x+ = 1
3� + 2

3u
f+ = f1(x

+; a, b, c)
f− = f1(x

−; a, b, c)
if f− ≤ f+

u = x+

else
� = x−

end if
end while
Updating the lower and upper bounds.

� =
√
�

u =
√
u

Phase II. Activating an unimodal solver on the function f2.
while (u− �)> ε2

x− = 2
3� + 1

3u

x+ = 1
3� + 2

3u
f+ = f2(x

+; a, b, c)
f− = f2(x

−; a, b, c)
if f− ≤ f+

u = x+

else
� = x−

end if
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end while

x = sx++x−

2
stop

We note that in the MATLAB implementation the minimization of the n 1D
problems is done simultaneously using MATLAB’s vector operations. For the exact
implementation please see the (small) RSTLS MATLAB package available at [38].
Given the 1D solver, the solution of the RSTLS problem (2.1) is obtained via the
following procedure.

Algorithm RSTLS (Q,A,L, ρ).

input Q ∈ F
n×n - a unitary matrix.

A,L ∈ LQ,b ∈ F
n.

ρ ∈ R++.
output The x-part of the optimal solution of (2.1).

Step 1. b̂ = Qb.
Step 2. Compute the eigenvalues vectors α, l of A and L defined

by the relations (3.1).

Step 3. For each i = 1, . . . , n call algorithm SOLVE1D with input αi, b̂i, ci
and obtain an output x̂i.

Step 4. x = Q∗x̂, where x̂ = (x̂i)
n
i=1.

Based on the RSTLS algorithm, the constrained version, problem (CSTLS), is
solved via a simple bisection algorithm applied to q′(λ), where q is the dual function
defined by (6.3). The bisection is over the logarithm of base 10 of the dual variable λ.

Algorithm CSTLS(Q,A,L, α).

input Q ∈ F
n×n - a unitary matrix.

A,L ∈ LQ,b ∈ F
n.

α ∈ R++.
output The x-part of the optimal solution of (6.1).

Step 1. u = 2, � = −4.
Step 2. while (u− �) > 0.1

h = u+�
2

call Algorithm RSTLS with input Q,A,L, 10h and obtain an output x̃
if ‖Lx̃‖2 < α

u = h
else

� = h
end if

Step 11. end while
Step 3. x = x̃.

Note that the RSTLS and CSTLS algorithms use matrix-vector multiplications
with the matrices Q and Q∗ and require the computation of the eigenvalues of the
matrices A and L. When LQ is one of the four SD structures described in section
2.2 in the context of image deblurring, these operations can be efficiently performed
by utilizing fast transforms: one- or two-dimensional FFT for periodic boundary
conditions and one- or two-dimensional FCT for reflexive boundary conditions.
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7.2. A numerical example. To demonstrate our approach we consider an im-
age deblurring example. We start with the 512×512 Lena gray image (top left image
of Figure 3) scaled so that all of the pixels are in the interval [0, 1] and blur it with
a Gaussian PSF of dimension 9 × 9 with standard deviation 6 implemented in the
command psfGauss([9,9],6) from [15]; the values in the PSF range between 0.0095 and
0.0148. We assume that the blurring is not exactly known and that the observed PSF
is a Gaussian PSF of dimension 9 × 9 with standard deviation 8. We then cut the
margins by 20 rows and columns resulting in 492×492 and add a Gaussian white noise
with standard deviation 10−3 (top right image of Figure 3). By assuming reflexive
boundary conditions, the poor naive solution construction (i.e., A−1b) is given in the
left middle image of Figure 3. This poor quality of the naive solution is not surprising
since the problem is extremely ill conditioned. In our experiments, the regularization
matrix L represents a discretization of a differential operator corresponding to the PSF⎛

⎝−1 −1 −1
−1 8 −1
−1 −1 −1

⎞
⎠ .

The constrained least squares solution, that is, the solution of the problem

min{‖Ax − b‖2 : ‖Lx‖2 ≤ α},

is presented in the right middle image. The CSTLS reconstructions under periodic and
reflexive boundary conditions are the left and right bottom images, respectively. The
parameter α is chosen as 1.2‖Lxtrue‖2. Clearly, the best reconstruction is provided
by the CSTLS algorithm with reflexive boundary conditions. The artifacts in the
CSTLS reconstruction with periodic boundary conditions are much more prominent.
The relative error of the CSTLS reconstruction with reflexive boundary conditions,
‖xtrue−xCSTLS−R‖

‖xtrue‖ , is 0.0961, while for periodic boundary conditions the relative error

is 0.1393. The constrained least squares solution gave the worst relative error: 0.15.

8. Conclusion and discussion. In this paper we have shown that the RSTLS
problem for structures involving matrices which are simultaneously diagonalizable by
a given unitary matrix can be efficiently and globally solved (as opposed to general
structures). These SD structures appear in image deblurring problems with either
reflexive or periodic boundary conditions. The solution method consists of first de-
composing the problem into several real or complex one-dimensional problems which
are not necessarily unimodal. In the described image deblurring examples, the decom-
position is performed by using the FFT or the FCT. The one-dimensional problems
are then globally solved by invoking an unimodal solver on a transformation of the
problems. Numerical results demonstrate the effectiveness of the proposed approach.

Another type of boundary conditions are antireflective boundary conditions in-
troduced in [35].5 As stated in [35], antireflective boundary conditions further reduce
the boundary artifacts. The reason is that zero Dirichlet and periodic boundary con-
ditions introduce an artificial discontinuity at the border of the field of view; reflexive
boundary conditions impose that the reflected image is globally continuous but in-
troduce an artificial discontinuity of the first derivative, while antireflective boundary
conditions using a central symmetry are able to maintain C1 continuity in the case of
signals and C0 with normal derivative continuity for images.

5We thank an anonymous reviewer for referring us to the literature on this type of boundary
conditions.
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original blurred and noisy

naive solution constrained LS

CSTLS (periodic) CSTLS (reflexive)

Fig. 3. Deblurring of Lena.

In analogy with the reflexive boundary conditions, matrix-vector operations, solu-
tion of linear systems, and eigenvalue computations in the antireflective setting can be
done in O(n log n) real operations [4] (using the fast sine transform). It is also known
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that for these types of boundary conditions and with symmetric PSFs the set of all
possible matrices is simultaneously diagonalizable [3]. However, the diagonalizing
matrix is not unitary. The unitary property is essential to the analysis introduced in
the current paper. Specifically, the decomposition of the RSTLS problem described
in Theorem 3.1 will not be valid if the diagonalization is via a nonunitary matrix.
Therefore, it does not seem possible to analyze the RSTLS problem with antireflec-
tive boundary conditions within the setting of the paper. It is an open question
whether it is possible to exploit the special properties of antireflective boundary con-
ditions in order to construct an efficient method for solving the corresponding RSTLS
problem.

Acknowledgment. We thank two anonymous referees for their helpful com-
ments and suggestions which helped to improve the presentation of the paper.
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ON THE COMPUTATION OF NULL SPACES OF
SPARSE RECTANGULAR MATRICES∗

CRAIG GOTSMAN† AND SIVAN TOLEDO‡

Abstract. Computing the null space of a sparse matrix is an important part of some compu-
tations, such as embeddings and parametrization of meshes. We propose an efficient and reliable
method to compute an orthonormal basis of the null space of a sparse square or rectangular matrix
(usually with more rows than columns). The main computational component in our method is a
sparse LU factorization with partial pivoting of the input matrix; this factorization is significantly
cheaper than the QR factorization used in previous methods. The paper analyzes important theo-
retical aspects of the new method and demonstrates experimentally that it is efficient and reliable.
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polynomial
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1. Introduction. We propose a new method for computing an orthonormal
basis for the null space of a rectangular m-by-n matrix A with m ≥ n. The main
computational component of the new method is a conventional LU factorization with
partial pivoting of A. For many classes of sparse matrices, an appropriate preordering
of the columns leads to sparse factors, usually significantly sparser than the QR factors
and than the factors of any rank-revealing factorization [24, 26]. There are several
recent high-quality sparse LU codes that can perform partial pivoting [2, 18, 19, 20, 31,
32]. Experts on sparse-matrix factorizations, including experts on sparse QR, believe
that sparse LU factorizations with partial pivoting are intrinsically cheaper than
sparse QR.1 This belief is driven both by theoretical results and by computational
experience. The theoretical results show that the nonzero pattern of the R factor in
the QR factorization of a square matrix with no zeros on the diagonal contains the
nonzero pattern of the L and U factors in the LU factorization with partial pivoting,
so the L and U factors are at most as dense as R [23]. Therefore, the new method
is particularly suitable for large sparse matrices with a small-dimensional null space.
(Because we compute an orthonormal basis, in the computation of a high-dimensional
null space, the cost of orthogonalizing the null vectors dominates.)

We also revisit a somewhat more expensive method, which is based on a QR
factorization. This method is not new, but is not widely known either. Because of
this, and because it can be used to compute not only the null space, but also additional
singular triplets corresponding to small singular values, we mention it here briefly too.
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There are several applications to the computation of the null space and, more
generally, to the computation of singular vectors or singular subspaces associated with
small singular values. The first application that we describe involves computation with
matrices derived from graphs. We start with a discussion of the square and symmetric
case, and then describe extensions of these applications to rectangular matrices.

The spectrum of matrices related to the adjacency matrix of a graph is extremely
interesting. Typically the lowest eigenvalues and eigenvectors are the most useful, as
they characterize various properties of the graph. The most famous example is the
second smallest eigenvalue of the graph Laplacian, which characterizes how strongly it
is connected, hence its mixing rate [13]. The smallest eigenvalue is zero, corresponding
to a fixed-valued eigenvector. The eigenvector corresponding to the second eigenvector
(the so-called Fiedler vector) is also useful for ordering the vertices of the graph (using
the components of this vector) for embedding [33] and partitioning [1] purposes. In
general, the d eigenvectors corresponding to the d smallest nonzero eigenvalues may be
used to form partitions and embed in R

d. Singular vectors associated with the smallest
singular values also play an important role in techniques for embedding graphs in R

d.
For example, the null space of the so-called Colin de Verdière matrices [16, 29, 37] are
used in convex embeddings of closed manifold genus-0 graphs in R

d, and the null space
of stress matrices [17] is used in unique (up to rigid transformations) embeddings of a
graph with given edge lengths. When the graphs arise from a three-dimensional (3D)
mesh structure, as frequently happens in computer graphics applications, or from a
k-nearest-neighbor graph, as in feature-learning applications, the graphs tend to be
very sparse, and the sparsity should be exploited in the computation of the small
singular subspace.

Another area where the null space of rectangular matrices arises is the parame-
terization of manifold 3D meshes of genus g > 0 [28, 30, 44]. In this application, a
graph is considered a discrete version of a vector field on a surface, and a discrete
version of the one-form is defined for it. Of particular interest are the so-called har-
monic one-forms, which satisfy certain balance conditions. The search for harmonic
one-forms on a given mesh graph results in the formulation of a set of linear equations
for unknowns corresponding to the edges of a graph. Some of the equations are de-
rived for the edges incident on vertices, and some are derived from the edges bounding
faces. The size of the matrix is N -by-E, where E is the number of edges in the graph,
and N is typically close to E, but is also influenced by the genus. These matrices are
sparse and rectangular, and the nullity (the dimension of the nullspace) is typically 2g.

Approximate null vectors are also used in at least two areas of numerical linear
algebra. One area is condition-number estimation. The spectral condition number
of a matrix A is the ratio of its extreme singular values σmax/σmin. Estimating the
largest singular value is relatively easy; the hard part is estimating σmin. This is done
almost invariably by trying to find a vector v with a unit norm such that ‖Av‖ is
small. When A is nearly singular, this problem is roughly equivalent to finding an
approximate null vector. Note that in condition-number estimation, the estimate can
be accurate enough even when v is not a good approximation of the singular vector
associated with the smallest singular value. Therefore, the methods for finding such
a v are not very similar to the methods that we describe here; condition-number
estimators usually favor speed over accuracy; many of them are reliable in practice
but may fail on some matrices. For further details, see [34, Chapter 15] and the
references therein.

Approximate null vectors are also used in algorithms that compute rank-revealing
factorizations and algorithms that solve rank-deficient least-squares problems without
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a rank-revealing factorization [11, 12, 21, 39]. Here, too, a relatively inaccurate ap-
proximate null vector is good enough. On the other hand, some of the rank-revealing
factorizations require approximate null vector of a sequence of nested upper-triangular
matrices (the incrementally constructed factor of A). There are specialized incremen-
tal condition-number estimators for these applications [8, 9]; our approach is not
efficient enough for such applications.

We focus on the m ≥ n matrices because the problems of computing a basis
for the null space when m > n and when m < n are fundamentally different. When
m < n the nullity is at least n−m. When n is much larger than m, the nullity is high,
and the space and time costs of computing an orthogonal basis for the null space are
dominated by the usually dense basis vectors and by the cost of orthogonalizing them.
Thus, when m < n the standard approach is to compute a sparse but not necessarily
orthogonal basis. This topic has been researched extensively and is outside the scope
of this paper [7, 14, 15, 25]. When m ≥ n or when m is only slightly larger than
n the nullity can be small and the orthogonal-basis algorithms that we discuss are
appropriate.

The rest of the paper is organized as follows. The next section introduces inverse
iteration. Section 3 introduces symmetric inverse iterations for nonnormal and for
rectangular matrices, and in particular symmetric R iteration. Section 4 presents
our main contribution, an LU -based symmetric inverse iteration. Section 5 describes
the results of numerical experiments, and section 6 compares our work to previously
published work. Section 7 presents some conclusions and open questions.

2. Inverse iteration. Given a square matrix A, inverse iteration repeatedly
solves the equation Ax(t) = x(t−1)/‖x(t−1)‖ for x(t). The starting vector x(0) can
be random, although there are alternatives that often work a little better. When A
is symmetric, the iteration converges to an eigenvector associated with the smallest
eigenvalue of A (in absolute value). If the equation is solved using a backward stable
factorization, such as QR or LU with partial pivoting, the iteration converges even
if A is singular. In fact, if A is singular, then the iteration converges very quickly, in
most cases in one or two iterations.

If the nullity of A is larger than one, we can start with an n-by-k matrix Y (0),
and in each iteration we solve AY (t) = X(t−1) for Y (t) and then orthonormalize the
columns of Y (t) to produce X(t). If k is at least as large as the dimension of null(A),
then the first n−rank(A) columns of X(t) converge to an orthonormal basis of null(A).
This technique is essentially the inverse version of simultaneous iteration or subspace
iteration. The same idea applies to all the inverse iterations that we describe in the
rest of the paper.

When A is square but not normal, the method often works, but it may also
fail [35]. When A is not even square, standard inverse iteration does not apply at all.

One issue that is outside the scope of this paper, but should be mentioned, is
overflows in inverse iteration. Suppose that we apply inverse iteration using a QR
factorization, such that the exact R factor of A is

R =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

0
. . .

. . . 1
0 1

0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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and that due to rounding errors the computed factor is

R̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε 1

ε
. . .

. . . 1
ε 1

ε

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Consider solving Rx = �1 (the right-hand side is the vector of all ones). As ε shrinks,
the solution converges to [ε−n ε−(n−1) · · · ε−1]T . If there are no overflows, this is a
good approximation of the exact null vector [1 0 · · · 0]T , as expected. But obviously
ε−n is extremely likely to overflow. There are techniques to mitigate this danger [35],
but they are difficult to apply in the case of subspace iteration. We shall see examples
of this behavior in the numerical results below.

3. Symmetric iterations and symmetric inverse R iteration. When A
is not normal or not even square, a variant of inverse iteration can still be applied
reliably. This variant is not new, but not widely appreciated either. We call this
variant symmetric inverse iteration.

Symmetric power iteration repeatedly applies A∗A to a starting vector, and sym-
metric inverse iteration repeatedly solves equations of the form A∗Ax(t) = x(t−1)/
‖x(t−1)‖ for x(t). The Gram matrix A∗A is symmetric (Hermitian in the complex
case), so inverse iteration works on it reliably. Symmetric iterations, both power and
inverse, work without ever computing A∗A. The eigenvalues of A∗A are the squares
of the singular values of A, so small singular values become a lot smaller: singular
values near or below ‖A‖√εmachine become eigenvalues near or below ‖A‖εmachine. If
we compute A∗A explicitly, rounding errors usually make these small but nonzero
singular values indistinguishable from the zero singular values of A, and inverse itera-
tion will always produce linear combinations of the corresponding singular vectors. In
other words, inverse iteration on an explicit A∗A may be unstable and may produce
vectors that are far from null vectors of A.

But iterating on A∗A implicitly does not suffer from this instability. If A is
square, we solve A∗Ax(t) = x(t−1)/‖x(t−1)‖ by factoring A using any backward-stable
factorization, say LU with partial pivoting, and solving

A∗w = x(t−1)/‖x(t−1)‖,
Ax(t) = w .

As far as we can tell, this idea is due to Stewart [42].
When A is not even square, we can still solve A∗Ax(t) = x(t−1)/‖x(t−1)‖ if we

compute the reduced QR factorization of A. In this factorization, Q is m-by-n (like
A) with orthonormal columns, and R is n-by-n and upper triangular. Here, too, we
need a backward-stable, but not rank-revealing, factorization. (So when A is sparse,
we can use an arbitrary row and column preorderings to minimize fill and work.)
Since A = QR, we have A∗A = R∗Q∗QR = R∗R. To solve A∗Ax(t) = R∗Rx(t) =
x(t−1)/‖x(t−1)‖, we perform two triangular solves,

R∗w = x(t−1)/‖x(t−1)‖,
Rx(t) = w .
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Björck [10, p. 109] credits Chan [12] with this technique, although Chan’s paper is
not explicit about how to carry out the inverse iteration. We refer to this technique as
symmetric inverse R iteration. The simultaneous/subspace version of this technique
can be used to compute multiple singular vectors associated with the smallest singular
values of A.

Both the implicit normalization idea and the use of the R factor are not new, but
neither are they widely appreciated. Virtually all the research on inverse iteration,
surveyed by Ipsen [35], ignores normalization and focuses instead on less reliable and
more complex methods to enhance inverse iteration for the nonnormal case. In that
literature, there is essentially no discussion of rectangular matrices. So although
normalization and the use of the R factor are mentioned in the literature, they are
not widely known. For example, lapack [3] uses unsymmetric inverse iteration to
compute eigenvalues of tridiagonal matrices [35].

4. LU-based symmetric inverse iterations. This section presents the main
contribution of the paper, symmetric inverse iterations with the triangular factors
computed by LU with partial pivoting. The algorithms start with a factorization

(1) PA = LU =

[
L1

L2

]
U ,

where P is an m-by-m permutation matrix, L is an m-by-n upper trapezoidal matrix,
and U is an n-by-n upper triangular matrix. Thanks to partial pivoting, L has 1’s on
the diagonal and the magnitude of all of its elements is bounded by 1. We partition L
into pivot and nonpivot rows: L1 is the square n-by-n triangular part of L, containing
the pivot rows, and L2 is the subdiagonal block containing the remaining m−n rows.

In exact arithmetic, A, U , and L1U all have exactly the same null space. There-
fore, we can try to compute the null space of A by performing symmetric inverse
iteration on U or on L1U , both of which are square. The matrix U is upper triangu-
lar, and once we compute the factorization (1), we have a triangular factorization of
L1U . This allows us to perform symmetric inverse iteration with either L1U or with
U without any additional preprocessing. The following trivial lemma proves that A,
U , and L1U all have the same null space. Once we prove it, we analyze the effect of
rounding errors on this process.

Lemma 4.1. Let

PA = LU =

[
L1

L2

]
U

be an exact LU factorization of A such that L1 has a nonzero diagonal (this covers
the case of partial pivoting). Then null(A) = null(L1U) = null(U).

Proof. The row permutation P is irrelevant for null vectors, so without loss of
generality we assume that P = I. Because L1 is nonsingular, null(L1U) = null(U).
Therefore, all we need to show is that null(A) = null(L1U). If Ux = 0, then we also
have L2Ux = 0, so Ax = LUx = 0. This shows that null(A) ⊆ null(U) = null(L1U).
On the other hand, if Ax = LUx = 0, then in particular L1Ux = 0. This shows that
null(A) ⊇ null(L1U) = null(U), which concludes the proof.

We now analyze the relationships between the approximate null spaces of A, U ,
and L1U , still without taking into account rounding errors in the factorization of A.
The relationships that we describe now motivate the structure and the numerics of
our algorithm. The next theorem shows that
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• all the small singular values of U correspond to small singular values of A
(but A may have more small singular values than U);

• moreover, approximate null vectors of U are also approximate null vectors of
A;

• all the small singular values of A correspond to small singular values of L1U ;
• approximate null vectors of A are approximate null vectors of L1U .

Theorem 4.2. Let

PA = LU =

[
L1

L2

]
U

be an exact LU factorization of A such that L has 1’s on the diagonal and subdiagonal
elements whose absolute value is bounded by 1. The following inequalities hold for any
x:

3√
4n + 6n− 1

σk(U) ≤ σk(A) ≤
√
mnσk(U),(2)

3√
4n + 6n− 1

‖Ux‖2 ≤ ‖Ax‖2 ≤
√
mn‖Ux‖2,(3)

σk(L1U) ≤ σk(A) ≤
√

1 + (m− n)n
4n + 6n− 1

9
σk(L1U),(4)

‖L1Ux‖2 ≤ ‖Ax‖2 ≤
√

1 + (m− n)n
4n + 6n− 1

9
‖L1Ux‖2.(5)

Before we prove the theorem, we remark on how these bounds can be used. In (2)
and (3), the rightmost inequalities are the useful ones. They show that if σk(U) is
small, then σk(A) is also small—perhaps not as small as σk(U), but at most a factor
of m larger. This not a large factor. This implies that the numerical nullity of A
is at least as large as that of U , with similar approximate null vectors. The leftmost
inequalities in (2) and (3) are not useful, because they allow σk(A) to be about 2n/3
times smaller than σk(U). Therefore, the numerical rank of A may be strictly larger
than that of U , with approximate null vectors that are not approximate null vectors of
U . In (4) and (5), it is the leftmost inequalities that are important. They show that
the numerical nullity of L1U is at least as large as that of A, and that approximate
null vectors of A are approximate null vectors of L1U . The rightmost inequalities
in (4) and (5) are not useful because of the exponential factor. We now prove the
theorem.

Proof. We again assume without loss of generality that P = I.
The singular-value inequalities use the following singular-value bounds [6, Propo-

sitions 9.6.1 and 9.6.4], which hold for any A = XY where X is m-by-� and Y is
�-by-n:

(6) σk(X)σ�(Y ) ≤ σk(A) ≤ σk(X)σmax(Y ) .

We apply these bounds to two factorizations of A. When applied to A∗ = U∗L∗, the
inequalities gives

(7) σk(U)σn(L) ≤ σk(A) ≤ σk(U)σmax(L) .

We also apply the bounds (6) to the conjugation of the factorization A = M (L1U),
where

M =

[
I

L2L
−1
1

]
.
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On A∗ = (L1U)
∗
M∗, the singular-value bounds give

(8) σk(L1U)σn(M) ≤ σk(A) ≤ σk(L1U)σmax(M) .

We now bound the smallest and largest singular values of L and M . Because the
magnitude of all the elements of L are all bounded by 1, we have

‖L‖2 ≤ ‖L‖F =

√∑
i,j

L2
i,j ≤

√
mn .

The smallest singular value of L is bounded by that of L1:

σn(L) = min
‖x‖2=1

‖Lx‖2

= min
‖x‖2=1

√
‖L1x‖2

2 + ‖L2x‖2
2

≥ min
‖x‖2=1

√
‖L1x‖2

2

= σn(L1) .

Barlow and Zha [5, Lemmas 2.1 and 2.2] showed that

σn(L1) ≥
(

4n + 6n− 1

9

)−1/2

,

and this also bounds σn(L). Combining these bounds with (7), we get

√
9

4n + 6n− 1
σk(U) ≤ σk(A) ≤

√
mnσk(U) .

We relate the singular values of A to those of L−1
1 L2. The smallest singular value

of M is at least 1, since

σn(M) = min
‖x‖2=1

‖Mx‖2

= min
‖x‖2=1

√
‖Ix‖2

2 + ‖L2L
−1
1 x‖2

2

= min
‖x‖2=1

√
1 + ‖L2L

−1
1 x‖2

2

≥ 1 .

The largest singular value of M is bounded by

σmax(M) = ‖M‖2 = max
‖x‖2=1

√
1 + ‖L2L

−1
1 x‖2

2

≤
√

1 + ‖L2L
−1
1 ‖2

2

≤
√

1 + ‖L2‖2
2‖L−1

1 ‖2
2

≤
√

1 + ‖L2‖2
Fσn(L1)−2

≤
√

1 + (m− n)n
4n + 6n− 1

9
.
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Substituting the bounds on the singular values of M in (8), we get

σk(L1U) ≤ σk(A) ≤
√

1 + (m− n)n
4n + 6n− 1

9
σk(L1U) .

The bounds on approximate null vectors in the statement of the theorem are
now easy to derive. One side follows from ‖Ax‖2 ≤ ‖L‖2‖Ux‖2 (and similarly for
A = ML1U). The other side follows from

σn(L) = min
y

‖Ly‖2

‖y‖2
,

which imply that for y = Ux we have σn(L) ≤ ‖Ly‖2/‖y‖2, so σn(L)‖Ux‖2 ≤ ‖Ly‖2 =
‖LUx‖2 = ‖Ax‖2.

Rounding errors in the factorization do not loosen these bounds in a significant
way, as long as the factorization is backward stable.

Lemma 4.3. Let

A + E = PLU = P

[
L1

L2

]
U

be an LU factorization with partial pivoting of an m-by-n real matrix A such that

‖E‖F ≤ ε

for some small ε. Then

σk(A) ≤
√
mnσk(U) + ε,

‖Ax‖2 ≤
√
mn‖Ux‖2 + ε‖x‖2,

σk(L1U) ≤ σk(A) + ε,

‖L1Ux‖2 ≤ ‖Ax‖2 + ε‖x‖2 .

Proof. We again assume without loss of generality that P = I.
The standard perturbation theory for singular values ensures that [27, Theo-

rem 8.6.4]

n∑
k=1

(σk(A + E) − σk(A))
2 ≤ ‖E‖2

F .

Therefore, σk(A + E) − σk(A) ≤ ε, so using (2) we obtain

σk(A) ≤ σk(A + E) + ε ≤
√
mnσk(U) + ε .

As for the approximate null vectors, we have

‖Ax‖2 = ‖LUx− Ex‖2

≤ ‖LUx‖2 + ‖Ex‖2

≤
√
mn‖Ux‖2 + ‖E‖2‖x‖2

≤
√
mn‖Ux‖2 + ‖E‖F ‖x‖2

≤
√
mn‖Ux‖2 + ε‖x‖2 .

Clearly, for this bound we could have used a bound on the 2-norm of E.
The proofs for the bounds on L1U are similar.
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These results suggest the following algorithm.
1. Compute an LU factorization with partial pivoting PA = LU =

[
L1

L2

]
U .

2. Perform subspace symmetric inverse iteration with U to find k approximate
null vectors of U and to estimate the value of σk+1(U). By Lemma 4.3, the
approximate null vectors are also approximate null vectors of A, but there
may be more.

3. Estimate σn(L1) using symmetric inverse iteration with L1. If σn(L1)σk+1(U)
is large, then

σk+1(A) ≥ σn(L)σk+1(U) ≥ σn(L1)σk+1(U)

is also large, so there is no need to search for additional approximate null
vectors of A. If σn(L1) is too small, go to step 5; otherwise, continue.

4. L1 is not ill conditioned: the vectors that we computed in step 2 should be a
basis for the null space of A. Report the numerical rank of A and the basis
for the null space, and return.

5. L1 is ill conditioned enough to allow for approximate null vectors for A that
are not approximate null vectors of U . Run subspace symmetric inverse
iteration on L′U to find a basis for its approximate null space.

6. If the iteration in step 5 produced approximate null vectors of L′U , then by
Lemma 4.3 their number is an upper bound on the numerical rank deficiency
of A (this number is possibly larger than the number of vectors found in
step 2).

7. Determine which of the vectors produced in step 5 is also an approximate
null vector of A and linearly independent of the vectors produced in step 2.
Return these vectors, along with the vectors produced in step 2. Also report
the upper bound computed in step 6.

The lower trapezoidal factor L that LU with partial pivoting produces is usually
well conditioned, so we expect that the algorithm will usually perform steps 1–4 and
stop there. If the algorithm does continue to steps 5–7, then the approximate null
vectors that it returns may or may not constitute a basis for the null space of A. More
specifically, if their number is smaller than the upper bound on the nullity, the vectors
may span only a proper subspace of null(A), or they constitute a basis but the upper
bound is loose.

The details of steps 3 and 5 are as follows. Since step 3 is more complex (it needs
to find an approximation to a nonzero singular value, in addition to finding a basis
for the approximate null space), we explain how it works. We use a simple version of
subspace iteration (see [43] for details) in which we orthogonalize the basis in every
iteration. We do not use Schur–Raleigh–Ritz refinement or deflation. We apply the
iteration implicitly to U−1U−∗. To ensure that U has an inverse, we replace zero
diagonal entries by the value εmachine‖U‖1. This amounts to a small perturbation
that does not change the null space of U in a significant way. Since we are looking
for approximate null vectors, we perform very few iterations within each subspace
iteration, usually 3. We perform this iteration repeatedly, each time with twice as
many basis vectors, starting from two. We stop this repeated doubling when not all
the vectors returned by the iteration are approximate null vectors of U . When this
happens, we use the Raleigh quotient of the first nonnull vector that is returned as
an approximation to σk+1(U). Other symmetric/Hermitian subspace eigensolvers can
also be used as the inner iteration of these steps.
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5. Numerical experiments. In this section we provide a few illustrative ex-
amples to demonstrate the behavior of the LU - and QR-based algorithms, including
pathological behaviors.

We carried out the experiments using MATLAB version 7.0 on a 3 GHz Pen-
tium 4 computer with 1 GB of main memory running Linux. The LU factorization
was performed using the function call [L,U,P,Q]=lu(A,1.0), which calls umfpack

version 4.3 (P and Q are row and column permutations). This syntax enforces partial
pivoting and allows the sparse factorization code to reorder rows and columns for
sparsity (under the partial pivoting constraint). We also ran a symmetric inverse R
iteration, to compare the runtimes. We computed the R factor using the function call
R=qr(A(:,colamd(A)),0), which avoids the expensive computation of an explicit Q.
The reordering of the columns tends to reduce fill and work, and is generally similar
to the column ordering that umfpack uses.

The codes implement the algorithms from sections 3 and 4. They apply the
iterations first to 1 vector, then 2, then 4, and so on, until the dimension of the com-
puted null space stops growing. The codes always run 3 iterations of the appropriate
strategy, starting from a matrix consisting of uniformly distributed random numbers
between 0 and 1.2

5.1. Accuracy. We created random matrices with singular values 1, . . . , 1, σ2, 0
for σ2 = 10−16, 10−15, . . . , 100. The matrices are all 200-by-100, and they were com-
puted by generating random orthonormal singular vectors and multiplying the singu-
lar vectors and singular values appropriately. We generated 100 random matrices for
each σ2. For each matrix, we used our algorithm to compute its null vector. We also
used MATLAB’s singular value decomposition (svd) on both A and ATA. On all of
these matrices, our algorithm computed the null space of A by iterating on U ; L was
never ill conditioned. The results of the experiment, shown in Figure 1, show that our
algorithm is less accurate than a full SVD computation, but not significantly so. In
particular, the results show that the qualitative behavior of our algorithm is similar
to that of a full SVD: the accuracy degrades smoothly as σ2 approaches εmachine‖A‖.

We also ran experiments on matrices whose U factors have tiny diagonal values
near the upper left corner. We did this by generating two independent columns,
then a column that depends on the first two, and then another column that almost
depends on the first two, but not exactly. We then completed the matrices with 96
additional linearly independent columns. This yielded matrices with norm around 1,
one zero singular value, and one singular value near 10−8. On the diagonal of U we
have U33 close to εmachine and U44 is small. We have also conducted experiments in
which the dependent and almost-dependent columns were columns 4 and 3, to swap
the small and numerically zero elements on the diagonal of U . The accuracy in these
experiments was similar to the accuracy achieved in the previous experiments. From
this experiment it appears that the position of small elements on the diagonal of U
does not have a significant influence on the accuracy of the algorithm.

5.2. Large matrices. We conduced experiments on a few large sparse matrices
from Davis’s sparse matrix collection.3 More precisely, we took matrices from this
collection and modified them slightly to make them rectangular and singular. This
experiment serves three purposes. First, it shows that the algorithm runs reasonably
quickly even on large matrices. Second, it shows that our LU -based algorithm is

2The main code, nulls.m, is publicly available at http://www.tau.ac.il/˜stoledo/research.html.
3http://www.cise.ufl.edu/research/sparse/matrices/.
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Fig. 1. The results of the accuracy experiments. The bars show the range of accuracies for each
σ2 in 100 experiments; the mark along each range is the mean log accuracy. For each value of σ2, the
graph shows the accuracy of our algorithm (denoted nulls), of MATLAB’s SVD implementation,
and of the SVD applied to ATA. The three bars for each σ2 are slightly offset so that they don’t
overlap, but they all represent experiments with exactly the same σ2.

much faster than symmetric inverse R iteration. Third, it shows that the algorithm
can fail; the failures are not specific to the LU -based algorithm but to inverse itera-
tion in general. We believe that the failures are mostly due to scaling and overflow
problems, similar to the ones discussed in section 2. In principle, these problems can
be addressed by exploiting the capabilities of floating-point hardware better, but we
have not implemented such measures.

We constructed the matrices as follows. All the matrices were initially square.
From each matrix we dropped the first and last rows, and then duplicated rows 11 to
20 at the bottom of the matrix. This created (n + 8)-by-n rectangular matrices with
rank at most n− 2.

The results of the experiments are summarized in Tables 1 and 2. Table 1 lists
the matrices and the dimensions of the computed null spaces. Since the matrices
were constructed to have null spaces of dimension at least 2, any dimension less than
2 indicates failure. Dimensions larger than 2 reflect matrices that were originally
singular. One group of matrices, mult dcop, caused difficulties to the LU -based
algorithm, resulting in two failures. One of the failures led to overflows, but the other
was silent. (The QR factorization of these matrices ran out of memory.) Two of
these matrices, mult dcop 02 and 03, have highly skewed row scaling, which may
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Table 1

Our test matrices and the sizes of the computed null spaces. The columns denoted d display the
dimensions of the computed null spaces, and the NaN

∞ columns show whether any overflows or NaN’s
were detected during the iterations. The QR factorization ran out of memory on three matrices.

LU QR

Base matrix n d NaN
∞ d NaN

∞
fpga trans 02 1220 2 2

shyy41 4720 4 0 Y

utm5940 5940 2 2

poisson3Da 13514 2 2

mult dcop 01 25187 1 —

mult dcop 02 25187 2 —

mult dcop 03 25187 0 Y —

wang4 26068 2 2

onetone1 36057 2 2

twotone 120758 2 2

Table 2

Runtimes and the size of the factors. The columns denoted T display the total running times,
and the columns denoted Tf show the running time of the factorization alone. The columns ηL,
ηU , and ηR show the number of nonzeros in the computed factors. The QR factorization ran out of
memory on three matrices.

LU QR

Base matrix n T Tf ηL ηU T Tf ηR

fpga trans 02 1220 0.09 0.03 5.7e3 6.1e3 0.14 0.05 2.8e4

shyy41 4720 0.76 0.13 5.9e4 7.1e4 5.24 0.34 1.8e5

utm5940 5940 1.87 0.50 3.8e5 4.9e5 5.04 3.27 8.8e5

poisson3Da 13514 23.84 7.27 5.9e6 6.0e6 290.67 255.85 1.7e7

mult dcop 01 25187 2.18 1.06 1.4e5 3.5e5 — — —

mult dcop 02 25187 2.82 0.96 1.0e5 3.2e5 — — —

mult dcop 03 25187 3.56 1.26 1.2e5 3.4e5 — — —

wang4 26068 47.94 15.48 1.1e7 1.1e7 478.16 431.35 2.3e7

onetone1 36057 14.94 5.03 1.8e6 2.5e6 45.62 36.42 4.3e6

twotone 120758 29.77 12.75 3.2e6 4.8e6 132.66 98.60 1.6e7

contribute to the difficulty: the ratio between the extreme ∞-norms of rows is 1012 for
mult dcop 03, and even larger for 02. Another matrix, shyy41, which was originally
singular, caused similar difficulties for the QR-based algorithm. This shows that this
class of numerical difficulties is not associated with our new LU -based algorithm, but
with inverse iteration in general.

Table 2 shows the performance of the two algorithms. On all the matrices, the
LU -based algorithms ran in less than 30 seconds. On several large matrices it ran in
less than 10 seconds. We argue that these are acceptable running times. The table
also shows that in all the experiments, the QR-based algorithm was slower, in most
cases substantially slower. This is probably due both to the fact that MATLAB 7 uses
a state-of-the-art sparse LU factorization but a much older sparse QR, and to the
intrinsic differences in the costs of sparse LU and QR factorizations. A comparison
of the fill in the LU factors and the fill in the QR factor shows that the R factor is
denser, but not significantly more than L and U combined.
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5.3. Extreme examples. We now describe matrices that cause extreme be-
haviors in inverse-iteration algorithms. Experiments with these matrices constitute a
partial coverage test of our implementation, because they exercise parts of the code
that are rarely reached on real-world matrices.

We start with a particularly pathological matrix, suggested to us as an example
by G. W. Stewart. This matrix has the form

AS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
−1 1
...

. . .

−1 1
−1 −1 · · · −1 1
0.5 0.5 0.5 0.5 0.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The matrix As is (n + 1)-by-n, has 1’s on the diagonal, −1 below the diagonal in
rows 1 through n, and 0.5 in all the entries in row n + 1. The LU factorization
with partial pivoting of AS is AS = ASI, because AS is already lower trapezoidal
and its subdiagonal entries are bounded by 1 in absolute value. This matrix is well
conditioned, so symmetric inverse iterations should not find any approximate null
vectors. Indeed, if we perform symmetric inverse iteration with the upper triangular
factor, we find no approximate null vectors. However, L1, consisting of the first n
rows of AS , is very ill conditioned, since L1(1 2 4 . . . 2n)T = (1 1 1 . . . 1)T . This
implies that the condition number of L′ is exponential in n. When we run symmetric
inverse iteration on either L1 or L1U , we find an approximation of the small singular
vector of L1. In this particular case, the large condition number of L1 will cause our
algorithm to iterate on L1I. This will return a single candidate vector and an upper
bound of 1 on the rank deficiency. In this particular case, since the upper bound is 1,
there is only one candidate vector x that is easy to rule out by observing that ‖ASx‖
is large. But this example shows that the exponential bound shown in Lemma 4.3
can be attained, and it shows that L1 can be ill conditioned. The exponential bound
implies that the dimension of the null space computed by iterating on L1U is only
an upper bound, and the ill conditioning of L1 shows that the dimension of the null
space computed by iterating on U is only a lower bound. Put together, this means
that the method may fail to reliably estimate the rank deficiency (but it will report
this failure explicitly, because it will detect the ill conditioning of L1).

We also ran the algorithms on a block matrix of the form[
AS 0
0 AR

]
,

where AS is the matrix describe above, and AR is a random matrix with given singular
values: all 1’s except for four, which are three 0’s and one 10−8. On this matrix
the QR-based algorithm correctly computes the rank deficiency, 3, and null space
correctly, which is essentially the null space of AR. The LU -based algorithm performs
all the steps in the algorithm (that is, it does not stop at step 4 because it correctly
detects that L′ is ill conditioned). It finds three null vectors using inverse iteration
on U , but since L1U has four approximate null vectors, the algorithm returns the
three null vectors but reports that the rank deficiency might be 4. In this particular
case it is possible to determine the null space correctly, of course, but the example
shows that the algorithm may need to resort to reporting a too-lax upper bound on
the deficiency.
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The next example shows that normalization may be necessary. The class of square
matrices

AI =

⎡
⎢⎢⎢⎢⎣

1 η

1
. . .

. . . η
1

⎤
⎥⎥⎥⎥⎦ ,

where η > 1 is a parameter, was used by Ipsen [35] to show that without normalization,
inverse iteration may fail. Their inverses are

A−1
I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 η η2 · · · ηn−1

. . .
. . .

. . .
...

. . .
. . . η2

. . . η
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The norm of the matrices is O(1 + η) but the norm of the inverses is O(1 + ηn−1).
Therefore, the matrices are highly ill conditioned, so inverse iteration methods should
find a vector x such that AIx has a small norm. However, without normalization,
inverse iteration fails. With normalization, inverse iteration works. (Since AI is upper
triangular, iterating with AI or with its R factor or with its U factor are exactly
equivalent methods.)

5.4. Embeddings graphs on surfaces. We have also performed experiments
on the following class of matrices. We describe the application where they arise,
but we do not provide detailed results, since we detected no surprising or interesting
behaviors on these matrices.

An instance of a nonnormal matrix whose null space is of interest is derived from
a graph G = (V,E, F ) which has been embedded on a closed manifold surface of genus
g > 0 in R

3 (e.g., a torus). The graph G has |V | vertices, |E| edges, and |F | faces.
A value xh may be attached to each half-edge h of G, such that xh = −xt(h), where
t(h) is the (opposite) twin half-edge of h. Given an orientation for each edge, the
vector x of the values corresponding to the half-edges in this orientation is known as
a discrete one-form, or just one-form for short, of G [30]. A harmonic one-form is one
which satisfies some balance conditions, derived from each vertex and face of G. For
a set of symmetric weights wh = wt(h), each vertex v induces the co-closedness linear
equation on x,

∑
h∈δv

whxh = 0 ,

where δv is the set of half-edges emanating from v. Each face f induces the closedness
linear equation,

∑
e∈∂f

xh = 0 ,

where ∂f is the set of half-edges bounding f .
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In total, there are |V | + |F | equations in |E| unknowns, whose rank turns out
to be |V | + |F | − 2. The Euler–Poincaré formula for manifold graphs asserts that
|V | + |F | − |E| = 2 − 2g, so this rank is |E| − 2g. Thus, solving for a basis for the
subspace of harmonic one-forms involves computation of the 2g-dimensional nullspace
of a nonnormal matrix of size |E| + 2 − 2g by |E|.

By integrating harmonic one-forms, it is possible to parameterize manifold mesh
data very efficiently. This has many applications in computer graphics and geometry
processing [28, 30, 44].

6. Related work. Unsymmetric inverse iteration for square matrices is a well-
researched area. The method was invented by Wielandt in 1944 and was studied by
Wilkinson, who published his findings in several papers and books over a period of
almost 30 years. For a comprehensive survey of these results, along with many newer
results, see Ipsen’s survey [35].

Symmetric inverse iteration for square matrices seems to have been first proposed
by Stewart [42]. Symmetric inverse R iteration is due to Chan [12] (see also [10,
p. 109]).

Symmetric inverse iteration with U or with L1U is, to the best of our knowledge,
new. It is remotely related to an idea by Saunders [40] to use U to precondition an
iterative least-squares solver. There are additional least-squares preconditioners that
are based on an LU factorization, but they all use the L′′ block as well, so they are
not really related to our proposed method (see [10, section 7.5.3] and the references
cited there). Our algorithm is also related to the Peters–Wilkinson family of methods
for solving least-squares problems using an LU factorization [38], in that both rely on
the fact that L is usually well conditioned.

For square matrices, Schwetlick and Schnabel [41] proposed a bordering iteration
as an alternative to inverse iteration. The advantage of their method is that the
linear systems that their method solves in each iteration is nonsingular, so they can
potentially be solved by an iterative linear solver, such as gmres. However, the
method is limited to square matrices that are numerically rank deficient by only
one.

Friedman [22] proposed an algorithm to compute the null space of a symmetric
positive definite matrix by shifting it so that the 0 eigenvalue, if there is one, is shifted
to become the largest in magnitude, and then to apply power iteration. The motiva-
tion for the algorithm is related to the application that motivated our research, the
application that we mentioned in section 5.4. Friedman’s algorithm works as follows
(we explain how to use it to compute the null space of A∗A). First, the algorithm
uses power iteration on A∗A to compute an estimate λ̃ to the largest eigenvalue λn

of A∗A. The estimate can be fairly inaccurate, but it should satisfy

2

3
λn ≤ λ̃ ≤ 2λn

with high probability. Now the algorithm performs power iteration on B = λ̃I−A∗A.
The eigenvalues μi of B are μi = λ̃ − λi, where λi are the eigenvalues of A∗A. In
particular, the zero eigenvalue of A∗A, if there is one, is shifted to λ̃, along with the
invariant subspace. All the other μi’s are smaller in magnitude than λ̃, by at least
min(1/3, λk+1), where λk+1 is the smallest nonzero eigenvalue of A∗A. Therefore,
power iteration on B converges to a null vector of A. The trouble with this approach
is that the convergence is very slow if λk+1 is small. This power iteration converges
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linearly with a convergence rate that is proportional to

λn(A∗A) − λk+1(A
∗A)

λn(A∗A)
= 1 −

σ2
k+1(A)

σ2
n(A)

.

Convergence will be slow if σk+1(A) is smaller than σn(A), even if it is not dramati-
cally smaller. The method does not converge at all to a null vector in floating point
if σk+1(A)/σn(A) ≤ √

εmachine. The slow convergence or no convergence implies that
the algorithm should probably be used only if (1) the only allowed use of A is multi-
plication by A and its conjugate, and (2) if it is known a priori that σk+1(A)/σn(A)
is relatively large, if at all.

The standard way to compute a basis for the null space of a rectangular matrix is
using a rank-revealing factorization, such as a rank-revealing LU or QR factorization.
For dense matrices, sophisticated rank-revealing factorizations are only slightly more
expensive than backward-stable but non-rank-revealing ones. However, for sparse
matrices, such factorizations can be significantly more expensive to compute than
LU with partial pivoting or QR, because rank-revealing factorizations require column
pivoting. In sparse QR and LU with partial pivoting, the column ordering is chosen
so as to minimize fill and computation, so pivoting to reveal the rank typically leads
to more fill and more work. Furthermore, sparse rank-revealing factorizations have
not been implemented much, and those that have are not widely available. (The state
of the art in this area is an algorithm by Pierce and Lewis [39], but the code is not
publicly available; an earlier method proposed by Foster [21] uses similar techniques
to detect dependent columns and to retriangularize R; see also [4].) In contrast, sev-
eral recent and high-quality sparse LU with partial pivoting codes, which lie at the
heart of our method, are publicly available [2, 18, 19, 20, 31, 32]. Some of these can
exploit parallel computers and/or clusters. Even general-purpose interactive numer-
ical engines, such as MATLAB, now contain excellent sparse LU codes (MATLAB 7
uses umfpack 4.3 [18]).

One method that might seem relevant but is not is inverse iteration on an aug-
mented matrix

H =

[
0 A∗

A 0

]
.

The augmented matrix is symmetric (Hermitian), and its eigenvalues are the singular
values of A with both signs and additional m− n zero eigenvalues. The eigenvectors
of H associated with nonzero eigenvalues are concatenations of left and right singular
vectors of A. The difficulty is that the dimension of null(H) is larger by m − n
than the dimension of null(A). There is no straightforward way to compute a basis
from null(A) from a basis for null(H). Also, if m is significantly larger than n, then
H has a high-dimensional null space that is expensive to compute. This method is
appropriate for computing bases for singular subspaces of A associated with a singular
value σ 	 0, by inverse iteration on H − σI (for σ close to zero, the null space of H
causes inaccuracies in the computed singular vectors). MATLAB, for example, uses
the augmentation idea in its sparse SVD routine svds (which fails when applied to
the computation of the null space).

Finally, we mention that our ideas also apply to iterative Arnoldi/Lanczos-type
algorithms. When these algorithms are used to find the smallest eigenpairs, they
usually iterate on a representation of the inverse. This is the case, for example, in
arpack [36], an Arnoldi-based package (arpack is the code that MATLAB’s eigs
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calls). Therefore, as in other forms of inverse iteration, the cost of these algorithms
is likely to be dominated by the cost of factoring A. MATLAB’s eigs, for example,
calls exactly the same sparse LU factorization routine that our code calls. Also, if the
inversion scheme is unsymmetric, these methods can suffer from the same problems
that simple inverse iteration suffers from. This implies that applying Lanczos to the
implicitly symmetric inverse is likely to be more reliable than applying Arnoldi to an
unsymmetric inverse (this is possible when the application can use singular triplets
rather than eigenpairs, which is the case when computing the null space).

We summarize the discussion of Arnoldi/Lanczos algorithms as follows. First,
when applied to an unsymmetric inverse, they can be unreliable. We recommend that
a symmetric inverse be used when using these algorithms to compute the null space.
Second, our analysis in section 4 is also applicable when the null spaces of U , L′,
and possibly L1U are computed using a symmetric Lanczos procedure rather than
simultaneous inverse iteration.

7. Conclusions. We have shown how to utilize an LU factorization with partial
pivoting of a nonnormal and possibly rectangular matrix to compute its null space.
The algorithm is usually reliable and accurate. Furthermore, if the case of failure is ill
conditioning in L1, then it reports that it failed (rather than fail silently) and provides
a reliable upper bound on the nullity, possibly along with a basis for a subspace of
the null space.

Our new algorithm can also fail due to overflows or scaling problems, but this
is a property of inverse iterations in general, not of this particular variant. These
problems can be addressed by exploiting the capabilities of floating-point hardware,
but our implementation does not take these measures. This makes the algorithm
somewhat less reliable than rank-revealing factorizations, but it is also much cheaper.

Because our algorithm uses an LU factorization, it can be easily applied to large
sparse matrices, using one of several available factorization codes. Relying on an LU
rather than a QR factorization reduces the total cost, especially in the sparse case,
where a QR factorization can be substantially more expensive to compute.

Our method can use a Lanczos iteration, rather than simple inverse iteration (to
compute the null spaces of U , L1, and possibly L1U). The issue that our algorithm
addresses is not the iteration itself, but the representation of the inverse, and the
representations that we proposed are also applicable to Lanczos iterations.
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degree of ill conditioning in L1 that should cause the algorithm to iterate on L1U .
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Pete Stewart and to Chen Greif for extensive comments on early drafts of this paper.

REFERENCES

[1] C. J. Alpert and S.-Z. Yao, Spectral partitioning: The more eigenvectors, the better, in DAC
’95: Proceedings of the 32nd ACM/IEEE conference on Design automation, ACM Press,
New York, 1995, pp. 195–200.

[2] P. R. Amestoy and C. Puglisi, An unsymmetrized multifrontal LU factorization, SIAM J.
Matrix Anal. Appl., 24 (2002), pp. 553–569.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

462 CRAIG GOTSMAN AND SIVAN TOLEDO

[3] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Green-

baum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK
Users’ Guide, 2nd ed., SIAM, Philadelphia, 1994; also available online from http://www.
netlib.org.

[4] J. L. Barlow and U. B. Vemulapati, Rank detection methods for sparse matrices, SIAM J.
Matrix Anal. Appl., 13 (1992), pp. 1279–1297.

[5] J. L. Barlow and H. Zha, Growth in Gaussian elimination, orthogonal matrices, and the
2-norm, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 807–815.

[6] D. S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas with Applications to
Linear Systems Theory, Princeton University Press, Princeton, NJ, 2005.

[7] M. W. Berry, M. T. Heath, I. Kaneko, M. Lawo, R. J. Plemmons, and R. C. Ward, An
algorithm to compute a sparse basis of the null space, Numer. Math., 47 (1985), pp. 483–
504.

[8] C. H. Bischof, Incremental condition estimation, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 312–322.

[9] C. H. Bischof, J. G. Lewis, and D. J. Pierce, Incremental condition estimation for sparse
matrices, SIAM J. Matrix Anal. Appl., 11 (1990), pp. 644–659.
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A QR-BASED SOLVER FOR RANK STRUCTURED MATRICES∗

STEVEN DELVAUX† AND MARC VAN BAREL†

Abstract. In this paper we show how to compute the QR-factorization of a rank structured
matrix in an efficient way by means of the Givens-weight representation. We also show how the
QR-factorization can be used as a preprocessing step for the solution of linear systems. Provided
the representation is chosen in an appropriate manner, the complexity of the QR-factorization is
O((ar2 + brs+ cs2)n) operations, where n is the matrix size, r is some measure for the average rank
of the rank structure, s is some measure for the bandwidth of the unstructured matrix part around
the main diagonal, and a, b, c ∈ R are certain weighting parameters. The complexity of the solution
of the linear system with given QR-factorization is then only O((dr + es)n) operations for suitable
d, e ∈ R. The performance of this scheme will be demonstrated by some numerical experiments.

Key words. rank structured matrix, Givens-weight representation, QR-factorization, structure
inheritance, linear system solution

AMS subject classifications. 65F05, 65F25, 15A03

DOI. 10.1137/060654979

1. Introduction. In this paper we describe how for a rank structured ma-
trix with available Givens-weight representation, one can efficiently compute its QR-
factorization and subsequently use this factorization for the solution of linear systems.

A matrix will be called rank structured if the ranks of certain submatrices starting
from its bottom left corner, as well as the ranks of certain submatrices starting from
its top right corner, are small compared to the matrix size.

Although one can devise several ways to obtain a compact representation for a
rank structured matrix, there seem to be two classes of representations frequently
used in the literature, which we call uv-representations and block quasi-separable rep-
resentations, following the terminology of [3]. Let us give a brief survey.

The class of uv-representations was historically the first; see, e.g., [10]. We men-
tion that this type of representation is possible only under certain conditions.

A different and more flexible class of block quasi-separable representations was
introduced in the book of Dewilde and van der Veen [6]. Many algorithms for these
representations have since been developed in the literature. After their initial ap-
pearance in [6], they were then used by Eidelman and Gohberg, who also introduced
the name (block) “quasi-separable representation”; see, e.g., [8]. More recently, these
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matrices appeared under the name of “sequentially semiseparable representations” in
the work of Chandrasekaran et al.; see, e.g., [2].

In the paper [3], we introduced yet another type of representation for rank struc-
tured matrices, which we called the unitary-weight representation. This representa-
tion is a generalization of the so-called Givens-vector representation introduced in
[12]. We showed that our representation is theoretically equivalent with the block
quasi-separable representations in input or output normal form described in the book
[6]. Nevertheless, we note that we are not aware of any systematic treatment of the
use of the latter representations in the literature. We also showed how the unitary-
weight representation could be further fine-tuned to what we called the Givens-weight
representation.

In the present paper, we consider the problem of solving linear systems with
rank structured coefficient matrix. Many methods for doing this have already been
described in the literature. At the risk of making a too crude distinction, these
methods can be divided in at least three categories.

A first type of solvers is based on the Sherman–Morrison formula and its gener-
alizations; see, e.g., [7, section 7] and [9, section 4] for the case of uv-representable
matrices with low rank blocks lying just below the main diagonal.

A second type of solvers is based on LU-factorizations and Gaussian operations
without pivoting, a fact which is often revealed by the condition that the matrix must
be strongly nonsingular. See, e.g., [7, section 5] for the case of block quasi-separable
matrices with low rank blocks lying just below the main diagonal, and see [9, section
5] for an algorithm in the uv-representable case.

Finally, a third type of solver is based on QR- or URV-factorizations. Such
algorithms can be devised in a stable way and are therefore numerically superior to the
other classes of solvers. The first algorithm of this kind was the URV-decomposition
solver for block quasi-separable matrices, reported in a more general operator-theore-
tical context in the book [6, Chapter 7]. More efficient versions of this algorithm for
the case of finite matrices were then obtained in [8] using the QR-decomposition (see
also [11]), and more recently in [2] using a URV-decomposition in the case where the
low rank blocks are situated just below the main diagonal. The latter algorithm is a
generalization of earlier work on uv-representations originating from [1].

In the present paper, we follow the solution strategy of [8] by developing a linear
system solver that is based on a preliminary QR-factorization. The algorithm will
be expressed in terms of the Givens-weight representation. The computation of the
QR-factorization will require about O((ar2 + brs + cs2)n) operations, where n is the
matrix size, r is some measure for the average rank of the rank structure, s is some
measure for the bandwidth of the unstructured matrix part around the main diagonal,
and a, b, c ∈ R are certain weighting parameters. This QR-factorization can then be
used for the efficient solution of a linear system, the latter requiring only O((dr+es)n)
operations for suitable d, e ∈ R.

The algorithm in this paper will be able to capture any rank structure, irrespective
of the position of the low rank blocks with respect to (w.r.t.) each other and to the
main diagonal. The only restriction is that the low rank blocks in the block lower
triangular part may not overlap with those in the block upper triangular part.

The remainder of this paper is organized as follows. In section 2 we recall the
basic ideas of the Givens-weight representation from [3]. Section 3 considers the QR-
factorization of a rank structured matrix. This section contains both a theoretical part
concerning structure inheritance by the Q- and R-factors of the QR-factorization, as
well as a practical part concerning the algorithmic exploitation of these inheritance
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results. Section 4 deals with the linear system solver. Finally, section 5 reports on the
results of some numerical experiments.

2. Givens-weight representation. In this section we review the basic ideas of
the Givens-weight representation from [3].

First we define the class of rank structured matrices.
Definition 1 (see, e.g., [5]). We define a pure rank structure R on C

m×n as a
collection of so-called pure structure blocks R = {Bk}k. Each pure structure block Bk

is characterized as a 3-tuple

Bk = (ik, jk, rk),

where ik is the row index, jk the column index, rk the rank upper bound. We say a
matrix A ∈ C

m×n to satisfy the pure rank structure R if for each k

Rank A(ik : m, 1 : jk) ≤ rk.

Here we use the MATLAB notation A(ik : m, 1 : jk) to denote the submatrix of A
formed by all elements in the intersection of rows ik, . . . ,m and columns 1, . . . , jk.

The above definition uses the word pure to distinguish from the more general
rank structures which were handled in [5]. Since these more general structures do not
occur in the present paper, we will simplify notation by just dropping the word pure
everywhere from the notation.

Note that by definition all structure blocks can be identified as contiguous blocks
situated in the bottom left corner of the matrix. A pictorial illustration of a pure
rank structure with two structure blocks is shown in Figure 2.1.

Fig. 2.1. Example of a rank structure with two structure blocks B1 and B2. The notation
“Rk rk” denotes that the structure block is of rank at most rk, k = 1, 2.

In practice, it often happens that also the block upper triangular part is rank
structured, i.e., that also the matrix AT satisfies rank structure in the sense of Defi-
nition 1. By abuse of notation, we will indiscriminately use the term rank structure
also in this case.

We will assume in what follows that we are working with a rank structure R for
which there are no structure blocks that are “contained” in each other, i.e., for which
the structure blocks Bk can be ordered such that both their row and column indices ik
and jk increase in a strictly monotonic way. (Actually, these nested structure blocks
are not completely useless, in the sense that they lead to an additional sparsity pattern
in the Givens-weight representation, but we will not be concerned about this here.)

Now we will try to indicate the underlying ideas of the unitary-weight representa-
tion, following [3]. To this end we will take the structure in Figure 2.2 as a didactical
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Rk 1

Rk 2

Rk 1

Fig. 2.2. Example of a rank structure with three structure blocks, B1,B2, and B3. We will
use this example to explain the mechanism of the unitary-weight and Givens-weight representations
during the following paragraphs. From now on the surrounding matrix box, as in Figure 2.1, will
not be shown anymore.

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

=

Rk 1

Rk 1

Rk 2 Rk 2

Rk 1

Fig. 2.3. We apply a unitary transformation to transform the bottom two rows of the structure
into zeros. This transformation acts only on the columns on the left of the vertical line, which is
indicated in boldface in the left part of the figure; this line borders the action radius of the unitary
transformation. Having performed this unitary transformation, the elements indicated on a gray
background in the right part of the figure are stored; they are called weights.

example. First, it may be noted that this figure does not show the surrounding ma-
trix box anymore: This reflects the fact that only the area spanned by the structure
blocks will be relevant for the representation, and that the “outside world” will be
inaccessible.

In what follows, we will often work with elementary unitary operations. These
are defined as unitary matrices having a block diagonal form U = Ia ⊕Q⊕ Ib, where
Ia, Ib denote identity matrices of suitable sizes a, b. When such a unitary operation U
acts on the rows of a given matrix, we will represent it in a pictorial way by a vertical
line segment, placed on the position of the rows on which it acts. (Sometimes we will
actually denote it as a vertical arrow, instead of a line segment, as an auxiliary means
for visualizing the algorithm flow; see further.)

The unitary-weight representation is obtained by reducing the structure blocks
into blocks of zeros by the use of unitary row transformations. First we apply an
(elementary) unitary transformation to transform the bottom Rk 1 block into a block
of zeros, with one row less; see Figure 2.3.

Note that this unitary transformation acts only on the columns on the left of the
vertical line, which is indicated in boldface in the figure. We say that this line borders
the action radius of the unitary transformation. Thus the action radius of the current
unitary transformation is equal to 9.

Having applied this operation, note that in columns 7, 8, and 9 we have already
reached the “top” of the structure. Therefore, this is now the right moment to consider
the top elements of these columns, and to store them. These elements will be called
weights, and they are visualized on a gray background in the right part of Figure 2.3.
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Fig. 2.4. We apply the next unitary transformation, and store the new block of weights.
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Fig. 2.5. We apply the final unitary transformation, and store the new block of weights.

From now on we consider columns 7, 8, and 9 as finished, and we restrict our
perspective to the previous columns. We can then apply a unitary transformation
to transform the middle Rk 2 block into a block of zeros, with two rows less; see
Figure 2.4.

Note that again this unitary operation acts only on the columns on the left of the
vertical line indicated in boldface in the figure. Thus the action radius of the current
unitary transformation is equal to 6.

Having applied this operation, note that also in columns 4, 5, and 6 we have
reached the top of the structure. Therefore, this is now the right moment to consider
the top elements of these columns, and to store them. This yields us a second block
of weights, which is again visualized on a gray background in Figure 2.4.

From now on we drop columns 4, 5, and 6 from our perspective. We can then
apply a unitary transformation to transform the top Rk 1 block into a block of zeros,
with one row less; see Figure 2.5. We conclude by storing the final block of weights.

The weights can now be collected into a single matrix, which we call the weight
matrix. Together with the computed unitary transformations, this matrix yields us
the complete unitary-weight representation of the given matrix; see Figure 2.6.

Of course, to be a useful representation, the unitary-weight representation should
allow the possibility of restoring the original matrix from which we started. This can
be done by reversing the above steps. This reversal process is called spreading out
the unitary-weight representation and is described in [3].

Now we can come to the general definition of unitary-weight representations.
Definition 2 (index sets). Let R = {Bk}Kk=1 be a rank structure, where the

structure blocks are ordered such that i1 < · · · < iK and j1 < · · · < jK . Then
we define index sets Ik = {ik, . . . , ik+1 − 1}, Ik,top = {ik, . . . , ik + rk − 1}, and
Jk = {jk−1 +1, . . . , jk} for k = 1, . . . ,K. Here the extremal values of row and column
indices are defined as iK+1 := N + 1 and j0 := 0, and we also define rK+1 := 0.

Definition 3 (unitary-weight representation). Let A ∈ C
m×n be a matrix satis-

fying a rank structure R = {Bk}Kk=1, where the structure blocks are ordered such that
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Fig. 2.6. Schematic picture of the unitary-weight representation for the rank structure in
Figure 2.2.

Rk 3

Rk 3

Rk 2

(a) (b)

Fig. 2.7. For the rank structure in the left picture, the right figure shows a schematic picture
of the unitary-weight representation.

i1 < · · · < iK and j1 < · · · < jK . A unitary-weight representation of the matrix A
according to the structure R consists of a pair ({Uk}Kk=1,W ). Each Uk is a unitary

transformation, acting on the rows and columns indexed by Ik ∪ Ik+1,top and
⋃k

l=1 Jl,
respectively, and intended to create zeros in all these rows, except those of Ik,top. These
unitary transformations Uk should be applied subsequently for k = K,K − 1, . . . , 1.
On the other hand, the matrix W ∈ C

m×n is called the weight matrix, and it contains
all the blocks of elements obtained in the rows and columns indexed by Ik,top and Jk,
respectively, at the moment just after applying Uk. See Figure 2.7.

We can now specify from unitary-weight to Givens-weight representations. In
what follows, we will use the term Givens transformation to denote an elementary
unitary operation which differs from the identity matrix only in two subsequent rows
and columns i and i + 1. This transformation will sometimes be denoted as Gi,i+1,
and the index i will be called the row index of the Givens transformation. Similarly to
our notation for elementary unitary operations, we will graphically denote the Givens
transformation Gi,i+1 by means of a vertical line segment, with the height at which
this line segment is standing in the figure determined by the row index i (see further).

Rather than individual Givens transformations, it will be useful to work with
Givens arrows: these are defined as products of the form Gi+k,i+k+1 . . . Gi,i+1 for some
k ≥ 0. Graphically, this can be considered as a collection of Givens transformations
where each Givens transformation is situated precisely one position below the previous
one; see Figure 2.8.

The number of Givens transformations of which a Givens arrow consists will be
called the width of the Givens arrow. Moreover, we define the head and the tail of the
Givens arrow to be, respectively, the largest and the smallest row index of the Givens
transformations of which the Givens arrow consists. These notions have an obvious
graphical interpretation.
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=

Fig. 2.8. A Givens arrow Gi+2,i+3Gi+1,i+2Gi,i+1 consisting of 3 Givens transformations.
Concerning this figure, we remind the reader that we consider each Givens transformation as “act-
ing” on the rows of an (invisible) matrix standing on the right of it, and hence that the Givens
transformations in the figure should be evaluated from right to left, hereby explaining the downward
direction of the Givens arrow.

== =

Fig. 2.9. Suppose that the current structure block is Rk 3, and that the corresponding unitary
transformation Uk spans over 6 rows. Then we assume for this unitary transformation a decompo-
sition into a product of Givens arrows of width at most 3.

Definition 4 (Givens-weight representation [3]). Let A ∈ C
m×n be a matrix

satisfying a pure rank structure R = {Bk}, where the structure blocks are ordered
such that i1 < · · · < iK and j1 < · · · < jK . A Givens-weight representation of
A according to the structure R is a unitary-weight representation where addition-
ally each unitary component Uk is decomposed into a product of Givens arrows, such
that

• each of the Givens arrows has width at most rk;
• both the heads and the tails of the subsequent Givens arrows of each Uk are

monotonically proceeding upwards. For the tails, we assume that this mono-
tonicity is strict.

See Figure 2.9.
Let us comment on Figure 2.9. The left part of the figure denotes a unitary

component Uk of the Givens-weight representation. The middle and rightmost part
of the figure show then the required decomposition of this unitary component Uk into
a product of Givens transformations. In particular, the equivalence between the two
rightmost pictures in Figure 2.9 follows by repeatedly inserting Figure 2.8. On the
other hand, the equivalence between the two middle pictures in Figure 2.9 is purely
aesthetic: These are two different ways for visualizing the same product of Givens
transformations.

We should still explain why the assumption is made that each Givens arrow in
the decomposition of Uk has width at most rk. To this end, recall that the unitary
transformation Uk serves to create zeros in a certain Rk(rk) submatrix, except for its
top rk rows. This effect can always be realized by a succession of Givens arrows as
prescribed; see [3, section 3] for more details.

Note that by decomposing each unitary transformation Uk as specified in Def-
inition 4, we formally obtain a decomposition into a product of too many Givens
transformations, in the sense that the beginning and ending Givens transformations
of two subsequent unitary transformations Uk may overlap. In relation to this, it was
shown in [3] that one can always find a representation for the rank structured part
containing only O(rn) parameters, where n is the matrix size and r is some measure
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for the average rank of the rank structure, and this applies to any distribution of
structure blocks. However, since the description of the algorithms in this paper will
remain exactly the same for all these cases, we will restrict ourselves to a full Givens
distribution as in Figure 2.9, for reasons of clarity. (The more efficient Givens-weight
representations in [3] follow then as a special case by taking some of these Givens
transformations equal to the identity matrix.)

Finally, we note that the above results for obtaining a Givens-weight represen-
tation can be trivially extended to obtain a Givens-weight representation for the
structured upper triangular part of the matrix A. To this end, it suffices to apply the
above results with A replaced by AT . In this way, one will obtain a representation
based on unitary column operations, rather than unitary row operations.

Suppose then that we have Givens-weight representations for the structured lower
and upper triangular parts of the matrix A, respectively. We can then “glue” the
weight matrices of these two representations together. This glued matrix will again
be called the weight matrix W . An example is shown in Figure 3.6; note that the
structured lower and upper triangular part are represented here by means of a row-
based and a column-based Givens-weight representation, respectively. Note also that
this figure shows a few real-size elements around the main diagonal, corresponding
to the unstructured matrix part. These elements are distinguished from the actual
weights by putting them on a white instead of a gray background in Figure 3.6.

3. QR-factorization. In this section we describe an algorithm that performs
the QR-factorization of a rank structured matrix, assuming that there is available a
Givens-weight representation for this matrix. The output of the algorithm consists of
the Q- and R-factors of the QR-factorization, where the Q-factor is decomposed as a
product of elementary unitary transformations, and where the R-factor has the form
of a Givens-weight representation.

Before describing the algorithm, we will start with some theory concerning the
structure which we may hope to exploit.

3.1. Some theory. In this subsection we recall and provide some theoreti-
cal results concerning the structure inheritance by the Q- and R-factors of a QR-
factorization A = QR, where A is assumed to be a rank structured matrix.

The inheritance of structure by the Q-factor in terms of Givens transformations
was handled in [4] (see also [6, 8] for related results). We considered there the ma-
trix1 QH as a product of Givens transformations “acting” on the matrix A, hereby
transforming it into an upper triangular matrix R = QHA. This process proceeds in
two phases.

For the first phase, we recall from section 2 that for a rank structured matrix A,
a sequence of elementary unitary operations can be applied to transform the given
Rk rk structure blocks of A into blocks of zeros, except for their top rk rows. This
process proceeds from the bottom to the top of the matrix. We will call this the
preparative phase.

For the second phase, we note that the resulting matrix A at the end of the
preparative phase will be almost zero in its lower triangular part, except for a few
nonzero elements around the main diagonal. These remaining nonzero elements can
then be annihilated by a sequence of upward-pointing Givens sequences, proceeding
from the top to the bottom of the matrix. We will call this the residual phase.

1Throughout this paper, we use the notation QH to denote the Hermitian transpose of Q, i.e.,
the complex conjugate transpose.
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Q = 
H

Rk r

Fig. 3.1. For the structure block B shown on the right, the left picture shows the corresponding
sparsity pattern of the matrix QH w.r.t. this structure block, transforming it into an upper triangular
matrix QHA = R. The picture shows a decomposition into preparative (upward) and residual
(downward) unitary transformations.

We note that the preparative and residual phase correspond to the so-called inner-
coprime and inner-outer factorization in [8], respectively.

We now want to investigate the inheritance of structure by the upper triangular
matrix R = QHA obtained at the end of the residual phase. It turns out that we have
to exclude some pathological cases.

Definition 5 (structure implying rank deficiency). Let B = (i, j, r) be a structure
block as in Definition 1, and denote by nB = max{0, j − i + 1} the number of its
elements lying on the main diagonal. Then B is said to imply rank deficiency if
nB > r. Moreover, a pure rank structure R = {Bk}k is said to imply rank deficiency
if any of its structure blocks does.

It can be shown that a structure block implying rank deficiency is equivalent
with the structure block itself, causing a linear dependency between the columns of
the underlying matrix. In particular, in the case of square matrices the definition
reduces to that of structure implying singularity as defined in [4]; but we will use
Definition 5 for any values of m and n.

In what follows, we will assume that the structure does not imply rank deficiency.
This is not really a restriction, since for a structure block implying rank deficiency,
one can just remove a few rows or columns from the structure block until it does not
imply rank deficiency anymore.

Definition 6 (sparsity pattern). Let A ∈ C
m×n be a matrix satisfying a struc-

ture block B = (i, j, r), not implying rank deficiency. We say a QR-factorization
A = QR satisfies the sparsity pattern induced by the structure block B if QH can be
factorized as QH = QH

3 QH
2 QH

1 , with
• QH

1 acting on rows i, . . . ,m (serving to transform B into a block of zeros,
except for its top r rows);

• QH
2 acting on rows 1, . . . , i + r − 1 (serving to create zeros above B);

• QH
3 acting on rows j + 1, . . . ,m (serving to create zeros on the right of B).

See Figure 3.1.
Note that the above definition makes sense since if A fulfills a structure block B,

then A admits a QR-factorization satisfying the sparsity pattern induced by B.
We should stress that the above definition was formulated from the point of

view of a single structure block. In practical situations, there will probably be more
than one structure block, causing each of the unitary components QH

i , i = 1, 2, 3,
to have an additional decomposition into a sparse product of elementary unitary
transformations. To stress this point, we indicated in Figure 3.1 the relation with the
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J1 J2

Rk s

J1

J2

Rk r+s

R  =A  =
Rk r

Fig. 3.2. The figure shows the inheritance of structure by the R-factor for a general example.
We note that the index sets I1 and I2 must be complementary to each other.

J2 J2

Rk r
Rk s R  =

Rk r+s

A  =

J

J

1

1

Fig. 3.3. The figure shows the practical form in which we will exploit the inheritance of structure
by the R-factor of Figure 3.2. In particular, it is assumed in this figure and in what follows that the
index set J2 takes the form {j2, . . . , n} for certain j2, since this is the practical form in which the
inheritance result will be exploited.

preparative and residual unitary transformations, corresponding to the upward- and
downward-pointing arrows, respectively.

Since Definition 6 was formulated from the point of view of a single structure
block, it does not reflect the complete sparsity pattern of the preparative and residual
unitary operations. Nevertheless, it will be sufficiently strong for establishing the
following result, which is a generalization of earlier results in the literature for some
very special types of rank structures [8, 11].

Theorem 7 (inheritance of structure by the R-factor). Let A ∈ C
m×n be a

matrix having two low rank submatrices A(I1, J1) = Rk r and A(I2, J2) = Rk s,
where

• I1 and I2 form a partition of the index set {1, 2, . . . ,m};
• J1 = {1, 2, . . . , j1} for certain j1;
• J2 is arbitrary.

Then for the QR-factorization A = QR it holds that R(J1, J2) = Rk(r+s) (see Figure
3.2) at least, provided A is square nonsingular.

In case A is a general rectangular matrix, the above property remains valid, pro-
vided the following holds: Assume that P is a row permutation bringing the index
sets I1 and I2 into the forms {1, 2, . . . , i} and {i+ 1, i+ 2, . . . ,m} for certain i, as in
Figure 3.3. Note that this permutation turns the given Rk r block into a “real” struc-
ture block situated in the bottom left matrix corner. Then the above theorem remains
valid, provided the structure block B does not imply rank deficiency, and provided the
QR-factorization PA = PQR satisfies the sparsity pattern induced by B in the sense
of Definition 6.
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Proof. First consider the case where A is nonsingular. First, we claim that the
Q-factor must “inherit” each of the Rk r low rank blocks situated entirely at the left
border of A. Indeed, this is evident by using the equation Q = AR−1, where the matrix
R−1 takes linear combinations of the columns of A, hereby only involving “previous”
columns, and hence not destroying such low rank blocks (see also [5]). This establishes
the inheritance of structure by the Q-factor, i.e., Q(I1, J1) = Rk r. It follows that

R(J1, J2) = QH(J1, {1, . . . ,m})A({1, . . . ,m}, J2)

= QH(J1, I1)A(I1, J2) + QH(J1, I2)A(I2, J2)

= Rk r + Rk s

= Rk(r + s),

where the first transition follows from the QR-equation R = QHA, where the second
transition follows from our assumption that I1 and I2 form a partition of {1, . . . ,m},
and where the third transition uses the fact that Q(I1, J1) = Rk r and A(I2, J2) = Rk s.

Let us now consider the case where A is a general rectangular matrix. From
our assumption that QH satisfies the sparsity pattern induced by the Rk r structure
block, it can be shown that the equation Q(I1, J1) = Rk r remains valid in this case
(see also [4]), and hence one could use exactly the same proof as above. Alternatively,
one could proceed by a direct argument; see Figure 3.4.

One may ask where in Figure 3.4 the condition is used that the rank structure
does not imply rank deficiency. This is done in Figure 3.4(b), where this condition
guarantees that the created block of zeros is situated entirely in the strictly lower
triangular part of the matrix. If this were not the case, then the index set indicated
on the extreme left of Figure 3.4(c) would be a strict subset J̃1 ⊂ J1, so that Figure
3.4(d) would only lead to the weaker conclusion R(J̃1, J2) = Rk(r + s).

For the remainder of this section, we turn to the practical exploitation of the
above rank inheritance results for the Q- and R-factors of the QR-factorization.

3.2. Algorithm for the preparative phase. In the next two subsections,
we will work under the condition that A is a rank structured matrix for which a
Givens-weight representation is available. More precisely, it will be assumed that
the structured lower triangular part of A is represented by a row -based Givens-weight
representation, while the structured upper triangular part is represented by a column-
based Givens-weight representation; cf. section 2. Moreover, the structure blocks of
the block lower triangular part are not allowed to intersect those of the block upper
triangular part.

Given these input conditions, we will first describe an algorithm for the first
phase of the QR-factorization, the so-called preparative phase. We will illustrate the
algorithm for a general type of rank structure, a slice of which is shown in Figure 3.5.

The corresponding Givens-weight representation is then shown in Figure 3.6.
Note that the subsequent unitary operations Uk, k = K, . . . , 1, which will serve

to compress the structure blocks in the lower triangular part are already available in
the Givens-weight representation, precisely by the concept of Givens-weight represen-
tation. Therefore, the algorithm will suffice with peeling off these operations from
the representation, in a sense to be explained further.

During the algorithm, we are faced with the following problem: The Givens-weight
representation is by definition an internal representation, based on a QR-factorization,
where the weights were stored each time just at the moment when they would go
beyond the top border of the structure (section 2). The problem is now that we want
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J2

Rk r
Rk s

J1

(a) Apply the first pre-
parative unitary trans-
formations.

J1 J2

Rk 0
Rk r+s

(b) Apply the final prepar-
ative and the first residual
unitary transformations.

J1

J1

J2

Rk r+s

Rk 0

(c) Apply the final
residual unitary trans-
formations.

J1

J2

Rk r+sRk 0

(d) We obtain now the
R-factor.

Fig. 3.4. The figure shows the inheritance of structure by the R-factor of Figure 3.3 using a
direct argument in terms of the sparsity pattern of the matrix QH .

Rk 2

Rk 2

Rk 2

Rk 2

Rk 2

Rk 3

Fig. 3.5. Starting rank structure.

to apply the unitary transformations Uk, k = K, . . . , 1, to the whole matrix, hereby
also updating the representation in the upper triangular part.

To update the structure in the upper triangular part of the matrix, the algorithm
makes use of the general techniques for updating the Givens-weight representation
under the influence of elementary unitary transformations described in [3] in the form
of what we called there a generalized swapping process. The process is shown in
Figure 3.7.
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Fig. 3.6. Starting Givens-weight representation for the rank structure in Figure 3.5. For clarity
of the figure, the Givens transformations are shown grouped together as unitary operations.

(a) Givens-weight representa-
tion after having reduced the
Rk 3 block into a block of ze-
ros, except for its top 3 rows.

(b) Apply the next Givens
arrow. We apply it only to
columns 5, 6, . . . , since the
result in columns 1, . . . , 4 is
already available.

(c) Apply the second Givens
arrow.

(d) Apply the third Givens
arrow.

Fig. 3.7. Preparative phase (a)–(d).

Let us comment on this figure. Figure 3.7(a) shows the starting Givens-weight
representation. We assume here that the bottommost structure block Bk+1 (say) has
already been transformed into its zeroed form. This has resulted in the fact that the
corresponding unitary compression operation Uk+1, corresponding to the thin upward
pointing arrow acting on rows 8, 9, 10, 11 in Figure 3.6, has already been peeled off,
i.e., it has disappeared from the representation. Correspondingly, the weight block
in rows 8, 9, 10 and columns 5, 6, 7 of the weight matrix in Figure 3.7(a) has turned
from gray into white. The bottom right elements in Figure 3.7(a) are assumed to be
disturbances coming from previous operations.
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(e) Enlarge the action ra-
dius of the indicated unitary
component Vl,1 from 6 to 8.

(f) Apply a unitary opera-
tion Vl,2 to bring the weights
as much as possible to the
left, and update Vl,1 :=
Vl,1Vl,2.

(g) Apply the fourth Givens
arrow.

(h) The current Rk 2 struc-
ture block has now been
completely reduced into a
block of zeros, except for its
top 2 rows. In the figure, the
next unitary operation is al-
ready shown as a decompo-
sition of Givens arrows.

Fig. 3.7. Preparative phase (e)–(h).

We are then at the point of applying the next unitary compression operation Uk.
Figure 3.7(a) shows this unitary operation Uk in the form of an explicit decomposition
as a product of four downward-pointing Givens arrows.

Figures 3.7(b), 3.7(c), and 3.7(d) show the application of the Givens transforma-
tions belonging to the first three Givens arrows of the unitary compression operation
Uk. Since part of their application is already available, by the concept of Givens-
weight representation, these Givens arrows should be applied only to the columns lying
strictly on the right of their current action radius, in this case columns 5, 6, . . . . These
columns are indicated by the range of the bold horizontal arrow in Figures 3.7(b),
3.7(c), and 3.7(d).

In these figures, we used the following graphical code. The “active” Givens arrow
which is currently being applied to the rows or columns of the matrix is always shown
in boldface. This may be both a Givens arrow belonging already to the Givens-weight
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representation (as in the present case) or a new Givens arrow or unitary operation
coming from outside (see further). On the other hand, Givens arrows or unitary
operations belonging to the Givens-weight representation, but which are not active in
the current step of the algorithm, are always represented by thin arrows.

For example, the operation in Figure 3.7(b) can be expressed in MATLAB nota-
tion as

W ([9 : 10], [5 : 11]) := GW ([9 : 10], [5 : 11]),

where G denotes the applied Givens arrow (consisting in this case only of a single
Givens transformation), and where W denotes the weight matrix of the Givens-weight
representation. Similar expressions hold for the operations in Figures 3.7(c) and
3.7(d).

We should still explain why it is valid to apply the row operations directly to
the weights of the upper triangular representation, as in columns 9, 10, 11 of Figures
3.7(b), 3.7(c), and 3.7(d). To this end, we recall that the weights contain a kind of
compressed information about the matrix, and that in order to obtain these elements
in full form, the weights should first be spread out by the unitary column operations
of the Givens-weight representation of the upper triangular part. But clearly, by the
associativity of matrix multiplication, it does not matter whether we first spread out
the weights by the use of these column operations, or instead first apply the disturbing
row operations. This shows that, indeed, it is correct to apply the row operations
directly to the weights.

We are now at the point of applying also the fourth Givens arrow of Uk to the
rows. But the application of this fourth Givens arrow would lead to a mix of real-size
elements and weights in the submatrix W ([6 : 8], [7 : 8]), which is definitely not correct.

The solution to this problem consists in “enlarging” the column representation.
This means that we bring the two rows lying just below the new structure block Bl,
whose bottom leftmost element has coordinates (6, 7) in Figure 3.7(d), “into” the
column representation. Practically, this is achieved by enlarging the action radius of
the corresponding unitary column operation of the Givens-weight representation of
the upper triangular part (let us call this operation Vl,1); i.e., we should apply Vl,1 to
all rows between its present and its new action radius, in the present case rows 7, 8.
See Figure 3.7(e).

The operation in Figure 3.7(e) can be expressed in MATLAB notation as

W ([7 : 8], [7 : 10]) := W ([7 : 8], [7 : 10])Vl,1.

Having enlarged the action radius of Vl,1, it is now safe to apply the fourth Givens
arrow of Uk to the rows. Before doing this, however, we note that applying all these
row operations would ultimately lead to a complete fill-in in the upper triangular part
of the weight matrix. Since we want to minimize this fill-in as far as possible, we first
apply an auxiliary unitary compression transformation Vl,2 to the columns, in order
to bring the newly introduced weights as far as possible to the left. See Figure 3.7(f).

The operation in Figure 3.7(f) can be expressed in MATLAB notation as

W ([7 : 8], [9 : 11]) := W ([7 : 8], [9 : 11])Vl,2,

where Vl,2 is chosen such that W ([7 : 8], [9 : 11])Vl,2 takes a lower triangular form.
Note that this auxiliary operation Vl,2 is really new in the sense that it was not

present yet in the original Givens-weight representation. Moreover, we apply it only
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Rk 2

(a) Apply the first
Givens arrows. This
corresponds to Figures
3.7(b), 3.7(c), and 3.7(d).

Rk 2

Rk 4

(b) Add two new rows to the
structure block. This corre-
sponds to Figure 3.7(e).

Rk 4

(c) Apply the next Givens
arrow and unitary operation.
This corresponds to Figure
3.7(g).

Fig. 3.8. Mechanism underlying the structure block movement in the preparative phase.

Fig. 3.9. Givens-weight representation after the complete preparative phase.

to the upper triangular rank structured part of the matrix, in the present case rows 7,
8. This means that Vl,2 is an “internal” operation, which should be concatenated to
the Givens-weight representation of the upper triangular part; i.e., we should update
the unitary component as Vl := Vl,1Vl,2.

Having done all these preparations, we can finally apply the fourth Givens arrow
of Uk to the rows; see Figure 3.7(g). We have then completely finished the Givens
arrows belonging to the current unitary transformation Uk. Note that the correspond-
ing weight block, lying on the intersection of rows 6, 7 and columns 3, 4 of Figure
3.7(h), has turned from gray into white: This indicates the fact that these elements
no longer contain any “encoded” information, but that they contain precisely the
real-size elements standing there at this particular moment of the algorithm. The
reason underlying this is nothing but the concept of Givens-weight representation.

At this moment, we are at the point of embarking the Givens arrows belonging
to the next unitary operation Uk−1. Because the situation in Figure 3.7(h) is similar
to the one we started from in Figure 3.7(b), this process is not shown.

Figure 3.8 summarizes the explained mechanism of the preparative phase in terms
of the structure blocks in the structured upper triangular part. Note that we use here
the same graphical code as in the previous figures; i.e., in each step, only the boldfaced
vertical line segments are actually applied to the rows of the matrix.

Figure 3.9 shows the final situation for the example in Figure 3.7 at the end of
the complete preparative phase. Note that the column representation has “grown,”
corresponding to the fact that the ranks in the upper triangular part have increased,
which is consistent with Figure 3.8.
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It can also be seen from this figure that the representation for the block lower
triangular part has completely been peeled off, i.e., it has disappeared. This under-
lies the fact that the structure blocks in the block lower triangular part have been
transformed into their zeroed form.

In order to make the matrix completely upper triangular, we should then still
remove a few subdiagonals. The process of doing this will be the subject of the
next subsection.

3.3. Algorithm for the residual phase. In this subsection, we show that by
using the Givens-weight representation, the second phase of the QR-factorization can
also be performed in an efficient way, the so-called residual phase.

We will explain the algorithm for the Givens-weight representation shown in Fig-
ure 3.9.

The application of the residual phase makes use of the general techniques for up-
dating the Givens-weight representation under the influence of Givens transformations
described in [3] in the form of what we called there a generalized regression process.
This process is shown in Figure 3.10.

Let us comment on Figure 3.10. The basic flow of the algorithm is determined
by applying a sequence of upward-pointing Givens arrows making the subsequent
columns k upper triangular, k = 1, . . . , n− 1.

Figure 3.10(a) shows the application of the Givens arrow G1,2G2,3G3,4 making
the first column upper triangular.

The action of Figure 3.10(a) can be expressed in MATLAB notation as

W ([1 : 4], [1 : 8]) = G1,2G2,3G3,4W ([1 : 4], [1 : 8]),

where the Givens transformations Gi,i+1, i = 3, 2, 1, are chosen such that the column
vector G1,2G2,3G3,4W ([1 : 4], 1) is brought in upper triangular form.

Figure 3.10(b) shows the application of the Givens arrow making the second
column upper triangular.

We would then like to apply the Givens arrow making the third column upper
triangular. But we should be careful that there is no mixture of real-size elements and
weights in the weight matrix during this process. Therefore, before making the third
column upper triangular, we first have to spread out ; i.e., we first have to regress the
action radius of the unitary component Vl = Vl,1Vl,2 highlighted in Figure 3.10(c).
We regress here from row 4 down to row 2, since we are intending to apply in the
next step an operation acting on rows 3, . . . , 7.

The action of Figure 3.10(c) can be expressed in MATLAB notation as

W ([3 : 4], [5 : 8]) = W ([3 : 4], [5 : 8])V H
l .

Having done this regression operation, the next two columns are made upper
triangular in Figures 3.10(d) and 3.10(e).

At this moment, we are at the point of embarking the following columns and
making them upper triangular. Because this problem is similar to the one from which
we started in Figure 3.10(a), this process is not shown.

Figure 3.11 summarizes the explained mechanism of the residual phase in terms
of the structure blocks in the upper triangular part.

Figure 3.12 shows the final situation at the end of the complete residual phase.
Note that the column representation has “lost” some terrain in the sense that it has
regressed to the direction of the top right corner of the matrix. This is consistent
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(a) Bring the first
column in upper
triangular form.

(b) Bring the second
column in upper tri-
angular form.

(c) Regress the ac-
tion radius of the
indicated unitary
operation Vl =
Vl,1Vl,2 from row
4 to row 2.

(d) Bring the third
column in upper
triangular form.

(e) Bring the fourth
column in upper tri-
angular form.

(f) The first four
columns are now
upper triangular.

Fig. 3.10. Residual phase.

with the mechanism illustrated in Figure 3.11. On the other hand, note that the
unitary transformations involved in the Givens-weight representation for the block
upper triangular part have remained exactly the same. This underlies the fact that
the ranks and the induced column dependencies have been left unchanged under the
regression process.

For a global overview, the reader could also have a second look at the original
algorithm flow which was sketched in Figure 3.4.

Let us note that the above procedure for the residual phase guarantees that the
structure blocks of R are all lying in the strictly upper triangular part of this matrix.
In a certain sense, this may seem to conflict with Figure 3.3, which predicts that in
certain cases, the structure blocks of R could reach beyond the main diagonal. In
fact, the above algorithm will have performed an implicit truncation of structure in
this case. But this did not occur for the example which we have chosen.

Summarizing, by the algorithm of the current section, we have obtained a QR-
factorization A = QR, where the Q-factor is decomposed as a product of Givens
transformations, and where the R-factor is represented by a column-based Givens-
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Rk 4

(a) Make the first
columns upper trian-
gular. This corresponds
to Figures 3.10(a) and
3.10(b).

Rk 4

Rk 4

(b) Remove two
rows from the struc-
ture block. This cor-
responds to Figure
3.10(c).

Rk 4

(c) Make the next
columns upper triangu-
lar. This corresponds
to Figures 3.10(d) and
3.10(e).

Fig. 3.11. Mechanism underlying the structure block movement in the residual phase.

Fig. 3.12. Givens-weight representation after the complete residual phase. The reader should
check that the underlying structure blocks correspond with the predictions in Theorem 7.

weight representation. In the next section, we will show how this QR-factorization
can be used for the solution of a linear system.

Remark 8 (algorithm complexity). For the types of rank structures occurring in
practice, the complexity of the preparative and residual phase can be estimated as
follows. Assume that the starting Givens-weight representation was efficient in the
sense that it consists of a number of O(rn) Givens transformations, where n is the
matrix size and r is some measure for the average rank of the rank structure. Denote
with s some measure for the bandwidth of the unstructured matrix part around the
main diagonal. Then in both the preparative and residual phase, we apply a number
of O(rn) + O(sn) Givens transformations to the rows of the matrix A. Moreover,
each of these Givens transformations acts on a number of approximately O(r) +O(s)
elements of the weight matrix. It follows that the global algorithm complexity for the
QR-factorization equals O((ar2 +brs+cs2)n) operations, where a, b, c ∈ R are certain
weighting parameters.

4. Solution of a linear system. In this section we shall use the QR-factorization
to solve a linear system Ax = b. We do this by rewriting the linear system in the
form

(4.1) Rx = QHb =: b̃,

which can then be solved by backward substitution; see Figure 4.1.
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(a) Starting situation. We
assume that rows 6, . . . , 11
have already been solved
by backward substitution.

(b) Compute the 5th com-
ponent of x by backward
substitution.

(c) Apply available unitary
operations Vl to compress
the matrix R. (No ac-
tual operations have to be
performed.) Multiply (a
working copy of) the vec-
tor x with the inverse op-
erations.

(d) We can now go on to
compute the 4th compo-
nent of x by backward sub-
stitution.

Fig. 4.1. Direct solution of a linear system.

Let us comment on this figure. The basic flow of the algorithm is determined
by solving the subsequent rows of the linear system (4.1) by backward substitution,
hereby obtaining the subsequent components of the indeterminate vector x.

Figure 4.1(a) shows the starting situation. We assume here that rows 11, . . . , 6 of
the linear system (4.1) have already been solved by backward substitution, thereby
obtaining the corresponding components x11, . . . , x6 of the vector x. In the right part
of the figure, we use a column of vertical crosses to denote these already computed
components of x. Note also that the elements in rows 11, . . . , 6 of the weight matrix
have been dropped from the figure. We do this as an intuitive means of indicating
that these elements will no longer be needed during the rest of the algorithm.

We can now solve the 5th row of the linear system (4.1), hereby obtaining the
component x5. This is indicated pictorially in Figure 4.1(b). Note that the arrow
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in this figure serves as an intuitive means to denote that the 5th component of x is
computed from the information in the elements in the 5th row of the weight matrix,
hereby explaining the rightward direction of this arrow.

Using MATLAB notation, the action in Figure 4.1(b) can be expressed as

x(5) :=
1

W (5, 5)
(b̃(5) −W (5, [6 : 11])x([6 : 11])).

Having performed the action in Figure 4.1(b), the elements in the 5th row of the
weight matrix will no longer be needed, and so we can drop them from the figure. We
would then like to compute the next component x4. But then we are going to enter
a new structure block Bl in the upper triangular part of the weight matrix. Since we
would like to have the coefficient matrix of our linear system as sparse as possible,
this is now a good moment to multiply the upper triangular matrix R by means of
the available unitary column operation Vl = Vl,1Vl,2 associated to this structure block
Bl, hereby compressing the structure of this matrix. Although this compression may
sound rather expensive, from the computational point of view, nothing has to be done
since the effect of this unitary operation Vl is already available by the concept of the
Givens-weight representation. (In principle, we should still apply Vl to the rows below
its current action radius, in the present case to the elements in rows 5, 6, . . . . But this
is not necessary since the elements in rows 5, 6, . . . have no function anymore during
the rest of the algorithm.)

In other words, the compression operation of the matrix R shown in the left part
of Figure 4.1(c) serves only for understanding the algorithm, but does not require any
actual operation.

We have now modified the linear system (4.1) as

Rx = (RVl)(V
−1
l x) = b̃.

Thus the indeterminate vector x should be multiplied with the inverse of the unitary
operation Vl. (Of course, in order not to overwrite the already computed values of x,
one should use a working copy x̃ of the vector x on which to perform these operations!)
The latter operations are indicated by the fat vertical arrows shown in the right part
of Figure 4.1(c).

Using MATLAB notation, the action in Figure 4.1(c) can be expressed as

x([7 : 11]) = V H
l x([7 : 11]),

where, as we already remarked, the already computed components of x should first
be stored in a safe place to avoid losing them.

We can then go on to compute the next two components x4, x3 of the indetermi-
nate vector by backward substitution. Since the situation in Figure 4.1(d) is similar
to the one in Figure 4.1(b), these operations are not shown.

At the end of this process we will have obtained the full indeterminate vector x,
hereby solving the linear system.

For completeness of this paper, let us now describe a similar solution algorithm in
cases where the R-factor is described by a row-based representation. Actually, we pre-
fer to explain the algorithm in terms of a lower triangular matrix L (which is an equiv-
alent problem since we could rewrite Rx = b̃ as LJx = Jb̃, where L := JRJ , and with
J the antidiagonal matrix; the row-based Givens-weight representation for R trans-
forms in this way into a row-based Givens-weight representation for the matrix L).
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(a) Incorporate the next weight
block and update the auxiliary vec-
tor c.

(b) Spread out the vector c by means
of the unitary row operation UH

k .

(c) Solve for the next three com-
ponents of the vector x by solving
a 3 by 3 lower triangular linear
system, with right-hand side de-
termined by the vectors b̃ and c.

(d) We can now go on to in-
corporate the next weight block
and update the auxiliary vector
c, and so on.

Fig. 4.2. Direct solution of a linear system in the case of a row-based Givens-weight represen-
tation.

Thus we will solve a linear system of the form

(4.2) Lx = b̃.

This will be achieved by computing the subsequent components x1, x2, . . . of x by
forward substitution. The algorithm is explained in Figure 4.2.

Let us comment on this figure. Figure 4.2(a) shows the starting situation, where
it is assumed that the first three components, x1, x2, x3, have already been computed
by forward substitution. These components are depicted by the vertical sequence
consisting of three crosses in the top right part of the figure. The elements in the
first three rows of the weight matrix will no longer be needed during the rest of the
algorithm, and therefore they have been dropped from the figure.

Note that the top right part of Figure 4.2(a) shows also a second vector c, of
which already six components have been computed. This will be an auxiliary vector.
It contains the matrix-vector product of the already computed components of x with
the structured lower triangular matrix part of the lower triangular matrix L.

Figure 4.2(a) shows how to update this auxiliary vector c by incorporating the
indicated weight block of the weight matrix and multiplying it with the first three
components of x. This contribution is then added to the vector c.

In MATLAB notation, the operation in Figure 4.2(a) corresponds to updating

c([4 : 6]) = c([4 : 6]) + W ([4 : 6], [1 : 3])x([1 : 3]).

The left part of Figure 4.2(b) shows how we spread out the weight matrix by
means of the next unitary component UH

k in order to obtain the real-size form of
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the elements in rows 4, 5, 6 of the lower triangular matrix L. These spreading-out
operations serve only as an aid for understanding the algorithm, but they are not
actually computed. What we do perform is spreading out the vector c by means of
this same operation UH

k , as illustrated in the right part of Figure 4.2(b).
In MATLAB notation, the operation in Figure 4.2(b) corresponds to updating

c([4 : 9]) = UH
k c([4 : 9]).

Having performed this spreading-out operation, the elements in rows 4, 5, 6 of the
weight matrix in Figure 4.2(c) now contain the corresponding real-size elements of
the lower triangular matrix L. Therefore, these rows can now be used to solve for
the components x4, x5, x6 of the indeterminate vector. The coefficient matrix of this
linear system is given by the lower triangular 3 by 3 matrix surrounded by the thick
black box in Figure 4.2(c). The right-hand side of the linear system is determined by
the actual right-hand side vector b̃, from which is subtracted the contribution of the
matrix-vector product of the already computed components of x with the structured
lower triangular matrix part, which is contained in the vector c.

In MATLAB notation, the operation in Figure 4.2(c) corresponds to setting

x([4 : 6]) = W ([4 : 6], [4 : 6])−1(b̃([4 : 6]) − c([4 : 6])).

Having computed the components x4, x5, x6, the elements in rows 4, 5, 6 of the
weight matrix can now be dropped from the next figures, starting with Figure 4.2(d).
We can then move on to the next weight block, which is shown boxed in Figure 4.2(d),
and use it to update the vector c:

c([7 : 9]) = c([7 : 9]) + W ([7 : 9], [4 : 5])x([4 : 5]).

The next operations are not shown.
We note that the flow of this row-based algorithm is very similar to that for block

quasi-separable matrices, first reported in [8]. On the other hand, the column-based
algorithm described earlier in this section does not seem to have such an interpretation.

Remark 9 (overdetermined systems). In this and the previous section, we im-
plicitly assumed that the coefficient matrix A, and hence the R-factor of its QR-
factorization, were square matrices. But this condition is irrelevant: Also in the case
of a (full-rank) overdetermined linear system with A ∈ C

m×n and m ≥ n, one can
compute the QR-factorization and the corresponding least-squares solution to a linear
system in exactly the same way as before.

Remark 10 (algorithm complexity). Note that in the above algorithms for the
solution of a linear system, each parameter of the Givens-weight representation is
used exactly one time during the algorithm, each time counting for O(1) floating
point operations. Thus if the starting Givens-weight representation was efficient, it
follows that the global algorithm complexity for the solution of the linear system
equals O((dr + es)n) operations for suitable d, e ∈ R. Compare with Remark 8.

5. Numerical experiments. To check the accuracy and the numerical stability
of the algorithms in computing the QR-factorization and solving the corresponding
linear system based on this factorization, we have performed several numerical ex-
periments. The algorithms were implemented in MATLAB. The experiments were
executed on an Intel PC running MATLAB Version 7.0.1.24704 (R14) under Linux
having 1 GByte of memory and an Intel Pentium 4 processor running at 3.2 GHz.
The software of these numerical experiments can be requested from the authors.
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Fig. 5.1. Average execution time for 5 random samples of size n = 2k and rank r = 1, 2, 3.

Experiment 1. We constructed nonsymmetric rank structured matrices of sizes
n by n, with n = 2k for k = 7, . . . , 18. The structure blocks were situated just below
the main diagonal, following immediately one after the other, and all having the same
rank index r. Formally, this means that Bk : (ik, jk, rk) = (k+1, k, r), k = 1, . . . , n−1.
The upper triangular part was rank structured in the same way as the lower triangular
part; in particular, the bandwidth of the rank unstructured matrix part s was equal
to one. To guarantee working with a Givens-weight representation consisting of only
O(rn) parameters, we made use of the canonical Givens-weight representation “of
type 1” described in [3].

For each matrix size n, the rank indices r = 1, 2, 3 were taken. For each of these
sizes n and each of these rank indices r, 5 samples were considered. The right-hand
side b ∈ C

n of each linear system Ax = b was generated with entries uniformly
random distributed between 0 and 1.

Figure 5.1 shows for each size n = 2k and each rank index r the execution time
Tk,r averaged over the 5 samples of computing the QR-factorization and solving the
corresponding linear system.

To check that the computational complexity is linear in the size n of the matrix,
Figure 5.2 shows the fraction Tk+1,r/Tk,r averaged over the 5 samples and over the
ranks r = 1, 2, 3.

Figure 5.3 gives the average percentage of the total execution time spent to solve
the linear system. It is seen from this figure that this takes only about 15% of the
total execution time. In other words, once the QR-factorization has been computed
as described in section 3, the subsequent solution of the linear system as described in
section 4 is a relatively cheap process. This distinction becomes even more pronounced
in case of higher ranks, since the QR-factorization has complexity O(r2n), whereas
the actual solver has complexity only O(rn) (cf. Remark 10).

To check the accuracy of the algorithm, we considered matrices having singular
values equidistant between 10−1 and 1; i.e., the condition number of each of the 5
samples is equal to 10. In the same way we took for each size n and each rank r 5
samples having condition number 1010. To measure the accuracy, we computed the
relative residual norm

(5.1)
‖Ax − b‖

‖A‖‖x‖ + ‖b‖ .
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Fig. 5.2. Fraction Tk+1,r/Tk,r averaged over 5 random samples and over ranks r = 1, 2, 3 in
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Fig. 5.3. Percentage of total computing time spent to solve the linear system averaged over 5
random samples and over ranks r = 1, 2, 3 in function of size n = 2k.

(We evaluated the numerator in an efficient way by means of the algorithm for matrix-
vector multiplication with a Givens-weight representation described in [3].) Figure 5.4
shows the relative residual norm averaged over the 5 samples and the ranks r = 1, 2, 3
for each of the condition numbers and each of the sizes.

From this figure, one can note the odd fact that the algorithm appears to be more
stable for ill-conditioned than for well-conditioned linear systems. This is probably
an artifact of the measure of stability that we used: It can be imagined that for ill-
conditioned matrices with geometrically distributed singular values, the bound (5.1)
is too pessimistic, in the sense that the denominator could grow faster than the
numerator.

Finally, let us give some more details on the construction of the above test ma-
trices. Starting from a diagonal matrix containing the desired singular values, we
applied to rows and columns a “disturbing” sequence of Givens arrows of width r.
This resulted in a nonsymmetric matrix having the required rank structure in both
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Fig. 5.4. Relative residual norm averaged over 5 random samples and over ranks r = 1, 2, 3 in
function of size n = 2k and condition number 101 and 1010.
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Fig. 5.5. Fraction T2r/Tr in function of the rank index r = 2l with l = 1, 2, . . . , 7.

lower and upper triangular parts.
Since it can be argued that the above construction yields rather “special” rank

structured matrices, we next applied a “randomization” procedure. We did this by
applying Givens transformations to rows and columns in such a way that both the
lower and the upper rank structures of the matrix were preserved. Let us point out
that this randomization procedure took about 95% of our total execution time. A
detailed description of this perturbation method will not be given here. Moreover, we
note that the results are quite the same with and without this perturbation approach.

Experiment 2. To check the computational complexity as a function of the rank
index r, we considered the execution time Tr for matrices of fixed size n = 210 = 1024
and varying rank index r = 2l with l = 1, 2, . . . , 8. The actual construction of the
test matrices was performed in exactly the same way as before. Figure 5.5 gives the
fraction T2r/Tr for subsequent ranks. Note that the fraction tends to approximate
4 for large rank indices r but is much smaller for small values of r. This value of 4
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agrees with the fact that the starting Givens-weight representation consists of O(rn)
parameters, in which case the updating processes in section 3 both have an O(r2n)
complexity (cf. Remark 8).

Finally, let us mention that the methods of this paper have been tested for other,
more irregular examples of rank structures as well. The results are similar to those
above.

6. Conclusion. In this paper we described an algorithm for performing the
QR-factorization of a rank structured matrix using the Givens-weight representation.
We showed how this QR-factorization could be used as a first step for solving linear
systems. We described the underlying propagation of rank structure during the algo-
rithm. The numerical performance of the algorithm was demonstrated by means of
some numerical experiments.
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A NOTE ON GENERIC KRONECKER ORBITS OF MATRIX
PENCILS WITH FIXED RANK∗

FERNANDO DE TERÁN† AND FROILÁN M. DOPICO†

Abstract. The set of m× n complex matrix pencils with rank (normal rank) at most r defines
a subset of pencils in a complex 2mn dimensional space. For r = 1, . . . ,min{m,n}− 1, we show that
this subset is a closed set, which is the union of r+1 irreducible components. Each of these irreducible
components is the closure of a certain orbit of strictly equivalent pencils with rank r. The Kronecker
canonical forms of these orbits are explicitly described, and their dimensions are counted. These are
the Kronecker canonical forms of generic pencils of rank at most r. If m �= n, then each irreducible
component has a codimension distinct from the others, and the least of these codimensions is the
codimension of the set of matrix pencils with rank at most r. This is (n− r)(2m− r) if m ≥ n and
(m− r)(2n− r) otherwise.

Key words. Kronecker canonical form, matrix pencils, orbits, closures, irreducible components
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1. Introduction. The Kronecker canonical form (KCF) [6, Chapter XII] of ma-
trix pencils may reflect important physical properties of the systems modelled by
pencils, such as controllability [4, 10]. Very significant advances in the development
of algorithms to compute the KCF have been seen in recent years (see [5] and the
references therein). Despite this fact, computing the KCF of matrix pencils is an ex-
pensive and delicate task. Therefore, theoretical results that describe generic KCFs
of some subsets of matrix pencils, i.e., the KCFs of almost all pencils in the subset,
are interesting from an applied point of view.

The generic KCF of full rank m×n complex matrix pencils A−λB with m �= n was
explicitly described in [3, Corollary 7.1] (see also [5, section 3.3]). For n× n singular
matrix pencils, there are n possible generic KCFs, each of them corresponding to
an orbit of strictly equivalent matrix pencils of codimension n + 1. These Kronecker
structures were explicitly described in [11, Theorem 1] (see also [3, Corollary 7.2]
and [5, section 3.3]). In rigorous mathematical terms, one can say, in the language of
algebraic geometry [11], that the set of n × n singular matrix pencils has exactly n
irreducible components of codimension n + 1, or, in the language introduced in [5],
that the set of n×n singular matrix pencils is the union of the closures of n maximal
orbits of strictly equivalent matrix pencils. Another relevant result in this context is
that the set of m×n matrices with rank at most r is a manifold in C

mn of codimension
(m − r)(n − r) [3, Lemma 3.3]. However, as far as we know, no similar results exist
for pencils with rank at most r. To develop these kinds of results is the purpose of
this paper.
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†Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911

Leganés, Spain (fteran@math.uc3m.es, dopico@math.uc3m.es).

491



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We prove that there are exactly r + 1 generic KCFs for m × n pencils with
rank r. More precisely, for r = 1, . . . ,min{m,n} − 1, we show that the set of matrix
pencils with rank at most r is the union of the closures of the orbits corresponding
to these KCFs, and that these closures are maximal in the sense that they are not
contained in the closure of any other orbit of pencils with rank at most r. In addition,
the dimensions of these orbits are counted and their KCFs explicitly described. The
generic KCFs of the pencils with rank r have no regular part, as it happens for the
generic KCFs of full rank m× n pencils and of n× n singular pencils [3, Corollaries
7.1 and 7.2], and they have both right and left singular blocks. Each of the generic
KCFs with rank r depends on the sum of the right minimal indices [6], which may
take values 0, 1, . . . , r, or, equivalently, on the sum of the left minimal indices. It is
important to note that the orbits corresponding to these r + 1 generic KCFs have
different dimensions in the case m �= n. To prove these results, we use techniques
introduced in [3, 5] (see also [1]). Finally, we present an additional result on the
irreducibility of the closures of the orbits of the generic KCFs in the Zariski topology
[11, section 1]. Our results include, as a particular case, the KCFs of generic n × n
singular matrix pencils.

The rank of the pencil A − λB is defined in [6, Chapter VI] as the order of its
largest minor that is not equal to the zero polynomial in λ. This is also frequently
called normal rank [1, 5]. We will use the more classical name rank throughout this
note, because this concept corresponds to the usual rank of matrices if we consider a
matrix pencil as a matrix with elements in the field of rational functions in λ.

The fact that the KCFs of generic pencils with rank r depend not only on the
rank, but also on the sum of the right (or, equivalently, left) minimal indices is related
to a recent result presented in [2]. In [2], the generic change of the KCF of a pencil
under low rank perturbations is studied, and it is proved that this change depends on
the rank of the perturbation, and also on the sum of its left and right minimal indices.

A different kind of generic singular matrix pencils is considered in [8]. The defini-
tion of genericity in [8, p. 250] can be useful to study the KCF of very sparse pencils,
but it is different from the one that we use in this work. As explained above, our defini-
tion of generic KCFs means that the union of the closures of the corresponding orbits
is the whole set of pencils with rank at most r, and that these orbits are maximal.
This is also the concept used in [5, 11]. This implies, for instance, that most pencils
with rank r and generic KCF have all of the entries different from zero.1 However,
in the sense of [8], generic m × n pencils with rank r do not have all of their entries
different from zero [8, Lemma 3.1]; therefore, they are not generic in our sense. We
have already remarked that we will describe explicitly the generic KCFs of pencils
with rank r; see Theorem 3.2. This cannot be done for the generic pencils with rank
r in the sense of [8], where only the sums of the minimal indices of the KCF can be
implicitly determined [8, Theorems 7.2 and 7.3].

This paper is organized as follows: In section 2 some background is introduced.
The main results—Theorems 3.2, 3.3, and 3.5—are presented in section 3.

2. Previous results. In this section we briefly summarize the results needed in
this note. Simultaneously, the basic notation is introduced.

1Note that the set of pencils with rank at most r and all of the entries different from zero is open
and dense in the set of pencils with rank at most r. To see this in r = 1, note that every pencil with
rank at most one can be written as p(λ)q(λ)T , where p(λ) and q(λ) are polynomial vectors, one of
them of degree 0 and the other one of degree at most 1. Most pencils of this type have all of the
entries different from zero.
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2.1. Orbits and the Kronecker canonical form. We will use the same no-
tation as in [5]. The orbit O(M) of an m × n matrix pencil M(λ) = A − λB is the
set of matrix pencils strictly equivalent to M(λ):

O(M) = {PM(λ)Q : P ∈ C
m×m, Q ∈ C

n×n , P ,Q nonsingular}.

These orbits are manifolds in the vector space C
2mn, and we will refer to the codi-

mension of O(M) as the codimension in this space. We will denote by O(M) the
closure of this orbit.

The most significant element of the orbit O(M) is the Kronecker canonical form
(e.g., see [6]) of M(λ). The KCF is the direct sum of the right singular, left singular,
and regular structures, consisting of Lk blocks of dimension k × (k + 1) for the right
singular structure and LT

k blocks for the left singular structure. The regular structure
consists of Jordan blocks Jk(μ) corresponding to eigenvalue μ, and Nk corresponding
to the infinite eigenvalue. The KCF of M(λ) determines uniquely the orbit O(M),
and, in particular, it fully determines the codimension of O(M) [3, Theorem 2.2].

2.2. Inclusion relationships between orbit closures. The dominance or-
dering in the set of sequences of nonnegative integers specifies that (a1, a2, . . .) ≥
(b1, b2, . . .) if a1 + · · ·+ ai ≥ b1 + · · ·+ bi for i = 1, 2, . . . . We say that (a1, a2, . . .) >
(b1, b2, . . .) if (a1, a2, . . .) ≥ (b1, b2, . . .) and (a1, a2, . . .) �= (b1, b2, . . .) [5, section 2.1].

For every matrix pencil M(λ) with rank r, we consider the following three se-
quences defined in [5]:

R(M) + r = (r0 + r, r1 + r, r2 + r, . . .);

where ri is the number of right singular blocks Lj in the KCF of M(λ) with j ≥ i;

L(M) + r = (l0 + r, l1 + r, l2 + r, . . .),

where li is the number of left singular blocks LT
j in the KCF of M(λ) with j ≥ i;

and, for every μ ∈ C ∪ {∞},

Jμ(M) + p = (w1(μ) + p, w2(μ) + p, . . .),

where wi(μ) is the number of Jordan blocks associated with the eigenvalue μ of di-
mension greater than or equal to i in the regular structure of the KCF of M(λ), and
p is the number of right singular blocks in the KCF of M(λ). These sequences allow
us to obtain inclusion relationships between the closures of the orbits of two different
matrix pencils. This is presented in Theorem 2.1 below, obtained in [9], and later
reformulated in [1] and [5]. We state the theorem as it appears in [5].

Theorem 2.1 (see [5, Theorem 3.1]). Let M1,M2 be two m×n complex matrix
pencils with p (M1) and p (M2) right singular blocks in their KCFs, respectively.
Then O(M1) ⊇ O(M2) if and only if the following relations hold:

(i) R(M1) + rank(M1) ≥ R(M2) + rank(M2),
(ii) L(M1) + rank(M1) ≥ L(M2) + rank(M2),
(iii) Jμ(M1) + p (M1) ≤ Jμ(M2) + p (M2)

for all μ ∈ C ∪ {∞}.

3. The set of singular pencils of rank at most r. If we restrict ourselves
to the set of m × n matrix pencils with fixed rank equal to r, then the conditions
in Theorem 2.1 simplify significantly. In this case, O(M1) ⊇ O(M2) if and only if
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the following conditions hold: (i) R(M1) ≥ R(M2), (ii) L(M1) ≥ L(M2), and (iii)
Jμ(M1) ≤ Jμ(M2) for all μ ∈ C ∪ {∞} (because p (M) = n− rank(M)).

We will make use of the following result whose proof is immediate.
Lemma 3.1. Let T = diag(G,H) be a block-diagonal matrix pencil. If G ∈

O(M1) and H ∈ O(M2), for some matrix pencils M1 and M2, then O(T ) ⊆
O(diag(M1,M2)).

Our main result characterizes the set of singular pencils with rank at most r
through a set of maximal orbits of pencils with rank exactly r.

Theorem 3.2. Let r be an integer such that 1 ≤ r ≤ min{m,n}−1. Let us define,
in the set of m× n complex matrix pencils with rank r, the following r + 1 KCFs:

(1) Ka(λ) = diag(Lα+1, . . . , Lα+1︸ ︷︷ ︸
s

, Lα, . . . , Lα︸ ︷︷ ︸
n− r − s

, LT
β+1, . . . , L

T
β+1︸ ︷︷ ︸

t

, LT
β , . . . , L

T
β︸ ︷︷ ︸

m− r − t

)

for a = 0, 1, . . . , r , where α = 
a/(n− r)�, s = amod (n− r), β = 
(r− a)/(m− r)�,
and t = (r − a) mod (m− r). Then,

(i) For every m× n pencil M(λ) with rank at most r, there exists an integer a
such that O(Ka) ⊇ O(M).

(ii) O(Ka) �⊇ O(Ka′) whenever a �= a′.
(iii) The set of m× n complex matrix pencils with rank at most r is a closed set

equal to
⋃

0≤a≤r

O(Ka).

Proof. For each a = 0, 1, . . . , r, let Da be the set of block-diagonal matrix pencils
in the form diag(G,H), where G and H are, respectively, a× (a+n− r) and (m−a)×
(r−a) matrix pencils. The generic KCFs of G and H are, respectively, diag(Lα+1,

s). . . ,

Lα+1, Lα,
n−r−s). . . , Lα) and diag(LT

β+1,
t). . . , LT

β+1, L
T
β ,

m−r−t). . . , LT
β ) (where k). . . means

that there is a series of exactly k equal terms), with α, β, s, and t as in the statement
(see [3, Corollary 7.1]). Now, to prove the first part of the theorem, it remains to show
only that any matrix pencil of rank at most r is strictly equivalent to a block-diagonal
pencil in Da, for some a = 0, 1, . . . , r, and apply Lemma 3.1.

Let M(λ) be a matrix pencil with rank r′ ≤ r and KCF given by

KM(λ) = diag(Lα1
, . . . , Lαn−r′ , L

T
β1
, . . . , LT

βm−r′
, J) ,

where J is the regular structure of the KCF. Then, since r′ ≤ r, we can consider

G = diag(Lα1
, . . . , Lαn−r

)

and H being the block-diagonal matrix pencil containing the remaining blocks in
KM(λ). Notice that G is of size a× (a+n− r), with a = α1 + · · ·+αn−r. Then M(λ)
is equivalent to diag(G,H), and this last matrix pencil is in the class Da.

Now, we show that O(Ka) �⊇ O(Ka′) whenever a �= a′. For this, it suffices to check
that for distinct a, a′ ∈ {0, 1, . . . , r} the simplified versions of the three conditions (i),
(ii), and (iii) in Theorem 2.1 do not hold simultaneously. This fact is immediate,
because a > a′ implies (with the same notation as in the statement)

α > α′ or α = α′ and s > s′,

which implies R(Ka) > R(Ka′), and also
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β < β′ or β = β′ and t < t′,

which implies L(Ka) < L(Ka′).

Finally, notice that the third item in Theorem 3.2 is a direct consequence of the
first item, rank(Ka(λ)) = r for all a, and the fact that the set of pencils of rank at
most r is closed.

Theorem 3.2 is, in essence, a consequence of Corollary 7.1 in [3], though we have
stated it using the concepts and terminology from [5]. Notice also that although the
rank of the KCFs in (1) is exactly r, the closures of their orbits include the set of all
pencils with rank smaller than or equal to r.

Next, we pay attention to the codimension of the orbits O(Ka) of the generic
KCFs of pencils with rank at most r. We will see that these codimensions are distinct
if m �= n. In this case, the codimension (dimension) of the set of matrix pencils with
rank at most r is defined, according to [11], as the least (largest) of the codimensions
(dimensions) of O(Ka), for a = 0, 1, . . . , r.

Theorem 3.3. Let r be an integer such that 1 ≤ r ≤ min{m,n} − 1, and let
Ka(λ), for a = 0, 1, . . . , r, be the r + 1 KCFs defined in (1). Then

1. The codimension of O(Ka) is (n− r)(2m− r) + a(m− n).
2. The codimension of the set of m×n complex matrix pencils with rank at most

r is equal to
(i) (n− r)(2m− r) if m ≥ n, and
(ii) (m− r)(2n− r) if m ≤ n.

Proof. The first item is a direct consequence of [3, Theorem 2.2]. The second item
follows from computing mina{(n− r)(2m− r) + a(m− n)}.

3.1. Irreducibility in Zariski topology. All of the topological ideas used so
far refer to the usual topology in C

2mn. The Zariski topology was used by Waterhouse
to prove that the set of n × n singular matrix pencils with entries in an arbitrary
infinite field has exactly n irreducible components, each of codimension n + 1 [11,
Theorem 1]. In this subsection, we will prove that the closures O(Ka(λ)) of the orbits
of the KCFs appearing in (1) are irreducible in the Zariski topology. A clear and
concise summary of Zariski topology appears in the introduction of [11]. Here we
recall only the following ideas: (i) a subset of C

q is closed in the Zariski topology if
it is the set of common zeros of some polynomials, (ii) Zariski-closed sets are closed
in the usual sense but the opposite is not true, (iii) a subset of C

q is irreducible if it
is not the union of two relatively closed proper subsets in the Zariski topology, and
(iv) every Zariski-closed set is the finite union of maximal irreducible subsets called
its irreducible components.

An important result in this context is that the closures of an orbit of strictly
equivalent pencils are the same in both the Zariski and the usual topology of C

2mn

[7]. Therefore, there is no ambiguity in using the symbol O(Ka) in this subsection
because it refers to exactly the same set as in the rest of this paper. The main result
in this section states that orbits of pencils are irreducible.

Lemma 3.4. The closure O(M) of the orbit O(M) of an m× n complex matrix
pencil M(λ) is an irreducible manifold in the Zariski topology.

Proof. Let us identify the set of matrix pencils of size m × n with C
2mn, where

the pencil M(λ) = A − λB is identified with the pair (A,B). Let U be the set of
pairs (P,Q) with P ∈ C

m×m and Q ∈ C
n×n nonsingular. This is a dense open set

of C
m2+n2

(that is, U = C
m2+n2

). Given a matrix pencil (A,B), we can consider
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the continuous (polynomial) mapping ϕM from C
m2+n2

to C
2mn defined by sending

(P,Q) to (PAQ,PBQ). We have O(M) = ϕM(U) . By [11, section 1] we know that

ϕM(Cm2+n2) is an irreducible set. On the other hand, for every continuous mapping ϕ,

we have ϕ(W ) ⊂ ϕ(W ), where W is an arbitrary set, and this implies ϕ(W ) = ϕ(W ).
In the present case, we have

ϕM(U) = ϕM(Cm2+n2) ,

and this equals O(M), which concludes the proof.
With this lemma, Theorem 3.2 can be complemented as follows.
Theorem 3.5. Let r be an integer number such that 1 ≤ r ≤ min{m,n} − 1,

and let Ka(λ), for a = 0, 1, . . . , r, be the r + 1 KCFs defined in (1). Then, the set
of m × n complex matrix pencils with rank at most r is a closed set that has exactly
r+1 irreducible components in the Zariski topology. These irreducible components are
O(Ka) for a = 0, 1, . . . , r.

This theorem includes [11, Theorem 1], mentioned at the beginning of this section,
as a particular case.
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ON INVERSES OF TRIDIAGONAL MATRICES ARISING FROM
MARKOV CHAIN-RANDOM WALK I∗

MOHAMED A. EL-SHEHAWEY†

Abstract. Explicit expressions for the entries of the inverse of a general diagonal matrix are
derived via the decomposition approach. In particular, three-term recurrence relations with variable
coefficients are given, and with their solutions closed form expressions for each entry of the funda-
mental matrix of a Markov chain-random walk (MC-RW) model are established. We also obtain
explicit formulas for the absorption probabilities and the mean time to absorption as well as the
mean number of steps before absorption of the MC-RW model in the presence of two semiabsorbing
boundaries.

Key words. tridiagonal matrix, three-term recurrence relations, Markov chain-random walk,
semiabsorbing barriers, time to absorption
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1. Introduction. There is an intimate relationship between Markov chain-
random walk (MC-RW), tridiagonal matrices, and three-term recurrence relations.
The latter two are known to be powerful tools for counting walks with various specifi-
cations, are frequently used to describe the motion of a particle in a one-dimensional
chain. Tridiagonal matrices appear frequently in various branches of mathematics,
modern physics, and engineering. Therefore this class of matrices is studied exten-
sively and a great deal of theory is known about their inverses. For historical remarks
and physical motivations, cf. [21, 20, 29, 6, 19, 25, 10, 1, 15]. Three-term recurrence
relations lie at the heart of continued fractions, orthogonal polynomials, and birth-
death processes, cf. [7, 4, 30, 16, 17, 18, 3, 2]. The MC-RW is a venerable model,
finding its applications in many areas including biology, chemistry, and physics, but
it is also a useful tool in randomized algorithms in computer science. Despite its long
history, novel aspects continue to surface. For comprehensive treatments of MC-RW
and its applications, cf. [5, 11, 28, 13, 25, 8, 12, 23, 9]. The MC-RW is a stochas-
tic process X = {Xk : k ≥ 0} characterized by the transition matrix, P = (pij)ij ,
given via the entries of the three vectors q = (q0, q1, . . . , qn), r = (r0, r1, . . . , rn),
p = (p0, p1, . . . , pn) as P = P (q, r, p) with

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r0 p0 0 · · · 0

q1 r1 p1 0
...

0 q2 r2 p2
. . .

0
. . .

. . .
. . . 0

...
. . . qn−1 rn−1 pn−1

0 · · · 0 qn rn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(1.1)
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Here, pij = Pr(Xk+1 = j | Xk = i) is the one-step transition probability. The
definition of an MC-RW implies that rj+ pj + qj = 1 and rj , pj , qj ≥ 0. The
boundary probabilities p0, r0, rn, and qn reflect boundary conditions of the model
under investigation. We allow q0 = 1 − p0 − r0 ≥ 0, pn = 1 − qn − rn ≥ 0. If
q0 = 0 and pn = 0, then the matrix P is stochastic and the MC-RW is said to
have reflecting barriers at 0 and n. If q0 > 0 (or pn > 0), then the MC-RW has an
(ignored) absorbing state at −1 (or at n + 1), which can be reaching through state
0 (or n) only. In many stochastic models, in particular Markov chains in discrete or
continuous time and Markov renewal processes, a Markov chain arises either directly or
indirectly through some form of embedding. The analysis of many problems of interest
associated with these models, e.g., the moments of first passage time distributions and
the moments of occupation time random variables, often concerns the inverse of the
matrix I−P . In the present paper we wish to obtain closed form expressions for each
entry of the fundamental matrix of the MC-RW model which are not readily available
in the literature on either matrix theory or probability theory. This leads to explicit
expressions for the aforementioned problems. Many interesting particular cases can be
derived from this study through an appropriate choice of the boundary probabilities
p0, qn, r0, and rn. We shall restrict our attention to MC-RW in the presence of
two semiabsorbing boundaries, p0 = ρ , qn = ω, and r0 = rn = 0. Physically, this
corresponds to the situation where upon reaching the barrier 0 (or n) the particle is
either lost from the system with probability 1 − ρ (or 1 − ω) or turned back to the
system with probability ρ (or ω) and reduces to the classical problem of random walk.
This leads to a list of particular cases: (i) MC-RW in the presence of two symmetric
semiabsorbing barriers at 0 and n, for ρ = ω, 0 < ρ < 1, and 0 < ω < 1. (ii) MC-RW
in the presence of two asymmetric partially reflecting barriers at 0 and n, for ρ �= ω,
0 < ρ < 1 and 0 < ω < 1. (iii) MC-RW in the presence of two perfectly absorbing
barriers at 0 and n, for ρ = ω = 0. (iv) MC-RW in the presence of two perfectly
reflecting barriers at 0 and n, for ρ = ω = 1. (v) MC-RW in the presence of two
different barriers, one of which at 0 (or at n) is perfectly absorbing and the other at
n (or at 0) is semireflecting, for ρ = 0, 0 < ω < 1 (or 0 < ρ < 1, ω = 0), respectively.
(vi) MC-RW in the presence of two different barriers, one of which at 0 (or at n) is
perfectly absorbing and the other at n (or at 0) is perfectly reflecting, for ρ = 0, ω = 1
(or ρ = 1, ω = 0), respectively. (vii) MC-RW having a single (partially or perfectly)
absorbing barrier at the origin, by taking the limit when n → ∞.

A computational approach to finding the inverse of the general tridiagonal matrix
P in (1.1) is given in a recent paper by Mallik [19]. To do this he imposed the
restrictive conditions p0, p1, . . . , pn−1 �= 0 and q1, q2, . . . , qn �= 0. In section 2 of the
present paper, the elements of the inverse of the tridiagonal matrix P in (1.1), without
imposing any restrictive conditions, via the Cholesky decompositional approach, are
expressed in terms of the determinants of tridiagonal submatrices of P in (1.1). These
determinants are solutions of a linear second-order difference equation with variable
coefficients. In section 3, difference equations with variable coefficients are resolved
explicitly. With these simple solutions, new results are obtained in sections 4 and 5;
explicit expressions for the elements of the fundamental matrix of the model under
investigation, with some interesting particular cases, are presented in section 4. In
section 5, the results are applied to the MC-RW problem, in the presence of two
semiabsorbing boundaries.
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2. Inverse of the tridiagonal matrix P . Consider a general (n+1)× (n+1)
tridiagonal matrix P of the form (1.1). For suitable (unique) diagonal matrices

D1 = diag(α0, α1, . . . , αn), D2 = diag(γ0, γ1, . . . , γn),(2.1)

the matrix P can be decomposed into the following two factorizations:

P = U1D
−1
1 L1 and P = L2D

−1
2 U2,(2.2)

where

U1 = P (0, α, p) , L1 = P (q, α, 0) ,
U2 = P (q, γ, 0) , L2 = P (0, γ, p) ,

(2.3)

and D−1
k is the inverse of Dk, k = 1, 2. Equating the entries on either side of (2.2),

respectively, gives

αi =

{
ri − pi qi+1

αi+1
for i = 0, 1, . . . , n− 1,

rn for i = n,
(2.4)

γi =

{
r0 for i = 0,
ri − pi−1 qi

γi−1
for i = 1, 2, . . . , n.(2.5)

The elements of the inverse P−1can be computed according to the following theorem
(cf. [2, 6, 14, 19, 29]). We use the convention that empty products and terms that
have indices greater than n must be taken equal to 1.

Theorem 2.1. Let P be given as in (1.1). If Q = P−1 = (qij)i,j exists, then

qij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)j−i

(
j−1∏
k=i

pk

)
αj+1αj+2···αn

γiγi+1···γn
for i ≤ j,

(−1)i−j

(
i∏

k=j+1

qk

)[
αi+1αi+2···αn

γjγj+1···γn

]
for i ≥ j.

(2.6)

If we set in formulas (2.5) and (2.4), respectively, then

γi =
Δi

Δi−1
for i = 1, 2, . . . , n with Δ−1 = 1,Δ0 = r0,

αi =
∇i

∇i+1
for i = 0, 1, 2, . . . , n− 1 with ∇n+1 = 1,∇n = rn,

and we obtain, respectively, the following difference equations with variable coeffi-
cients:

Δi = riΔi−1 − pi−1qiΔi−2 for i = 1, 2, · · · , n(2.7)

with the initial conditions Δ−1 = 1 and Δ0 = r0, and

∇i = ri∇i+1 − piqi+1∇i+2 for i = 0, 1, 2, · · · , n− 1(2.8)

with the boundary conditions ∇n+1 = 1 and ∇n = rn.
Rewriting formula (2.6), in terms of Δi and ∇i, we get the following theorem.
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Theorem 2.2. Let P be given as in (1.1). If Q = P−1 = (qij)i,j exists, then

qij =
1

Δn

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)j−i

(
j−1∏
k=i

pk

)
Δi−1∇j+1 for i ≤ j,

(−1)i−j

(
i∏

k=j+1

qk

)
Δj−1∇i+1 for i ≥ j,

(2.9)

where Δi and ∇i are the solutions of (2.7) and (2.8), respectively.

In fact, Δi and ∇i can alternatively be expressed, respectively, as the determinants

Δi = detP ((q0, . . . , qi) , (r0, . . . , ri) , (p0, . . . , pi)) ,

∇i = detP ((qi, . . . , qn) , (ri, . . . , rn) , (pi, . . . , pn)) .

Expanding the two determinants with respect to the last and the first rows yields the
difference equations (2.7) and (2.8), respectively.

Note that

detP = α0α1 · · ·αn−1αn = ∇0

= γ0γ1 · · · γn−1γn = Δn,

and the determination of the inverse of the tridiagonal matrix P reduces to solve the
second order-linear homogeneous difference equations with variable coefficients (2.7)
and (2.8).

3. Solution of three-term recurrence relations. Difference equations with
variable coefficients have been studied in many papers (cf. [2, 3, 16, 17, 18, 19, 24, 30]).
In [16, 17, 18, 19], Mallik introduced the definition of a set Sq(l + 1,m) as follows:
Let N denote the set of natural numbers. For q, L, U ∈ N, Sq(L,U) is the set of all
q-tuples with elements from {L,L+ 1, . . . , U} arranged in ascending order so that no
consecutive elements are present. Mallik then proved the following result (cf. formulas
(18) and (63a)–(63b) in [19].

Proposition 3.1. The solution of the difference equation

Em(l) = − rm
pm

Em−1(l) −
qm−1

pm
Em−2(l), 1 ≤ m ≤ n, 1 ≤ l ≤ m(3.1)

is given by

Em(l) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m−l+1

m∏
j=l

pj

⎛
⎝ m∏

j=l

rj +
	m−l+1

2 
∑
q=1

∑
(k1,...,kq)∈Sq(l+1,m)

σl,m(k1, . . . , kq)

⎞
⎠

for l = 1, . . . ,m− 1;m = 2, . . . , n,
− rm

pm
for l = m; m = 1, . . . , n,

1 for l = m + 1; m = 0, . . . , n,
0 otherwise

(3.2)
with

E−1(1) = 0, Em(m + 1) = 1 for 0 ≤ m ≤ n, Em(m) = − rm
pm

for 1 ≤ m ≤ n,
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where

σl,m(k1, . . . , kq) := (−1)q

(
m∏
j=l

rj

)
q∏

i=1

pki−1qki−1

rki−1rki

.

In fact, when considering MC-RW, it is not easy to directly work with the expressions
for Em(l) from (3.2). In the following lemma, we introduce some explicit solutions of
the second order-linear homogeneous difference equations with variable coefficients.

Lemma 3.1. The solutions of the difference equations (2.7) and (2.8), respectively,
are

Δi = r0
i∏

j=1

γj and ∇i = rn
n−1∏
j=i

αj ,(3.3)

where γj and αj are given in (2.5) and (2.4), respectively.
Proof. The proof is easily obtained.
With the assumptions that rm + pm + qm = 1, r0 + p0 ≥ 0, and rn + qn ≥ 0, we

obtain the following corollary.
Corollary 3.1. The solutions of the difference equations{

Ym = (1 − rm)Ym−1 − pm−1qmYm−2, m ≥ 1,
Y0 = 1 − r0 and Y−1 = 1,

(3.4)

{
Ym = (1 − rm)Ym+1 − pmqm+1Ym+2, m < n,
Yn = 1 − rn and Yn+1 = 1,

(3.5)

respectively, are given by

Ym = (1 − r0 − p0)
m∑

u=0

(
m−u∏
j=1

qj

)(
m∏

j=m−u+1

pj

)
+

(
m∏
j=0

pj

)
, m ≥ 1,(3.6)

Ym = (1 − rn − qn)
n−m∑
u=0

(
m+u−1∏
j=m

qj

)(
n−1∏

j=m+u

pj

)
+

(
n∏

j=m

qj

)
, m < n.(3.7)

See the appendix for a detailed derivation.
Corollary 3.2. The solutions of the difference equations{

Ym = (1 − rm)Ym−1 − pm−1qmYm−2, m ≥ 2,
Y1 = 1 − r1 and Y0 = 1,

(3.8)

{
Ym = (1 − rm)Ym+1 − pmqm+1Ym+2, m < n− 1,
Yn−1 = 1 − rn−1 and Yn = 1,

(3.9)

respectively, are

Ym =
m∑

u=0

(
m−u∏
j=1

qj

)(
m∏

j=m−u+1

pj

)
, m ≥ 1,(3.10)

Ym =
n−m∑
u=0

(
m+u−1∏
j=m

qj

)(
n−1∏

j=m+u

pj

)
, m < n.(3.11)

Corollary 3.3. For r + p + q = 1 the solutions of the difference equations{
Ym = (1 − r)Ym−1 − pqYm−2, m = 2, 3, . . . , n− 1,
Y1 = 1 − r − ρq and Y0 = 1,

(3.12)

{
Ym = (1 − r)Ym+1 − pqYm+2, m = n− 2, n− 1, . . . , 2, 1,
Yn−1 = 1 − r − pω and Yn = 1,

(3.13)
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respectively, are given by

Ym =
1

p− q

[(
1 − qρ

p

)
pm+1 − (1 − ρ)qm+1

]
,(3.14)

Yn−m =
1

p− q

[
(1 − ω)pm+1 −

(
1 − pω

q

)
qm+1

]
.(3.15)

4. Closed form expressions for the fundamental matrix. Consider a finite-
state MC-RW whose states are numbered so that T = {0, 1, . . . , n} denotes the set of
transient states. Note that since P , as in (1.1), specifies only the transition probabili-
ties from transient-to-transient states, some of its row sums are less than 1. Let Nij(n)
be the number of visits to state j by time n given that X0 = i; then {Nij(n), n ≥ 1}
is a delayed renewal process. A renewal occurs whenever the chain enters state j. For
transient states i and j, let mij = E[Nij(∞)] be the expected total number of time
periods spent in state j, starting in i; then

mij = δ(i, j) +
n∑

k=0

pikmkj ,

where δ(i, j) is the Kronecker delta. This equality holds from the fact that mij = 0
when k is a recurrent state.

Let M = (mij)i,j ; then

M = (I − P )−1.

Therefore, the (i, j)th element of the fundamental matrix M , mij is the mean number
of visits to transient state j from state i before the chain enters any absorbing state.
For i ∈ T, j ∈ T the probability of ever visiting state j, starting in state i, is given by

fij =
mij

mjj
.

The next theorem is immediate from Theorem 2.1 and Corollary 3.1.
Theorem 4.1. If M = (mij)i,j exists, then the entries mij, for i, j = 0, 1, 2, . . . , n,

0 ≤ r0,rn < 1, 0 ≤ r0 + p0 ≤ 1, and 0 ≤ rn + qn ≤ 1, are given by

mij =
1

Δn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 for i = j = 0,
p0Δ2 for i = 0, j = 1,(

j−1∏
k=i

pk

)
Δi−1∇j+1 for 1 ≤ i ≤ j ≤ n− 1,

(
i∏

k=j+1

qk

)
Δj−1∇i+1 for 1 ≤ j < i ≤ n− 1,

qn∇n−2 for i = n, j = n− 1,
∇n−1 for i = j = n,

(4.1)

where

∇j = (1 − rn − qn)
n−j∑
u=0

(
j+u−1∏
k=j

qk

)(
n−1∏

k=j+u

pk

)
+

(
n∏

k=j

qk

)
,(4.2)

Δi = (1 − r0 − p0)
i∑

u=0

(
i−u∏
k=1

qk

)(
i∏

k=i−u+1

pk

)
+

(
i∏

k=0

pk

)
,(4.3)
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Δn = ∇0 = (1 − r0 − p0)

(
n∏

k=1

qk

)
+ (1 − rn − qn)

(
n−1∏
k=0

pk

)

+(1 − r0 − p0)(1 − rn − qn)
n−1∑
u=0

(
n−u−1∏
k=1

qk

)(
n−1∏

k=n−u

pk

)
.(4.4)

Denote by

P0 = P ((q1, . . . , qn) , (r1, . . . , rn) , (p1, . . . , pn)) ,

Pn = P ((q0, . . . , qn−1) , (r0, . . . , rn−1) , (p0, . . . , pn−1)) , and

P0,n = P ((q1, . . . , qn−1) , (r1, . . . , rn−1) , (p1, . . . , pn−1))

the matrices which result from P by deleting the first or/and the last row and column,
respectively. The next corollaries are immediate from Theorem 2.2 and Corollaries
3.1–3.3 by setting M0 = (I − P0)

−1, Mn = (I − Pn)−1, and M0,n = (I − P0,n)−1.
Corollary 4.1. If M0 = (mij)i,j exists, then

mij =
1

Δn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
j−1∏
k=i

pk

)
Δi−1∇j+1 for 1 ≤ i ≤ j ≤ n− 1,

(
i∏

k=j+1

qk

)
Δj−1∇i+1 for 1 ≤ j < i ≤ n− 1,

qn∇n−2 for i = n, j = n− 1,
∇n−1 for i = j = n,

(4.5)

where

∇j = (1 − rn − qn)
n−j∑
u=0

(
j+u−1∏
k=j

qk

)(
n−1∏

k=j+u

pk

)
+

(
n∏

k=j

qk

)
,(4.6)

Δi =
i∑

u=0

(
i−u∏
k=1

qk

)(
i∏

k=i−u+1

pk

)
,(4.7)

Δn =

(
n∏

k=1

qk

)
+ (1 − rn − qn)

n−1∑
u=0

(
n−u−1∏
k=1

qk

)(
n−1∏

k=n−u

pk

)
.(4.8)

Corollary 4.2. If Mn = (mij)i,j exists, then

mij =
1

Δn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δ1 for i = j = 0,
p0Δ2 for i = 0, j = 1,(

j−1∏
k=i

pk

)
Δi−1∇j+1 for 1 ≤ i ≤ j ≤ n− 1,

(
i∏

k=j+1

qk

)
Δj−1∇i+1 for 1 ≤ j < i ≤ n− 1,

(4.9)

where

∇j =
n−j∑
u=0

(
j+u−1∏
k=j

qk

)(
n−1∏

k=j+u

pk

)
,(4.10)

Δi = (1 − r0 − p0)
i∑

u=0

(
i−u∏
k=1

qk

)(
i∏

k=i−u+1

pk

)
+

(
i∏

k=0

pk

)
,(4.11)
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Δn =

(
n−1∏
k=0

pk

)
+ (1 − r0 − p0)

n−1∑
u=0

(
n−u−1∏
k=1

qk

)(
n−1∏

k=n−u

pk

)
.(4.12)

Corollary 4.3. If M0,n = (mij)i,j exists, then

mij =
1

Δn

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
j−1∏
k=i

pk

)
Δi−1∇j+1 for 1 ≤ i ≤ j ≤ n− 1,

(
i∏

k=j+1

qk

)
Δj−1∇i+1 for 1 ≤ j < i ≤ n− 1,

(4.13)

∇j =
n−j∑
u=0

(
j+u−1∏
k=j

qk

)(
n−1∏

k=j+u

pk

)
,(4.14)

Δi =
i∑

u=0

(
i−u∏
k=1

qk

)(
i∏

k=i−u+1

pk

)
,(4.15)

Δn =
n−1∑
u=0

(
n−u−1∏
k=1

qk

)(
n−1∏

k=n−u

pk

)
.(4.16)

We see that (4.13), (4.16) agree with the results of [27]. We now consider the case of
spatial homogeneity, i.e., we have qi = β, pi = α, i = 1, 2, . . . , n− 1. Using Theorem
4.1 we obtain the following explicit expressions for the entries of M1 = (I − P )−1.

Corollary 4.4. If M1 = (hij)i,j, exists, then

hij =
1

Σ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − r0)an − βp0an−1 for i = j = 0,
p0 [(1 − r0)an−1 − βp0an−2] for i = 0, j = 1,
αj−i [(1 − r0)ai − βp0ai−1] [(1 − rn)an−j − αqnan−j−1]

for 1 ≤ i ≤ j,

βi−j [(1 − r0)aj − βp0aj−1] [(1 − rn)an−i − αqnan−i−1]
for j ≤ i ≤ n− 1,

qn [(1 − rn)an−1 − αqnan−2] for i = n, j = n− 1,
(1 − rn)an − αqnan−1 for i = j = n,

(4.17)

where

Σ = (1 − r0)(1 − rn)an + αβp0qnan−2

− [(1 − r0)αqn + (1 − rn)βp0] an−1,(4.18)

ai =

{
αi−βi

α−β for α �= β,

iαi−1 for α = β.

5. MC-RW in the presence of two semiabsorbing boundaries. In this
section, we derive the absorption probabilities of an asymmetric one-dimensional ran-
dom walk on the integers {0, 1, . . . , n} from the mean of the occupation totals in the
presence of partially absorbing barriers at 0 and n. When the particle hits the barrier
0 (or n) it is either annihilated with probability 1 − ρ (or 1 − ω) or reflected back
to the system with probability ρ (or ω), 0 ≤ ρ, ω ≤ 1. Physically, this corresponds
to the situation when, reaching the barrier 0 (or n), the particle is either lost from
the system with probability 1 − ρ (or 1 − ω) or tuned back to the system with prob-
ability ρ (or ω) and reduces to the classical problem of random walk. Assume that
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Xk, k = 1, 2, . . . , n− 1 denotes a random variable associated with the kth step of the
particle such that Xk = 0 if it stays put and is equal to 1 or −1 if it moves one unit to
the right or to the left with respective probabilities γ, α and β; β + γ + α = 1. Thus
the present problem may be governed by the one-step transition probability matrix
P = P ((1 − ρ, β, . . . , β, ω) , (0, γ, . . . , γ, 0) , (ρ, α, . . . , α, 1 − ω)). Explicit expressions
are investigated for the mean hij of the occupation totals, from which the absorption
probabilities are determined as well as the mean time to absorption and the mean
number of steps taken before absorption. Many interesting particular cases can be
derived from the results through an appropriate choice of the reflection probabilities
ρ and ω; see the introduction. After some simplifications, Corollary 4.3 gives

h0j =
1

(1 − ρβ
α )Σ

⎧⎪⎪⎨
⎪⎪⎩

(
α
β

)n

− β−ωα
β(1−ω) for j = 0;α �= β,

ρ
α

[(
α
β

)n−j

− β−ωα
β(1−ω)

](
α
β

)j

for j = 1, 2, . . . , n ;α �= β,

=
1

(1 − ρ)Σ0

{
n + ω

1−ω for j = 0;α = β,
ρ
α

[
(n− j) + ω

1−ω

]
for j = 1, 2, . . . , n ; α = β,

(5.1)

hij =
1

(α− β)Σ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

((
α
β

)j

− α(1−ρ)
α−βρ

)((
α
β

)n−i

− β−ωα
β(1−ω)

)

for j ≤ i ;α �= β,((
α
β

)i

− α(1−ρ)
α−βρ

)((
α
β

)n−i

− β−ωα
β(1−ω)

(
α
β

)j−i
)

for j ≥ i ;α �= β

=
1

βΣ0

⎧⎪⎨
⎪⎩

(
j + ρ

1−ρ

)(
(n− i) + ω

1−ω

)
for j ≤ i ;α = β,(

i + ρ
1−ρ

)(
(n− j) + ω

1−ω

)
for j ≥ i ;α = β,

(5.2)

hnj =
1

(1 − ω)Σ

⎧⎪⎨
⎪⎩

ω
β

((
α
β

)j

− α(1−ρ)
α−βρ

)
for j = 0, 1, 2, . . . , n− 1 ;α �= β,

(
α
β

)n

− α(1−ρ)
α−βρ for j = n;α �= β,

=
1

(1 − ω)Σ0

{
ω
β

(
j + ρ

1−ρ

)
for j = 0, 1, 2, . . . , n− 1;α = β,

n + ρ
1−ρ for j = n;α = β,

(5.3)

where

Σ =

(
α

β

)n

− α(1 − ρ)(β − αω)

β(α− ρβ)(1 − ω)
, Σ0 = n +

ρ

1 − ρ
+

ω

1 − ω
.(5.4)

Formulae (5.1)–(5.4) agree with the well-known result for MC-RW between two per-
fectly absorbing barriers, ρ = ω = 0 (cf. [13, p. 100] in the case γ = 0).

Let q(0 | i) and q(n | i) denote the absorption probabilities at the boundary states
0 andn, respectively, given that i was the initial state. Therefore

q(0 | 0) = (1 − ρ)

⎧⎪⎨
⎪⎩

1 + ρα
(α−βρ)Σ

((
α
β

)n−1

− β−αω
β(1−ω)

)
for α �= β,

1 + ρ
(1−ρ)Σ0

(
n− 1−2ω

1−ω

)
for α = β,

(5.5)
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q(n | n) = (1 − ω)

⎧⎪⎨
⎪⎩

1 + ωα
β(1−ω)Σ

((
α
β

)n−1

− α(1−ρ)
α−ρβ

)
for α �= β,

1 + ω
(1−ω)Σ0

(
n− 1−2ρ

1−ρ

)
for α = β,

(5.6)

q(0 | i) =
1

Σ0

(
n− i +

ω

1 − ω

)
for i = 1, 2, . . . , n;α = β,(5.7)

q(n | i) =
1

Σ0

(
i +

ρ

1 − ρ

)
for i = 0, 1, . . . , n− 1;α = β,(5.8)

where Σ, and Σ0 are given in (5.4). Obviously

q(0 | i) + q(n | i) = 1 for i = 1, 2, . . . , n− 1,

q(0 | 0) = ρq(n | 1) and q(0 | n) = ωq(0 | n− 1).

We see that with the appropriate change of notation, (5.6)–(5.7) agree with the
results of [26] in the special case ρ = ω, γ = 0, and i = 1, 2, . . . , n − 1 (cf. [11,
pp. 344–349], [13, p. 108] for i = 1, 2, . . . , n , ρ = ω = γ = 0, and [9]).

Let ti be the mean time to absorption, given the starting state i, i = 0, 1, 2, . . . , n.
Obviously, the ith component of Me, e being the column vector of length n + 1 with
all entries equal to 1, is the mean time to absorption given by

t0 =
α

(α− ρβ)Σ

⎧⎨
⎩

[
1 + ρ

α

[
n− α

α−β

(
β−ωα
β(1−ω)

)]] (
α
β

)n

− β−ωα
β(1−ω)

(
1 − ρ

α−β

)
⎫⎬
⎭ for α �= β,

=
1

(1 − ρ)Σ0

{[
1 +

ρ

2α

[
n− 1 +

2ω

1 − ω

]]
n +

ω

1 − ω

}
for α = β,(5.9)

ti =
1

α− β

⎧⎪⎨
⎪⎩

1
Σ

(
α
β

)n−i [
n + βρ

α(1−ρ) + ωα
β(1−ω)

]
[(

α
β

)i

− 1−ρ
1−ρ/δ

]
− i− ρβ

α(1−ρ)

⎫⎪⎬
⎪⎭ for α �= β,

=
1

2β

⎧⎨
⎩

1

Σ0

⎧⎨
⎩

[
n
(
i + ρ

1−ρ

)
+ ρ

1−ρ

]
(
n + 2ω

1−ω

)
+ i

(
ω

1−ω − ρ
1−ρ

)
⎫⎬
⎭− i2

⎫⎬
⎭ for α = β,(5.10)

for i = 1, 2, . . . , n− 1, and

tn =
1

(1 − ω)Σ

⎧⎨
⎩

(
1 + ω

α−β

)(
α
β

)n

− α(1−ρ)
α−βρ(

ω
βn + 1

)
− ω

α−β

⎫⎬
⎭ for α �= β,

=
1

(1 − ω)Σ0

{[
1 +

ω

2β

[
n− 1 +

2ρ

1 − ρ

]]
n +

ρ

1 − ρ

}
for α = β,(5.11)

where Σ and Σ0 are given in (5.4).

We see that the expressions (5.9)–(5.11) with the appropriate change of notation
agree with the well-known results for a random walk between two perfectly absorbing
barriers, ρ = ω = 0, in the case γ = 0 (cf. [11, p. 348], [13, p. 108], [26], and [9]).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

INVERSION TRIDIAGONAL MATRICES FOR MC-RW 507

6. Conclusions. In the present paper a detailed connection between tridiagonal
matrices, three-term recurrence relations, and the Markov chain random walk model is
given. Closed form expressions for the entries of the inverse of the tridiagonal matrix
P = P (q, r, p) with q = (q0, q1, . . . , qn), r = (r0, r1, . . . , rn), and p = (p0, p1, . . . , pn),
via the Cholesky decompositional approach, in terms of the determinants of tridiag-
onal submatrices of P , are introduced. These determinants are solutions of a linear
second-order homogeneous difference equation with variable coefficients. The pre-
sented results provide a simple and convenient approach to finding explicit expressions
for the fundamental matrix of the model under investigation, with some interesting
particular cases. In particular, the results are applied to MC-RW problems, in the
presence of two semiabsorbing boundaries at 0 and n. Very simple expressions for the
entries of the fundamental matrix are also given. This allows us to obtain general
expressions for the mean of the occupation total explicitly in terms of the reflection
probabilities ρ, ω and the basic transition probabilities pij , i, j = 0, 1, . . . , n. These
expressions generalize the results of [13, p. 100] to the case ρ, ω and γ nonzero. Exact
analytical expressions for the absorption probabilities at the boundaries are also ob-
tained. These expressions generalize the results of [9] to the case γ nonzero and the
results of [26] to the case ρ �= ω, γ �= 0 and i = 0, 1, . . . , n.

Appendix. Proof of Corollary 3.1. Equation (3.4) can be reduced from
second order to first order:

Ym = pmYm−1 + (1 − r0 − p0)
m∏
j=1

qj ,m ≥ 1.(A.1)

One may obtain the solution of the associated homogeneous equation of (A.1) by a
simple iteration:

Ym = (1 − r0)
m∏
j=1

pj .(A.2)

The unique solution of the nonhomogeneous equation (A.1) may be found by dividing
both the left- and right-hand sides of (A.1) by

∏m
j=1 pj , which can be written as

ΔYm

(
m∏
j=1

pj

)−1

= (1 − r0 − p0)
m+1∏
j=1

qj
pj

,

where Δ is the first difference operator. Therefore, a particular solution of (A.1) is

Ym

(
m∏
j=1

pj

)−1

= Δ−1

(
(1 − r0 − p0)

m+1∏
j=1

qj
pj

)
,

which can be expressed as

Ym = (1 − r0 − p0)
m∏
j=1

pj
m∑

u=1

u∏
j=1

qj
pj

.(A.3)

From (A.2) and (A.3), the general solution of (A.1) is given as (3.6). Formula (3.7)
can be proven in a completely analogous manner.
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helpful remarks which helped to improve the final version of this paper.
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DESCRIPTION OF SYMMETRIC AND SKEW–SYMMETRIC
SOLUTION SET∗

MILAN HLADÍK†

Abstract. We consider a linear system Ax = b, where A is varying inside a given interval matrix
A, and b is varying inside a given interval vector b. The solution set of such a system is described by
the well-known Oettli–Prager Theorem. But if we are restricted only on symmetric/skew–symmetric
matrices A ∈ A, the problem is much more complicated. So far, the symmetric/skew–symmetric
solution set description could be obtained only by a lengthy Fourier–Motzkin elimination applied on
each orthant. We present an explicit necessary and sufficient characterization of the symmetric and
skew–symmetric solution set by means of nonlinear inequalities. The number of the inequalities is,
however, still exponential w.r.t. the problem dimension.

Key words. linear interval systems, solution set, interval matrix, symmetric matrix
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Notation

IR
m×n the set of all m-by-n interval matrices

IR
n the set of all n-dimensional interval vectors

�S interval hull of a set S ⊂ R
n, i.e., the smallest box [a1, b1]×· · ·×

[an, bn] that contains all the elements of S

≺lex strict lexicographic ordering of vectors, i.e., u≺lex v if for some
k we have ui = vi, i < k, and uk < vk

�lex lexicographic ordering of vectors, i.e., u�lex v if u≺lex v or u = v

|v| absolute value of a vector v, i.e., the vector with components
|v|i = |vi|

Ai,. the ith row of a matrix A

ek the kth basis vector (with convenient dimension), i.e., the kth
column of the identity matrix

r+ positive part of a real number r, i.e., r+ = max(0, r)

1. Introduction. Real-life problems are often subject to uncertainties in data
measurements. Such uncertainties can be dealt with by methods of interval analysis [1]
instead of exact values we compute with compact real intervals. An interval matrix
is defined as

A = [A,A] = {A ∈ R
m×n | A ≤ A ≤ A},

where A ≤ A are fixed matrices (n-dimensional interval vectors can be regarded as
interval matrices n-by-1). By

Ac ≡ 1

2
(A + A), AΔ ≡ 1

2
(A−A)

we denote the midpoint and radius of A, respectively.
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Let us consider a system of linear interval equations

Ax = b.

The solution set

Σ ≡ {x ∈ R
n | Ax = b, A ∈ A, b ∈ b}

is described by the well-known Oettli–Prager condition [11]

x ∈ Σ ⇔ AΔ|x| + bΔ ≥ |Acx− bc|.

In interval analysis, we usually suppose, that values vary in given intervals indepen-
dently. But in some applications, dependencies can occur (cf. [5], [9]). Especially, we
focus on some types of the matrix A. The symmetric solution set is defined as

Σsym ≡ {x ∈ R
n | Ax = b, A = AT , A ∈ A, b ∈ b},

and the skew–symmetric solution set as

Σskew ≡ {x ∈ R
n | Ax = b, A = −AT , A ∈ A, b ∈ b}.

These sets have been exhaustively studied in recent years (see [2], [3], [4], [5], [6], and
[7]). Applications involve Markov chains [8] and truss mechanics [10], for instance.
Descriptions of Σsym and Σskew can be obtained by a Fourier–Motzkin elimination
applied on each of 2n orthants. Contrary to Σ, the symmetric solution set Σsym is
not polyhedral, its shape is described by quadrics (see [3], [4], [5], and [6]), and it is
not convex in general, even if intersected with an orthant.

The paper is organized as follows. In section 2 we derive a solution set character-
ization for a system of linear interval equations, where specific dependences occur. As
consequences, we obtain a description of the symmetric solution set Σsym (section 3),
and a description of the skew–symmetric solution set Σskew (section 4). The basic
properties of Σsym, which were mentioned above, simply follow from the proposed
Theorem 3.1 in section 3 (illustrated by Figures 3.1 and 3.2).

2. Linear interval equations with particular dependences. This section
provides a characterization of the linear interval system equipped with a certain de-
pendency (Theorem 2.2); the matrix A occurs twice in the system—in (2.3) and
transposed in (2.4). We will see later in sections 3 and 4 that the description of the
symmetric/skew–symmetric solution set is a simple consequence of Theorem 2.2. An-
other reason for dealing with such a dependency is that similar relations (occurrence
of a matrix and its transposition in a system) can appear in some applications, e.g.,
optimality conditions in linear programming.

First we state an auxiliary result.
Lemma 2.1. Let a1, b1, d1 ∈ R

m, a2, b2, d2 ∈ R
n, and C ∈ R

m×n. The function

f(u, v) ≡ (a1)Tu + (b1)T |u| + (a2)T v + (b2)T |v| +
m∑
i=1

n∑
j=1

cij |d2
jui + d1

i vj |(2.1)

is nonnegative for all u ∈ R
m and v ∈ R

n iff it is nonnegative for all u, v satisfying
at least one of the following conditions:

(i) ui ∈ {0, d1
i } ∀ i = 1, . . . ,m, and vj ∈ {0,−d2

j} ∀ j = 1, . . . , n;

(ii) ui ∈ {0,−d1
i } ∀ i = 1, . . . ,m, and vj ∈ {0, d2

j} ∀ j = 1, . . . , n;

(iii) (uT , vT )T = ±ek for some k ∈ {1, . . . ,m + n}.
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Proof. One implication is obvious: If f(u, v) is nonnegative for all u ∈ R
m and

v ∈ R
n, then it is nonnegative in particular points.

The converse will be proven by induction w.r.t. the dimension m + n.
If m + n = 1, then without loss of generality (w.l.o.g.) assume m = 1, n = 0.

The function f(u) = a1u + b1|u| is nonnegative for all real u iff it is nonnegative for
u = ±1, which is managed by the third condition of Lemma 2.1.

The induction step will be proven by contradiction. Let us assume that f(u, v) < 0
for some vectors u, v.

(a) Suppose there are some vectors u, v such that f(u, v) < 0 and ui = 0 for some
index i. Delete the ith component in u and denote the resulting vector by ũ. Replace
b2 by b̃2, where b̃2j = b2j + cij |d1

i |, j = 1, . . . , n, and apply the induction hypothesis to

ũ, v. Hence f(ũ′, v′) ≥ 0 for some vectors ũ′ ∈ R
m−1 and v′ ∈ R

n satisfying one of
the conditions (i)–(iii). Canonical embedding of ũ′ to the space R

m yields the pair
of vectors u′ ∈ R

m and v′ ∈ R
n such that f(u′, v′) ≥ 0, and one of the conditions

(i)–(iii) is true. Thus, a contradiction.
(b) Suppose there are some vectors u, v such that f(u, v) < 0 and vj = 0 for some

index j. Here the assertion follows analogously to case (a).
(c) Assume—as the remaining case—that no component of u, v is zero for all

vectors u, v with f(u, v) < 0.
First we show that d1

i �= 0 for every i = 1, . . . ,m, and d2
j �= 0 for every j = 1, . . . , n.

If w.l.o.g. d1
i = 0 for some i, then we have

f(u, v) = f(u1, . . . , ui−1, 0, ui+1, . . . , um, v) + f(0, . . . , 0, ui, 0, . . . , 0, 0) < 0.

That is, one of the two summands is negative, which contradicts our assumption.
Now, choose vectors ũ, ṽ with f(ũ, ṽ) < 0 such that the number of absolute values

in (2.1) that are zero is maximal. Define the graph G = (V,E), where the vertex set
V consist of ũi, i = 1, . . . ,m, and ṽj , j = 1, . . . , n. The edge set E contains such pairs
{ũi, ṽj} for which d2

j ũi + d1
i ṽj = 0. We distinguish three cases and show that each of

them contradicts some assumption.

1. The graph G is connected. Choose (ũi∗ , ṽj∗) ∈ E and define z∗ ≡ − ṽj∗

d2
j∗

�= 0.

Then ũi∗ = d1
i∗z

∗, and ṽj∗ = −d2
j∗z

∗. Due to the connectivity of G, we can extend

this property by induction to all i, j: If (ũi, ṽj) ∈ E and ũi = d1
i z

∗, then ṽj = −d2
jz

∗.

If (ũi, ṽj) ∈ E and ṽj = −d2
jz

∗, then ũi = d1
i z

∗. Hence

ũi = d1
i z

∗ ∀ i = 1, . . . ,m, ṽj = −d2
jz

∗ ∀ j = 1, . . . , n.(2.2)

Define u′ ≡ 1
|z∗| ũ, v′ ≡ 1

|z∗| ṽ. Vectors u′, v′ satisfy the first or the second condition

of Lemma 2.1 (depending on the sign of z∗), but f(u′, v′) = 1
|z∗|f(u, v) < 0. Thus, a

contradiction.
2. The graph G is not connected and E �= ∅. We will construct vectors u′, v′ with

f(u′, v′) < 0 and at least one component of u′ or v′ to be zero, which contradicts the
assumption of case (c).

Take a connected component G′ = (V ′, E′) of G such that E′ �= ∅. Then the
property (2.2) holds when restricted on G′:

ũi = d1
i z

∗ ∀ i : ũi ∈ V ′, ṽj = −d2
jz

∗ ∀ j : ṽj ∈ V ′.
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Consider the function g(z) ≡ f(u(z), v(z)) as a function of variable z, where

ui(z) =

{
d1
i z ũi ∈ V ′,

ũi otherwise,
vj(z) =

{
−d2

jz ṽj ∈ V ′,

ṽj otherwise.

Then g(z) is a piecewise linear function (broken line) on R. Moreover, it is linear on
a neighborhood N(z∗) of z∗, that is, g(z) = pz + q, z ∈ N(z∗) for some p, q ∈ R.
W.l.o.g. assume that z∗ > 0 and consider two possibilities.

Let g(z) be nondecreasing on N(z∗). In this case g(z) is nondecreasing on the
interval [0, z∗], since otherwise there is a break point in (0, z∗) contradicting our
assumption on the maximal number of zero absolute values. From g(0) ≤ g(z∗) =
f(ũ, ṽ) < 0 we get g(0) = f(u(0), v(0)) < 0 with u(0)i = 0 for all indices i such that
ũi ∈ V ′ (at least one exists due to E′ �= ∅). This contradicts the assumption of case
(c).

Let g(z) be decreasing on N(z∗). Then g(z) is decreasing on [z∗,∞) (otherwise
we are in contradiction with our assumption on the maximal number of zero absolute
values). Moreover, for sufficiently large z we have f(u′, v′) < 0, where

u′
i =

{
d1
i z ũi ∈ V ′,

0 otherwise,
v′j =

{
−d2

jz ṽj ∈ V ′,

0 otherwise.

As V ′
� V , the vectors u′, v′ contradict the assumption of case (c).

3. The graph G is not connected and E = ∅. Define the function g(z) ≡
f(ũ1z, ũ2, . . . , ũm, ṽ1, . . . , ṽn). This function is linear on a neighborhood N(z∗) of
z∗ ≡ 1.

If g(z) is nondecreasing on N(z∗), then it is nondecreasing on [0, z∗] (otherwise
we are in contradiction with our assumption on the maximal number of zero absolute
values). From g(0) ≤ g(z∗) = f(ũ, ṽ) < 0 we get g(0) = f(0, ũ2, . . . , ũm, ṽ1, . . . , ṽn) <
0. This contradicts the assumption of case (c).

If g(z) is decreasing on N(z∗), then it is decreasing on [z∗,∞) (otherwise we
are in contradiction with our assumption on the maximal number of zero absolute
values). Moreover, for sufficiently large z we have f(ũ1z, 0, . . . , 0, 0, . . . , 0) < 0. This
also contradicts the assumption of case (c).

Theorem 2.2. Let A ∈ IR
n×n, b ∈ IR

n, and d ∈ IR
n. Then vectors x, y ∈ R

n

form a solution of the system

Ax = b,(2.3)

AT y = d(2.4)

for some A ∈ A, b ∈ b, and d ∈ d iff they satisfy the following system of inequalities:

AΔ|x| + bΔ ≥ |r1|,(2.5)

AΔ|y| + dΔ ≥ |r2|,(2.6)

n∑
i,j=1

aΔ
ij |yixj(pi − qj)| +

n∑
i=1

(bΔi |yipi| + dΔ
i |xiqi|) ≥

∣∣∣∣∣
n∑

i=1

(r1
i yipi − r2

i xiqi)

∣∣∣∣∣(2.7)

∀ p, q ∈ {0, 1}n, where r1 ≡ −Acx + bc, r2 ≡ −(Ac)T y + dc.
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Proof. Let x, y ∈ R
n. Then x, y satisfy (2.3)–(2.4) iff for a certain α ∈ [−1, 1]n×n

the following relations hold:

Ac
i,.x +

n∑
k=1

αika
Δ
ikxk ∈ [bci − bΔi , b

c
i + bΔi ] ∀ i = 1, . . . , n,

(
Ac.,j

)T
y +

n∑
k=1

αkja
Δ
kjyk ∈ [dcj − dΔ

j , d
c
j + dΔ

j ] ∀ j = 1, . . . , n.

Equivalently, iff the following linear programming problem

max

n∑
i,j=1

0 · αij

subject to

−
n∑

k=1

αika
Δ
ikxk ≤ −r1

i + bΔi ∀ i = 1, . . . , n,

n∑
k=1

αika
Δ
ikxk ≤ r1

i + bΔi ∀ i = 1, . . . , n,

−
n∑

k=1

αkja
Δ
kjyk ≤ −r2

j + dΔ
j ∀ j = 1, . . . , n,

n∑
k=1

αkja
Δ
kjyk ≤ r2

j + dΔ
j ∀ j = 1, . . . , n,

αij ≤ 1 ∀ i, j = 1, . . . , n,

−αij ≤ 1 ∀ i, j = 1, . . . , n

has an optimal solution.
Recall duality in linear programming [12], [13]. The linear programs

max b̃T ỹ subject to ÃT ỹ ≤ c̃

and

min c̃T x̃ subject to Ãx̃ = b̃, x̃ ≥ 0

are dual to each other. Moreover, their optimal values are equal as long as at least
one of the problems is feasible (i.e., the constraints are satisfiable).

Thus our linear programming problem has an optimal solution iff the dual problem

min
{

(−r1 + bΔ)Tw1 + (r1 + bΔ)Tw2 + (−r2 + dΔ)Tw3

+ (r2 + dΔ)Tw4 +

n∑
i,j=1

(w5
ij + w6

ij)
}

subject to

−aΔ
ijxjw

1
i + aΔ

ijxjw
2
i − aΔ

ijyiw
3
j + aΔ

ijyiw
4
j + w5

ij − w6
ij = 0 ∀ i, j = 1, . . . , n,

w1, w2, w3, w4, w5, w6 ≥ 0

has an optimal solution. The dual problem is feasible as its constraints are fulfilled
when all the variables are equal to zero, for instance. After substitution u ≡ w2 −w1,
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v ≡ w4 − w3 we can rewrite this problem:

min (r1 + bΔ)Tu + 2(bΔ)Tw1 + (r2 + dΔ)T v + 2(dΔ)Tw3 +

n∑
i,j=1

(w5
ij + w6

ij)

subject to

aΔ
ijxjui + aΔ

ijyivj + w5
ij − w6

ij = 0 ∀ i, j = 1, . . . , n,

w1 ≥ −u,

w3 ≥ −v,

w1, w3, w5, w6 ≥ 0.

For w1, w3, w5, and w6 some necessary optimality conditions can be given.
For each i, j at least one of w5

ij ,w
6
ij is zero (otherwise subtract from them a

sufficiently small ε > 0 and obtain a better solution). If w5
ij = 0, then w6

ij = aΔ
ijxjui+

aΔ
ijyivj ≥ 0, and hence w5

ij + w6
ij = |aΔ

ijxjui + aΔ
ijyivj |. Similarly, if w6

ij = 0, then

w5
ij = −(aΔ

ijxjui + aΔ
ijyivj) ≥ 0, and hence w5

ij + w6
ij = |aΔ

ijxjui + aΔ
ijyivj |. Therefore

w5
ij + w6

ij = |aΔ
ijxjui + aΔ

ijyivj |

holds in any case.
Next, the only constraints involving the variable w1

i , i ∈ {1, . . . , n} are w1
i ≥ −ui

and w1
i ≥ 0. Since the objective function coefficient by w1

i is nonnegative, the optimal
w1

i should be as small as possible. That is, w1
i = max (−ui, 0) = (−ui)

+. Hence we
have w1 = (−u)+, and the equation w3 = (−v)+ follows analogously.

Using these necessary optimality conditions, the optimization problem can be
reformulated as an unconstrained optimization problem:

min
u,v∈Rn

{
(r1 + bΔ)Tu + 2(bΔ)T (−u)+ + (r2 + dΔ)T v

+ 2(dΔ)T (−v)+ +

n∑
i,j=1

aΔ
ij |xjui + yivj |

}
.

The positive part of a real number p is equal to p+ = 1
2 (p + |p|), and the problem

comes in the form

min
u,v∈Rn

(r1)Tu + (bΔ)T |u| + (r2)T v + (dΔ)T |v| +
n∑

i,j=1

|aΔ
ijxjui + aΔ

ijyivj |.

As aΔ
ij is nonnegative (because it is the radius of an interval), the objective function

can be written

f(u, v) ≡ (r1)Tu + (bΔ)T |u| + (r2)T v + (dΔ)T |v| +
n∑

i,j=1

aΔ
ij |xjui + yivj |.(2.8)

Note that, it is positive homogeneous, that is,

f(λu, λv) = λf(u, v) ∀ λ ≥ 0.

If f(ũ, ṽ) < 0 for some vectors ũ, ṽ ∈ R
n, then f(λũ, λṽ) tends to −∞ for λ → ∞,

and the problem does not attain an optimum. On the other hand, if f(u, v) ≥ 0 for
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all u, v ∈ R
n, then the optimal solution is u = v = 0. Thus the optimization problem

has an optimal solution iff the objective function is nonnegative for all u, v ∈ R
n.

We now use Lemma 2.1 with a1 ≡ r1, a2 ≡ r2, b1 ≡ bΔ, b2 ≡ dΔ, C ≡ AΔ,
d1 ≡ y, d2 ≡ x, and m = n. It follows that it is sufficient to test nonnegativity of
f(u, v) for three cases:

1. ui ∈ {0, yi} ∀ i = 1, . . . , n, and vj ∈ {0,−xj} ∀ j = 1, . . . , n;
2. ui ∈ {0,−yi} ∀ i = 1, . . . , n, and vj ∈ {0, xj} ∀ j = 1, . . . , n;
3. (uT , vT )T = ±ek for some k ∈ {1, . . . , 2n}.

The first and second cases yield

±
n∑

i=1

r1
i yipi +

n∑
i=1

bΔi |yipi| ∓
n∑

i=1

r2
i xiqi +

n∑
i=1

dΔ
i |xiqi| +

n∑
i,j=1

aΔ
ij |yixj(pi − qj)| ≥ 0

or
n∑

i,j=1

aΔ
ij |yixj(pi − qj)| +

n∑
i=1

(bΔi |yipi| + dΔ
i |xiqi|) ≥

∣∣∣∣∣
n∑

i=1

(r1
i yipi − r2

i xiqi)

∣∣∣∣∣ ,
where p, q ∈ {0, 1}n. In the third case when u = ±ek and v = 0, we get

±r1
k + bΔk +

n∑
j=1

aΔ
kj |xj | ≥ 0,

which is the kth Oettli–Prager inequality in (2.5). Likewise u = 0, v = ±ek yields the
kth Oettli–Prager inequality in (2.6).

3. Symmetric solution set. In this section, we suppose w.l.o.g. that A = AT ,
i.e., matrices Ac, AΔ are symmetric. Otherwise we restrict our considerations on the
interval matrix (aij ∩ aji)

n
i,j=1.

Theorem 3.1, which is a simple corollary of Theorem 2.2, enables us to obtain
an explicit description of the symmetric solution set Σsym. Nevertheless, the number
of inequalities in the description is still exponential. Therefore when checking x ∈
Σsym for only one vector x, it is better from the theoretical viewpoint to use the
linear programming problem (from the proof of Theorem 2.2), which is polynomially
solvable [13]. The question whether Σsym can be described by a polynomial number
of inequalities is still open.

Theorem 3.1. Let r ≡ −Acx+bc. The symmetric solution set Σsym is described
by the following system of inequalities:

AΔ|x| + bΔ ≥ |r|,(3.1)

n∑
i,j=1

aΔ
ij |xixj(pi − qj)| +

n∑
i=1

bΔi |xi(pi + qi)| ≥
∣∣∣∣∣

n∑
i=1

rixi(pi − qi)

∣∣∣∣∣(3.2)

for all vectors p, q ∈ {0, 1}n \ {0, 1} such that

p≺lex q and (p = 1 − q ∨ ∃ i : pi = qi = 0).(3.3)

Proof. For every A ∈ A, the matrix 1
2 (A + AT ) ∈ A is symmetric, and for every

b1, b2 ∈ b we have 1
2 (b1 + b2) ∈ b. Thus, Σsym can be equivalently described as the

set of all x ∈ R
n satisfying

Ax = b1,(3.4)

ATx = b2(3.5)
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for some A ∈ A, b1, b2 ∈ b. Put y ≡ x, d ≡ b and apply Theorem 2.2 on system (3.4)–
(3.5). We obtain that Σsym is described by (3.1)–(3.2) for all p, q ∈ {0, 1}n. To reduce
the number of inequalities in (3.2), it is sufficient due to symmetry to consider only
vectors p, q ∈ {0, 1}n for which p�lex q. Obviously, the case p = q is also redundant.

The inequality (3.2) corresponding to p = 0 and any q ∈ {0, 1}n can be omitted
for the following reason. Multiplying the Oettli–Prager system (3.1) by the vector
(|x1q1|, . . . , |xnqn|) we obtain

n∑
i,j=1

aΔ
ij |xixjqi| +

n∑
i=1

bΔi |xiqi| ≥
n∑

i=1

|rixiqi| ≥
∣∣∣∣∣

n∑
i=1

rixiqi

∣∣∣∣∣ .

Due to the symmetry of AΔ the first sum is equal to
∑n

i,j=1 a
Δ
ij |xixjqj |, and hence

the inequality

n∑
i,j=1

aΔ
ij |xixjqj | +

n∑
i=1

bΔi |xiqi| ≥
∣∣∣∣∣

n∑
i=1

rixiqi

∣∣∣∣∣
is a consequence of the Oettli–Prager system.

The inequality (3.2) corresponding to any p ∈ {0, 1}n and q = 1 is redundant as
it is a consequence of the inequality (3.2) with p′ ≡ 1− p, q′ ≡ 0 (which is redundant
for the same reason as before); the right-hand sides of the inequalities are the same,
and the left-hand side of the former inequality includes all of the left-hand side terms
of the latter inequality and possibly some more positive terms.

Finally, we prove redundancy for all inequalities (3.2) with p, q ∈ {0, 1}n \ {0, 1},
p≺lex q, and

p �= 1 − q and ∀ i : (pi = 1 ∨ qi = 1).(3.6)

Clearly, (3.6) is equivalent to

∀ i : (pi = 1 ∨ qi = 1) and ∃ i : pi = qi = 1.(3.7)

Such an inequality is a consequence of the inequality (3.2) with p′ ≡ 1− q, q′ ≡ 1− p.
The vectors p′, q′ satisfy the condition (3.3).

We compute the number of inequalities for system (3.2).
Proposition 3.2. The system (3.2) consists of 1

2 (4n−3n−2·2n+3) inequalities.
Proof. There are (2n − 2)2 pairs of vectors p, q satisfying p, q ∈ {0, 1}n \ {0, 1}.

Since for each pair p, q just one of the conditions p≺lex q, p = q, or q≺lex p is true,
the number of the vectors p, q satisfying p, q ∈ {0, 1}n \ {0, 1}, p≺lex q, is equal to
1
2

(
(2n − 2)2 − (2n − 2)

)
= 1

2 (2n − 2)(2n − 3).
Now we focus on condition (3.7) which determines the “bad” cases. For every p, q

define

Ip,q ≡ {i = 1, . . . , n | pi = qi = 1}, Jp,q ≡ {i = 1, . . . , n | pi + qi = 1}.

Vectors p, q ∈ {0, 1}n satisfy (3.7) iff |Ip,q| ≥ 1 and |Ip,q| + |Jp,q| = n. The value(
n
k

)
2n−k identifies the number of p, q ∈ {0, 1}n for which |Ip,q| = k and |Jp,q| = n− k.

Summing up for all k = 1, . . . , n and using binomial expansion of (1 + 2)n we obtain
the number of pairs p, q ∈ {0, 1}n with property (3.7) is equal to

(
n

1

)
2n−1 +

(
n

2

)
2n−2 + · · · +

(
n

n

)
20 = 3n − 2n.
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From this amount we have to exclude the cases when p = 1 or q = 1:

3n − 2n − 2 · (2n − 1) + 1.

Exactly half of them satisfy p≺lex q. Eventually, we obtain the number in question:

1

2
(2n − 2)(2n − 3) − 1

2

(
3n − 2n − 2 · (2n − 1) + 1

)
=

1

2
(4n − 3n − 2 · 2n + 3).

The number of inequalities in (3.2) is exponential, but not as tremendous as by
using Fourier–Motzkin elimination (no better upper bound is known than the double
exponential one). Moreover, system (3.2) is characterized explicitly and is much more
easy to handle.

Concretely, for n = 2 we have only one additional inequality (in comparison to
two inequalities obtained by Fourier–Motzkin elimination [4]), for n = 3 this number
rises up to 12 (cf. [3], [4], [6]; Fourier–Motzkin elimination leads to 44 inequalities).

Example 3.3. For the two-dimensional case, the symmetric solution set is de-
scribed by the system consisting of the Oettli–Prager inequalities (3.1)

aΔ
11|x1| + aΔ

12|x2| + bΔ1 ≥ |−ac11x1 − ac12x2 + bc1|
aΔ
21|x1| + aΔ

22|x2| + bΔ2 ≥ |−ac21x1 − ac22x2 + bc2|

supplemented by only one inequality (3.2)

aΔ
11x

2
1 + aΔ

22x
2
2 + bΔ1 |x1| + bΔ2 |x2| ≥ | − ac11x

2
1 + ac22x

2
2 + bc1x1 − bc2x2|.

In the list below we mention some particular examples. Figures 3.1 and 3.2 illustrate
a solution set (light gray color) and a symmetric solution set (gray color):

1. (Figure 3.1) A =
( [1,2] [0,a]

[0,a] −1

)
, b =

(
2
2

)
; here the interval hull �Σ can be

arbitrarily larger than �Σsym, depending on the real parameter a > 0.

2. (Figure 3.2) A =
( −1 [−5,5]

[−5,5] 1

)
, b =

(
1

[1,3]

)
; here Σ is unbounded, but Σsym

is bounded.

Fig. 3.1. Solution set arbitrarily larger than symmetric solution set, a = 4.
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Fig. 3.2. Unbounded solution set and bounded symmetric solution set.

3. For A =
( [0,1] [1,2]

[1,2] [−1,0]

)
, b =

( [−1,1]
[−1,1]

)
we have Σ = Σsym and both are bounded.

4. For A =
( [−1,1] [0,2]

[0,2] [−1,1]

)
, b =

( [0,1]
[0,1]

)
we have Σ = Σsym and both are un-

bounded.

4. Skew–symmetric solution set. In this section, let us suppose w.l.o.g. that
A = −AT and the diagonal of A is zero. Therefore Ac is skew–symmetric and AΔ is
a symmetric matrix. The description of the skew–symmetric solution set Σskew is a
consequence of Theorem 2.2.

Proposition 4.1. Let r ≡ −Acx + bc. The skew–symmetric solution set Σskew

is described by the following system of inequalities:

AΔ|x| + bΔ ≥ |r|,(4.1)

n∑
i,j=1

aΔ
ij |xixj(pi − qj)| +

n∑
i=1

bΔi |xi(pi + qi)| ≥
∣∣∣∣∣

n∑
i=1

rixi(pi + qi)

∣∣∣∣∣
∀ p, q ∈{0, 1}n \ {0}, p�lex q.(4.2)

Proof. For all A ∈ A and b1, b2 ∈ b we have that 1
2 (A − AT ) ∈ A is a skew–

symmetric matrix and 1
2 (b1 + b2) ∈ b. Thus, Σskew can be equivalently described as

the set of all x ∈ R
n satisfying

Ax = b1,(4.3)

AT (−x) = b2(4.4)

for some A ∈ A, b1, b2 ∈ b. Put y ≡ −x, d ≡ b. Then

r1 = −Acx + bc = −(−Ac)(−x) + bc = −(Ac)T y + dc = r2 ≡ r.
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Apply Theorem 2.2 on system (4.3)–(4.4). We obtain that Σskew is described by (4.1)–
(4.2). To reduce the number of inequalities in (4.2), it is sufficient due to symmetry
to consider only vectors p, q ∈ {0, 1}n \ {0} for which p�lex q.

The number of inequalities in (4.2) is 2n−1(2n − 1) and can be furthermore de-
creased to the number 2n−n− 1; see Theorem 4.2 where we claim that it is sufficient
to consider only such inequalities for which p = q, the others being redundant.

Theorem 4.2. Let r ≡ −Acx + bc. The skew–symmetric solution set Σskew is
described by the following system of inequalities:

AΔ|x| + bΔ ≥ |r|,(4.5)

∑
i<j

aΔ
ij |xixj(pi − pj)| +

n∑
i=1

bΔi |xipi| ≥
∣∣∣∣∣

n∑
i=1

rixipi

∣∣∣∣∣ ∀ p ∈ {0, 1}n \ {0}, p �= ek.

(4.6)

Proof. For given vectors p, q ∈ {0, 1}n denote the inequality (4.2) corresponding
to p, q by Ineq(p, q). Let p, q be fixed, and define vectors s, t ∈ {0, 1}n componentwise
by

si =

{
1 pi = qi = 1,

0 otherwise,
ti =

{
1 (pi = 1) ∨ (qi = 1),

0 otherwise.

We prove that Ineq(p, q) is a consequence of the inequality

1

2

(
Ineq(s, s) + Ineq(t, t)

)
(4.7)

and hence can be omitted.
The right-hand side of the inequality Ineq(p, q) is |

∑
pi=1 rixi +

∑
qi=1 rixi| =

|
∑

si=1 rixi +
∑

ti=1 rixi|, which is not greater than |
∑

si=1 rixi| + |
∑

ti=1 rixi|, the

right-hand side of (4.7). The second sum in Ineq(p, q) is equal to
∑

pi=1 b
Δ
i |xi| +∑

qi=1 b
Δ
i |xi|, which is equal to

∑
si=1 b

Δ
i |xi|+

∑
ti=1 b

Δ
i |xi|, the second sum in (4.7).

To prove the similar relations for the corresponding first sums let us note that diagonal
terms (i.e., when i = j) in Ineq(p, q) are nonnegative, while diagonal terms are zero
in (4.7). We gather the remaining terms into symmetric pairs and show that for each
i < j one has

aΔ
ij |xixj(pi − qj)| + aΔ

ij |xjxi(pj − qi)| ≥
1

2

(
aΔ
ij |xixj(si − sj)| + aΔ

ij |xixj(ti − tj)|
)

+
1

2

(
aΔ
ij |xjxi(sj − si)| + aΔ

ij |xjxi(tj − ti)|
)

= aΔ
ij |xixj(si − sj)| + aΔ

ij |xixj(ti − tj)|.

In fact, we prove a stronger inequality

|pi − qj | + |pj − qi| ≥ |si − sj | + |ti − tj |.
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This can be shown simply by the enumeration of all possible values of pi, pj , qi, and
qj , which is done in the following:

pi pj qi qj |pi − qj | + |pj − qi| si sj ti tj |si − sj | + |ti − tj |
0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 1
0 1 0 0 1 0 0 0 1 1
1 1 0 0 2 0 0 1 1 0
0 0 1 0 1 0 0 1 0 1
1 0 1 0 2 1 0 1 0 2
0 1 1 0 0 0 0 1 1 0
1 1 1 0 1 1 0 1 1 1
0 0 0 1 1 0 0 0 1 1
1 0 0 1 0 0 0 1 1 0
0 1 0 1 2 0 1 0 1 2
1 1 0 1 1 0 1 1 1 1
0 0 1 1 2 0 0 1 1 0
1 0 1 1 1 1 0 1 1 1
0 1 1 1 1 0 1 1 1 1
1 1 1 1 0 1 1 1 1 0

Now we have that the right-hand side of Ineq(p, q) is less or equal to the right-
hand side of (4.7), and the left-hand side of Ineq(p, q) is greater or equal to the
left-hand side of (4.7). Therefore, Ineq(p, q) is redundant, and (4.2) can be replaced
by the system

∑
i<j

aΔ
ij |xixj(pi − pj)| +

n∑
i=1

bΔi |xipi| ≥
∣∣∣∣∣

n∑
i=1

rixipi

∣∣∣∣∣ ∀ p ∈ {0, 1}n \ {0}.(4.8)

The last reduction follows from the fact that for each unit vector p ≡ ek the cor-
responding inequality in (4.8) represents an |xk|-multiple of the kth Oettli–Prager
inequality (4.5).

The resulting number of inequalities in the description is again exponential. But

in comparison with the upper bound 8
(

3
2

)2κ+1

, κ = 1
2n(n + 1), for the final number

of inequalities obtained by Fourier–Motzkin elimination (see [4]), the improvement is
significant. For n = 2, system (4.6) comprises one inequality, and for n = 3 we get
four inequalities. In these cases, Fourier–Motzkin elimination yields two and eight
inequalities, respectively.

Example 4.3. For n = 2, system (4.6) is composed of only one inequality

bΔ1 |x1| + bΔ2 |x2| ≥ |bc1x1 + bc2x2|.

In this two-dimensional case the set Σskew represents a polyhedral set, which is convex
in each orthant (cf. [4]). The following are some particular examples:

1. For A =
( 0 [1,2]

[−2,−1] 0

)
, b =

( [0,2]
[−2,2]

)
we have Σ = Σskew and both are

bounded.
2. For A =

( 0 [−1,1]
[−1,1] 0

)
, b =

( [0,2]
[−2,2]

)
we have Σ = Σskew and both are

unbounded.
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Abstract. We prove global convergence, in exact arithmetic, for the differential quotient differ-
ence algorithm that is currently implemented in LAPACK for the computation of the singular values
of a bidiagonal matrix. Our results cover any shift strategy that preserves positivity. We also show
that the asymptotic rate for the Johnson shift is 3/2.
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1. Introduction. Every n×m real matrix A with rank(A) = r can be decom-
posed into

A = UΣV T

with suitable orthogonal matrices U ∈ Rn×n and V ∈ Rm×m, where

Σ =

(
D Or,m−r

On−r,r On−r,m−r

)
, D = diag(σ1, . . . , σr),

and σ1 ≥ · · · ≥ σr > 0. The notation Ok,l means a k× l zero matrix. The nonzero di-
agonal elements σ1, . . . , σr are the nonzero singular values of A, which play important
roles in application areas. Accordingly, numerical methods for computing singular
values are of great importance in practice.

The singular values of A are equal to the square roots of the eigenvalues of ATA
and hence an iterative computation is inevitable for singular values. Usually, the
given matrix A is first transformed to a bidiagonal matrix to reduce the overall com-
putational cost. In the case of n ≥ m, for example, the matrix A can be transformed,
with appropriate orthogonal matrices Ũ ∈ Rn×n and Ṽ ∈ Rm×m, as

ŨTAṼ =

(
B
On−m,m

)
,

where B ∈ Rm×m is an upper bidiagonal matrix. The singular values of B coincide
with those of A.

Most of the current methods for computing singular values of bidiagonal matrices
are based on the QR algorithm [3]. Demmel and Kahan’s improvement [2] upon the
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QR algorithm, awarded the second SIAM prize in numerical linear algebra, is avail-
able as DBDSQR in LAPACK [1, 10]. The so-called differential quotient difference
algorithm with shifts (dqds) was introduced by Fernando and Parlett in 1994 in [7].
The dqds algorithm has received majority support due to its accuracy, speed, and nu-
merical stability, and is implemented as DLASQ in LAPACK. The dqds is integrated
into multiple relatively robust representations (MR3) algorithm [4, 5, 6]. The dqds
algorithm that is implemented in subroutine DLASQ, and is much faster than the QR
based DBDSQR, has an unusually complicated shift strategy. This strategy evolved
in order to achieve efficiency both in the average case and in the worst case.

Although [7] describes various shift strategies it does not recommend any partic-
ular one, and that aspect is taken up in [13]. Consequently, [7] makes no mention
of global convergence and might leave the impression that this property is in doubt.
As we explain later, in this section, that fear is not warranted but the arguments are
indirect and not readily accessible.

Our objective in this paper is to provide an elegant proof of global convergence
of dqds in the context of exact arithmetic. The way we accomplish this task, without
getting lost in the details of the strategy, is by first establishing global convergence for
any sequence of nonnegative shifts that keeps the matrix entries positive (Theorem
4.1). Our analysis also enables us to give convergence rates for all of the matrix entries
in terms of the accumulated shifts (Theorem 4.2). These are linear, as expected, for
all of the entries except perhaps for the last row. When the accumulated shift con-
verges to the smallest singular value squared, these last entries converge superlinearly.
Furthermore we show that, if the shift is determined by the Johnson bound [9], then
the asymptotic rate of convergence is 1.5 (Theorem 5.6).

Finally, we explain the present status of the convergence proof in some detail,
primarily for the experts. In exact arithmetics, the dqds algorithm is equivalent to
the Cholesky LR method with shifts for the eigenvalue computation of tridiagonal
matrices. A convergence theorem for the latter is given by Rutishauser [15, Satz
2]. It should be noted, however, that the theorem involves a technical assumption
that the case of “disorder of latent roots” is excluded. This means that the theorem
applies in the (generic) case where the Cholesky LR method without shifts does not
result in “disorder of latent roots.” It is important to recognize that the theorem of
Rutishauser [15], as it stands, is a generic convergence theorem which does not claim
convergence in the exceptional case of “disorder of latent roots.” In fact, this point
is fully recognized by Rutishauser [14, 16] with a concrete example:

A =

⎛
⎜⎜⎝

5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎞
⎟⎟⎠ .

This matrix has eigenvalues 10, 5, 2, and 1, whereas the Cholesky LR method (without
shifts) for this matrix converges to diag(10, 1, 5, 2). This example demonstrates that
“disorder of latent roots” does occur, and, accordingly, Rutishauser’s convergence
theorem is indeed a generic convergence theorem.

For tridiagonal symmetric matrices, on the other hand, it is known in the liter-
ature (e.g., [7]) that the Cholesky LR method without shifts converges to a diagonal
matrix with well-ordered diagonal elements. By combining this with Rutishauser’s
theorem mentioned above we can see that the Cholesky LR method with shifts is
guaranteed to converge for tridiagonal symmetric matrices. This implies, in turn, that
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Fig. 1. The rhombus rules.

the dqds method is guaranteed to converge. Thus, a convergence proof of the dqds
method for bidiagonal matrices can be obtained from a combination of known facts.
Compared with this proof, our proof is simple, direct, and self-contained. Moreover,
our proof is flexible enough to be modified to establish theorems about convergence
rates, such as Theorem 5.6 for the Johnson shift.

2. Notation. Assume that the given real matrix A has already been transformed
to a bidiagonal matrix

(2.1) B =

⎛
⎜⎜⎜⎜⎝

b1 b2

b3
. . .

. . . b2m−2

b2m−1

⎞
⎟⎟⎟⎟⎠ .

Following [7], we assume that the matrix is normalized to satisfy the following as-
sumption.

Assumption (A). The bidiagonal elements of B are positive, i.e., bk > 0 for
k = 1, 2, . . . , 2m− 1.This assumption guarantees (see [12]) that the singular values of
B are all distinct: σ1 > · · · > σm > 0.

In our problem setting we have assumed real matrices, whereas the singular value
decomposition is also defined for complex matrices. Our restriction to real matrices is
justified by the fact that any complex matrix can be transformed to a real bidiagonal
matrix by, say, (complex) Householder transformations, while keeping its singular
values [7].

3. The dqds algorithm. In this section, the dqds and related algorithms are
summarized. Before describing the dqds algorithm, we review the pqds algorithm,
which is mathematically equivalent to the dqds and serves as the main target in the
subsequent theoretical analysis. The pqds algorithm is the pqd algorithm where shifts
are incorporated to accelerate the convergence [8, 11, 16]. The pqd algorithm consists
of the so-called rhombus rules (Figure 1).

The pqds algorithm, in computer program form, is shown in Algorithm 3.1. The

outermost loop is terminated when some suitable convergence criterion, say |e(n)
m−1| ≤ ε
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Algorithm 3.1 The pqds algorithm.

Initialization: q
(0)
k = (b2k−1)

2 (k = 1, 2, . . . ,m); e
(0)
k = (b2k)

2 (k = 1, 2, . . . ,m−1)
1: for n := 0, 1, . . . do
2: choose shift s(n)(≥ 0)

3: e
(n+1)
0 := 0

4: for k := 1, . . . ,m− 1 do

5: q
(n+1)
k := q

(n)
k − e

(n+1)
k−1 + e

(n)
k − s(n)

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: end for
8: q

(n+1)
m := q

(n)
m − e

(n+1)
m−1 − s(n)

9: end for

for some prescribed constant ε > 0, is satisfied. At the termination we have

(3.1) σm
2 ≈ q(n)

m +

n−1∑
l=0

s(l),

and hence σm can be approximated by
√

q
(n)
m +

∑n−1
l=0 s(l). Then by the deflation

process the problem is shrunk to an (m−1)×(m−1) problem, and the same procedure
is repeated until σm−1, . . . , σ1 are obtained in turn.

It is convenient to introduce additional subdiagonal elements:

(3.2) e
(n)
0 = 0, e(n)

m = 0 (n = 0, 1, . . .)

to simplify the expression of the algorithm. Put

(3.3) B(n) =

⎛
⎜⎜⎜⎜⎜⎝

b
(n)
1 b

(n)
2

b
(n)
3

. . .

. . . b
(n)
2m−2

b
(n)
2m−1

⎞
⎟⎟⎟⎟⎟⎠

,

b
(0)
k = bk (k = 1, 2, . . . , 2m− 1), and

q
(n)
k = (b

(n)
2k−1)

2 (k = 1, 2, . . . ,m; n = 0, 1, . . .),(3.4)

e
(n)
k = (b

(n)
2k )2 (k = 1, 2, . . . ,m− 1; n = 0, 1, . . .).(3.5)

Then Algorithm 3.1 can be rewritten in terms of the Cholesky decomposition (with
shifts):

(B(n+1))TB(n+1) = B(n)(B(n))T − s(n)I,(3.6)

where B(0) = B. It follows that

(3.7) (B(n))TB(n) = W (n)

(
(B(0))TB(0) −

n−1∑
l=0

s(l)I

)
(W (n))−1,

where W (n) = (B(n−1) · · ·B(0))−T is a nonsingular matrix (see Lemma 3.1). Therefore

the eigenvalues of (B(n))TB(n) are the same as those of (B(0))TB(0) −
∑n−1

l=0 s(l)I. In
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actual computation it is often observed that B(n) converges to a diagonal matrix as
n → ∞, and then, by (3.7), the singular values of B can be obtained from the diagonal
elements of B(n) for sufficiently large n. We give a theoretical proof for the global
convergence in the next section.

The following lemma states that, if s(n) < (σ
(n)
min)2 in each iteration n, where σ

(n)
min

is the smallest singular value of B(n), then the variables in the pqds algorithm are
always positive so that the algorithm does not break down.

Lemma 3.1 (positivity of the variables in the pqds algorithm). Suppose the pqds

algorithm is applied to the matrix B satisfying Assumption (A). If s(n) < (σ
(n)
min)2 (n =

0, 1, 2, . . .), then (B(n))TB(n) are positive definite, and hence q
(n)
k > 0 (k = 1, . . . ,m)

and e
(n)
k > 0 (k = 1, . . . ,m− 1) for n = 0, 1, 2, . . ..

Proof. We prove by induction. Under Assumption (A), we have q
(0)
k > 0, e

(0)
k > 0,

and that (B(0))TB(0) is positive definite. Suppose that (B(n))TB(n) is positive definite

and q
(n)
k > 0, e

(n)
k > 0. By (3.6), if s(n) < (σ

(n)
min)2, then (B(n+1))TB(n+1) is positive

definite because B(n)(B(n))T − s(n)I is positive definite. Therefore all of the diagonal

elements of B are nonzero (b
(n+1)
2k−1 �= 0), and hence q

(n+1)
k > 0 because of (3.4). By

line 6 of Algorithm 3.1, we have e
(n+1)
k > 0.

The dqds algorithm is obtained from the pqds algorithm by introducing the aux-

iliary quantities d
(n+1)
k defined as follows [7]:

(3.8) d
(n+1)
1 = q

(n)
1 − s(n); d

(n+1)
k = q

(n)
k − e

(n+1)
k−1 − s(n) (k = 2, . . . ,m).

The resulting algorithm is presented as Algorithm 3.2. Generally, the dqds algorithm
is more accurate than the pqds algorithm. Since the variables of the dqds algorithm
are positive (see Lemma 3.2) and no subtractions are used in the algorithm except
for computing the shifts, the numerical instability due to a loss of significant digits is
less likely to happen in the dqds algorithm.

Algorithm 3.2 The dqds algorithm.

Initialization: q
(0)
k = (b2k−1)

2 (k = 1, 2, . . . ,m); e
(0)
k = (b2k)

2 (k = 1, 2, . . . ,m−1)
1: for n := 0, 1, . . . do
2: choose shift s(n)(≥ 0)

3: d
(n+1)
1 := q

(n)
1 − s(n)

4: for k := 1, . . . ,m− 1 do

5: q
(n+1)
k := d

(n+1)
k + e

(n)
k

6: e
(n+1)
k := e

(n)
k q

(n)
k+1/q

(n+1)
k

7: d
(n+1)
k+1 := d

(n+1)
k q

(n)
k+1/q

(n+1)
k − s(n)

8: end for
9: q

(n+1)
m := d

(n+1)
m

10: end for

Lemma 3.2 (positivity of the variables in the dqds algorithm). Suppose the dqds

algorithm is applied to the matrix B satisfying Assumption (A). If s(n) < (σ
(n)
min)2 (n =

0, 1, 2, . . .), then (B(n))TB(n) are positive definite, and hence q
(n)
k > 0 (k = 1, . . . ,m),

e
(n)
k > 0 (k = 1, . . . ,m− 1), and d

(n)
k > 0 (k = 1, . . . ,m) for n = 0, 1, 2, . . ..

Proof. By Lemma 3.1, we have e
(n)
k > 0 and q

(n)
k > 0. The inequality d

(n)
k > 0

is proved by contradiction as follows. If we had d
(n)
k ≤ 0 for some k, then we would



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ON CONVERGENCE OF THE DQDS ALGORITHM 527

have d
(n)
k+1 ≤ 0 by line 7 of Algorithm 3.2, and then q

(n)
m = d

(n)
m ≤ 0. This contradicts

q
(n)
m > 0.

4. Convergence of the dqds. In this section,we prove that, for any matrix

B that satisfies Assumption (A), the variables q
(n)
k and e

(n)
k in the dqds algorithm

converge as far as the shift is chosen such that 0 ≤ s(n) < (σ
(n)
min)2, where σ

(n)
min is the

smallest singular value of B(n).
The next theorem establishes the convergence of the dqds. Moreover, the theorem

states that the variables q
(n)
k converge to the square of the singular values minus the

sum of the shifts, and that they are placed in the descending order.
Theorem 4.1 (convergence of the dqds algorithm). Suppose the matrix B sat-

isfies Assumption (A), and the shift in the dqds algorithm is taken so that 0 ≤ s(n) <

(σ
(n)
min)2 holds. Then

(4.1)

∞∑
n=0

s(n) ≤ σm
2.

Moreover,

lim
n→∞

e
(n)
k = 0 (k = 1, 2, . . . ,m− 1),(4.2)

lim
n→∞

q
(n)
k = σk

2 −
∞∑

n=0

s(n) (k = 1, 2, . . . ,m).(4.3)

In matrix form, we have

lim
n→∞

(B(n))TB(n) = diag

(
σ1

2 −
∞∑

n=0

s(n), . . . , σm
2 −

∞∑
n=0

s(n)

)
.

Proof. On the basis of the equivalence between the dqds algorithm and the pqds
algorithm, we show the convergence of the pqds to prove this theorem.

By the assumption and Lemma 3.1, (B(n))TB(n) is a positive-definite symmetric
matrix. It then follows from (3.7) that

(4.4)

N∑
n=0

s(n) < σm
2

holds for any N ≥ 1. In the limit of N → ∞, we obtain (4.1).

Next, we prove limn→∞ e
(n)
k = 0. By Lemma 3.1, we have e

(n)
k > 0. Therefore it

is sufficient to prove
∑∞

n=0 e
(n)
k < +∞. Adding both sides of line 5 of Algorithm 3.1

for over n with k fixed, we obtain

(4.5) q
(n+1)
k = q

(0)
k +

n∑
l=0

e
(l)
k −

n∑
l=0

e
(l+1)
k−1 −

n∑
l=0

s(l) (k = 1, 2, . . . ,m).

Since q
(n+1)
k > 0 by Lemma 3.1, it follows that

(4.6)

n∑
l=0

e
(l+1)
k−1 < q

(0)
k +

n∑
l=0

e
(l)
k −

n∑
l=0

s(l) ≤ q
(0)
k +

n∑
l=0

e
(l)
k (k = 1, 2, . . . ,m).
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Setting k = m in (4.6), we obtain
∑∞

l=0 e
(l+1)
m−1 ≤ q

(0)
m , with the aid of (3.2). Similarly,

setting k = m− 1, m− 2, . . . , 2 in (4.6), we obtain

∞∑
l=0

e
(l+1)
k ≤

m∑
j=k+1

q
(0)
j < +∞ (k = m− 1,m− 2, . . . , 1),

which completes the proof for e
(n)
k .

Next, we prove (4.3). By (4.5) with n → ∞, we see

(4.7) lim
n→∞

q
(n)
k = q

(0)
k + lim

n→∞

n∑
l=0

e
(l)
k − lim

n→∞

n∑
l=0

e
(l+1)
k−1 − lim

n→∞

n∑
l=0

s(l).

Since the right-hand side of (4.7) converges, q
(∞)
k = limn→∞ q

(n)
k exists. Because

limn→∞ e
(n)
k = 0, (3.7) reads

lim
n→∞

W (n)

(
(B(0))TB(0) −

n−1∑
l=0

s(l)I

)
(W (n))−1

= lim
n→∞

(B(n))TB(n) = diag(q
(∞)
1 , . . . , q(∞)

m ),

which shows the convergence of the form

q
(∞)
k = σp(k)

2 −
∞∑
l=0

s(l) (k = 1, . . . ,m),

where p(k) denotes a permutation of indices k (k = 1, . . . ,m). It remains to show

that q
(∞)
k are in the descending order. From line 6 of Algorithm 3.1, we have

e
(n)
k = e

(0)
k

n−1∏
l=0

q
(l)
k+1

q
(l+1)
k

(k = 1, . . . ,m− 1).

Because all of the singular values are distinct, σ1 > · · · > σm, by the assumption, the

limits q
(∞)
1 , . . . , q

(∞)
m are also distinct. Since limn→∞ e

(n)
k = 0, we have

q
(∞)
k > q

(∞)
k+1 (k = 1, 2, . . . ,m− 1).

This completes the proof of Theorem 4.1.
The next theorem states the asymptotic rate of convergence of the dqds algorithm.

Let us define

ρk =
σk+1

2 −
∑∞

n=0 s
(n)

σk
2 −
∑∞

n=0 s
(n)

(k = 1, . . . ,m− 1),(4.8)

r
(n)
k =

(
q
(n)
k +

n−1∑
l=0

s(l)

)
− σk

2 (k = 1, . . . ,m).(4.9)

In view of (3.1), r
(n)
k is the error in the approximated eigenvalue of BTB. Note that

0 < ρk < 1 (k = 1, . . . ,m − 2), and 0 < ρm−1 < 1 if σm
2 −
∑∞

n=0 s
(n) > 0 and

ρm−1 = 0 if σm
2 −
∑∞

n=0 s
(n) = 0.
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Theorem 4.2 (rate of convergence of the dqds algorithm). Under the same
assumption as in Theorem 4.1, we have

lim
n→∞

e
(n+1)
k

e
(n)
k

= ρk (k = 1, . . . ,m− 1),(4.10)

lim
n→∞

r
(n+1)
1

r
(n)
1

= ρ1,(4.11)

lim
n→∞

r
(n+1)
m

r
(n)
m

= ρm−1.(4.12)

Furthermore, if ρk−1 �= ρk (k = 2, . . . ,m− 1), then

(4.13) lim
n→∞

r
(n+1)
k

r
(n)
k

= max{ρk−1, ρk} (k = 2, . . . ,m− 1).

Therefore, e
(n)
k (k = 1, . . . ,m−2) and r

(n)
k (k = 1, . . . ,m−1) are of linear convergence

as n → ∞. The bottommost elements e
(n)
m−1 and r

(n)
m are also of linear convergence

when ρm−1 > 0, i.e., σ2
m −

∑∞
n=0 s

(n) > 0, and of superlinear convergence when
ρm−1 = 0, i.e., σ2

m −
∑∞

n=0 s
(n) = 0.

Proof. From line 6 of Algorithm 3.1, we have

e
(n+1)
k

e
(n)
k

=
q
(n)
k+1

q
(n+1)
k

(k = 1, . . . ,m− 1).

Then (4.10) is obvious from (4.3) and (4.8).

In order to prove the rest of the theorem, we first express r
(n)
k in terms of e

(n)
k

whose asymptotic behavior is now known. From (4.5), we have

(4.14) q
(n)
k +

n−1∑
l=0

s(l) = q
(0)
k +

n−1∑
l=0

e
(l)
k −

n−1∑
l=0

e
(l+1)
k−1 .

From (4.3) and (4.7), we also have

(4.15) σk
2 = q

(∞)
k +

∞∑
l=0

s(l) = q
(0)
k +

∞∑
l=0

e
(l)
k −

∞∑
l=0

e
(l+1)
k−1 .

Subtracting (4.15) from (4.14), we obtain

(4.16) r
(n)
k =

(
q
(n)
k +

n−1∑
l=0

s(l)

)
− σk

2 =

∞∑
l=n

e
(l+1)
k−1 −

∞∑
l=n

e
(l)
k (k = 1, . . . ,m).

Thus, our task is now to evaluate

(4.17)
r
(n+1)
k

r
(n)
k

=

∑∞
l=n+1 e

(l+1)
k−1 −

∑∞
l=n+1 e

(l)
k∑∞

l=n e
(l+1)
k−1 −

∑∞
l=n e

(l)
k
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for k = 1, . . . ,m in the limit of n → ∞. When k = 1, e
(l)
0 vanishes due to (3.2), and

thus

(4.18) lim
n→∞

r
(n+1)
1

r
(n)
1

= lim
n→∞

(
e
(n)
1∑∞

l=n e
(l)
1

·
∑∞

l=n+1 e
(l)
1

e
(n+1)
1

· e
(n+1)
1

e
(n)
1

)
= ρ1,

which is the claim (4.10). In the calculation above, we used the identity

lim
n→∞

∑∞
l=n e

(l)
k

e
(n)
k

=

∞∑
l=0

lim
n→∞

(
e
(n+l)
k

e
(n)
k

)
=

∞∑
l=0

(ρk)
l =

1

1 − ρk
(4.19)

(k = 1, . . . ,m− 1),

which is obtained from (4.10). The claim (4.12) can be proved in a similar manner.
In the cases where k = 2, . . . ,m−1, the assumption ρk−1 �= ρk (k = 2, . . . ,m−1)

is required. First, let us fix some k and consider the case ρk−1 > ρk. In this case, an
identity

(4.20) lim
n→∞

e
(n)
k

e
(n)
k−1

= 0

holds, because

lim
n→∞

⎧⎨
⎩
(
e
(n+1)
k

e
(n+1)
k−1

)
·
(

e
(n)
k

e
(n)
k−1

)−1
⎫⎬
⎭ = lim

n→∞

{(
e
(n+1)
k

e
(n)
k

)
·
(

e
(n)
k−1

e
(n+1)
k−1

)}
=

ρk
ρk−1

< 1.

Therefore, from (4.19) and (4.20) we obtain

(4.21) lim
n→∞

∑∞
l=n e

(l)
k

e
(n)
k−1

= lim
n→∞

(
e
(n)
k

e
(n)
k−1

·
∑∞

l=n e
(l)
k

e
(n)
k

)
= 0,

which then yields

lim
n→∞

∑∞
l=n+1 e

(l+1)
k−1 −

∑∞
l=n+1 e

(l)
k

e
(n+1)
k−1

= lim
n→∞

(∑∞
l=n+1 e

(l)
k−1

e
(n+1)
k−1

− 1 −
∑∞

l=n+1 e
(l)
k

e
(n+1)
k−1

)

=
1

1 − ρk−1
− 1

=
ρk−1

1 − ρk−1

with (4.19). Finally, we obtain

lim
n→∞

r
(n+1)
k

r
(n)
k

= lim
n→∞

∑∞
l=n+1 e

(l+1)
k−1 −

∑∞
l=n+1 e

(l)
k∑∞

l=n e
(l+1)
k−1 −

∑∞
l=n e

(l)
k

(4.22)

= lim
n→∞

{
(
∑∞

l=n+1 e
(l+1)
k−1 −

∑∞
l=n+1 e

(l)
k )/e

(n+1)
k−1

(
∑∞

l=n e
(l+1)
k−1 −

∑∞
l=n e

(l)
k )/e

(n)
k−1

·
e
(n+1)
k−1

e
(n)
k−1

}

= ρk−1.
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When ρk−1 < ρk, a similar argument leads us to the same conclusion with ρk−1

replaced by ρk. This completes the proof.
Remark 1. When ρk−1 = ρk, considering the ratio (4.17) does not make sense,

since the numerator and the denominator can oscillate around zero. Instead, we can
show a weaker claim as follows. From (4.16) we have

r
(n)
k =

∑∞
l=n+1 e

(l)
k−1

e
(n+1)
k−1

· e(n+1)
k−1 −

∑∞
l=n e

(l)
k

e
(n)
k

· e(n)
k .

Moreover, from (4.10) we see, for any small ε > 0,

|e(n)
k−1| ≤ O((ρk−1 + ε)n), |e(n)

k | ≤ O((ρk + ε)n).

Thus, in case of ρk−1 = ρk, we obtain

|r(n)
k | ≤ O((ρk + ε)n) (k = 2, . . . ,m− 1)

from (4.19). That is, the convergence is at least linear and can be even better occa-
sionally.

5. Convergence rate of the dqds with the Johnson bound. In this section,
we prove that the asymptotic rate of convergence of the dqds algorithm is 1.5 if the
shift is determined by the Johnson bound [9]. In the proofs we will work with the
pqds in place of the dqds, as we did in the previous section.

Though the Johnson bound is valid for a general matrix, we present here its
version for a bidiagonal matrix B.

Lemma 5.1 (Johnson bound [9]). For a matrix B of the form (2.1), define

λ = min
k=1,...,m

{
| b2k−1 | −| b2k−2 | + | b2k |

2

}
,

where b0 = b2m = 0, and let σm denote the smallest singular value of B. Then
σm ≥ λ. Moreover, if the subdiagonal elements (b2, b4, . . . , b2m−2) are nonzero, then
σm > λ.

With reference to (3.3), (3.4), and (3.5), we define the shift by the Johnson bound
as follows:

λ(n) = min
k=1,...,m

{√
q
(n)
k − 1

2

(√
e
(n)
k−1 +

√
e
(n)
k

)}
,(5.1)

s(n) =
(
max{λ(n), 0}

)2
.(5.2)

This choice of the shift guarantees the condition 0 ≤ s(n) < (σ
(n)
min)2 in each iteration

n, and hence the dqds is convergent by Theorem 4.1. The precise rate of convergence
can be revealed through a scrutiny of the shift.

The next lemma shows that the Johnson bound λ(n) is determined solely by

q
(n)
m and e

(n)
m−1 when n is large enough. As a corollary of this fact we see that q

(n)
m

approaches zero.
Lemma 5.2. Under Assumption (A), consider the dqds with the shift (5.2). For

all sufficiently large n, we have

(5.3) λ(n) =

√
q
(n)
m − 1

2

√
e
(n)
m−1.
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That is to say, the minimum of the right-hand side of (5.1) is attained at k = m.

Proof. Let k < m, and consider the identity

[√
q
(n)
k − 1

2

(√
e
(n)
k−1 +

√
e
(n)
k

)]
−
[√

q
(n)
m − 1

2

(√
e
(n)
m−1 +

√
e
(n)
m

)]

=

(√
q
(n)
k −

√
q
(n)
m

)
− 1

2

(√
e
(n)
k−1 +

√
e
(n)
k −

√
e
(n)
m−1 −

√
e
(n)
m

)
.

From Theorem 4.1, the first term on the right-hand side remains positive:

lim
n→∞

(√
q
(n)
k −

√
q
(n)
m

)
=

√√√√σk
2 −

∞∑
n=0

s(n) −

√√√√σm
2 −

∞∑
n=0

s(n) > 0,

while the second term vanishes since limn→∞ e
(n)
k = 0 for each k. Thus the minimum

on the right-hand side of (5.1) is attained at k = m.

Lemma 5.3. Under the same assumption as in Lemma 5.2, we have

∞∑
n=0

s(n) = σm
2,(5.4)

lim
n→∞

q
(n)
k = σk

2 − σm
2 (k = 1, . . . ,m− 1); lim

n→∞
q(n)
m = 0.(5.5)

Proof. By (5.3) and (4.2), limn→∞ λ(n) = limn→∞

√
q
(n)
m ≥ 0, and hence

lim
n→∞

s(n) = lim
n→∞

(max{λ(n), 0})2 = lim
n→∞

q(n)
m .

Since limn→∞ s(n) = 0 by (4.1), we have limn→∞ q
(n)
m = 0. This, together with (4.3),

proves (5.4) and (5.5).

The next lemma shows λ(n) > 0 for all sufficiently large n.

Lemma 5.4 (positivity of the Johnson bound in the dqds). Under the same
assumption as in Lemma 5.2, there exists an integer N such that λ(n) > 0 for all
n > N .

Proof. The proof consists of showing two facts: (i) For every integer N ′, there
exists n > N ′ such that λ(n) > 0; (ii) There exists an integer N ′′ such that, for all
n > N ′′, λ(n) > 0 implies λ(n+1) > 0.

(i) The proof is done by contradiction. Suppose that there exists some N ′ such
that λ(n) ≤ 0 for every n > N ′. Then s(n) = 0 (for all n > N ′), and by (4.3) and
(4.4) in Theorem 4.1, we have

lim
n→∞

q(n)
m = σm

2 −
∞∑

n=0

s(n) = σm
2 −

N ′∑
n=0

s(n) > 0,

which contradicts Lemma 5.3.

(ii) Assume λ(n) > 0 for some large n such that (5.3) holds. In this case, s(n) =
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(λ(n))2 and

q(n+1)
m = q(n)

m − e
(n+1)
m−1 − s(n)(5.6)

=

√
e
(n)
m−1q

(n)
m − e

(n+1)
m−1 − 1

4
e
(n)
m−1

>
1

2

√
e
(n)
m−1q

(n)
m − e

(n+1)
m−1

=

√
e
(n+1)
m−1

(
1

2

√
q
(n+1)
m−1 −

√
e
(n+1)
m−1

)
,

where line 5 of Algorithm 3.1 is used in the first equality, (5.3) in the second equality,

the assumption λ(n) > 0
(
i.e.,
√
q
(n)
m > 1

2

√
e
(n)
m−1

)
in the inequality, and line 6 of

Algorithm 3.1 in the last equality. From (5.6) it follows that

√
q
(n+1)
m−1 >

5

2

√
e
(n+1)
m−1 =⇒ q(n+1)

m >
1

4
e
(n+1)
m−1 ⇐⇒ λ(n+1) > 0.

Since limn→∞ q
(n+1)
m−1 > 0 and limn→∞ e

(n+1)
m−1 = 0, there exists an integer N ′′ such

that the first inequality holds for all n > N ′′.
Using Lemmas 5.2 and 5.4, we see that for sufficiently large n the shift is given

as follows.
Lemma 5.5 (shift in the dqds). Under the same assumption as in Lemma 5.2,

we have

(5.7) s(n) = (λ(n))2 = q(n)
m −

√
e
(n)
m−1q

(n)
m +

1

4
e
(n)
m−1 > 0

for all sufficiently large n.
We are now in position to prove that the rate of convergence of the dqds is 1.5.

The next theorem refers only to the lower right two elements of B(n), and the error
in the approximation of the smallest eigenvalue of BTB. This is sufficient from the
practical point of view since whenever the lower right elements converge to zero, the
deflation is applied to reduce the matrix size.

Theorem 5.6 (rate of convergence of the dqds). Suppose the dqds algorithm with
the Johnson bound is applied to a matrix B that satisfies Assumption (A). Then we
have

(5.8) lim
n→∞

e
(n+1)
m−1

(e
(n)
m−1)

3/2
=

1√
σm−1

2 − σm
2
,

(5.9) lim
n→∞

q
(n+1)
m

(q
(n)
m )3/2

=
1√

σm−1
2 − σm

2
,

(5.10) lim
n→∞

r
(n+1)
m

(r
(n)
m )3/2

=
1√

σm−1
2 − σm

2
.

That is, the rate of convergence is 1.5. Hence, by (3.3), the lower right two elements

of B(n), i.e., b
(n)
2m−2 and b

(n)
2m−1, converge to 0 with the rate of 1.5. The error in the
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approximation of the smallest eigenvalue of BTB also converges to 0 with the same
rate. Moreover, we have

lim
n→∞

√
e
(n)
m−1

q
(n)
m

=
1√

σm−1
2 − σm

2
,(5.11)

lim
n→∞

r
(n)
m

e
(n)
m−1

= 0.(5.12)

Proof. First, we compute the rate of convergence of e
(n)
m−1. By Lemma 5.5 the

shift is determined by (5.7) for sufficiently large n, and we have

(5.13) q(n+1)
m =

√
e
(n)
m−1q

(n)
m − e

(n+1)
m−1 − 1

4
e
(n)
m−1

from the second equality in (5.6). We also have

(5.14) q(n+1)
m = q

(n+2)
m−1 e

(n+2)
m−1 /e

(n+1)
m−1 , q(n)

m = q
(n+1)
m−1 e

(n+1)
m−1 /e

(n)
m−1,

from the 6th line of Algorithm 3.1. Thus we have

e
(n+2)
m−1

(e
(n+1)
m−1 )3/2

=
q
(n+1)
m

q
(n+2)
m−1

·

√√√√ q
(n+1)
m−1

e
(n)
m−1q

(n)
m

(5.15)

=

√
q
(n+1)
m−1

q
(n+2)
m−1

⎛
⎝1 −

e
(n+1)
m−1√

e
(n)
m−1q

(n)
m

−
e
(n)
m−1

4

√
e
(n)
m−1q

(n)
m

⎞
⎠

=

√
q
(n+1)
m−1

q
(n+2)
m−1

⎛
⎝1 −

√
e
(n+1)
m−1√
q
(n+1)
m−1

− 1

4

√
q
(n+1)
m−1

·
e
(n)
m−1√
e
(n+1)
m−1

⎞
⎠ .

The first equality is from (5.14), the second one is from (5.13), and the last one is
from the second equation of (5.14). In the rest of this paragraph, we prove that the
value in the parentheses on the right-hand side of (5.15) converges to 1. First, note

that limn→∞ q
(n+1)
m−1 > 0 by (5.5). By (4.2), limn→∞ e

(n+1)
m−1 = 0, and hence the second

term in the parentheses converges to 0. As for the third term, we see

e
(n+1)
m−1 =

e
(n)
m−1

q
(n+1)
m−1

· q(n)
m ≥

√
q
(n)
m−1 − 2

√
e
(n)
m−1

2q
(n+1)
m−1

(
e
(n)
m−1

)3/2

from (5.14) and (5.6) (with n + 1 replaced by n). Thus, from (4.2) and (5.5) we see
that

lim
n→∞

e
(n)
m−1√
e
(n+1)
m−1

≤ lim
n→∞

⎛
⎝
√
q
(n)
m−1 − 2

√
e
(n)
m−1

2q
(n+1)
m−1

⎞
⎠

−1/2 (
e
(n)
m−1

)1/4
= 0,

and hence the value in the parentheses on the right-hand side of (5.15) converges to
1. By using this, together with (5.5), we obtain the claim (5.8):

(5.16) lim
n→∞

e
(n+1)
m−1

(e
(n)
m−1)

3/2
= lim

n→∞

√
q
(n+1)
m−1

q
(n+2)
m−1

=
1√

σm−1
2 − σm

2
.
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Next, by the second equation in (5.14), and by (5.5) and (5.16), we obtain the
claim (5.11):

lim
n→∞

q
(n)
m√
e
(n)
m−1

= lim
n→∞

q
(n+1)
m−1

e
(n+1)
m−1

(e
(n)
m−1)

3/2
=
√
σm−1

2 − σm
2,

which then immediately yields the claim (5.9):

lim
n→∞

q
(n+1)
m

(q
(n)
m )3/2

= lim
n→∞

q
(n+1)
m√
e
(n+1)
m−1

⎛
⎝ q

(n)
m√
e
(n)
m−1

⎞
⎠

−3/2(
e
(n+1)
m−1

(e
(n)
m−1)

3/2

)1/2

= (σm−1
2 − σm

2)1/2−3/4−1/4

= (σm−1
2 − σm

2)−1/2.

Finally, we prove the claims concerning r
(n)
m . By (3.2), (4.16), and (4.19), we see

(5.17) lim
n→∞

r
(n)
m

e
(n+1)
m−1

= lim
n→∞

∑∞
l=n e

(l+1)
m−1

e
(n+1)
m−1

=
1

1 − ρm−1
= 1,

where in the last equality we used the fact that ρm−1 = 0, which follows from (4.8)
and (5.4). Then, by (4.10) we immediately obtain the claim (5.12):

lim
n→∞

r
(n)
m

e
(n)
m−1

= lim
n→∞

(
e
(n+1)
m−1

e
(n)
m−1

· r
(n)
m

e
(n+1)
m−1

)
= ρm−1 = 0.

The claim (5.10) also follows from (5.17) as

lim
n→∞

r
(n+1)
m

(r
(n)
m )3/2

= lim
n→∞

e
(n+2)
m−1

(e
(n+1)
m−1 )3/2

=
1√

σm−1
2 − σm

2
.

6. A numerical experiment. In this section, a simple numerical experiment
is presented to illustrate the theory. We consider an m × m symmetric tridiagonal
matrix

T =

⎛
⎜⎜⎜⎜⎝

a b 0

b a
. . .

. . .
. . . b

0 b a

⎞
⎟⎟⎟⎟⎠ ,(6.1)

the eigenvalues of which are

a + 2b cos

(
πk

m + 1

)
(k = 1, . . . ,m).

The parameters are taken as m = 10, a = 1.0, and b = 0.2, which makes T positive
definite. The dqds algorithm is applied to the bidiagonal matrix B obtained from the
Cholesky decomposition of T .
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√
(σm−1

2 − σm
2)−1
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20

25

0 1 2 3 4 5 6 7 8 9

Iterations n

Fig. 2. Convergence of α(n), β(n), and γ(n).

Table 1

Critical index k∗ for the Johnson bound (5.1) in the dqds algorithm.

n 0 1 2 3 4 5 6 7 8 9
k∗ 9 9 10 10 10 10 10 10 10 10

In view of Theorem 5.6, we define

α(n) =
e
(n+1)
m−1

(e
(n)
m−1)

3/2
, β(n) =

q
(n+1)
m

(q
(n)
m )3/2

, γ(n) =
r
(n+1)
m

(r
(n)
m )3/2

,

which should converge to the constant 1/
√

(σm−1
2 − σm

2) according to the theory.
The result is shown in Figure 2. The solid line ( ) shows α(n), the dashed line
( ) shows β(n), and the dashed-dotted line ( ) shows γ(n). The dotted line ( )
shows 1/

√
(σm−1

2 − σm
2) = 4.60 in this problem setting. The solid line, the dashed

line, and the dashed-dotted line approach the dotted line in Figure 2.

In Figure 3, e
(n)
m−1, q

(n)
m , and r

(n)
m are plotted in the single logarithmic graph. The

solid line shows e
(n)
m−1, the dashed line shows q

(n)
m , and the dashed-dotted line shows

r
(n)
m . The variables e

(n)
m−1, q

(n)
m , and r

(n)
m converge to zero. By Figures 2 and 3 we

can say that the rate of convergence is 1.5. Table 1 presents the index k = k∗, which
attains the minimum on the right-hand side of (5.1). If λ(n) < 0, then k∗ is defined to
be 0. The result shows that k∗ = m for n ≥ 2, which is consistent with Lemma 5.5.
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LOW RANK PERTURBATION OF WEIERSTRASS STRUCTURE∗

FERNANDO DE TERÁN† , FROILÁN M. DOPICO† , AND JULIO MORO†

Abstract. Let A0 + λA1 be a regular matrix pencil, and let λ0 be one of its finite eigenvalues
having g elementary Jordan blocks in the Weierstrass canonical form. We show that for most matrices
B0 and B1 with rank (B0 +λ0B1) < g there are g−rank (B0 +λ0B1) Jordan blocks corresponding to
the eigenvalue λ0 in the Weierstrass form of the perturbed pencil A0+B0+λ(A1+B1). If rank (B0+
λ0B1)+rank (B1) does not exceed the number of λ0-Jordan blocks in A0 +λA1 of dimension greater
than one, then the λ0-Jordan blocks of the perturbed pencil are the g−rank (B0 +λ0B1)−rank (B1)
smallest λ0-Jordan blocks of A0 +λA1, together with rank (B1) blocks of dimension one. Otherwise,
all g−rank (B0+λ0B1) λ0-Jordan blocks of the perturbed pencil are of dimension one. This happens
for any pair of matrices B0 and B1 except those in a proper algebraic submanifold in the set of matrix
pairs. If A0 + λA1 has an infinite eigenvalue, then the corresponding result follows from considering
the zero eigenvalue of the dual pencils A1 + λA0 and A1 + B1 + λ(A0 + B0).

Key words. regular matrix pencils, Weierstrass canonical form, low rank perturbations, matrix
spectral perturbation theory
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1. Introduction. The change of the Jordan structure of a matrix A under per-
turbations B of low rank has been recently studied by several authors [5, 7, 8, 9, 10].
It is known that if λ0 is one of the eigenvalues of A having g elementary Jordan blocks
in the Jordan canonical form of A, then for most matrices B satisfying rank (B) < g,
the Jordan blocks of A + B with eigenvalue λ0 are just the g − rank (B) smallest
Jordan blocks of A with eigenvalue λ0. As far as we know, this generic behavior was
first proved in [5] and again in [7] and [8, 9, 10]. The proof in [7] uses only elementary
linear algebra results, and allows us to explicitly characterize the set of perturbation
matrices B for which this generic behavior does not happen. This is done through a
scalar determinantal equation involving B and some of the λ0-eigenvectors of A. Thus,
this behavior can be properly termed as generic, since it happens for any perturbation
matrix B except those belonging to a proper algebraic submanifold in the set of n×n
matrices of given rank. It is interesting to note that the result in [5] remains valid for
infinite dimensional compact linear operators in Banach spaces.

The purpose of this paper is to study which is the generic change of the Weierstrass
canonical form [4] of a regular n × n pencil of matrices A0 + λA1 under a low rank
perturbation B0 + λB1. We will see that this change is rather different from the
change described above for matrices. The regular matrix pencil A0+λA1 may have an
infinite eigenvalue, whose Jordan blocks in the Weiertrass canonical form are precisely
the Jordan blocks associated with the zero eigenvalue in the Weierstrass form of the
dual pencil A1 + λA0. Therefore, we may focus on finite eigenvalues of A0 + λA1.
The perturbation results for the infinite eigenvalue follow from results for the zero
eigenvalue of the dual pencil.
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Let λ0 be a finite eigenvalue with geometric multiplicity g of the regular n × n
matrix pencil A0 + λA1. Recall that a pencil is regular if the polynomial det(A0 +
λA1) in λ is not identically zero, and that the geometric multiplicity of λ0 is g =
dim ker(A0 + λ0A1), where ker denotes the null space. The elementary inequalities
rank(C + D) ≤ rank(C) + rank(D) and rank(C) ≤ rank(C + D) + rank(D), valid for
any pair of matrices C and D, lead to

rank(A0 + λ0A1 + B0 + λ0B1) ≤ rank(A0 + λ0A1) + rank(B0 + λ0B1),

rank(A0 + λ0A1) ≤ rank(A0 + λ0A1 + B0 + λ0B1) + rank(B0 + λ0B1).

Combining both inequalities, one gets

(1.1) g−rank(B0+λ0B1) ≤ dim ker(A0+λ0A1+B0+λ0B1) ≤ g+rank(B0+λ0B1).

Therefore, whenever

(1.2) rank(B0 + λ0B1) < g,

the eigenvalue λ0 of A0 + λA1 stays as an eigenvalue of the perturbed pencil

(1.3) A0 + B0 + λ(A1 + B1).

As a consequence, by “low” rank perturbation we will mean in what follows that
B0 and B1 satisfy (1.2), a condition which depends on the particular eigenvalue λ0

we are considering. It is well known that for a regular pencil L0 + λL1 the number
of Jordan blocks associated with λ0 in its Weierstrass canonical form is equal to
dim ker(L0 + λ0L1). Therefore, assuming that (1.3) is still regular, (1.1) implies that
the perturbation B0 + λB1 can destroy at most rank(B0 + λ0B1) Jordan blocks of
A0 + λA1, and can create at most rank(B0 + λ0B1) new Jordan blocks associated
with the finite eigenvalue λ0 of A0 + λA1. This allows many different choices for
the number and dimensions of the Jordan blocks appearing in the Weierstrass form
of A0 + B0 + λ(A1 + B1). The goal of this work is to find out which is the generic
behavior in this respect.1

The result we present depends on two quantities for each eigenvalue λ0, namely

ρ0 = rank(B0 + λ0B1) and ρ1 = rank(B1).

Assuming that condition (1.2) holds, we will prove that for generic matrices B0 and B1

there are precisely g−ρ0 Jordan blocks associated with λ0 in the Weierstrass canonical
form of the perturbed pencil (1.3). Moreover, if we denote by d0 the number of Jordan
blocks in A0 + λA1 with eigenvalue λ0 of dimension greater than one, we will prove
that whenever ρ0 + ρ1 ≤ d0, the largest ρ0 Jordan blocks of A0 +λA1 associated with
λ0 disappear, and the second-largest ρ1 blocks of λ0 turn into 1× 1 blocks, while the
rest of the Jordan blocks of λ0 in A0 +λA1 remain as Jordan blocks in the perturbed
pencil (1.3). If ρ0+ρ1 > d0, then there will be only 1×1 blocks corresponding to λ0 in
the Weierstrass form of (1.3). This generic behavior coincides with the one previously
described for low rank perturbations of the Jordan canonical form of matrices in the
case B1 = 0, while it is rather different when B1 �= 0. Describing this behavior and
proving that it is generic is our major contribution.

1The assumption that A0 +B0 + λ(A1 +B1) is a regular pencil holds except for very particular
choices of B0 and B1.
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540 F. DE TERÁN, F. M. DOPICO, AND J. MORO

Inequality (1.1) makes clear that B0 + λ0B1 is bound to play a relevant role
in the perturbation of the Weierstrass structure, since it determines the geometric
multiplicity of λ0 in (1.3). To understand why B1 plays a separate role on its own,
recall that a Jordan chain of A0 + λA1 of length s associated with λ0 satisfies the
equations (A0 + λ0A1)v1 = 0 and (A0 + λ0A1)vk = A1vk−1 for 2 ≤ k ≤ s. Therefore,
it is expected that perturbing A1 affects to the length of the Jordan chains. In plain
words, the generic behavior described above corresponds to a cooperation between
B0 +λ0B1 and B1 to destroy some of the blocks, and to decrease the dimension of as
many of the largest Jordan blocks as possible, while still fulfilling the constraint (1.1)
on the geometric multiplicity.

The results obtained in the present paper, as those in [7], are valid for perturba-
tions of any size satisfying the low rank condition (1.2), i.e., they are not first-order
perturbation results. Notice also that we are not paying attention to the perturbation
of the eigenvalues corresponding to the destroyed Jordan blocks. First order pertur-
bation results for this problem are enumerated in [6] for general matrix polynomials,
and, more recently, in [2]. In [13] first order multiparametric perturbations have been
considered for multiple semisimple eigenvalues. Several perturbation bounds, valid for
perturbations of finite size, appear in [11], but they do not apply to multiple defective
eigenvalues, except in the case of some Gerschgorin-like inclusion regions.

Now, we summarize the Weierstrass canonical form of a regular pencil [4], and
introduce some notation to be used throughout the paper. For any regular n × n
complex matrix pencil A0 + λA1 having λ0 as one of its eigenvalues, there exist
nonsingular n× n matrices P and Q, independent of λ, such that

(1.4) Q(A0 + λA1)P = diag(Jn1
(−λ0), . . . , Jng

(−λ0), J̃ , I∞) + λ diag(I1, I2, N),

where diag(C,E) denotes a block diagonal matrix with square diagonal blocks C and
E; Jni(−λ0) stands for a Jordan block of dimension ni with −λ0 on the main diagonal;

J̃ is a matrix in Jordan canonical form corresponding to the other finite eigenvalues
of the pencil; and N is a matrix in Jordan canonical form whose eigenvalues are
all equal to zero. N contains the spectral structure of the infinite eigenvalue of the
pencil. Finally, I1, I2 and I∞ are identity matrices of matching dimensions to those
of diag(Jn1

(−λ0), . . . , Jng
(−λ0)), J̃ and N , respectively. The right-hand side of (1.4)

is the Weierstrass canonical form of the pencil A0 + λA1, and it is unique up to
permutation of the diagonal Jordan blocks. The Weierstrass canonical form displays
all of the spectral information of the regular pencil A0 + λA1. From (1.4), one can
easily see that the geometric multiplicity of λ0 is g and its algebraic multiplicity is

(1.5) aA0+λA1(λ0) = n1 + · · · + ng.

Without loss of generality, we assume the dimensions ni to be ordered decreasingly,
i.e.,

(1.6) n1 ≥ n2 ≥ · · · ≥ ng.

The paper is organized as follows: Section 2 contains one of the main results
(Theorem 2.2) concerning the change of the Weierstrass structure. It gives a lower
bound on the algebraic multiplicity associated with each eigenvalue in the perturbed
pencil, and suggests that the generic behavior for the Jordan blocks of the perturbed
pencil is the one happening when this lower bound is attained. In section 3, we prove
that this behavior is indeed generic by showing that it holds for all perturbations
except those in a proper algebraic submanifold in the set of matrix pencils. Finally,
Theorem 3.3 summarizes the results obtained throughout this paper.
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2. Lower bounds on the algebraic multiplicities and the dimensions of
Jordan blocks in the perturbed pencil. Throughout this section we follow a
notation consistent with (1.5), and denote by

(2.1) aR(λ)(λ0)

the algebraic multiplicity of the eigenvalue λ0 in the regular matrix pencil R(λ). Our
aim is to determine the generic Weierstrass structure of λ0 in a perturbed matrix
pencil A0 + B0 + λ(A1 + B1), starting from the structure of this eigenvalue in the
unperturbed pencil A0 + λA1. For this, we need to know aA0+B0+λ(A1+B1)(λ0), as
well as how this algebraic multiplicity is distributed among the Jordan blocks of
λ0. At least two approaches are possible to solve this problem. First, one can start
with Jordan chains of A0 + λA1 associated with λ0, and then explicitly build new
Jordan chains for λ0 in A0 + B0 + λ(A1 + B1), exhausting the algebraic multiplicity
aA0+B0+λ(A1+B1)(λ0). This approach was used in [7, 8, 9] for the standard eigenvalue
problem A − λI. It has the advantage of providing the new Jordan chains, and the
drawback of being rather intricate in the case of pencils. In this paper we use a simpler
approach: First, we determine lower bounds on the number and the dimensions of
the Jordan blocks associated with λ0 in the perturbed pencil. This method, based
on a result by Thompson [12], involves the use of the invariant factors of the pencils.
Then, we prove that the generic behavior corresponds to the case when these lower
bounds are attained.

We begin by recalling that the rank of an arbitrary matrix pencil, regular or
singular, T (λ) = T0 + λT1 is r if all of the minors of T (λ) of dimension greater
than r are identically equal to zero, but T (λ) has minors of dimension r which are
polynomials in λ not identically equal to zero. As a consequence, the rank of a regular
n× n matrix pencil is equal to n.

The next auxiliary lemma is a consequence of [12, Theorem 1]. It establishes
lower bounds on the number and dimensions of the Jordan blocks in the Weierstrass
form of a regular matrix pencil (R+T )(λ), where R(λ) is a regular matrix pencil and
T (λ) is any pencil of rank r.

Lemma 2.1. Let R(λ) = R0 + λR1 be a complex regular square pencil, and
T (λ) = T0 + λT1 be another complex pencil of the same dimension with rank at most
r. Let λ0 be an eigenvalue of R(λ) with g associated Jordan blocks of dimensions
d1 ≥ · · · ≥ dg in the Weierstrass form of R(λ). If (R + T )(λ) is also a regular
pencil and r ≤ g, then in the Weierstrass form of (R + T )(λ) there are at least g − r
Jordan blocks associated with λ0 of dimensions βr+1 ≥ · · · ≥ βg such that βi ≥ di for
r + 1 ≤ i ≤ g.

Proof. First, let us assume that the rank of T (λ) is exactly r. We begin by proving
that any pencil T (λ) of rank r is the sum of r singular pencils of rank 1. This can be
seen by using the Kronecker canonical form of singular pencils [4, Chapter XII]. Let
K0 + λK1 be the Kronecker canonical form of T (λ) = T0 + λT1, and write K0 + λK1

as the sum of the following matrices:

1. For any singular block Lk of dimension k × (k + 1) appearing in K0 + λK1

[4, p. 39], we have that Lk = L
(1)
k + · · · + L

(k)
k , where the jth row of L

(j)
k is equal to

the jth row of Lk, and the rest of the rows of L
(j)
k are zero. Therefore Lk is the sum

of k singular pencils with rank 1.
2. An analogous expression holds for any singular block LT

p of dimension (p +
1) × p appearing in K0 + λK1.
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3. Finally, for the m×m regular part F (λ) = F0 + λF1 of K0 + λK1, we have
again that F (λ) = F (1) + · · ·+F (m), where F (j) has the jth row equal to the jth row
of F (λ) and the rest of the rows of F (j) are zero. Therefore F (λ) is the sum of m
singular pencils with rank 1.

The pencil K0 + λK1 can be expressed as the sum of r singular pencils of rank
1 just by combining the previous expansions of its singular blocks and of its regular
part. The same holds for T (λ) because it is strictly equivalent to K0 + λK1. Let this
decomposition be

T (λ) = T1(λ) + · · · + Tr(λ),

where rankTi(λ) = 1 for 1 ≤ i ≤ r.
For any n× n regular pencil P (λ) = P0 + λP1, we denote by

hn(P )|hn−1(P )| · · · |h1(P )

its invariant polynomials [3, Chapter VI], also called invariant factors. As usual,
hn(P )|hn−1(P ) means that hn(P ) divides hn−1(P ). Notice also that h1(P ) �= 0
because the pencil is regular.

Let

(λ− λ0)
dg |(λ− λ0)

dg−1 | · · · |(λ− λ0)
d1

be the elementary divisors [3, Chapter VI] of R(λ) associated with λ0. Each elemen-
tary divisor (λ − λ0)

di corresponds to a Jordan block of λ0 of dimension di in the
Weierstrass form of R(λ). It is well known that

(λ− λ0)
d1 |h1(R)

(λ− λ0)
d2 |h2(R)

...
...

...

(λ− λ0)
dg |hg(R).

Now, consider the sequence of pencils R(λ), R(λ)+T1(λ), R(λ)+T1(λ)+T2(λ), . . . ,
R(λ) + T (λ), and note that each of them is a rank 1 perturbation of the preceding
one. Applying [12, Theorem 1]2 to this sequence leads to

(λ− λ0)
dr+1 |hr+1(R)|hr(R + T1)| . . . |h1(R + T ),

(λ− λ0)
dr+2 |hr+2(R)|hr+1(R + T1)| . . . |h2(R + T ),

...
...

...
...

(λ− λ0)
dg |hg(R)|hg−1(R + T1)| . . . |hg−r(R + T ),

where h1(R+T ) �= 0 because the pencil (R+T )(λ) is regular. These divisibility chains
mean that the pencil (R+T )(λ) has at least g−r elementary divisors associated with
λ0:

(λ− λ0)
βg |(λ− λ0)

βg−1 | · · · |(λ− λ0)
βr+1 ,

2Theorem 1 in [12] states that if P (λ) and Q(λ) are n × n matrix polynomials with in-
variant polynomials hn(P )|hn−1(P )| · · · |h1(P ) and hn(Q)|hn−1(Q)| · · · |h1(Q), respectively, and
if the rank of P (λ) − Q(λ) is equal to one, then hn(P )|hn−1(Q)|hn−2(P )|hn−3(Q)| · · · and
hn(Q)|hn−1(P )|hn−2(Q)|hn−3(P )| · · · .
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with di ≤ βi for r + 1 ≤ i ≤ g. Each of these elementary divisors corresponds to a
βi × βi Jordan block associated with λ0 in the Weierstrass form of (R + T )(λ).

If the rank of T (λ) is r1 < r, then the result we have just proved can be applied
to show that the Weierstrass form of (R + T )(λ) has at least g − r1 > g − r Jordan
blocks associated with λ0 of dimensions βi ≥ di, i = r1 + 1, . . . , g, and the result
follows.

The previous lemma allows us to obtain the main result in the first part of the
present paper.

Theorem 2.2. Let λ0 be an eigenvalue of the complex regular matrix pencil
A0 + λA1, and n1 ≥ · · · ≥ ng be the dimensions of the Jordan blocks associated
with λ0 in its Weierstrass canonical form. Let B0 + λB1 be any complex pencil
such that the perturbed pencil A0 + B0 + λ(A1 + B1) is also regular. Assume that
g ≥ rank (B0 +λ0B1). Set ρ = rank (B0 +λ0B1)+rank B1 and nm = 1 for any m =
g + 1, . . . , ρ. Then the algebraic multiplicities of λ0 in the perturbed and unperturbed
pencils satisfy

(2.2) aA0+B0+λ(A1+B1)(λ0) ≥ aA0+λA1(λ0) + rank B1 − n1 − · · · − nρ,

using the notation in (2.1). Moreover, if the equality in this inequality holds, then
the dimensions of the Jordan blocks for λ0 in the Weierstrass canonical form of
A0 + B0 + λ(A1 + B1) are obtained by removing the first ρ members in the list
n1, . . . , ng, 1, . . . , 1︸ ︷︷ ︸

rank B1

.

Proof. Notice that

rank(B0 +λB1) = rank(B0 +λ0B1 +(λ−λ0)B1) ≤ rank(B0 +λ0B1)+ rank(B1) = ρ.

So, in the case ρ < g, Lemma 2.1 guarantees the existence of g − ρ Jordan blocks as-
sociated with λ0 of dimensions βρ+1 ≥ nρ+1, . . . , βg ≥ ng in the Weierstrass canonical
form of the perturbed pencil A0 + B0 + λ(A1 + B1). Moreover, the left side in the
inequality (1.1) implies that there are at least ρ1 = rank B1 additional Jordan blocks
of sizes α1 ≥ 1, . . . , αρ1

≥ 1 associated with λ0. Thus,

aA0+B0+λ(A1+B1
)(λ0) ≥ βρ+1 + · · · + βg + α1 + · · · + αρ1 ≥ nρ+1 + · · · + ng + ρ1.

Obviously, this inequality is equivalent to (2.2). If g ≤ ρ, then inequality (2.2) becomes

aA0+B0+λ(A1+B1)(λ0) ≥ g − rank (B0 + λ0B1).

This fact is trivial because of inequality (1.1) and the evident spectral inequality

aA0+B0+λ(A1+B1)(λ0) ≥ dim ker (A0 + λ0A1 + B0 + λ0B1).

Finally, notice that the previous inequalities become equalities if and only if the
number and dimensions of the Jordan blocks associated with λ0 in the Weierstrass
form of A0 + B0 + λ(A1 + B1) are those appearing in the statement of Theorem
2.2.

Remark 1. Notice that the unnatural definition nm = 1 for m = g + 1, . . . , ρ
allows us to express inequality (2.2) in a unified way for both cases ρ < g and
ρ ≥ g. The reader is invited to check that the number and dimensions of the Jordan
blocks of the perturbed pencil associated with λ0 in the case of equality in (2.2) are
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precisely those appearing in the generic behavior described in the abstract and the
introduction.

Theorem 2.2 gives us all the sizes of the Jordan blocks associated with λ0 in the
perturbed pencil A0 +B0 +λ(A1 +B1) when the inequality in (2.2) is an equality. As
we will see in the following section, this is the case for most perturbations B0 + λB1.

3. The generic behavior. The quantity

ã = aA0+λA1(λ0) + rank B1 − n1 − · · · − nρ

in (2.2), where ρ = rank (B0 + λ0B1) + rank B1 as in the statement of Theorem 2.2,
is a lower bound on the algebraic multiplicity of λ0 as an eigenvalue of the perturbed
pencil A0 + B0 + λ(A1 + B1). This means that for each perturbation B0 + λB1 of
A0 + λA1 such that g ≥ rank(B0 + λ0B1),

(3.1) det (A0 + B0 + λ(A1 + B1)) = (λ− λ0)
ãq(λ− λ0)

for some polynomial q(λ− λ0). Therefore, if the perturbed pencil is regular the alge-
braic multiplicity of λ0 in the perturbed pencil is exactly ã if and only if the coefficient
q(0) of (λ− λ0)

ã in (3.1) is not equal to zero. Clearly, once A0 and A1 are fixed, this
coefficient is a multivariate polynomial in the entries of B0 and B1. Therefore, if this
coefficient is not identically zero for all B0 and B1 such that rank(B0+λ0B1) = ρ0 ≤ g
and rank(B1) = ρ1, for fixed integers ρ0 and ρ1, the equation q(0) = 0 defines an al-
gebraic submanifold in the set of pairs (B0, B1) with rank(B0 + λ0B1) = ρ0 ≤ g and
rank(B1) = ρ1 that characterizes the set of perturbation pencils for which the generic
behavior described in the introduction does not happen. The only goal of this section
is to show that this algebraic submanifold is proper or, in other words, that the coeffi-
cient q(0) is not zero for all perturbations B0+λB1 such that rank(B0+λ0B1) = ρ0 ≤ g
and rank(B1) = ρ1. This is done in Lemma 3.2. This will allow us to say that the
change in the dimensions of the Jordan blocks described in Theorem 2.2, when the
equality in (2.2) holds, is generic. The reader is referred to [1] for a detailed de-
scription of the algebraic submanifold q(0) = 0 in terms of a determinantal equation
involving the entries of B0 and B1.

The simple Lemma 3.1 studies some specific perturbations of the blocks appearing
in the Weierstrass canonical form (1.4). It will be used in the proof of Lemma 3.2.

Lemma 3.1. Let Jk(α) be a k × k Jordan block with α on the main diagonal,
Ek(β) be a k × k matrix that is everywhere zero except for β in the (k, 1) entry, and
Dk(λ) = (λ − λ0) diag(s1, . . . , sk), where si = 0 or 1 for all i. Note that Dk(λ) may
be the zero matrix. Then,

1. λ0 is an eigenvalue of λI + Jk(−λ0) + Ek(λ − λ0) + Dk(λ) with algebraic
multiplicity 1,

2. λ0 is not an eigenvalue of λI + Jk(−λ0) + Ek(1) + Dk(λ),
3. λ0 is not an eigenvalue of λI + Jk(−λ1) + Dk(λ) if λ1 �= λ0,
4. λ0 is not an eigenvalue of λJk(0) + I + Dk(λ).

Proof. Check that
1.

det(λI + Jk(−λ0) + Ek(λ− λ0) + Dk(λ))

= (λ− λ0)

[
(λ− λ0)

k−1

(
k∏

i=1

(1 + si)

)
+ (−1)k+1

]
,
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2.

det(λI + Jk(−λ0) + Ek(1) + Dk(λ)) = (λ− λ0)
k

(
k∏

i=1

(1 + si)

)
+ (−1)k+1,

3.

det(λI + Jk(−λ1) + Dk(λ)) =

k∏
i=1

[(λ− λ1) + si(λ− λ0)] ,

4.

det(λJk(0) + I + Dk(λ)) =

k∏
i=1

[1 + si(λ− λ0)] .

Lemma 3.2. Let λ0 be an eigenvalue of the complex n× n regular matrix pencil
A0 + λA1, and n1 ≥ · · · ≥ ng be the dimensions of the Jordan blocks associated with
λ0 in its Weierstrass canonical form. Let ρ0 and ρ1 be two nonnegative integers, with
ρ0 ≤ g and ρ1 ≤ n. Then, there exists a complex matrix pencil B0 + λB1 such that

ρ0 = rank(B0 + λ0B1), ρ1 = rank(B1),

and the algebraic multiplicity of λ0 in the perturbed pencil A0 + B0 + λ(A1 + B1)
is exactly aA0+λA1(λ0) + ρ1 − n1 − · · · − nρ , where ρ := ρ0 + ρ1 and nm = 1 for
m = g + 1, . . . , ρ.

Proof. It suffices to prove the result when A0+λA1 is in Weierstrass canonical form
because, otherwise, we can consider the strict equivalence (1.4), apply the result to
the matrix pencil in Weierstrass canonical form in the right-hand side (with B0 +λB1

as the perturbation pencil), and take Q−1(B0 + λB1)P
−1.

So, assume that A0+λA1 is in Weierstrass canonical form given by the right-hand
side of (1.4). We consider separately the following two cases.

(i) Case ρ < g . Define the matrices

B0 = diag(En1
(1), . . . , Enρ0

(1), Enρ0+1
(−λ0), . . . , Enρ0+ρ1

(−λ0), 0, . . . , 0)

and

B1 = diag(

ρ0 blocks︷ ︸︸ ︷
0, . . . , 0, Enρ0+1

(1), . . . , Enρ0+ρ1
(1), 0, . . . , 0),

where zeros denote matrices, and the partition in diagonal blocks is conformal
to the one of the Weierstrass form (1.4). It can be checked that the pencil
B0 + λB1 verifies the conditions mentioned in the statement, by using the
first two items in Lemma 3.1 with Dk(λ) = 0.

(ii) Case ρ ≥ g . Now, we define

B̂0 = diag(En1(1), . . . , Enρ0
(1), Enρ0+1(−λ0), . . . , Eg(−λ0), 0, . . . , 0)

and

B̂1 = diag(

ρ0 blocks︷ ︸︸ ︷
0, . . . , 0, Enρ0+1(1), . . . , Eng (1), 0, . . . , 0),
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where the partition is again conformal to the one in the Weierstrass canonical
form (1.4). Notice that rank(B̂1) = g − ρ0 ≤ ρ1, and that by appropriate

choices of {s1, . . . , sn}, si = 0 or 1 for all i, rank(B̂1 + diag(s1, . . . , sn))
may take any value between g − ρ0 and n. Let {s̃1, . . . , s̃n} be such that

rank(B̂1 + diag(s̃1, . . . , s̃n)) = ρ1, and define the pencil D(λ) = D0 + λD1 =

(λ − λ0) diag(s̃1, . . . , s̃n). Then the pencil B0 + λB1 ≡ B̂0 + λB̂1 + D(λ)
verifies the conditions mentioned in the statement, because rank(B1) = ρ1,

rank(B0 + λ0B1) = rank(B̂0 + λ0B̂1) = ρ0,

and Lemma 3.1 implies that the algebraic multiplicity of λ0 in A0 + B0 +
λ(A1 +B1) is g−ρ0, which is exactly aA0+λA1(λ0)+ρ1 −n1 −· · ·−nρ .

Theorem 2.2 and Lemma 3.2 allow us to give a complete answer to the problem
originally posed in the introduction: Given a regular pencil A0 +λA1 with eigenvalue
λ0, perturbed by a pencil B0 + λB1, determine the generic Weierstrass structure
associated with λ0 as an eigenvalue of the perturbed pencil (1.3) when the low rank
condition (1.2) holds for the perturbation. Notice that if B0 + λB1 is in the set
consisting of perturbation pencils for which q(0) �= 0 (with q(λ) as in (3.1)), then the
perturbed pencil A0 +B0 + λ(A1 +B1) is regular. With this observation in mind we
can state the main theorem of this paper in the following way.

Theorem 3.3. Let λ0 be an eigenvalue of the complex regular n×n matrix pencil
A0+λA1 with Weierstrass canonical form (1.4), and let g be the geometric multiplicity
of λ0 in A0 + λA1. Let B0 + λB1 be any n× n pencil, and set

ρ0 := rank(B0 + λ0B1), ρ1 := rank(B1), ρ := ρ0 + ρ1.

If ρ0 < g, then λ0 is an eigenvalue of the perturbed pencil

(3.2) A0 + B0 + λ(A1 + B1),

and, generically, the pencil A0 + B0 + λ(A1 + B1) is regular and the dimensions of
the Jordan blocks for λ0 in the Weierstrass canonical form of A0 + B0 + λ(A1 + B1)
are obtained by removing the first ρ members in the sequence n1, . . . , ng, 1, . . . , 1︸ ︷︷ ︸

ρ1

.

Remark 2. 1. An analogous result holds for the infinite eigenvalue of A0 + λA1,
by applying the previous theorem to the zero eigenvalue of the dual pencils A1 +λA0

and A1 + B1 + λ(A0 + B0).
2. Theorem 3.3 describes in a concise way the generic behavior presented in the

introduction of this paper.
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BOUNDS ON CHANGES IN RITZ VALUES FOR A PERTURBED
INVARIANT SUBSPACE OF A HERMITIAN MATRIX∗

M. E. ARGENTATI† , A. V. KNYAZEV† , C. C. PAIGE‡ , AND I. PANAYOTOV§

Abstract. The Rayleigh–Ritz method is widely used for eigenvalue approximation. Given a
matrix X with columns that form an orthonormal basis for a subspace X , and a Hermitian matrix
A, the eigenvalues of XHAX are called Ritz values of A with respect to X . If the subspace X is
A-invariant, then the Ritz values are some of the eigenvalues of A. If the A-invariant subspace X is
perturbed to give rise to another subspace Y, then the vector of absolute values of changes in Ritz
values of A represents the absolute eigenvalue approximation error using Y. We bound the error in
terms of principal angles between X and Y. We capitalize on ideas from a recent paper [SIAM J.
Matrix Anal. Appl., 29 (2006), pp. 15–32] by Knyazev and Argentati, where the vector of absolute
values of differences between Ritz values for subspaces X and Y was weakly (sub)majorized by a
constant times the sine of the vector of principal angles between X and Y, the constant being the
spread of the spectrum of A. In that result no assumption was made on either subspace being A-
invariant. It was conjectured there that if one of the trial subspaces is A-invariant, then an analogous
weak majorization bound should be much stronger as it should involve only terms of the order of sine
squared. Here we confirm this conjecture. Specifically we prove that the absolute eigenvalue error
is weakly majorized by a constant times the sine squared of the vector of principal angles between
the subspaces X and Y, where the constant is proportional to the spread of the spectrum of A. For
many practical cases we show that the proportionality factor is simply one and that this bound is
sharp. For the general case we can prove the result only with a slightly larger constant, which we
believe is artificial.

Key words. Hermitian matrices, angles between subspaces, majorization, Lidskii’s eigenvalue
theorem, perturbation bounds, Ritz values, Rayleigh–Ritz method, invariant subspace
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1. Introduction. Eigenvalue problems appear in many applications. For exam-
ple, eigenvalues represent the frequencies of vibration in mechanical vibrations, while
the energy levels of a system are the eigenvalues of the Hamiltonian in quantum me-
chanics. Eigenvalue problems are used today in these and many other applications,
including spectral data clustering and internet search engines.

Eigenvalues cannot be computed exactly except in some trivial cases, so numerical
approximation is required. Eigenvalue a posteriori and a priori error bounds describe
the eigenvalue approximation quality, and this is a classical and important topic in
matrix analysis. A posteriori bounds are based on information readily computable,
e.g., the eigenvector residuals, and are necessary, e.g., for adaptive numerical meth-
ods for eigenvalue approximation. A priori bounds are given in terms of theoretical
properties and can be very useful in assessing the relative performance of algorithms.
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The widely used Rayleigh–Ritz method is well known for its ability to generate
high quality approximations to eigenvalues of Hermitian matrices. It is the basis for
many numerical procedures for computing eigenvalues, such as finite element methods
and the Lanczos eigenproblem iteration. Eigenvalue error bounds for the Rayleigh–
Ritz method are important, since they provide estimates and predictions of the quality
of eigenvalue approximations and can be used, e.g., to predict the number of iterations
needed in the Lanczos method for computing some eigenvalues to within a given
accuracy. There is a vast literature on Rayleigh–Ritz eigenvalue methods and error
bounds; see, e.g., [16, Chapter 4], [19, Chapters 10–13], and [20, Chapters 3–5].

We contribute to this traditional area of research with a new twist—using weak
majorization. Majorization is a classical technique that can be used to formulate and
prove a great variety of inequalities in a concise and elegant way. It is widely used in
matrix analysis, e.g., to bound perturbations of eigenvalues via Lidskii’s beautiful the-
orem [17]. In the context of Rayleigh–Ritz eigenvalue error bounds, weak majorization
was introduced in the celebrated work of Davis and Kahan [3] to bound eigenvalue
errors a posteriori. In the present paper we propose and prove what appear to be the
first theorems based on weak majorization for a priori Rayleigh–Ritz eigenvalue error
bounds. Our results provide a theoretical foundation that can be applied in a number
of situations, e.g., for finite element methods [4] and for block Lanczos iterations such
as in [5]; see [14].

We use several well known majorization results found, e.g., in [1, 7, 18]. We give
references throughout the paper for the concepts we introduce. For a more thorough
background and reference list, see [13].

The rest of the paper is organized as follows. Section 2 contains all necessary
definitions and basic facts on majorization that we need for our eigenvalue and sin-
gular value bounds. Section 3 is the main part of the paper, where we motivate and
formulate our conjectures and theorems. Section 4 has all of our proofs. In section 5
we show that our main results are sharp; we also discuss our proofs and the possibility
that our bound for the most general case might be slightly improved.

2. Definitions and prerequisites. We introduce the definitions and tools we
need, together with some mild motivation. We do not provide proofs for the results
in this section—instead we refer the reader to some of the relevant literature.

2.1. Notation. For a real vector x = [x1, . . . , xn]T , we use x↓ ≡ [x↓
1, . . . , x

↓
n]T to

denote x with its elements rearranged in descending order, while x↑ ≡ [x↑
1, . . . , x

↑
n]T

denotes x with its elements rearranged in ascending order. We use x to denote the
vector x with the absolute value of its components. We use the ≤ symbol to compare
real vectors componentwise. For real vectors x and y the expression x ≺ y means that
x is majorized by y, while x ≺w y means that x is weakly (sub)majorized by y; see
section 2.2.

We consider the Euclidean space C
n of column vectors equipped with the standard

scalar product xHy and the norm ‖x‖ =
√
xHx. We use the same notation ‖A‖ for

the induced matrix norm of a complex matrix A ∈ C
n×n. X = R(X) ⊂ C

n means
the subspace X is equal to the range of the matrix X with n rows. The unit matrix
is I, and the zero matrix (not necessarily square) is 0, while e = [1, . . . , 1]T . We use
H(n) to denote the set of n × n Hermitian matrices and U(n) to denote the set of
n× n unitary matrices in the set C

n×n of all n× n complex matrices.
We write λ(A) = λ↓(A) for the vector of eigenvalues of A ∈ H(n) arranged in

descending order, and we write s(B) = s↓(B) for the vector of singular values of B
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arranged in descending order. Individual eigenvalues and singular values are denoted
by λi(A) and si(B), respectively, so, e.g., spr(A) = λ1(A)− λn(A) and s1(B) = ‖B‖.

Let subspaces X and Y ⊆ C
n have the same dimension, with orthonormal bases

given by the columns of the matrices X and Y , respectively. We denote the vector of
principal angles between X and Y arranged in descending order by θ(X ,Y) = θ↓(X ,Y)
and define it by using cos θ(X ,Y) = s↑(XHY ), e.g., [2], [6, section 12.4.3].

2.2. Majorization and weak majorization. We now briefly define the con-
cepts of majorization and weak majorization which are comparison relations between
two real vectors. For detailed information we refer the reader to [1, 7, 18].

We say that x ∈ R
n is weakly (sub)majorized by y ∈ R

n, written x ≺w y, if

(2.1)
k∑

i=1

x↓
i ≤

k∑
i=1

y↓i , 1 ≤ k ≤ n,

while x is (strongly) majorized by y, written x ≺ y, if (2.1) holds together with

(2.2)

n∑
i=1

xi =

n∑
i=1

yi.

Our final results in the paper are weak majorization bounds of the form x ≺w y,
with x ≥ 0. On the one hand, we can see from (2.1) that x ≤ y ⇒ x ≺w y; i.e.,
the inequality implies weak majorization. In our case the advantage of using weak
majorization is that the inequality x ≤ y (the values of x and y become apparent
later) is simply wrong, while the weak majorization bound x ≺w y does hold. On the
other hand, a weak majorization bound x ≺w y implies that max(x) ≤ max(y). So if
the bound max(x) ≤ max(y) is already known, but it is also known that x ≤ y does
not hold, it makes sense to conjecture and to try to prove x ≺w y.

Strong “≺” and weak “≺w” majorization relations share only some properties
with the usual inequality ≤ relation, so one should deal with them carefully. For
example, ≺ and ≺w are reflexive and transitive, but x ≺ y and y ≺ x do not imply
that x = y; e.g., [1, Remark II.1.2]. Similarly x ≺ y does not imply the intuitive
x + z ≺ y + z, as is seen in the example x = (0, 0, 0), y = (2,−1,−1), z = (−2, 0, 0).
So we must be particularly careful of the ordering when we combine results. Thus it
can be seen from (2.1) and (2.2) that x + u ≺ x↓ + u↓, e.g., [1, Corollary II.4.3], and

(2.3) {x ≺w y} & {u ≺w v} & · · · ⇒ x+u+· · · ≺ x↓+u↓+· · · ≺w y↓+v↓+· · · ,

where this also holds with ≺w replaced by ≺.
Some of the other basic majorization and related results we use are fairly obvious:

A ∈ H(n) ⇒ |λ(±A)|↓ = s(A);(2.4)

|x± y| ≺w |x|↓ + |y|↓, since from (2.3) |x± y| ≤ |x| + |y| ≺ |x|↓ + |y|↓;(2.5)

x ≺ y ⇒ |x| ≺w |y|; see, e.g., [1, Example II.3.5].(2.6)

Arithmetic operations, e.g., the sum and the product, on vectors used in ma-
jorization are performed componentwise. In the subsequent Theorems 2.3 and 2.4
for rectangular matrices we may need to operate with nonnegative vectors of differ-
ent lengths. A standard agreement in this case is to add zeros at the end of the
shorter vector to match the sizes needed for componentwise arithmetic operations
and comparisons. We also use this agreement in later proofs.
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Many inequality relations between eigenvalues and singular values are succinctly
expressed as majorization or weak majorization relations; a beautiful example is the
following.

Theorem 2.1 (Lidskii [17]; see also, e.g., [1, p. 69]). Let A and B ∈ H(n). The
eigenvalues of A, B, and A−B satisfy λ(A) − λ(B) ≺ λ(A−B).

Recall here that λ(A)− λ(B) = λ↓(A)− λ↓(B). Note that the equivalent of (2.2)
holds here by using trace(A) =

∑
i λi(A). We will use the following corollary.

Corollary 2.2 (e.g., [18, Chapter 9, G.1.d], [7, Corollary 3.4.3]). If A and
B ∈ C

n×n, then s(A±B) ≺w s(A) + s(B).
This corollary also follows from a weaker statement than Lidskii’s theorem, e.g.,

[1, Exercises II.1.14 and II.1.15].
By using (2.3) we can see that Corollary 2.2 extends to the case of three or more

matrices, because all vectors s(A), s(B), . . . are nonincreasing.
We also use results for the singular values of a product of matrices.
Theorem 2.3 (e.g., [7, Theorem 3.3.14]). s(AB) ≺w s(A)s(B) for arbitrary,

possibly rectangular, matrices A and B such that AB exists.
Theorem 2.4 (e.g., [7, Theorem 3.3.16], [1, Problem III.6.2]). s(AB) ≤ ‖A‖s(B)

and s(AB) ≤ ‖B‖s(A) for arbitrary, possibly rectangular, matrices A and B such that
AB exists.

3. Motivation and main results. The Rayleigh–Ritz method for approximat-
ing eigenvalues of a Hermitian matrix A finds the eigenvalues of XHAX, where the
columns of the matrix X form an orthonormal basis for a subspace X . Here X is called
a trial subspace. The eigenvalues of XHAX do not depend on the particular choice
of basis and are called Ritz values of A with respect to X . If X is one-dimensional
and spanned by the unit vector x, there is only one Ritz value—namely, the Rayleigh
quotient xHAx.

When the trial subspace X is perturbed to become the subspace Y, it is useful to
know how the Ritz values of A vary. For one-dimensional X and Y, spanned by unit
vectors x and y, respectively, the following result appears in, e.g., [12, Theorem 1]:

(3.1) |xHAx− yHAy| ≤ spr(A) sin θ(x, y).

Here and below, θ(x, y) is the acute angle between the two unit vectors x and y defined
by θ(x, y) = arccos|xHy| ∈ [0, π/2].

It is well known that every eigenvector is a stationary point of the Rayleigh
quotient (considered as a function of a vector)—i.e., in the vicinity of an eigenvector,
the Rayleigh quotient changes very slowly. The classic result that motivates this paper
is the following: The Rayleigh quotient approximates an eigenvalue of a Hermitian
matrix with accuracy proportional to the square of the eigenvector approximation
error. The following simple bound, e.g., [12, Theorem 4], demonstrates this:

(3.2) |xHAx− yHAy| ≤ spr(A) sin2 θ(x, y),

where we assume that one of the unit vectors x or y is an eigenvector of A. To give
a thorough background to our results, we rederive this important basic bound. Let
Ax = xλ, and then xHAx = λ so |xHAx−yHAy| = |yH(A−λI)y|. We now plug in the
orthogonal decomposition y = u + v, where u ∈ span{x} and v ∈ (span{x})⊥. Thus
(A−λI)u = 0 and ‖v‖ = sin θ(x, y), which results in |yH(A−λI)y| = |vH(A−λI)v| ≤
‖A− λI‖‖v‖2 = ‖A− λI‖ sin2 θ(x, y). But ‖A− λI‖ ≤ spr(A), giving (3.2).

Let us now discuss some generalizations of (3.1) and (3.2) for subspaces X and Y
of dimensions higher than one, with dimX = dimY. Let X and Y be two matrices
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whose columns form orthonormal bases for X and Y, respectively, and suppose that
the Ritz values of A with respect to X and Y are arranged in descending (more
precisely “nonincreasing”) order. To generalize (3.1) and (3.2) we replace the usual
notion of angles between vectors by a more general one of principal angles between
subspaces and replace the inequality symbol by the weak (sub)majorization symbol
≺w.

Let λ(A) denote the vector of descending eigenvalues λi(A) of a Hermitian matrix
A, s(B) the vector of descending singular values of a matrix B, and θ(X ,Y) the vector
of descending principal angles θi(X ,Y) between the subspaces X and Y, defined such
that the vectors cos θ(X ,Y) and s(XHY ) are the same, except for the reversed order;
see, e.g., [2], [6, section 12.4.3]. A recent paper [13] generalizes (3.1) to:

(3.3) |λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin θ(X ,Y).

The weak majorization bound (3.3) implies, e.g., a bound for its largest term:

(3.4) max
i

|λi(X
HAX) − λi(Y

HAY )| ≤ spr(A) gap(X ,Y),

where gap(X ,Y) = maxi{sin θi(X ,Y)} in this case, e.g., [11, 13].
Both bounds (3.3) and (3.4) generalize (3.1) to multidimensional subspaces, but

no assumption of A-invariance is made in either case. What is the bound that gen-
eralizes (3.2), assuming that one of the subspaces X or Y is A-invariant? A nat-
ural conjecture, made in [13], is that such a bound could be obtained in terms of
sin2 θ(X ,Y). No majorization result of this kind is known, but simpler results—for
the largest error only—are available; e.g., the following important bound is proved in
[9] and reproduced in [4, Theorem 2, p. 477] and [15, Theorem 2.4], with a different
proof suggested in [8, Theorem 2.2.3, p. 56]; for an English translation of the latter,
see [10, Theorem 2.3, p. 383]. We present here a slightly modified formulation to make
it consistent with (3.4): If X or Y is A-invariant and corresponds to a contiguous set
of the extreme, i.e., largest or smallest, eigenvalues of A, then

(3.5) max
i

|λi(X
HAX) − λi(Y

HAY )| ≤ spr(A) gap2(X ,Y).

Bound (3.5) generalizes (3.2) but does not take advantage of majorization. By
comparing (3.3) and (3.4) with (3.1), and (3.5) with (3.2), we make an educated guess
for the general case where the invariant subspace is not necessarily associated with a
contiguous set of extreme eigenvalues:

Conjecture 3.1. Let the subspaces X and Y have the same dimension, with
orthonormal bases given by the columns of the matrices X and Y , respectively. Let
the matrix A be Hermitian and X or Y be A-invariant. Then

(3.6) |λ(XHAX) − λ(Y HAY )| ≺w spr(A) sin2 θ(X ,Y).

We emphasize that the bound (3.6) involves the sine squared, and, since conver-
gence analyses are of particular interest for small angles, this is a great improvement
over (3.3). This is just as we would hope, since one of the subspaces is A-invariant in
(3.6). The exact A-invariance assumption is equivalent to the subspace being spanned
by some exact eigenvectors of A, and Conjecture 3.1 is an a priori Rayleigh–Ritz eigen-
value error bound which can be used to examine how the subspaces Y of an iterative
eigenproblem algorithm approach an ideal A-invariant subspace X . As we mentioned
in the introduction, eigenvalue error bounds are important in many applications. We
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refer the reader to the follow-up paper [14], where we extend some results of this
paper to Hilbert spaces and discuss in detail applications to finite element methods
and subspace iterations.

The implications of the weak majorization inequality (3.6) in Conjecture 3.1 may
not be obvious to every reader. The weak majorization bound (3.6) directly implies
that

j∑
i=1

|λi(X
HAX) − λi(Y

HAY )|↓ ≤ spr(A)

j∑
i=1

sin2(θi(X ,Y))↓, j = 1, . . . , k;

see (2.1), where k = dimX = dimY. For example, for j = k we obtain

k∑
i=1

|λi(X
HAX) − λi(Y

HAY )| ≤ spr(A)

k∑
i=1

sin2(θi(X ,Y)),

and for j = 1 we get (3.5). Moreover, for real vectors x and y the weak majorization
x ≺w y is equivalent to the inequality

∑n
i=1 φ(xi) ≤

∑n
i=1 φ(yi) holding for any con-

tinuous nondecreasing convex real-valued function φ; see, e.g., [18, Statement 4.B.2].
If, for example, we take φ(t) = tp, with p ≥ 1, the bound (3.6) also implies that

(
k∑

i=1

|λi(X
HAX) − λi(Y

HAY )|p
) 1

p

≤ spr(A)

(
k∑

i=1

sin2p(θi(X ,Y))

) 1
p

.

We have not proven that Conjecture 3.1 holds in all circumstances, and indeed
it might not (but we suspect that it does). But we have proven that it always holds
if we multiply the bound by 1.5. In section 4 we also show that Conjecture 3.1 does
hold in some very useful circumstances:

Theorem 3.1. The bound (3.6) of Conjecture 3.1 holds if, in addition to the
assumptions of Conjecture 3.1, either or both of the following conditions hold:

(a) The A-invariant subspace X or Y corresponds to a contiguous set of the largest
(or smallest) eigenvalues of A.

(b) All of the eigenvalues of A corresponding to the A-invariant subspace X or
Y lie between (and possibly include) one extreme eigenvalue of A and the
midpoint [λ1(A)+λn(A)]/2 of A’s spectrum.

This does not cover all known cases where (3.6) holds, but it does cover many
practical cases. For example, in approximating the eigenvalues of a Hermitian matrix,
perhaps by using Lanczos’ eigenvalue algorithm, e.g., [6, section 9], we are often
interested in just one end of the spectrum. In section 4 we also show that a weaker
result always holds.

Theorem 3.2. Under the assumptions of Conjecture 3.1 we have

(3.7) |λ(XHAX) − λ(Y HAY )| ≺w spr(A)

[
e− cos θ(X ,Y) +

1

2
sin2 θ(X ,Y)

]
.

Here and below, we use “e” to indicate a vector of ones. Note that the individual
elements for both vectors e− cos θ(X ,Y) and sin2 θ(X ,Y) are decreasing, since both
functions 1− cos θ and sin2 θ are monotonically increasing within [0, π/2], and the
vector θ(X ,Y) is chosen to be decreasing. We now deduce two simple corollaries of
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Theorem 3.2. By using elementary trigonometry, for θ ∈ [0, π/2]:

2 − 2 cos θ = 2 − 2 cos θ − (1 − cos θ)2 + (1 − cos θ)2

= sin2 θ + (1 − cos θ)2 = sin2 θ + sin4 θ/(1 + cos θ)2

≤ sin2 θ + sin4 θ.

We first conclude that bound (3.7) is slightly worse than bound (3.6) from Conjecture
3.1; and second, we immediately obtain from (3.7) the following.

Corollary 3.3. Under the assumptions of Conjecture 3.1, we have

|λ(XHAX) − λ(Y HAY )| ≺w spr(A)

[
sin2 θ(X ,Y) +

1

2
sin4 θ(X ,Y)

]
(3.8)

≤ 3

2
spr(A) sin2 θ(X ,Y).(3.9)

By extending the above trigonometric relation we see that

2 − 2 cos θ = sin2 θ

(
1 +

sin2 θ

(1 + cos θ)2

)
=

2 sin2 θ

1 + cos θ
=

sin2 θ

cos2(θ/2)
≤ tan2 θ

for θ ∈ [0, π/2]; and with sin2 θ ≤ tan2 θ, bound (3.7) implies another corollary.
Corollary 3.4. Under the assumptions of Conjecture 3.1, we have

(3.10) |λ(XHAX) − λ(Y HAY )| ≺w spr(A) tan2 θ(X ,Y).

We give an example in section 5 demonstrating that the conjectured bound (3.6)
cannot be any tighter. Our numerical tests suggest that Conjecture 3.1 holds, i.e.,
that bound (3.7) can probably be improved to (3.6). However, we show in section
5 that already the first step in our proof of Theorem 3.2 does not allow us to prove
the better bound (3.6), so a completely different approach is apparently needed to
support Conjecture 3.1 in all cases—see section 5 for more thoughts on this.

Conjecture 3.1 turns out to be easy to formulate but hard to prove in its gener-
ality. We believe that the present publication, which proves Conjecture 3.1 in several
practically interesting particular cases and provides slightly weaker bounds (3.7)–
(3.10) for the general case, is important since it serves as a theoretical foundation
for our future work on applications, e.g., [14]. It is also novel—we know of no other
case where majorization is used for a priori Rayleigh–Ritz error bounds. The only
somewhat related result known to us is the pioneering work of [3], where majorization
is applied to bound eigenvalue errors a posteriori.

4. Proofs. We have all of the tools needed to prove our main results of Theorems
3.1 and 3.2. At first, both proofs develop along the same lines; later they split.

By the assumptions in the theorems, X and Y are two subspaces of C
n of the

same dimension k and are the column ranges of matrices X and Y with orthonormal
columns that are arbitrary up to unitary transformations of their columns. By using
the singular value decomposition we choose such a pair of matrices X and Y with or-
thonormal columns so that C ≡ XHY is real, square, and diagonal, with the diagonal
entries in increasing order. Thus by the definition of angles between subspaces,

(4.1) C = diag
(
s↑(XHY )

)
= diag (cos θ(X ,Y)) .

We arbitrarily complete X and Y to unitary matrices [X,X⊥] and [Y, Y⊥] ∈ U(n),
respectively, and consider the 2×2 partition of their unitary product [X,X⊥]H [Y, Y⊥].
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By construction of X and Y , its k× k upper left block is C. We denote its (n−k)× k
lower left block by S ≡ (X⊥)HY . Since [X,X⊥]H [Y, Y⊥] is unitary, the entries C
and S of its first block column satisfy C2 + SHS = I. So λ(SHS) = λ(I−C2) =
e−cos2 θ(X ,Y) = sin2 θ(X ,Y), where e is the vector of ones, and so the vectors of
singular values s(C) and s(S) are closely connected, and we derive from this that

(4.2) sin θ(X ,Y) = [s(S), 0, . . . , 0],

where max{2k−n, 0} zeros are added on the right-hand side to match the number k
of angles in the vector θ(X ,Y) with the number min{k, n−k} of singular values in the
vector s(S).

Both theorems assume that either X or Y is A-invariant, so without loss of gen-
erality let X be A-invariant. Then since [X,X⊥] is unitary:

[X,X⊥]HA [X,X⊥] = diag(A11, A22) and A = [X,X⊥] diag(A11, A22)[X,X⊥]H .

Here XHAX = A11 ∈ H(k) and (X⊥)HAX⊥ = A22 ∈ H(n− k). We can now use
Y H [X,X⊥] = [CH , SH ] = [C, SH ] to show that

Y HAY = Y H
(
[X,X⊥] diag(A11, A22)[X,X⊥]H

)
Y = CA11C + SHA22S.(4.3)

The expression we want to bound in Theorems 3.1 and 3.2 now takes the form

λ(XHAX) − λ(Y HAY ) = λ(A11) − λ(CA11C + SHA22S)

= λ(A11)−λ(CA11C) + λ(CA11C) − λ(CA11C + SHA22S)

≺ [λ(A11)−λ(CA11C)]↓ + λ(−SHA22S),(4.4)

where the last line used Lidskii’s Theorem 2.1 with (2.3). See the discussion following
(5.1) for more about this choice. Next (2.4), Theorems 2.3 and 2.4, and (4.2) give

(4.5)
∣∣λ(−SHA22S)

∣∣↓ = s(SHA22S) ≺w ‖A22‖ sin2 θ(X ,Y).

At this point, the proofs split. Each proof will use a different majorization of
λ(A11)− λ(CA11C) in (4.4), but both will use (4.5). We first establish Theorem 3.1.
Neither (3.6) nor (3.7) is altered by replacing A by ±A+αI, where α is an arbitrary
real constant, and so we can make the new A11 nonnegative definite in each of the
parts (a) and (b) of Theorem 3.1 by choosing the appropriate sign and the shift α.

Proof of Theorem 3.1. The starting point of the proof is (4.4), but now we
assume that A11 is nonnegative definite and so has a nonnegative definite square root√
A11. We deal with λ(A11) − λ(CA11C) first. For arbitrary square matrices F and

G, we have λ(FG) = λ(GF ). By taking F = C
√
A11 and G =

√
A11C, we get

λ(CA11C) = λ(
√
A11C

2
√
A11). By using this and Lidskii’s Theorem 2.1, we see that

λ(A11) − λ(CA11C) = λ(A11) − λ
(√

A11C
2
√
A11

)

≺ λ
(√

A11

√
A11 −

√
A11C

2
√
A11

)

= λ
(√

A11

(
I − C2

)√
A11

)
= λ

(√
A11S

HS
√

A11

)
,

since C2 + SHS = I. Then by using (2.6) with Theorem 2.4 (twice) and (4.2), we
obtain

|λ(A11) − λ(CA11C)| ≺w s
(√

A11S
HS

√
A11

)
≤ ‖A11‖ sin2 θ(X ,Y).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

556 M. E. ARGENTATI, A. V. KNYAZEV, C. C. PAIGE, AND I. PANAYOTOV

Apply (2.6) to (4.4); then (2.5), (2.3), and (4.5) with the above bound give

∣∣λ(XHAX) − λ(Y HAY )
∣∣ ≺w

∣∣[λ(A11) − λ(CA11C)]↓ + λ(−SHA22S)
∣∣

≺w |λ(A11) − λ(CA11C)|↓ +
∣∣λ(−SHA22S)

∣∣↓
≺w (‖A11‖ + ‖A22‖) sin2 θ(X ,Y).(4.6)

Here this proof splits, and we first prove part (a) of Theorem 3.1. By assumption
the invariant subspace X corresponds to a contiguous set of the largest (or smallest)
eigenvalues of A. Here we present the proof for the case of the largest eigenvalues.
The case of the smallest eigenvalues follows immediately by substituting −A for A.
We replace A with A + αI, where α is chosen as the constant real shift that makes
the new A11 positive semidefinite (nonnegative definite and singular), so that

√
A11

exists. Since dimX = k, and the invariant subspace X corresponds to a contiguous
set of the largest eigenvalues of A, α = −λk(A). After the shift λk(A) becomes
zero, the eigenvalues of the block A11 become nonnegative, with λ1(A) being the
largest in absolute value, and the eigenvalues of the block A22 become nonpositive,
with ‖A22‖ = −λn(A). Thus ‖A11‖ + ‖A22‖ = λ1(A) − λn(A) = spr(A). Using this
together with (4.6) gives (3.6), completing the proof of part (a).

For part (b) of Theorem 3.1 we prove the case where the eigenvalues of A11 lie
in the top half of the spectrum of A; the remaining case is proven by substituting
−A for A. Choose the shift so that, for the new A, λ1(A) = −λn(A), ensuring with
the assumptions that A11 is nonnegative definite and that ‖A11‖ ≤ spr(A)/2 and
‖A22‖ ≤ spr(A)/2, so that (4.6) again leads to (3.6).

In fact whenever we can choose the sign and shift in ±A+αI so that this new A
has A11 nonnegative definite with ‖A11‖+‖A22‖ ≤ spr(A), then (3.6) will be satisfied.

We return again to (4.4) and (4.5) to establish Theorem 3.2.
Proof of Theorem 3.2. Applying Lidskii’s Theorem 2.1 with (2.3) to (4.4) gives

λ(XHAX) − λ(Y HAY ) ≺ [λ(A11) − λ(CA11C)]↓ + λ(−SHA22S)

≺ λ(A11 − CA11C) + λ(−SHA22S).(4.7)

In order to bound this we will use the identity

(4.8) A11 − CA11C = (I−C)A11 + CA11(I−C),

together with the following results obtained by using (4.1) with Theorems 2.4 and
2.3:

s((I − C)A11) ≤ ‖A11‖s(I − C) = ‖A11‖(e− cos θ(X ,Y)),(4.9)

s(CA11(I − C)) ≺w s(C)s(A11(I − C)) ≤ s(A11(I − C))

≤ ‖A11‖s(I − C) = ‖A11‖(e− cos θ(X ,Y)).(4.10)

Discarding the first C in s(CA11(I−C)) is no real loss; see section 5. Using (4.8) and
applying (2.4), Corollary 2.2, and (2.3) with (4.9) and (4.10) gives

|λ(A11 − CA11C)|↓ = s((I − C)A11 + CA11(I − C))

≺w s((I − C)A11) + s(CA11(I − C))

≺w 2‖A11‖(e− cos θ(X ,Y)).(4.11)
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Now apply (2.6) to (4.7), followed by (2.5), and use (4.11) and (4.5) with (2.3),
together with ‖A11‖, ‖A22‖ ≤ ‖A‖, to obtain:

∣∣λ(XHAX) − λ(Y HAY )
∣∣ ≺w

∣∣λ(A11 − CA11C) + λ(−SHA22S)
∣∣

≺w |λ(A11 − CA11C)|↓ +
∣∣λ(−SHA22S)

∣∣↓
≺w ‖A‖

[
2(e− cos θ(X ,Y)) + sin2 θ(X ,Y)

]
.(4.12)

Our final step is to replace ‖A‖ by an expression involving spr(A). Observe here
that the difference between Ritz values is invariant under any shift α ∈ R. So we shift
A in a way to minimize ‖A‖. This situation occurs when 0 is exactly in the middle of
the spectrum, in which case ‖A‖ = spr(A)/2. Combining this observation with (4.12)
completes the proof of (3.7).

5. Discussion. The following example shows that the conjectured bound (3.6)
cannot be improved as a general result. Let n = 2m, and let an arbitrary set of m an-
gles θi be given, where π/2 ≥ θ1 ≥ · · · ≥ θm ≥ 0. Let C = diag(cos(θ1), . . . , cos(θm)),

X = [I, 0]H , Y =
[
C,

√
I − C2

]H
, and A =

[
I 0
0 −I

]
, where all unit matrices I are of

size m, so that X and Y are n×m and A is n×n. Then the θi become the principal
angles between the pair of k = m dimensional subspaces X ≡ R(X) and Y ≡ R(Y ).
Moreover the Ritz values are the eigenvalues of XHAX = I and Y HAY = 2C2−I, and

so
∣∣λ(XHAX) − λ(Y HAY )

∣∣↓ = 2 sin2 θ(X ,Y). In this example spr(A) = 1−(−1) = 2,
so (3.6) turns into an equality.

Asymptotically where all of the angles are small, bounds (3.6), (3.7), (3.8), and
(3.10) are all equivalent. Moreover our numerical tests support Conjecture 3.1 in all
cases. Perhaps in practical terms, from the point of view of a numerical analyst,
we are done. However, it would be pleasing to know whether Conjecture 3.1 holds
theoretically in its generality, since bound (3.6) looks more aesthetic and cannot be
improved as a general result.

One important thing we know is that our approach of starting with Theorem 2.1
to deduce (4.4) (used in the proof of (3.7)) cannot reduce bound (3.7) to bound (3.6)
in general, no matter how we modify the rest of the proof. This can be seen from the
following example in C

4. Let A = diag(A11, A22) and C = XHY , S = XH
⊥ Y be as in

(5.1) A =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , [X,X⊥] = I4, [Y, Y⊥] =

⎡
⎢⎢⎣

0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎤
⎥⎥⎦ ,

where I4 is the 4 × 4 unit matrix, so that X,X⊥, Y, Y⊥ all have two columns. Then
[X,X⊥]H [Y, Y⊥] = [Y, Y⊥] are chosen as in our proofs, and we see that θ(X ,Y) =
[π/2, 0]T , CA11C = 0, SHA22S = diag(1, 0). Here the largest and smallest eigenvalues
of A are ±1, so spr(A) = 2. Hence by direct calculation

XHAX = A11 =

[
0 1
1 0

]
, Y HAY = CA11C + SHA22S = SHA22S =

[
1 0
0 0

]
,

∣∣λ(XHAX) − λ(Y HAY )
∣∣ =

∣∣∣∣
[

1
−1

]
−
[
1
0

]∣∣∣∣ =

[
0
1

]
≺w

[
2
0

]
= spr(A) sin2 θ(X ,Y),

so example (5.1) does satisfy (3.6).
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Let us now attempt to use (4.4) for (5.1). The right-hand side of (4.4) is

a ≡ [λ(A11) − λ(CA11C)]↓ + λ(−SHA22S) =

[
1
−1

]
−
[
0
0

]
+

[
0
−1

]
=

[
1
−2

]
,

where it is not true that |a| ≺w spr(A) sin2 θ(X ,Y). That is, the absolute value of
the right-hand side of (4.4) is not always weakly majorized by spr(A) sin2 θ(X ,Y), so
we cannot obtain a general proof of (3.6) by starting from the majorization in (4.4).

Example (5.1) can tell us even more. For any matrix M = MH we have the
following generalization of (4.7) (M = CA11C in (4.4) and (4.7)):

λ(XHAX) − λ(Y HAY ) = λ(XHAX) − λ(M) + λ(M) − λ(Y HAY )

≺ λ(XHAX −M) + λ(M − Y HAY ) ≡ ã.

It might be thought that if, e.g., XHAX is indefinite, some such M could be chosen
to minimize ã and to prove (3.6). But in example (5.1) it can be shown that there is
no real symmetric M giving ã satisfying the desired bound |ã| ≺w spr(A) sin2 θ(X ,Y).
In particular M =Y HAY will not give this bound, as the reader can check via (5.1).
That is, using λ(XHAX)−λ(Y HAY ) ≺ λ(A11 −CA11C−SHA22S) in place of (4.4)
will still not give (3.6) via our approach.

So, on the one hand, we cannot improve bound (3.7) to give (3.6) except possibly
by considering a different approach to our present way of using Lidskii’s Theorem 2.1
or equivalent in the first step; see (4.4) and (4.7). On the other hand, our numerical
tests suggest that the tighter bound (3.6) holds. Thus if we are to prove (3.6) for
widely spread interior eigenvalues, we appear to need an approach more sophisticated
than our particular application of Lidskii’s theorem in the first step.

An essentially equivalent first step was used in [12, Theorem 10] in an earlier
attempt to prove (3.3), where it led to an artificial multiplier

√
2 in the right-hand

side of (3.3). The subsequent paper [13] used an unusual technique to extend an ar-
bitrary Hermitian operator to an orthogonal projector in a higher-dimensional space,
preserving its Ritz values, to prove (3.3) as it is stated, without the multiplier

√
2.

Perhaps the same technique might shed light here and help us to establish Conjecture
3.1, but this currently remains an open question.

6. Conclusions. We clarify a conjecture of Knyazev and Argentati [13] on a
bound for the absolute difference between Ritz values of a Hermitian matrix A for
two trial subspaces, one of which is A-invariant. We prove the conjecture for the cases
where (a) the A-invariant subspace corresponds to a contiguous set of the largest
(or smallest) eigenvalues of A and (b) the eigenvalues of A corresponding to the A-
invariant subspace all lie in the top (or the bottom) half of the spectrum of A. We
prove a slightly weaker bound for general invariant subspaces. We believe that the
conjecture holds, i.e., that this weaker bound can be improved, and this is supported
by our numerical tests, but the proof of the conjecture in its generality (if it is true)
may require an unorthodox approach, perhaps one such as that used in [13]. These
results are useful in practice and, for example, are applicable to the analysis of rou-
tines which use the Rayleigh–Ritz method, such as some Krylov subspace methods.
We refer the reader to the subsequent paper [14], where we extend some results of
this paper to Hilbert spaces and discuss in detail their application to finite element
methods and subspace iterations.
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Abstract. Let A and B be n × n complex matrices. Characterization is given for the set

E(A,B) of eigenvalues of matrices of the form U∗AU + V ∗BV for some unitary matrices U and V .

Consequences of the results are discussed and computer algorithms and programs are designed to

generate the set E(A,B). The results refine those of Wielandt on normal matrices. Extensions of
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1. Introduction. Denote by Mn the set of n×n complex matrices. Let A,B ∈
Mn. There has been a great deal of interest in studying the eigenvalues of matrices of
the form U∗AU +V ∗BV for some unitary matrices U, V ∈ Mn because of motivations
from theory as well as applications; see [1, 2, 4, 7, 11, 18, 19]. The study has been

very successful for Hermitian matrices. Klyachko [12] (see also [9, 11, 13], etc.) gave
necessary and sufficient conditions for the real numbers c1, . . . , cn to be the eigenvalues
of the sum of two Hermitian matrices in Mn with eigenvalues a1, . . . , an and b1, . . . , bn.

The problem for non-Hermitian matrices is more challenging. For two given
matrices A,B ∈ Mn, let E(A,B) be the set of eigenvalues of matrices of the form

U∗AU + V ∗BV for some unitary matrices U and V . Wielandt [20] (see also [3] and

[16]) determined the set E(A,B) for two normal matrices A,B ∈ Mn. There is not

much information about the set E(A,B) for general matrices A,B ∈ Mn. The purpose
of this paper is to address this problem.

In section 2, we characterize E(A,B) for two given matrices A,B ∈ Mn. Addi-

tional results concerning normal matrices and essentially Hermitian matrices (normal

matrices with collinear eigenvalues) are presented in sections 3 and 4. In section 5, we
consider an extension of our results to the sum of three of more matrices and mention
some related problems. In section 6, we describe how to use our results to design
computer algorithms and programs to generate the set E(A,B).

2. Main results. First, we characterize the matrix pair (A,B) ∈ Mn×Mn such

that 0 /∈ E(A,B). We need the concept of Davis–Wielandt shell [5, 6] of A ∈ Mn

defined by

DW (A) = {(x∗Ax, x∗A∗Ax) : x ∈ C
n, x∗x = 1} ⊆ C × R ∼ R

3.
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Theorem 2.1. Let A,B ∈ Mn. Then the following are equivalent.
(a) det(U∗AU + V ∗BV ) �= 0 for any unitary matrices U, V ∈ Mn.

(b) DW (A) ∩DW (−B) = ∅.

(c) There is ξ ∈ C such that the singular values of A+ ξIn and B− ξIn lie in two

disjoint closed intervals in [0,∞).

Proof. If (c) holds, then ‖(A+ξIn)u‖ > ‖(B−ξIn)v‖ for all unit vectors u, v ∈ C
n,

or ‖(A + ξIn)u‖ < ‖(B − ξIn)v‖ for all unit vectors u, v ∈ C
n. Thus, (U∗AU +

V ∗BV )x �= 0 for all unitary matrices U, V and unit vector x ∈ C
n. Hence, condition

(a) holds.

Suppose (a) holds. Assume that DW (A) ∩ DW (−B) is nonempty. Then there

are orthonormal pairs (u1, u2) and (v1, v2) such that

Au1 = μu1 + νu2 and −Bv1 = μv1 + νv2

with (μ, μ2+ν2) ∈ DW (A)∩DW (−B). Suppose U is unitary with u1, u2 as its first two
columns, and V is unitary with v1, v2 as its first two columns. Then U∗AU + V ∗BV
has zero first column, and hence has zero determinant, which is a contradiction. So,
(b) holds.

Suppose (b) holds. Assume n ≥ 3. Since DW (A) and DW (−B) are compact

convex sets, by the separation theorem, there is a linear functional f such that f(α) >

f(β) for all (α, β) ∈ DW (A) ×DW (−B). So, there is ν ∈ R and μ ∈ C such that

x∗(νA∗A + μA + μA∗)x > y∗(νB∗B − μB − μB∗)y

for any unit vectors x, y ∈ C
n. We may perturb ν and assume that ν �= 0. Fur-

thermore, we assume that ν > 0; otherwise, multiply −1 to the inequality. Then for

ξ = μ̄/
√
ν, we see that

x∗(A + ξIn)∗(A + ξIn)x > y∗(B − ξIn)∗(B − ξIn)y

for all unit vectors x, y ∈ C
n. So, condition (c) holds.

Assume n = 2. Let S = {(μ, r) ∈ R × C, |μ|2 ≤ r} and ∂S denote the bound-

ary of S. By Theorem 2.1(b) and Theorem 2.2 in [15], DW (A) is an ellipsoid in

S and (μ, |μ|2) ∈ DW (A) ∩ ∂S for every eigenvalue μ of A. Similarly, DW (−B)

is an ellipsoid in S and (μ̃, |μ̃|2) ∈ DW (−B) ∩ ∂S for every eigenvalue μ̃ of −B.

Since DW (A) ∩ DW (−B) = ∅, we see that DW (−B) cannot lie in the interior of

conv DW (A), the convex hull of DW (A). Otherwise, DW (−B) ∩ S = ∅. Simi-

larly, DW (A) cannot lie in the interior of conv DW (−B). So, conv DW (A)∩ conv

DW (−B) = ∅. We can apply the argument for the cases when n ≥ 3 to show that

condition (c) holds.

Note that μ ∈ E(A,B) if and only if there exist unitary matrices U, V ∈ Mn such

that det(UAU∗ + V BV ∗ − μIn) = 0. Using Theorem 2.1, we have the following.
Theorem 2.2. Let A,B ∈ Mn and μ ∈ C. The following are then equivalent.
(a) μ /∈ E(A,B).

(b) DW (A) ∩DW (μIn −B) = ∅.

(c) There is ξ ∈ C such that the singular values of A+ ξIn and B− μIn − ξIn lie

in two disjoint closed intervals in [0,∞).
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3. Normal matrices. If A,B ∈ Mn are normal, then DW (A) and DW (μIn−B)

are polytopes with at most n vertices in C × R ∼ R
3. We have the following.

Theorem 3.1. Suppose A,B ∈ Mn are normal. Then the conditions (a)–(c) in
Theorem 2.2 are equivalent to the following.

(d) There is a circular disk containing all eigenvalues of one of the matrices A or
μIn −B, and excluding all the eigenvalues of the other matrix.

Proof. Suppose A and B are normal. Then the singular values of A and μIn −B
are the absolute values of the eigenvalues of the two matrices. One readily sees that
Theorem 2.2(c) is equivalent to condition (d).

Theorem 3.1 has been proven by Wielandt [20, Theorem 1], where both lines and

circles are used for the separation. As pointed out in [20], E(A,B) depends only on

the spectra σ(A), σ(B) of A and B. Hence, for any nonempty finite subsets S, T of

C, we can define E(S, T ) = E(A,B), where A and B are any normal matrices of the

same size such that σ(A) = S and σ(B) = T .

If each of A and B has at most two distinct eigenvalues, then E(A,B) can be
easily determined by Theorem 4.6 in section 4. For other cases, we have the following
theorem, which is useful in constructing the set E(A,B) analytically or using computer
programs; see section 6.

Theorem 3.2. Let A,B ∈ Mn be normal matrices one of which has at least 3
distinct eigenvalues and the other has at least 2 distinct eigenvalues. Then conditions
(a)–(c) in Theorem 2.2 are equivalent to the following.

(e) For (p, q) ∈ {(2, 3), (3, 2)} and any subset of p distinct eigenvalues of A and q
distinct eigenvalues of B, there is a circle containing all of the elements of one of the
sets and excluding all of the elements of the other sets.

Consequently, we have

E(A,B) =
⋃{

E(S, T ) : S ⊆ σ(A), T ⊆ σ(B) with (|S|, |T |) ∈ {(2, 3), (3, 2)}
}
,

where |S| and |T | are the cardinalities of S and T , respectively.
Proof. Suppose A or B has at least 3 distinct eigenvalues and the other has at

least 2 distinct eigenvalues. Then condition (d) fails to hold if and only if there are

p distinct eigenvalues of A and q distinct eigenvalues of B with (p, q) ∈ {(3, 2), (2, 3)}
constituting an obstacle for the existence of the circle [14, Theorem 8.2]. Thus, The-

orem 3.1(d) is equivalent to (e).

To construct E(A,B), one can further reduce the collection of subsets in the above
theorem. To this end, we need the following lemma showing that there is a one-one
correspondence between the triangles on the boundary faces of the convex set DW (B)

and those on the boundary faces of DW (μI −B) with μ = s + it.
Lemma 3.3. Suppose s, t, aj , bj ∈ R, 1 ≤ j ≤ 5. Let

Pj =
(
aj , bj , a

2
j + b2j

)
and Qj =

(
s− aj , t− bj , (s− aj)

2 + (t− bj)
2
)
.

Suppose P1, P2, P3 are not collinear. If P4 and P5 lie in the same open (or closed)

half space determined by P1, P2, P3, then Q4 and Q5 lie in the same open (or closed)
half space determined by Q1, Q2, Q3.

Proof. Suppose P1, P2, P3 are not collinear. Then Q1, Q2, Q3 are not collinear.
Let Π1 and Π2 be the planes determined by P1, P2, P3 and Q1, Q2, Q3, respectively.

For (apq) ∈ M3, denote by det((apq)) = |apq|. For j = 4, 5, we have



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EIGENVALUES OF THE SUM OF MATRICES 563

((P2 − P1) × (P3 − P1)) · (Pj − P1) =

∣∣∣∣∣∣
a2 − a1 b2 − b1 a2

2 + b22 − a2
1 − b21

a3 − a1 b3 − b1 a2
3 + b23 − a2

1 − b21
aj − a1 bj − b1 a2

j + b2j − a2
1 − b21

∣∣∣∣∣∣
and

((Q2 −Q1) × (Q3 −Q1)) · (Qj −Q1)

=

∣∣∣∣∣∣
a1 − a2 b1 − b2 a2

2 + b22 − a2
1 − b21 + 2s(a1 − a2) + 2t(b1 − b2)

a1 − a3 b1 − b3 a2
3 + b23 − a2

1 − b21 + 2s(a1 − a3) + 2t(b1 − b3)
a1 − aj b1 − bj a2

j + b2j − a2
1 − b21 + 2s(a1 − aj) + 2t(b1 − bj)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
a1 − a2 b1 − b2 a2

2 + b22 − a2
1 − b21

a1 − a3 b1 − b3 a2
3 + b23 − a2

1 − b21
a1 − aj b1 − bj a2

j + b2j − a2
1 − b21

∣∣∣∣∣∣
= ((P2 − P1) × (P3 − P1)) · (Pj − P1).

The result follows from the fact that P4 and P5 lie in the same open half space
determined by Π1 if and only if the triple products

((P2 − P1) × (P3 − P1)) · (P4 − P1) and ((P2 − P1) × (P3 − P1)) · (P5 − P1)

have the same sign and similar assertion for Qj and Π2.
Theorem 3.4. Let A,B ∈ Mn be normal matrices with eigenvalues a1, . . . , an

and b1, . . . , bn. Then μ ∈ E(A,B) if and only if there is X = diag (w1, w2, w3) and

Y = diag (z1, z2) such that DW (X) ∩DW (μI2 − Y ) �= ∅, where either

(a) w1, w2, w3 ∈ σ(A) and z1, z2 ∈ σ(B) so that DW (diag (w1, w2, w3)) lies on

the boundary of DW (A) and DW (diag (z1, z2)) lies on the boundary of DW (B), or

(b) w1, w2, w3 ∈ σ(B) and z1, z2 ∈ σ(A) so that DW (diag (w1, w2, w3)) lies on

the boundary of DW (B) and DW (diag (z1, z2)) lies on the boundary of DW (A).

Proof. Note that for any z1, z2, z3 ∈ σ(B), DW (diag (μ − z1, μ − z2, μ − z3))

lies on the boundary of DW (μIn −B) if and only if DW (diag (z1, z2, z3)) lies on the

boundary of DW (B). Now, DW (A) and DW (μIn −B) are two convex polytopes in

C × R with vertices in P = {(z, |z|2) : z ∈ C}. So, DW (A) ∩ DW (μIn − B) �= ∅ if
and only if one of the polytopes intersects a boundary face of the other polytopes.
Suppose DW (μIn − B) intersects a boundary face of DW (A). Then there are three

vertices, say (wj , |wj |2) with wj ∈ σ(A) for j = 1, 2, 3, of the boundary face of DW (A)

intersecting DW (μIn −B). Note that the vertices of DW (μIn −B) belong to P. So,

DW (diag (w1, w2, w2)) must intersect with some boundary face of DW (μIn − B).

Consequently, there are three vertices on the boundary face of DW (μIn − B) whose

convex hull intersects with DW (diag (w1, w2, w3)). Now, for two triangular laminas
each having vertices in P to have a nonempty intersection, there must be a nonempty
intersection of a triangular lamina with an edge of another triangular lamina. By
Lemma 3.3, there is a one-one correspondence between the triangles on the boundary
faces of DW (μIn −B) and those on the boundary faces of DW (B). Thus, condition

(a) or (b) holds.

One can also consider the boundary ∂E(A,B) of E(A,B). By Theorem 4.6 in
section 4, if A,B ∈ Mn are normal and each has at most two distinct eigenvalues,
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then E(A,B) has an empty interior, i.e., ∂E(A,B) = E(A,B). We will exclude these
special cases. The following lemma is needed for further discussion.

Lemma 3.5. Let S = {w1, w2, w3} and T = {z1, z2} be subsets of C. Then

∂E(S, T ) = E({w1, w2}, T ) ∪ E({w1, w3}, T ) ∪ E({w2, w3}, T ).

Proof. Clearly, the result holds if S or T is a singleton. In the following, we
may assume that z1 �= z2. If wj = wk for some 1 ≤ j < k ≤ 3, then E(S, T ) =

E({wi, wl}, T ), where l /∈ {j, k}, which has no interior point.

Suppose w1, w2, w3 ∈ C are distinct. Let X = diag (w1, w2, w3), Y = diag (z1, z2),

and Xjk = diag (wj , wk) for 1 ≤ j < k ≤ 3. By Theorem 2.2, μ ∈ E(S, T ) if and

only if DW (X) ∩ DW (μI2 − Y ) �= ∅. Note that DW (μI2 − Y ) is a line segment

with vertices in P while DW (X) is a triangular lamina with three edges, DW (X12),

DW (X23), and DW (X13). Thus, μ is a boundary point of E(S, T ) if and only if the

line segment DW (μI2 − Y ) intersects the triangular lamina DW (X) at its boundary,

which is the union of line segments DW (X12), DW (X23), and DW (X13). The result
follows.

By Lemma 3.5 and Theorem 3.2, we have the following theorem.
Theorem 3.6. Suppose A,B ∈ Mn are normal matrices, each having at least 2

distinct eigenvalues. Then

∂E(A,B) ⊆
⋃

{E(S, T ) : S ⊆ σ(A), T ⊆ σ(B) with |S| = |T | = 2} .

4. Essentially Hermitian matrices. Recall that a normal matrix is essentially
Hermitian if all of its eigenvalues lie on a straight line. Let us warm up our discussion
with the following results and examples on Hermitian matrices.

Theorem 4.1. Suppose A,B ∈ Mn are Hermitian matrices with eigenvalues
a1 ≥ a2 ≥ · · · ≥ an and b1 ≥ b2 ≥ · · · ≥ bn. Then

E(A,B) = [an + bn, a1 + b1] \
n−1⋃
j=1

(aj+1 + b1, aj + bn) ∪ (bj+1 + a1, bj + an) ,

where (c, d) = ∅ if c ≥ d.

Proof. By Theorem 3.1(d), μ �∈ E(A,B) if and only if {a1, a2, . . . , an} can be

separated from {μ− b1, μ− b2, . . . , μ− bn} by a circle. For μ ∈ R, this happens if and
only if one of the following conditions is satisfied:

1. μ− b1 > a1 ⇔ μ > a1 + b1.
2. μ− bn < an ⇔ μ < an + bn.
3. For some 1 ≤ j ≤ n−1, aj+1 < μ−b1 ≤ μ−bn < aj ⇔ aj+1+b1 < μ < aj+bn.
4. For some 1 ≤ j ≤ n−1, μ−bj < an ≤ a1 < μ−bj+1 ⇔ bj+1+a1 < μ < bj+an.

Hence, the result follows.
We have the following corollary.
Corollary 4.2. Suppose A,B ∈ Mn satisfy the hypotheses of Theorem 4.1. If

b1 − bn ≥ max
1≤j≤n−1

(aj − aj+1) and a1 − an ≥ max
1≤j≤n−1

(bj − bj+1),

then E(A,B) = [an + bn, a1 + b1].
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Example 4.3. Suppose n ≥ 2, A,B ∈ Mn are Hermitian with eigenvalues a1 = 5,
an = 2, b1 = 4, and bn = 1. Then E(A,B) = [3, 9] is independent of the choices of ai
and bj for 2 ≤ i, j ≤ n− 1.

Example 4.4. Suppose A,B ∈ M3 are Hermitian with eigenvalues a1 = 5, a3 = 1,
b1 = 4, and b3 = 2. If a2 = 3, then E(A,B) = [3, 9]; if a2 �= 3, then E(A,B) � [3, 9].

It is interesting to note that sometimes the set E(A,B) depends only on the
extreme eigenvalues of A and B as shown in Example 4.3, but this is not always the
case, as shown in Example 4.4.

In perturbation theory, if A,B ∈ Mn are Hermitian such that ‖B‖ is larger than
the smallest singular value of A, then it may happen that A+B is singular. However,
if we know more about the eigenvalues of A and B, one can get a better perturbation
bound.

Example 4.5. Suppose A,B ∈ Mn are Hermitian such that σ(A) ⊆ R \ (−r, s)

for some r, s ∈ (0,∞) and σ(B) ⊆ [−u, v] for some u, v ∈ [0,∞) such that −r + v < 0
and −u + s > 0. Then A + B is invertible.

In [20, Theorem 2], Wielandt described a procedure to construct E(A,B) for a
Hermitian matrix A and a skew-Hermitian matrix B with eigenvalues a1, . . . , an and
b1, . . . , bn. In particular, it was shown that the set E(A,B) is the intersection of all

hyperbolic regions containing the set {aj + bk : 1 ≤ j, k ≤ n}. However, details of the
proof were not given. In the following, we extend the result of Wielandt to any pair
of essentially Hermitian matrices A and B. A detailed proof is given for the result.

To present the result and proof, we need some basic facts in the coordinate geome-

try of R
2 (identified with C). Suppose w1, w2, z1, z2 ∈ C such that P = conv {wr+zs :

r, s ∈ {1, 2}} is a nondegenerate parallelogram. Then there is a unique rectangular
hyperbola passing through the vertices of P . The hyperbola degenerates to a pair of
perpendicular lines if and only if the four sides of P have equal length. Otherwise,
each branch of the hyperbola will pass through a pair of vertices of P corresponding
to a side of P with shorter length, i.e., the two sides of P of longer lengths lie in the
closed region lying between the two branches of the hyperbola. For a nondegenerate
rectangular hyperbola, the connected closed region with the hyperbola as boundary
is the inner hyperbolic region, and the two disconnected closed regions with the hy-
perbola as boundary form the outer hyperbolic region. Of course, the complement
of a closed hyperbolic region is an open hyperbolic region, and vice versa. In case
the hyperbola degenerates to a pair of perpendicular lines, the inner (and outer) hy-
perbolic region becomes the union of two unbounded triangular regions connected at
their vertices.

Suppose A and B are two essentially Hermitian matrices. If the line through σ(A)

and the line through σ(B) are parallel, then there are α, β ∈ C and φ ∈ R such that

H = e−iφ(A− αI) and K = e−iφ(B − βI) are Hermitian. Then

E(A,B) = eiφE(H,K) + (α + β)

and the result follows from Theorem 4.1. For the other cases, we have the following
result.

Theorem 4.6. Suppose A,B ∈ Mn are nonscalar essentially Hermitian matrices.
Then there exist α, β ∈ C, r1 ≥ r2 ≥ · · · ≥ rn and s1 ≥ s2 ≥ · · · ≥ sn, φ, θ ∈ R such

that the eigenvalues of A and B are aj = α + rje
iφ, 1 ≤ j ≤ n, and bj = β + sje

iθ,

1 ≤ j ≤ n, respectively. Let Γ = [rn, r1] × [sn, s1]. Assume that ei(φ−θ) /∈ {1,−1},
i.e., the two sets of eigenvalues do not lie on two parallel lines.
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(i) Let S(a, b) = {au + bv : 1 ≤ u, v ≤ n}, and 1 ≤ j < n. If aj �= aj+1, then

S(a, b) is a subset of the closed hyperbolic region

H(a, j) = {eiφx + eiθy + α + β : (x, y) ∈ R
2 with (y − s1)(y − sn)

≤ (x− rj)(x− rj+1)};

if bj �= bj+1, then S(a, b) is a subset of the closed hyperbolic region

H(b, j) = {eiφx + eiθy + α + β : (x, y) ∈ R
2 with (y − sj)(y − sj+1)

≥ (x− r1)(x− rn)}.

(ii) The set E(A,B) is the intersection of P = conv {ar + bs : r, s ∈ {1, n}} and

all closed hyperbolic regions in (i).

(iii) Each connected component of E(A,B) is simply connected with its boundary

consisting of segments of hyperbolas given in (i).
In particular, if each A and B has exactly two distinct eigenvalues, say a1 = · · · =
ak �= ak+1 = · · · = an and b1 = · · · = b� �= b�+1 = · · · = bn, then E(A,B) are two
segments of a hyperbola equal to

E(A,B) = P ∩H(a, k) ∩H(b, 
)

= {eiφx + eiθy + α + β : (x, y) ∈ Γ with (y − s1)(y − sn) = (x− r1)(x− rn)}.

Our proof depends on the following lemma.
Lemma 4.7. Suppose A,B ∈ Mn satisfy the assumption in Theorem 4.6. Then

μ /∈ E(A,B) if and only if one of the following holds.

(a) The line segment joining a1, an and the line segment joining μ− b1, μ− bn do
not intersect.

(b) There exist t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n− 1} such that

μ− (t1b1 + (1 − t1)bn) = t2aj + (1 − t2)aj+1 and

t1|μ− b1|2 + (1 − t1)|μ− bn|2 < t2|aj |2 + (1 − t2)|aj+1|2.

(c) There exist t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n− 1} such that

μ− (t1bj + (1 − t1)bj+1) = t2a1 + (1 − t2)an and

t1|μ− bj |2 + (1 − t1)|μ− bj+1|2 > t2|a1|2 + (1 − t2)|an|2.

Proof. Under the given assumption, DW (A) and DW (μIn − B) will be vertical

polygonal disks in C × R with vertices in {(z, |z|2) : z ∈ C}. The two disks have no
intersection if and only if

(1) the projections of the two disks on C do not intersect, or

(2) the projections on C intersect, but one disk is above the other.

Case (1) is equivalent to (a), and (2) is equivalent to (b) or (c).

Proof of Theorem 4.6. Suppose μ �∈ E(A,B). Consider the three cases in Lemma
4.7:
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(a) The line segment joining a1, an and the line segment joining μ − b1, μ − bn
have no intersection if and only if for all 0 ≤ t1, t2 ≤ 1,

t2a1 + (1 − t2)an �= t1(μ− b1) + (1 − t1)(μ− bn),

⇔ μ �= t1b1 + (1 − t1)bn + t2a1 + (1 − t2)an,

⇔ μ �∈ P = conv {ar + bs : r, s ∈ {1, n}},

⇔ μ �∈ {eiφx + eiθy + α + β : (x, y) ∈ Γ}.

(b) Suppose for some t1, t2 ∈ [0, 1] and j ∈ {1, . . . , n− 1} that

μ− (t1b1 + (1 − t1)bn) = t2aj + (1 − t2)aj+1(4.1)

and

t1|μ− b1|2 + (1 − t1)|μ− bn|2 < t2|aj |2 + (1 − t2)|aj+1|2.(4.2)

Let μ − α − β = eiφu + eiθv with u, v ∈ R. From (4.1), aj = α + eiφrj , and

bj = β + eiθsj for 1 ≤ j ≤ n with ei(φ−θ) /∈ {1,−1}, we have

u = t2rj + (1 − t2)rj+1 and v = t1s1 + (1 − t1)sn

or, equivalently,

t1 =
sn − v

sn − s1
and t2 =

rj+1 − u

rj+1 − rj
.

We have

t2|aj |2 + (1 − t2)|aj+1|2

= t2|α + eiφrj |2 + (1 − t2)|α + eiφrj+1|2

= t2(|α|2 + (αeiφ + αe−iφ)rj + r2
j ) + (1 − t2)(|α|2 + (αeiφ + αe−iφ)rj+1 + r2

j+1)

= |α|2 + (αeiφ + αe−iφ)u + (rj + rj+1)u− rjrj+1

as t2rj + (1 − t2)rj+1 = u and t2r
2
j + (1 − t2)r

2
j+1 = (rj + rj+1)u− rjrj+1. Then

t1|μ− b1|2 + (1 − t1)|μ− bn|2

= t1|α + eiφu + eiθ(v − s1)|2 + (1 − t1)|α + eiφu + eiθ(v − sn)|2

= t1
[
|α|2 + (αeiφ + αe−iφ)u + (αeiθ + αe−iθ)(v − s1)

+(ei(θ−φ) + e−i(θ−φ))u(v − s1) + u2 + (v − s1)
2
]

+(1 − t1)
[
|α|2 + (αeiφ + αe−iφ)u + (αeiθ + αe−iθ)(v − sn)
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+(ei(θ−φ) + e−i(θ−φ))u(v − sn) + u2 + (v − sn)2
]

= |α|2 + (αeiφ + αe−iφ)u + u2 − (v − s1)(v − sn)

as t1(v−s1)+(1−t1)(v−sn) = 0 and t1(v−s1)
2+(1−t1)(v−sn)2 = −(v−s1)(v−sn).

Putting these values into (4.2), we have

0 < t2|aj |2 + (1 − t2)|aj+1|2 − t1|μ− b1|2 − (1 − t1)|μ− bn|2

= (v − s1)(v − sn) − (u− rj)(u− rj+1).

For any z = eiφx + eiθy + α + β with x, y ∈ R, define

f(z) = (y − s1)(y − sn) − (x− rj)(x− rj+1).

With ak + bm = eiφrk + eiθsm + α + β, we have

f(ak + bm) = (sm − s1)(sm − sn) − (rk − rj)(rk − rj+1) ≤ 0.

Thus, H(a, j) = {z : f(z) ≤ 0} is a closed hyperbolic region satisfying (i).

Similarly, if condition (c) in Lemma 4.7 is satisfied, then we have a closed hyper-

bolic region H(b, j) satisfying (i).

By Lemma 4.7 and (i), we see that E(A,B) is a subset of the intersection of P

and the hyperbolic regions described in (i), and no points in the complement of the

intersection belong to E(A,B). Thus, assertion (ii) of the theorem follows.

From the above discussion, we can see that the complement of E(A,B) is a union

of open hyperbolic regions. So, if z ∈ C \ E(A,B), then there exists a half line L

containing z with L ∩ E(A,B) = ∅. Hence, every connected component of E(A,B) is
simply connected.

Suppose the boundary of the parallelogram P = conv {au + bv : u, v ∈ {1, n}}
is graduated by the points ar + bj and aj + br with r ∈ {1, n} and j ∈ {1, . . . , n}.
Then the intersection of the hyperbolas H(a, j) (respectively, H(b, j)) with P will

have endpoints ar + bs with r ∈ {j, j + 1} and s ∈ {1, n} (respectively, r ∈ {1, n} and

s ∈ {j, j + 1}).
Combining the arguments in the last two paragraphs, we get condition (iii).

Remark 4.8. The above result gives a simple procedure to determine the region
E(A,B) for A and B satisfying the conditions in Theorem 4.6.

Sketch the hyperbolas corresponding to the intersection of P and the closed hy-
perbolic regions H(a, j) and H(b, j) for 1 ≤ j < n (see section 6.2). Then E(A,B)
consists of the simply connected regions in P determined by these curves.

Remark 4.9. Notice that all 2 × 2 normal matrices are essentially Hermitian.
Then for any 2 × 2 nonscalar normal matrices A and B, E(A,B) is either a union of

line segments or a pair of hyperbola by Theorems 4.1 and 4.6. In both cases, E(A,B)
has an empty interior.

Example 4.10. Consider A = diag (0, 1, 4) and B = diag (0, 1 + i). The following

pictures depict the segments of hyperbolas corresponding to H(a, 1), H(a, 2), H(b, 1),

and the set E(A,B).
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Example 4.10: H(a, 1),∪H(a, 2),∪H(b, 1) Example 4.10: E(A,B)

Suppose A,B ∈ Mn are normal matrices. The connected components of E(A,B)
may not be simply connected in general as shown in the following example.

Example 4.11. Let ω = ei2π/3. Using the method described in section 6, we can

show that for A = diag (−i,−iω,−iω2) and B = diag (−iω,−iω,−iω2), E(A,B) is
not simply connected.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
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Example 4.11: E(A,B)

Although the conclusion of Theorem 4.6 does not hold for arbitrary normal ma-
trices A,B ∈ Mn, one can see form Theorem 3.6 that the boundary of E(A,B) is a
subset of the union of hyperbolas determined by eigenvalue pairs of A and eigenvalue
pairs of B. We have the following example.

Example 4.12. Here we let ω = ei2π/3, A = diag (−i,−iω,−iω2), and

B = 0.95 diag (−iω,−iω,−iω2). Then the boundary of E(A,B) are subsets of the
union of hyperbolas.
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Example 4.12: E(A,B)
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It is interesting to note that the matrices in Example 4.12 are obtained from
those in Example 4.11 by shrinking B by a factor of 0.95, and hence the two pictures
of E(A,B) have some resemblance even though part of the boundary changes from
straight-line segments to curve segments. In general, it is not hard to show that
(A,B) �→ E(A,B) is a continuous function, say, by using the usual topology on Mn ×
Mn and the Hausdorff metric for compact sets in C.

5. Extensions and open problems. One may ask whether the results can
be extended to the sum of k matrices from k different unitary similarity orbits for
k > 2. For Hermitian matrices A1, . . . , Ak, there is a complete description of the
eigenvalues of the matrices in U(A1)+· · ·+U(Ak); see [8]. For non-Hermitian matrices
A1, . . . , Ak ∈ Mn, we can extend the idea in section 2 to determine the set of complex
numbers μ, which is the eigenvalue of a matrix in U(A1) + · · · + U(Ak). To this end,
we need the concept of the modified Davis–Wielandt shell of A ∈ Mn defined by

MDW (A) =
{(

x∗Ax,
√
‖Ax‖2 − |x∗Ax|2eit

)
: x ∈ C

n, x∗x = 1, t ∈ R

}
⊆ C × C.

Note that (μ1, μ2) ∈ MDW (A) if and only if there is a unitary matrix U such that

the first column of U∗AU equals [μ1, μ2, 0, . . . , 0]t.
Theorem 5.1. Let A1, . . . , Ak ∈ Mn and μ ∈ C. The following are then equiva-

lent.
(a) There are unitary U1, . . . , Uk ∈ Mn such that det(

∑k
j=1 UjAjU

∗
j − μIn) = 0.

(b) (μ, 0) ∈ MDW (A1) + · · · + MDW (Ak).

(c) [MDW (A1) + · · · + MDW (Ak−1)] ∩MDW (μIn −Ak) �= ∅.

Proof. We may assume that k ≥ 3. The implications (c) ⇐⇒ (b) ⇒ (a)

are clear. Suppose (a) holds. Then there are unitary matrices U1, . . . , Uk such that

the first column of
∑k

j=1 U
∗
j AjUj equals [μ, 0, . . . , 0]t. Let vj be obtained from the

first column of U∗
j AjUj by removing its first entry μj . Then

∑k
j=1 vj = 0. Relabel

Aj so that ‖v1‖ ≥ · · · ≥ ‖vk‖. Then ‖v1‖ ≤ ‖v2‖ + · · · + ‖vk‖. Thus, there exist

t1, . . . , tk ∈ R such that
∑k

j=1 ‖vj‖eitj = 0. It follows that (μj , ‖vj‖eitj ) ∈ MDW (Aj)

for j = 1, . . . , k such that (μ, 0) =
∑k

j=1(μj , ‖vj‖eitj ). Thus, condition (b) holds.

Besides the unitary similarity orbits, one may consider orbits of matrices under
other group actions and consider the eigenvalues of the sum of matrices from different
orbits.

For example, we can consider the usual similarity orbit of A ∈ Mn,

S(A) = {SAS−1 : S ∈ Mn is invertible};

the unitary equivalence orbit of A ∈ Mn,

V(A) = {UAV : U, V ∈ Mn are unitary};

and the unitary congruence orbit of A ∈ Mn,

U t(A) = {UAU t : U ∈ Mn is unitary}.

For example, if A,B ∈ Mn are not scalar, then any μ ∈ C can be an eigenvalue

of SAS−1 + B. Can we prove this for complex orthogonal similarity?
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One may also consider the eigenvalues of usual product, Lie product, and Jordan
product of matrices from different orbits; e.g., see [10, 17]. Of course, one may address
similar problems for matrices over reals or arbitrary fields or rings.

For example, our results in section 2 hold for real eigenvalues for real matrices
UAU t + V BV t, where U, V are real orthogonal matrices.

6. Computer algorithms and programs. Using the result in section 2, we
can use any positive semidefinite programming package to test whether μ ∈ E(A,B)

as follows. For every (ξ, |ξ|2) ∈ DW (μI − B), we check whether (ξ, |ξ|2) ∈ DW (A);
equivalently, we check whether a real linear combination of the three Hermitian ma-
trices

Re(A− ξI), Im(A− ξI), A∗A− |ξ|2I

is positive definite. (This can be done by any positive semidefinite programming

package.) If there is no such combination, then (ξ, |ξ|2) ∈ DW (A).

Of course, the above test is inefficient and hard to implement. The situation will
improve significantly for normal matrices. One can use any standard linear program-
ming package to check whether the two convex polytopes DW (A) and DW (μI −B)
have nonempty intersection.

The situation further improves if we use Theorem 3.4 and focus on DW (X) ∩
DW (μI2 − Y ) for normal matrices X ∈ M3 and Y ∈ M2. For convenience, we

use E(X,Y ) to denote the set of μ ∈ C such that DW (X) ∩ DW (μI2 − Y ) �= ∅;
even X and Y may not have the same size. Then the set E(A,B) is the union of

E(X,Y ), where X = diag (w1, w2, w3) ∈ M3 and Y = diag (z1, z2) ∈ M2 as described
in Theorem 3.4. Furthermore, if both A and B have only two distinct eigenvalues,
respectively, say w1, w2 and z1, z2, then E(A,B) = E(X,Y ) with X = diag (w1, w2)

and Y = diag (z1, z2).

In the following, we will focus on E(X,Y ) so that either (X,Y ) ∈ M2 × M2 or

(X,Y ) ∈ M3 × M2 with distinct eigenvalues. Also as E(X,Y ) depends only on the
eigenvalues of X and Y , we may assume that X and Y are diagonal in our discussion.

We describe an easy pointwise test for x + iy ∈ E(X,Y ) in the following.

6.1. A pointwise test. The (2, 2) case. We begin with the simple case when

X = diag (w1, w2), Y = diag (z1, z2) ∈ M2, and determine whether a given point

x + iy ∈ E(X,Y ), for four given complex numbers w1 = a1 + ib1, w2 = a2 + ib2,
z1 = c1 + id1, and z2 = c2 + id2 so that w1, w2 are distinct and z1, z2 are distinct.

Let Pj =
(
aj , bj , a

2
j + b2j

)
and Qj = (x − cj , y − dj , (x− cj)

2
+ (y − dj)

2
) for

j = 1, 2. Then x + iy ∈ E if and only if

P1P2 ∩Q1Q2 �= ∅.(6.1)

Since all four points P1, P2, Q1, Q2 lie on the boundary of the convex set {(x, y, z) :

x2 + y2 ≤ z} ⊆ R
3, (6.1) holds if and only if the four points lie on the same plane

and P1 and P2 lie on the opposite closed half plane determined by the line through
Q1 and Q2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

572 CHI-KWONG LI, YIU-TUNG POON, AND NUNG-SING SZE

Let u =
−−−→
Q1Q2, v =

−−−→
Q1P2, and r = u × v = (r1, r2, r3). Define

Δ0 =

∣∣∣∣∣∣∣∣

c1 − c2 a1 + c1 − x a2 − a1

d1 − d2 b1 + d1 − y b2 − b1
(x− c2)

2 + (y − d2)
2

−(x− c1)
2 − (y − d1)

2 a2
1 + b21 − (x− c1)

2 − (y − d1)
2 a2

2 + b22 − a2
1 − b21

∣∣∣∣∣∣∣∣
,

Δ1 =

∣∣∣∣∣∣∣∣

c1 − c2 a1 + c1 − x r1
d1 − d2 b1 + d1 − y r2

(x− c2)
2 + (y − d2)

2

−(x− c1)
2 − (y − d1)

2 a2
1 + b21 − (x− c1)

2 − (y − d1)
2 r3

∣∣∣∣∣∣∣∣
.

Then P1, P2, Q1, Q2 all lie on the same plane if and only if Δ0 = 0. Suppose
Δ0 = 0. Then P1 and P2 lie on the opposite closed half plane determined by the line
through Q1 and Q2 if and only if Δ1 ≤ 0.

Assertion 6.1. For normal matrices X,Y ∈ M2 with eigenvalues described
above, x + iy ∈ E(X,Y ) if and only if Δ0 = 0 and Δ1 ≤ 0.

The (3, 2) case. Next, we describe the test to determine whether a given point

x + iy ∈ E (diag (w1, w2, w3),diag (z1, z2))

for any given complex numbers w1, w2, w3, z1, z2 so that w1, w2, w3 are distinct and
z1, z2 are distinct. Let wj = aj + ibj for j = 1, 2, 3, and zk = ck + idk for k = 1, 2.

Then x+ iy ∈ E(X,Y ) if and only if there exist 0 ≤ t1 ≤ 1, 0 ≤ t2, t3 and t2 + t3 ≤ 1
such that

(1 − t1)

⎛
⎝ x− c1

y − d1

(x− c1)
2

+ (y − d1)
2

⎞
⎠ + t1

⎛
⎝ x− c2

y − d2

(x− c2)
2

+ (y − d2)
2

⎞
⎠

= (1 − t2 − t3)

⎛
⎝ a1

b1
a2
1 + b21

⎞
⎠ + t2

⎛
⎝ a2

b2
a2
2 + b22

⎞
⎠ + t3

⎛
⎝ a3

b3
a2
3 + b23

⎞
⎠ ,

or, equivalently,

⎛
⎜⎜⎝

c2 − c1 a2 − a1 a3 − a1

d2 − d1 b2 − b1 b3 − b1
(x− c1)

2 + (y − d1)
2

−(x− c2)
2 − (y − d2)

2 a2
2 + b22 − a2

1 − b21 a2
3 + b23 − a2

1 − b21

⎞
⎟⎟⎠

⎛
⎝ t1

t2
t3

⎞
⎠

=

⎛
⎜⎜⎝

x− c1 − a1

y − d1 − b1
(x− c1)

2 + (y − d1)
2

−
(
a2
1 + b21

)

⎞
⎟⎟⎠ .
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Let

Δ0 =

∣∣∣∣∣∣∣∣

c2 − c1 a2 − a1 a3 − a1

d2 − d1 b2 − b1 b3 − b1
(x− c1)

2 + (y − d1)
2

−(x− c2)
2 − (y − d2)

2 a2
2 + b22 − a2

1 − b21 a2
3 + b23 − a2

1 − b21

∣∣∣∣∣∣∣∣
,

Δ1 =

∣∣∣∣∣∣∣∣

x− c1 − a1 a2 − a1 a3 − a1

y − d1 − b1 b2 − b1 b3 − b1
(x− c1)

2 + (y − d1)
2

−
(
a2
1 + b21

) a2
2 + b22 − a2

1 − b21 a2
3 + b23 − a2

1 − b21

∣∣∣∣∣∣∣∣
,

Δ2 =

∣∣∣∣∣∣∣∣

c2 − c1 x− c1 − a1 a3 − a1

d2 − d1 y − d1 − b1 b3 − b1
(x− c1)

2 + (y − d1)
2

−(x− c2)
2 − (y − d2)

2
(x− c1)

2 + (y − d1)
2

−
(
a2
1 + b21

) a2
3 + b23 − a2

1 − b21

∣∣∣∣∣∣∣∣
,

Δ3 =

∣∣∣∣∣∣∣∣

c2 − c1 a2 − a1 x− c1 − a1

d2 − d1 b2 − b1 y − d1 − b1
(x− c1)

2 + (y − d1)
2

−(x− c2)
2 − (y − d2)

2 a2
2 + b22 − a2

1 − b21
(x− c1)

2 + (y − d1)
2

−
(
a2
1 + b21

)

∣∣∣∣∣∣∣∣
.

By the above discussion, we have the following.
Assertion 6.2. Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues

described as above. Assume that Δ0 �= 0. Then x + iy ∈ E(A,B) if and only if

(Δ1,Δ2,Δ3,Δ0 − Δ1,Δ0 − Δ2 − Δ3) /Δ0

has nonnegative entries.
Suppose Δ0 = 0. Let

Pj =
(
aj , bj , a

2
j + b2j

)
for j = 1, 2, 3, and

Qk =
(
x− ck, y − dk, (x− ck)

2
+ (y − dk)

2
)

for k = 1, 2.

Then the line L through Q1 and Q2 is parallel to the plane Π determined by P1,
P2, and P3. Since all five points P1, P2, P3, Q1, Q2 lie on the boundary of the convex

set {(x, y, z) : x2 + y2 ≤ z} ⊆ R
3, x + iy ∈ E(X,Y ) if and only if L lies on Π and

divides Π into two closed half planes with L as the common boundary such that each
of these two closed half planes contains some Pi. Hence, L lies on Π if and only if
Δ0 = Δ1 = 0. In such a case, let

u =
−−−→
Q1Q2 =

(
c1 − c2, d1 − d2, (x− c2)

2 − (x− c1)
2 + (y − d2)

2 − (y − d1)
2
)
.

For 1 ≤ j ≤ 3, let

vj =
−−−→
Q1Pj =

(
aj − x + c1, bj − y + d1, a

2
j + b2j − (x− c1)

2 − (y − d1)
2
)
.

If Pj and Pk lie on different half planes determined by L, then the cross products
u × vj and u × vk are normals to Π, pointing in opposite directions. For 1 ≤ j ≤ 3,
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let rj = u × vj = (r1j , r2j , r3j) and

Δ′
j =

∣∣∣∣∣∣
a2 − a1 a3 − a1 r1j
b2 − b1 b3 − b1 r2j

a2
2 + b22 − a2

1 − b21 a2
3 + b23 − a2

1 − b21 r3j

∣∣∣∣∣∣ .

We can now describe the remaining case in the following.
Assertion 6.3. Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues

described as above. Assume that Δ0 = 0. Then x + iy ∈ E(X,Y ) if and only if

Δ1 = 0 and Δ′
j ≤ 0 ≤ Δ′

k for some 1 ≤ j, k ≤ 3.

Based on Assertions 6.1–6.3 with Theorem 3.4, we have written the MATLAB
program PT.m (see http://www.math.wm.edu/̃ ckli/program/PT.m) to test whether

a point x + iy lies in E(A,B).

Also, if A,B ∈ Mn are normal matrices, then E(A,B) is a subset of the set

conv (σ(A) + σ(B)) = conv {a + b : a ∈ σ(A), b ∈ σ(B)}.

One can then consider a grid in conv (σ(A)+σ(B)) and apply the pointwise test to the

grid points to plot E(A,B). The MATLAB program PPT.m (see http://www.math.

wm.edu/̃ ckli/program/PPT.m) is written based on this idea. An example of E(A,B)
generated by the program will be given in section 6.4.

6.2. Parametrization of E(A, B) for normal matrices. In this subsection,

we give a parametrization of E(A,B). We start with the (3, 2) case.

The (3, 2) case. Consider the case when X = diag (w1, w2, w3) ∈ M3 and Y =

diag (z1, z2) ∈ M2. Write wj = aj + ibj for j = 1, 2, 3 and zk = ck + idk for k = 1, 2.

Let Pj =
(
aj , bj , a

2
j + b2j

)
for j = 1, 2, 3 and Qk = (x−ck, y−dk, (x− ck)

2
+(y − dk)

2
)

for k = 1, 2. As μ ∈ E(X,Y ) if and only if μ− w1 − z1 ∈ E(X − w1I3, Y − z1I2), we
may assume that w1 = z1 = 0, i.e., a1 = b1 = c1 = d1 = 0.

Notice that E(X,Y ) is the set of x + iy ∈ C such that Δ(P1P2P3) ∩Q1Q2 �= ∅. This

holds if and only if there exists 0 ≤ t ≤ 1 such that P1P4 ∩Q1Q2 �= ∅, where

(6.2)

P4 = (a4, b4, r4) =
(
ta2 + (1 − t)a3, tb2 + (1 − t)b3, t(a2

2 + b22) + (1 − t)(a2
3 + b23)

)
.

By the convexity of the function (x, y) �→ x2 + y2, we have r4 ≥ a2
4 + b24. Thus, there

are 0 ≤ t1, t2 ≤ 1 such that

(1 − t1)

⎛
⎝ x

y
x2 + y2

⎞
⎠ + t1

⎛
⎝ x− c2

y − d2

(x− c2)
2 + (y − d2)

2

⎞
⎠ = (1 − t2)

⎛
⎝ 0

0
0

⎞
⎠ + t2

⎛
⎝ a4

b4
r4

⎞
⎠ ,

or, equivalently,

x = c2t1 + a4t2, y = d2t1 + b4t2,(6.3)

and

t1(x
2 + y2 − (x− c2)

2 − (y − d2)
2) + r4t2 = x2 + y2.(6.4)
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Substituting (6.3) into (6.4) we get

(c22 + d2
2)t1(t1 − 1) − (a2

4 + b24)t
2
2 + r4t2 = 0

which is a hyperbolic equation of t1 and t2 on [0, 1]. Then

t1 =
1

2
±

√
1

4
+

(
a2
4 + b24

c22 + d2
2

)
t22 −

(
r4

c22 + d2
2

)
t2,(6.5)

As r4 ≥ a2
4 +b24, it is easy to check that t1 is well defined and 0 ≤ t1 ≤ 1 whenever

t2 ∈ [0, 1] if r2
4 ≤ (a2

4 + b24)(c
2
2 + d2

2), and

t2 ∈
[
0,

r4 −
√
r2
4 − (a2

4 + b24)(c
2
2 + d2

2)

2(a2
4 + b24)

]
∪

[
r4 +

√
r2
4 − (a2

4 + b24)(c
2
2 + d2

2)

2(a2
4 + b24)

, 1

]

if r2
4 > (a2

4 + b24)(c
2
2 + d2

2).
Assertion 6.4. Suppose X ∈ M3 and Y ∈ M2 are normal with eigenvalues

described as above. For each t ∈ [0, 1], determine t1 and t2 using (6.2) and (6.5).

Then x + iy ∈ E(X,Y ) if and only if it is given by the parametric equation (6.3) in
terms of t1 and t2.

The (2, 2) case. Next, we consider the (2, 2) case. By an argument similar to

the (3, 2) case with (a4, b4, r4) = (a2, b2, a
2
2 + b22), we have

x = c2t1 + a2t2, y = d2t1 + b2t2,(6.6)

and

(c22 + d2
2)t1(t1 − 1) − (a2

2 + b22)t2(t2 − 1) = 0,

which is a hyperbolic equation of t1 and t2 on [0, 1]. Then

t1 =
1

2
±

√
1

4
+

(
a2
2 + b22

c22 + d2
2

)
t2(t2 − 1)(6.7)

lies in [0, 1] whenever t2 ∈ [0, 1] if c22 + d2
2 ≥ a2

2 + b22, or

t2 =
1

2
±

√
1

4
+

(
c22 + d2

2

a2
2 + b22

)
t1(t1 − 1)(6.8)

lies in [0, 1] whenever t1 ∈ [0, 1] if c22 + d2
2 < a2

2 + b22.

Assertion 6.5. Suppose X = diag (0, w2) ∈ M2 and Y = diag (0, z2) ∈ M2.

Then x + iy ∈ E(X,Y ) if and only if it is given by the parametric equation (6.6) in

terms of t1 and t2 determined by (6.7) and (6.8).
Based on Assertions 6.4 and 6.5 and Theorem 3.4, we have written the MATLAB

program HPT.m (see http://www.math.wm.edu/̃ ckli/program/HPT.m) to generate

E(X,Y ). An example of E(A,B) generated by the program will be given in section
6.4.

Using Theorem 3.6 and Assertion 6.5, we have written the MATLAB pro-
gram BD32.m (see http://www.math.wm.edu/̃ ckli/program/BD32.m) to generate

∂E(X,Y ), the boundary of E(X,Y ) for normal X ∈ M3 and Y ∈ M2.
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6.3. A different algorithm. To use the parametric approach in the previous
subsection, one has to determine t1 and t2 in [0, 1], and draw two curves in terms of

t1 and t2. Here, we introduce a different algorithm to generate E = E(X,Y ) with

X = diag (w1, w2, w3) and Y = diag (z1, z2). To generate the points x+ iy ∈ E(X,Y ),
we first determine the range for x. Then for each x in the range, we determine the
range of y. Here we consider the (3, 2) case only.

Let wj = aj+ibj and zk = ck+idk for j = 1, 2, 3 and k = 1, 2. Since E(μX, μY ) =

μE(X,Y ) and E(X + νI, Y − νI) = E(X,Y ), we may assume that d1 = d2. Also by
a suitable relabeling, we can always assume c1 < c2 and b1 ≤ b2 ≤ b3. Evidently, if
x + iy ∈ E(X,Y ), then

min{a1, a2, a3} + c1 ≤ x ≤ max{a1, a2, a3} + c2.

Now we choose an x satisfying the above inequalities and determine y so that x + iy
lies in E(X,Y ).

In fact, except for the case when b1 = b2 = b3, we may further assume that
b1 < b2 ≤ b3. In the exceptional case, X − ib1I3 and Y − id1I2 are Hermitian
matrices. Then the result follows from Theorem 4.1. In detail, we have the following.

Assertion 6.6. Suppose a1 < a2 < a3, b1 = b2 = b3, c1 < c2, and d1 = d2.
Then x + iy ∈ E(X,Y ) if and only if y = b1 + d1 and

x ∈ [a1 + c1, a3 + c2]\(a1 + c2, a2 + c1) ∪ (a2 + c2, a3 + c1) ∪ (a3 + c1, a1 + c2).

From now on, we suppose that b1 < b2 ≤ b3. As E(X − μI3, Y + μI2) = E(X,Y ),

we can also assume that |w1| = |w2| �= |w3| if w1, w2, w3 are collinear and |w1| =

|w2| = |w3|, otherwise.

Note that as d1 = d2 and |w1| = |w2|, the determinants Δi defined in section 6.1
become

Δ0 =

∣∣∣∣∣∣
c2 − c1 a2 − a1 a3 − a1

0 b2 − b1 b3 − b1
(x− c1)

2 − (x− c2)
2 0 a2

3 + b23 − a2
1 − b21

∣∣∣∣∣∣ ,

Δ1 =

∣∣∣∣∣∣
x− c1 − a1 a2 − a1 a3 − a1

y − d1 − b1 b2 − b1 b3 − b1
(x− c1)

2 + (y − d1)
2 − (a2

1 + b21) 0 a2
3 + b23 − a2

1 − b21

∣∣∣∣∣∣ ,

Δ2 =

∣∣∣∣∣∣
c2 − c1 x− c1 − a1 a3 − a1

0 y − d1 − b1 b3 − b1
(x− c1)

2 − (x− c2)
2 (x− c1)

2 + (y − d1)
2 − (a2

1 + b21) a2
3 + b23 − a2

1 − b21

∣∣∣∣∣∣ ,

Δ3 =

∣∣∣∣∣∣
c2 − c1 a2 − a1 x− c1 − a1

0 b2 − b1 y − d1 − b1
(x− c1)

2 − (x− c2)
2 0 (x− c1)

2 + (y − d1)
2 − (a2

1 + b21)

∣∣∣∣∣∣ ,

where the last three determinants can been expressed in the form

Δi = Δi2(y − d1)
2 + Δi1(y − d1) + Δi0 i = 1, 2, 3,

with

Δ12 =

∣∣∣∣ a2 − a1 a3 − a1

b2 − b1 b3 − b1

∣∣∣∣ ,
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Δ11 = −
∣∣∣∣ a2 − a1 a3 − a1

0 a2
3 + b23 − a2

1 − b21

∣∣∣∣ ,

Δ10 =

∣∣∣∣∣∣
x− c1 − a1 a2 − a1 a3 − a1

−b1 b2 − b1 b3 − b1
(x− c1)

2 − (a2
1 + b21) 0 a2

3 + b23 − a2
1 − b21

∣∣∣∣∣∣ ,

Δ22 = −
∣∣∣∣ c2 − c1 a3 − a1

0 b3 − b1

∣∣∣∣ ,
Δ21 =

∣∣∣∣ c2 − c1 a3 − a1

(x− c1)
2 − (x− c2)

2 a2
3 + b23 − a2

1 − b21

∣∣∣∣ ,

Δ20 =

∣∣∣∣∣∣
c2 − c1 x− c1 − a1 a3 − a1

0 −b1 b3 − b1
(x− c1)

2 − (x− c2)
2 (x− c1)

2 − (a2
1 + b21) a2

3 + b23 − a2
1 − b21

∣∣∣∣∣∣ ,

Δ32 =

∣∣∣∣ c2 − c1 a2 − a1

0 b2 − b1

∣∣∣∣ ,
Δ31 = −

∣∣∣∣ c2 − c1 a2 − a1

(x− c1)
2 − (x− c2)

2 0

∣∣∣∣ ,

Δ30 =

∣∣∣∣∣∣
c2 − c1 a2 − a1 x− c1 − a1

0 b2 − b1 −b1
(x− c1)

2 − (x− c2)
2 0 (x− c1)

2 − (a2
1 + b21)

∣∣∣∣∣∣ .

Note that

Δ0 = (c2−c1)

∣∣∣∣ b2 − b1 b3 − b1
0 a2

3 + b23 − a2
1 − b21

∣∣∣∣+((x−c1)
2−(x−c2)

2)

∣∣∣∣ a2 − a1 a3 − a1

b2 − b1 b3 − b1

∣∣∣∣ .
Therefore, Δ0 = 0 if and only if

w1, w2, w3 are not collinear and x = (c1 + c2)/2.(6.9)

Suppose (6.9) holds. Then Δ0 = 0 and by Assertion 6.3, x+ iy ∈ E(X,Y ) only if
Δ1 = 0, in which the equality holds when

y = d1 ±
√

(x− c1)2 − (a2
1 + b21).

Now we can check whether the point x+ iy in E(X,Y ) holds by considering the values

of Δ′
i defined in Assertion 6.3.

Exclude the above case. Then Δ0 �= 0. By Assertion 6.2, x+ iy ∈ E(X,Y ) if and
only if

Δ1/Δ0 ≥ 0, Δ2/Δ0 ≥ 0, Δ3/Δ0 ≥ 0,

(Δ0 − Δ1)/Δ0 ≥ 0, and (Δ0 − Δ2 − Δ3)/Δ0 ≥ 0.

In the following, we determine the possible range of y that satisfies the above inequal-
ities.

Suppose α1 ≤ β1, . . . , α5 ≤ β5 are the real solutions, if they exist, of the following
quadratic equations:

Δ1 = Δ12(y − d1)
2 + Δ11(y − d1) + Δ10 = 0,(6.10)
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Table 1

(6.11) (6.12) Δ0 > 0 Δ0 < 0
Y Y [α2, β2]\(α3, β3) [α3, β3]\(α2, β2)
Y N [α2, β2] no solution
N Y no solution [α3, β3]
N N no solution no solution

Table 2

b2 �= b3 (Δ22 + Δ32 �= 0) b2 = b3 (Δ22 + Δ32 = 0)
(6.14) Δ0 > 0 Δ0 < 0 (Δ21 + Δ31)/Δ0 > 0 (Δ21 + Δ31)/Δ0 < 0
Y (−∞, α5] ∪ [β5,∞) [α5, β5] (−∞, α5] [α5,∞)
N (−∞,∞) no solution / /

Δ2 = Δ22(y − d1)
2 + Δ21(y − d1) + Δ20 = 0,(6.11)

Δ3 = Δ32(y − d1)
2 + Δ31(y − d1) + Δ30 = 0,(6.12)

Δ0 − Δ1 = −Δ12(y − d1)
2 − Δ11(y − d1) − Δ10 + Δ0 = 0,(6.13)

Δ0 − Δ2 − Δ3 = −(Δ22 + Δ32)(y − d1)
2 − (Δ21 + Δ31)(y − d1)(6.14)

−(Δ20 + Δ30) + Δ0 = 0.

Also, we continue to use αi to denote the corresponding real solution if the
quadratic equation is linear.

As b1 < b2 ≤ b3,

Δ22 = −(c2 − c1)(b3 − b1) < 0 and Δ32 = (c2 − c1)(b2 − b1) > 0.

Thus, the inequalities Δ2/Δ0 ≥ 0 and Δ3/Δ0 ≥ 0 are satisfied if and only if y lies in
the interval specified in Table 1 where “Y” denotes the corresponding equation having
real solution(s) and “N” otherwise.

Now we turn to (6.14). Note that

Δ22 + Δ32 =

∣∣∣∣ c2 − c1 a2 − a3

0 b2 − b3

∣∣∣∣ ≤ 0.

Therefore the equation is linear, equivalently Δ22 + Δ32 = 0, if and only if b2 = b3,

which can hold only if w1, w2, w3 are not collinear. In this case, a2
3 + b23 − a2

1 − b21 =

|w3|2 − |w1|2 = 0 and so

Δ21 + Δ31 =

∣∣∣∣ c2 − c1 a3 − a2

(x− c1)
2 − (x− c2)

2 a2
3 + b23 − a2

1 − b21

∣∣∣∣ �= 0.

Therefore the inequality (Δ0 − Δ2 − Δ3)/Δ0 ≥ 0 is satisfied if and only if y lies
in the intervals specified in Table 2.
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Table 3

Noncollinear (Δ12 �= 0) Collinear (Δ12 = 0)
(6.10) (6.13) Δ12/Δ0 > 0 Δ12/Δ0 < 0 Δ11/Δ0 > 0 Δ11/Δ0 = 0 Δ11/Δ0 < 0
Y Y [α4, β4]\(α1, β1) [α1, β1]\(α4, β4) [α1, α4] (−∞,∞) [α4, α1]
Y N no solution [α1, β1] / / /
N Y [α4, β4] no solution / / /
N N no solution no solution / / /

Finally, we consider (6.10) and (6.13). Clearly, the equations are linear, i.e.,
Δ12 = 0, if and only if w1, w2, w3 are collinear. In addition, the equations are constant
functions, i.e., Δ12 = 0 and Δ11 = 0, if and only if a1 = a2 = a3. In the case of being
a constant function,

Δ0 = (c2−c1)(b2−b1)(a
2
3+b23−a2

1−b21) and Δ1 = (x−c1−a1)(b2−b1)(a
2
3+b23−a2

1−b21).

Thus, the inequalities Δ1/Δ0 ≥ 0 and (Δ0 − Δ1)/Δ0 ≥ 0 are satisfied if and only if
c1 ≤ x− a1 ≤ c2, which always holds by our assumption on x.

Combining with the quadratic and linear cases, the inequalities Δ1/Δ0 ≥ 0 and

(Δ0 − Δ1)/Δ0 ≥ 0 are satisfied if and only if y lies in the intervals specified in Table
3.

Assertion 6.7. Suppose b1 < b2 ≤ b3, c1 < c2, d1 = d2. Assume (i) |w1| =

|w2| �= |w3| if w1, w2, w3 are collinear, and (ii) |w1| = |w2| = |w3| otherwise; except

for the case (6.9), for any x ∈ [amin + c1, amax + c2], where amin = min{a1, a2, a3} and

amax = max{a1, a2, a3}, x + iy ∈ E(X,Y ) if and only if y lies in the intersection the
intervals specified in Tables 1, 2, and 3.

Based on Assertions 6.6–6.7, we have written another MATLAB program IPT.m
(see http://www.math.wm.edu/̃ ckli/program/IPT.m) to generate E(A,B) for normal

matrices A and B. An example of E(A,B) generated by the program will be given in
section 6.4.

6.4. An example of E(A, B) generated by the three approaches.

Example 6.8. Let A = diag (i, iω, iω2) and B = diag (ω, ω2) with ω = ei2π/3. The

region of E(A,B) is plotted using MATLAB programs based on the three different
algorithms in sections 6.1–6.3.

In the above example, we see that the first program took the longest computer
time and a lot of memory to determine and store E(A,B). The second program
took less computer time and less memory, but it is not effective in approximating the
straight line boundary of E(A,B) (using hyperbolas). Finally, the third program used

the least amount of computer time and memory to produce and store E(A,B).
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COMBINATION PRECONDITIONING AND THE
BRAMBLE–PASCIAK+ PRECONDITIONER∗

MARTIN STOLL† AND ANDY WATHEN†

Abstract. It is widely appreciated that the iterative solution of linear systems of equations
with large sparse matrices is much easier when the matrix is symmetric. It is equally advantageous
to employ symmetric iterative methods when a nonsymmetric matrix is self-adjoint in a nonstan-
dard inner product. Here, general conditions for such self-adjointness are considered. A number of
known examples for saddle point systems are surveyed and combined to make new combination pre-
conditioners which are self-adjoint in different inner products. In particular, a new method related
to the Bramble–Pasciak CG method is introduced and it is shown that a combination of the two
outperforms the widely used classical method on a number of examples. Furthermore, we combine
Bramble and Pasciak’s method with a recently introduced method by Schöberl and Zulehner. The
result gives a new preconditioner and inner product that can outperform the original methods of
Bramble–Pasciak and Schöberl–Zulehner.

Key words. linear systems, Krylov subspaces, nonstandard inner products

AMS subject classifications. Primary, 65F10, 65N22, 65F50; Secondary, 76D07
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1. Introduction. In 1988, Bramble and Pasciak [6] introduced a block trian-
gular preconditioner for the discrete Stokes problem (matrix) which had the almost
magical effect of turning the original indefinite symmetric matrix problem into a non-
symmetric matrix which is both self-adjoint and, in certain practical circumstances,
positive definite in a nonstandard inner product; thus the conjugate gradient method
could be used in the nonstandard inner product.

Precisely, the symmetric saddle point problem

(1.1)

[
A BT

B −C

]
︸ ︷︷ ︸

x = b

A

with symmetric positive definite A ∈ R
n×n, symmetric positive semidefinite C ∈

R
m×m, m < n, and B ∈ R

m×n of row full rank m, if preconditioned on the left by

(1.2) P =

[
A0 0
B −I

]
with P−1 =

[
A−1

0 0
BA−1

0 −I

]
,

results in the nonsymmetric matrix

(1.3) Â = P−1A =

[
A−1

0 A A−1
0 BT

BA−1
0 A−B BA−1

0 BT + C

]
,
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which turns out to be self-adjoint (many would say “symmetric”) in the inner product
〈·, ·〉H defined by 〈w, y〉H := wTHy, where

H =

[
A−A0 0

0 I

]
.

Moreover, 〈w, Âw〉H > 0 for all w �= 0 so that Â is also positive definite. For these
results to hold, the matrix block A0 has to be symmetric and positive definite and must
be scaled in order that A−A0 is also positive definite so that 〈·, ·〉H not only defines
a symmetric bilinear form but also satisfies the positivity requirement 〈x, x〉H > 0 for
x �= 0 which ensures that it is an inner product.

The outcome is that the conjugate gradient (CG) method [26] based on this inner
product can be applied and the system can be solved efficiently; see, for example,
Algorithm 2.1 in [11] for the CG method in an arbitrary inner product. This Bramble–
Pasciak CG method is a very powerful and widely used tool to solve saddle point
systems. Further analysis and applications can be found in [47, 9, 29, 28, 7, 1, 48, 22,
2, 3, 37].

The Bramble–Pasciak CG method is not the only solver of this kind where a
matrix is preconditioned and then a nonstandard inner product can be found such
that efficient Krylov subspace solvers like CG can be applied. More examples are given
in [15, 42, 5, 34, 28, 31, 40, 8] and will be explained and used later in this paper.

We comment that alternative approaches for the Stokes and other saddle point
problems use symmetric preconditioners and iterative methods such as MINRES
and ITFQMR (see [11, Chapter 6], [4, 17]). We show some comparisons with such
methods; see also [9]. We explore some abstract but elementary algebraic structures
which enable some broadening of the set of available preconditioners for which sad-
dle point problems may be treated by symmetric iterative methods in nonstandard
inner-products. The outcome is some new preconditioning techniques which might
be useful in practice. In particular, we derive and test numerically a new method
which requires exactly the same work per iteration as the widely used Bramble–
Pasciak method but which converges in fewer iterations for several examples we have
computed. We furthermore introduce a method that combines the Bramble–Pasciak
method and a recently introduced method by Schöberl and Zulehner with promising
numerical results. Our algebraic results apply generally but we have not considered
anything other than saddle point examples.

2. Background. For linear systems with large dimensions, it is well known that
iterative methods are most often the only feasible solution approaches; direct methods
for dense and sparse or structured matrices work well provided the bandwidth/skyline
is not too large, but if fill-in in the computed triangular factors is too great such meth-
ods are usually infeasible beyond a certain dimension. Amongst the available iterative
methods, multigrid approaches are extremely attractive for certain classes of prob-
lems (see, for example, [11]), and in more generality, Krylov subspace methods can be
excellent solvers provided suitably fast convergence can be achieved; preconditioning
is almost always required to achieve this.

For symmetric matrix systems, the CG method [26] for positive definite systems
and minimum residual (MINRES) or SYMMLQ methods [35] for indefinite systems are
based on short term recurrences and are the Krylov subspace methods of choice. The
CG method is especially popular because of its efficiency. By contrast, for nonsymmet-
ric matrix systems there is a large number of methods (GMRES, BICGSTAB, QMR;
see [39, 45, 19]) and various hybrid methods (GMRESR, BICGSTAB(�); see [46, 44])
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reflecting that convergence is not as well understood than in the symmetric case and
the best method for any particular problem is usually not clear; see [43] for a good
overview and further references. This situation is rather unsatisfactory. Certainly if
it were computationally possible to somehow convert a nonsymmetric system to an
equivalent one with a symmetric matrix so that CG or MINRES or some other sym-
metric method could be employed then this could be very attractive. Even in the case
of a symmetric and indefinite matrix system, conversion to a symmetric and positive
definite matrix system is attractive since it enables use of CG (the above mentioned
case of the Bramble–Pasciak method is an example). Use of the normal equations
approach—replacing Ax = b with ATAx = AT b—is usually not so attractive because
for other than a matrix which is very well conditioned this usually leads to much
poorer convergence of iterative methods.

One can broaden the possibilities by allowing nonstandard inner-products—the
important/desirable matrices are then the matrices which are self-adjoint with respect
to such an inner product. The self-adjointness in a nonstandard inner-product enables
the use of CG for positive definite systems and MINRES for self-adjoint but indefinite
systems in that inner product. A method like the ideal transpose-free quasi minimal
residuals (ITFQMR) [17] can be used if a matrix is only self-adjoint in a symmetric
bilinear form (cf. section 7.4). For related considerations, in particular in connection
with Krylov subspace methods, see [43, section 13].

Here, we use the term symmetric when referring to matrices which are self-adjoint
in the usual Euclidean inner product defined by 〈w, y〉 := wT y =

∑
wiyi, i.e., those

matrices whose entries satisfy ai,j = aj,i. Correspondingly, by AT (= B) we mean the
matrix with entries bi,j = aj,i, i.e., the adjoint matrix in the usual Euclidean inner
product.

3. Basic properties. First, we review the basic mathematics. We consider here
only real Euclidean vector spaces; we see no reason that our theory should not apply
in the complex case or indeed for other vector spaces, but we have not done so.

We say that

(3.1) 〈·, ·〉 : R
n × R

n → R

is a symmetric bilinear form if

• 〈w, y〉 = 〈y, w〉 for all w, y ∈ R
n

• 〈αw + y, z〉 = α〈w, z〉 + 〈y, z〉 for all w, y, z ∈ R
n and all α ∈ R.

With the addition of a nondegeneracy condition, Gohberg, Lancaster, and Rodman
(cf. [23]) use the term “indefinite inner product”; general properties of such forms can
also be found here.

If, additionally, the positivity conditions

〈w,w〉 > 0 for w �= 0 with 〈w,w〉 = 0 if and only if w = 0

are satisfied, then (3.1) defines an inner product on R
n.

For any real symmetric matrix, H, 〈·, ·〉H defined by

(3.2) 〈w, y〉H := wTHy

is easily seen to be a symmetric bilinear form which is an inner product if and only if
H is positive definite.
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A matrix A ∈ R
n×n is self-adjoint in 〈·, ·〉 if and only if

〈Aw, y〉 = 〈w,Ay〉 for all w, y.

Self-adjointness of the matrix A in 〈·, ·〉H thus means that

wTATHy = 〈Aw, y〉H = 〈w,Ay〉H = wTHAy

for all w, y so that

(3.3) ATH = HA

is the basic relation for self-adjointness of A in 〈·, ·〉H.
Furthermore, we want to describe basic properties of bilinear forms and nonstan-

dard inner products. This can also be viewed in terms of real symmetric matrices
since (3.3) states that ATH is a real symmetric matrix. Here, we prefer the language
of inner products since we feel it indicates more of the mathematical structure which
leads to the development of new methods based on nonstandard inner products.

We emphasize that 〈·, ·〉, 〈·, ·〉H must be symmetric bilinear forms here, but we
do not require them to be inner products for the theory presented in this section.
For practical reasons, we will consider positivity/nonpositivity of symmetric bilinear
forms and positive definiteness/indefiniteness of self-adjoint matrices separately from
our considerations of symmetry and self-adjointness. Whenever we write 〈·, ·〉H, H
will be symmetric.

It is easy to verify the following lemmas.
Lemma 3.1. If A1 and A2 are self-adjoint in 〈·, ·〉H, then for any α, β ∈ R,

αA1 + βA2 is self-adjoint in 〈·, ·〉H.
Lemma 3.2. If A is self-adjoint in 〈·, ·〉H1

and in 〈·, ·〉H2
, then A is self-adjoint

in 〈·, ·〉αH1+βH2
for every α, β ∈ R.

Now if A is preconditioned on the left by P, then from (3.3), Â = P−1A is
self-adjoint in 〈·, ·〉H if and only if

(3.4) (P−1A)TH = HP−1A

which is

ATP−TH = HP−1A

or

AT (P−TH) = (P−TH)TA

since H is symmetric. Thus if A is also symmetric we get

(3.5) (P−TH)TA = A(P−TH)

and so we have the following lemma.
Lemma 3.3. For symmetric A, Â = P−1A is self-adjoint in 〈·, ·〉H if and only if

P−TH is self-adjoint in 〈·, ·〉A.
Proof. The proof follows directly from the above lemmas and (3.3).
Remark 3.4. Lemma 3.3 includes the even more simple situations that P−1A is

self-adjoint in 〈·, ·〉P and AP−1 is self-adjoint in 〈·, ·〉A−1 when both A and P are
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symmetric since I is trivially self-adjoint in any symmetric bilinear form. Clearly
invertibility of P and A, respectively, are needed in these two cases.

Now for symmetric A, if P1 and P2 are such that P−1
i A is self-adjoint in 〈·, ·〉Hi

,
i = 1, 2, for symmetric matrices H1, H2, then

(3.6) (P−1
1 A)TH1 = H1(P−1

1 A) and (P−1
2 A)TH2 = H2(P−1

2 A).

Using Lemma 3.3, P−T
i Hi is self-adjoint in 〈·, ·〉A for i = 1, 2, and thus by Lemma 3.1

αP−T
1 H1 + βP−T

2 H2

is also self-adjoint in 〈·, ·〉A for any α, β ∈ R. Now, if for some α, β we are able to
decompose the matrix (αP−T

1 H1 + βP−T
2 H2) = P−T

3 H3 for some symmetric matrix
H3, then P−T

3 H3 is self-adjoint in 〈·, ·〉A, and a further application of Lemma 3.3
yields that P−1

3 A is self-adjoint in 〈·, ·〉H3 . We have now proved the following lemma.
Lemma 3.5. If P1 and P2 are left preconditioners for the symmetric matrix A

for which symmetric matrices H1 and H2 exist with P−1
1 A self-adjoint in 〈·, ·〉H1

and
P−1

2 A self-adjoint in 〈·, ·〉H2
and if

αP−T
1 H1 + βP−T

2 H2 = P−T
3 H3

for some matrix P3 and some symmetric matrix H3, then P−1
3 A is self-adjoint in

〈·, ·〉H3
.

Lemma 3.5 shows a possible way to generate new preconditioners for A. In section
6 we show practical examples of its use.

The construction of P3, H3 in Lemma 3.5 also allows straightforward inheritance
of positive definiteness—for this to be a useful property it is essential that 〈·, ·〉H
defines an inner product, i.e., that H is positive definite. It is trivial to construct
examples of indefinite diagonal matrices A and H for which 〈Aw,w〉H > 0 for all
nonzero w, but in order to be able to take advantage of positive definiteness, for
example, by employing conjugate gradients, it is important that 〈w,w〉H = wTHw > 0
for all nonzero w.

Lemma 3.6. If the conditions of Lemma 3.5 are satisfied and, additionally, if
P−1
i A is positive definite in 〈·, ·〉Hi

, i = 1, 2, then P−1
3 A is positive definite in 〈·, ·〉H3

at least for positive values of α and β.
Proof. Positive definiteness of P−1A in 〈·, ·〉H means that

〈P−1Aw,w〉H > 0 for w �= 0,

i.e., that wTAP−THw > 0 so that AP−TH is a symmetric matrix with all eigenvalues
positive. Thus all of AP−T

1 H1 and AP−T
2 H2 is symmetric and positive definite, and

it follows that

αAP−T
1 H1 + βAP−T

2 H2 = AP−T
3 H3

must also be symmetric and positive definite for at least the positive values of α
and β.

We comment that there will, in general, be some negative values of α or β for
which P−1

3 A remains positive definite but at least one of α and β needs to be positive
in this case. The precise limits on the values that α and β can take whilst positive def-
initeness is preserved depend on the extreme eigenvalues of AP−T

1 H1 and AP−T
2 H2.
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Unfortunately, even if H1 and H2 are positive definite there is no guarantee that H3

will be also.

We can also consider right preconditioning: If Â = AP−1 is self-adjoint in 〈·, ·〉H,
then

(3.7) P−TATH = HAP−1 which is (P−1)T (ATH) = (ATH)TP−1.

Thus, we have the following lemma.

Lemma 3.7. If the right preconditioner P is symmetric and Â = AP−1 is self-
adjoint in 〈·, ·〉H for some symmetric matrix H, then ATH is self-adjoint in 〈·, ·〉P−1 .

Lemma 3.7 shows that we could combine problem matrices and symmetric bilinear
forms for the same preconditioner. This is obviously more of a theoretical than a
practical result compared to obtaining new preconditioners for a given problem as in
the case of left preconditioning noted earlier. One of the decompositions as P−T

3 H3,
that we introduce in section 6 will provide not only a symmetric inner product matrix
but also a symmetric preconditioner and therefore fulfills the conditions of Lemma
3.7.

We now want to discuss very briefly the eigenvalues of matrices which are self-
adjoint according to our definition which allows indefinite symmetric bilinear forms.
Assume that ATH = HA holds and that (λ, v) is a given eigenpair of A. Thus,

(3.8) Av = λv, v �= 0.

Multiplying (3.8) from the left by v∗H, where v∗ is the conjugate transpose of v, gives

(3.9) v∗HAv = λv∗Hv.

Notice that the left-hand side of (3.9) is real since HA is real symmetric. On the
right-hand side v∗Hv is also real since H is real symmetric, therefore the eigenvalue
λ must be real. Note that, a matrix H always exists such that ATH = HA since any
matrix is similar to its transpose; see, for example, Chapter 3.2 in [27]. In the context
of the above theory, the interesting candidates for H are the real symmetric matrices;
a complex symmetric matrix H always exists such that ATH = HA (cf. [27, section
2.3]).

Note that the above arguments establish that there is no symmetric bilinear form
in which A is self-adjoint unless A has real eigenvalues.

It is also known that for a real diagonalizable matrix A which has only real
eigenvalues there always exist inner products in which A is self-adjoint.

Lemma 3.8. If A = R−1ΛR is a diagonalization of A with the diagonal matrix
Λ of eigenvalues being real, then A is self-adjoint in 〈·, ·〉RT ΘR for any real diagonal
matrix Θ.

Proof. The conditions (3.3) for self-adjointness of A in 〈·, ·〉H are

RTΛR−TH = HR−1ΛR

which are clearly satisfied for H = RTΘR whenever Θ is diagonal because then Θ
and Λ commute. Clearly H is positive definite whenever the diagonal entries of Θ are
positive.

We remark that this result is not of great use in practice since knowledge of the
complete eigensystem of A is somewhat prohibitive.
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4. Saddle point examples. The first example is the classical method by Bram-
ble and Pasciak already mentioned in the introduction. The preconditioner is given
by

(4.1) P =

[
A0 0
B −I

]
and P−1 =

[
A−1

0 0
BA−1

0 −I

]

and the symmetric bilinear form defined by the matrix

(4.2) H =

[
A−A0 0

0 I

]
.

There are also extensions to the classical Bramble–Pasciak case; see [34, 28, 42]. In
[34], for example, a Schur complement preconditioner S0 is introduced into P giving

(4.3) P =

[
A0 0
B −S0

]
and P−1 =

[
A−1

0 0
S−1

0 BA−1
0 −S−1

0

]
;

under certain conditions positive definiteness of the preconditioned saddle point sys-
tem can still be guaranteed in a nonstandard inner product similar to (4.2), i.e.,

(4.4) H =

[
A−A0 0

0 S0

]
.

A similar analysis was provided by Zulehner in 2002; see [48]. Zulehner considered
a preconditioner of the form (4.3) for an inexact Uzawa method which under certain
conditions can admit the usability of a CG acceleration; see [33] for the connection of
CG and the inexact Uzawa algorithm as a Richardson iteration method.

In 2006, Benzi and Simoncini gave a further example; see [5], which is an extension
of an earlier work by Fischer et al. (cf. [15]). Namely,

(4.5) P = P−1 =

[
I 0
0 −I

]

and

(4.6) H =

[
A− γI BT

B γI

]
.

Recently, Liesen and Parlett made an extension to this result taking a nonzero matrix
C in (1.1) into account; see [30, 31]. In the language used here, the preconditioner is
again

(4.7) P = P−1 =

[
I 0
0 −I

]

but the symmetric bilinear form is now defined by

(4.8) H =

[
A− γI BT

B γI − C

]
.

There are certain conditions which must be satisfied by the parameter γ in order
to guarantee positive definiteness of H so that CG in the inner product 〈·, ·〉H can be
reliably employed; see [5, 30, 31].
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Liesen and Parlett also showed in [31] that the matrix Â = P−1A is self-adjoint in

every bilinear form of the type Hp(Â), where H = P and p(Â) is any real polynomial in

Â. The proof is based on a technique introduced by Freund (cf. [16]), where the matrix
H can be shifted from one side of the polynomial p(A) to the other by successively

using ÂTH = HÂ; see also section 7.3 of this paper. Trivially, this observation holds
for general H whenever the condition ÂTH = HÂ is satisfied for any real symmetric
H and not just for the matrix H = P. Through the choice of the polynomial p, the
approach presented by Liesen and Parlett provides a whole set of interesting bilinear
forms that may give useful examples.

Another example was given in Zulehner [48] in the context of inexact Uzawa
methods and in [40] by Schöberl and Zulehner where the saddle point problem with
C = 0 is preconditioned by the constraint preconditioner

P =

[
A0 BT

B BA−1
0 BT − Ŝ

]

with A0 and Ŝ being symmetric and positive definite. Then the preconditioned matrix
is self-adjoint in the inner product defined by

H =

[
A0 −A 0

0 BA−1
0 BT − Ŝ

]
.

Another example using a constraint preconditioner was given by Dohrmann and
Lehoucq in [8]. They consider the general saddle point problem given in (1.1) with
the constraint preconditioner

P =

[
ŜA BT

B Ĉ

]
,

where ŜA is an approximation to a penalized primal Schur complement SA = A +
BT Ĉ−1B and a symmetric and positive definite Ĉ. The inner product in which the
preconditioned matrix is self-adjoint is given by

H =

[
SA − ŜA 0

0 Ĉ − C

]
.

5. The modified Bramble–Pasciak preconditioner. The original Bramble–
Pasciak CG method requires that the matrix

H =

[
A−A0 0

0 I

]

is positive definite. The obvious drawback of this method is the necessity to scale the
matrix A0 such that A − A0 is positive definite. Usually an eigenvalue problem for
A−1

0 A or at least an eigenvalue estimation problem has to be solved which can be
costly; see [24] for a survey of methods that could be applied.

In contrast, we introduce the preconditioner

(5.1) P+ =

[
A0 0
−B S0

]
and

(
P+

)−1
=

[
A−1

0 0
BA−1

0 S−1
0

]
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and obtain by left preconditioning with P+

(5.2) Â =
(
P+

)−1 A =

[
A−1

0 A A−1
0 BT

S−1
0 BA−1

0 A + S−1
0 B S−1

0 BA−1
0 BT − S−1

0 C

]
.

Simple algebra shows that Â is self-adjoint in the inner product induced by

(5.3) H+ =

[
A + A0 0

0 S0

]
,

where S0 is a symmetric and positive definite Schur-complement preconditioner. An
inner product of similar form to (5.3) was used by Zulehner in [48] in the analysis
of inexact Uzawa methods. Note that for a positive definite preconditioner A0 the
matrix H+ is always positive definite due to the positive definiteness of the matrices
A, A0, and S0. Thus, we are in this case always with an inner product and not just
a symmetric bilinear form—whatever symmetric and positive definite A0 is chosen—
and so the appropriate Krylov subspace method can be used in this inner product.
We will discuss the eigenvalue properties of the preconditioned matrix in section 8.

For the classical Bramble–Pasciak method (1.2), (1.3), Klawonn shows in [28] that
the matrix

(5.4) ÂTH =

[
AA−1

0 A−A AA−1
0 BT −BT

BA−1
0 A−B BA−1

0 BT + C

]

can be factorized as

(5.5)

[
I 0

BA−1 I

] [
AA−1

0 A−A 0
0 BA−1BT + C

] [
I A−1BT

0 I

]
,

which is a congruence transformation. Now note that we can rewrite AA−1
0 A−A as

A(A−1
0 −A−1)A,

which will be positive definite if A−1
0 −A−1 is positive definite or, equivalently,

(5.6) yTA0y < yTAy.

The condition (5.6) is precisely that required for H to be positive definite in this
case. Since BA−1BT + C is positive definite, Sylvester’s law of inertia applied to
(5.5) guarantees that ÂTH is positive definite, i.e., that Â is self-adjoint and positive
definite in 〈·, ·〉H .

The same has to be shown for the new preconditioner P+. Using Klawonn’s
approach we get for the matrix

(5.7) ÂTH+ =

[
AA−1

0 A + A AA−1
0 BT + BT

BA−1
0 A + B BA−1

0 BT − C

]

the decomposition

(5.8)

[
I 0

BA−1 I

] [
AA−1

0 A + A 0
0 −BA−1BT − C

] [
I A−1BT

0 I

]
.

This shows that ÂTH+ is indefinite since −BA−1BT − C is always negative definite
and AA−1

0 A + A is positive definite. Therefore the reliable applicability of the CG
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method cannot be guaranteed. One alternative is to use a special implementation of
MINRES which will be introduced in section 7.2.

We want to mention that the Bramble–Pasciak+ preconditioner can also be in-
terpreted as the classical Bramble–Pasciak preconditioner applied to the matrix JA,
where J = diag(In,−Im) with Ij the identity of dimension j = {m,n}.

6. Examples of combination preconditioning.

6.1. Bramble–Pasciak combination preconditioning. Using Lemma 3.5 we
want to analyze the possibility of combining the classical Bramble–Pasciak configura-
tion with the Bramble–Pasciak+ preconditioner introduced in the last section. There-
fore, we have the preconditioners

P1 =

[
A0 0
B −I

]
and P2 =

[
A0 0
−B I

]

and for the inner products

H1 =

[
A−A0 0

0 I

]
and H2 =

[
A + A0 0

0 I

]
.

Instead of α, β ∈ R we use the combination parameters α and 1 − α and get

αP−T
1 H1 + (1 − α)P−T

2 H2 =

[
A−1

0 A + (1 − 2α)I A−1
0 BT

0 (1 − 2α)I

]
.

If we find a decomposition as described in Lemma 3.5, then a new preconditioner and
bilinear form are given. One factorization possibility would be

P−T
3 =

[
A−1

0 A−1
0 BT

0 (1 − 2α)I

]
=⇒ P3 =

[
A0 0
1

(2α−1)B
1

1−2αI

]

as the new preconditioner, and the bilinear form is then defined by

H3 =

[
A + (1 − 2α)A0 0

0 I

]
.

Note that, for α = 1 we obtain the classical Bramble–Pasciak configuration, and α = 0
gives the Bramble–Pasciak+ setup. The obtained preconditioner can also be viewed
as a special instance of an inexact Uzawa preconditioner; see [48].

We now have to analyze if positivity in the new bilinear form can be achieved
and if the bilinear form is an inner product which can be exploited for short-term
recurrence methods. Hence, the matrix

ÂTH3

with Â = P−1
3 A has to be analyzed. The matrix

ÂTH3 =

[
AA−1

0 A + (1 − 2α)A AA−1
0 BT + (1 − 2α)BT

BA−1
0 A + (1 − 2α)B BA−1

0 BT − (1 − 2α)C

]

can, similarly to the above, be factorized as the congruence transform

ÂTH3 =

[
I 0

BA−1 I

] [
AA−1

0 A + (1 − 2α)A 0
0 (2α− 1)BA−1BT − (1 − 2α)C

] [
I A−1BT

0 I

]
.
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The Sylvester law of inertia indicates that the number of positive and negative eigen-
values is determined by the eigenvalues of the matrix[

AA−1
0 A + (1 − 2α)A 0

0 (2α− 1)(BA−1
0 BT + C)

]

which we can analyze in a similar manner to (5.4), (5.5). We first consider the case
where C = 0, and then it is easy to see that the block (2α − 1)BA−1

0 BT is positive
for α > 1/2. With this choice for α we have to find conditions such that the block
AA−1

0 A + (1 − 2α)A is also positive definite. Similar to the analysis made in section
7.1, we note the equivalence

A
(
A−1

0 + (1 − 2α)A−1
)
A,

and therefore positivity is given if yTA0y < (2α− 1)yTAy which can also be written
as

A0 < (2α− 1)A.

In addition, we want the matrix H3 to define an inner product which will be satisfied
if the block A + (1 − 2α)A0 > 0, which is equivalent to

1

2α− 1
A > A0.

Again, the case α = 1 gives the Bramble–Pasciak configuration, and α = 0 shows that
there is no configuration that makes the Bramble–Pasciak+ setup positive definite
and CG reliably applicable. It is still possible to obtain a reliable CG method in the
combination preconditioning case, i.e., if

A0 < min

{
(2α− 1)A,

1

2α− 1
A

}

which is a more general restriction on A0 than the Bramble–Pasciak case, α = 1. The
case C �= 0 can be treated similarly since the block (2α − 1)(BA−1

0 BT + C) will be
positive for all α > 1/2 and the above analysis applies.

6.2. Bramble–Pasciak and Benzi–Simoncini. As another less practical ex-
ample which nevertheless shows how even very different methods can be combined,
we consider P1,H1 defined by the classical Bramble–Pasciak method (4.1), (4.2) and
P2,H2 defined by the Benzi–Simoncini approach (4.5), (4.6). From Lemma 3.5 we get

(6.1) (αP−T
1 H1 + βP−T

2 H2) =

[
(αA−1

0 + βI)A− (α + βγ)I (αA−1
0 + βI)BT

−βB −(α + βγ)I

]
,

which is self-adjoint for all α, β ∈ R in 〈·, ·〉A. If we are able to split this into a new
preconditioner P3 and a symmetric matrix H3, Lemma 3.5 guarantees that P−1

3 A will
be self-adjoint in 〈·, ·〉H3

.
One possibility is that

(6.2)

P−T
3 =

[
αA−1

0 + βI 0
0 −βI

]
and H3 =

[
A− (α + βγ)(αA−1

0 + βI)−1 BT

B α+βγ
β I

]
.

Numerical results we have computed with this combination were less promising
and we have omitted them. The bilinear form 〈·, ·〉H3 is not so convenient to work
with.
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6.3. Bramble–Pasciak and Schöberl–Zulehner. We now combine the
Bramble–Pasciak CG and the method proposed by Schöberl and Zulehner in [40].
Therefore, we consider the preconditioners

P1 =

[
A0 0
B −S0

]
and P2 =

[
A0 BT

B BA−1
0 BT − Ŝ

]

and the inner products

H1 =

[
A−A0 0

0 S0

]
and H2 =

[
A0 −A 0

0 BA−1
0 BT − Ŝ

]
.

Again, we are looking for a factorization of αP−T
1 H1 + βP−T

2 H2 as P−T
3 H3. Setting

S0 = BA−1
0 BT − Ŝ yields

(6.3)

αP−T
1 H1 + βP−T

2 H2 = α

[
A−1

0 A−1
0 BTS−1

0

0 −S−1
0

] [
A−A0

S0

]

+ β

[
I −A−1

0 BT

0 I

] [
A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1

] [
A0 −A

S0

]
,

which can be reformulated using

(6.4)

[
−I 0
0 I

] [
A0 −A 0

0 S0

]
=

[
A−A0 0

0 S0

]

and

(6.5)

[
I −A−1

0 BT

0 I

] [
−A−1

0 0
0 −S−1

0

]
=

[
−A−1

0 A−1
0 BTS−1

0

0 −S−1
0

]
.

Hence, (6.3) simplifies to

[
I −A−1

0 BT

0 I

](
α

[
−A−1

0 0
0 −S−1

0

]
+β

[
A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1

])[
A−A0 0

0 S0

]

with

P−1
3 =

[
(β − α)A−1

0 βA−1
0 BT Ŝ−1

0 −(αS−1
0 + βŜ−1)

] [
I 0

−BA−1
0 I

]

as the inverse of the new preconditioner, and as an inner product matrix we get

H3 =

[
A−A0 0

0 S0

]
.

The block −(αS−1
0 + βŜ−1) of P−1

3 is not well suited for numerical purposes and we
therefore try a different approach combining the Schöberl–Zulehner method with the
Bramble–Pasciak CG. Thus, we consider the preconditioners

P1 =

[
A0 0

B −Ŝ

]
and P2 =

[
A0 BT

B BA−1
0 BT − Ŝ

]
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and the inner products

H1 =

[
A−A0 0

0 Ŝ

]
and H2 =

[
A0 −A 0

0 BA−1
0 BT − Ŝ

]
.

Once more, we try to find a decomposition as P−T
3 H3 of

(6.6)

αP−T
1 H1 + βP−T

2 H2 = α

[
A−1

0 A−1
0 BT Ŝ−1

0 −Ŝ−1

] [
A−A0

Ŝ

]

+ β

[
I −A−1

0 BT

0 I

] [
A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1

] [
A0 −A

BA−1
0 BT − Ŝ

]
.

Using a simple modification of (6.4) then gives for (6.6)

(6.7)

(
α

[
A−1

0 A−1
0 BT Ŝ−1

0 −Ŝ−1

]
+ β

[
I −A−1

0 BT

0 I

] [
A−1

0 0

Ŝ−1BA−1
0 −Ŝ−1

]

[
−I

(BA−1
0 BT − Ŝ)Ŝ−1

])[
A−A0 0

0 Ŝ

]
.

This can be further simplified using a modification of (6.5) for which the result is

[
I −A−1

0 BT

0 I

][
(α− β)A−1

0 0

−βŜ−1BA−1
0 (β − α)Ŝ−1 + βŜ−1BA−1

0 BT Ŝ−1

][
A−A0 0

0 Ŝ

]
.

The preconditioner is then given by

(6.8) P−1
3 =

[
(α− β)A−1

0 −βA−1
0 BT Ŝ−1

0 (β − α)Ŝ−1 − βŜ−1BA−1
0 BT Ŝ−1

] [
I 0

−BA−1
0 I

]

with

(6.9) H3 =

[
A−A0 0

0 Ŝ

]

defining the bilinear form. It is also possible to reformulate the preconditioner pre-
sented by Schöberl and Zulehner using (6.8), i.e., β = 1 and α = 0.

The method generated by combination preconditioning has a slightly more ex-
pensive preconditioner (6.8), i.e., one additional solve with Ŝ but the inner product
matrix (6.9) is less expensive to evaluate because there is no need to solve with A0.
We assume here that Ŝ and A0 are explicitly given which might not be the case when
working with multigrid preconditioning for example.

7. Methods for solving the P+-preconditioned system.

7.1. The conjugate gradients method. The Hestenes and Stiefel [26] conju-
gate gradient method in an inner product 〈·, ·〉H is given in Algorithm 1; alternatively,
see Chapter 2.1 in [11].

Algorithm 1 computes iterates such that ‖x− xk‖HÂ is minimal; for more details,

see also Theorem 2.2 in [11]. It is clear that ‖·‖HÂ defines a norm when HÂ is
symmetric and positive definite. Algorithm 1 can be reliably applied whenever H and
HÂ are positive definite.
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Algorithm 1 Algorithm for CG with inner product 〈·, ·〉H.

Compute r0 = b− Âx0

Set p0 = r0
for k = 1, 2, . . . , do
αk = 〈rk, rk〉H/〈Âpk, pk〉H,
xk+1 = xk + αkpk,

rk+1 = rk − αkÂpk,
βk = 〈rk+1, rk+1〉H/〈rk, rk〉H,
pk+1 = rk+1 + βkpk,

end for

7.2. MINRES for the saddle point problem. In section 5 we showed that
for positive definite preconditioners A0 and S0 the inner product matrix H+ will
always be symmetric positive definite. Therefore, MINRES (minimal redisual method)
introduced in 1975 by Paige and Saunders in [35], can be employed. It is typically the

method of choice for symmetric indefinite systems. Since the preconditioned matrix Â
is symmetric in the inner product induced by H+, we can use a version of the classical
Lanczos method to generate a basis for the Krylov subspace and then minimize the
H+-norm of the residual. The H+-Lanczos method (cf. Algorithm 2) generates an H+-
orthonormal basis for the Krylov subspace which can be expressed in matrix terms
as

(7.1) ÂVk = VkTk,k + βkvk+1e
T
k

with

Tk,k =

⎡
⎢⎢⎢⎢⎣

α1 β1

β1
. . .

. . .

. . .
. . . βk−1

βk−1 αk

⎤
⎥⎥⎥⎥⎦ and Vk = [v1, v2, . . . , vk]

as well as V T
k H+Vk = I.

Algorithm 2 Algorithm for H+
-Lanczos.

Choose start vector v1R
n with ‖v1‖ = 1.

Set β0 = 0
for k = 1, 2, . . . , do
ṽk+1 = Âvk − βk−1vk−1,
Compute αk = 〈ṽk+1, vk〉H+

ṽk+1 = ṽk+1 − αkvk
Set βk = ‖ṽk+1‖H+

Set vk+1 = ṽk+1/βk

end for

Using the H+-Lanczos method it is easy to show that

(7.2) ‖rk‖H+ = ‖‖r0‖ e1 − Tk+1,kyk‖H+
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holds. Based on (7.2) we can implement a H+-MINRES process which minimizes
the H+-norm of the residual (7.2) in complete analogy to the standard MINRES
algorithm; details can be found in [35, 14, 25].

Applying the H+-MINRES method can also be justified by studying the problem
in the context of the Faber–Manteuffel theorem. In 1984, Faber and Manteuffel [13]
proved that only matrices which are normal(s) in some inner product admit an (s+2)-
term recurrence method which minimizes some relevant quantity at each iteration
step. In the most common case of 3-term recurrence methods such as CG or MINRES
the normal(1) condition implies that the eigenvalues of the problem matrix lie on a
straight line in the complex plane. A survey paper by Liesen and Strakoš (see [32])
gives a description of the Faber and Manteuffel paper in more accessible linear algebra
terms. Recently, a new more elementary proof to the Faber–Manteuffel theorem was
proposed in [12]. Essentially, a matrix M admits an (s + 2)-term recurrence method
if the G-adjoint,1 M# = GMTG−1, can be expressed as a polynomial of degree s in
M , i.e.,

M# = ps(M).

With the choice of M = Â and G = (H+)
−1

we get that for H+ and P+ a 3-term
recurrence method always exists.

7.3. The simplified Lanczos method. The nonsymmetric Lanczos process
(cf. [25, 38, 17, 20, 21]) generates two sequences of vectors vk and wk that are orthog-
onal to each other and are generated by

(7.3) ρk+1vk+1 = Âvk − μkvk − νk−1vk−1

for the first sequence and

(7.4) ζk+1wk+1 = ÂTwk − μkwk − νk−1ρk

ζk
wk−1

for the second sequence with μk = wT
k Âvk/w

T
k vk and νk = ζkw

T
k vk/w

T
k−1vk−1. There

is more than one way to scale the two vectors in every iteration step. Here, we use
‖vj‖ = 1 and ‖wj‖ = 1. The biorthogonality condition between Wk and Vk, i.e.,
WT

k Vk = Dk, gives

(7.5) Dk = diag(δ1, δ2, . . . , δk), where δj = wT
j vj .

Furthermore, we can now write the recursions in terms of matrices and get

(7.6) ÂVk = Vk+1Tk+1,k

as well as

(7.7) ÂTWk = Wk+1Γ
−1
k+1Tk+1,kΓk+1,

where the matrix Γk is defined as

(7.8) Γk = diag(γ1, γ2, . . . , γk) with γj =

{
1 if j = 1,

γj−1ρj/ζj if j > 1.

1G is a symmetric positive definite inner product matrix.
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One advantage of the nonsymmetric Lanczos process is that Tk+1,k is a tridiagonal
matrix with Tk,k typically nonsymmetric. There are different cases where the nonsym-
metric Lanczos process can break down. The first case, the so-called lucky breakdown,
indicates that the solution lies already in the current Krylov space. In the case of
wT

j vj = 0, neither vj+1 nor wj+1 are zero and the so-called serious breakdown occurs.
A remedy is to use look-ahead strategies; see [36, 18] for more details. For the so-called
incurable breakdowns the look-ahead strategies fail.

The nonsymmetric Lanczos process can now be simplified using the self-adjointness
of Â in the H+-inner product, i.e.,

ÂTH+ = H+Â.

In [20] Freund and Nachtigal observe that for the Lanczos vectors the relations

(7.9) vj = φj(Â)v1 and wj = γjφj(ÂT )w1

hold, where φ is the so-called Lanczos polynomial which is of polynomial degree j−1.
Using (7.9) and setting w1 = H+v1, we get

wj = γjφj(ÂT )w1 = γjφj(ÂT )H+v1 = γjH+φj(Â)v1 = γjH+vj .

Hence, we can compute the vector wj without multiplying by ÂT . Instead,

(7.10) wj+1 = γj+1H+vj+1

can be used. The parameter γj+1 = γjρj+1/ζj+1 involves ζj+1 which cannot be com-
puted at that time. Thus the relation (7.10) has to be reformulated to

w̃j+1 = ζj+1wj+1 = γjρj+1H+vj+1 = γjH+ṽj+1

which gives us now a computable version of the simplified Lanczos method; see Algo-
rithm 3.

Algorithm 3 Algorithm for the simplified Lanczos method.

Choose v1 and compute w1 = H+v1

Compute ρ1 = ‖v1‖ and ζ1 = ‖w1‖
Set γ1 = ρ1

ζ1
for k = 1, 2, . . . , do

Compute μk = (wT
k Âvk)/(w

T
k vK)

Set νk = ζk(w
T
k vk)/(w

T
k−1vk−1)

vk+1 = Avk − μkvk − νkvk−1

wk+1 = γkvk+1

Compute ρk+1 = ‖vk+1‖ and ζk+1 = ‖wk+1‖
Set γk+1 = γkρk+1/ζk+1

end for

7.4. The ideal transpose-free QMR method. In [17] Freund introduced the
ideal transpose-free QMR method (ITFQMR) by using the simplification of the Lanc-
zos method. Freund’s implementation is based on a QMR-from-BICG procedure and
coupled two-term recurrence relations; details can be found in [17, 21]. The method
is also sometimes called SQMR or simplified QMR.
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Here, we introduce the ITFQMR algorithm based on the simplified Lanczos
method. In more detail, we have

(7.11) ÂVk = Vk+1Tk+1,k

from the nonsymmetric Lanczos process and as a result get

(7.12) rk = Vk+1(‖r0‖ e1 − Tk+1,kyk)

for the residual. The term (‖r0‖ e1 − Tk+1,kyk) is called the quasi-residual. A method
based on minimizing the quasi-residual is QMR which was introduced in [19]. There
the least squares problem (‖r0‖ e1 − Tk+1,kyk) can be solved via an updated QR
factorization that only requires one Givens rotation per step, a technique well known
from MINRES [35].

The ITFQMR method is based on minimizing the quasi-residual in the same way
QMR does but in the underlying nonsymmetric Lanczos process multiplications with
the transpose are omitted and replaced by multiplications with the matrix H+. When
using QMR and similar methods, we have to keep in mind that the quantities mini-
mized here, the quasi-residual in the case of ITFQMR, are much less understood as the
corresponding quantities used in MINRES and CG. Furthermore, as a method based
on the nonsymmetric Lanczos, ITFQMR can break down and look-ahead strategies
have to be employed; see [36, 18] for more details. There are also incurable break-
downs but from our experience it is hard to find them in practical applications.

8. Eigenvalue analysis. For a better understanding of the convergence behav-
ior of the presented methods, we analyze the eigenvalues of (P+)−1A by looking at
the generalized eigenvalue problem Av = λP+v, i.e.,

(8.1)

[
A BT

B −C

] [
v1

v2

]
= λ

[
A0 0
−B S0

] [
v1

v2

]
.

From (8.1) we get

(8.2) Av1 + BT v2 = λA0v1

and

(8.3) Bv1 − CT v2 = −λBv1 + λS0v2.

We first analyze the case where A0 = A and for λ = 1 from (8.2) get that BT v2 = 0,
and therefore v2 = 0 under the condition that Bv1 = 0. Since the kernel of B is (n−m)-
dimensional we have λ = 1 with multiplicity n−m. For the case λ �= 1, (8.2) gives

v1 =
1

λ− 1
A−1BT v2,

which we substitute into (8.3) to get

BA−1BT v2 =
λ(λ− 1)

λ + 1
S0v2 +

λ− 1

λ + 1
Cv2.

For C = 0 the remaining 2m eigenvalues of the preconditioned matrix Â are given by
the eigenvalues σ of

S−1
0 BA−1BT
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and the relation

σ =
λ(λ− 1)

λ + 1
.

Hence, the eigenvalues of Â become

(8.4) λ1,2 =
1 + σ

2
±
√

(1 + σ)2

4
+ σ.

Obviously, σ > 0, and therefore we have m negative eigenvalues given by (8.4). This
shows that there are 2m + 1 different eigenvalues, and we expect the method to
terminate in at most 2m+1 steps. A similar analysis for the classical Bramble–Pasciak
can be found in [42].

In contrast, the eigenvalues of the preconditioned saddle point problem P−1A in
the case of P being the block diagonal preconditioner

P =

[
A0 0
0 S0

]

with A0 = A and C = 0 are given by n−m unit eigenvalues and again the eigenvalues
σ of

S−1
0 BA−1BT

via the relation

σ = λ(λ− 1) with λ1,2 =
1

2
±
√

1

4
+ σ.

Since we expect S0 to be a good preconditioner for BA−1BT , we expect the eigenvalues
to not differ too much from unit eigenvalues which would give a similar convergence
for the block-diagonal and the Bramble–Pasciak+ preconditioner. Figure 8.1 illus-
trates how the eigenvalues of the preconditioned matrix in the case of block-diagonal
preconditioning (dashed line), and in the case of Bramble–Pasciak+ preconditioning
(solid line) depend on the eigenvalues σ of BA−1BT in a region around 1.

The indefiniteness of (P+)
−1 A indicates that methods such as H+-MINRES or

ITFQMR should be used. We will illustrate their convergence behavior in section 9
by applying them to Stokes examples from the IFISS software [10].

Following the analysis presented in [42], we also want to analyze the case A0 �= A.
Therefore, we consider the symmetric and positive-definite block-diagonal precondi-
tioner

M =

[
A0 0
0 S0

]

and the generalized eigenvalue problem Au = λP+u. Using v = M1/2u we get
M−1/2AM−1/2v = λM−1/2P+M−1/2v. This gives rise to a new generalized eigen-
value problem Ãv = λP̃v with

Ã =

[
A

−1/2
0 AA

−1/2
0 A

−1/2
0 BTS

−1/2
0

S
−1/2
0 BA

−1/2
0 −S

−1/2
0 CS

−1/2
0

]
=

[
Ã B̃T

B̃ −C̃

]
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Fig. 8.1. Dependence of eigenvalues on σ.

and

P̃ =

[
I 0

−S
−1/2
0 BA

−1/2
0 I

]
=

[
I 0

−B̃ I

]
.

The eigenvalue problem can hence be reformulated as

Ãv1 + B̃T v2 = λv1,(8.5)

B̃v1 − C̃v2 = −λB̃v1 + λv2.(8.6)

Assume now that v2 = 0 yields Ãv1 = λv1 with λ an eigenvalue of the symmetric
positive definite matrix Ã if only (1 + λ)B̃v1 = 0. The case v1 = 0 implies that
B̃T v2 = 0, but since B̃T is of full rank v2 = 0. Thus, we assume that v1 �= 0 and
v2 �= 0. If we multiply (8.5) on the left by the conjugate transpose v∗1 , then we obtain

(8.7) v∗1Ãv1 + v∗1B̃
T v2 = λv∗1v1 =⇒ v∗1B̃

T v2 = λv∗1v1 − v∗1Ãv1.

The conjugate transpose of (8.6) multiplied on the right by v2 gives

(8.8) v∗1B̃
T v2 − v∗2C̃v2 = −λ̄v∗1B̃v2 + λ̄v∗2v2.

Using (8.7) for (8.8), we obtain

(1 + λ̄)(λv∗1v1 − v∗1Ãv1) − v∗2C̃v2 = λ̄v∗2v2,

which can be further simplified to

(8.9) (λ + |λ|2) ‖v1‖2 − (1 + λ̄)v∗1Ãv1 − v∗2C̃v2 − λ̄ ‖v2‖2
= 0.

Assuming that λ = a + ib, we can analyze the imaginary part of (8.9) and obtain

b(‖v1‖2
+ v∗1Ãv1 + ‖v2‖2

) = 0

which states that b = 0, and therefore all eigenvalues must be real. This underlines
the argument made earlier about the use of short-term recurrence methods such as
MINRES since all eigenvalues of the preconditioned matrix are on the real line.
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We analyze (8.9) further knowing that λ is real and under the assumption that

‖v‖ = 1 with ‖v2‖2
= 1 − ‖v1‖2

and obtain

(8.10) (λ + |λ|2) ‖v1‖2 − λv∗1Ãv1 − λ + λ ‖v1‖2 − v∗1Ãv1 − v∗2C̃v2 = 0.

We then get for λ

(8.11) λ± =
v∗1Ãv1 + 1 − 2 ‖v1‖2

2 ‖v1‖2 ±

√
(v∗1Ãv1 + 1 − 2 ‖v1‖2

)2

4 ‖v1‖4 +
v∗1Ãv1 + v∗2C̃v2

‖v1‖2 .

Note that, v∗1Ãv1+v∗2C̃v2 ≥ 0 for all v1 and v2. Since Ã and C̃ are both symmetric
matrices, we have the following bounds:

μC̃
min ≤ v∗2C̃v2 ≤ μC̃

max

and

μÃ
min ≤ v∗1Ãv1 ≤ μÃ

max

with μC̃
min and μÃ

min the minimal eigenvalue of C̃ and Ã, respectively, and μC̃
max

and μÃ
max the maximal eigenvalue of C̃ and Ã, respectively. We first assume that

v∗1Ãv1 + 1 − 2 ‖v1‖2 ≥ 0 and get

μÃ
min + 1 − 2 ‖v1‖2

2 ‖v1‖2 +

√
(μÃ

min + 1 − 2 ‖v1‖2
)2

4 ‖v1‖4 + μÃ
min + μC̃

min ≤ λ+

and

λ+ ≤ μÃ
max + 1 − 2 ‖v1‖2

2 ‖v1‖2 +

√
(μÃ

max + 1 − 2 ‖v1‖2
)2

4 ‖v1‖4 + μÃ
max + μC̃

max

as well as

μÃ
min + 1 − 2 ‖v1‖2

2 ‖v1‖2 −

√
(μÃ

max + 1 − 2 ‖v1‖2
)2

4 ‖v1‖4 + μÃ
max + μC̃

max ≤ λ−

and

λ+ ≤ μÃ
max + 1 − 2 ‖v1‖2

2 ‖v1‖2 −

√
(μÃ

min + 1 − 2 ‖v1‖2
)2

4 ‖v1‖4 + μÃ
min + μC̃

min.

A similar analysis can be made for the case v∗1Ãv1 + 1 − 2 ‖v1‖2
< 0.

9. Numerical experiments. In this section we show the results of our numeri-
cal experiments. The matrices are coming from the Stokes problem and, in particular,
were generated using the IFISS2 package [10]. The Stokes problem is given by

(9.1)
−�2u + �p = f,

� · u = 0

2http://www.maths.manchester.ac.uk/˜djs/ifiss/.
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with appropriate boundary conditions which can be found in [11]. Namely, we consider
the flow over the channel domain (Example 5.1.1 in [11]) and the flow over a backward
facing step (Example 5.1.2 in [11]). Equation (9.1) can be transformed using a weak
formulation which can then be treated using the finite element method; see [11] for
details. The linear system governing the finite element method for the Stokes problem
is a saddle point problem

[
A BT

B −C

]
,

where C �= 0 for stabilized elements. This matrix is symmetric but indefinite and could
be treated with MINRES in the first place. But in order to improve the convergence
we have to compare our Bramble–Pasciak+ preconditioner to other suitable methods.
One candidate would be the block-diagonal preconditioning introduced by Silvester
and Wathen in [47, 41]. There a block-diagonal preconditioner

(9.2) P =

[
A0 0
0 S0

]

is used in which A0 is a preconditioner for A and S0 is a Schur complement precon-
ditioner. We can use MINRES with this type of preconditioner; see [4] for details. In
the Bramble–Pasciak+ setup the preconditioned matrix is symmetric in the H+-inner
product. This enables us to use the H+-MINRES method introduced in section 7.2. We
will compare this method to the classical MINRES algorithm for the block-diagonal
preconditioner. In the IFISS implementation the preconditioner S0 is chosen to be the
positive-definite pressure mass matrix; see Chapter 6.2 in [11]. The right-hand side
for each example is also given by IFISS.

Example 9.1. The first example considered is based on the flow over a backward
facing step. The size of the system matrix A is given by 6659×6659 with m = 769 and
n = 5890. The results shown in Figure 9.1 are obtained by using the H+-MINRES
method and the classical preconditioned MINRES as given in [47, 41] as well as
CG for the classical Bramble–Pasciak setup. The preconditioner A0 is given by the
incomplete Cholesky factorization. In particular, we use MATLAB’s implementation
with no additional fill-in; see [38] for details. S0 is given by IFISS as the pressure mass
matrix. The blue (dashed) curve is showing the results of the preconditioned MINRES
with a block-diagonal preconditioner. The corresponding preconditioned residual is
given in the 2-norm. The black (dash-dotted) line shows the 2-norm preconditioned
residuals computed by the H+-MINRES algorithm. The red (solid) curve shows the
preconditioned residuals for CG with the Bramble–Pasciak setup. As expected from
the eigenvalue analysis in section 8, the results for MINRES and H+-MINRES are
very similar and are both outperformed by the Bramble–Pasciak CG except for rather
large convergence tolerances.

Example 9.2. This example comes again from IFISS and is representing the flow
of a channel domain. The size of the system matrix A is given by 9539 × 9539 with
m = 1089 and n = 8450. The results shown in Figure 9.2 are obtained by using the
H+-MINRES method and the classical preconditioned MINRES, as given in [47, 41],
as well as ITFQMR for the classical Bramble–Pasciak setup. The preconditioners are
chosen such that A0 = A and S0 is given by IFISS as the pressure mass matrix.
The blue (dashed) curve is showing the results of the preconditioned MINRES with a
block-diagonal preconditioner. The corresponding preconditioned residual is given in
the 2-norm. The black (dash-dotted) line shows the 2-norm preconditioned residuals
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Fig. 9.1. Results for H+-MINRES, classical preconditioned MINRES, and CG for classical
Bramble–Pasciak.

computed by the H+-MINRES algorithm. The red (solid) curve shows the precondi-
tioned residuals for ITFQMR with the Bramble–Pasciak setup. Again, the results for
MINRES and H+-MINRES are very similar.
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Fig. 9.2. Results for H+-MINRES, classical preconditioned MINRES, and ITFQMR for clas-
sical Bramble–Pasciak.

We now show results for the combination preconditioning with the Bramble–
Pasciak and the Bramble–Pasciak+ setup.

Example 9.3. In this example the matrix represents the flow over a channel do-
main and is of size 9539 × 9539. Our choice for A0 is again the incomplete Cholesky
decomposition with zero fill-in and S0 the pressure mass matrix. Figure 9.3 shows the
results for different values of α. The choice for α = 2/3 shown in the black (solid)
curve performs better than the original Bramble–Pasciak method reflected by α = 1 in
the blue (dashed) line. For comparison we also show the results for the preconditioned
MINRES in the red (dashed) line. Further values of α are shown.
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Fig. 9.3. ITFQMR results for combination preconditioning with different values for α.

Example 9.4. The setup for this example is identical to the one described in
Example 9.3, only the underlying matrix now comes from the flow over the backward
facing step. The dimension of A is 6659 × 6659. Again for α = 2/3, the combination
preconditioning outperforms ITFQMR with the Bramble–Pasciak setup; see Figure
9.4.
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Fig. 9.4. ITFQMR results for combination preconditioning with different values for α.

The combination of the Bramble–Pasciak setup and the method of Schöberl and
Zulehner as presented in section 6.3 is given by the preconditioner

P−1
3 =

[
(α− β)A−1

0 −βA−1
0 BT Ŝ−1

0 (β − α)Ŝ−1 − βŜ−1BA−1
0 BT Ŝ−1

] [
I 0

−BA−1
0 I

]

and inner product

H3 =

[
A−A0 0

0 Ŝ

]
.

Example 9.5. In this example we apply CG with the combination preconditioning
setup for Schöberl–Zulehner and Bramble–Pasciak to a linear system coming from
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the flow over a backward facing step of dimension 6659 as shown in Figure 9.5. The
preconditioner A0 is chosen to be the zero fill-in incomplete Cholesky factorization and
Ŝ is the pressure mass matrix given in IFISS. For the parameter choice α = −.3 and
β = .5 the combination is able to outperform the method of Schöberl and Zulehner.

0 10 20 30 40 50 60 70 80 90 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

2−
no

rm
 o

f p
re

co
nd

iti
on

ed
 r

es
id

ua
l

 

 

CG with combination of SZ and BP 

CG Schoeberl/Zulehner

Fig. 9.5. CG for Schöberl–Zulehner and combination preconditioning for α = −.3 and β = .5.
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Fig. 9.6. CG for Schöberl–Zulehner, Bramble–Pasciak, and combination preconditioning for
α = −.3 and β = .5.

Example 9.6. In this example we apply CG with the combination preconditioning
setup for Schöberl–Zulehner and Bramble–Pasciak to a linear system coming from the
flow over the channel domain of dimension 9539. In addition, we also show the results
for CG with the Bramble–Pasciak setup; see Figure 9.6. The preconditioner A0 is
chosen to be the zero fill-in incomplete Cholesky factorization and Ŝ is the pressure
mass matrix given in IFISS. For the parameter choice α = −.3 and β = .5 the
combination is able to outperform the method of Schöberl and Zulehner.

10. Conclusions. We have explained the general concept of self-adjointness in
nonstandard inner products or symmetric bilinear forms and, in the specific case of
saddle point problems, have shown how a number of known examples fit into this
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paradigm. We have indicated how self-adjointness may be taken advantage of in the
choice of the iterative solution method of Krylov subspace type—in general, it is more
desirable to be able to work with iterative methods for self-adjoint matrices rather
than general nonsymmetric matrices because of the greater efficiency of symmetric
iterative methods. The understanding of the convergence of symmetric iterative meth-
ods like CG is much more secure and descriptive than for nonsymmetric methods.

The possibility of combination preconditioning by exploiting self-adjointness in
different nonstandard inner products or symmetric bilinear forms has been analyzed
and examples given of how two methods can be combined to obtain a new precondi-
tioner and a different symmetric bilinear form. The first example combines the new
BP+ method which we have introduced with the classical Bramble–Pasciak method.
We demonstrate that a particular combination outperforms the widely used classical
method; it requires fewer iterations while the work per iteration is the same. The sec-
ond example is of more academic than practical value. The third example combines
the BP method and a recently introduced method by Schöberl and Zulehner. The com-
bination preconditioning method was able to outperform both the Bramble–Pasciak
CG and Schöberl–Zulehner CG method.

Our analysis may provide the basis for the discovery of further useful examples
where self-adjointness may hold in nonstandard inner products and also shows how
preconditioning can usefully be employed to create rather than destroy symmetry of
matrices.

Acknowledgment. The authors would like to thank the two anonymous referees
for their careful reading and helpful comments.
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H2 MODEL REDUCTION FOR LARGE-SCALE LINEAR
DYNAMICAL SYSTEMS∗

S. GUGERCIN† , A. C. ANTOULAS‡ , AND C. BEATTIE†

Abstract. The optimal H2 model reduction problem is of great importance in the area of dy-
namical systems and simulation. In the literature, two independent frameworks have evolved focusing
either on solution of Lyapunov equations on the one hand or interpolation of transfer functions on the
other, without any apparent connection between the two approaches. In this paper, we develop a new
unifying framework for the optimal H2 approximation problem using best approximation properties
in the underlying Hilbert space. This new framework leads to a new set of local optimality condi-
tions taking the form of a structured orthogonality condition. We show that the existing Lyapunov-
and interpolation-based conditions are each equivalent to our conditions and so are equivalent to
each other. Also, we provide a new elementary proof of the interpolation-based condition that clar-
ifies the importance of the mirror images of the reduced system poles. Based on the interpolation
framework, we describe an iteratively corrected rational Krylov algorithm for H2 model reduction.
The formulation is based on finding a reduced order model that satisfies interpolation-based first-
order necessary conditions for H2 optimality and results in a method that is numerically effective
and suited for large-scale problems. We illustrate the performance of the method with a variety of
numerical experiments and comparisons with existing methods.

Key words. model reduction, rational Krylov, H2 approximation
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1. Introduction. Given a dynamical system described by a set of first-order
differential equations, the model reduction problem seeks to replace this original set
of equations with a (much) smaller set of such equations so that the behavior of both
systems is similar in an appropriately defined sense. Such situations arise frequently
when physical systems need to be simulated or controlled; the greater the level of detail
that is required, the greater the number of resulting equations. In large-scale settings,
computations become infeasible due to limitations on computational resources as well
as growing inaccuracy due to numerical ill-conditioning. In all these cases the number
of equations involved may range from a few hundred to a few million. Examples
of large-scale systems abound, ranging from the design of VLSI (very large scale
integration) chips to the simulation and control of MEMS (microelectromechanical
system) devices. For an overview of model reduction for large-scale dynamical systems
we refer to the book [2]. See also [23] for a recent collection of large-scale benchmark
problems.

In this paper, we consider single input/single output (SISO) linear dynamical
systems represented as

(1.1) G :

{
ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t)

or G(s) = cT (sI − A)−1b,
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where A ∈ R
n×n, b, c ∈ R

n; we define x(t) ∈ R
n, u(t) ∈ R, y(t) ∈ R as the state,

input, and output, respectively, of the system. (We comment on extensions to the
multiple input/multiple output (MIMO) case in section 3.2.1, but will confine our
analysis and examples to the SISO case.)

G(s) is the transfer function of the system: if û(s) and ŷ(s) denote the Laplace
transforms of the input and output u(t) and y(t), respectively, then ŷ(s) = G(s)û(s).
With a standard abuse of notation, we will denote both the system and its transfer
function by G. The “dimension of G” is taken to be the dimension of the underlying
state space, dimG = n in this case. It will always be assumed that the system, G, is
stable, that is, that the eigenvalues of A have strictly negative real parts.

The model reduction process will yield another system,

(1.2) Gr :

{
ẋr(t) = Arxr(t) + bru(t)
yr(t) = cTr xr(t)

or Gr(s) = cTr (sI − Ar)
−1br,

having (much) smaller dimension r � n, with Ar ∈ R
r×r and br, cr ∈ R

r.
We want yr(t) ≈ y(t) over a large class of inputs u(t). Different measures of ap-

proximation and different choices of input classes will lead to different model reduction
goals. Suppose one wants to ensure that maxt>0 |y(t)− yr(t)| is small uniformly over
all inputs, u(t), having bounded “energy,” that is,

∫∞
0

|u(t)|2 dt ≤ 1. Observe first
that ŷ(s) − ŷr(s) = [G(s) −Gr(s)] û(s) and then

max
t>0

|y(t) − yr(t)| = max
t>0

∣∣∣∣ 1

2π

∫ ∞

−∞
(ŷ(ıω) − ŷr(ıω)) eıωt dω

∣∣∣∣
≤ 1

2π

∫ ∞

−∞
|ŷ(ıω) − ŷr(ıω)| dω =

1

2π

∫ ∞

−∞
|G(ıω) −Gr(ıω)| |û(ıω)| dω

≤
(

1

2π

∫ ∞

−∞
|G(ıω) −Gr(ıω)|2 dω

)1/2 (
1

2π

∫ ∞

−∞
|û(ıω)|2 dω

)1/2

≤
(

1

2π

∫ ∞

−∞
|G(ıω) −Gr(ıω)|2 dω

)1/2 (∫ ∞

0

|u(t)|2 dt

)1/2

≤
(

1

2π

∫ +∞

−∞
|G(ıω) −Gr(ıω)|2 dω

)1/2
def
= ‖G−Gr‖H2

.

We seek a reduced order dynamical system, Gr, such that
(i) ‖G−Gr‖H2 , the “H2 error,” is as small as possible;
(ii) critical system properties for G (such as stability) exist also in Gr; and
(iii) the computation of Gr (i.e., the computation of Ar, br, and cr) is both

efficient and numerically stable.
The problem of finding reduced order models that yield a small H2 error has

been the object of many investigations; see, for instance, [6, 37, 34, 9, 21, 26, 22, 36,
25, 13] and the references therein. Finding a global minimizer of ‖G − Gr‖H2 is a
hard task, so the goal in making ‖G −Gr‖H2 “as small as possible” becomes, as for
many optimization problems, identification of reduced order models, Gr, that satisfy
first-order necessary conditions for local optimality. There is a wide variety of such
conditions that may be derived, yet their interconnections are generally unclear. Most
methods that can identify reduced order models satisfying such first-order necessary
conditions will require dense matrix operations, typically the solution of a sequence
of matrix Lyapunov equations, a task which becomes computationally intractable
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rapidly as the dimension increases. Such methods are unsuitable even for medium-
scale problems. In section 2, we review the moment matching problem for model
reduction, its connection with rational Krylov methods (which are very useful for
large-scale problems), and basic features of the H2 norm and inner product.

We offer in section 3 what appears to be a new set of first-order necessary condi-
tions for local optimality of a reduced order model comprising in effect a structured
orthogonality condition. We also show its equivalence with two other H2 optimality
conditions that have been previously known (thus showing them all to be equivalent).

An iterative algorithm that is designed to force optimality with respect to a set of
conditions that is computationally tractable is described in section 4. The proposed
method also forces optimality with respect to the other equivalent conditions as well.
It is based on computationally effective use of rational Krylov subspaces and so is
suitable for systems whose dimension n is of the order of many thousands of state
variables. Numerical examples are presented in section 5.

2. Background.

2.1. Model reduction by moment matching. Given the system (1.1), reduc-
tion by moment matching consists in finding a system (1.2) so that Gr(s) interpolates
the values of G(s), and perhaps also derivative values as well, at selected interpolation
points (also called shifts) σk in the complex plane. For our purposes, simple Hermite
interpolation suffices, so our problem is to find Ar, br, and cr so that

Gr(σk) = G(σk) and G′
r(σk) = G′(σk) for k = 1, . . . , r

or, equivalently,

cT (σkI − A)−1b = cTr (σkI − Ar)
−1br and cT (σkI − A)−2b = cTr (σkI − Ar)

−2br

for k = 1, . . . , r. The quantity cT (σkI − A)−(j+1)b is called the jth moment of
G(s) at σk. Moment matching for finite σ ∈ C becomes rational interpolation; see, for
example, [3]. Importantly, these problems can be solved in a recursive and numerically
effective way by means of rational Lanczos/Arnoldi procedures.

To see this we first consider reduced order models that are constructed by Galerkin
approximation: Let Vr and Wr be given r-dimensional subspaces of R

n that are
generic in the sense that Vr ∩W⊥

r = {0}. Then for any input u(t) the reduced order
output yr(t) is defined by

Find v(t) ∈ Vr such that v̇(t)−Av(t) − bu(t) ⊥ Wr for all t;(2.1)

then yr(t)
def
= cTv(t).

Denote by Ran(M) the range of a matrix M. Let Vr ∈ R
n×r and Wr ∈ R

n×r be
matrices defined so that Vr = Ran(Vr) and Wr = Ran(Wr). Then the assumption
Vr∩W⊥

r = {0} is equivalent to WT
r Vr being nonsingular. The Galerkin approximation

(2.1) can be interpreted as v(t) = Vrxr(t) with xr(t) ∈ R
r for each t and

WT
r (Vrẋr(t) − AVrxr(t) − bu(t)) = 0

leading then to the reduced order model (1.2) with

Ar = (WT
r Vr)

−1WT
r AVr, br = (WT

r Vr)
−1WT

r b, and cTr = cTVr.(2.2)

Evidently the choice of Vr and Wr determines the quality of the reduced order model.
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Rational interpolation by projection was first proposed by Skelton et al. in [11, 38,
39]. Grimme [17] showed how one can obtain the required projection using the rational
Krylov method of Ruhe [33]. Krylov-based methods are able to match moments
without ever computing them explicitly. This is important since the computation of
moments is in general ill-conditioned. This is a fundamental motivation behind the
Krylov-based methods [12].

In Lemma 2.1 and Corollary 2.2 below, we present new short proofs of rational
interpolation by Krylov projection that are substantially simpler than those found in
the original works [17, 11, 38, 39].

Lemma 2.1. Suppose σ ∈ C is not an eigenvalue of either A or Ar.

If (σI − A)−1b ∈ Vr, then Gr(σ) = G(σ).(2.3)

If (σ I − AT )−1c ∈ Wr, then Gr(σ) = G(σ).(2.4)

If both (σI − A)−1b ∈ Vr and (σ I − AT )−1c ∈ Wr,

then Gr(σ) = G(σ) and G′
r(σ) = G′(σ).(2.5)

Proof. Define Nr(z) = Vr(zI − Ar)
−1(WT

r Vr)
−1WT

r (zI − A) and Ñr(z) =

(zI−A)Nr(z)(zI−A)−1. Both Nr(z) and Ñr(z) are analytic matrix-valued functions
in a neighborhood of z = σ. One may directly verify that N2

r(z) = Nr(z) and

Ñ2
r(z) = Ñr(z) and that Vr = Ran Nr(z) = Ker (I − Nr(z)) and W⊥

r = Ker Ñr(z) =

Ran
(
I − Ñr(z)

)
for all z in a neighborhood of σ. Then

G(z) −Gr(z) =
[
(zI − AT )−1c

]T (
I − Ñr(z)

)
(zI − A)

(
I − Nr(z)

)
(zI − A)−1b.

Evaluating at z = σ leads to (2.3) and (2.4). Evaluating at z = σ + ε and observing
that (σI + εI − A)−1 = (σI − A)−1 − ε(σI − A)−2 + O(ε2) yields

G(σ + ε) −Gr(σ + ε) = O(ε2),

which gives (2.5) as a consequence.
Corollary 2.2. Consider the system G defined by A,b, c, a set of distinct shifts

given by {σk}rk=1, that is closed under conjugation (i.e., shifts are either real or occur
in conjugate pairs), and subspaces spanned by the columns of Vr and Wr with

Ran(Vr) = span
{
(σ1I − A)−1b, . . . , (σrI − A)−1b

}
and(2.6)

Ran(Wr) = span
{
(σ1I − AT )−1c, . . . , (σrI − AT )−1c

}
.(2.7)

Then Vr and Wr can be chosen to be real matrices and the reduced order system Gr

defined by Ar = (WT
r Vr)

−1WT
r AVr, br = (WT

r Vr)
−1WT

r b, cTr = cTVr is itself real
and matches the first two moments of G(s) at each of the interpolation points σk, i.e.,
G(σk) = Gr(σk) and G′(σk) = G′

r(σk) for k = 1, . . . , r.
For Krylov-based model reduction, one chooses interpolation points and then con-

structs Vr and Wr satisfying (2.6) and (2.7), respectively. Note that, in a numerical
implementation, one does not actually compute (σiI − A)−1, but instead computes
a (potentially sparse) factorization (one for each interpolation point σi), uses it to
solve a system of equations having b as a right-hand side, and uses its transpose to
solve a system of equations having c as a right-hand side. The interpolation points
are chosen so as to minimize the deviation of Gr from G in a sense that is detailed in
the next section. Unlike Gramian-based model reduction methods such as balanced
truncation (see section 2.2 below and [2]), Krylov-based model reduction requires only
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matrix-vector multiplications and some sparse linear solvers, and can be iteratively
implemented; hence it is computationally effective; for details, see also [15, 16].

2.2. Model reduction by balanced truncation. One of the most common
model reduction techniques is balanced truncation [28, 27]. In this case, the modeling
subspaces Vr and Wr depend on the solutions to the two Lyapunov equations

AP + PAT + bbT = 0, ATQ + QA + cT c = 0.(2.8)

P and Q are called the reachability and observability Gramians, respectively. Under
the assumption that A is stable, both P and Q are positive semidefinite matrices.
Square roots of the eigenvalues of the product PQ are the singular values of the
Hankel operator associated with G(s) and are called the Hankel singular values of
G(s), denoted by ηi(G).

Let P = UUT and Q = LLT . Let UTL = ZSYT be the singular value decompo-
sition with S = diag(η1, η2, . . . , ηn). Let Sr = diag(η1, η2, . . . , ηr), r < n. Construct

Wr = LYrS
−1/2
r and Vr = UZrS

−1/2
r ,(2.9)

where Zr and Yr denote the leading r columns of left singular vectors, Z, and right
singular vectors, Y, respectively. The rth-order reduced order model via balanced
truncation, Gr(s), is obtained by reducing G(s) using Wr and Vr from (2.9).

Another important dynamical systems norm (besides the H2 norm) is the H∞
norm defined as ‖G‖H∞

:= supω∈R |G(ıω)|. The reduced order system Gr(s) obtained
by balanced truncation is asymptotically stable and the H∞ norm of the error system
satisfies ‖G−Gr‖H∞

≤ 2(ηr+1 + · · · + ηn).
The value of having, for reduced order models, guaranteed stability and an explicit

error bound is widely recognized, though it is achieved at potentially considerable
cost. As described above, balanced truncation requires the solution of two Lyapunov
equations of order n, which is a formidable task in large-scale settings. For more
details and background on balanced truncation, see section III.7 of [2].

2.3. The H2 norm. H2 will denote the set of functions, g(z), that are analytic
for z in the open right half plane, Re(z) > 0, and such that for each fixed Re(z) =
x > 0, g(x+ ıy) is square integrable as a function of y ∈ (−∞,∞) in such a way that

sup
x>0

∫ ∞

−∞
|g(x + ıy)|2 dy < ∞.

H2 is a Hilbert space and holds our interest because transfer functions associated with
stable SISO finite-dimensional dynamical systems are elements of H2. Indeed, if G(s)
and H(s) are transfer functions associated with real stable SISO dynamical systems,
then the H2 inner product can be defined as

(2.10) 〈G, H〉H2

def
=

1

2π

∫ ∞

−∞
G(ıω)H(ıω) dω =

1

2π

∫ ∞

−∞
G(−ıω)H(ıω) dω,

with a norm defined as

(2.11) ‖G‖H2

def
=

(
1

2π

∫ +∞

−∞
|G(ıω)|2 dω

)1/2

.

Notice in particular that if G(s) and H(s) represent real dynamical systems, then
〈G, H〉H2 = 〈H, G〉H2 and 〈G, H〉H2 must be real.
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There are two alternate characterizations of this inner product that make it far
more computationally accessible.

Lemma 2.3. Suppose A ∈ R
n×n and B ∈ R

m×m are stable and, given b, c ∈ R
n

and b̃, c̃ ∈ R
m, define associated transfer functions,

G(s) = cT (sI − A)
−1

b and H(s) = c̃T (sI − B)
−1

b̃.

The inner product 〈G, H〉H2
is associated with solutions to Sylvester equations as

follows:

If P solves AP + PBT + bb̃T = 0, then 〈G, H〉H2
= cTPc̃.(2.12)

If Q solves QA + BTQ + c̃cT = 0, then 〈G, H〉H2
= b̃TQb.(2.13)

If R solves AR + RB + bc̃T = 0, then 〈G, H〉H2
= cTRb̃.(2.14)

Note that if A = B, b = b̃, and c = c̃, then P is the “reachability Gramian” of G(s),
Q is the “observability Gramian” of G(s), and R is the “cross Gramian” of G(s); and

(2.15) ‖G‖2
H2

= cTPc = bTQb = cTRb.

Gramians play a prominent role in the analysis of linear dynamical systems; refer
to [2] for more information.

Proof. We detail the proof of (2.12); proofs of (2.13) and (2.14) are similar. Since
A and B are stable, the solution, P, to the Sylvester equation of (2.12) exists and is
unique. For any ω ∈ R, rearrange this equation to obtain in sequence

(−ıωI − A)P + P
(
ıωI − BT

)
− bb̃T = 0,

(−ıωI − A)
−1

P + P
(
ıωI − BT

)−1
= (−ıωI − A)

−1
bb̃T

(
ıωI − BT

)−1
,

cT (−ıωI − A)
−1

Pc̃ + cTP
(
ıωI − BT

)−1
c̃ = G(−ıω)H(ıω),

and finally

cT

(∫ L

−L

(−ıωI − A)
−1

dω

)
Pc̃ + cTP

(∫ L

−L

(
ıωI − BT

)−1
dω

)
c̃

=

∫ L

−L

G(−ıω)H(ıω) dω.

Taking L → ∞ and using Lemma A.1 in the appendix leads to

∫ ∞

−∞
G(−ıω)H(ıω) dω = cT

(
P.V.

∫ ∞

−∞
(−ıωI − A)

−1
dω

)
Pc̃

+ cTP

(
P.V.

∫ ∞

−∞

(
ıωI − BT

)−1
dω

)
c̃

= 2π cTPc̃.

Recently, Antoulas [2] obtained a new expression for ‖G‖H2 based on the poles
and residues of the transfer function G(s) that complements the widely known alter-
native expression (2.15). We provide a compact derivation of this expression and the
associated H2 inner product.
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If f(s) is a meromorphic function with a pole at λ, denote the residue of f(s) at λ
by res[f(s), λ]. Thus, if λ is a simple pole of f(s), then res[f(s), λ] = lims→λ(s−λ)f(s),
and if λ is a double pole of f(s), then res[f(s), λ] = lims→λ

d
ds

[
(s− λ)2f(s)

]
.

Lemma 2.4. Suppose that G(s) has poles at λ1, λ2, . . . , λn and H(s) has poles at
μ1, μ2, . . . , μm, both sets contained in the open left half plane. Then

(2.16) 〈G, H〉H2
=

m∑
k=1

res[G(−s)H(s), μk] =

n∑
k=1

res[H(−s)G(s), λk].

In particular,
• if μk is a simple pole of H(s), then

res[G(−s)H(s), μk] = G(−μk)res[H(s), μk];

• if μk is a double pole of H(s), then

res[G(−s)H(s), μk] = G(−μk) res[H(s), μk] −G′(−μk) · h0(μk),

where h0(μk) = lims→μk

(
(s− μk)

2H(s)
)
.

Proof. Notice that the function G(−s)H(s) has singularities at μ1, μ2, . . . , μm

and −λ1, −λ2, . . . ,−λn. For any R > 0, define the semicircular contour in the left
half plane:

ΓR = {z |z = ıω with ω ∈ [−R,R]} ∪
{
z

∣∣∣∣z = Reıθ with θ ∈
[
π

2
,
3π

2

]}
.

ΓR bounds a region that for sufficiently large R contains all the system poles of H(s)
and so, by the residue theorem,

〈G, H〉H2
=

1

2π

∫ +∞

−∞
G(−ıω)H(ıω) dω

= lim
R→∞

1

2πı

∫
ΓR

G(−s)H(s) ds =

m∑
k=1

res[G(−s)H(s), μk].

Evidently, if μk is a simple pole for H(s), it is also a simple pole for G(−s)H(s) and

res[G(−s)H(s), μk] = lim
s→μk

(s− μk)G(−s)H(s) = G(−μk) lim
s→μk

(s− μk)H(s).

If μk is a double pole for H(s), then it is also a double pole for G(−s)H(s) and

res[G(−s)H(s), μk] = lim
s→μk

d

ds
(s− μk)

2G(−s)H(s)

= lim
s→μk

G(−s)
d

ds
(s− μk)

2H(s) −G′(−s)(s− μk)
2H(s)

= G(−μk) lim
s→μk

d

ds
(s− μk)

2H(s) −G′(−μk) lim
s→μk

(s− μk)
2H(s).

Lemma 2.4 immediately yields the expression for ‖G‖H2 given by Antoulas [2,
p. 145] based on poles and residues of the transfer function G(s).

Corollary 2.5. If G(s) has simple poles at λ1, λ2, . . . , λn, then

‖G‖H2
=

(
n∑

k=1

res[G(s), λk]G(−λk)

)1/2

.
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3. Optimal H2 model reduction. In this section, we investigate three frame-
works of necessary conditions for H2 optimality. The first utilizes the inner product
structure H2 and leads to what could be thought of as a geometric condition for opti-
mality. This appears to be a new characterization of H2 optimality for reduced order
models. The remaining two frameworks, interpolation-based [26] and Lyapunov-based
[36, 22], are easily derived from the first framework and in this way can be seen to be
equivalent to one another—a fact that is not a priori evident. This equivalence proves
that solving the optimal H2 problem in the Krylov framework is equivalent to solving
it in the Lyapunov framework, which leads to the proposed Krylov-based method for
H2 model reduction in section 4.

Given G, a stable SISO finite-dimensional dynamical system as described in (1.1),
we seek a stable reduced order system Gr of order r as described in (1.2), which is
the best stable rth-order dynamical system approximating G with respect to the H2

norm:

(3.1) ‖G−Gr‖H2 = min
dim(G̃r)=r

G̃r : stable

‖G− G̃r‖H2 .

Many researchers have worked on problem (3.1), the optimal H2 model reduction
problem. See [37, 34, 9, 21, 26, 22, 36, 25] and the references therein.

3.1. Structured orthogonality optimality conditions. The set of all stable
rth-order dynamical systems do not constitute a subspace of H2, so the best rth-
order H2 approximation is not so easy to characterize, the Hilbert space structure
of H2 notwithstanding. This observation does suggest the following narrower though
simpler result.

Theorem 3.1. Let μ1, μ2, . . . , μr ⊂ C be distinct points in the open left half
plane and define M(μ) to be the set of all proper rational functions that have simple
poles exactly at μ1, μ2, . . . , μr. Then

• H ∈ M(μ) implies that H is the transfer function of a stable dynamical
system with dim(H) = r;

• M(μ) is an (r − 1)-dimensional subspace of H2;
• Gr ∈ M(μ) solves

(3.2) ‖G−Gr‖H2 = min
G̃r∈M(μ)

‖G− G̃r‖H2

if and only if

(3.3) 〈G−Gr, H〉H2
= 0 for all H ∈ M(μ).

Furthermore the solution, Gr, to (3.2) exists and is unique.
Proof. The key observation is that M(μ) is a closed subspace of H2. Then the

equivalence of (3.2) and (3.3) follows from the classic projection theorem in Hilbert
space (cf. [32]).

One consequence of Theorem 3.1 is that if Gr(s) interpolates a real system G(s)
at the mirror images of its own poles (i.e., at the poles of Gr(s) reflected across
the imaginary axis), then Gr(s) is guaranteed to be an optimal approximation of
G(s) relative to the H2 norm among all reduced order systems having the same
reduced system poles {μi}ri=1. An analogous result for optimal rational approximants
to analytic functions on the unit disk can be found in [14]. The set of stable rth-
order dynamical systems is not convex, and so the original problem (3.1) allows for
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multiple minimizers. Indeed there may be “local minimizers” that do not solve (3.1).
A reduced order system, Gr, is a local minimizer for (3.1) if, for all ε > 0 sufficiently
small,

(3.4) ‖G−Gr‖H2 ≤ ‖G− G̃(ε)
r ‖H2

for all stable dynamical systems G̃
(ε)
r with dim(G̃

(ε)
r ) = r and ‖Gr − G̃

(ε)
r ‖H2 ≤ C ε,

with C being a constant that may depend on the particular family G̃
(ε)
r considered.

As a practical matter, the global minimizers that solve (3.1) are difficult to obtain
with certainty; current approaches favor seeking reduced order models that satisfy a
local (first-order) necessary condition for optimality. Even though such strategies do
not guarantee global minimizers, they often produce effective reduced order models
nonetheless. In this spirit, we give necessary conditions for optimality for the reduced
order system, Gr, that appear as structured orthogonality conditions similar to (3.3).

Theorem 3.2. If Gr is a local minimizer to G as described in (3.4) and Gr has
simple poles, then

(3.5) 〈G−Gr, Gr ·H1 + H2〉H2
= 0

for all real dynamical systems H1 and H2 having the same poles with the same mul-
tiplicities as Gr.

(Gr ·H1 here denotes pointwise multiplication of scalar functions.)
Proof. Theorem 3.1 implies (3.5) with H1 = 0, so it suffices to show that the

hypotheses imply that 〈G−Gr, Gr ·H〉H2
= 0 for all real dynamical systems H

having the same poles with the same multiplicities as Gr.

Suppose that {G̃(ε)
r }ε>0 is a family of real stable dynamical systems with

dim(G̃
(ε)
r ) = r and ‖Gr − G̃

(ε)
r ‖H2 < Cε for some constant C > 0. Then for all

ε > 0 sufficiently small,

‖G−Gr‖2
H2

≤ ‖G− G̃(ε)
r ‖2

H2

≤ ‖(G−Gr) + (Gr − G̃(ε)
r )‖2

H2

≤ ‖G−Gr‖2
H2

+ 2
〈
G−Gr, Gr − G̃(ε)

r

〉
H2

+ ‖Gr − G̃(ε)
r )‖2

H2
.

This in turn implies for all ε > 0 sufficiently small that

(3.6) 0 ≤ 2
〈
G−Gr, Gr − G̃(ε)

r

〉
H2

+ ‖Gr − G̃(ε)
r ‖2

H2
.

By considering a few different “directions of approach” of G̃
(ε)
r to Gr as ε → 0,

(3.6) will lead to a few different necessary conditions for Gr to be a locally optimal
reduced order model. Denote the poles of Gr as μ1, μ2, . . . , μr and suppose they are
ordered so that the first mR are real and the next mC are in the upper half plane.
Write μi = αi + ıβi. Any real rational function having the same poles as Gr(s) can
be written as

H(s) =

mR∑
i=1

γi
s− μi

+

mR+mC∑
i=mR+1

ρi(s− αi) + τi
(s− αi)2 + β2

i

,

with arbitrary real-valued choices for γi, ρi, and τi. Now suppose that μ is a real pole
for Gr and that

(3.7)

〈
G−Gr,

Gr(s)

s− μ

〉
H2

�= 0.
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Write Gr(s) = pr−1(s)
(s−μ) qr−1(s)

for real polynomials pr−1, qr−1 ∈ Pr−1 and define

G̃(ε)
r (s) =

pr−1(s)

[s− μ− (±ε)] qr−1(s)
,

where the sign of ±ε is chosen to match that of
〈
G−Gr,

Gr(s)
s−μ

〉
H2

. Then we have

G̃(ε)
r (s) = Gr(s) ± ε

pr−1(s)

(s− μ)2 qr−1(s)
+ O(ε2),

which leads to Gr(s) − G̃
(ε)
r (s) = ∓εGr(s)

s−μ + O(ε2) and

(3.8)
〈
G−Gr, Gr − G̃(ε)

r

〉
H2

= −ε

∣∣∣∣∣
〈
G−Gr,

Gr(s)

s− μ

〉
H2

∣∣∣∣∣+ O(ε2).

Then (3.6) implies that as ε → 0, 0 <
∣∣〈G − Gr,

Gr(s)
s−μ

〉
H2

∣∣ ≤ Cε for some constant

C, which then contradicts (3.7).
Now suppose that μ = α + ıβ is a pole for Gr with a nontrivial imaginary part,

β �= 0, and so is one of a conjugate pair of poles for Gr. Suppose further that

(3.9)

〈
G−Gr,

Gr(s)

(s− α)2 + β2

〉
H2

�= 0 and

〈
G−Gr,

(s− α)Gr(s)

(s− α)2 + β2

〉
H2

�= 0.

Write Gr(s) = pr−1(s)
[(s−α)2+β2] qr−2(s)

for some choice of real polynomials pr−1 ∈ Pr−1 and

qr−2 ∈ Pr−2. Arguments exactly analogous to the previous case lead to the remaining
assertions. In particular,

to show

〈
G−Gr,

Gr(s)

(s− α)2 + β2

〉
H2

= 0,

consider G̃(ε)
r (s) =

pr−1(s)

[(s− α)2 + β2 − (±ε)] qr−2(s)
;

to show

〈
G−Gr,

(s− α)Gr(s)

(s− α)2 + β2

〉
H2

= 0,

consider G̃(ε)
r (s) =

pr−1(s)

[(s− α− (±ε))
2

+ β2] qr−2(s)
.

The conclusion follows then by observing that if Gr is a locally optimal H2 reduced
order model, then

〈G−Gr, Gr ·H1 + H2〉H2
=

mR∑
i=1

γi

〈
G−Gr,

Gr(s)

s− μi

〉
H2

+

mR+mC∑
i=mR+1

ρi

〈
G−Gr,

(s− αi)Gr(s)

(s− αi)2 + β2
i

〉
H2

+

mR+mC∑
i=mR+1

τi

〈
G−Gr,

Gr(s)

(s− αi)2 + β2
i

〉
H2

+ 〈G−Gr, H2(s)〉H2
= 0.
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Theorem 3.2 describes new necessary conditions for the H2 approximation prob-
lem as structured orthogonality conditions. This new formulation amounts to a unify-
ing framework for the optimal H2 problem. Indeed, as we show in sections 3.2 and 3.3,
two other known optimality frameworks, namely, interpolatory- [26] and Lyapunov-
based conditions [36, 22], can be directly obtained from our new conditions by using
an appropriate form for the H2 inner product. The interpolatory framework uses the
residue formulation of the H2 inner product as in (2.16); the Lyapunov framework
uses the Sylvester equation formulation of the H2 norm as in (2.12).

3.2. Interpolation-based optimality conditions. Corollary 2.5 immediately
yields an observation regarding the H2 norm of the error system, which serves as a
main motivation for the interpolation framework of the optimal H2 problem.

Proposition 3.3. Given the full-order model G(s) and a reduced order model

Gr(s), let λi and λ̃i be the poles of G(s) and Gr(s), respectively, and suppose that

the poles of Gr(s) are distinct. Let φi and φ̃j denote the residues of the transfer

functions G(s) and Gr(s) at their poles λi and λ̃i, respectively: φi = res[G(s), λi] for

i = 1, . . . , n and φ̃j = res[Gr(s), λ̃j ] for j = 1, . . . , r. The H2 norm of the error system
is given by

‖G−Gr‖2
H2

=

n∑
i=1

res[(G(−s) −Gr(−s)) (G(s) −Gr(s)) , λi]

+

r∑
j=1

res[(G(−s) −Gr(−s)) (G(s) −Gr(s)) , λ̃j ]

=

n∑
i=1

φi

(
G(−λi) −Gr(−λi)

)
−

r∑
j=1

φ̃j

(
G(−λ̃j) −Gr(−λ̃j)

)
.(3.10)

The H2 error expression (3.10) is valid for any reduced order model regardless
of the underlying reduction technique and generalizes a result of [20, 18] to the most
general setting.

Proposition 3.3 has the system-theoretic interpretation that the H2 error is due
to mismatch of the transfer functions G(s) and Gr(s) at mirror images of the full-

order poles λi and reduced order poles λ̃i. This expression reveals that for good H2

performance, Gr(s) should approximate G(s) well at −λi and −λ̃j . Note that λ̃i is
not known a priori. Therefore, to minimize the H2 error, Gugercin and Antoulas
[20] proposed choosing σi = −λi(A), where λi(A) are those system poles having big
residuals φi. They have illustrated that this selection of interpolation points works
quite well; see [18, 20]. However, as (3.10) illustrates, there is a second part of the H2

error due to the mismatch at −λ̃j . Indeed, as we will show below, interpolation at

−λ̃i is more important for model reduction and is a necessary condition for optimal
H2 model reduction; i.e., σi = −λ̃i is the optimal shift selection.

Theorem 3.4. Given a stable SISO system G(s) = cT (sI − A)−1b, let Gr(s) =
cTr (sI−Ar)

−1br be a local minimizer of dimension r for the optimal H2 model reduc-

tion problem (3.1) and suppose that Gr(s) has simple poles at λ̃i, i = 1, . . . , r. Then

Gr(s) interpolates both G(s) and its first derivative at −λ̃i, i = 1, . . . , r:

Gr(−λ̃i) = G(−λ̃i) and G′
r(−λ̃i) = G′(−λ̃i) for i = 1, . . . , r.(3.11)

Proof. From (3.5), consider first the case H1 = 0 and H2 is an arbitrary transfer

function with simple poles at λ̃i, i = 1, . . . , r. Denote φ̃i = res[H2(s), λ̃i]. Then (2.16)
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leads to

〈G−Gr, H2〉H2
=

r∑
i=1

res[(G(−s) −Gr(−s))H2(s), λ̃i]

=

r∑
i=1

φ̃i

(
G(−λ̃i) −Gr(−λ̃i)

)
= 0.

Since this is true for arbitrary choices of φ̃i, we have G(−λ̃i) = Gr(−λ̃i). Now
consider the case H2 = 0 and H1 is an arbitrary transfer function with simple poles
at λ̃i, i = 1, . . . , r. Then Gr(s)H1(s) has double poles at λ̃i, i = 1, . . . , r, and since

G(−λ̃i) = Gr(−λ̃i) we have

〈G−Gr, Gr ·H1〉H2
=

r∑
i=1

res[(G(−s) −Gr(−s))Gr(s)H1(s), λ̃i]

= −
r∑

i=1

φ̃i res[Gr, λ̃i]
(
G′(−λ̃i) −G′

r(−λ̃i)
)

= 0,

where we have calculated

lim
s→λ̃i

(
(s− λ̃i)

2Gr(s) ·H1(s)
)

= res[H1(s), λ̃i] · res[Gr(s), λ̃i] = φ̃i res[Gr, λ̃i].

We refer to the first-order conditions (3.11) as Meier–Luenberger conditions, rec-
ognizing the work of [26], although we have here directly obtained them from the
newly derived structured orthogonality conditions (3.5).

In Theorem 3.4, we assume that the reduced order poles (eigenvalues of Ar) are
simple; analogous results for the case that Gr has a higher order pole are straightfor-
ward and correspond to interpolation conditions of higher derivatives at the mirror
images of reduced order poles.

3.2.1. Multiple input/multiple output systems. Many of these considera-
tions extend naturally to the multiple input/multiple output (MIMO) setting:

(3.12) G :

{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

or G(s) = C(sI − A)−1B,

where the state vector x(t) ∈ R
n as before, but now the system has an input vector

u(t) ∈ R
m and output vector y(t) ∈ R

p, so that B ∈ R
n×m and C ∈ R

p×n for
some m, p ≥ 1. The transfer function, G(s), in (3.12) becomes matrix valued. A
reduced order system analogous to (1.2) is sought with the same number of inputs
m and outputs p, but with lower state space dimension r � n. If Vr ∈ R

n×r and
Wr ∈ R

n×r such that WT
r Vr is nonsingular, we can define a (matrix-valued) reduced

order transfer function Gr(s) = Cr(sI − Ar)
−1Br with

Ar = (WT
r Vr)

−1WT
r AVr, Br = (WT

r Vr)
−1WT

r B, and Cr = CVr.

In order to assess “closeness” of MIMO systems, there is a natural extension of
the Hilbert space, H2, to p ×m matrix-valued functions. In particular, if G(s) and
H(s) are p × m matrix-valued transfer functions associated with real stable MIMO
dynamical systems, then the associated H2 inner product is
(3.13)

〈G, H〉H2

def
=

1

2π

∫ ∞

−∞
tr
(
G(ıω)HT (ıω)

)
dω =

1

2π

∫ ∞

−∞
tr
(
G(−ıω)HT (ıω)

)
dω,
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where “tr(M)” denotes the trace of the matrix M. The H2 norm is then

(3.14) ‖G‖H2

def
=

(
1

2π

∫ +∞

−∞
‖G(ıω)‖2

F dω

)1/2

,

where ‖F‖F
def
=
(∑

ij |Fij |2
)1/2

denotes the usual Frobenius matrix norm. As before,
if G(s) and H(s) represent real dynamical systems, then 〈G, H〉H2 = 〈H, G〉H2 and
〈G, H〉H2 is real.

Necessary conditions for H2 optimality built on structured orthogonality parallel-
ing the results of section 3.1 can be derived in this setting as well. In particular, the
residue form for the inner product is a straightforward analogue of Lemma 2.4 and
leads naturally to interpolation conditions. If F(s) is a matrix-valued meromorphic
function with a pole at λ, then F(s) has a Laurent expansion (with matrix coeffi-
cients), and its residue, res[F(s), λ], will be the coefficient matrix associated with the
expansion term (s−λ)−1. For example, suppose that F(s) has the realization F(s) =

C̃
(
sI − Ã

)−1
B̃. If λ is a simple pole of F(s), then we can assume that λ is a simple

eigenvalue of Ã associated with a rank-1 spectral projector Eλ and then F(s) =
1

s−λEλ+D(s), where D(s) is analytic at s = λ, and res[F(s), λ] = lims→λ(s−λ)F(s) =

C̃EλB̃. If λ is a double pole, then we can assume that λ is a double eigenvalue of
Ã associated with a rank-2 spectral projector Eλ and a rank-1 nilpotent matrix Nλ

such that ÃEλ = λEλ + Nλ. Then F(s) = 1
(s−λ)2 Nλ + 1

(s−λ)Eλ + D(s), where D(s)

is analytic at s = λ, and so res[F(s), λ] = lims→λ
d
ds

[
(s− λ)2F(s)

]
= C̃EλB̃.

Lemma 3.5. Suppose that G(s) has poles at λ1, λ2, . . . , λn and H(s) has poles

at λ̃1, λ̃2, . . . , λ̃ñ, with both sets contained in the open left half plane. Then

(3.15) 〈G, H〉H2
=

ñ∑
k=1

tr
(
res[G(−s)HT (s), λ̃k]

)
.

In particular, suppose H(s) has a realization H(s) = C̃(sI − Ã)−1B̃:

• If λ̃k is a simple pole of H(s), and λ̃k is associated with left and right eigen-

vectors of Ã, ỹk, and x̃k, respectively,

Ãx̃k = λ̃k x̃k, ỹ∗
kÃ = λ̃k ỹ∗

k, and ỹ∗
kx̃k = 1,

then
tr
(
res[G(−s)HT (s), λ̃k]

)
= c̃Tk G(−λ̃k)b̃k,

where b̃T
k = ỹ∗

kB̃ and c̃k = C̃x̃k.

• If λ̃k is a double pole of H(s), and λ̃k is associated with left and right eigen-

vectors ỹk and x̃k of Ã, and generalized eigenvectors, z̃k and w̃k, respectively,

Ãx̃k =λ̃k x̃k, Ãw̃k = λ̃k w̃k + x̃k, ỹ∗
kÃ = λ̃k ỹ∗

k, z̃∗kÃ = λ̃k z̃∗k + ỹ∗
k,

and ỹ∗
kx̃k = 0, z̃∗kw̃k = 0, and z̃∗kx̃k = ỹ∗

kw̃k = 1,

then

tr
(
res[G(−s)HT (s), λ̃k]

)
= d̃T

k G(−λ̃k)b̃k + c̃Tk G(−λ̃k)ẽk − c̃Tk G′(−λ̃k)b̃k,

where b̃k and c̃k are as above and ẽTk = z̃∗kB̃ and d̃k = C̃w̃k.
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Now assume that Gr is an optimal reduced order model minimizing ‖G−Gr‖H2

in the sense described in (3.1) and suppose further that Gr has simple poles λ̃i. Take

H(s) = Gr in (3.5) so that Gr(s) =
∑

k
1

s−λ̃k
c̃kb̃

T
k and the residue of Gr(s) at λ̃k is

matrix valued and rank one: res[Gr(s), λ̃k] = c̃kb̃
T
k . An analysis paralleling what we

have carried out above yields analogous error expressions (see also [2]) and first-order
necessary conditions for the MIMO optimal H2 reduction problem:

G(−λ̃k)b̃k = Gr(−λ̃k)b̃k,

c̃Tk G(−λ̃k) = c̃Tk Gr(−λ̃k), and(3.16)

c̃Tk G′(−λ̃k)b̃k = c̃Tk G′
r(−λ̃k)b̃k, for k = 1, . . . , r.

The SISO (m = p = 1) conditions are replaced in the MIMO case by left tangential,
right tangential, as well as bi-tangential interpolation conditions. From the discussion
of section 2.1, if Ran(Vr) contains (λ̃kI + A)−1Bb̃k and Ran(Wr) contains (λ̃kI +
A)−TCT c̃k for each k = 1, 2, . . . , r, then the H2 optimality conditions given above
hold. First-order interpolatory MIMO conditions have been obtained recently in other
independent works as well; see [24, 35].

3.2.2. The discrete time case. An nth-order SISO discrete-time dynamical
system is defined by a set of difference equations

(3.17) G :

{
x(t + 1) = Ax(t) + bu(t)

y(t) = cTx(t)
or G(z) = cT (zI − A)−1b,

where t ∈ Z and A ∈ R
n×n, b, c ∈ R

n. G(z) is the transfer function of the system, so
that if û(z) and ŷ(z) denote the z-transforms of u(t) and y(t), respectively, then ŷ(z) =
G(z)û(z). In this case, stability of G means that | λi(A) |< 1 for i = 1, . . . , n. Also,

the h2 norm is defined as ‖G‖2
h2

= 1
2π

∫ 2π

0
| G(eıθ) |2 dθ. Model reduction for discrete-

time systems is defined similarly. In this setting, interpolatory (necessary) conditions
for h2 optimality of the rth-order reduced model Gr(z) = cTr (zI − Ar)

−1br become

G
(
1/λ̃i

)
= Gr

(
1/λ̃i

)
and G′(1/λ̃i

)
= G′

r

(
1/λ̃i

)
for i = 1, . . . , r, where λ̃i denotes the

ith eigenvalue of Ar. This is a special case of results for discrete-time MIMO systems
formulated previously in [10].

3.3. Lyapunov-based H2 optimality conditions. In this section we briefly
review the Lyapunov framework for the first-order H2 optimality conditions and
present its connection to our structured orthogonality framework.

Given a stable SISO system G(s) = cT (sI−A)−1b, let Gr(s) = cTr (sI−Ar)
−1br

be a local minimizer of dimension r for the optimal H2 model reduction problem (3.1)

and suppose that Gr(s) has simple poles at λ̃i, i = 1, . . . , r.
It is convenient to define the error system

Gerr(s)
def
= G(s) −Gr(s) = cTerr (sI − Aerr)

−1
berr(3.18)

with Aerr =

[
A 0
0 Ar

]
, berr =

[
b
br

]
, and cTerr = [cT − cTr ].(3.19)

Let Perr and Qerr be the Gramians for the error system Gerr(s); i.e., Perr and
Qerr solve

AerrPerr + PerrA
T
err + berrb

T
err = 0,(3.20)

QerrAerr + AT
errQerr + cerrc

T
err = 0.(3.21)
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Partition Perr and Qerr:

(3.22) Perr =

[
P11 P12

PT
12 P22

]
, Qerr =

[
Q11 Q12

QT
12 Q22

]
,

where P11,Q11 ∈ R
n×n and P22,Q22 ∈ R

r×r. Wilson [36] showed that the reduced
order model Gr(s) = cTr (sI−Ar)

−1br can be defined in terms of a Galerkin framework
as well by taking

(3.23) Vr = P12P
−1
22 and Wr = −Q12Q

−1
22 ,

and the resulting reduced order model satisfies the first-order conditions of the optimal
H2 problem. It was also shown in [36] that WT

r Vr = I. The next result states the
Lyapunov-based Wilson conditions for H2 optimality and shows their equivalence to
our structured orthogonality framework.

Theorem 3.6. The Wilson conditions for H2 optimality,

PT
12Q12 + P22Q22 = 0,(3.24)

QT
12b + Q22br = 0,(3.25)

cTr P22 − cTP12 = 0,(3.26)

are equivalent to the structured orthogonality conditions of Theorem 3.2.
Proof. From (3.5), consider first the case H1 = 0 and H2 is an arbitrary transfer

function with simple poles at λ̃i, i = 1, . . . , r. Write H2(s) = c̃T (sI−Ar)
−1b̃, where

b̃ and c̃ can vary arbitrarily. Then from (2.12), if, for any b̃ �= 0, [P̃T
1 , P̃

T
2 ]T solves

(3.27)

[
A 0
0 Ar

][
P̃1

P̃2

]
+

[
P̃1

P̃2

]
AT

r +

[
b
br

]
b̃T = 0,

we have for arbitrary c̃

〈G−Gr, H2〉H2
= [cT − cTr ]

[
P̃1

P̃2

]
c̃ = 0.

Notice that P̃1 and P̃2 are independent of c̃, so for each choice of b̃ we must have

cT P̃1 − cTr P̃2 = 0.

For b̃ = br, one may check directly that P̃1 = P12 and P̃2 = P22 in Perr that solves
(3.20) in Wilson’s conditions.

Likewise, from (2.13) for each choice of c̃, if [Q̃1, Q̃2] solves

(3.28) [Q̃1, Q̃2]

[
A 0
0 Ar

]
+ AT

r [Q̃1, Q̃2] + c̃[cT , −cTr ] = 0,

then we have for every b̃

〈G−Gr, H2〉H2
= b̃T [Q̃1, Q̃2]

[
b
br

]
= 0.
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Similarly to the first case, [Q̃1, Q̃2] is independent of b̃, so for each choice of c̃ we
must have

Q̃1b + Q̃2br = 0,

and for the particular case c̃ = −cr, one may check directly that Q̃1 = QT
12 and Q̃2 =

Q22 in Qerr that solves (3.21) in Wilson’s conditions. The structured orthogonality
condition 〈G−Gr, H〉H2

= 0 taken over all systems H(s) with the same poles as Gr

leads directly to the Wilson conditions (3.25) and (3.26).
The additional orthogonality condition 〈G−Gr, Gr ·H〉H2

= 0 taken over all
H(s) with the same poles as Gr will yield the remaining Wilson condition (3.24).

Observe that

Gr(s)H(s) = cTr (sI − Ar)
−1br c̃T (sI − Ar)

−1b̃

= [cTr , 0]

(
sI2r −

[
Ar brc̃

T

0 Ar

])−1 [
0

b̃

]
.

Referring to (2.12), the condition 〈G−Gr, Gr ·H〉H2
= 0 leads to a Sylvester

equation,

[
A 0
0 Ar

][
W̃1 P̃1

W̃2 P̃2

]
+

[
W̃1 P̃1

W̃2 P̃2

] [
AT

r 0
c̃bT

r AT
r

]
+

[
b
br

]
[0, b̃T ] = 0,

where the use of P̃1 and P̃2 is intended to indicate that they solve (3.27) as well.
Then

〈G−Gr, Gr ·H2〉H2
= [cT , −cTr ]

[
W̃1 P̃1

W̃2 P̃2

] [
cr
0

]
= 0.

Alternatively, from (2.13),
(3.29)[

Q̃1 Q̃2

Ỹ1 Ỹ2

] [
A 0
0 Ar

]
+

[
AT

r 0
c̃bT

r AT
r

][
Q̃1 Q̃2

Ỹ1 Ỹ2

]
+

[
cr
0

]
[cT , −cTr ] = 0

(Q̃1 and Q̃2 here also solve (3.28)) and

〈G−Gr, Gr ·H2〉H2
= [0, b̃T ]

[
Q̃1 Q̃2

Ỹ1 Ỹ2

] [
b
br

]
= 0.

Since this last equality is true for all b̃, and since Ỹ1 and Ỹ2 are independent of b̃,
we see that Ỹ1b + Ỹ2br = 0. We know already that Q̃1b + Q̃2br = 0, so

[
Q̃1 Q̃2

Ỹ1 Ỹ2

] [
b
br

]
=

[
0
0

]
.

Define
[
Q̃1 Q̃2

Ỹ1 Ỹ2

][
P̃1

P̃2

]
=

[
R̃1

R̃2

]
. We will show that R̃1 = 0. Premultiply (3.27) by[

Q̃1 Q̃2

Ỹ1 Ỹ2

]
, postmultiply (3.29) by

[
P̃1

P̃2

]
, and subtract the resulting equations to get

R̃1A
T
r − AT

r R̃1 = 0 and R̃2A
T
r − AT

r R̃2 = c̃bT
r R̃1.
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The first equation asserts that R̃1 commutes with AT
r , and since AT

r has distinct

eigenvalues, R̃1 must have the same eigenvectors as AT
r . Let ỹi, x̃i be left and right

eigenvectors of Ar associated with λ̃i (respectively, right and left eigenvectors of AT
r ):

Arx̃i = λ̃ix̃i and ỹT
i Ar = λ̃iỹ

T
i . Then R̃1ỹi = diỹi. Now premultiply the second

equation by x̃T
i and postmultiply by ỹi to find

x̃T
i

(
R̃2A

T
r − AT

r R̃2

)
ỹi = x̃T

i c̃bT
r R̃1ỹi,

x̃T
i R̃2ỹiλ̃i − λ̃ix̃

T
i R̃2ỹi = x̃T

i c̃bT
r R̃1ỹi,

0 =
(
x̃T
i c̃
) (

bT
r ỹi

)
di.

Either di = 0 or one of x̃T
i c̃ and bT

r ỹi must vanish, which would then imply that

either dimH < r or dimGr < r. Thus di = 0 for all i = 1, . . . , r and R̃1 = 0, which
proves the final Wilson condition (3.24).

The converse is omitted here since it follows in a straightforward way by reversing
the preceding arguments.

Hyland and Bernstein [22] offered conditions that are equivalent to the Wilson
conditions. Suppose Gr(s) defined by Ar, br, and cTr solves the optimal H2 problem.
Then there exist positive nonnegative matrices P,Q ∈ R

n×n and two n× r matrices
Fr and Yr such that

(3.30) PQ = FrMYT
r , YT

r Fr = Ir,

where M is similar to a positive definite matrix. Then Gr(s) is given by Ar, br,
and cTr with Ar = YT

r AFr, br = YT
r b, and cTr = cTYr such that, with the skew

projection Π = FrY
T
r , the following conditions are satisfied:

rank(P) = rank(Q) = rank(PQ),(3.31)

Π
[
AP + PAT + bbT

]
= 0,(3.32) [

ATQ + QA + ccT
]
Π = 0.(3.33)

Note that in both [36] and [22], the first-order necessary conditions are given
in terms of (coupled) Lyapunov equations. Both [36] and [22] proposed iterative
algorithms to obtain a reduced order model satisfying these Lyapunov-based first-
order conditions. However, the main drawback in each case is that both approaches
require solving two large-scale Lyapunov equations at each step of the algorithm. [40]
discusses computational issues related to solving associated linearized problems within
each step.

Theorems 3.4 and 3.6 show the equivalence between the structured orthogonal-
ity conditions and Lyapunov- and interpolation-based conditions for H2 optimality,
respectively. To complete the discussion, we formally state the equivalence between
the Lyapunov and interpolation frameworks.

Lemma 3.7 (equivalence of Lyapunov and interpolation frameworks). The first-
order necessary conditions of both [22] as given in (3.31)–(3.33) and [36] as given
in (3.23) are equivalent to those of [26] as given in (3.11). That is, the Lyapunov-
based first-order conditions [36, 22] for the optimal H2 problem are equivalent to the
interpolation-based Meier–Luenberger conditions.

We note that the connection between the Lyapunov and interpolation frameworks
has not been observed in the literature before. This result shows that solving the op-
timal H2 problem in the Krylov framework is equivalent to solving it in the Lyapunov
framework. This leads to the Krylov-based method proposed in the next section.
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4. Iterated interpolation. We propose an effective numerical algorithm that
produces a reduced order model Gr(s) satisfying the interpolation-based first-order
necessary conditions (3.11). Effectiveness of the proposed algorithm results from the
fact that we use rational Krylov steps to construct a Gr(s) that meets the first-order
conditions (3.11). No Lyapunov solvers or dense matrix decompositions are needed.
Therefore, the method is suited for large-scale systems where n � 1000.

Several approaches have been proposed in the literature to compute reduced order
models that satisfy some form of first-order necessary conditions; see [37, 34, 9, 21,
26, 22, 36, 25]. However, these approaches do not seem to be suitable for large-scale
problems. The ones based on Lyapunov-based conditions, e.g., [36, 22, 34, 37], require
solving a couple of Lyapunov equations at each step of the iteration. To our knowledge,
the only methods that depend on interpolation-based necessary conditions have been
proposed in [25] and [26]. The authors work directly with the transfer functions of
G(s) and Gr(s); make an iteration on the denominator [25] or poles and residues
[26] of Gr(s); and explicitly compute G(s), Gr(s), and their derivatives at certain
points in the complex plane. However, working with the transfer function, its values,
and its derivative values explicitly is not desirable in large-scale settings. Indeed, one
will most likely be given a state space representation of G(s) rather than the transfer
function. And trying to compute the coefficients of the transfer function can be highly
ill-conditioned. These approaches are similar to [30, 31], where interpolation is done
by explicit usage of transfer functions. On the other hand, our approach, which is
detailed below, is based on the connection between interpolation and effective rational
Krylov iteration, and is therefore numerically effective and stable.

Let σ denote the set of interpolation points {σ1, . . . , σr}; use these interpolation
points to construct a reduced order model, Gr(s), that interpolates both G(s) and

G′(s) at {σ1, . . . , σr}; let λ(σ) = {λ̃1, . . . , λ̃r} denote the resulting reduced order
poles of Gr(s); hence λ(σ) is a function from C

r �→ C
r. Define the function g(σ) =

λ(σ) + σ. Note that g(σ) : C
r �→ C

r. Aside from issues related to the ordering of
the reduced order poles, g(σ) = 0 yields λ(σ) = −σ; i.e., the reduced order poles
λ(σ) are mirror images of the interpolation points σ. Hence, g(σ) = 0 is equivalent
to (3.11) and is a necessary condition for H2 optimality of the reduced order model,
Gr(s). Thus one can formulate a search for optimal H2 reduced order systems by
considering the root-finding problem g(σ) = 0. Many plausible approaches to this
problem originate with Newton’s method, which appears as

(4.1) σ(k+1) = σ(k) − (I + J)−1
(
σ(k) + λ

(
σ(k)

))
.

In (4.1), J is the usual r × r Jacobian of λ(σ) with respect to σ: for J = [Ji,j ],

Ji,j = ∂λ̃i

∂σj
for i, j = 1, . . . , r. How to compute J will be clarified in section 4.3.

4.1. Proposed algorithm. We seek a reduced order transfer function Gr(s)
that interpolates G(s) at the mirror images of the poles of Gr(s) by solving the
equivalent root-finding problem, say by a variant of (4.1). It is often the case that in
the neighborhood of an H2 optimal shift set, the entries of the Jacobian matrix become
small and simply setting J = 0 might serve as a relaxed iteration strategy. This leads
to a successive substitution framework: σi ← −λi(Ar); successive interpolation steps
using a rational Krylov method are used so that at the (i + 1)st step interpolation
points are chosen as the mirror images of the Ritz values from the ith step. Despite
its simplicity, this appears to be a very effective strategy in many circumstances.
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Here is a sketch of the proposed algorithm.
Algorithm 4.1. An iterative rational Krylov algorithm (IRKA).
1. Make an initial selection of σi for i = 1, . . . , r that is closed under conjugation

and fix a convergence tolerance tol.
2. Choose Vr and Wr so that Ran(Vr) = span

{
(σ1I − A)−1b, . . . , (σrI − A)−1b

}
,

Ran(Wr) = span
{
(σ1I − AT )−1c, . . . , (σrI − AT )−1c

}
, and WT

r Vr = I.
3. while (relative change in {σi} > tol)

(a) Ar = WT
r AVr,

(b) Assign σi ←− −λi(Ar) for i = 1, . . . , r
(c) Update Vr and Wr so Ran(Vr) = span

{
(σ1I − A)−1b, . . . , (σrI − A)−1b

}
,

Ran(Wr) = span
{
(σ1I − AT )−1c, . . . , (σrI − AT )−1c

}
, and WT

r Vr = I.
4. Ar = WT

r AVr, br = WT
r b, cTr = cTVr

Upon convergence, the first-order necessary conditions (3.11) for H2 optimality
will be satisfied. Notice that step 3(b) could be replaced with some variant of a
Newton step (4.1).

We have implemented the above algorithm and applied it to many different large-
scale systems. In each of our numerical examples, the algorithm worked very effec-
tively: It has always converged after a small number of steps and resulted in stable
reduced systems. For those standard test problems we tried where a global optimum
is known, Algorithm 4.1 converged to this global optimum.

It should be noted that the solution is obtained via Krylov projection methods
only and its computation is suitable for large-scale systems. To our knowledge, this
is the first numerically effective approach for the optimal H2 reduction problem.

We know that the reduced model Gr(s) resulting from the above algorithm will
satisfy the first-order optimality conditions. Moreover, from Theorem 3.1 this reduced
order model is globally optimal in the following sense.

Corollary 4.1. Let Gr(s) be the reduced model resulting from Algorithm 4.1.
Then Gr(s) is the optimal approximation of G(s) with respect to the H2 norm among
all reduced order systems having the same reduced system poles as Gr(s).

Therefore Algorithm 4.1 generates a reduced model, Gr(s), which is the optimal
solution for a restricted H2 problem.

4.2. Initial shift selection. For the proposed algorithm, the final reduced
model can depend on the initial shift selection. Nonetheless for most of the cases,
a random initial shift selection resulted in satisfactory reduced models. For small-
order benchmark examples taken from [22, 25, 37, 34], the algorithm converged to the
global minimizer. For larger problems, the results were as good as those obtained by
balanced truncation. Therefore, while staying within a numerically effective Krylov
projection framework, we have been able to produce results close to or better than
those obtained by balanced truncation (which requires the solution of two large-scale
Lyapunov equations).

We outline some initialization strategies that can be expected to improve the
results. Recall that at convergence, interpolation points are mirror images of the
eigenvalues of Ar. The eigenvalues of Ar might be expected to approximate the
eigenvalues of A. Hence, at convergence, interpolation points will lie in the mirror
spectrum of A. Therefore, one could choose initial shifts randomly distributed within
a region containing the mirror image of the numerical range of A. The boundary of
the numerical range can be estimated by computing the eigenvalues of A with the
smallest and largest real and imaginary parts using numerically effective tools such
as the implicitly restarted Arnoldi (IRA) algorithm.
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The starting point for another initialization strategy is the H2 expression pre-
sented in Proposition 3.3. Based on this expression, it is appropriate to initiate the
proposed algorithm with σi = −λi(A), where λi(A) are the poles with big residues,
φi for i = 1, . . . , r. The main disadvantage of this approach is that it requires a modal
state space decomposition for G(s), which will be numerically expensive for large-scale
problems. However, there might be some applications where the original state space
representation is in the modal form and φi might be directly read from the entries of
the matrices b and cT .

Unstable reduced order models are not acceptable candidates for optimal H2

reduction. Nonetheless stability of a reduced model is not guaranteed a priori and
might depend on the initial shift selection. We have observed that if one avoids
making extremely unrealistic initial shift selections, stability will be preserved. In our
simulations we have never generated an unstable system when the initial shift selection
was not drastically different from the mirror spectrum of A, but otherwise random.
We were able to produce an unstable reduced order system; however, this occurred
for a case where the real parts of the eigenvalues of A were between −1.5668 × 10−1

and −2.0621×10−3, yet we chose initial shifts bigger than 50. We believe that with a
good starting point, stability will not be an issue. These considerations are illustrated
for many numerical examples in section 5.

Remark 4.1. Based on the first-order conditions (3.16) discussed in section 3.2.1
for MIMO systems G(s) = C(sI−A)−1B, one can extend IRKA to the MIMO case by

replacing (σiI−A)−1b with (σiI−A)−1Bb̃i and (σiI−AT )−1c with (σiI−A)−1CT c̃i
in Algorithm 4.1, where b̃i and c̃i are as defined in section 3.2.1.

Remark 4.2. In the discrete-time case described in (3.17) above, the root-
finding problem becomes g(σ) = Σλ(σ) − e, where eT = [1, 1, . . . , 1] and Σ =
diag(σ). Therefore, for discrete-time systems, step 3(b) of Algorithm 4.1 becomes
σi ← 1/λi(Ar) for i = 1, . . . , r. Moreover, the associated Newton step is

σ(k+1) = σ(k) − (I + Λ−1ΣJ)−1
(
σ(k) − Λ−1e

)
,

where Λ = diag(λ).

4.3. A Newton framework for IRKA. As discussed above, Algorithm 4.1
uses the successive substitution framework by simply setting J = 0 in the Newton
step (4.1). The Newton framework for IRKA can be easily obtained by replacing step
3(b) of Algorithm 4.1 with the Newton step (4.1). The only point to clarify for the
Newton framework is the computation of the Jacobian, which measures the sensitivity
of the reduced system poles with respect to shifts.

Given A ∈ R
n×n and b, c ∈ R

n, suppose that σi, i = 1, . . . , r, are r distinct
points in C, none of which are eigenvalues of A, and define the complex r-tuple
σ = [σ1, σ2, . . . , σr]

T ∈ C
r together with related matrices:

(4.2) Vr(σ) =
[

(σ1I − A)−1b (σ2I − A)−1b . . . (σrI − A)−1b
]
∈ C

n×r

and

(4.3) WT
r (σ) =

⎡
⎢⎢⎢⎣

cT (σ1I − A)−1

cT (σ2I − A)−1

...
cT (σrI − A)−1

⎤
⎥⎥⎥⎦ ∈ C

r×n.
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We normally suppress the dependence on σ and write Vr(σ) = Vr and Wr(σ) = Wr.
Hence, the reduced order system matrix Ar is given by Ar = (WT

r Vr)
−1WT

r AVr,

where (WT
r Vr)

−1Wr plays the role of Wr in Algorithm 4.1. Let λ̃i, for i = 1, . . . , r,
denote the eigenvalues of Ar. Hence, the Jacobian computation amounts to computing

J(i, j) = ∂λ̃i

∂σj
. The following result shows how to compute the Jacobian for the Newton

formulation of the IRKA method proposed here.
Lemma 4.2. Let x̃i be an eigenvector of Ar = (WT

r Vr)
−1WT

r AVr associated

with λ̃i, normalized so that |x̃T
i WT

r Vrx̃i| = 1. Then WT
r AVrx̃i = λ̃iW

T
r Vrx̃i and

(4.4)
∂λ̃i

∂σj
= x̃T

i ∂jW
T
r

(
AVrx̃i − λ̃iVrx̃i

)
+
(
x̃T
i WT

r A − λ̃ix̃
T
i WT

r

)
∂jVrx̃i,

where ∂jW
T
r = ∂

∂σj
WT

r = −ej c(σjI−A)−2 and ∂jVr = ∂
∂σj

Vr = −(σjI−A)−2beTj .

Proof. With Vr(σ) = Vr and Wr(σ) = Wr defined as in (4.2) and (4.3), both

WT
r AVr and WT

r Vr are complex symmetric matrices. Write λ̃ for λ̃i and x̃ for x̃i,
so

(4.5) (a) WT
r AVrx̃ = λ̃WT

r Vrx̃ and (b) x̃TWT
r AVr = λ̃ x̃TWT

r Vr.

Equation (4.5b) is obtained by transposition of (4.5a). x̃TWT
r Vr is a left eigenvector

for Ar associated with λ̃i. Differentiate (4.5a) with respect to σj , premultiply with
x̃T , and simplify using (4.5b):

x̃T∂jW
T
r

(
AVrx̃ − λ̃Vrx̃

)
+
(
x̃TWT

r A − λ̃x̃TWT
r

)
∂jVrx̃ =

(
∂λ̃

∂σj

)
x̃TWT

r Vrx̃,

where ∂jW
T
r = ∂

∂σj
WT

r = ej cT (σjI − A)−2 and ∂jVr = ∂
∂σj

V = (σjI − A)−2beTj .

This completes the proof.

5. Numerical examples. We first compare our approach with the earlier ap-
proaches [22, 25, 37] on low-order benchmark examples presented in those papers.
We show that in each case we attain the minimum, the main difference being that
we achieve this minimum in a numerically efficient way. For each low-order model,
comparisons are made using data taken from the original sources [22, 25, 37]. We
then test our method in large-scale settings.

5.1. Low-order models and comparisons. Consider the following 4 models:
• FOM-1: Example 6.1 in [22]. State space representation of FOM-1 is given

by

A =

⎡
⎢⎢⎣

0 0 0 −150
1 0 0 −245
0 1 0 −113
0 0 1 −19

⎤
⎥⎥⎦ , b =

⎡
⎢⎢⎣

4
1
0
0

⎤
⎥⎥⎦ , c =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

We reduce the order to r = 3, 2, 1 using the proposed successive rational
Krylov algorithm, denoted by IRKA, and compare our results with the gradi-
ent flow method of [37], denoted by GFM; the orthogonal projection method
of [22], denoted by OPM; and the balanced truncation method, denoted by
BTM.

• FOM-2: Example in [25]. Transfer function of FOM-2 is given by

G(s) =
2s6 + 11.5s5 + 57.75s4 + 178.625s3 + 345.5s2 + 323.625s + 94.5

s7 + 10s6 + 46s5 + 130s4 + 239s3 + 280s2 + 194s + 60
.
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We reduce the order to r = 6, 5, 4, 3 using IRKA and compare our results with
GFM, OPM, BTM, and the method proposed in [25], denoted by LMPV.

• FOM-3: Example 1 in [34]. Transfer function of FOM-3 is given by

G(s) =
s2 + 15s + 50

s4 + 5s3 + 33s2 + 79s + 50
.

We reduce the order to r = 3, 2, 1 using IRKA and compare our results with
GFM, OPM, BTM, and the method proposed in [34], denoted by SMM.

• FOM-4: Example 2 in [34]. Transfer function of FOM-4 is given by

G(s) =
10000s + 5000

s2 + 5000s + 25
.

We reduce the order to r = 1 IRKA and compare our results with GFM,
OPM, BTM, and SMM.

For all these cases, the resulting relative H2 errors
‖G(s)−Gr(s)‖H2

‖G(s)‖H2
are tabulated in

Table 5.1 below, which clearly illustrates that the proposed method is the only one
that attains the minimum in each case. More importantly, the proposed method
achieves this value in a numerically efficient way staying in the Krylov projection
framework. No Lyapunov solvers or dense matrix decompositions are needed. The

Table 5.1

Comparison.

Model r IRKA GFM OPM

FOM-1 1 4.2683× 10−1 4.2709× 10−1 4.2683× 10−1

FOM-1 2 3.9290× 10−2 3.9299× 19−2 3.9290× 10−2

FOM-1 3 1.3047× 10−3 1.3107× 19−3 1.3047× 10−3

FOM-2 3 1.171× 10−1 1.171× 10−1 Divergent

FOM-2 4 8.199× 10−3 8.199× 10−3 8.199× 10−3

FOM-2 5 2.132× 10−3 2.132× 10−3 Divergent

FOM-2 6 5.817× 10−5 5.817× 10−5 5.817× 10−5

FOM-3 1 4.818× 10−1 4.818× 10−1 4.818× 10−1

FOM-3 2 2.443× 10−1 2.443× 10−1 Divergent

FOM-3 3 5.74× 10−2 5.98× 10−2 5.74× 10−2

FOM-4 1 9.85× 10−2 9.85× 10−2 9.85× 10−2

Model r BTM LMPV SMM

FOM-1 1 4.3212× 10−1

FOM-1 2 3.9378× 10−2

FOM-1 3 1.3107× 10−3

FOM-2 3 2.384× 10−1 1.171× 10−1

FOM-2 4 8.226× 10−3 8.199× 10−3

FOM-2 5 2.452× 10−3 2.132× 10−3

FOM-2 6 5.822× 10−5 2.864× 10−4

FOM-3 1 4.848× 10−1 4.818× 10−1

FOM-3 2 3.332× 10−1 2.443× 10−1

FOM-3 3 5.99× 10−2 5.74× 10−2

FOM-4 1 9.949× 10−1 9.985× 10−2
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only arithmetic operations involved are LU decompositions and some linear solvers.
Moreover, our method does not require starting from an initial balanced realization,
as suggested in [37] and [22]. In all these simulations, we have chosen a random initial
shift selection, and the algorithm converged in a small number of steps.

To illustrate the evolution of the H2 error throughout the iteration, consider the
model FOM-2 with r = 3. The proposed method yields the following third-order
optimal reduced model:

G3(s) =
2.155s2 + 3.343s + 33.8

s3 + 7.457s2 + 10.51s + 17.57
.

Poles of G3(s) are λ̃1 = −6.2217 and λ̃2,3 = −6.1774 × 10−1 ± ı1.5628, and it can be

shown that G3(s) interpolates the first two moments of G(s) at −λ̃i for i = 1, 2, 3.
Hence, the first-order interpolation conditions are satisfied. This also means that if
we start Algorithm 4.1 with the mirror images of these Ritz values, the algorithm
converges at the first step. However, we will try four random, but bad, initial selec-
tions. In other words, we start away from the optimal solution. We test the following
four selections: S1 = {−1.01, − 2.01, − 30000}, S2 = {0, 10, 3}, S3 = {1, 10, 3},
and S4 = {0.01, 20, 10000}. With selection S1, we have initiated the algorithm with
some negative shifts close to system poles, and consequently with a relative H2 error
bigger than 1. However, in all four cases including S1, the algorithm converged in 5
steps to the same reduced model. The results are depicted in Figure 5.1.
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Initial shifts: −1.01, −2.01, −30000
Initial shifts:   1, 10, 3
Initial Shitfs:  0, 10, 3
Initial Shitfs:  0.01, 20, 10000

Fig. 5.1. H2 norm of the error system vs. the number of iterations.

Before testing the proposed method in large-scale settings, we investigate FOM-
4 further. As pointed out in [34], since r = 1, the optimal H2 problem can be
formulated as only a function of the reduced system pole. It was shown in [34] that
there are two local minima: (i) one corresponding to a reduced pole at −0.0052
and consequently a reduced order model Gl

1(s) = 1.0313
s+0.0052 and a relative error of

0.9949, and (ii) one to a reduced pole at −4998 and consequently a reduced model
Gg

1 = 9999
s+4998 with a relative error of 0.0985. It follows that the latter, i.e., Gg

1(s), is
the global minimum. The first-order balanced truncation for FOM-4 can be easily
computed as Gb

1(s) = 1.0308
s+0.0052 . Therefore, it is highly likely that if one starts from

a balanced realization, the algorithm would converge to the local minimum Gl
1(s).

This was indeed the case as reported in [34]. SMM converged to the local minimum
for all starting poles bigger than −0.47. On the other hand, SMM converged to the
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global minimum when it was started with an initial pole smaller than −0.47. We have
observed exactly the same situation in our simulations. When we start from an initial
shift selection smaller than 0.48, IRKA converged to the local minimum. However,
when we start with any initial shift bigger than 0.48, the algorithm converged to the
global minimum in at most 3 steps. Therefore, for this example we were not able the
avoid the local minimum if we started from a bad shift. These observations perfectly
agree with the discussion of section 4.2. Note that the transfer function of FOM-4
can be written as

G(s) =
10000s + 5000

s2 + 5000s + 25
=

0.99

s + 0.0050
+

9999

s + 5000
.

The pole at −5000 is the one corresponding to the large residue of 9999. Therefore, a
good initial shift is 5000. And if we start the proposed algorithm with an initial shift
at 5000, or close, the algorithm converges to the global minimum.

5.2. CD player example. The original model describes the dynamics between
a lens actuator and the radial arm position in a portable CD player. The model has
120 states, i.e., n = 120, with a single input and a single output. As illustrated in [4],
the Hankel singular values of this model do not decay rapidly and hence the model is
relatively hard to reduce. Moreover, even though the Krylov-based methods resulted
in good local behavior, they are observed to yield large H∞ and H2 error compared
to balanced truncation.

We compare the performance of the proposed method, Algorithm 4.1, with that of
balanced truncation. Balanced truncation is well known to lead to small H∞ and H2

error norms; see [4, 19]. This is due mainly to global information available through
the two system Gramians, the reachability and observability Gramians, which are
each solutions of a different Lyapunov equation. We reduce the order to r, with r
varying from 2 to 40; and for each r value, we compare the H2 error norms due
to balanced truncation and due to Algorithm 4.1. For the proposed algorithm, two
different selections have been tried for the initial shifts. (1) Mirror images of the
eigenvalues corresponding to large residuals, and (2) a random selection with real
parts in the interval [10−1, 103] and the imaginary parts in the interval [1, 105]. To
make this selection, we looked at the poles of G(s) having the maximum/minimum
real and imaginary parts. The results showing the relative H2 error for each r are
depicted in Figure 5.2. The figure reveals that both selection strategies work quite
well. Indeed, the random initial selection behaves better than the residual-based
selection and outperforms balanced truncation for almost all the r values except r =
2, 24, 36. However, even for these r values, the resulting H2 error is not far away from
the one due to balanced truncation. For the range r = [12, 22], the random selection
clearly outperforms the balanced truncation. We would like to emphasize that these
results were obtained by a random shift selection and staying in the numerically
effective Krylov projection framework without requiring any solutions to large-scale
Lyapunov equations. This is the main difference our proposed algorithm has with
existing methods and what makes it numerically effective in large-scale settings.

To examine convergence behavior, we reduce the order to r = 8 and r = 10 using
Algorithm 4.1. At each step of the iteration, we compute the H2 error due to the
current estimate and plot this error versus the iteration index. The results are shown
in Figure 5.3. The figure illustrates two important properties for both cases r = 8
and r = 10: (1) At each step of the iteration, the H2 norm of the error is reduced.
(2) The algorithm converges after 3 steps. The resulting reduced models are stable
for both cases.
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Fig. 5.2. Relative H2 norm of the error system vs. r.
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Fig. 5.3. H2 norm of the error system vs. the number of iterations.

5.3. A semidiscretized heat transfer problem for optimal cooling of
steel profiles. This problem arises during a cooling process in a rolling mill when
different steps in the production process require different temperatures of the raw
material. To achieve high throughput, one seeks to reduce the temperature as fast
as possible to the required level before entering the next production phase. This
is realized by spraying cooling fluids on the surface and must be controlled so that
material properties, such as durability or porosity, stay within given quality standards.
The problem is modeled as boundary control of a two-dimensional heat equation. A
finite element discretization using two steps of mesh refinement with maximum mesh
width of 1.382 × 10−2 results in a system of the form

Eẋ(t) = Ax(t) + bu(t), y(t) = cT x(t),

with state dimension n = 20209, i.e., A,E ∈ R
20209×20209, b ∈ R

20209×7, cT ∈
R

6×20209. Note that in this case E �= I, but the algorithm works with the obvious



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

634 S. GUGERCIN, A. C. ANTOULAS, AND C. BEATTIE

modifications. For details regarding the modeling, discretization, optimal control
design, and model reduction for this example, see [29, 7, 8]. We consider the full-order
SISO system that associates the sixth input of this system with the second output.
We apply our algorithm and reduce the order to r = 6. Amplitude Bode plots of
G(s) and Gr(s) are shown in Figure 5.4. The output response of Gr(s) is virtually
indistinguishable from G(s) in the frequency range considered. IRKA converged in
7 iteration steps in this case, although some interpolation points converged in the
first 2–3 steps. The relative H∞ error obtained with our sixth order system was
7.85 × 10−3. Note that in order to apply balanced truncation in this example, one
would need to solve two generalized Lyapunov equations (since E �= I) of order 20209.
This presents a severe computational challenge, though there have been interesting
approaches to addressing it (e.g., [5]).
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Fig. 5.4. Amplitude Bode plots of H(s) and Hr(s).

5.4. Successive substitution vs. Newton framework. In this section, we
present two examples to show the effect of the Newton formulation for IRKA on two
low-order examples.

The first example is FOM-1 from section 5.1. For this example, for reduction
to r = 1, the optimal shift is σ = 0.4952. We initiate both iterations, successive
substitution and Newton frameworks, away from this optimal value with an initial
selection σ0 = 104. Figure 5.5 illustrates how each process converges. As the figure
shows, even though it takes almost 15 iterations with oscillations for the successive
substitution framework to converge, the Newton formulation reaches the optimal shift
in 4 steps.

The second example in this section is a third-order model with a transfer function

G =
−s2 + (7/4)s + 5/4

s3 + 2s2 + (17/16)s + 15/32
.

One can exactly compute the optimal H2 reduced model for r = 1 as

Gr(s) =
0.97197

s + 0.2727272
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Fig. 5.6. Comparison for the random third-order model.

and easily show that this reduced model interpolates G(s) and its derivative at σ =
0.2727272. We initiate Algorithm 4.1 with σ0 = 0.27, very close to the optimal shift.
We initiate the Newton framework at σ0 = 2000, far away from the optimal solution.
Convergence behavior of both models is depicted in Figure 5.6. The figure shows
that for this example, the successive substitution framework is divergent and indeed
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∂λ̃
∂σ ≈ 1.3728. On the other hand, the Newton framework is able to converge to the
optimal solution in a small number of steps.

6. Conclusions. We have developed an interpolation-based rational Krylov al-
gorithm that iteratively corrects interpolation locations until first-order H2 optimality
conditions are satisfied. The resulting method proves numerically effective and well
suited for large-scale problems. A new derivation of the interpolation-based necessary
conditions is presented and shown to be equivalent to two other common frameworks
for H2 optimality.

Appendix.
Lemma A.1. For any stable matrix M,

P.V.

∫ +∞

−∞
(ıω − M)−1 dω

def
= lim

L→∞

∫ L

−L

(ıω − M)−1 dω = πI.

Proof. Observe that for any L > 0,
∫ L

−L

(ıω − M)−1 dω =

∫ L

−L

(−ıω − M)(ω2 + M2)−1 dω =

∫ L

−L

(−M)(ω2I + M2)−1 dω.

Fix a contour Γ contained in the open left half plane so that the interior of Γ
contains all eigenvalues of M. Then

−M(ω2I + M2)−1 =
1

2πı

∫
Γ

−z

ω2 + z2
(zI − M)−1 dz.

For any fixed value z in the left half plane,

P.V.

∫ +∞

−∞

dω

ıω − z
= lim

L→∞

∫ L

−L

−z

ω2 + z2
dω = π.

Thus,

lim
L→∞

∫ L

−L

(−M)(ω2I + M2)−1 dω =
1

2πı

∫
Γ

lim
L→∞

(∫ L

−L

−z

ω2 + z2
dω

)
(zI − M)−1 dz

=
1

2πı

∫
Γ

π (zI − M)−1 dz = πI.
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ANALYTIC RESULTS FOR THE EIGENVALUES OF CERTAIN
TRIDIAGONAL MATRICES∗
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Abstract. The eigenvalue problem for a certain tridiagonal matrix with complex coefficients is
considered. The eigenvalues and eigenvectors are shown to be expressible in terms of solutions of
a certain scalar trigonometric equation. Explicit solutions of this equation are obtained for several
special cases, and further analysis of this equation in several other cases provides information about
the distribution of eigenvalues.
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1. Introduction. Recently Yueh [9], Kouachi [6], and da Fonseca [4] have stud-
ied the eigenvalues of certain tridiagonal matrices, developing a trigonometric equa-
tion whose solution yields the eigenvalues. In several special cases this equation has
explicit solutions, and exact expressions for the eigenvalues and eigenvectors were ob-
tained. In this paper, we extend their work by more completely describing one further
special case where an explicit solution is possible and by analyzing this equation in a
number of further cases where information about the distribution of eigenvalues can
be obtained.

Consider the tridiagonal matrix

(1) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α + b c1
a1 b c2

a2
. . .

. . .

. . . b cn−1

an−1 −β + b

⎤
⎥⎥⎥⎥⎥⎥⎦

with the restriction

(2)
√
aici = d �= 0, 1 ≤ i < n.

All variables are, in general, complex. Without loss of generality we may assume that
d is the principal square root of aici so that its argument is in the range (−π/2, π/2].
The matrix A has n+3 (complex) degrees of freedom: ai, 1 ≤ i < n, b, d, α, and β (ci
being determined by ai and d). However, since the eigenvalues of the matrix M + bI
are equal to λi + b, where λi are the eigenvalues of the matrix M , it follows that the
eigenvalues of A will be of the form λ = b+f(ai, ci, α, β). It is also not difficult to see
that the quantities ai and ci always occur as a product in the characteristic polynomial
for A, so that the eigenvalues are in fact of the form λ = b + f(d, α, β). Thus the
eigenvalues of A have four complex degrees of freedom. Since b simply appears in an
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additive way, we will concentrate on C
3, the space of parameters (d, α, β). We identify

the complex plane with R
2, and thus the matrix parameter space is six-dimensional.

Most of the special cases yielding explicit solutions for the eigenvalues of A are two-
dimensional manifolds in this space, although one case is four-dimensional. In addition
we will obtain information about the distribution of eigenvalues in various other three-
and four-dimensional manifolds in this space.

Yueh [9] considered matrices of the form A but with constant subdiagonal and
superdiagonal entries, that is, ai = a and ci = c, 1 ≤ i < n. He established that
the eigenvalues of the n × n matrix A are of the form λ = b + 2

√
ac cos θ, and the

eigenvectors can also be given in terms of θ, where θ is a solution of

(3) ac sin
(
(n+1)θ

)
+(α+β)

√
ac sin(nθ)+αβ sin

(
(n−1)θ

)
= 0, θ �= kπ, k ∈ Z.

He solved this equation explicitly in several special cases:
1. α = β = 0. In this case the matrix A is Toeplitz, and the analytic expressions

for the eigenvalues and eigenvectors are well known [8, p. 514] to be

λm = b + 2
√
ac cos

(
mπ

n + 1

)
, v

(m)
j =

(a
c

)j−1

sin

(
jmπ

n + 1

)
, 1 ≤ m ≤ n,

2. α = 0, β = ±
√
ac (or switch α and β),

3. α = β = ±
√
ac,

4. α = −β = ±
√
ac.

The resulting expressions for the eigenvalues and eigenvectors in the last three cases
are similar in flavor to the first case [9]. He did not explicitly solve for the special case
α = −c, β = −a. But, by using (3), since sin((n+1)θ)+sin((n−1)θ) = 2 sin(nθ) cos θ,
for this case we get

sin(nθ) = 0, or 2
√
ac cos θ − (a + c) = 0,

which results in eigenvalues

λm = b + 2
√
ac cos

(mπ

n

)
, 1 ≤ m < n, and λn = b + a + c.

For b = −(a + c) this result was known at least as far back as 1954 [7, pp. 365–366].
Kouachi [6] used a different method to study eigenvalues and eigenvectors of the

matrix A and generalized to the case where the off-diagonal entries satisfy

aici =

{
d2
1 if i is odd,

d2
2 if i is even.

As in Yueh’s work, the eigenvalues are given in terms of cos θ and a nonlinear equa-
tion involving θ is specified. In addition to the special cases considered by Yueh,
Kouachi also found explicit expressions for the eigenvalues and eigenvectors in the
case αβ = d2

2, n even. This amounts to a generalization of Ledermann and Reuter’s [7]
result, although only for even n, and, unfortunately, there are a number of substantial
typographical errors in Kouachi’s paper particularly in the exposition of this case.

The eigenvalues of certain perturbed tridiagonal k-Toeplitz matrices were recently
studied by da Fonseca [4]. In particular, da Fonesca gives a trigonometric relation
satisfied by the eigenvalues of a 2-Toeplitz matrix with perturbed entries in the top
left and bottom right corners. This result is more general than those of Yueh and
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Kouachi, and those presented here, since the matrix A and those studied by Yueh
and Kouachi are special types of 2-Toeplitz matrices. However, da Fonseca gives
an explicit formula for the eigenvalues in just one special case of the perturbation
parameters (α and β) but no others. (Incidentally, there is a typographical error in
his paper for this formula also: b21 + b22 on page 65 should be b1 + b2.)

We also note another recent result by da Fonseca [5] which relates the eigenvalues
of the matrix

C = [μmin{i, j} − ν]i,j=1,...,n , μ > 0, μ �= ν,

to those of a matrix of the form A (1) with ai = ci = −1, i = 1, . . . , n − 1, b = 2,
α = 1 − μ/(μ− ν), and β = 1. However, he obtains explicit results only for a couple
of special values for μ and ν, which turn out to be two of the special cases that we
consider here.

In this paper we provide a general expression for the eigenvalues and eigenvectors
of the matrix A, which generalizes Yueh’s result and is contained within Kouachi’s
and da Fonseca’s. We enumerate all of the special cases where this general expression
yields explicit results for the eigenvalues and eigenvectors; particularly, we describe
the case αβ = d2 fully, extending the work of Yueh and Kouachi. In addition, we
provide analysis in several other special cases not considered by any of the above three
authors where explicit solutions are not possible but information on the distribution
of eigenvalues can be obtained.

2. General results. Similar to Yueh [9], we utilize the methods of symbolic
calculus of semi-infinite sequences [3]. The pertinent facts are as follows. The convo-
lution of two sequences x = {xj}∞j=0 and y = {yj}∞j=0 is the sequence z = {zn}∞n=0

whose nth component is

zn =

n∑
j=0

xjyn−j .

Convolution is a symmetric operation xy = yx, distributes over addition x(y + z) =
xy+xz, and is associative with respect to scalar multiplication x(cy) = c(xy) for any
scalar c. We define I = {1, 0, . . . } and S = {0, 1, 0, . . . }. Thus

Ix = x and Sx = {0, x0, x1, . . . },

and, in particular,

S {xj+1}∞j=0 = {0, x1, x2, . . . } = x− x0I

and

S2 {xj+2}∞j=0 = {0, 0, x2, x3, . . . } = x− x0I − x1S.

Each sequence x with x0 �= 0 has a unique inverse y such that xy = I, where y0 = 1/x0

and yn, n > 0, is defined recursively by yn = −(
∑n

j=1 xjyn−j)/x0. In particular, the
inverse of (S − γI), for scalar γ, is

(4) (S − γI)−1 =

{
−1

γj+1

}∞

j=0

.
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Consider now the eigenproblem for the matrix A, Av = λv, which can be written
as follows:

(b− λ)v1 + c1v2 = αv1,

a1v1 + (b− λ)v2 + c2v3 = 0,

...

an−2vn−2 + (b− λ)vn−1 + cn−1vn = 0,

an−1vn−1 + (b− λ)vn = βvn.

(5)

Since d2 = ajcj , for all j = 1, . . . , n − 1, it follows that d/cj = aj/d. Define q1 = 1
and qj , 1 < j ≤ n, by the recursion

(6) qj =
d

cj−1
qj−1 =

aj−1

d
qj−1, 1 < j ≤ n.

Formally, the qj are given by

(7) qj =

(
1a1a2 · · · aj−1

1c1c2 · · · cj−1

)1/2

;

however, the specific branch of the square root function that needs to be used for
each subsequent j is not always the principal branch but rather is determined by the
requirement that qj = dqj−1/cj−1. Note that, by (2), aj and cj , and hence qj , are all
nonzero so that the vector u given by

(8) vj = qjuj , 1 ≤ j ≤ n,

is well defined. Substitute (8) into system (5), dividing the jth equation by qj . By
using (6) this process yields the system

(b− λ)u1 + du2 = αu1,

du1 + (b− λ)u2 + du3 = 0,

...

dun−2 + (b− λ)un−1 + dun = 0,

dun−1 + (b− λ)un = βun.

(9)

We now extend the vector u to a semi-infinite sequence {uj}∞j=0 and impose u0 = 0

and un+1 = 0. System (9) can then be written as

(10) d {uj+2}∞j=0 + (b− λ) {uj+1}∞j=0 + d {uj}∞j=0 = {fj+1}∞j=0 ,

where f is the sequence defined by

(11) fj =

⎧⎪⎨
⎪⎩
αu1 if j = 1,

βun if j = n,

0 otherwise.

Taking the convolution of (10) with S2 gives

d (u− u0I − u1S) + (b− λ)S (u− u0I) + dS2u = S (f − f0I) ,
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and by using the facts that u0 = 0 and f0 = 0 we have

(12)
(
dS2 + (b− λ)S + dI

)
u = (f + du1I)S.

Let

(13) γ± =
1

2d

[
−(b− λ) ±

√
ω
]
,

where ω = (b−λ)2−4d2, be the two roots of dx2+(b−λ)x+d = 0. Note that γ+γ− = 1,
and thus we may write γ± = e±iθ, where θ ∈ C by taking θ = arg γ+ − i ln |γ+|. Since
−(b− λ)/d = γ+ + γ− = eiθ + e−iθ = 2 cos θ, the eigenvalues are given by

(14) λ = b + 2d cos θ.

Further, since cos(x+ iy) = cosh(y) cos(a)− i sinh(b) sin(a), it follows that the eigen-
value is real either if θ is real or if Re(θ) = kπ, k ∈ Z. With this notation, (12)
becomes

d(S − γ+I)(S − γ−I)u = (f + du1I)S,

and from (4) we obtain

u =

{
−1

γj+1
+

}∞

j=0

{
−1

γj+1
−

}∞

j=0

(
1

d
f + u1I

)
S

=

⎧⎨
⎩

m∑
j=0

1

γj+1
+ γm−j+1

−

⎫⎬
⎭

∞

m=0

(
1

d
f + u1I

)
S

=

⎧⎨
⎩

m∑
j=0

γj
−γ

m−j
+

⎫⎬
⎭

∞

m=0

(
1

d
f + u1I

)
S

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
γm+1
+ − γm+1

−
γ+ − γ−

}∞

m=0

(
1

d
f + u1I

)
S if γ+ �= γ−,

{
(m + 1)γm

+

}∞
m=0

(
1

d
f + u1I

)
S if γ+ = γ−,

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
sin((m + 1)θ)

sin θ

}∞

m=0

(
1

d
f + u1I

)
S if γ+ �= γ−,

{
(m + 1)eimθ

}∞

m=0

(
1

d
f + u1I

)
S if γ+ = γ−.

(15)

If we define the function g : Z × C → C as

(16) g(n, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(nθ)

sin θ
if θ �= kπ, k ∈ Z,

n if θ = 2kπ, k ∈ Z,

(−1)n−1n if θ = (2k + 1)π, k ∈ Z,
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then g is continuous in θ, and, since γ+ = γ− is equivalent to θ = kπ, k ∈ Z, both of
the cases in (15) collapse to

(17) u =
{
g(m + 1, θ)

}∞

m=0

(
1

d
f + u1I

)
S.

Computing the convolutions in this last expression and noting from (11) that the only
nonzero entries of the sequence f are f1 = αu1 and fn = βun yields u0 = 0 and

(18) uj = u1

[
g(j, θ) +

α

d
g(j − 1, θ)

]
+ H(j − n− 1)

β

d
ung(j − n, θ), j ≥ 1,

where H(x) is the unit step function: H(x) = 1 if x ≥ 0, and H(x) = 0 if x < 0. By
using (18) with j = n + 1, the condition un+1 = 0 becomes

(19)
[
g(n + 1, θ) +

α

d
g(n, θ)

]
u1 +

β

d
un = 0,

where we have used the fact that g(1, θ) = 1. Finally, by using (18) at j = n and
noting that u1 cannot be zero (otherwise, the vector v must be zero) we obtain the
necessary and sufficient condition for λ = b+2d cos θ to be an eigenvalue of A, namely,

(20) g(n + 1, θ) +
α + β

d
g(n, θ) +

αβ

d2
g(n− 1, θ) = 0.

Equations (20) and (14) correspond to those derived by Yueh; however, he mul-
tiplied (20) by d2 sin θ to clear the denominator and dealt with the case θ = kπ
separately.

We now show that there are exactly n solutions (counting multiplicity) of (20) in
the region

(21) R = {θ = (x + iy) | 0 ≤ x ≤ π, x, y ∈ R} ,

where roots on the boundary of R are counted with half weight. The continuous
function g is 2π-periodic in θ and is an even function of θ. Consequently once the
roots of (20) in R are found, all roots of (20) can be determined. Setting ξ = eiθ and
multiplying (20) by the nonzero quantity d2ξn+1/ξ gives

(22)
d2(ξ2n+2 − 1) + d(α + β)ξ(ξ2n − 1) + αβξ2(ξ2n−2 − 1)

ξ2 − 1
= 0.

Clearly ξ = ±1 are roots of the numerator; hence, ξ2 − 1 divides the numerator, and
we are left with a 2nth order polynomial in ξ which necessarily has 2n roots, some
possibly repeated. Since eiθ is 2π-periodic, it follows that there are 2n roots of (20)
in the region R ∪ R̂, where R̂ = {θ | −π < Re(θ) < 0}. By the even property of g,
every root in int(R) (the interior of R) has a corresponding root in R̂. Since R and
R̂ are disjoint, it follows that twice the number or roots in int(R) plus the number
of roots on the boundary of R is 2n. Further, roots on the left boundary of R of
the form θ = iy, y > 0, have corresponding roots θ = −iy also on the left boundary,
and similarly roots on the right boundary of R of the form θ = π + iy, y > 0, have
corresponding roots θ = −π− iy+ 2π = π− iy, also on the right boundary. Since the
cosine is also even and 2π-periodic, each of these corresponding pairs of roots of (20)
yield identical eigenvalues of A through (14). We may thus focus entirely on finding
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roots of (20) in the region R and may also exclude the portions of the boundary of R
with Im(θ) < 0. Each such distinct root θ corresponds to a distinct eigenvalue λ.

From (18) and (8), the components of the eigenvectors are given by

(23) vj = v1qj

[
g(j, θ) +

α

d
g(j − 1, θ)

]
, 1 < j ≤ n.

But, since q1 = 1, g(0, θ) = 0, and g(1, θ) = 1, we may express the eigenvectors as

(24) vj =

⎧⎪⎨
⎪⎩
qj
[
sin(jθ) + α

d sin
(
(j − 1)θ

)]
if θ �∈ {0, π},

qj
[
j + α

d (j − 1)
]

if θ = 0,

qj(−1)j−1
[
j − α

d (j − 1)
]

if θ = π,

1 ≤ j ≤ n.

3. Special cases. In this section we examine various relationships between the
matrix parameters d, α, and β which, when enforced, allow (20) to be solved explicitly
or to be simplified to the form F (θ) = p(d, α, β). These simplifications are the result
of standard trigonometric identities. We list here several simplifications that we use
for our function g:

g(j + 1, θ) + g(j − 1, θ) = 2g(j, θ) cos θ,(25)

g(j + 1, θ) − g(j − 1, θ) = 2 cos(jθ),(26)

g(j, θ) + g(j − 1, θ) = g(2j − 1, θ/2),(27)

g(j, θ) − g(j − 1, θ) =

⎧⎪⎨
⎪⎩

cos
(
(2j − 1)θ/2

)
/ cos(θ/2) if 0 < θ < π,

1 if θ = 0,

(−1)j−1(2j − 1) if θ = π.

(28)

Note that all of the above are identities for g and are valid for all θ ∈ C, including
θ = kπ, k ∈ Z.

3.1. Explicit solutions.

3.1.1. α = β = 0. If α = β = 0, then the matrix A, although not Toeplitz, has
the same eigenvalues as the corresponding Toeplitz matrix (ai = a and ci = c for all
i), since (20) collapses to g(n + 1, θ) = 0, whose solutions are θm = mπ

n+1 , 1 ≤ m ≤ n,
giving eigenvalues

(29) λm = b + 2d cos

(
mπ

n + 1

)
, 1 ≤ m ≤ n,

with corresponding eigenvectors

(30) v
(m)
j = qj sin

(
jmπ

n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.2. α = 0, β = d. If α = 0, β = d, then by using (27), (20) becomes

g(2n + 1, θ/2) = 0,

whose solutions are θm = 2mπ
2n+1 , giving eigenvalues

(31) λm = b + 2d cos

(
2mπ

2n + 1

)
, 1 ≤ m ≤ n,

and corresponding eigenvectors

(32) v
(m)
j = qj sin

(
2mjπ

2n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.
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3.1.3. α = d, β = 0. If α = d, β = 0, the eigenvalues are the same as the
above case (31), and the eigenvectors are

(33) v
(m)
j = qj cos

(
(2j − 1)2mπ

2(2n + 1)

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.4. α = 0, β = −d. If α = 0, β = −d, we may use (28) to reduce (20) to

cos
(
(2n + 1)θ/2

)
= 0,

whose solutions are θm = (2m− 1)π/(2n + 1), 1 ≤ m ≤ n, giving eigenvalues

(34) λm = b + 2d cos

(
(2m− 1)π

2n + 1

)
, 1 ≤ m ≤ n,

and corresponding eigenvectors

(35) v
(m)
j = qj sin

(
j(2m− 1)π

2n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.5. α = −d, β = 0. If α = −d, β = 0, the eigenvalues are the same as the
previous case (34), and the corresponding eigenvectors are

(36) v
(m)
j = qj cos

(
(2j − 1)(2m− 1)π

2(2n + 1)

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.6. α = d, β = −d. If α = −β = d, (20) simplifies by using (26) to become

cos(nθ) = 0. Hence θm = (2m−1)π
2n , 1 ≤ m ≤ n, and the eigenvalues are

(37) λm = b + 2d cos

(
(2m− 1)π

2n

)
, 1 ≤ m ≤ n,

with corresponding eigenvectors

(38) v
(m)
j = qj sin

(
(2j − 1)(2m− 1)π

4n

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.7. α = −d, β = d. If α = −β = −d, the eigenvalues are the same as the
previous case (37), and the corresponding eigenvectors are

(39) v
(m)
j = qj cos

(
(2j − 1)(2m− 1)π

4n

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.8. αβ = d2. Now consider the case αβ = d2. Whereas the previous spe-
cial cases were two-dimensional real manifolds in (d, α, β)-space, this case is a four-
dimensional manifold in R

6. By using (25), (20) becomes

g(n, θ)

(
2 cos θ +

α + β

d

)
= 0.

From this we immediately obtain

θm =
mπ

n
, 1 ≤ m < n, or 2d cos θn = −(α + β),
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giving eigenvalues

(40) λm = b + 2d cos
(mπ

n

)
, 1 ≤ m < n, and λn = b− (α + β).

The more specialized cases with α = β = d or α = β = −d were the only ones with
αβ = d2 that were considered by Yueh. In the case α = β = d, by using (24) and (27),
the eigenvectors are

(41) v
(m)
j = qj sin

(
(2j − 1)mπ

2n

)
, 1 ≤ j ≤ n, 1 ≤ m < n,

and, for the nth eigenpair, θn = π, λn = b− 2d, and

(42) v
(n)
j = qj(−1)j−1, 1 ≤ j ≤ n,

which we note is the same form as (41) with m = n. The case α = β = −d gives
eigenvectors

(43) v
(m)
j = qj cos

(
(2j − 1)mπ

2n

)
, 1 ≤ j ≤ n, 1 ≤ m < n,

and θn = 0, λn = b + 2d, and, by using (28),

(44) v
(n)
j = qj , 1 ≤ j ≤ n.

Outside these more specialized cases, it is impossible for θn to be zero or π, and so,
from (24), we may write the eigenvectors as

(45) v
(m)
j = qj

[
sin

(
jmπ

n

)
+

α

d
sin

(
(j − 1)mπ

n

)]
, 1 ≤ j ≤ n, 1 ≤ m < n,

and

(46) v
(n)
j = qj

[
sin (jθn) +

α

d
sin
(
(j − 1)θn

)]
, 1 ≤ j ≤ n,

where θn = arccos(−(α + β)/2d).

3.2. Eigenvalue distribution results. Here we examine various three- and
four-dimensional real manifolds in (d, α, β)-space, where information on the distribu-
tion of the eigenvalues can be inferred. For this analysis it is convenient to partition
the interval [0, π] into subintervals in one of several ways. In the first way, [0, π] is
partitioned into n+1 subintervals, the first and last of which have width 1/(2n) while
the remaining have width 1/n:

I0 =
[
0,

π

2n

)
,

Ik =

[
(2k − 1)π

2n
,
(2k + 1)π

2n

)
, 1 ≤ k < n− 1,

In =

[
(2n− 1)π

2n
, π

]
.

(47)
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b
d

0

I0
I1

I2

I3

I4
I5

Re(λ)

Im
(λ

)

Fig. 1. The location of eigenvalues λ = b + 2d cos(θ) in the complex plane for various θ. If
θ ∈ [0, π], then λ lies on the thick solid line segment. For illustration, this segment is divided into
the images of the intervals Ik, 0 ≤ k ≤ n, n = 5. Other partitionings of [0, π] would divide the
line segment differently. The dashed line extending beyond this line segment shows the location of
λ when θ = iy or θ = π + iy, y ∈ R. The dotted-dashed line orthogonal to the thick line segment is
the image of the line θ = π/2± iy, y ∈ R.

A second useful partitioning of [0, π] is one where the subintervals have width 2/(2n+
1) except for the first, which has half that width:

J0 =

[
0,

π

2n + 1

)
,

Jk =

[
(2k − 1)π

2n + 1
,
(2k + 1)π

2n + 1

)
, 1 ≤ k < n− 1,

Jn =

[
(2n− 1)π

2n + 1
, π

]
.

(48)

Finally, consider partitioning [0, π] into n equal length intervals:

Kk =

[
(k − 1)π

n
,
kπ

n

)
, 1 ≤ k < n,

Kn =

[
(n− 1)π

n
, π

]
.

(49)

Typically, the following results make statements such as “Under the stated assump-
tions, there is one real solution of (20) lying in each of the intervals I0 to In−1.” The
eigenvalues of A are given by λ = b+ 2d cos(θ). Real values of θ on the interval [0, π]
thus correspond to eigenvalues on a line segment of length 4|d| parallel to the ray from
the origin to d and centered at b, as depicted in Figure 1. The various subintervals de-
fined above correspond to portions of this line segment. Sometimes complex solutions
for θ of the form θ = iy, θ = π+ iy, or θ = π/2± iy, y ∈ R, are also shown to exist. In
the first two cases, the corresponding eigenvalues are λ = b± 2d cosh(y), respectively,
which lie on the same line as the intervals shown in Figure 1 but further away from
b. In the case θ = π/2 ± iy, the corresponding eigenvalues are λ = b ± i2d sinh(y),
which lie an equal distance from b on a line through b orthogonal to the ray through
d. Of course, if b and d are real, then each of these distinct real solutions for θ and
the complex solutions with Re(θ) ∈ {0, π} yield distinct real eigenvalues for A.
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−10

−5

0

5

10

0 π
12

3π
12

5π
12

7π
12

9π
12

11π
12 π

θ

Fig. 2. The function θ �→ tan(nθ)/ sin(θ), θ ∈ [0, π], for the case n = 6. The intervals Ik,
0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

For some of this analysis it is convenient to express the necessary and sufficient
condition for θ, (20), in an equivalent form. By expanding sin((n ± 1)θ) and simpli-
fying, (20) becomes

(50)
sin(nθ)

sin(θ)

[(
1 +

αβ

d2

)
cos(θ) +

α + β

d

]
+ cos(nθ)

(
1 − αβ

d2

)
= 0.

3.2.1. αβ = −d2. Consider the four-dimensional manifold αβ = −d2, but
exclude the cases α = −β = ±d as these have already been considered. In this case,
(50) simplifies to

(51)
sin(nθ)

sin(θ)

[
α + β

d

]
+ 2 cos(nθ) = 0.

Since we have excluded the possibility that α+β = 0, for (51) to hold cos(nθ) cannot
be zero, and hence we may write this equation as

(52)
tan(nθ)

sin(θ)
=

−2d

α + β
.

Let F (θ) = tan(nθ)/ sin(θ) and p(d, α, β) = −2d/(α + β), and assume that the value
of p is real. (We are now restricted to a three-dimensional manifold.) The function F
on [0, π] is an odd function with respect to π/2. It monotonically increases from −∞
to +∞ on each interval Ik, 1 ≤ k < n. On the interval I0 it monotonically increases
from n to +∞, and on the interval In it monotonically increases from −∞ to −n; see
Figure 2. Consequently, if |p| ≥ n, there are exactly n distinct real solutions of (52)
for θ in [0, π], one in each of the intervals I1, . . . , In−1 and the last one in either I0
(if p > 0) or in In (if p < 0). These n distinct values for θ correspond to n distinct
real eigenvalues λ. If |p| < n, then there are only n− 1 real solutions of (52), one in
each of the intervals I1, . . . , In−1, corresponding to n − 1 real eigenvalues for A. In
the event that all variables in A are real, the last eigenvalue must also be real, since
they must occur in complex conjugate pairs. (It turns out that, even if just b, d, and
p are real, the last eigenvalue is also real.) But for θ = x + iy, x, y ∈ R,

cos(θ) = cos(x + iy) = cosh(y) cos(x) − i sinh(y) sin(x),

thus λ = b + 2d cos(θ) will be real if b and d are real, and θ is real or Re(θ) = kπ.
We are thus led to look for the nth solution of (52) on the boundary of R by taking
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0

n
2

n

−n
2 −n

4 0 n
4

n
2

y

Fig. 3. The function y �→ tanh(ny)/ sinh(y).

θ = iy or θ = π+ iy, y > 0. (Recall that on the boundary of R we need only consider
y ≥ 0.) If 0 < p < n, substituting θ = iy, y ∈ R, into (52) gives

(53)
tanh(ny)

sinh(y)
= p.

A plot of this function is shown in Figure 3. Since it monotonically decreases from n
to zero as y increases from zero, there is exactly one solution y∗ of (53), with y∗ > 0.
If −n < p < 0, substituting θ = π + iy, y ∈ R, into (52) gives

(54)
tanh(ny)

sinh(y)
= −p,

again yielding exactly one more root y∗, with y∗ > 0. If |p| is large (|α+ β| is small),
then the solutions for θ asymptotically approach θm = (2m − 1)π/(2n), 1 ≤ m ≤ n,
as expected since these are the solutions for α = −β = ±d. But in any event the real
solutions of (52) are approximately spaced by a distance of π/n as is readily apparent
in Figure 2.

3.2.2. αβ = 0. If the product αβ is zero (but α and β are not both zero and
one is not ±d, as these cases have been previously considered), then (20) becomes

(55) g(n + 1, θ) +
α + β

d
g(n, θ) = 0.

This can be written as

sin
(
(n + 1/2)θ + θ/2

)
sin(2θ/2)

+

(
α + β

d

)
sin
(
(n + 1/2)θ − θ/2

)
sin(2θ/2)

= 0,

which upon expanding and simplifying yields

(
1 +

α + β

d

)[
sin
(
(2n + 1)θ/2

)
sin(θ/2)

]
+

(
1 − α + β

d

)[
cos

(
(2n + 1)θ/2

)
cos(θ/2)

]
= 0.

Now, since we are assuming that α+β �= ±d, both factors in parentheses in the above
expression are nonzero. This means that if one of the factors in square brackets is zero,
both must be zero for the equation to hold. However, this is impossible since the first
factor in square brackets is g(2n+ 1, θ/2), which is zero only when (2n+ 1)θ/2 = kπ,
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Fig. 4. The function θ �→ tan((2n + 1)θ/2)/ tan(θ/2), θ ∈ [0, π], for the case n = 6. The
intervals Jk, 0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

1 ≤ k ≤ n, which implies that cos((2n + 1)θ/2) = cos(kπ) �= 0. We may thus validly
rearrange the above expression to obtain

(56)
tan

(
(2n + 1)θ/2

)
tan(θ/2)

=
α + β − d

α + β + d
.

Let F (θ) and p(d, α, β) be the left and right sides of the above equation, respectively,
and assume that the value of p is real. (Again, we are now restricted to a three-
dimensional manifold.) The function F on [0, π] is plotted in Figure 4 for the case
n = 6. F is monotonically increasing from −∞ to +∞ on the intervals Jk, 1 ≤ k < n,
monotonically increasing from 2n + 1 to +∞ on J0, and monotonically increasing
from −∞ to 1/(2n+1) on Jn. Thus if p is real and at least as big as 2n+1, there are
exactly n real solutions, one in each of the intervals Jk, 0 ≤ k ≤ n−1. If p is real and
equal to or smaller than 1/(2n + 1), there is one real solution in each of the intervals
Jk, 1 ≤ k ≤ n. All of these real roots are approximately separated by a distance of
2π/(2n + 1). Substituting θ = iy, y ∈ R, into (56) gives

(57)
tanh

(
(2n + 1)y/2

)
tanh(y/2)

= p,

while substituting θ = π + iy, y ∈ R, into (56) gives

(58)
coth

(
(2n + 1)y/2

)
coth(y/2)

= p.

The functions on the left sides of the above expressions are shown in Figure 5. The first
decreases monotonically from 2n+ 1 to 1, while the second increases from 1/(2n+ 1)
to 1 as y increases from zero. Thus if 1/(2n+1) < p < 1, there is one solution of (56)
of the form θ = π + iy∗, y∗ > 0, and if 1 < p < (2n + 1), there is one solution of the
form θ = iy∗, y∗ > 0. (Note that since d �= 0 it is impossible for p = 1.)

3.2.3. α + β = 0. If α + β = 0, then (50) may be written as

(59)

(
1 +

αβ

d2

)[
sin(nθ) cos(θ)

sin(θ)

]
+

(
1 − αβ

d2

)
cos(nθ) = 0.

The cases αβ = 0 and αβ = ±d2 have already been considered, so here we may
assume that neither factor in parentheses is zero and these two factors are not equal.
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1
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Fig. 5. Top: The function y �→ tanh((2n + 1)y/2)/ tanh(y/2). Bottom: The function y �→
coth((2n + 1)y/2)/ coth(y/2).

If cos(nθ) = 0, then θm = (2m−1)π
2n , 1 ≤ m ≤ n, are all of the possible values of θ in

[0, π]. The factor sin(nθ) clearly cannot be zero for these θm; hence, for the equation
to hold, cos θm must be zero, that is, θm = π/2, which means that n must be odd and
m = (n + 1)/2. Thus the condition on θ may be written

(60)
tan(nθ)

tan(θ)
=

αβ − d2

αβ + d2
, θ �= π/2,

where θ = π/2 is an additional solution in the case n is odd. (Thus one eigenvalue of
A is always b when n is odd and α+β = 0.) Again, let F (θ) and p(d, α, β) be the left
and right sides of (60), respectively, and suppose that the value of p is real. Figure 6
displays a graph of F on [0, π] for both an even and an odd n case. F is even around
π/2 and is equal to n at both θ = 0 and θ = π. The subintervals of interest are the
Ik given by (47). On I0 the function F increases monotonically from n to +∞, and
on intervals Ik, 1 ≤ k ≤ n/2− 1, it increases monotonically from −∞ to +∞. On the
center interval(s) (In/2 if n is even, I(n−1)/2 ∪ I(n+1)/2 if n is odd), F increases from
−∞ to a maximum value of zero at π/2 and then decreases back to −∞. The behavior
on the other intervals is dictated by the fact that F is even around π/2. Thus if p ≥ n,
there is one real solution of (60) on each of the intervals Ik, 0 ≤ k ≤ n/2 − 1, and
n/2 + 1 ≤ k ≤ n. If p is smaller than zero, there is one real solution of (60) on each
of the intervals Ik, 1 ≤ k ≤ n/2 − 1, and n/2 + 1 ≤ k ≤ n− 1 and two in the center
interval(s) (In/2 if n is even, I(n−1)/2 ∪ I(n+1)/2 if n is odd). This accounts for all n
solutions for θ (provided we add in the additional solution θ = π/2 if n is odd). As |p|
gets large (αβ → −d2), these solutions approach θm = (2m− 1)π/(2n), as expected.

Now suppose that 0 ≤ p < n. First, if 1 < p < n, there is one real solution of (60)
on each of the intervals Ik, 1 ≤ k < n/2 − 1, and n/2 + 1 ≤ k ≤ n− 1. By adding in
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Fig. 6. The function θ �→ tan(nθ)/ tan(θ), θ ∈ [0, π], for an even case, n = 6 (top), and an odd
case, n = 7 (bottom). The intervals Ik, 0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

the solution θ = π/2 if n is odd, this accounts for n− 2 real solutions for θ. However,
a pair of complex solutions θ = iy and θ = π + iy exist, since both of these values for
θ, when substituted into (60), yield

(61)
tanh(ny)

tanh(y)
= p,

which has a unique solution y∗, with y∗ > 0, when 1 < p < n. (The plot of
tanh(ny)/ tanh(y) is similar to that depicted in the top panel of Figure 5 but with
maximum value n rather than 2n+ 1.) It is impossible to have d �= 0 and p = 1, and,
since we have dealt with αβ = d2 previously, we have assumed that p �= 0; however, we
have not yet dealt with the case 0 < p < 1. As p increases through zero, two real roots
annihilate each other at π/2, and we therefore substitute θ = π/2+iy into (60) yielding

(62)
tanh(ny)

coth(y)
= p.

The function on the left side of (62) is plotted in Figure 7, where we note that there
are two solutions ±y∗ for each value of p ∈ (0, 1). These two solutions for y correspond
to two distinct values θ in R and a pair of eigenvalues λ given by

λ = b± i2d sinh(y∗).

If b and d are real, these are a complex conjugate pair.

3.2.4. (α + β)/d and αβ/d2 are real. If the matrix parameters d, α, and
β are such that the quantities (α + β)/d and αβ/d2 are real, then we can conclude
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Fig. 7. The function y �→ tanh(ny)/ coth(y).

that there are at least n − 2 real solutions to (20) and provide sufficient conditions
under which n real solutions exist. We shall assume that αβ �= d2 since that case was
previously discussed.

The quantities (α + β)/d and αβ/d2 are both real if and only if either both α/d
and β/d are real or they are complex conjugates, which we may express as one of the
following two options:

1. α = sd, β = td, s, t ∈ R,
2. α = (s + it)d, β = (s− it)d, s, t ∈ R.

Thus the manifold of points that we are considering is four-dimensional. Note that
we have not restricted ourselves to the situation where the matrix is real, although
that case is included as part of option 1 above.

Denote the left side of (20) (or equivalently the left side of (50)) as T (θ), so that
the necessary and sufficient condition for θ is T (θ) = 0. From (20) and (16) we have

T (0) = (n + 1) +
α + β

d
n +

αβ

d2
(n− 1)

=

(
1 +

α + β

d
+

αβ

d2

)
n +

(
1 − αβ

d2

)

and

T (π) = (1−)n(n + 1) + (−1)n−1α + β

d
n + (−1)n−2αβ

d2
(n− 1)

= (−1)n
[(

1 − α + β

d
+

αβ

d2

)
n +

(
1 − αβ

d2

)]
.

Evaluating T at θ = mπ/n, 1 ≤ m < n, via (50) immediately gives

T
(mπ

n

)
= (−1)m

(
1 − αβ

d2

)
.

Since we are assuming that αβ �= d2, the continuous function T alternates sign at the
points mπ/n, 1 ≤ m < n. This immediately implies that there are n − 2 real roots
of T , one in each of the intervals K2,K3, . . . ,Kn−1. The interval K1 will contain
an additional root provided T (0) is zero or has opposite sign from T (π/n), that is,
T (0)/T (π/n) ≤ 0. This can be expressed as

(63)
1 + α+β

d + αβ
d2

1 − αβ
d2

≥ − 1

n
.
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Analogously, the interval Kn will contain an additional root provided

(64)
1 − α+β

d + αβ
d2

1 − αβ
d2

≥ − 1

n
.

The inequalities (63) and (64) are sufficient conditions for a root to exist in K1 or
Kn, respectively. However, it is possible that two roots exist in one of these intervals
if both inequalities fail to hold.

Substituting θ = iy or θ = π+ iy, y ∈ R, into (50) yields the equivalent condition

(65)
tanh(ny)

sinh(y)

[
1 + αβ

d2

1 − αβ
d2

cosh(y) ±
α+β
d

1 − αβ
d2

]
= −1,

where the + sign is for θ = iy and the − sign for θ = π + iy. The function y →
tanh(ny)(X cosh(y)+Z)/ sinh(y) has limiting values of n(X+Z) and X as y tends to
0 and ∞, respectively. However, it is not necessarily monotonic on y > 0. Nonetheless,
since it is continuous, we can conclude the following. If −1 lies between the values

n

(
1 + α+β

d + αβ
d2

1 − αβ
d2

)
and

1 + αβ
d2

1 − αβ
d2

,

there will be at least one solution of (65) in the form θ = iy, y ∈ R. If −1 lies between
the values

n

(
1 − α+β

d + αβ
d2

1 − αβ
d2

)
and

1 + αβ
d2

1 − αβ
d2

,

there will be at least one solution of (65) in the form θ = π + iy, y ∈ R. (Note that
either of the two values in each of the above pairs may be the smaller one, depending
on d, α, and β.)

4. Conclusion. The eigenvalues of the tridiagonal matrix A given by (1) are of
the form λm = b+2d cos(θm), where θm are the solutions to the nonlinear equation (20)
in the region R defined by (21). The corresponding eigenvectors are given by (24).

The space of matrix parameters d, α, and β is C
3, which can be identified with R

6.
Restriction to a number of two-dimensional manifolds in this space permits explicit
solutions of (20), and these cases were itemized. In addition, the four-dimensional
manifold of points αβ = d2 also yields explicit solutions, and these were given. In-
formation about the distribution of eigenvalues was also described for several other
three- and four-dimensional manifolds. Many of these were cases where (20) could be
separated into the form F (θ) = p(d, α, β), where F is a certain ratio of trigonometric
functions of multiples of θ and p is real-valued. In most of these cases, this equation
has either n real roots or n−1 real roots and one complex root, but the corresponding
eigenvalues are all real (assuming that b and d are also real). In one case, α+β = 0, a
single complex conjugate pair of eigenvalues is possible if 0 < (αβ−d2)/(αβ+d2) < 1.
The four-dimensional manifold of points specified by the requirement that both the
quantities (α+β)/d and αβ/d2 be real was shown to yield at least n−2 real eigenval-
ues for A. Sufficient conditions for when the remaining two eigenvalues are also real
were provided. This case includes the case where the matrix A is real to begin with.

Efficient numerical algorithms exist, based on the QR factorization, for the com-
putation of the eigenvalues of general tridiagonal matrices [2]. The nonlinear equa-
tion (20) we have presented here would generally need to be solved with a root-finding
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algorithm to find the θm in the region R, which may or may not be as efficient as
the QR-based algorithms. However, the various special cases that we have enumer-
ated provide additional information on the distribution of the solutions θm, specifying
various subintervals of [0, π] wherein exactly one solution must lie. Within these subin-
tervals, more refined estimates of the locations of solutions are often easily obtained
by plotting the appropriate function F described herein and noting where it crosses
the value of p.

Tridiagonal matrices frequently occur in applications where it is desirable to know
their eigenvalues. As just one example, consider a simple Markov process with n states
arranged in a chain formation where xi(t) is the probability of being in state i at time
t, i = 1, . . . , n. Let a be the rate at which a particle moves to the right (from state i
to state i+ 1) and c the rate at which a particle moves to the left through the states:

(66) x1

a−−→←−−
c

x1

a−−→←−−
c

x2 · · · xn−1

a−−→←−−
c

xn.

Such systems are commonly employed as models or parts of models for ion channel
gating [1]. The governing system is

(67) x′ = Ax,

where A is given by (1) with b = −a− c, d =
√
ac, α = −c, and β = −a. From (40)

we immediately conclude that the eigenvalues are

λm = −(a + c) + 2
√
ac cos

(mπ

n

)
, 1 ≤ m < n, λn = 0.

From (7), (45), and (46), the corresponding eigenvectors are

v
(m)
j =

(a
c

)(j−1)/2
[
sin

(
jmπ

n

)
−
√

c

a
sin

(
(j − 1)mπ

n

)]
, 1 ≤ j ≤ n, 1 ≤ m < n,

and

v
(n)
j =

(a
c

)(j−1)/2
[
sin (jθn) −

√
c

a
sin
(
(j − 1)θn

)]
, 1 ≤ j ≤ n,

where θn = arccos ((a + c)/2
√
ac).
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ACCELERATION TECHNIQUES FOR APPROXIMATING THE
MATRIX EXPONENTIAL OPERATOR∗

M. POPOLIZIO† AND V. SIMONCINI‡

Abstract. In this paper we investigate some well-established and more recent methods that aim
at approximating the vector exp(A)v when A is a large symmetric negative semidefinite matrix, by
efficiently combining subspace projections and spectral transformations. We show that some recently
developed acceleration procedures may be restated as preconditioning techniques for the partial
fraction expansion form of an approximating rational function. These new results allow us to devise
a priori strategies to select the associated acceleration parameters; theoretical and numerical results
are shown to justify these choices. Moreover, we provide a performance evaluation among several
numerical approaches to approximate the action of the exponential of large matrices. Our numerical
experiments provide a new, and in some cases, unexpected picture of the actual behavior of the
discussed methods.

Key words. Krylov subspace, matrix exponential, rational functions, iterative methods, large
matrices

AMS subject classifications. 65F30, 65F10, 65F50

DOI. 10.1137/060672856

1. Introduction. In this paper we are interested in the numerical approximation
of the action of the matrix exponential to a vector, namely

y = exp(A)v,

when the real n × n matrix A is large and symmetric negative semidefinite. In the
following we assume that ‖v‖ = 1, where ‖ · ‖ denotes the Euclidean norm. We inves-
tigate some well-established and more recent methods that aim at approximating the
vector y by efficiently combining subspace projections and spectral transformations.
We refer the reader to [29] for a more complete recent survey.

Two apparently distinct classes of approaches have been discussed in literature
when A is large and sparse. In the first type of strategy, the matrix is projected onto
a possibly much smaller space, the exponential is then applied to the reduced matrix,
and finally the approximation is projected back to the original large space. If H and e
denote the projected and restricted versions of A and v, respectively, then this process
can be summarized as follows:

y ≈ V exp(H)e,

where the columns of V form a basis of the projection space; see, e.g., [14], [15],
[16], [23], [31], [32], [33], [34], [41]. In particular, van den Eshof and Hochbruck have
recently devised an acceleration method based on a spectral transformation, which
appears to significantly reduce the dimension of the approximation space without
sacrificing accuracy and efficiency [41].
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†Dipartimento di Matematica, Università di Bari, Via E. Orabona 4, I-70125 Bari, Italy

(popolizio@dm.uniba.it).
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In the second class of methods, the exponential function is first approximated
by an appropriate simpler function, and then the action of this matrix function is
evaluated; see, e.g., [4], [8], [10], [27], [29], [31]. To this end, a special role is played by
rational function approximation to the exponential; see, e.g., [3], [9], [11], [40]. Let Rν

be such a rational function, so that Rν(A)v ≈ exp(A)v, and assume that Rν admits
the following partial fraction expansion:

exp(A)v ≈ Rν(A)v = ω0v +

ν∑
j=1

ωj(A− ξjI)
−1v.(1.1)

In this approach, an approximation to y can be obtained by first solving the shifted
linear systems appearing in the sum, and then by collecting the sum terms; see, e.g.,
[4], [20]. The computation of the system solutions can be either carried out by a direct
method, or, if memory requirements become unacceptable, by iterative methods such
as Krylov subspace solvers [35]. In particular, some of these methods can fully exploit
the recent developments in iterative linear system solvers; see, e.g., [39].

In this paper we argue that the distinction between the two aforementioned cat-
egories is in fact very vague, and that increased understanding can be gained by
exploiting both viewpoints.

The aim of this paper is twofold. On the one hand, we show that the acceleration
method by van den Eshof and Hochbruck cited above may be restated as a precondi-
tioning technique of the rational function approximation in (1.1) when the exponential
is replaced by an approximating rational function. In addition, we show that another
recently proposed method (see [1]) may also be viewed as a preconditioning technique
for appropriately solving the shifted systems in (1.1). These new results allow us to
devise a priori strategies to select the associated acceleration parameters; our com-
pletely algebraic analysis complements proposed selections based in some cases (cf.
[41]) on the numerical approximation of the solution to analytic problems; numerical
results are shown to justify our choices.

Available comparisons of different schemes in the two categories above are very
limited; see, e.g., [37]. Our second aim is to provide a performance evaluation among
several numerical approaches to approximate the exponential, therefore filling a gap
in the recent literature. Our numerical experiments show that the ranking of the
methods changes significantly depending on whether linear systems can be solved by
a direct method. In particular, our numerical findings highlight the competitiveness of
the simple partial fraction expansion form in (1.1) over newly developed acceleration
procedures when appropriate iterative methods are used. On the other hand, in the
case when direct methods are applicable, ad hoc and acceleration techniques, such as
(shift-invert) Lanczos, are superior to the partial fraction expansion method.

This paper is organized as follows. Section 2 reviews the role of rational functions
in the matrix exponential context and recalls the notation and basic facts associated
with the approximation in the Krylov subspace. Section 3 discusses an acceleration
method based on the shift-invert Lanczos (SI), while section 3.1 provides a theoret-
ical justification of the parameter selection in the shift-invert step. Some theoretical
and computational guidelines for the method are reported in sections 3.2 and 3.3,
respectively. Section 4 discusses a second acceleration method, and a cheaper strategy
is proposed to deal with the acceleration matrix. The associated parameter is ana-
lyzed in section 4.1, where a theoretical justification for its selection is provided; some
implementation improvements are discussed in section 4.2. Section 5 and its subsec-
tions report on our numerical experience with all analyzed methods. Finally, section



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATION METHODS FOR THE MATRIX EXPONENTIAL 659

6 presents further experiments with enhanced implementations of the discussed ac-
celeration procedures, while section 7 summarizes our final conclusions.

Throughout this paper we assume that the spectrum of A, spec(A), is contained
in the interval [α, 0], for some α < 0. This is not a restrictive assumption. Indeed,
if spec(A) ⊂ [α, β], with β < 0, then the spectrum of A1 = A − βI is contained in
[α − β, 0] and exp(A) = exp(A1) exp(β). Therefore the behavior of exp(A) can be
recovered from that of exp(A1). As we shall see, standard procedures are particularly
slow for large values of ‖A‖ = |α|, and thus in the context of acceleration procedures,
our main interest will be in large ‖A‖. Throughout our analysis we assume to work
in exact arithmetic and we refer to the paper by Druskin, Greenbaum, and Knizh-
nerman [12] for an analysis of Krylov subspace methods for matrix functions in finite
precision arithmetic.

2. Rational function approximation and Krylov subspaces. Let Rν(z) =
Nν(z)/Dν(z) be a rational function approximating the exponential function, with
Nν ,Dν polynomials of degree ν. When Rν is the rational Chebyshev function it holds
(see [9] and references therein) that

sup
λ≥0

| exp(−λ) −Rν(λ)| ≈ 10−ν ,

which implies a similar estimate for ‖ exp(A)v −Rν(−A)‖ when A is symmetric and
negative semidefinite. Due to this nice approximation property, Chebyshev rational
functions are commonly employed to approximate exp(A)v when A has a wide spec-
trum.

Let (1.1) be the partial fraction expansion of Rν ; note that Chebyshev rational
functions have distinct poles, so that (1.1) can be correctly employed in this case.
Since A is real, the poles in (1.1) come in complex conjugates; therefore we can write1

Rν(A)v = ω0v +

ν−1∑
j=1

j odd

2�
(
ωj(A− ξjI)

−1v
)

+ ων(A− ξνI)
−1v,(2.1)

where ξν denotes the real pole if ν is odd.

When dealing with large dimension problems, the shifted systems can be solved
by means of iterative methods. The simplified quasi-minimal residual (QMR) method
[18] can be used to obtain an approximation to x(j) = (A−ξjI)

−1v separately for each
j. The method is an appropriately refined version of the non-Hermitian Lanczos algo-
rithm, which exploits the (shifted) complex symmetric form of the coefficient matrix
to devise a single short-term recurrence. Preconditioning can be successfully applied
to this variant as long as the preconditioner is also complex symmetric. We refer to
this approach as PFE+QMR in our numerical experiments of section 5.2. An alter-
native choice is to use the single Krylov subspace Kk(A, v) = span{v,Av, . . . , Ak−1v}
as the approximation space. Assuming a zero initial solution approximation, for each

j the kth iterate x
(j)
k belongs to Kk(A − ξjI, v) = Kk(A, v), where the last equality

1The use of Chebyshev functions implies a change of sign of the coefficient matrix in Rν(−A)
and in its partial fraction expansion. If ζ denotes a Chebyshev pole, then the system to be solved
is (−A − ζI)x = v, which is equivalent to (A − ξI)x = −v, with ξ = −ζ. In the following we omit
specifying this change, and in practice, it is sufficient to change each pole’s sign when Chebyshev
approximation is used.
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is due to the shift invariance of Krylov subspaces. Then the linear combination

(2.2) xk = ω0v +

ν∑
j=1

ωjx
(j)
k ∈ Kk(A, v)

is an approximation to Rν(A)v. To speed up convergence without loosing the shifted
form, it is possible to precondition all systems with the same matrix, say (A− τI)−1

with τ > 0, namely

(A− τI)−1(A− ξI)x = (A− τI)−1v,(2.3)

for an appropriate selection of a single τ for all poles. The matrix (A−τI)−1(A−ξI) is
known as a Cayley transformation in the eigenvalue context; see, e.g., [2]. Interestingly
enough, this preconditioning approach has not appeared to have been investigated
explicitly in this context, possibly because of the requirement to solve systems with
the (real) matrix A− τI. We show in section 3 that this is precisely what the recently
proposed method in [33], [41] performs when the exponential is replaced by a rational
function. In section 4 we also show that the method in [1] amounts to solving (2.3) by
first resorting to the normal equation and then applying a conjugate gradient (CG)
method.

A seemingly different approach consists of approximating the operation exp(A)v
by projecting the problem onto a subspace of a possibly much smaller dimension.
Krylov subspaces have been extensively explored to this purpose, due to their favorable
computational and approximation properties; see, e.g., [14], [15], [16], [20], [24], [25],
[43]. Let Vk = [v1, . . . , vk] be an n × k matrix whose orthonormal columns span
Kk(A, v). The vectors vi, i = 1, . . . , k, can be generated by means of the following
Lanczos recurrence:

AVk = Vk+1Hk+1,k = VkHk + hk+1,kvk+1e
T
k , v = Vke1,(2.4)

where ei is the ith column of the identity matrix of a given dimension, eTk is the
transpose of ek, and Hk = V T

k AVk, Hk = (hij) is a symmetric tridiagonal matrix. An
approximation to x = exp(A)v may be obtained as

(2.5) xk = Vk exp(Hk)e1.

We shall refer to this approximation as the “standard Lanczos” method. For k � n,
the procedure projects the matrix problem onto the much smaller subspace Kk(A, v),
so that exp(Hk) can be cheaply evaluated with techniques such as scaling and squaring
Padé [22]. The quality of the approximation strongly depends on the spectral prop-
erties of A and on the ability of Kk(A, v) to capture them. Typically, convergence
starts taking place after a number of iterations at least as large as ‖A‖1/2 [24]. A
first characterization of the approximation was given by Saad in [34, Theorem 3.3],
where it is shown that Vk exp(Hk)e1 represents a polynomial approximation p(A)v to
exp(A)v, in which the polynomial p of degree k − 1 interpolates the exponential in
the Hermite sense on the set of eigenvalues of Hk. Other polynomial approximations
have been explored; see, e.g., [13], [33].

It is important to realize that the partial fraction expansion and the Krylov
subspace approximation may be related in a natural way whenever the exponential is
replaced by a rational function. In such a situation, the two approaches may coincide
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if, for instance, a Galerkin method is used to obtain the approximate solutions x
(j)
k .

More generally, using (2.5) we can write

| ‖ exp(A)v − xk‖ − ‖ exp(A)v − VkRν(Hk)e1 ‖ | ≤ ‖ (exp(Hk) −Rν(Hk)) e1‖ .(2.6)

If Rν accurately approximates the exponential, then the two approaches that employ
xk and VkRν(Hk)e1 evolve similarly as the Krylov subspace dimension increases; see,
e.g., the discussion in [19]. The behavior just described could justify the use of the
partial fraction expansion in place of the standard method, especially if acceleration
procedures can be determined to efficiently approximate each system solution. In fact,
this is the unifying argument of the results in this paper.

3. The shift-invert Lanczos method. In [32] and independently in [41], the
authors have proposed a technique for accelerating the standard Lanczos approxi-
mation to functions such as the exponential. The method is closely related to the
shift-invert technique for eigenvalue problems and consists of first applying the Lanc-
zos recurrence to the matrix (I − σA)−1, for some σ ∈ R, σ > 0, and starting vector
v1 = v, ‖v‖ is the 2-norm of v. giving

(I − σA)−1Vm = VmTm + βmvm+1e
T
m.(3.1)

An approximation to y = exp(A)v is then obtained as

ySI := Vm exp((I − T−1
m )/σ)e1.(3.2)

The procedure in [32], [41] was tailored to general analytic functions f , and thus
is perfectly applicable to the case of rational functions. For f = Rν , in the next
proposition we describe the shift-invert algorithmic procedure by means of a partial
fraction expansion of Rν . This allows us to analyze the selection of the shift parameter
in [32], [41] for f = Rν , that is, in terms of rational functions.

Proposition 3.1. Let Rν be a rational function with distinct poles and partial
fraction expansion Rν(z) = ω0 +

∑ν
j=1 ωj/(z− ξj). For a chosen σ > 0, let ySI be the

approximation to y = Rν(A)v as in (3.2) when the exponential is replaced by Rν .

Let yprec = ω0v +
∑ν

j=1 ωjx
(j)
m , where for each j, x

(j)
m is the Galerkin approxima-

tion to x(j) = (A− ξjI)
−1v in Km((A− 1

σ I)
−1(A− ξjI), v). Then ySI = yprec.

Proof. When the exponential is replaced by Rν in (3.2), ySI can be written as

ySI = Vm

⎛
⎝ω0e1 +

ν∑
j=1

ωj

(
− 1

σ
T−1
m +

(
1

σ
− ξj

)
I

)−1

e1

⎞
⎠ .(3.3)

On the other hand, yprec is obtained as yprec = ω0v +
∑ν

j=1 ωjx
(j)
m , where each

x
(j)
m approximates x(j) = (A− ξjI)

−1v. For j = 1, . . . , ν, we multiply by (A− 1
σ I)

−1

the system (A− ξjI)x
(j) = v from the left, that is

(3.4)

(
A− 1

σ
I

)−1

(A− ξjI)x
(j) =

(
A− 1

σ
I

)−1

v,

so that (I +( 1
σ − ξj)(A− 1

σ I)
−1)x(j) = (A− 1

σ I)
−1v. We then determine x

(j)
m by using

a Galerkin procedure in Km((A− 1
σ I)

−1(A− ξjI), v). Note that this space would not
be the “natural” space for a standard Galerkin procedure, which would instead use
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Km((A − 1
σ I)

−1(A − ξjI), (A − 1
σ I)

−1v), for left preconditioning. Due to the shift
invariance of Krylov subspaces, it holds that

Km

((
A− 1

σ
I

)−1

(A− ξjI), v

)
= Km

((
A− 1

σ
I

)−1

, v

)
.

Moreover, relation (3.1) can be scaled as

(
A− 1

σ
I

)−1

Vm = −VmσTm − σβmvm+1e
T
m.(3.5)

Therefore, let x(j) ≈ x
(j)
m ∈ Km((A − 1

σ I)
−1, v) with x

(j)
m = Vmz

(j)
m . Imposing the

Galerkin condition on the residual vector yields

V T
m

(
I +

(
1

σ
− ξj

)(
A− 1

σ
I

)−1
)
Vmz(j)

m = V T
m

(
A− 1

σ
I

)−1

Vme1.

Taking into account (3.5), we obtain

(
I −

(
1

σ
− ξj

)
σTm

)
z(j)
m = −σTme1,

or, equivalently, (− 1
σT

−1
m + ( 1

σ − ξj)I)z
(j)
m = e1. We have thus shown that

yprec = Vm

⎛
⎝ω0e1 +

ν∑
j=1

ωj

(
− 1

σ
T−1
m +

(
1

σ
− ξj

)
I

)−1

e1

⎞
⎠ ,

which is the same as (3.3).
The previous proposition shows that when applied to a rational function, the shift-

invert procedure is mathematically equivalent to a Galerkin procedure for the shifted
systems involving the poles, appropriately preconditioned with the same matrix
(A − 1

σ I). We will use this insightful relation to derive an automatic selection
of the acceleration parameter σ.

3.1. Selecting the acceleration parameter. The effectiveness of the described
scheme strongly depends on the choice of the acceleration parameter. In [41], an anal-
ysis is performed to select an optimal parameter at each iteration m, and the actual
values are tabulated (cf. Table 3.1) by numerically evaluating the quantity

Em−1
m−1(σ) := inf

r∈Πm−1
m−1

sup
t≥0

|r(t) − exp(−t)|,

where Πj
i = {p(t)(1 + σt)−i | p ∈ Πj} and Πj is the space of polynomials of degree j

or less. We stress that the inf-sup problem above depends on m, the iteration index.
Our fully algebraic analysis aims to overcome this difficulty by resorting to rational
functions in place of exp. Practical guidelines on how to use the tabulated values
without varying the parameter at each iteration are also given in [41]. In [30], the
author essentially conforms to this strategy. In both cases the employed arguments
are tied to the theoretical analysis performed in [36].
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Table 3.1

Some of the tabulated values in [41] of the shift-invert parameter. m is the number of SI itera-
tions.

m Em
m (σopt) σopt m Em

m(σopt) σopt

2 2.0 · 10−2 4.93 · 10−1 12 1.6 · 10−6 1.19 · 10−1

4 3.1 · 10−3 1.75 · 10−1 14 2.5 · 10−7 8.64 · 10−2

6 4.0 · 10−4 1.91 · 10−1 16 4.0 · 10−8 8.67 · 10−2

8 6.5 · 10−5 1.90 · 10−1 18 6.6 · 10−9 6.78 · 10−2

10 9.7 · 10−6 1.19 · 10−1 20 1.1 · 10−9 6.82 · 10−2

The result of Proposition 3.1 leads us to analyze the influence of the parameter σ
with a completely different strategy, namely by studying its role in the preconditioned
system (2.3), that is,

(
I +

(
1

σ
− ξj

)(
A− 1

σ
I

)−1
)
x(j) =

(
A− 1

σ
I

)−1

v.(3.6)

In the rest of this section we omit the dependence of ξj and x(j) on j. Moreover,
without loss of generality (cf. (2.1)), we consider only the complex poles with positive
imaginary part.

We start by observing that the eigenvalues of the coefficient matrix are given by
λ̂ = 1 + ( 1

σ − ξ)/(λ − 1
σ ), where λ is an eigenvalue of A; this means that the λ̂’s lie

on a line of the complex plane. Assuming that 1
σ − ξ 	= 0 and dividing by ( 1

σ − ξ), we
obtain ((

A− 1

σ
I

)−1

− χI

)
x = ṽ, with χ =

1

ξ − 1
σ

,(3.7)

and ṽ defined accordingly. The eigenvalues of the coefficient matrix lie on the hori-
zontal line (x̂, y0) with

y0 :=

(ξ)

| 1σ − ξ|2
, and x̂ ∈

[
− 1

1
σ

+
1
σ −�(ξ)

| 1σ − ξ|2
,

1

α− 1
σ

+
1
σ −�(ξ)

| 1σ − ξ|2

]
.

The assumption 1
σ − ξ 	= 0 is not restrictive: If 1

σ = ξ for some (real) ξ, then from
(3.6) it follows that the system solution associated with that pole is readily obtained,
and the analysis need not be performed.

The coefficient matrix in (3.7) is given by a real negative definite symmetric
matrix shifted by a complex multiple of the identity. It was shown in [17], [27] that
in this case the performance of Krylov subspace methods may be fully characterized
by using spectral information of the coefficient matrix. Therefore, estimates for the
optimal parameter σ may be obtained by analyzing the spectrum of ((A− 1

σ I)
−1−χI)

as σ changes. To this end, we recall here the following bound for the linear system
error in our notation.

Proposition 3.2 (see [27, Lemma 5.2]). Given the linear system (Ã− χI)x = ṽ

with Ã symmetric and semidefinite and χ ∈ C, let xm be the Galerkin approximate
solution to x in Km(Ã, ṽ). Let λmax, λmin be the largest and smallest eigenvalues of

Ã−�(χ)I in absolute value, respectively. Then the error satisfies

||x− xm|| < g(λmin, λmax, ṽ, χ)
1

ρm + 1/ρm
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

664 M. POPOLIZIO AND V. SIMONCINI

where g is a function of the spectrum of Ã, ṽ and of χ only, while ρ = γ +
√

γ2 − 1
and

γ =
|λmin − i
(χ)| + |λmax − i
(χ)|

|λmin − λmax|
.

The proposition above shows that the larger γ, the faster the convergence in
terms of the subspace dimension m. We recall that spec(A) ⊂ [α, 0] with α < 0.
In our context, we can apply the result above both to the original partial fraction
expansion approximation, as well as to the preconditioned system (3.6). In the former

case, setting Ã = A and χ = ξ, we obtain

γ(ξ) =
|α− ξ| + |ξ|

−α
.(3.8)

In the preconditioned case, setting Ã = (A− 1
σ I)

−1 and χ = 1/(ξ − 1
σ ), after simple

algebraic manipulations, we get

γprec(ξ, σ) =
( 1
σ − α)|ξ| + 1

σ |α− ξ|
−α| 1σ − ξ|

.(3.9)

The expression in (3.8) shows that for |α| � |ξ|, the error bound predicts very
slow convergence of the linear system, as in this case γ ≈ 1. It is desirable that a
well-chosen σ make γprec(ξ, σ) much larger than γ(ξ), so as to significantly improve
the convergence rate. An ideal value of σ would satisfy something like

min
ξ

γprec(ξ, σ) ≥ max
ξ

γ(ξ),

to ensure faster convergence for all poles. However, this inequality turned out to be
hard to analyze. Nonetheless, it is possible to relate the two convergence coefficients.
To simplify the notation, in the rest of this section we use

τ :=
1

σ
,

and, with some abuse of notation, we use γprec(ξ, τ). We have

γprec(ξ, τ) = F (α, ξ, τ)γ(ξ),(3.10)

where

F (α, ξ, τ) =
τ

|τ − ξ| −
α|ξ|

(|α− ξ| + |ξ|)|τ − ξ| =
τ − c

|τ − ξ| ,(3.11)

with c = α|ξ|/(|α− ξ| + |ξ|).
The following proposition shows that, for each pole, it is possible to determine

the least value of the parameter that improves convergence, and also the one that
maximizes the ratio between the two convergence rates. Unfortunately, the resulting
parameter depends on the given pole, and thus it may not be optimal for other poles.

Proposition 3.3. Given α and ξ, let F (τ) = F (α, ξ, τ) be defined in (3.11), and
assume that �(ξ) > α/2 and 
(ξ) 	= 0. Then

(i) F (τ) ≥ 1 for τ ≥ τ0 with τ0 = 1
2
|ξ|2−c2

�(ξ)−c and �(ξ) > c;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ACCELERATION METHODS FOR THE MATRIX EXPONENTIAL 665

(ii) F (τmax) ≥ F (τ), for every τ , where

τmax = τmax(ξ) =
�(ξ)c− |ξ|2
c−�(ξ)

and F (τmax) =
|c− ξ|
|
(ξ)| ≥ 1;(3.12)

(iii) γprec(ξ, τ0) = γ(ξ) and lim
τ→∞

γprec(ξ, τ) = γ(ξ).

Proof. Let ξ = ξR + ıξI . We first show that ξR > c. Since c < 0, then clearly
ξR > c when ξR ≥ 0. For ξR < 0, using α < 2ξR we obtain α|ξ| < 2ξR|ξ| ≤ ξR|ξ| ≤
ξR(|ξ| + |α− ξ|), from which

ξR >
α|ξ|

|ξ| + |α− ξ| = c.

To prove (i), we observe that

F (τ) ≥ 1 ⇔ 2(ξR − c)τ ≥ |ξ|2 − c2.(3.13)

Using ξR > c, the previous requirement corresponds to imposing τ ≥ τ0.
To prove (ii) we explicitly write

F ′(τ) = − (τ − ξR)

|τ − ξ|3 (τ − c) +
1

|τ − ξ| = 0 ⇔ −(τ − ξR)(τ − c) + |τ − ξ|2 = 0,

from which the expression for τmax follows. Moreover, F is an increasing function for
τ ≤ τmax and a decreasing one otherwise, so that F (τmax) is a maximum.

To prove that F (τmax) ≥ 1 we notice that F (τmax)
2 = 1 + (c − ξR)2/ξ2

I , from

which we obtain that (F (τmax) − 1)(F (τmax) + 1) = (c−ξR)2

ξ2
I

. The result follows by

taking into account that

F (τmax) + 1 =
|ξI | + |c− ξ|

|ξI |
.

Finally, the first equality in (iii) follows from F (τ0) = 1 in (3.13), while it can be
readily verified that limτ→∞ F (τ) = 1.

In light of Proposition 3.3(i), one could restrict the choice of the parameter τ
to the interval [τ0,∞[. However, (iii) indicates that values of the parameter that are
too close to the extremes of this interval do not accelerate convergence; see similar
conclusions in [30]. The hypothesis that �(ξ) > α/2 is crucial; otherwise F (τ) ≥ 1
only for τ < 0. The only (unlikely) exception is ξ = α/2 ∈ R, in which case F (τ) ≥ 1
for any nonnegative τ . On the other hand, for the values of α of interest, |α| � |ξ|,
and thus the hypothesis �(ξ) > α/2 is clearly verified. It is also important to notice
that for |α| � |ξ| it follows that τmax ≈ |ξ|, indicating the obvious fact that, for each
pole ξ, the best real parameter is related to the pole itself.

Although quite sharp, the results above still depend on the spectrum of A through
α and do not provide a simple way to select a good single parameter for all poles.
To complete our understanding, we thus look for a quantity that well represents the
behavior of γprec, especially for large |α|. To this end, we observe that −c ≤ |ξ|, so

that F (ξ, τ) ≤ τ+|ξ|
|τ−ξ| . The bound is sharp for |α| � |ξ|, that is, γ(ξ) ≈ 1, in which case

c ≈ −|ξ|. The quantity H(τ, ξ) := τ+|ξ|
|τ−ξ| ≥ 1 also appears explicitly in the following

lower bound for γprec:

γprec(τ, ξ) =
τ

|τ − ξ|γ(ξ) +
|ξ|

|τ − ξ| ≥
τ

|τ − ξ| +
|ξ|

|τ − ξ| = H(τ, ξ),(3.14)
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Table 3.2

Values of H(τi, ξj), i, j = 1, . . . , ν, for Chebyshev with ν = 14 (complex conjugates are not shown).

τi = |ξi| ξ1 ξ3 ξ5 ξ7 ξ9 ξ11 ξ13
18.8616 1.1657 1.2516 1.3564 1.4831 1.6260 1.7628 1.8515
14.1496 1.1615 1.2590 1.3905 1.5708 1.8105 2.0910 2.3111
10.9932 1.1515 1.2533 1.4010 1.6254 1.9739 2.4925 3.0433
8.7609 1.1387 1.2391 1.3924 1.6430 2.0832 2.9193 4.3218
7.2115 1.1261 1.2219 1.3727 1.6300 2.1170 3.2233 6.5221
6.2274 1.1160 1.2068 1.3520 1.6045 2.0975 3.3081 8.9488
5.7485 1.1105 1.1981 1.3391 1.5859 2.0716 3.2821 9.5758

and this estimate is again sharp when γ(ξ) ≈ 1. We next analyze the behavior of
H, which does not depend on the spectrum of A, but only on the poles and on the
parameter. We have

H(τ, ξ)2 = 1 + 2(|ξ| + �(ξ))
τ

|τ − ξ|2 .

Note that |ξ| + �(ξ) ≥ 0 for any ξ, and for a given nonreal pole ξ it holds that
τ

|τ−ξ|2 ≤ |ξ|
||ξ|−ξ|2 , where the right-hand side is attained for τ = |ξ|. Therefore, for each

pole ξi,

H(|ξi|, ξi) = max
τ>0

H(τ, ξi).

To take τi as a priori parameter for all systems, we need to make sure that this
value of τ is also effective for a different pole ξj . Let the poles be sorted with decreasing
(positive) imaginary parts. Setting τi = |ξi|, we state the following discrete problem:2

max
τ1,...,τν

min
ξ1,...,ξν

H(τi, ξj),(3.15)

which can be solved, once and for all, for a given class of rational functions and for
each selected degree. As an example, Table 3.2 reports the values of H(τi, ξj) as τi
and ξj vary, for Chebyshev rational functions and ν = 14 (poles are computed from
the coefficients as listed in [9]). In the table, the optimal value of τ for problem (3.15)
with ν = 14 is given by τ1 = 18.8616, ensuring that γprec(ξ, τ) ≥ H(τ1, ξ1) = 1.1657.
Note that, for all degrees, the best value of τ turns out to always be associated with
ξ1. Therefore, we propose to use the parameter

τopt := |ξ1| ⇔ σopt =
1

|ξ1|
.(3.16)

The corresponding values associated with Chebyshev rational poles are listed in
Table 3.3 for ν ≤ 20. The entries in the table can be used as follows: If a final
tolerance tol on the approximation of exp(A)v is requested, then the shift-invert ap-
proach may be used with a shift value corresponding to ν ≥ − log10(tol) (e.g., tol =
10−8 yields ν ≥ 8 so that σ = 0.1062 or a smaller value in the table may be used).

Our derivation suggests a parameter selection somehow similar to that given in
[41] (cf. Table 3.1), although our justification is completely different, and it does not
depend on m. This similarity may be viewed as an additional motivation for the
reliability of the approach.

2A continuous problem in τ and ξ could also be formulated, but the unnecessary added difficulty
is beyond the scope of this analysis.
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Table 3.3

Optimal values of the parameter (cf. (3.16)) for various rational function degrees.

ν 1 2 3 4 5 6 7 8 9 10
σopt 1.7271 0.7565 0.4134 0.2720 0.1988 0.1551 0.1264 0.1062 0.0914 0.0801

ν 11 12 13 14 15 16 17 18 19 20
σopt 0.0711 0.0639 0.0580 0.0530 0.0488 0.0452 0.0421 0.0394 0.0369 0.0348

3.2. Asymptotic behavior. Our parameter selection is based on asymptotic
arguments, that is, on information of the matrix spectral interval and not on the actual
eigenvalue distribution. In particular, we recall that the convergence of (symmetric)
linear systems often exhibits superlinear behavior, in the sense that the rate of conver-
gence may increase as convergence takes place; see, e.g., the discussion in [39]. Such im-
portant characterization is not captured by an asymptotic analysis. Therefore, in some
cases other values of the parameter may lead to better convergence than that obtained
with our analytically selected choice. As an example, we consider the matrix Ã of size
n = 3375 of Example 5.1 in section 5, whose extreme eigenvalues are λmin ≈ −2329.4
and λmax ≈ −22.597, and we define the singular matrix A = Ã−λmaxI. We study the
performance of the accelerated process with the optimal parameter σopt = 0.053 and
with another possible candidate, σmin = 1/maxj |�(ξj)| = 0.1124, taken for ν = 14
poles. The vector v is taken as a normalized vector of all ones. Figure 3.1 shows the
convergence curves of the SI procedure with A and the two parameters (lower solid
and dashed curves), showing a slightly better performance of σmin over σopt; this is
not predicted by our theory. However, our arguments better describe the behavior of
the n×n diagonal matrix D (middle solid and dashed curves), whose nonzero entries
are uniformly distributed values in the same spectral interval as A. The vector v is
unchanged. In this case, the convergence slope is steeper when using σopt than with
σmin. The upper curves show the convergence rate predicted by the asymptotic quan-
tity H(1/σ, ξ1)

j , j = 1, . . . ,m, for σ = σopt (filled squares) and σ = σmin (circles).
Note that both curves well represent the initial convergence phase of the shift-invert
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Fig. 3.1. Left: Convergence history of SI for a matrix stemming from a shifted Laplace operator
and for a diagonal matrix D with uniformly distributed eigenvalues in spec(A). Here σopt = 0.053
and σmin = 0.1124. Also reported are the asymptotic values H(1/σ, ξ1)j , j = 1, . . . ,m, for σmin

(circles) and σopt (filled squares). Right: Number of iterations of SI applied to the diagonal matrix
D versus value of the shift σ; the symbol “*” refers to the choice σ = σopt.
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procedure with D, with a slightly better performance for H(1/σopt, ξ1). To fully ap-
preciate the performance of the choice σ = σopt with the matrix D, in the right plot of
Figure 3.1 we display the number of iterations of SI to achieve the required stopping
threshold, as the value of the parameter varies in [10−4, 102]; the symbol “*” refers to
the choice σ = σopt. Note that the performance of the method is not overly sensitive
to overshooting values of σ (and this conforms to the tabulated values in Table 3.1),
but it may considerably degrade if σ is chosen too small. In particular, the plot shows
that a typical practical value suggested in [41, section 6], namely σ = 0.01, would
force the method to perform more iterations on this matrix.

3.3. Implementation details. The algorithmic aspects of the shift-invert pro-
cedure were described in [41]. A possible implementation generates the matrix Vm

one vector at a time by means of the Lanczos algorithm (see, e.g., [21]) and the cor-
responding elements of the tridiagonal matrix Tm in (3.1). It is important to observe
that convergence at high accuracy is often obtained for a small approximation space,
so that little memory is required to store Vm. The difficulties associated with the
approximate solutions with I − τA are also treated in [41].

A crucial part in the overall procedure is how to monitor convergence, since the
error norm is not available. Although the analysis of stopping criteria is beyond the
scope of this paper, we need to face this problem to avoid premature termination; we
refer to [19] for a recent analysis and an accurate estimation of the error norm for
the approximation of various rational matrix operators. With the notation of (3.5), a
classical stopping criterion is given by the quantity

tm+1,m|eTm exp((I − T−1
m )/σ)e1|,(3.17)

which is cheaply available during the computation; in the case of standard Lanczos,
using (2.5) the criterion above reduces to hk+1,k|eTk exp(Hk)e1|. It is known that for
m very small, this quantity may highly underestimate the true error; cf. the (red)
dash-dotted curve of Figure 3.2. In our experiments of sections 5 and 6, for the first
few iterations we replace the absolute estimate of the error with a relative quantity,
until this falls below a safeguard parameter set to 10−2. In the case of (3.17), this
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Fig. 3.2. Convergence history of standard Lanczos and different error estimates. The safeguard
parameter for (3.18) is equal to 0.1 (see text).
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quantity reads as

tm+1,m|eTm exp((I − T−1
m )/σ)e1|/|eT1 exp((I − T−1

m )/σ)e1|.(3.18)

In practice, this somewhat conservative safeguard procedure is maintained until the
components of the approximation vector exp((I −T−1

m )/σ)e1 take the expected expo-
nential pattern; see [26]. The reported values in the figure refer to the approximation
of exp(0.1A)v, where A is the 4900×4900 matrix stemming from the two-dimensional
(2D) Laplace operator with Dirichlet homogeneous boundary conditions, v is the nor-
malized vector of all ones, and the safeguard parameter is equal to 0.1. In Figure 3.2
we also report the behavior of the higher-order estimate (for standard Lanczos)

tk+1,k|eTk ϕ1(Hk)e1|, ϕ1(z) =
exp(z) − 1

z
,(3.19)

which was also proposed in [34]. We observe that this estimate seems to cure the prob-
lem given by the lower-order estimate in (3.17). In practice, whenever eTk exp(Hk)e1 is
too small, so that (3.17) is unreliable, it holds that |eTk ϕ1(Hk)e1| ≈ |eTkH−1

k e1|. From
Figure 3.2 it is clear that both the safeguard strategy and the higher-order criterion
allow one to safely continue the iteration until true convergence takes place. In our
experiments we used (3.18) because it is in general cheaper to compute than (3.19).
We refer to [12], [19], [27], [34] for further considerations and for higher-order stopping
criteria.

4. Application of a real-valued method for solving linear systems. In
this section we increase our understanding of a method recently proposed by Axelsson
and Kucherov in [1], for solving complex symmetric systems by means of a formu-
lation that only uses real arithmetic computation. The method can be used in our
context when a partial fraction expansion of a rational function approximation is em-
ployed, as described in section 2. We show that the method can be derived using our
preconditioning framework. Moreover, we propose a variant that makes the overall
procedure significantly more efficient.

We first briefly recall the main steps of the approach. Given the complex system

(R + ıS)u = b,(4.1)

with u = uR + ı uI and b = bR + ı bI , the proposed procedure uses the real form

(
R− ηS

√
1 + η2S√

1 + η2S −R− ηS

)(
uR

z

)
=

(
bR

(bI − ηbR)/(
√

1 + η2)

)
,

where η > 0 is a real parameter and z = (ηuR−uI)/
√

1 + η2. The Schur complement
reduction provides the following linear system for uR

CuR = w(4.2)

with C = R − ηS + (1 + η2)S(R + ηS)−1S and w = bR + S(R + ηS)−1(bI − ηbR).
The imaginary part, uI , may be computed by using the relation RuR −S uI = bR. It
is shown in [1] that under certain hypotheses on S and R, it is possible to derive an
optimal choice of η so that the matrix B = R + ηS is an effective preconditioner for
the system (4.2).
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In our context, the complex symmetric system to be solved is (A− ξI)u = v for a
fixed pole ξ = ξR + ıξI . Therefore, we have R = A− ξRI and S = −ξII. Substituting
in the coefficient matrix of the system (4.2) we obtain

C = −B + 2η ξI I − (1 + η2)ξ2
IB

−1,

where the preconditioner becomes B = −(R + ηS) = (ξR + η ξI)I − A, and the
preconditioned system reads

MuR = B−1w, with M = B−1C = −I + 2ηξIB
−1 − ξ2

I (1 + η2)B−2,(4.3)

w = v − η ξIB
−1v.

Moreover, uI = 1
ξI

(−A+ξRI)uR+ 1
ξI
v. Therefore, for each pole ξ, the original complex

symmetric system is transformed into the real (preconditioned) system (4.3), which
needs to be solved by an iterative method. We next show in Proposition 4.1 that the
matrix −M is symmetric positive definite for any choice of η > 0 and for all poles,
and thus the conjugate gradient method can be used. Moreover, we show that the
system (4.3) resulting from the procedure outlined above is nothing but the real part
of the normal equation of (2.3) for a special choice of the acceleration parameter.

Proposition 4.1. Let uR be the solution to MuR = B−1w (cf. (4.3)). For τ =
ξR + η ξI , η > 0, consider the (preconditioned) linear system

(τI −A)−1(A− ξI)u = (τI −A)−1v,

and set K = (τI − A)−1(A − ξI). Then M = −K∗K ∈ R
n×n. Moreover, uR is the

real part of the solution of K∗Ku = K∗(τI −A)−1v.
Proof. Let R = A− ξRI and S = −ξII, and note that R and S commute so that

K∗K = (R + ηS)−2(R− iS)(R + iS) = (R + ηS)−2(R2 + S2)

= I + 2ηξI(R + ηS)−1 + ξ2
I (1 + η2)(R + ηS)−2 = −M.

Therefore, K∗K is real symmetric and M is negative definite. Analogously, we can
write K∗(τI −A)−1v = (R+ ηS)−2(R− iS)v whose real part is given by �(K∗(τI −
A)−1v) = (R + ηS)−2Rv = (R + ηS)−1w. Therefore, the real part of the equation
K∗Ku = K∗(τI − A)−1v is given by −M�(u) = −B−1w, from which it follows that
uR = �(u).

The original implementation in [1] provided an optimal parameter τ for each
shifted system to be solved, yielding a different acceleration matrix (τI − A)−1 for
each pole. The authors suggested using τ = τ(ξj) = |ξj |, for A − ξjI having definite
symmetric real part. This condition is not satisfied in our case, since �(ξj) may be
either positive or negative. In the next section we show how to select a single τ for all
systems, so as to lower the computational costs.

A completely different preconditioning strategy could also be adopted. The use of
an optimal preconditioner (τI−A) with τ = τ(ξ) would be feasible if it were possible
to update the factorization for different shifts without recomputing the factors from
scratch; see the results in [6] in this direction for linear system preconditioning.

4.1. Selecting the acceleration parameter. In this section we derive a single
quasi-optimal positive parameter τ , from which, according to the relation τ = ξR+ηξI ,
a different η follows for each system in (4.3). Therefore, while M differs for each shifted
system, the matrix B = τI −A is the same for all shifts.
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Proposition 4.1 shows that M is symmetric and negative definite for any η > 0.
Similar conclusions were derived in [1, Remark 1]. The next proposition provides sharp
bounds for the condition number of M with no further hypotheses on A− ξI.

Proposition 4.2. Assume that the hypotheses of Proposition 4.1 hold and that
τ > max{0,�(ξ)}. Then

(4.4) cond(M) ≤ max

{
|ξ|2
τ2

,
|α− ξ|2
(α− τ)2

}
|τ − ξ|2

ξ2
I

.

Moreover, if it also holds that τ ≤ |ξ|, then |α−ξ|2
(α−τ)2 ≤ |ξ|2

τ2 , and hence

(4.5) cond(M) ≤ |ξ|2
ξ2
I

|τ − ξ|2
τ2

.

Proof. Writing −M = (R + ηS)−2(R2 + S2) = (R− ηξII)
−2(R2 + ξ2

I I), we get

spec(−M) =

{
(λ− ξR)2 + ξ2

I

(λ− τ)2

∣∣∣∣λ ∈ spec(A)

}
.

For λ ∈ [α, 0], let μ ∈ spec(−M), μ = g(λ) = λ2−2λξR+|ξ|2
(λ−τ)2 . We have

g′(λ) = 2
λ(ξR − τ) + τξR − |ξ|2

(λ− τ)3
= 0 ⇔ λ̂ :=

τξR − |ξ|2
τ − ξR

.

Since τ > ξR, it holds that g′(λ) > 0 only for λ > λ̂; hence

g(λ̂) =
ξ2
I

|τ − ξ|2 ≤ μ ∀μ ∈ spec(−M).(4.6)

To derive an upper bound, we notice that, since λ̂ is the only critical point and it is
associated with a minimum, the maximum of g in [α, 0] is given by max{g(α), g(0)}.
Collecting this bound and (4.6), the bound (4.4) for cond(M) follows.

We next assume that τ ≤ |ξ| holds for all poles ξ. We write

g(α) − g(0) =
α2(τ2 − |ξ|2) − 2ατ(ξRτ − |ξ|2)

τ2(τ − α)2
.

For τ ≤ |ξ| the first addend in the numerator of the last expression is negative. For
the second addend, we separately treat the cases of positive and negative pole’s real
part. If ξR < 0, then the second addend gives −2ατ(ξRτ − |ξ|2) ≤ 0. If ξR > 0,
then we can get −2ατ(ξRτ − |ξ|2) ≤ −2ατ(τ2 − |ξ|2) ≤ 0. We have thus shown that
g(α) − g(0) ≤ 0, which completes the proof.

The bound in (4.4) may be rather sharp. Its sharpness depends on whether the
extremes of the function g defined in the proof are attained. Table 4.1 reports the
bound in (4.4) for the 125 × 125 matrix obtained by the discretization of the three-
dimensional (3D) Laplacian with homogeneous boundary conditions, shifted so as to
have zero largest eigenvalue. The poles correspond to the Chebyshev rational approx-
imation of degree ν = 14. We used τopt = minj=1,...,ν |ξj | = 5.7485; see below for an
explanation of this choice.
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Table 4.1

Condition number of M = M(ξj) and its upper bound in (4.4), as the poles vary.

ξj (ν = 14) cond(M) Estim. ξj (ν = 14) cond(M) Estim.
-8.8978 + 16.631i 19.115 19.115 -3.7033 + 13.656i 8.960 8.960
-0.2087 + 10.991i 4.717 4.731 2.2698 + 8.4617i 2.701 2.715
3.9934 + 6.0048i 1.700 1.708 5.0893 + 3.5888i 1.212 1.213
5.6231 + 1.1941i 1.009 1.011

To derive a single parameter τ for all poles ξ, we study the bound in (4.5),
which does not depend on the spectrum of A. We will see that for the Chebyshev
approximation it is possible to derive a single parameter that satisfies τ ≤ |ξ|.

Let Wξ(τ) = |τ−ξ|2
τ2 be the part of the upper bound in (4.5) that depends on τ .

It can be verified that Wξ(τ)′ = − 2
τ3 (−τ�(ξ) + |ξ|2), so that

Wξ(τ)′ = 0 ⇔ τ∗(ξ) = �(ξ) +

(ξ)2

�(ξ)
=

|ξ|2
�(ξ)

.

If �(ξ) < 0, then Wξ(τ∗) is a maximum and τ∗(ξ) is negative. We thus restrict our
attention to the poles with positive real parts.3 Moreover, we observe that, for τ > τ∗
and �(ξ) < 0, the function Wξ is decreasing, so that the larger τ , the smaller the
bound for �(ξ) < 0. We then recall that for (4.5) to hold, the selected parameter τ
must satisfy

�(ξ) ≤ τ ≤ |ξ| ∀ξ.

Let the poles be sorted as �(ξ1) ≤ · · · ≤ �(ξν). Then τ∗(ξν) ≥ �(ξj) for j ≤ ν, and
we define

(4.7) τopt := min

{
min

j=1,...,ν
|ξj |, τ∗(ξν)

}
.

For the Chebyshev poles it holds that minj=1,...,ν |ξj | = |ξν | so that

τopt = |ξν |.

In Figure 4.1 we report the total number of conjugate gradient iterations required
by the method to solve all systems MuR = ŵ (see Algorithm AK), for different values
of the parameter τ ∈ [0, 7]. The data are as in Example 5.1 and ν = 8. The symbol “*”
indicates the number of iterations for the choice τ = τopt, showing the high quality of
the a priori selected parameter.

The analysis above conforms with the multiple choice in [1], although in our
case extremely fast convergence cannot be achieved for all shifted systems. It is also
interesting that, as opposed to the shift-invert procedure, the pole with the smallest
modulo is selected as the optimal parameter.

4.2. Implementation details. The real-valued method for approximating y =
exp(A)v can be summarized as follows. For simplicity and without loss of generality,
we take here a rational function of even degree. For odd degree rational approximation,
the real shifted system corresponding to the real pole can be solved explicitly without
resorting to the method discussed previously.

3We recall that in the case of Chebyshev approximation, poles are used with the opposite sign.
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Fig. 4.1. Total number of iterations for the variant of the Axelsson–Kucherov method, as a
function of the parameter τ . The symbol “*” refers to the number of iterations for τ = τopt.

Algorithm AK.

Given A, v, ξ1, . . . , ξν , ω1, . . . , ων

(i) Choose a parameter τ > 0.

(ii) Set B = τI −A; w1 = B−1v;w2 = B−1w1.

(iii) For each pole ξj = ξR + ıξI , j = 1, 3, 5, . . . , ν − 1:

– Solve MuR = ŵ with M = −I + 2(τ − ξR)B−1 − |τ − ξ|2B−2

and ŵ = +w1 − (τ − ξR)w2.

– Compute uI = 1
ξI

(−AuR + ξRuR + v).

– Set xj = uR + ıuI .

(iv) Compute yAK = ω0v + 2

ν−1∑
j=1

j odd

�(ωjxj).

As already mentioned, the solution of MuR = ŵ is performed iteratively, as M
should not be explicitly computed but only applied in products such as y = Mx, as
is the case in conjugate gradient methods. Each matrix-vector multiplication with M
requires solving two systems with B = τI −A, and this is related to the fact that M
is the coefficient matrix of the normal equation.

The final attainable accuracy of the overall computation depends primarily on the
rational function used, but also on the accuracy with which the linear systems of step
(iii) are solved. This requires the stopping tolerance to be smaller than the accuracy
requested; in our experiments we noticed that tol = 10−ν−2 delivered a sufficiently
accurate final solution to the exponential. No further study was attempted to refine
this value.

We consider solving systems with B with both a direct and an iterative method.
In the former case, the cost of factorizing the single matrix B is performed once for
all systems. This provides significant computational savings over the original method
in [1], a sample of which is reported in Table 4.2. In the table we compare the original
method, where an optimal B = B(τ) is determined and factorized for each pole, with
Algorithm AK, where a single suboptimal B is computed and factorized at step (ii)
of the algorithm. The numbers show that the new strategy improves performance,
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Table 4.2

Comparison of the original method in [1] and Algorithm AK for Example 5.1 in section 5.
Direct methods are used to solve the linear systems.

Original method Algorithm AK
n tol time (# its) time (# its)

10−5 0.02 (10) 0.02 ( 11)
125 10−8 0.04 (23) 0.23 ( 32)

10−11 0.05 (40) 0.05 ( 61)
10−14 0.07 (69) 0.09(105)

10−5 1.59 (11) 1.31 ( 11)
3375 10−8 2.92 (25) 2.23 ( 28)

10−11 4.80 (46) 4.08 ( 53)
10−14 6.87 (72) 5.97 ( 85)

10−5 30.42 (11) 22.14 ( 11)
15625 10−8 55.08 (25) 31.77 ( 27)

10−11 84.32 (46) 54.90 ( 51)
10−14 119.97 (74) 77.73 ( 84)

Table 4.3

Problems of section 5. CPU time of Algorithm AK when different iterative schemes are used
to solve with B = τI −A.

n tol AK+Variant AK+CG AK+PCG
Example 5.1

10−5 0.02 0.04 0.05
125 10−8 0.04 0.07 0.08

10−11 0.08 0.15 0.17
10−14 0.15 0.29 0.32

10−5 0.42 0.65 1.22
3375 10−8 0.77 1.75 2.91

10−11 1.73 3.88 6.07
10−14 2.81 6.69 11.11

10−5 3.20 4.57 8.61
15625 10−8 5.88 13.31 21.21

10−11 13.42 28.07 44.51
10−14 22.10 52.51 83.22

Example 5.2

10−5 0.68 1.38 1.10
2500 10−8 1.69 4.02 3.01

10−11 3.43 8.32 8.46
10−14 5.86 15.70 12.58

10−5 3.67 9.38 7.69
10000 10−8 8.60 28.54 22.34

10−11 17.50 61.85 47.12
10−14 29.54 122.99 89.27

especially on large problems, while the total number of iterations does not signifi-
cantly grow, compared to the optimal shift selection in [1]. The results in the table
were obtained by using a direct method for solving the involved inner linear systems.
Additional numerical experiments, not reported here, with iterative solves confirmed
the superiority of our new approach even in this inner-outer setting.

In the case an iterative solver is used, one is faced with the problem of efficiently
solving two systems with B at each iteration of the solver with M . By exploiting
the positive definiteness of B, we consider the following alternatives: (a) two calls to
the conjugate gradients in sequence; (b) two calls to preconditioned CGs in sequence;
(c) one call to a variant of the CG method proposed by van der Vorst in [43] to
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simultaneously solve for B and B2 with a single recurrence. The CPU times obtained
for the problems of Examples 5.1 and 5.2 are reported in Table 4.3.

The numbers show that the variant that simultaneously approximates the systems
with B and B2 is faster than both the standard CG method and its preconditioned
version. It is important to notice that in the approach proposed in [43] precondi-
tioning is not applicable; nonetheless, its performance is superior to that of standard
preconditioned CG applied twice. We should mention that when using the approach
in [43], one could employ a different (optimal) B for each shifted system at no addi-
tional cost. We decided to maintain Algorithm AK for consistency with the case of
the direct solves.

5. Numerical experiments. In this section we report on our numerical expe-
rience with the discussed methods, which we summarize as follows:

• Partial fraction expansion (PFE). Computation of (2.1) by explicitly solving
each complex symmetric system. Systems corresponding to conjugate pairs
are coupled.

• Standard Lanczos. Classical Lanczos approach described in section 2; see,
e.g., [34].

• Axelsson–Kucherov (AK). Variant of method by Axelsson and Kucherov des-
cribed in section 4.

• Shift-invert Lanczos (SI). Acceleration procedure described in section 3 [41].
When using methods that explicitly rely on the partial fraction expansion, namely

PFE and AK, the final accuracy influences the number of terms in the expansion, and
thus the number of shifted systems to be solved. In our implementation of the shift-
invert procedure, the parameter selection is also guided by the required accuracy; cf.
Table 3.3. In general, this is not strictly necessary, and one could choose σ as the
optimal parameter associated with an approximation of large degree, say ν = 14.

Since the error norm cannot be explicitly monitored, stopping criteria were intro-
duced as discussed in previous sections. In the small examples, however, we computed
the actual error and verified that a satisfactory tolerance was reached, achieving the
required order of magnitude for the absolute error norm. It should be mentioned that
the solution norm influences the stopping criterion. Indeed, depending on the spec-
trum of A, the vector exp(A)v may have a very small norm, which makes a loose
stopping tolerance completely useless, yielding an approximate solution with no digit
accuracy. In all problems considered, the vector exp(tA)v with t = 0.1 had a norm
not smaller than 10−4.

All methods except the standard Lanczos procedure require solving real or com-
plex shifted systems. In all of these cases, such a step employs over 95% of the total
computational efforts, so that it is really the only bottleneck of these methods. In the
next two subsections we report results when solving these systems by either a direct
or an iterative method, yielding in this latter case an inner-outer procedure.

All numerical experiments of this section were performed in MATLAB [28], ver-
sion 7.0.1 (R14-SP1), and CPU timings were obtained with the function cputime.
We like to mention that different CPU time performance was observed when using
different MATLAB versions or releases, which in some cases significantly affected the
comparison among the methods.

5.1. Using direct methods. In this section, we report our experiments when a
direct method is used to solve with (A−ξjI) or (τI−A). When dealing with the sym-
metric and positive definite matrix (τI−A), the Cholesky factorization is performed,
after a reordering of the matrix entries (MATLAB function symamd). Permutation sig-
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nificantly improves the overall cost of solving with the shifted matrix (both the factor-
ization and the solution phases). In the following, the matrix is always reordered, and
the reported timings include the factorization cost. The LU decomposition without
pivoting the complex symmetric matrix (A− ξjI) yields a (symmetric) LDLT factor-
ization. After reordering, the number of (now complex) nonzero entries is the same as
for the real factor. We emphasize, however, that in the case of the PFE, the complex
system solutions were carried out by means of the MATLAB backslash operation “\”,
which is significantly faster than the two-step procedure of first factorizing the matrix
and then solving with the factors.

In all tables, the number of iterations for standard Lanczos and for SI coincides
with the dimension of the generated Krylov subspace. For AK, the number in paren-
theses is the global number of iterations performed to solve all shifted systems with
M = M(ξj). The stopping tolerance tol = 10−ν is fixed for all codes. Methods employ-
ing the rational function approximation thus use the corresponding function degree
ν.

Example 5.1. We consider the n×n matrix stemming from the finite difference dis-
cretization of the 3D Laplace operator on the unit cube and Dirichlet homogeneous
boundary conditions, with eigenvalues in [−179.14,−12.862] for n = 125. Different
discretization refinements are considered. These data represent a typical benchmark
for the approximate evaluation of the matrix exponential in PDE contexts. We ap-
proximate the vector exp(tA)v, with t = 0.1 and v a normalized normally distributed
random vector. The elapsed time and the number of iterations (in parentheses) for
various problem dimensions and final tolerances are reported in Table 5.1.

Table 5.1

Example 5.1. CPU time (and number of iterations in parentheses when appropriate) for all
methods when systems with shifted matrices are solved with a direct method. Different dimension
problems and various stopping tolerances are reported.

Standard PFE AK SI
n tol Lanczos

10−5 0.01 (13) 0.01 0.02 (11) 0.01 ( 7)
125 10−8 0.01 (18) 0.01 0.03 (32) 0.01 (11)

10−11 0.01 (22) 0.03 0.05 (61) 0.01 (14)
10−14 0.01 (24) 0.03 0.08(105) 0.01 (17)

10−5 0.14 (47) 1.32 1.33 (11) 0.48 ( 8)
3375 10−8 0.21 (55) 2.13 2.23 (28) 0.65 (13)

10−11 0.35 (67) 2.88 4.07 (53) 0.85 (19)
10−14 0.52 (77) 3.70 5.94 (85) 1.06 (25)

10−5 2.69 ( 89) 30.35 22.05 (11) 11.49 (10)
15625 10−8 2.95 ( 93) 51.61 31.60 (27) 11.88 (11)

10−11 4.76 (113) 69.03 54.68 (51) 14.22 (17)
10−14 7.25 (130) 90.20 77.31 (84) 16.96 (24)

Several comments are in order. First, we observe that explicitly dealing with the
PFE by means of direct solvers becomes significantly more expensive, especially for
the large size matrix. Moreover, all methods behave quite consistently as the problem
dimension increases, and the performance ranking is already clear for n = 3375.

Second, on this problem, standard Lanczos is the most efficient approach, as far as
CPU time is concerned; the shift-invert procedure shows the second best performance.
Memory requirements for standard Lanczos, however, become increasingly high as the
number of iterations increases, since the whole basis needs to be stored. This problem
may be overcome by resorting to a two-pass strategy. In the first pass, the Lanczos
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basis is not stored, but only the projected solution is; in the second pass, the Lanczos
basis vectors are recomputed one at a time to form the final solution; see [19] for
more details. This approach drastically reduces memory needs, but requires almost
twice the time to complete the computation, making the performance of the method
more comparable to that of SI. For the latter method, we observe that the number of
iterations does not grow (in fact, it decreases) as the problem dimension increases for
the same required tolerance; see, e.g., [30], [41] for a discussion.

Third, the AK approach does not perform satisfactorily, as compared to the
Lanczos methods, although its memory requirements are roughly limited to the
Cholesky factor and to a few CG vectors. The number of iterations does not grow
significantly as the problem dimension increases for a fixed final tolerance. We should
mention that AK improves the performance of the original PFE method on the large
matrix. This seems to indicate that AK may be advantageous for approximating the
action of other matrix rational functions for which the standard Lanczos procedure
does not show superlinear convergence. Moreover, the method’s limitations are less
apparent when a loose final accuracy is required, which is precisely the context sug-
gested in the original paper [1].

In summary, this example shows that for moderately large spectra, the standard
Lanczos approach is still competitive, and the analyzed acceleration procedures do
not seem to significantly improve its performance. The next example faces a more
extreme case for which using an acceleration procedure is mandatory.

Example 5.2. In this example we approximate exp(tA)v, t = 0.1, where the n×n
matrix A stems from the finite difference discretization of the 2D operator

L(u) = (a(x, y)ux)x + (b(x, y)uy)y, a(x, y) = 1 + y − x, b(x, y) = 1 + x + x2

on the unit square, with Dirichlet homogeneous boundary conditions [41]. Two grid
refinements have been considered. The spectrum is contained in the interval [−35424,
−25.256] for the smaller problem. The vector v is taken as in the previous example.
The CPU time and number of iterations, when appropriate, are reported in Table 5.2.
This example has special features that make it very different compared to the previous
one. In particular, ‖A‖ and the spectral range are significantly large, penalizing the
standard Lanczos method. Moreover, the finite difference discretization of the 2D
operator generates a sparser matrix than in Example 5.1, allowing cheaper system
solves. We can thus predict especially good performance of all acceleration techniques,
including PFE, compared to standard Lanczos. The results in Table 5.2 fully confirm
these considerations.

5.2. Using iterative methods. The use of iterative methods for solving the
large linear systems provides a significantly different picture from what is shown in
the previous section. In the case of AK and SI, the resulting algorithm is an inner-
outer procedure. We next compare the standard Lanczos method with the following
iterative procedures:

• PFE+QMR. Partial fraction expansion where each complex shifted system is
solved by a preconditioned simplified QMR method [18]. The preconditioner
is a complex symmetric LDLT incomplete factorization of the shifted matrix,
obtained by a simple modification of the factors computed with the MAT-
LAB luinc factorization with dropping tolerance equal to 10−2. The system
stopping threshold is 10−ν .

• SI+PCG. Shift-invert Lanczos where systems with I − σA are solved with
preconditioned conjugate gradients. The MATLAB cholinc function with
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Table 5.2

Example 5.2. CPU time (and the number of iterations in parentheses when appropriate) for all
methods when systems with shifted matrices are solved with a direct method. Different dimension
problems and various stopping tolerances are reported.

Standard PFE AK SI
n tol Lanczos

10−5 16 (194) 0.22 0.29 (11) 0.12 (10)
2500 10−8 18 (200) 0.33 0.50 (27) 0.13 (11)

10−11 53 (242) 0.44 0.92 (51) 0.20 (19)
10−14 111 (280) 0.53 1.39 (84) 0.24 (24)

10−5 615 (406) 1.24 1.39 ( 9) 0.67 (11)
10000 10−8 610 (406) 1.87 2.53 (25) 0.66 (11)

10−11 1221 (484) 2.55 4.71 (47) 0.94 (17)
10−14 - (> 500) 3.20 7.49 (82) 1.24 (23)

dropping tolerance 10−2 is used to generate the preconditioner. The inner
system stopping threshold is 10−ν .

• AK+Variant. We report the results of Table 4.3 of the variant of the Axelsson–
Kucherov method, which solves systems with B = τI−A and B2 with a single
iterative method. If occurring, the system with the real pole is solved with
preconditioned conjugate gradients as in SI+PCG. The inner system stopping
threshold is 10−ν−3.

In SI+PCG and AK+Variant, the shifted matrix was reordered with a Cuthill–
McKee permutation (MATLAB function symrcm) before building the preconditioner,
whereas minimum degree reordering was used for PFE+QMR; see [5] for a comprehen-
sive discussion of various permutations related to preconditioning. We should mention
that, in SI, it is not necessary to solve the inner system at high accuracy but that,
on the contrary, the accuracy can be relaxed as convergence takes place [41], [38]. We
postpone the exploration of this alternative to the next section, where enhancement
strategies for the PFE+QMR algorithm are also devised.

The CPU times for the two test problems are reported in Table 5.3 (the results
for n = 125 are omitted). For SI+PCG and AK+Variant, the total number of outer
iterations and the average number of inner iterations are shown. For PFE+QMR, the
average number of iterations is also shown in parentheses. For ease of comparison, we
also reproduce the CPU time of standard Lanczos from Tables 5.1–5.2.

Compared to the previous results that used a direct solver for the shifted systems,
we can see that the overall costs have significantly decreased for all methods except SI.
In the case of the 3D Laplace operator (Example 5.1), the standard Lanczos method
remains the method of choice even after a two-step procedure, although the differ-
ences are far less prominent. For the 2D operator the solution of the shifted systems in
(1.1) with an appropriately preconditioned iterative solver yields the most competitive
approach, even for the small size problem. It appears that, for these examples, the
two preconditioners (A − τI), corresponding to SI and the incomplete LDLT factor-
ization for PFE, show comparable performance in approximating the PFE, in spite
of stemming from rather different approximation strategies.

6. Further tests. In this section we explore performance enhancements for the
two methods SI+PCG and PFE+QMR. All experiments in this section were carried
out on one processor of a Sun Fire V40z with 2390.895 MHz and 16 GB RAM, running
MATLAB 7.4. We first discuss some natural implementation improvements for both
algorithms and then analyze their performance on a time-stepping problem, so as to
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Table 5.3

Approximation when shifted systems are solved with iterative methods.

Standard PFE+ SI+ AK+
Lanczos QMR PCG Variant

n tol (avg its) (out/avg in) (out/avg in)
Example 5.1

10−5 0.14 0.67 ( 8) 0.44 ( 8/7) 0.42 (20/6)
3375 10−8 0.21 1.15 (11) 0.81 (13/9) 0.77 (30/7)

10−11 0.35 1.75 (14) 1.27 (19/10) 1.73 (69/11)
10−14 0.52 2.30 (16) 1.94 (25/12) 2.81(89/126)

10−5 2.69 5.29 (11) 4.05 (10/10) 3.20 (23/7)
15625 10−8 2.95 9.36 (17) 5.37 (11/13) 5.88 (29/7)

10−11 4.76 14.29 (22) 8.87 (17/15) 13.42 (74/12)
10−14 7.25 19.52 (27) 14.39 (24/18) 22.10 (86/12)

Example 5.2

10−5 16 0.36 (13) 0.54 (10/12) 0.68 (25/8)
2500 10−8 18 0.68 (18) 0.75 (11/16) 1.69 (29/7)

10−11 53 1.09 (22) 1.46 (19/18) 3.43 (76/13)
10−14 111 1.54 (26) 2.12 (24/21) 5.86 (87/12)

10−5 615 2.46 (24) 4.4 (11/21) 3.6 (32/10)
10000 10−8 610 4.92 (35) 5.5 (11/27) 8.6 (27/ 7)

10−11 1221 8.17 (43) 9.8 (17/32) 17.5 (92/15)
10−14 - 11.74 (51) 15.4 (13/37) 29.5 (95/13)

provide a more realistic framework.
As already mentioned, the inner-outer version of SI may be implemented so as to

relax the accuracy with which the inner system is solved at each Lanczos iteration.
Given a fixed tolerance ε > 0, in [41, (5.4)] the following stopping tolerance ηj for the
inner system was proposed:

ηj =
ε

‖ej−1‖ + ε
,

where ej−1 is the error in the approximation of the exponential operator at the previ-
ous iteration, j − 1. In practice, ‖ej−1‖ is replaced by an estimate; in our implemen-
tation we used the estimate associated with (4.9) in [41], and we fixed ε to be equal
to the initial inner tolerance. Clearly, ηj increases towards one as ‖ej−1‖ → 0, so that
the inner solver may be stopped earlier as the outer iteration converges, thus hope-
fully decreasing the overall computational costs. We refer to [38], [42] for a general
discussion on relaxation strategies.

A straightforward enhancement for the partial fraction evaluation (hereafter
PFE+QMR+mono) is to compute a single preconditioner, and then to apply it to all
systems. This strategy makes the SI+PCG and the PFE+QMR methods even closer
to each other, since we have shown that SI+PCG may be viewed as a special way of
preconditioning the PFE systems with a single, parameter dependent matrix. Here,
we take as a single preconditioner of PFE+QMR+mono the factor of the incomplete
Cholesky factorization (MATLAB 7.4 function cholinc) with dropping tolerance 10−2

of the shifted complex symmetric matrix A−ξ1I, where ξ1 is the pole with the largest
imaginary part, which provided the best performance. Reordering with symamd of
the matrix A (and of I) was performed before calling cholinc. The results obtained
for the problem of Example 5.2 are reported in Table 6.1. The original methods
PFE+QMR and SI+PCG, together with their enhanced versions, PFE+QMR+mono
and SI+PCG+relax, are displayed. For SI+PCG+relax, the initial inner tolerance was
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Table 6.1

Example 5.2. CPU time and the number of iterations for the original PFE+QMR and SI+PCG
methods and for their enhanced versions.

PFE+QMR PFE+QMR SI+PCG SI+PCG
mono relax

n tol (avg its) (avg its) (out/avg in) (out/avg in)

2500 10−5 0.20 (12) 0.18 (12) 0.15 ( 9/ 7) 0.29 (10/11)
10−8 0.27 (16) 0.32 (16) 0.27 (15/ 9) 0.32 (11/15)
10−11 0.47 (20) 0.53 (20) 0.42 (21/10) 0.61 (19/17)
10−14 0.63 (24) 0.73 (23) 0.58 (26/12) 0.90 (24/21)

10000 10−5 1.31 (22) 1.37 (22) 1.18 ( 8/14) 2.50 (11/21)
10−8 2.19 (31) 2.67 (32) 2.22 (14/16) 3.05 (11/27)
10−11 3.99 (39) 4.32 (39) 3.65 (20/18) 5.44 (17/31)
10−14 5.29 (45) 6.14 (46) 5.33 (26/20) 8.49 (23/37)

Table 6.2

Parabolic problem (cf. (6.1)). CPU times of standard Lanczos and of enhanced accelerated
methods to approximate the solution at T = 0.1, for different time step lengths δt and different
number of nodes nx, ny in the discretization of the domain (0, 1)2.

Grid Final Standard SI+PCG PFE+QMR
(nx, ny) accuracy δt Lanczos relax mono

(50,50) 10−4 5.0e-03 0.28 0.76 1.59
1.0e-02 0.30 0.54 0.89
5.0e-02 1.17 0.24 0.27
1.0e-01 2.66 0.17 0.15

10−6 5.0e-03 0.32 1.01 2.99
1.0e-02 0.42 0.70 1.59
5.0e-02 2.43 0.36 0.42
1.0e-01 6.61 0.27 0.24

(90,90) 10−4 5.0e-03 1.60 5.23 7.92
1.0e-02 2.25 3.73 5.03
5.0e-02 18.08 1.74 1.58
1.0e-01 64.14 1.28 0.93

10−6 5.0e-03 2.30 6.89 14.71
1.0e-02 3.59 4.96 8.75
5.0e-02 50.03 2.58 2.61
1.0e-01 181.16 1.91 1.54

(120,120) 10−4 5.0e-03 5.07 12.58 19.82
1.0e-02 9.08 8.76 13.00
5.0e-02 231.26 4.02 3.76
1.0e-01 883.69 3.10 2.10

10−6 5.0e-03 6.75 16.69 35.06
1.0e-02 11.84 12.15 21.42
5.0e-02 258.84 6.08 6.50
1.0e-01 883.32 4.79 3.67

equal to the outer tolerance. The improvement over the corresponding original method
is significant, reaching almost 50% for SI+PCG+relax in some instances. Note that,
on this problem, the single preconditioned PFE+QMR+mono is very effective for all
systems, allowing for the same average number of iterations as of the original method.
In bold are the best timings, which show that the two different enhanced precondi-
tioned techniques, PFE+QMR+mono and SI+PCG+relax, behave quite similarly.
In general, timings are so close, the difference being within the MATLAB timings
fluctuation that it is difficult to depict a clear winner.
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We next consider the discretization of the following parabolic equation in two
spatial dimensions [41]:

∂

∂t
u = L(u), (x, y) ∈ (0, 1)2, 0 ≤ t ≤ T,(6.1)

where the solution u = u(t, x, y) is subject to the initial condition u(0, x, y) = u0(x, y)
and to mixed boundary conditions (b.c.): homogeneous Dirichlet b.c. on the western
and eastern boundaries, and homogeneous Neumann b.c. on the northern and south-
ern boundaries of the domain. The operator L is as in Example 5.2. After standard
centered finite difference space discretization, the solution at t = T is approximated
by a sequence of T/δt applications of exp(δtA) as exp(δtA) · · · exp(δtA)u0, where δt
is the time step length and u0 is the initial vector. We considered different possible
space and time discretizations so as to approximate the exact solution at T = 0.1.
The results of our experiments for δt = 0.005, 0.01, 0.05, 0.1 are reported in Table
6.2; u0 is the normalized vector of all ones. The standard Lanczos and the enhanced
versions of the SI and PFE methods are considered. Different final accuracies were
also used, which are of interest in the context of evolution problems. All inner and
outer stopping thresholds were tuned so as to reach the requested final accuracy.

The acceleration procedures allow the discretization process to take much larger
time steps than with standard Lanczos, to the point that in all examples a single
time step (δt = 0.1) is faster than the best Lanczos timing. This is clearly a welcome
event and is one of the main reasons for using acceleration procedures in the context of
parabolic equations. In addition, we explicitly observe that as the number of time steps
decreases, so does the cost of the acceleration procedures, whereas that of standard
Lanczos becomes unacceptably high due to the increasing value of ‖δtA‖.

In PFE, the common preconditioner is computed once and for all, whereas each
shifted system is solved separately. This is the major remaining drawback of the
enhanced PFE+QMR method when a few time steps are performed, since many
systems need to be solved. On the other hand, SI precisely avoids this step, since
it constructs a single preconditioner that, in the case of a rational function, still
allows one to keep the shifted form of the systems, so that all systems can be solved
simultaneously with a single SI iteration as in (3.6); see also [19]. Albeit limited,
our numerical experiments confirm that the relaxed SI method is able to efficiently
solve the parabolic system when few time steps are taken, compared to standard
Lanczos. As already noticed in the previous example, a single time step makes the
generic enhanced PFE procedure more competitive. Due to these favorable results
of the PFE+QMR method, it would be interesting to further explore enhancement
techniques for this approach, such as those in [7].

7. Conclusions. In this paper we have presented a common framework for some
recently developed acceleration techniques for approximating the action of the matrix
exponential to a vector. This framework is based on the rational function approxi-
mation to the exponential, which allows one to transform the approximation problem
into that of solving several algebraic linear systems. It is thus natural to compare the
performance of the acceleration techniques with that of methods such as PFE that
explicitly solve these systems. We can summarize our theoretical and experimental
findings as follows:

(i) Whenever the exponential is replaced by its rational function approximation,
we have shown that the analyzed methods SI and AK are simply different ways of
preconditioning the given linear systems.
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(ii) Our framework allowed us to derive an a priori fully algebraic and iteration-
free selection of the involved single parameter in both methods.

(iii) We have performed a numerical comparison among various acceleration meth-
ods, including their enhanced versions, thus filling a gap in the current literature. In
our opinion, these experiments provide a new perspective and new insights on when
and which acceleration procedures should be preferred. The experiment on a parabolic
2D problem shows the effectiveness of the enhanced SI and PFE+QMR processes,
allowing the time discretization for truly large iteration steps.

Our findings are in fact quite general. It would be interesting to see whether
similar conclusions can be generalized to other functions for which a rational function
approximation is available; see, e.g., [19]. The case of nonsymmetric A is also very
challenging, since the rational Chebyshev approximation is not optimal in this case.
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DEFLATION AND BALANCING PRECONDITIONERS FOR
KRYLOV SUBSPACE METHODS APPLIED TO

NONSYMMETRIC MATRICES∗

YOGI A. ERLANGGA† AND REINHARD NABBEN†

Abstract. For quite some time, the deflation preconditioner has been proposed and used to
accelerate the convergence of Krylov subspace methods. For symmetric positive definite linear sys-
tems, the convergence of conjugate gradient methods combined with deflation has been analyzed and
compared with other preconditioners, e.g., with the abstract balancing preconditioner [R. Nabben
and C. Vuik, SIAM J. Sci. Comput., 27 (2006), pp. 1742–1759]. In this paper, we extend the con-
vergence analysis to nonsymmetric linear systems in the context of GMRES iteration and compare
it with the abstract nonsymmetric balancing preconditioner. We are able to show that many results
for symmetric positive definite matrices carry over to arbitrary nonsymmetric matrices. First we
establish that the spectra of the preconditioned systems are similar. Moreover, we show that under
certain conditions, the 2-norm of residuals produced by GMRES combined with deflation is never
larger than the 2-norm of residuals produced by GMRES combined with the abstract balancing pre-
conditioner. Numerical experiments are done to nonsymmetric linear systems arising from a finite
volume discretization of the convection-diffusion equation, and the numerical results confirm our
theoretical results.

Key words. deflation, balancing preconditioner, nonsymmetric matrix, GMRES, convection-
diffusion
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1. Introduction. For a linear system

Au = b, A ∈ R
n×n,(1.1)

where A is a large but sparse nonsymmetric, nonsingular matrix, GMRES [23], among
others, is a popular method to iteratively solve it. Such a system is encountered, for
example, when a discretization is applied to the steady convection-diffusion equa-
tion. For starting vector u0, GMRES constructs a sequence of vectors (called Arnoldi
vectors) using Arnoldi orthogonalization [2], which forms the basis for the Krylov
subspace, i.e., the subspace

Kk(A, r0) = span{r0, Ar0, A
2r0, . . . , A

k−1r0}, r0 = b−Au0.(1.2)

The approximate solution at the kth iteration, denoted by uk, is then contained in
the affine subspace u0 + Kk(A, r0), i.e.,

uk ∈ u0 + Kk(A, r0).(1.3)

In case of GMRES, uk minimizes the 2-norm of the residual over the subspace.
In many applications, however, GMRES exhibits slow convergence. Since all

Arnoldi vectors are needed during orthogonalization, slow convergence increases the
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number of Arnoldi vectors being used and stored in the computer memory. This
makes GMRES often impractical. A simple remedy to the memory requirement is
by restarting GMRES after j iterations, as already suggested in [23], denoted by
GMRES(j) throughout. The suitable value of j, the restarting parameter, is generally
not known, and an inappropriate value of j may lead GMRES to stagnation.

Morgan [15] proposed a remedy in the context of GMRES(j) by reusing informa-
tion already obtained during the first j iterations. Vectors related to the converged
eigenvectors available during the first j GMRES iterations are added to the subspace
before restarting; thus, the subspace is augmented. Adding these vectors removes (or
deflates) the corresponding (small) eigenvalues from the spectrum. Related work can
also be found in [11, 9, 4]. See also [8] for a unified overview on this class of meth-
ods. Recently, these deflation techniques have been successfully used in the numerical
solution of several practical problems; see, e.g., [6, 1, 5, 20, 12].

A similar idea has also been used in the context of preconditioned conjugate
gradient (CG) methods for symmetric positive definite (spd) systems; see, e.g., [18, 10].
As the convergence of CG is related to the condition number of the spd linear system
to solve, deflation is used to improve the condition number by shifting some of the
smallest eigenvalues to zero. Since the corresponding eigenvectors no longer have
components during the iterations [18], CG will converge faster. Here, we can speak of
the effective condition number after deflation, which is never larger than the original
condition number. In [16, 17], the deflation-based preconditioner is analyzed and
compared with the abstract form of the coarse-grid correction preconditioner [19] and
the abstract form of the balancing preconditioner [13]. In theory, the deflation vectors
are not necessarily invariant vectors and, more generally, can also be related to the
prolongation matrix in the multigrid language.

It is somewhat worthwhile to extend the analysis to nonsymmetric systems. This
is the aim of this paper. In addition, we compare deflation with the abstract balancing
preconditioner as well. For this purpose, we define the abstract deflation precondi-
tioners as

PD = I −AZE−1Y T , QD = I − ZE−1Y TA, E = Y TAZ,(1.4)

where PD and QD are related to the left and right preconditioners, respectively. One
can easily show that PD and QD are projectors, i.e., P 2

D = PD and Q2
D = QD. Here,

Z and Y are suitable deflation subspaces of dimension n × r, where r � n, and
hence E is presumably easy to compute and invert. Note that Z and Y are arbitrary
matrices. We do not assume that their columns are eigenvectors or approximations
of eigenvectors.

In deflation, the solution of (1.1) is computed as follows. We decompose the
solution u into

u = (I −QD)u + QDu = ZE−1Y T b + QDu.(1.5)

As the first term on the right-hand side is easily computed, the factor QDu is then
obtained by computing ũ from

PDAũ = PDb(1.6)

and then premultiplying it by QD. To solve (1.6) we apply a Krylov subspace method
for nonsymmetric systems, e.g., GMRES or Bi-CGSTAB [25]. In case of (1.6), how-
ever, the system is singular. A singular system can still, however, be solved as long
as it is consistent (i.e., b ∈ R(A)). This is actually the case for (1.6) because the
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same projection is applied to both sides. Furthermore, Brown and Walker [3] noted
that the least-squares problems in GMRES will give a solution without breakdown if
N (A) = N (AT ) or if N (A) ∩R(A) = {0}, even though N (A) �= N (AT ).

For symmetric systems the balancing preconditioner was proposed by Mandel [13].
It is used in domain decomposition methods and has been analyzed by several other
authors in [14, 7, 22, 21, 24]. For nonsymmetric systems we consider the abstract
balancing preconditioner of the form

PB = QDM−1PD + ZE−1Y T ,(1.7)

with M a nonsingular and possibly nonsymmetric preconditioning matrix. For spd
cases (QD is replaced by PT

D in (1.7)), this preconditioner has already been com-
pared with deflation in [17]. With respect to preconditioning with M , the deflated
preconditioning system can be written as

M−1PDAu = M−1PDb.(1.8)

As mentioned above, in general some assumptions have to be satisfied to guarantee
that GMRES will converge for nonsingular systems. However, we will prove that
GMRES applied to (1.6) and (1.8) will converge without any further assumption.

We first compare spectral properties of deflation and the balancing precondi-
tioner. We prove that PBA and M−1PDA have the same spectra except for the first
r eigenvalues. With this information, bounds of GMRES convergence can be derived.
These are presented in section 2. In section 3, GMRES residuals for M−1PDA and
PBA are compared. With a special starting vector, a relation between residuals of
GMRES combined with deflation and the abstract balancing preconditioner can be
established for arbitrary full ranked Z and Y . We prove that the preconditioned
residual obtained by using the deflation method is less than or equal to the precondi-
tioned residual obtained by using the abstract balancing method. Numerical examples
are shown in section 4 for the convection-diffusion equation. Finally, conclusions are
drawn in section 5.

2. Spectral properties and GMRES convergence bounds. In this section
we evaluate spectral properties of PDA and their connections with convergence bound
of GMRES, and then compare them with PBA. Before doing so, we recall in the
following lemma some properties related to PD and QD, whose proofs are easily
shown by direct computation.

Lemma 2.1. Let PD and QD be defined as in (1.4). For any Z, Y ∈ R
n×r with

rank r, the following equalities hold:
(i) PDAZ = 0, Y TAQD = 0.
(ii) QDZ = 0, Y TPD = 0.
(iii) PDA = AQD.
Next we present the convergence bound of GMRES for the unpreconditioned

system Au = b due to Saad and Schultz [23], along with its proof.
Assumption 2.2. A ∈ R

n×n is nonsymmetric and diagonalizable, with spectral
decomposition A = XΛX−1. Here, X = [x1 . . . xn] are right eigenvectors of A and
Λ = diag(λ1, . . . , λn), satisfying Axi = λixi, i = 1, . . . , n. The eigenvalues λi are
assumed to be real and nondefective, and 0 < λi < λj for i < j.

Theorem 2.3. Let A satisfy Assumption 2.2. Then, at the kth iteration, GMRES
applied to Au = b with starting vector u0 produces a residual which satisfies the
inequality

‖rk‖2 ≤ κ2(X)εk‖r0‖2,(2.1)
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where κ2(X) = ‖X‖2‖X−1‖2 is the condition number of X, r0 = b−Au0, and

εk = min
p∈Pk,p(0)=1

max
i=1,...,n

|p(λi)| ,(2.2)

with any polynomial p whose degree is not larger than k − 1, and satisfying the con-
straint p(0) = 1.

Proof. Let p be a polynomial of degree no larger than k − 1 with constraint
p(0) = 1, and let u be a vector in Kk associated with the residual b − Au = p(A)r0.
Then, for A = XΛX−1,

‖b−Au‖2 = ‖p(A)r0‖2 = ‖Xp(Λ)X−1r0‖2 ≤ ‖X‖2‖X−1‖2‖‖p(Λ)‖2‖r0‖2.

Since Λ is a diagonal matrix, ‖p(Λ)‖2 = maxi=1,...,n |p(λi)|. Consider now uk, ex-
tracted from Kk but now related to GMRES approximation. Since uk minimizes the
2-norm of the residual over u0 + Kk, then for any polynomial p

‖b−Auk‖2 ≤ ‖b−Au‖2 ≤ ‖X‖2‖X−1‖2‖‖r0‖2 max
i=1,...,n

|p(λi)|.(2.3)

Choosing a polynomial which minimizes the right-hand side, one has

‖b−Auk‖2 ≤ ‖X‖2‖X−1‖2‖‖r0‖2 min
p∈Pk,p(0)=1

max
i=1,...,n

|p(λi)|,

leading to the theorem, with ‖X‖2‖X−1‖2 =: κ2(X).
A further result is obtained by considering the min-max problem above as the

shifted and scaled Chebyshev polynomial in the interval [λ1, λn],

Ĉk(t) =
Ck

(
1 + 2 λ1−t

λn−λ1

)

Ck

(
1 + 2 λ1−γ

λn−λ1

) ,(2.4)

with γ < λ1. In this case, setting γ = 0, the constraint results in

min
p∈Pk,p(0)=1

max
i=1,...,n

|p(λi)| = min
p∈Pk,p(0)=1

max
λ∈[λ1,λn]

|p(λi)| =
1

Ck

(
2 μ
λn−λ1

) ,(2.5)

where μ = (λ1 + λn)/2. As Ck(t) can alternatively be written as

Ck(t) =
1

2

[(
t +

√
t2 − 1

)k

+
(
t +

√
t2 − 1

)−k
]
≥ 1

2

(
t +

√
t2 − 1

)k

,(2.6)

we see, after some manipulations, that Ck(2μ/(λn − λ1)) ≥ 1 − 1/(
√
κ + 1), where

κ = λn/λ1. We then have the following corollary.
Corollary 2.4. Let A be defined as in Assumption 2.2 and let κ := λn/λ1.

After k iterations GMRES produces a residual satisfying the following bound:

‖rk‖2 ≤ 2κ2(X)

(
1 − 2√

κ + 1

)k

‖r0‖2.(2.7)

This convergence bound is similar to the convergence bound of CG, except that
the bound is now represented by the 2-norm of residuals. If A is spd, then κ2(X) =
1. For more general cases, κ2(X) is not known and is too expensive to compute.
Furthermore, κ = λn/λ1 is not the condition number as usually referred to in case of
spd systems. Under Assumption 2.2 we may still, however, associate κ in (2.7) with
the quality of eigenvalues clustering. The smaller the value is, the more clustered the
eigenvalues are.
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2.1. Spectrum of deflation and balancing preconditioners. In this section
we compare spectral properties of PDA and PBA. For generality, we consider the
deflated linear system (1.8), with M any nonsingular and possibly nonsymmetric
matrix. The eigenvalues of A and M−1A are in general not known.

Lemma 2.5. Let A and M be nonsingular. For any full ranked rectangular matri-
ces Z and Y , M−1PDA and PBA have r eigenvalues equal to 0 and 1, respectively.

Proof. For deflation, for any Z ∈ R
n×r, M−1PDAZ = 0 because PDAZ = 0.

Thus, r eigenvalues are equal to 0. By using the definition of PB , we have PBAZ =
QDM−1PDAZ + ZE−1Y TAZ = Z, because Y TAZ = E. In this case, r eigenvalues
are equal to 1.

In both cases, Z = [z1, . . . , zr] are the eigenvectors of M−1PDA and PBA associ-
ated with eigenvalues equal to 0 and 1, respectively.

In Krylov subspace methods, a preconditioner is chosen such that the precondi-
tioned linear system is better conditioned than the original system. With an effective
preconditioner M , we usually have σ(M−1A) �= σ(A), but κ(M−1A) ≤ κ(A). An
explicit relation between σ(M−1A) and σ(A) is generally not known and is often dif-
ficult to determine. This is also the case with M−1PDA. This explicit relation is,
however, not necessary in this paper as our purpose is mainly to compare deflation
and the abstract balancing preconditioner. To result in such a comparison, we need
some intermediate results.

By using Lemma 2.5, we denote the spectrum of M−1PDA by σ(M−1PDA) =
{0, . . . , 0, μr+1, . . . , μn}, where in general μi �= λi, λi ∈ σ(A), r+1 ≤ i ≤ n. Regarding
M−1PDA, we have the following spectral equivalence.

Lemma 2.6. Let A, M , and Y TAZ be nonsingular. Then we obtain

σ(QDM−1PDA) = σ(M−1PDA) = σ(QDM−1A).(2.8)

Proof. We have

σ(QDM−1PDA) = σ(M−1PDAQD) = σ(M−1P 2
DA) = σ(M−1PDA),

which proves the first equality. The second equality is proved in a similar way.
Lemma 2.7. Let A, M , and Y TAZ be nonsingular. Then

σ((QDM−1PD + ZE−1Y T )A) = σ((M−1PD + ZE−1Y T )A).(2.9)

Proof. We note that

(M−1PD + ZE−1Y T )A = M−1P 2
DA + ZE−1Y TA

= M−1PDAQD + ZE−1Y TA

= (M−1PDA− I)QD + I.(2.10)

Hence

λ ∈ σ((M−1PD + ZE−1Y T )A) ⇔ λ = μ + 1 for μ ∈ σ((M−1PDA− I)QD).

However,

σ((M−1PDA− I)QD) = σ(QD(M−1PDA− I)) = σ(QDM−1PDA−QD).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DEFLATION AND BALANCING FOR NONSYMMETRIC MATRICES 689

Thus

σ((M−1PD + ZE−1Y T )A) = σ(QDM−1PDA−QD + I)

= σ(QDM−1PDA + ZE−1Y TA)

= σ((QDM−1PD + ZE−1Y T )A),(2.11)

which proves the lemma.
We then have the following spectral relation between M−1PDA and PBA.
Theorem 2.8. Suppose that the spectrum of M−1PDA is given by

σ(M−1PDA) = {0, . . . , 0, μr+1, . . . , μn}.

Then

σ(PBA) = {1, . . . , 1, μr+1, . . . , μn}.

Conversely, if the spectrum of PBA is given by

σ(PBA) = {1, . . . , 1, μr+1, . . . , μn},

then

σ(M−1PDA) = {0, . . . , 0, μr+1, . . . , μn}.

Proof. For i = 1, . . . , r, PBAZ = QDM−1PDAZ + ZE−1Y TAZ = Z, because
PDAZ = 0. Hence, the eigenvectors of PBAZ which correspond to eigenvalues equal
to 1 are the same as those corresponding to eigenvalues equal to 0 of M−1PDA, i.e.,
Z = [z1 . . . zr].

For r + 1 ≤ i ≤ n, suppose that ṽi satisfies M−1PDAṽi = μiṽi, where μi is the
corresponding eigenvalue. In this case, we have that M−1PDAṽi = M−1P 2

DAṽi =
M−1PDAQDṽi = μiṽi �= 0, implying that QDṽi �= 0 for μi �= 0. Thus,

PBAQDṽi = QDM−1PDAQDṽi + ZE−1Y TAQDṽi = QDM−1P 2
DAṽi

= QDM−1PDAṽi = μiQDṽi.

Hence, for i = r + 1, . . . , n, the eigenvalues of PBA are the same as the eigenvalues of
M−1PDA, with eigenvectors QDṽi.

To prove the second statement, we know that for i = 1, . . . , r, PBAZ = Z, which
gives, by expanding PB , QDM−1PDAZ = 0. Hence, 0 ∈ σ(QDM−1PDA), implying
0 ∈ σ(M−1PDA) due to Lemma 2.6.

For i = r + 1, . . . , n, notice that

PBAṽi = QDM−1PDAṽi + ZE−1Y TAṽi = μiṽi

implies

QDPBAṽi = QDM−1PDAṽi = QDM−1PDAQDṽi = μiQDṽi,

because QDZ = 0. Thus, μi is an eigenvalue of QDM−1PDA. However, due to
Lemma 2.6, it is also an eigenvalue of M−1PDA. This completes the proof.

Thus, for any full ranked Z and Y and any nonsingular matrix M , deflation and
the balancing preconditioner have similar spectra. Furthermore, PBA has eigenvectors
QDṽi, with ṽi the eigenvectors of M−1PDA.
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Theorem 2.9. Let Z and Y be full ranked. Let M be nonsingular. Then PBA is
nonsingular. In addition, any zero eigenvalue of M−1PDA is shifted to one in PBA.

Proof. Assume that PBA is singular. Then there is a vector xi �= 0 such that
PBAxi = μi · xi = 0. So, μi = 0. From the proof of Theorem 2.8, we know that
xi = QDṽi, where ṽi is the eigenvector of M−1PDA associated with μi = 0. Therefore,
M−1PDAṽi = 0 · ṽi = 0. Since M is nonsingular, PDAṽi = 0, which immediately
implies Aṽi = AZE−1Y TAṽi or ṽi = ZE−1Y TAṽi, due to the definition of PD. In
this case, xi = QDṽi = QDZE−1Y TAṽi = 0, because QDZ = 0, which does not
satisfy the assumption. Hence, μi = 0 is not an eigenvalue of PBA, and henceforth
PBA is nonsingular.

Now suppose that M−1PDAṽi = 0. Thus, we have

PBAṽi = QDM−1PDAṽi + ZE−1Y TAṽi = ZE−1Y TAṽi.(2.12)

This means that PBAṽi = ṽi because ṽi = ZE−1Y TAṽi as above. Hence, any
zero eigenvalues in case of deflation are shifted to one by the balancing precondi-
tioner.

For completeness, we consider a special case where M = I, and Z and Y satisfy
the following assumption.

Assumption 2.10. We set Z = [v1 . . . vr], where Avi = λivi, i = 1, . . . , r. Also, we
set Y = [w1 . . . wr] the left eigenvector matrix of A, determined from wT

i A = λiw
T
i

and chosen such that Y TZ = Ir, where Ir is the identity matrix of dimension r. For
the left eigenvectors, W = [w1 . . . wn].

Theorem 2.11. Let Z and Y be defined as in Assumption 2.10. Let M = I in
PB. Then

σ(PDA) = {0, . . . , 0, λr+1, . . . , λn},
σ(PBA) = {1, . . . , 1, λr+1, . . . , λn}.

Proof. Under Assumption 2.10, obviously E = Y TAZ = diag(λ1, . . . , λr) =: Λr.
For deflation, we see that for i = 1, . . . , r

PDAvi =
(
I −AZΛ−1

r Y T
)
Avi = λivi − ZΛrY

T vi = 0,

because Y TZ = I. Similarly, for i = r + 1, . . . , n, PDAvi = λivi − ZΛrY
T vi = λivi,

because Y T vi = 0. This leads to the first result.
For the balancing preconditioner, one can also proceed with the same procedure

as above. In this case

(2.13) PBAvi = (I − ZE−1Y TA)(I −AZE−1Y T )Avi + ZE−1Y TAvi.

By expanding (2.13) and making use of orthogonality of eigenvectors, we have

PBAvi = vi, i = 1, . . . , r.(2.14)

Again, due to orthogonality we also have PBAvi = λivi for i = r + 1, . . . , n.
So, in this very particular case PDA and PBA have similar spectra with A, but

with r eigenvalues shifted to 0 and 1, respectively. The rest of the spectrum of A is
untouched. Furthermore, PDA and PBA share the same eigenvectors, which are equal
to the eigenvectors of A.
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2.2. GMRES convergence bounds. Next we provide a GMRES convergence
bound for M−1PDA and PBA. Here we restrict our discussion to the case satisfying
Assumptions 2.2 and 2.10, and M = I. We note that, because of Assumptions 2.2
and 2.10,

(i) X = [Z Xn−r], Xn−r = [xr+1 . . . xn], W = [Y Wn−r], Wn−r = [wr+1 . . . wn],
and

(ii) E = Y TAZ = Y TZΛr = Λr, where Λr = diag(λ1, . . . , λr).
For deflation we have the following lemma.
Lemma 2.12. Define ΛD = diag (0, . . . , 0, λr+1, . . . , λn) and r̃0,D = PD(b−Aũ0).

Under Assumptions 2.2 and 2.10, the Krylov subspace generated after k GMRES it-
erations applied to PDAũ = PDb is

Kk(PDA, r̃0,D) = span{r̃0,D, XΛDX−1r̃0,D, . . . , XΛk−1
D X−1r̃0,D}.(2.15)

Proof. For k = 1, r̃0 = PD(b−Aũ0,D). For k = 2,

PDA = (I −AZE−1Y T )A = A−AZE−1Y TA = X(I − ΛX−1ZE−1Y TX)ΛX−1.

Note that, because WTX = I, where ATW = WΛ,

X−1ZE−1Y TX = WTZE−1Y TX =

[
Y T

WT
n−r

]
ZΛ−1Y T

[
Z Xn−r

]
,

=

[
Y TZΛ−1

WT
n−rZΛ−1

] [
Y TZ Y TXn−r

]
=

[
Λ−1

0

] [
Ir 0

]
,

=

[
Λ−1
r 0
0 0

]
.(2.16)

Thus,

PDA = X

(
I − Λ

[
Λ−1
r 0
0 0

])
ΛX−1 = X

(
I −

[
Ir 0
0 0

])[
Λr 0
0 Λn−r

]
X−1,

= XΛDX−1.

For k = 3, (PDA)2 = PDAPDA = XΛDX−1XΛDX−1 = XΛ2
DX−1. By repeating the

computation for l = 4, . . . , k − 1 the desired result is obtained.
Theorem 2.13. Let Z and Y be defined as in Assumptions 2.2 and 2.10, and let

M = I. Denote κD = λn/λr+1. Then, for any starting vector ũ0, GMRES applied to
PDAũ = PDb generates residuals whose 2-norm is bounded by

‖r̃k,D‖2 ≤ 2κ2(X)

(
1 − 2

√
κD + 1

)k

‖r̃0,D‖2,(2.17)

where r̃k,D = PD(b−Auk).
Proof. Here, we have r̃ = p(PDA)r̃0,D = Xp(ΛD)X−1r̃0,D, due to Lemma 2.12,

where p is a polynomial of degree no larger than k − 1, with p(0) = 1. Hence,

‖r̃‖2 ≤ ‖X‖2‖X−1‖2‖p(ΛD)‖2‖r̃0,D‖2.

Noting that ũk minimizes the 2-norm of residual over ũ0+Kk(PDA, r̃0,D) and ‖p(ΛD)‖2

= maxi=r+1,...,n |p(λi)|, choosing a polynomial which minimizes the right-hand side
leads to

‖r̃k,D‖2 := ‖PD(b−Aũk,D)‖2 ≤ ‖X‖2‖X−1‖2‖r̃0‖2 min
p∈Pk,p(0)=1

max
i=r+1,...,n

|p(λi)|.
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Taking the shifted and scaled Chebyshev polynomial as the trial polynomial with
λ ∈ [λr+1, λn] and repeating the same procedure as in the previous section one arrives
at the desired inequality, with κD = λn/λr+1.

We see that A and PDA share the same eigenvectors. Since λr+1 ≥ λ1, κD ≤
κ, GMRES with deflation preconditioner will asymptotically converge faster than
without deflation preconditioner.

Remark 2.14. Note that this comparison is not fair because r̃ is the residual of
the preconditioned system, and not of the original system. In practice one usually
is more interested in the residual of the original system, which is not the by-product
of the left preconditioning GMRES. A more detailed residual analysis in section 3
reveals, however, that in the way the solution is computed, GMRES combined with
deflation produces actual residuals which are the same as the preconditioned residuals;
see Theorem 3.1.

For the balancing preconditioner, the Krylov subspace associated with it is written
as

(2.18)
Kk(PBA,PB(b−Au0))

= span{PB(b−Au0), PBAPB(b−Au0), . . . , (PBA)k−1PB(b−Au0)}.

For cases under Assumptions 2.2 and 2.10 we have the following lemma.
Lemma 2.15. Define ΛB = diag(1, . . . , 1, λr+1, . . . , λn) and r̃0,B = PB(b−Au0).

With Assumptions 2.2 and 2.10, and M = I,

Kk(PBA, r̃0,B) = span{r̃0,B , XΛBX
−1r̃0,B , . . . , X(ΛB)k−1X−1r̃0,N}.

Proof. For k = 1, r̃0,B := PB(b−Au0) = PBr0. For k = 2,

PBA = (QDPD + ZE−1Y T )A = (I − ZE−1Y TA)(I −AZE−1Y T )A + ZE−1Y TA

= A− ZE−1Y TAA−AZE−1Y TA + ZE−1Y TAAZE−1Y TA + ZE−1Y TA

= X(I −X−1ZE−1Y TAX − ΛX−1ZE−1Y TX

+ X−1ZE−1Y TAAZE−1Y TX + X−1ZE−1Y TX)ΛX−1.

From the proof of Theorem 2.12, we then have that

PBA = X

(
I −

[
Λ−1
r 0
0 0

]
Λ − Λ

[
Λ−1
r 0
0 0

]
+ X−1ZY TX +

[
Λ−1
r 0
0 0

])
ΛX−1

= X

[
Λ−1
r 0
0 In−r

]
ΛX−1 = X

[
Ir 0
0 Λn−r

]
X−1 =: XΛBX

−1,

because

X−1ZY TX = WTZY TX =

[
Ir 0
0 0

]
.

We can also compute (PBA)k for k > 2. This leads to the above lemma.
Making use of Lemma 2.15, we have the GMRES convergence bound for the

balancing preconditioner.
Theorem 2.16. Let Z and Y in PB satisfy Assumptions 2.2 and 2.10, and let

M = I. Define κB = max{1, λn}/min{1, λr+1}. For any starting vector u0, the
2-norm of residual of GMRES applied to PBAu = PBb satisfies

‖r̃k,B‖2 ≤ 2κ2(X)

(
1 − 2

√
κB + 1

)k

‖r̃0,B‖2.(2.19)
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Proof. Note that ‖r̃B‖ = Xp(ΛB)X−1r̃0,B . The proof then follows along the
same lines as in Theorem 2.13.

Comparing Theorems 2.13 and 2.16, it is clear that GMRES combined with de-
flation has a convergence bound which is lower than or equal to GMRES combined
with the balancing preconditioner. Therefore, we may expect that GMRES applied to
a deflation-preconditioned linear system will converge faster than GMRES with the
balancing preconditioner.

3. Comparison of GMRES residuals. To have a more detailed comparison
between PDA and PBA, in this section we evaluate the approximate solutions built
by GMRES and the related residuals. We first recall that when applied to (1.1), a
Krylov subspace method generates an approximation solution in the Krylov subspace
Kk(A, r0), defined in (1.2). In case of left preconditioning, the subspace is now spanned
by vectors related to the preconditioned system. For

BAu = Bb,(3.1)

with B any preconditioner, the Krylov subspace related to the initial residual r̃0 =
B(b−Au0), where u0 is the starting vector, is given by

Kk(BA, r̃0) = span{r̃0, BAr̃0, . . . , (BA)k−1r̃0}.(3.2)

GMRES then minimizes the residual norm

‖B(b−Aη)‖2,(3.3)

where η ∈ u0 + Kk(BA, r̃0). The approximate solution is determined by

uk = u0 + pk−1(BA)r̃0,(3.4)

where pk−1 is the polynomial of degree k−1, which minimizes the residual norm (3.3)
among all other polynomials of degree ≤ k − 1.

In deflation, we know that the approximate solution at the kth iteration is ob-
tained from the relation

uk,D = (I −QD)u + QDũk,D = ZE−1Y T b + QDũk,D,(3.5)

where ũk,D is computed iteratively from

M−1PDAũ = M−1PDb,(3.6)

with M an appropriate nonsingular and possibly nonsymmetric preconditioning ma-
trix. If GMRES is used in (3.6), the approximate solution extracted from the affine
subspace

ũ0,D + Kk(M−1PDA, r̃0,D)(3.7)

minimizes the 2-norm of the residual r̃k,D = M−1PD(b − Aη), where η ∈ ũ0,D +
Kk(M−1PD, r̃0,D). This approximate solution does not, however, minimize the 2-
norm of the actual residual r := b−Auk,D. A similar situation is also encountered in
the case of the abstract balancing preconditioner.

For deflation, however, the following residual relation holds.
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Theorem 3.1. For any Z, Y , and nonsingular preconditioning matrix M , resid-
uals related to GMRES combined with deflation and ũ0,D = 0 satisfy the equality

(3.8)
‖M−1rk,D‖2 = ‖M−1PD(b−Aũk,D)‖2

= min
η∈Kk(M−1PDA,M−1PDb)

‖M−1PD(b−Aη)‖2.

Proof. By construction, with ũ0,D = 0,

rk,D =: b−Auk,D = b−A(ZE−1Y T b + QDũk,D) = PD(b−Aũk,D),

where ũk,D ∈ Kk(M−1PDA,M−1PDb). Premultiplying the above equality by M−1,
we have

‖M−1rk,D‖2 = ‖M−1PD(b−Aũk,D)‖2 = min
η∈Kk(M−1PDA,M−1PDb)

‖M−1PD(b−Aη)‖2.

Clearly, the optimality property holds only for the preconditioned residuals.
By Theorem 3.1, we immediately see that in the case M = I, ‖rk,D‖2 = ‖PD(b−

Aũk,D)‖2; i.e., the actual residual is equal to the deflated residual.
Next we compare the GMRES residuals for deflation and the abstract balancing

preconditioner. For nonsymmetric cases with arbitrary starting vector u0 such a
comparison is, however, difficult. Nevertheless, it is still practically useful to make a
comparison for specially chosen starting vectors.

We consider u0,B = ZE−1Y T b and ũ0,D = 0. Such a choice of u0,B has particular
reasons in terms of implementation. As one notices from the definition of PB , with a
naive implementation, the balancing preconditioner requires two more matrix-vector
multiplications than deflation. If A is symmetric positive definite, this choice of u0,B

greatly simplifies the CG algorithm and reduces the amount of work of the balancing
preconditioner to only one matrix-vector multiplication, which is the same as deflation;
see [13, 24]. As shown in [17], for spd systems, such starting vectors lead to exactly
the same A-norm of errors of the CG iterant.

First, we define the Krylov subspace corresponding to PBA and starting vector
u0,B = ZE−1Y T b.

Lemma 3.2. With starting vector u0,B = ZE−1Y T b and any nonsingular matrix
M , GMRES combined with the abstract balancing preconditioner produces a solution
at the kth iteration which lies in the subspace ZE−1Y T b + Kk(PBA, r̃0,B), where

(3.9)
Kk(PBA, r̃0,B)

= QDspan{M−1PDb,M−1PDAM−1PDb, . . . , (M−1PDA)k−1M−1PDb},

where r̃0,B = QDM−1PDb.
Proof. For k = 1, r̃0,B = PB(b − Au0,B) = QDM−1PDb. The proof is done by

recursive computations for (PBA)lr̃0,B , l = 2, . . . , k.
Theorem 3.3. With any full ranked matrices Z and Y , any nonsingular precon-

ditioning matrix M , and starting vector u0,B = ZE−1Y T b and ũ0,D = 0, GMRES
combined with deflation and the abstract balancing preconditioner produces solutions
whose residuals satisfy the inequality

‖M−1(b−Auk,D)‖2 ≤ ‖M−1(b−Auk,B)‖2.(3.10)

Proof. For the abstract balancing preconditioner, the solution of GMRES at the
kth iteration is

uk,B ∈ ZE−1Y T b + Kk(PBA, r̃0,B), r̃0,B = PB(b−Au0,B),(3.11)
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or, by Lemma 3.2,

uk,B = ZE−1Y T b + QDη, η ∈ Kk(M−1PDA,M−1PDb),(3.12)

whose residual is rk,B = b−Auk,B = PD(b−Aη). Thus, M−1rk,B = M−1PD(b−Aη),
implying ‖M−1rk,B‖2 = ‖M−1PD(b−Aη)‖2. If ζ minimizes ‖M−1PD(b−Aζ)‖2 over
the subspace Kk(M−1PDA,M−1PDb), then

‖M−1PD(b−Aη)‖2 ≥ min
ζ∈Kk(M−1PDA,M−1PDb)

‖M−1PD(b−Aζ)‖2.(3.13)

In this case, ζ can be obtained by GMRES applied to M−1PDAũ = M−1PDb with
zero initial guess. Thus, ζ = ũk,D. By using Theorem 3.1, we finally get

‖M−1rk,B‖2 := ‖M−1PD(b−Aη)‖2 ≥ ‖M−1PD(b−Aũk,D)‖2 =: ‖M−1rk,D‖2,

where rk,D = b−Auk,D and rk,B = b−Auk,B .
In Theorem 3.3 we proved that the preconditioned residual obtained by using

the deflation method is less than or equal to the preconditioned residual obtained by
using the abstract balancing method.

Moreover, Theorem 3.3 guarantees that GMRES preconditioned by the singular
deflation preconditioner will also converge without any further assumption.

Corollary 3.4. With any full ranked matrices Z and Y , any nonsingular pre-
conditioning matrix M , and starting vector ũ0,D = 0, GMRES applied to the singular
system

M−1PDAũ = M−1PDb

will converge.
Proof. Since the abstract balancing preconditioner is nonsingular (cf. Theo-

rem 2.9), GMRES applied to

PBAu = PBb

will converge. By Theorem 3.3 the statement then follows immediately.

4. Numerical examples. In this section we perform numerical experiments to
confirm our theoretical results. We base our numerical experiments on the linear
systems arising from a finite volume discretization of the steady-state convection-
diffusion equation

∂u

∂x
+

∂u

∂y
−∇ ·

(
1

Pe
∇u

)
= f in Ω = (0, 1)2,(4.1)

with Pe > 0 the Péclet number, and f the forcing term. We first consider the
one-dimensional (1D) version of (4.1), in which eigenvalues and eigenvectors of the
corresponding linear system can be computed cheaply. Later in this section, a two-
dimensional (2D) convection-diffusion problem is also discussed.

4.1. Description of the test problem. For our 1D convection-diffusion prob-
lem, we consider an artificial 1D problem with jumps in Pe. Problems with jumps
in Pe lead to linear systems with very large difference between the largest and the
smallest eigenvalues (in magnitude). In our case, we set

Pe(x) =

{
1, 0 ≤ x < 0.8,

200, 0.8 ≤ x ≤ 1.
(4.2)
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The boundary conditions are u(0) = 0 and u(1) = 1, which resemble extremely thin
boundary layer flows near x = 1 and f = 0. The 1D convection-diffusion equation is
discretized by using the cell-centered finite volume discretization. The convective flux
term is approximated by the central discretization. In order to avoid wiggly numerical
solutions, the grid is refined at the vicinity of x = 1, keeping the mesh Péclet number
less than 2 for numerical stability reason. (At this moment we are, however, not
concerned with the accuracy of the approximate solutions, and are more interested in
the validity of the theoretical results for a specific problem.) In the subdomain where
Pe = 1, 40 cells are used. In total 200 cells are used. The resultant linear system has
real and simple eigenvalues, with 18 of them having value less than 1. The largest
eigenvalue is ∼ 399.9, while the smallest one is ∼ 0.12, giving a ratio of an order of
103. The eigenvalues and the associated eigenvectors are computed by the MATLAB
routine eig.

For the 2D case, we consider the convection-diffusion problem with Dirichlet
boundary conditions at x = 1 and y = 0, and homogeneous Neumann boundary
conditions at x = 0 and y = 1 (see [26]). The equation is discretized by using a
finite volume discretization. The convection flux term is approximated by an upwind
scheme. The Péclet number is 200. The grid is refined in the y-direction in the vicin-
ity of y = 0, while in the x-direction the grid size is kept constant. In this case the
eigenvalues of the resultant discretization matrix are easily computed.

4.2. Results. We first consider numerical tests from the 1D convection-diffusion
equation. Here, we choose Z based on the subdomain structuring proposed in [18]
and used in [10]. Suppose that the domain Ω with index set I = {i|ui ∈ Ω} is
partitioned into m nonoverlapping subdomains Ωj , j = 1, . . . ,m, with respective
index Ij = {i ∈ I|ui ∈ Ωj}. Then Z is defined by

zij =

{
1, i ∈ Ij ,
0, i /∈ Ij ,

(4.3)

and Y = Z. Particularly in this example we first partition Ω into two subdomains of
the same Péclet number. Based on this partition, partitioning is done further until
the number of deflation vectors needed is reached.

Figure 4.1 shows the GMRES convergence history with deflation and the abstract
balancing preconditioner, and M = I. In case of the abstract balancing precondi-
tioner, u0,B = ZE−1Y T b. For deflation, zero initial guess is used. Even though both
preconditioners result in almost identical convergence, clearly deflation still produces
smaller 2-norms of residuals compared to the abstract balancing preconditioner.

Similar results are obtained for M �= I; see Figure 4.2. In this case, we choose M =
diag(A). GMRES combined with deflation produces a preconditioned residual (i.e.,
M−1rk) whose 2-norm is smaller than with the abstract balancing preconditioner.
For the actual residual, this conclusion does not necessarily hold (see right figure). In
the right figure, we observe at some steps that the abstract balancing preconditioner
produces a smaller 2-norm of the actual residuals than deflation.

Next we consider the 2D model problem. The domain is partitioned into 10× 10
subdomains. Deflation vectors are constructed based on (4.3). We choose M =
diag(A). Figure 4.3 shows convergence results for starting vector ũ0,D = 0 and u0,B =
ZE−1Y T b. In this case, residuals related to deflation and the abstract balancing
preconditioners are very similar. Figure 4.4 (left) shows that the preconditioned
residual (based on M) of the balancing preconditioner is never smaller than that of
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Fig. 4.1. One-dimensional convection-diffusion equation with jumps. Shown are residuals of
the preconditioned system with zero starting vector for deflation and u0,B = ZE−1Y T b for the
balancing preconditioner, M = I, and Z and Y consisting of eigenvectors of A. Left: preconditioned
relative residuals. Right: actual residuals.
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Fig. 4.2. One-dimensional convection-diffusion equation with jumps. Shown are residuals of the
preconditioned system with ũ0,D = 0 and u0,B = ZE−1Y T b, M the diagonal scaling preconditioner,
and Z and Y as in (4.3). Left: preconditioned residuals (based on M). Right: actual residuals.
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Fig. 4.3. Two-dimensional convection-diffusion equation with constant coefficient (Pe = 200).
Shown are residuals of the preconditioned system with ũ0,D = 0 and u0,B = ZE−1Y T b, M the
diagonal scaling preconditioner, and Z and Y as in (4.3). Left: preconditioned residuals (based on
M). Right: actual residuals.
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Fig. 4.4. Residual difference from the 2D convection-diffusion equation with constant coefficient
(Pe = 200). The starting vectors are ũ0,D = 0 and u0,B = ZE−1Y T b, M the diagonal scaling
preconditioner, and Z and Y as in (4.3). Left: preconditioned residuals (based on M). Right:
actual residuals.

deflation. This is, however, not always the case for the actual residual (Figure 4.4
(right)).

5. Conclusion. In this paper a comparison between deflation and the abstract
balancing preconditioner for nonsymmetric linear systems has been given, within the
context of GMRES. We were able to show that many results for symmetric positive
definite matrices carry over to some classes of nonsymmetric matrices. We first es-
tablished that the spectra of the preconditioned systems are similar. Moreover, our
analysis shows that with special starting vectors, for nonsingular, nonsymmetric ma-
trix A deflation generates approximate solutions whose related residuals (with respect
to M) are never larger than the balancing preconditioner. If the deflation vectors are
chosen to be the eigenvectors, the 2-norm of the actual residuals of deflation is al-
ways never larger than the balancing preconditioner. For general deflation vectors
we proved that the 2-norm of preconditioned residual of GMRES combined with de-
flation is smaller than that of GMRES combined with the balancing preconditioner.
Numerical experiments confirmed the theoretical results and showed that the methods
behave similarly.
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REACHABILITY AND HOLDABILITY OF NONNEGATIVE STATES∗
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Abstract. Linear differential systems ẋ(t) = Ax(t) (A ∈ R
n×n, x0 = x(0) ∈ R

n, t ≥ 0) whose
solutions become and remain nonnegative are studied. It is shown that the eigenvalue of A furthest to
the right must be real and must possess nonnegative right and left eigenvectors. Moreover, for some
a ≥ 0, A+aI must be eventually nonnegative, that is, its powers must become and remain entrywise
nonnegative. Initial conditions x0 that result in nonnegative states x(t) in finite time are shown to
form a convex cone that is related to the matrix exponential etA and its eventual nonnegativity.

Key words. eventually nonnegative matrix, exponentially nonnegative matrix, point of non-
negative potential, Perron–Frobenius, Metzler matrix, convex cone
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1. Introduction. In dynamical systems theory, one is frequently interested in
qualitative information regarding state evolution. In particular, due to physical and
modeling constraints arising in engineering, biological, medical, behavioral, and eco-
nomic applications, it is commonly of interest to impose or consider conditions for
nonnegativity of the states; see, e.g., [2, 6]. Such applications typically draw on the
theory, or directly take the form, of a linear differential system,

ẋ(t) = Ax(t), A ∈ R
n×n, x(0) = x0 ∈ R

n, t ≥ 0,(1.1)

whose solution is given by x(t) = etAx0. We shall refer here to the set

{x(t) = etAx0 | t ∈ [0,∞)}

as the trajectory emanating from x0 and say that x0 gives rise to this trajectory. In this
paper we will consider conditions for the entrywise nonnegativity of the trajectories
associated with (1.1). Our main concern is the following “hit and hold” problem:

When does the trajectory emanating from an initial point x0 become (entrywise)
nonnegative and remain nonnegative for all time thereafter?

More specifically, we will seek characterizations of system parameters that lead to
a trajectory becoming nonnegative at a finite time (reachability of R

n
+) and remaining

nonnegative for all time thereafter (holdability of R
n
+). This endeavor will comprise

two related efforts:
(1) Study matrices A ∈ R

n×n for which there exists t0 ∈ [0,∞) such that etA ≥ 0
for all t ≥ t0. We shall term such matrices eventually exponentially nonnegative.

(2) Given an eventually exponentially nonnegative matrix A, study initial points
x0 ∈ R

n for which there exists t̂ ∈ [0,∞) such that etAx0 ≥ 0 for all t ≥ t̂. We shall
refer to such initial points as points of nonnegative potential.

Some comments regarding these two goals and the structure of this paper are in
order.
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First, matrices all of whose off-diagonal entries are nonnegative (known as es-
sentially nonnegative or Metzler matrices) are eventually exponentially nonnegative
(with t0 = 0). However, as we shall see in section 3, the eventually exponentially
nonnegative matrices form a larger matrix class. They are closely related to the
eventually nonnegative matrices, namely, matrices whose powers become and remain
nonnegative. It is this latter fact that provides further motivation for our study, as
eventually nonnegative matrices arise in the theory of positive control systems; see
e.g., [16].

Second, it is clear that R
n
+ (the nonnegative orthant) comprises points of non-

negative potential but as we shall see, in the general case, the totality of such points
forms a convex cone that strictly contains R

n
+. Our relevant analysis is in section 4,

where points of nonnegative potential and the asymptotic behavior of solutions are
connected to the matrix exponential etA and its eventual nonnegativity. We note that
even in applications where initial points and states are de facto nonnegative, points of
nonnegative potential outside R

n
+ can be of practical interest. For example, suppose

that for some x0 ∈ R
n, x̂0 = Ax0 is a point of nonnegative potential. Then there

exists t̂ ≥ 0 such that for all t ≥ t̂,

ẋ(t) =
d

dt
(etAx0) = AetAx0 = etAAx0 = etAx̂0 ≥ 0;

that is, the trajectory emanating from x0 becomes (at t = t̂) and remains entrywise
nondecreasing. This situation occurs, e.g., when (1.1) models species that reach a
symbiotic state after which none of the populations decreases; see [9].

2. Notation, definitions, and preliminaries. Given an n× n matrix A, the
spectrum of A is denoted by σ(A) and its spectral radius by ρ(A) = max{|λ| | λ ∈
σ(A)}. An eigenvalue λ of A is said to be dominant if |λ| = ρ(A). The spectral
abscissa of A is defined and denoted by λ(A) := max{Reλ | λ ∈ σ(A)}. By index0(A)
we denote the degree of 0 as a root of the minimal polynomial of A. Consequently,
when we say index0(A) ≤ 1, we mean that either A is invertible or that the size of
the largest nilpotent Jordan block in the Jordan canonical form of A is 1 × 1.

The nonnegative orthant in R
n, that is, the set of all nonnegative vectors in R

n, is
denoted by R

n
+. For x ∈ R

n, we use the notation x ≥ 0 interchangeably with x ∈ R
n
+.

An n×n matrix A is called reducible if there exists a permutation matrix P such
that

PAPT =

[
A11 A12

0 A22

]
,

where A11 and A22 are square, nonvacuous matrices. Otherwise, A is called irreducible.
Recall that irreducibility of A is equivalent to the directed graph of A, G(A), being
strongly connected, namely, the existence of a path of edges leading from any vertex i
to any other vertex j. For details and further terminology regarding directed graphs,
see [1].

Every reducible matrix A can be symmetrically permuted to its Frobenius normal
form; namely, for every reducible matrix A ∈ R

n×n, there exists a permutation matrix
P such that

PAPT =

⎡
⎢⎢⎢⎣

A11 A12 · · · A1p

0 A22 · · · A2p

...
. . .

...
0 · · · 0 App

⎤
⎥⎥⎥⎦ ,
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where each diagonal block Ajj (j = 1, 2, . . . , p) is square and either irreducible or
the 1 × 1 zero matrix. Note that the diagonal blocks in the Frobenius normal form
correspond to a partition of the vertices of G(A) into classes of strongly connected
vertex subsets (a singleton is considered strongly connected).

To the Frobenius normal form of A above we associate the reduced graph R(A)
of A defined as follows: R(A) has p vertices, each one of them corresponding to a
strongly connected set of vertices in the directed graph of A. R(A) has a directed
edge from i to j if and only if Aij �= 0. In section 3 we will consider the transitive

closure of R(A), R(A), which is the directed graph obtained from R(A) having an
edge from i to j if and only if there is a path from i to j in R(A).

Definition 2.1. An n× n matrix A = [aij ] is called
• nonnegative (positive), denoted by A ≥ 0 (A > 0), if aij ≥ 0 (> 0) for all i

and j;
• essentially nonnegative (positive), denoted by A

s≥ 0 (A
s
> 0), if aij ≥ 0

(aij > 0) for all i �= j;
• eventually nonnegative (positive), denoted by A

v≥ 0 (A
v
> 0), if there exists

positive integer k0 such that Ak ≥ 0 (Ak > 0) for all k ≥ k0; we denote the
smallest such positive integer by k0 = k0(A) and refer to it as the power index
of A;

• exponentially nonnegative (positive) if for all t ≥ 0, etA =
∑∞

k=0
tkAk

k! ≥ 0
(etA > 0);

• eventually exponentially nonnegative (positive) if there exists t0 ∈ [0,∞) such
that for all t ≥ t0, etA ≥ 0 (etA > 0). We denote the smallest such nonneg-
ative number by t0 = t0(A) and refer to it as the exponential index of A.

Lemma 2.2. Let A ∈ R
n×n. The following are equivalent:

(i) A is eventually exponentially nonnegative.
(ii) There exists a ∈ R such that A + aI is eventually exponentially nonnegative.
(iii) For all a ∈ R, A + aI is eventually exponentially nonnegative.
Proof. The equivalences follow readily from the fact that as aI and A commute,

et(A+aI) = eatI etA = eatetA.

We conclude this section with some notions crucial to the analysis in section 3.
Definition 2.3. We say that A ∈ R

n×n has
• the Perron–Frobenius property if ρ(A) > 0, ρ(A) ∈ σ(A), and there exists a

nonnegative eigenvector corresponding to ρ(A);
• the strong Perron–Frobenius property if, in addition to having the Perron–

Frobenius property, ρ(A) is a simple eigenvalue such that

ρ(A) > |λ| for all λ ∈ σ(A), λ �= ρ(A),

and if there is a strictly positive eigenvector corresponding to ρ(A).
By the Perron–Frobenius theorem, every nonnilpotent A ≥ 0 has the Perron–

Frobenius property and every primitive A ≥ 0 has the strong Perron–Frobenius prop-
erty; see [1].

3. Eventually exponentially nonnegative matrices. There is a well-known
equivalence between the notions of exponential nonnegativity and essential nonnega-
tivity; see [1, Chapter 6, Theorem (3.12)]. We include a proof of this result next for
completeness.
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Lemma 3.1. A ∈ R
n×n is exponentially nonnegative if and only if A

s≥ 0.

Proof. If A
s≥ 0, then there exists large enough α ≥ 0 such that A + αI ≥ 0.

Hence, as A and αI commute, we have that for all t ≥ 0,

etA = e−tαIet(A+αI) = e−tαet(A+αI) ≥ 0.

Conversely, let etA ≥ 0 for all t ≥ 0 and by way of contradiction suppose that aij < 0

for some i �= j. Then, denoting the entries of Ak by a
(k)
ij , we have

(etA)ij = taij +
t2

2!
a
(2)
ij +

t3

3!
a
(3)
ij + · · · .

Thus, letting t → 0+ we have that for some t > 0, (etA)ij < 0, a contradiction.
As a consequence of the above lemma, every essentially nonnegative matrix A is

eventually exponentially nonnegative with exponential index t0 = 0. We proceed with
a characterization of eventually exponentially positive matrices based on some recent
results proven in [11].

Theorem 3.2 (see [11, Theorem 2.2]). For a matrix A ∈ R
n×n the following are

equivalent:
(i) Both matrices A and AT have the strong Perron–Frobenius property.
(ii) A is eventually positive.
(iii) AT is eventually positive.
Our main result thus far is the following extension of Theorem 3.2.
Theorem 3.3. For a matrix A ∈ R

n×n the following properties are equivalent:
(i) There exists a ≥ 0 such that both matrices A+aI and AT +aI have the strong

Perron–Frobenius property.
(ii) A + aI is eventually positive for some a ≥ 0.
(iii) AT + aI is eventually positive for some a ≥ 0.
(iv) A is eventually exponentially positive.
(v) AT is eventually exponentially positive.
Proof. The equivalence of (i)–(iii) is the content of Theorem 3.2 applied to A+aI.

We will argue the equivalence of (ii) and (iv), with the equivalence of (iii) and (v)
being analogous:

Let A + aI be eventually positive and let k0 be a positive integer such that
(A + aI)k > 0 for all k ≥ k0. Then there exists large enough t0 > 0 so that the first
k0 − 1 terms of the series

et(A+aI) =

∞∑
m=0

tm(A + aI)m

m!

are dominated by the remaining terms, rendering every entry of et(A+aI) positive for
all t ≥ t0. It follows that etA = e−taet(A+aI) is positive for all t ≥ t0. That is, A is
eventually exponentially positive. Conversely, suppose A is eventually exponentially
positive. As (eA)k = ekA, it follows that eA is eventually positive. Thus, by Theorem
3.2, eA has the strong Perron–Frobenius property. Recall that σ(eA) = {eλ : λ ∈
σ(A)} and so ρ( eA) = eλ for some λ ∈ σ(A). Then for each μ ∈ σ(A) with μ �= λ
we have

eλ > |eμ| = |eReμ+iImμ| = eReμ.
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Hence λ is the spectral abscissa of A, namely, λ > Reμ for all μ ∈ σ(A) with μ �= λ.
In turn, this means that there exists large enough a > 0 such that

λ + a > |μ + a| for all μ ∈ σ(A), μ �= λ.

As A + aI shares its eigenspaces with eA, it follows that A + aI has the strong
Perron–Frobenius property. Invoking Theorem 3.2 once more, we have that A+ aI is
eventually positive.

Remark 3.4. Note that the equivalence of (ii) and (iv) in Theorem 3.3 represents a

generalization of the fact that A
s
> 0 is equivalent to A being exponentially positive.

Example 3.5. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1

−1 1 1 1
1 0 1 1

⎤
⎥⎥⎦

and observe that

A2 =

⎡
⎢⎢⎣

2 3 4 4
2 3 4 4
0 1 2 2
1 2 3 3

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

5 9 13 13
5 9 13 13
1 3 5 5
3 6 9 9

⎤
⎥⎥⎦ .

It is easily checked that A is an eventually positive matrix with power index k0 = 3,
so by Theorem 3.3, A is an eventually exponentially positive matrix. Computing etA

for t = 1, 2 we obtain, respectively,
⎡
⎢⎢⎣

5.0401 6.3618 8.6836 8.6836
4.0401 7.3618 8.6836 8.6836

−0.4655 2.7873 5.0401 4.0401
2.7873 3.5746 6.3618 7.3618

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

71.2660 134.1429 198.0199 198.0199
70.2660 135.1429 198.0199 198.0199
18.4960 45.3810 71.2660 70.2660
45.3810 88.7620 134.1429 135.1429

⎤
⎥⎥⎦ .

Taking into consideration the location of the nonpositive entries of A and A2, we infer
that the exponential index of A is t0 ∈ (1, 2).

Next we focus on eventually exponentially nonnegative matrices and connect them
to eventually nonnegative matrices. In what follows we state and prove conditions
that are sufficient for eventual exponential nonnegativity and investigate necessary
conditions. To do so, we first need to discuss the relationship among the Frobenius
normal forms of the powers of an eventually nonnegative matrix. This topic and its
relation to the spectrum are studied extensively in [3, 4]. Below we summarize and
paraphrase some of these results.

Theorem 3.6 (see [3, Theorems 3.4 and 3.5]). Let A ∈ R
n×n be eventually non-

negative with index0(A) ≤ 1. Then there exists a positive integer q and a permutation
matrix P such that

(i) Ak ≥ 0 for all k ≥ q;
(ii) PAPT and PAqPT are simultaneously in Frobenius normal form;
(iii) R(A) = R(Aq).
Theorem 3.7. Let A ∈ R

n×n be an eventually nonnegative with index0(A) ≤ 1.
Then A is an eventually exponentially nonnegative matrix.

Proof. To avoid trivialities, suppose n ≥ 2 and recall Theorem 3.6(ii). Without
loss of generality, assume P = I; otherwise our considerations apply to a permuta-
tional similarity of A. Thus A and Aq are assumed to be in Frobenius normal form
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as follows:

A =

⎡
⎢⎢⎢⎢⎣

A11 · · · · · · A1p

0
. . .

. . .
...

...
. . .

. . .
...

0 · · · 0 App

⎤
⎥⎥⎥⎥⎦ and Aq =

⎡
⎢⎢⎢⎢⎢⎣

A
(q)
11 · · · · · · A

(q)
1p

0
. . .

. . . A
(q)
2k

...
. . .

. . .
...

0 · · · · · · A
(q)
pp

⎤
⎥⎥⎥⎥⎥⎦
.(3.1)

Consider the power series etA =
∑∞

k=0
tmAk

k! partitioned in blocks conformably to
the matrices in (3.1) and let cij(t) be the (i, j)th entry of etA. Abusing slightly the
notation, let {1, 2, . . . , p } denote the p strongly connected classes in G(A) implied by
(3.1). Let i belong to class u and j to class v, where u, v ∈ {1, 2, . . . , p}. The following
cases ensue:

Suppose that p = 1. As n ≥ 2, A is irreducible. Thus for all powers k ≥ q, the
(i, j)th entry of Ak is nonnegative and is indeed positive for at least some powers
≥ q. As a consequence, as t ≥ 0 increases, cij(t) is dominated in the power series
by positive terms. That is, cij(t) becomes and remains positive for all large enough
t ≥ 0.

Suppose next that p > 1. The blocks in the lower triangular part of the block
partition of each Ak implied by (3.1) must be zero; namely, if u > v, then cij(t) = 0
for all t ≥ 0.

If u = v, that is, if i, j belong to the same equivalence class, then either Auu

and A
(q)
uu are both equal to the 1 × 1 zero matrix or they are both irreducible. In the

former case, cij(t) = 0 for all t ≥ 0, and in the latter case, cij(t) becomes and remains
positive for all large enough t ≥ 0 analogously to the p = 1 case above.

Finally, let us consider the sign of cij(t) when u < v. Let a
(k)
ij denote the (i, j)th

entry of Ak. If a
(k)
ij = 0 for all k < q, then by Theorem 3.6(i) we have that cij(t) ≥ 0

for all t ≥ 0. If a
(k)
ij �= 0 for some k < q, then there must be a path form i to j in

G(A). Thus there is a path from u to v in R(A). By Theorem 3.6(iii), R(A) = R(Aq)
and so there must be a path from u to v in R(Aq). It follows that there is a path from

i to j in G(Aq). In turn, this implies that there is a power m ≥ q such that a
(m)
ij > 0.

As a
(k)
ij ≥ 0 for all k ≥ q, we have once again that cij(t) is dominated in the power

series by positive terms and so it becomes and remains positive for all large enough
t ≥ 0.

To conclude, we have shown that each entry cij(t) of etA becomes and remains
nonnegative for all large enough t ≥ 0, namely, that A is eventually exponentially
positive.

Corollary 3.8. Let A ∈ R
n×n such that A + aI is eventually nonnegative for

all a ∈ [a1, a2] (a1 < a2). Then A is an eventually exponentially nonnegative matrix.
Proof. Since σ(A) is a finite set, there exists a ∈ [a1, a2] such that A + aI is

invertible. Hence index0(A+aI) = 0 and so by Theorem 3.7, A+aI is eventually ex-
ponentially nonnegative. By Lemma 2.2, it follows that A is eventually exponentially
nonnegative.

We illustrate the above results on eventual nonnegativity with the following ex-
amples.
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Example 3.9. Consider

A =

⎡
⎢⎢⎣

0 1 1 −1
1 0 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

for which

A2 =

⎡
⎢⎢⎣

1 0 1 1
0 1 3 1
0 0 2 2
0 0 2 2

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣

0 1 3 1
1 0 5 5
0 0 4 4
0 0 4 4

⎤
⎥⎥⎦ ,

A4 =

⎡
⎢⎢⎣

1 0 5 5
0 1 11 9
0 0 8 8
0 0 8 8

⎤
⎥⎥⎦ , A5 =

⎡
⎢⎢⎣

0 1 11 9
1 0 21 21
0 0 16 16
0 0 16 16

⎤
⎥⎥⎦ .

Notice that A is reducible, eventually nonnegative, and, referring to Theorem 3.6,
q = k0 = 2. Since index0(A) = 1, Theorem 3.7 implies that A is an eventually
exponentially nonnegative matrix. For illustration, we compute etA for t = 1, 2 to be,
respectively,

⎡
⎢⎢⎣

1.5431 1.1752 2.3404 −0.0100
1.1752 1.5431 4.0487 2.9625

0 0 4.1945 3.1945
0 0 3.1945 4.1945

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

3.7622 3.6269 18.1543 10.9006
3.6269 3.7622 35.4439 29.9195

0 0 27.7991 26.7991
0 0 26.7991 27.7991

⎤
⎥⎥⎦ .

This confirms A is an eventually exponentially nonnegative matrix with 1 < t0 < 2.
Example 3.10. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 −1 1
1 1 1 −1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

and its sequence of powers

Ak =

⎡
⎢⎢⎣

2k−1 2k−1 0 0
2k−1 2k−1 0 0

0 0 2k−1 2k−1

0 0 2k−1 2k−1

⎤
⎥⎥⎦ (k = 2, 3, . . .).

The matrix A is eventually nonnegative with k0 = 2. As the (1, 2) block of Ak is 0 for
all k ≥ 2, while the one of A is not and contains negative entries, A is not eventually
exponentially nonnegative. In agreement, the assumptions of Theorem 3.7 do not
hold since index0(A) = 2.

The failure of eventual nonnegativity to force eventual exponential nonnegativity
observed in the above example can occur even if A is irreducible, as the following
example shows.
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Example 3.11. Consider the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
1 1 1 1

−1 1 1 1
1 −1 1 1

⎤
⎥⎥⎦

and its sequence of powers

Ak =

⎡
⎢⎢⎣

2k−1 2k−1 k2k−1 k2k−1

2k−1 2k−1 k2k−1 k2k−1

0 0 2k−1 2k−1

0 0 2k−1 2k−1

⎤
⎥⎥⎦ (k = 2, 3, . . .).

The matrix A is an eventually nonnegative matrix with k0 = 2 and index0(A) = 2.
As the assumptions of Theorem 3.7 do not hold, we may not conclude that A is
eventually exponentially nonnegative. The (2, 1) block of Ak is 0 for all k ≥ 2,
while the one of A is not and contains negative entries. Thus A is not eventually
exponentially nonnegative. Indeed,

eA =

⎡
⎢⎢⎣

4.1945 3.1945 7.3891 7.3891
3.1945 4.1945 7.3891 7.3891
−1 1 4.1945 3.1945
1 −1 3.1945 4.1945

⎤
⎥⎥⎦ , e3A =

⎡
⎢⎢⎣

202.2 201.2 1210.3 1210.3
201.2 202.2 1210.3 1210.3
−3 3 202.2 201.2
3 −3 201.2 202.2

⎤
⎥⎥⎦ .

We now turn our attention to necessary conditions for eventual exponential non-
negativity for which we need to quote some results from [11]. Note that in the first
theorem below from [11], we have added the assumption that A is not nilpotent; the
need for this assumption is observed in [5].

Theorem 3.12 (see [11, Theorem 2.3]). Let A ∈ R
n×n be an eventually nonneg-

ative matrix which is not nilpotent. Then both A and AT have the Perron–Frobenius
property.

Theorem 3.13 (see [11, Theorem 2.4]). Let both A ∈ R
n×n and AT have the

Perron–Frobenius property. If ρ(A) is a simple and the only dominant eigenvalue of
A, then

lim
k→∞

(
A

ρ(A)

)k

= xyT ,

where x and y are, respectively, right and left nonnegative eigenvectors of A corre-
sponding to ρ(A), satisfying xT y = 1.

Theorem 3.14. Let A ∈ R
n×n be an eventually exponentially nonnegative ma-

trix. Then the following hold:

(i) eA and eA
T

have the Perron–Frobenius property.
(ii) If ρ(eA) is a simple eigenvalue of eA and ρ(eA) = eρ(A), then there exists

a0 ≥ 0 such that limk→∞ ((A + aI)/(ρ(A + aI))k = xyT for all a > a0, where x and
y are, respectively, right and left nonnegative eigenvectors of A corresponding to ρ(A),
satisfying xT y = 1.

Proof. (i) Let A be eventually exponentially nonnegative. As (eA)k = ekA, it
follows that eA is eventually nonnegative. Thus, by Theorem 3.12 and since eA and

eA
T

are not nilpotent, they have the Perron–Frobenius property.
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(ii) From (i) we specifically have that ρ(eA) ∈ σ(eA). Let x, y be right and
left nonnegative eigenvectors, respectively, corresponding to ρ(eA) and normalized so
that xT y = 1. As in the proof of Theorem 3.3, ρ( eA) = eλ for some λ ∈ σ(A) with
λ > Reμ for all μ ∈ σ(A) \ {λ}. This means that there exists large enough a0 > 0,
such that for all a ≥ a0,

ρ(A + aI) = λ + a > |μ + a| for all μ ∈ σ(A), μ �= λ.

As A + aI and eA share eigenvectors, we obtain that for all a > a0, A + aI and
AT + aI both have the Perron–Frobenius property, with λ+ a being simple and their
only dominant eigenvalue. Applying Theorem 3.13 to A + aI, we thus obtain

lim
k→∞

1

ρ(A + aI)k
(A + aI)k = xyT ≥ 0.(3.2)

Remark 3.15. Referring to the proof of Theorem 3.14, by (3.2) we have that
if (xyT )ij > 0, then

(
(A + aI)k

)
ij

> 0 for all k sufficiently large. In particular, if

xyT > 0, then A + aI is eventually nonnegative for all a > a0. If, however, xyT is
nonnegative but not strictly positive, A+aI can fail to be eventually nonnegative for
all a ∈ R. This situation is illustrated by the matrix A in Example 3.11.

4. Points of nonnegative potential. In this section A ∈ R
n×n denotes an

eventually exponentially nonnegative matrix with exponential index t0 = t0(A) ≥ 0.
We will study points of nonnegative potential, that is, the set

XA(Rn
+) = {x0 ∈ R

n | (∃t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ≥ 0]}.(4.1)

XA(Rn
+) comprises all initial points giving rise to trajectories of (1.1) that reach R

n
+

at some finite time and stay in R
n
+ for all time thereafter.

First, let us recall some basic facts and terminology on convex cones in R
n. Our

references are [1, Chapter 1] and [12]. A convex set K ⊆ R
n is called a convex cone

if aK ⊆ K for all a ≥ 0. A convex cone is called polyhedral if it consists of all finite
nonnegative linear combinations of the elements of a finite set. A convex cone K
is pointed if K ∩ (−K) = {0} and solid if its topological interior is nonempty. A
pointed, solid convex cone is called a proper cone. The nonnegative orthant R

n
+ is

indeed a proper cone; it is also a polyhedral cone, comprising all finite nonnegative
combinations of the standard basis vectors. Any subset of R

n of the form K = SR
n
+,

where S is an invertible matrix, is a proper polyhedral cone and referred to as a
simplicial cone.

Given an eventually exponentially nonnegative matrix A ∈ R
n×n with exponential

index t0 = t0(A) ≥ 0, define the simplicial cone

K = et0AR
n
+ = {x0 ∈ R

n | (∃y ≥ 0) [x0 = et0Ay]}

and consider the sets

YA(K) = {x0 ∈ R
n | (∃t̂ = t̂(x0) ≥ 0) [et̂Ax0 ∈ K]}(4.2)

and

XA(K) = {x0 ∈ R
n | (∃t̂ = t̂(x0) ≥ 0) (∀t ≥ t̂) [etAx0 ∈ K]}.(4.3)

Lemma 4.1. Let K, YA(K) as defined above. Then K ⊆ R
n
+ ⊆ YA(K).
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Proof. We have that K ⊆ R
n
+ since et0A ≥ 0. If x0 ∈ R

n
+, then for t̂ = 2t0,

et̂Ax0 = et0A (et0Ax0) ∈ K. Hence, R
n
+ ⊆ YA(K).

Note that the sets YA(K), XA(K), and XA(Rn
+) are convex cones. They are not

necessarily closed sets, however. For example, when

A =

[
0 1
0 0

]
,

it can be shown that XA(R2
+) consists of the whole upper plane excluding the negative

x-axis.
The set YA(K) comprises initial points for which the trajectories enter K at some

time. The set XA(K) comprises initial points for which the trajectories enter K at
some time and remain in K for all time thereafter. The set of points of nonnegative
potential, XA(Rn

+), comprises initial points for which the trajectories at some time be-
come nonnegative and remain nonnegative for all time thereafter. Next we shall argue
that YA(K), XA(K), and XA(Rn

+) coincide and interpret this result subsequently.
Proposition 4.2. Let A ∈ R

n×n be an eventually exponentially nonnegative
matrix with exponential index t0 = t0(A) ≥ 0 and let K = et0AR

n
+. Then

YA(K) = XA(Rn
+) = XA(K).

Proof. We begin by proving the first equality. If x0 ∈ YA(K), then there exists

t̂ ≥ 0 and y ≥ 0 such that et̂Ax0 = et0Ay. Thus, x0 = e(t0−t̂)Ay and so etAx0 =
e(t+t0−t̂)Ay ≥ 0 if t + t0 − t̂ ≥ t0, i.e., for all t ≥ t̂. It follows that x0 ∈ XA(Rn

+),
i.e., YA(K) ⊆ XA(Rn

+). For the opposite containment, let x0 ∈ XA(Rn
+); that is,

there exists t̂ ≥ 0 such that etAx0 ≥ 0 for all t ≥ t̂. Let t̃ = t̂ + t0. Then et̃Ax0 =
et0A(et̂Ax0) ∈ K, proving that XA(Rn

+) ⊆ YA(K) and thus equality holds.
For the second equality, clearly XA(K) ⊆ XA(Rn

+) since K ⊆ R
n
+. To show

the opposite containment, let x0 ∈ XA(Rn
+). Then there exists t̂ ≥ 0 such that

et0AesAx0 ∈ K for all s ≥ t̂. That is, etAx0 ∈ K for all t ≥ t0 + t̂ and thus
x0 ∈ XA(K).

Remark 4.3. Referring to Proposition 4.2, we must make the following observa-
tions:

(i) If t0 = 0 (i.e., if A
s≥ 0, or equivalently if etA ≥ 0 for all t ≥ 0), then K = R

n
+.

In this case, XA(Rn
+) coincides with the reachability cone of the nonnegative orthant

for an essentially nonnegative matrix, which is studied in detail in [10, 9].
(ii) The equality XA(Rn

+) = XA(K), in conjunction with Lemma 4.1, can be
interpreted as saying that the simplicial cone K = et0AR

n
+ serves as an attractor

set for trajectories emanating at points of nonnegative potential; in other words,
trajectories emanating in XA(Rn

+) always reach and remain in K ⊆ R
n
+ after a finite

time.
(iii) Our observations so far imply that the trajectory emanating from a point of

nonnegative potential will enter cone K; however, it may subsequently exit K while it
remains nonnegative, and it will eventually re-enter K and remain in K for all finite
time thereafter. This situation is illustrated by the following example.

Example 4.4. Consider the matrix

A =

⎡
⎢⎢⎣

0.3929 −0.8393 1.1071 1.3393
1.0357 0.6964 −0.5357 0.8036
1.0357 −0.3036 0.4643 0.8036
1.4643 1.0536 −0.9643 0.4464

⎤
⎥⎥⎦ .
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It can be checked that A and AT have the strong Perron–Frobenius property and
so, by Theorems 3.2 and 3.3, A is an eventually exponentially positive matrix. Using
MATLAB and a bisection method, we estimated (within five decimals) the exponential
index to be t0 = t0(A) = 2.64378. The matrices eA and et0A are

eA =

⎡
⎢⎢⎣

3.6277 −0.7991 1.4260 3.1345
3.0341 2.2579 −0.6987 2.7958
3.0341 −0.4604 2.0196 2.7958
3.3050 1.4836 −0.9696 3.5701

⎤
⎥⎥⎦

and

et0A =

⎡
⎢⎢⎣

91.902 3.5982 14.0615 88.299
91.499 18.162 0.3981 87.801
91.499 4.0959 14.4643 87.801
91.897 17.494 0 88.469

⎤
⎥⎥⎦ .

Hence the cone K = et0AR
n
+ is the cone generated by the columns of the matrix et0A

above. Consider now the following trajectory points x(t) = etAx(0):

x0 = x(0) =

⎡
⎢⎢⎣

−1.1617
0.6014
0.9693
1.0887

⎤
⎥⎥⎦ , x(1) = eAx0 =

⎡
⎢⎢⎣

0.1
0.2
1.2

0

⎤
⎥⎥⎦ , x(2) = e2Ax0 =

⎡
⎢⎢⎣

1.9141
−0.0834

2.6348
−0.5363

⎤
⎥⎥⎦ ,

e(t0+1)Ax0 =

⎡
⎢⎢⎣

26.7836
13.2600
27.3263
12.6884

⎤
⎥⎥⎦ , e(t0+2)Ax0 =

⎡
⎢⎢⎣

165.3049
127.5845
165.8206
126.9949

⎤
⎥⎥⎦ , e(2t0+1)Ax0 =

⎡
⎢⎢⎣

4013.8
3816.4
4014.3
3815.8

⎤
⎥⎥⎦ .

Observe the following: e(t0+1)Ax0 ∈ K since eAx0 ∈ R
n
+; e(t0+2)Ax0 �∈ K since

e2Ax0 �∈ R
n
+; e(2t0+1)Ax0 ∈ K since e(t0+1)Ax0 ∈ R

n
+; finally, trajectory points x(t)

are in K for all t ≥ 2t0 + 1. In other words, the trajectory emanating at x0 enters K,
exits K, and eventually re-enters and remains in K for all time thereafter.

In view of the above example, a natural question arises: When is it possible that
all trajectories emanating in XA(Rn

+) reach and never exit K? This is equivalent to
asking whether or not etAK ⊆ K for all t ≥ 0. To resolve this question, we will invoke
the following extension of Lemma 3.1 from R

n
+ to simplicial cones, which can be found

in [13, 14].
Lemma 4.5. Let A ∈ R

n×n and K = SR
n
+, where S ∈ R

n×n is nonsingular.
Then there exists a ≥ 0 such that (A + aI)K ⊆ K if and only if etAK ⊆ K for all
t ≥ 0.

Proof. Consider the similarity transformation A → B = S−1AS. We claim

that there exists a ≥ 0 such that (A + aI)K ⊆ K if and only if B
s≥ 0. Indeed, if

(A + aI)K ⊆ K, then

(B + aI)Rn
+ = S−1(A + aI)SR

n
+ = S−1(A + aI)K ⊆ S−1K = R

n
+.

Conversely, if B
s≥ 0, then there exists a ≥ 0 such B+aI = S−1(A+aI)S ≥ 0. Hence

for each x ∈ K, there exists y ≥ 0 such that

S−1(A + aI)x = S−1(A + aI)Sy = z ≥ 0.
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That is, (A + aI)Sy = Sz ∈ K. Similarly, one can show that etAK ⊆ K for all t ≥ 0
if and only if etB ≥ 0 for all t ≥ 0.

We note in passing that Lemma 4.5 holds more generally for every polyhedral
cone K; see [13, 14].

Corollary 4.6. Let A ∈ R
n×n be an eventually exponentially nonnegative

matrix with exponential index t0 = t0(A) ≥ 0. Let K = et0AR
n
+. Then etAK ⊆ K

for all t ≥ 0 if and only if t0 = 0 (or equivalently, if and only if A
s≥ 0).

Proof. If t0 = 0, then K = R
n
+ and etA ≥ 0 for all t ≥ 0. For the converse,

suppose etAK ⊆ K for all t ≥ 0. We must show that t0 = 0. Let y ≥ 0 and consider
x0 = et0Ay ∈ K. As etAx0 ∈ K for all t ≥ 0, there must exist z ≥ 0 such that

e(t+t0)A y = et0A z for all t ≥ 0.

But this means etAy = z ≥ 0 for all t ≥ 0. Since y was taken arbitrary in R
n
+, we

have etAR
n
+ ⊆ R

n
+ for all t ≥ 0; that is, t0 = 0.

We conclude this section with a discussion on a possible numerical test for points
of nonnegative potential. When A = [aij ]

s≥ 0, XA(Rn
+) admits a numerical character-

ization reported in [10] and briefly described in the following. Consider the sequence
{xk} generated from x0 by the Cauchy–Euler finite differences scheme

xk = (I + hA)kx0, k = 0, 1, . . . ,

which we refer to as the discrete trajectory (associated with the time-step h) emanating
from x0. Define the quantity

h(A) = sup

{
h | min

1≤i≤n
(1 + haii) > 0

}

and notice that h(A) = sup{h | (I + hA) ≥ 0} > 0, as well as that h(A) = ∞ when
A ≥ 0.

For any h ∈ (0, h(A)), denote by XA,h(Rn
+) the set of all initial states x0 ∈ R

n that
give rise to discrete trajectories {xk} which become and remain (due to nonnegativity
of I + hA) nonnegative; that is,

XA,h(Rn
+) = {x0 ∈ R

n | (∃k0 = k0(x0) ≥ 0) (∀k ≥ k0) [(I + hA)kx0 ∈ R
n
+]}.

We refer to XA,h(Rn) as the discrete reachability cone (of R
n
+ under A with respect

to h). The geometric and algebraic properties of the discrete reachability cone are
studied extensively in [8, 10].

Theorem 4.7 (see [10]). Let A ∈ R
n×n be an essentially nonnegative matrix and

let h ∈ (0, h(A)) such that (I + hA) is invertible. Then XA(Rn
+) = XA,h(Rn

+) .

When A
s≥ 0, Theorem 4.7 suggests a simple test to find out whether or not a

given initial point x0 belongs to XA(Rn
+): 1. Choose a positive h < h(A) such that

the iteration matrix I + hA is invertible. 2. Check whether for some nonnegative
integer k, xk = (I + hA)kx0 is nonnegative (in which case x0 ∈ XA(Rn

+)) or decide
that xk will never be nonnegative (in which case x0 �∈ XA(Rn

+)).
As noted in [15], Theorem 4.7 can be generalized from R

n
+ to any simplicial cone

K such that etAK ⊆ K for all t ≥ 0. Thus, in view of Proposition 4.2, the question
arising is whether the above test can be extended to XA(Rn

+) = XA(K), when A
is eventually exponentially nonnegative with exponential index t0 ≥ 0 and K =
et0AR

n
+. By Corollary 4.6, however, it follows that the answer is in the negative when
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t0 > 0. The development of a characterization of points of nonnegative potential in
terms of discrete trajectories will likely require a close examination of the generalized
eigenspaces of A as in the proof of Theorem 4.7. We plan to undertake this task in
future work, as well as perform a numerical analysis of the associated test.

5. Conclusions. We considered the problem of when a trajectory x(t) = etAx0

(t ≥ 0) becomes and remains nonnegative. Naturally, we needed to study (1) matri-
ces A for which etA becomes and remains nonnegative and (2) initial points x0 giving
rise to nonnegative trajectories, which we called points of nonnegative potential. The
combination of such matrices and initial points results in trajectories that reach and
stay in the nonnegative orthant. We discovered that eventual nonnegativity of the
exponential matrix is intimately related to eventual nonnegativity of the powers of A
(section 3). We also found that the collection of points of nonnegative potential coin-
cides with the collection of initial points that reach and stay in a certain simplicial cone
K associated with etA. Interestingly, trajectories emanating at points of nonnegative
potential may enter and subsequently exit this cone K; however, K eventually attracts
such trajectories permanently (section 4). Our results generalize and parallel well-
known facts in nonnegative systems theory and are illustrated with several examples.

Acknowledgment. The authors would like to sincerely thank the anonymous
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NONNEGATIVE MATRIX FACTORIZATION BASED ON
ALTERNATING NONNEGATIVITY CONSTRAINED LEAST

SQUARES AND ACTIVE SET METHOD∗

HYUNSOO KIM† AND HAESUN PARK†

Abstract. Nonnegative matrix factorization (NMF) determines a lower rank approximation
of a matrix A ∈ R

m×n ≈ WH where an integer k � min(m,n) is given and nonnegativity is
imposed on all components of the factors W ∈ R

m×k and H ∈ R
k×n. NMF has attracted much

attention for over a decade and has been successfully applied to numerous data analysis problems.
In applications where the components of the data are necessarily nonnegative, such as chemical
concentrations in experimental results or pixels in digital images, NMF provides a more relevant
interpretation of the results since it gives nonsubtractive combinations of nonnegative basis vectors.
In this paper, we introduce an algorithm for NMF based on alternating nonnegativity constrained
least squares (NMF/ANLS) and the active set–based fast algorithm for nonnegativity constrained
least squares with multiple right-hand side vectors, and we discuss its convergence properties and a
rigorous convergence criterion based on the Karush–Kuhn–Tucker (KKT) conditions. In addition, we
also describe algorithms for sparse NMFs and regularized NMF. We show how we impose a sparsity
constraint on one of the factors by L1-norm minimization and discuss its convergence properties.
Our algorithms are compared to other commonly used NMF algorithms in the literature on several
test data sets in terms of their convergence behavior.

Key words. nonnegative matrix factorization, lower rank approximation, two-block coordinate
descent method, Karush–Kuhn–Tucker (KKT) conditions, nonnegativity constrained least squares,
active set method
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1. Introduction. Given a nonnegative matrix A ∈ R
m×n and a desired rank

k � min(m,n), nonnegative matrix factorization (NMF) searches for nonnegative
factors W and H that give a lower rank approximation of A as

(1.1) A ≈ WH s.t. W,H ≥ 0,

where W,H ≥ 0 means that all elements of W and H are nonnegative. The problem
in (1.1) is commonly reformulated as the following optimization problem:

(1.2) min
W,H

f(W,H) ≡ 1

2
‖A−WH‖2

F s.t. W,H ≥ 0,

where W ∈ R
m×k is a basis matrix and H ∈ R

k×n is a coefficient matrix. In many
data analysis problems, typically each column of A corresponds to a data point in the
m-dimensional space.

NMF may give a simple interpretation due to nonsubtractive combinations of
nonnegative basis vectors and has recently received much attention. Applications of
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NMF are numerous, including image processing [21], text data mining [31], subsys-
tem identification [19], and cancer class discovery [4, 8, 18]. It has been over a decade
since NMF was first proposed by Paatero and Tapper [27] (in fact, as positive matrix
factorization) in 1994. Various types of NMF techniques have been proposed in the
literature [5, 13, 25, 32, 34], which include Lee and Seung’s popular iterative multi-
plicative update algorithms [21, 22], gradient descent methods [24], and alternating
least squares [1]. Paatero and Tapper [27] originally proposed an algorithm for NMF
using a constrained alternating least squares algorithm to solve (1.2). Unfortunately,
this approach has not obtained wide attention especially after Lee and Seung’s mul-
tiplicative update algorithm was proposed [1, 24]. The main difficulty was extremely
slow speed caused by a vast amount of hidden redundant computation related to
satisfying the nonnegativity constraints exactly. One may try to deal with the non-
negativity constraints in an approximate sense for faster algorithm. However, we will
show that it is important to satisfy the constraints exactly for the overall convergence
of the algorithm and that this property provides very practical and faster algorithm as
well. In addition, faster algorithms that exactly satisfy the nonnegativity constraints
in the least squares with multiple right-hand sides already exist [27, 36], which we
will discuss and utilize in our proposed NMF algorithms.

In this paper, we provide a framework of the two-block coordinate descent method
for NMF. This framework provides a convenient way to explain and compare most of
the existing commonly used NMF algorithms and to discuss their convergence prop-
erties. We then introduce an NMF algorithm which is based on alternating nonnega-
tivity constrained least squares (NMF/ANLS) and the active set method. Although
many existing NMF algorithms produce the factors which are often sparse, the for-
mulation of the NMF shown in (1.2) does not guarantee the sparsity in the factors.
We introduce an NMF formulation and algorithm that imposes sparsity constraint
on one of the factors by L1-norm minimization and discuss its convergence proper-
ties. The L1-norm minimization term is formulated in such a way that the proposed
sparse NMF algorithm also fits into the framework of the two-block coordinate descent
method and accordingly its convergence properties become easy to understand.

The rest of this paper is organized as follows. We present the framework of the
two-block coordinate descent method and provide a brief overview of various existing
NMF algorithms in section 2. In section 3, we introduce our NMF/ANLS algorithm
and discuss its convergence properties. In section 4, we describe some variations of
the NMF/ANLS algorithm, which include the method designed to impose sparsity
on one of the factors through the addition of an L1-norm minimization term in the
problem formulation. Our algorithms are compared to other commonly used NMF
algorithms in the literature on several test data sets in section 6. Finally, summary
and discussion are given in section 7.

2. A two-block coordinate descent framework for NMF algorithms and
convergence properties. In most of the currently existing algorithms for NMF, the
basic framework is to reformulate the nonconvex minimization problem shown in (1.2)
as a two-block coordinate descent problem [2]. Given a nonnegative matrix A ∈ R

m×n

and an integer k < min(m,n), one of the factors, say H ∈ R
k×n, is initialized with

nonnegative values. Then one may iterate the following alternating nonnegativity
constrained least squares (ANLS) until a convergence criterion is satisfied:

(2.1) min
W≥0

‖HTWT −AT ‖2
F ,
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where H is fixed, and

(2.2) min
H≥0

‖WH −A‖2
F ,

where W is fixed. Alternatively, after initializing W , one may iterate (2.2) and then
(2.1) until a convergence criterion is satisfied. Each subproblem shown in (2.1)–(2.2)
can be solved by projected quasi-Newton optimization [37, 15], projected gradient
descent optimization [24], or nonnegativity constrained least squares [27, 16, 28].

Note that the original NMF problem of (1.2) is nonconvex, and most nonconvex
optimization algorithms guarantee only the stationarity of limit points. Since the
problem formulation is symmetric with respect to initialization of the factors H or
W , for simplicity of discussion, we will assume that the iteration is performed with the
initialization of the factor H. Then the above iteration can be expressed as follows:

• Initialize H with a nonnegative matrix H(0); t ← 0.
• Repeat until a stopping criterion is satisfied:

– W (t+1) = arg minW f(W,H(t)) s.t. W ≥ 0.
– H(t+1) = arg minH f(W (t+1), H) s.t. H ≥ 0.
– t ← t + 1.

According to the Karush–Kuhn–Tucker (KKT) optimality conditions, (W,H) is a
stationary point of (1.2) if and only if
(2.3)

W ≥ 0, H ≥ 0,

∇W f(W,H) = WHHT −AHT ≥ 0, ∇Hf(W,H) = WTWH −WTA ≥ 0,

W. ∗ ∇W f(W,H) = 0, H. ∗ ∇Hf(W,H) = 0,

where .∗ denotes componentwise multiplication [11].
For (1.2), when the block coordinate descent algorithm is applied, then no matter

how many subblocks into which the problem is partitioned, if the subproblems have
unique solutions, then the limit point of the sequence is a stationary point [2]. For
two-block problems, Grippo and Siandrone [12] presented a stronger result. The
result does not require uniqueness of the solution in each subproblem, which is that
any limit point of the sequence generated based on the optimal solutions of each
of the two subblocks is a stationary point. Since the subproblems (2.1) and (2.2)
are convex but not strongly convex, they do not necessarily have unique solutions.
However, according to the two-block result, it is still the case that any limit point will
be a stationary point. We emphasize that for convergence to a stationary point, it is
important to find an optimal solution for each subproblem.

In one of the most commonly utilized NMF algorithms due to Lee and Seung
[21, 22], NMF is computed using the following norm-based multiplicative update rules
(NMF/NUR) of W and H, which is a variation of the gradient descent method:

(2.4) Wiq ← Wiq
(AHT )iq

(W (HHT ))iq

for 1 ≤ i ≤ m and 1 ≤ q ≤ k,

(2.5) Hqj ← Hqj
(WTA)qj

((WTW )H)qj
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for 1 ≤ q ≤ k and 1 ≤ j ≤ n. Each iteration may in fact break down since the de-
nominators in both (2.4) and (2.5) can be zeros. Accordingly, in practical algorithms,
a small positive number is added to each denominator to prevent division by zero.
There are several variations of NMF/NUR [8, 30, 6].

Lee and Seung also designed an NMF algorithm using the divergence-based mul-
tiplicative update rules (NMF/DUR) [22] to minimize the divergence:

(2.6) D(A||WH) =

m∑
i=1

n∑
j=1

(
Aij ln

Aij

(WH)ij
−Aij + (WH)ij

)
s.t. W,H ≥ 0.

Strictly speaking, this formulation is not a bound constrained problem, which requires
the objective function to be well-defined at any point of the bounded region, since
the log function is not well-defined if Aij = 0 or (WH)ij = 0 [24]. The divergence
is also nonincreasing during iterations. Gonzales and Zhang [11] claimed that these
nonincreasing properties of multiplicative update rules may not imply the convergence
to a stationary point within a realistic amount of run time for problems of meaningful
sizes. Lin [24] devised an NMF algorithm based on projected gradient methods.
However, it is known that gradient descent methods may suffer from slow convergence
due to a possible zigzag phenomenon.

Berry et al. [1] proposed an NMF algorithm based on alternating least squares
(NMF/ALS). This algorithm computes the solutions to the subproblems (2.1) and
(2.2) as an unconstrained least squares problems with multiple right-hand sides and
sets negative values in the solutions W and H to zero during iterations to enforce
nonnegativity. Although this may give a faster algorithm for approximating each
subproblem, the convergence of the overall algorithm is difficult to analyze since the
subproblems are formulated as constrained least squares problems but the solutions
are not those of the constrained least squares.

Zdunek and Cichocki [37] developed a quasi-Newton optimization approach with
projection. In this algorithm, the negative values of W and H are replaced with
a very small positive value. Again, setting negative values to zero or small positive
values for imposing nonnegativity makes theoretical analysis of the convergence of the
algorithm difficult [3]. The projection step can increase the objective function value
and may lead to nonmonotonic changes in the objective function value resulting in
inaccurate approximations.

A more detailed review of NMF algorithms can be found in [1].

3. NMF based on alternating nonnegativity constrained least squares
and the active set method. In this section, we describe our NMF algorithm based
on alternating nonnegativity constrained least squares (NMF/ANLS) that satisfies the
nonnegativity constraints in each of the subproblems in (2.1) and (2.2) exactly and
therefore has the convergence property that every limit point is a stationary point.

The structures of the two nonnegativity constrained least squares (NLS) problems
with multiple right-hand sides shown in (2.1) and (2.2) are essentially the same, and
therefore we will concentrate on a general form of the NLS with multiple right-hand
sides

(3.1) min
G≥0

‖BG− Y ‖2
F ,

where B ∈ R
p×q and Y ∈ R

p×l are given, which can be decoupled into l independent
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NLS problems each with single right-hand side as

(3.2) min
G≥0

‖BG− Y ‖2
F → min

g1≥0
‖Bg1 − y1‖2

2, . . . , min
gl≥0

‖Bgl − yl‖2
2,

where G = [g1, . . . ,gl] ∈ R
q×l and Y = [y1, . . . ,yl] ∈ R

p×l. This objective function is
not strictly convex so that it does not ensure a unique solution unless B is full column
rank. In the context of the NMF computation, we implicitly assume that the fixed
matrices HT and W involved in (2.1) and (2.2) are of full column rank since they are
interpreted as basis matrices for AT and A, respectively. Each of the NLS problems
with single right-hand side vector

(3.3) min
gj≥0

‖Bgj − yj‖2

for 1 ≤ j ≤ l can be solved by using the active set method of Lawson and Hanson [20],
which is implemented in MATLAB [26] as the function lsqnonneg. The algorithm is
summarized in Algorithm 1.

The following theorem states the necessary and sufficient conditions for a vector
g to be a solution for the problem NLS.

Theorem 1 (Kuhn–Tucker conditions for problem NLS). A vector g ∈ R
n×1 is

a solution for problem NLS defined as

(3.4) min ‖Bg − b‖ s.t. g ≥ 0

if and only if there exists a vector r ∈ R
m×1 and a partitioning of the integers 1

through m into subsets E and S such that with r = BT (Bg − y)

gi = 0 for i ∈ E , gi > 0 for i ∈ S,(3.5)

ri ≥ 0 for i ∈ E , ri = 0 for i ∈ S.(3.6)

On termination of Algorithm NLS, the solution vector g satisfies

(3.7) gi > 0, i ∈ S and gi = 0, i ∈ E

and is a solution vector for the unconstrained least squares problem

(3.8) min
x

‖BSg − y‖2.

The dual vector w = −r = BT (y −Bg) satisfies

(3.9) wi = 0 i ∈ S and wi ≤ 0 j ∈ E .

To enhance the computational speed in solving (3.1) based on Algorithm NLS,
we utilize the fast algorithms by Bro and de Jong [3] and van Benthem and Keenan
[36]. Bro and de Jong [3] made a substantial speed improvement for solving (3.1)
which has multiple right-hand side vectors over a naive application of Algorithm NLS,
which is for a single right-hand side problem, by precomputing cross-product terms
that appear in the normal equations of the unconstrained least squares problems. Van
Benthem and Keenan [36] devised an algorithm that further improves the performance
of NLS for multivariate data by initializing the active set E based on the result from
the unconstrained least squares solution and reorganizing the calculations to take
advantage of the combinatorial nature of the active set–based solution methods for
the NLS with multiple right-hand sides.
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Algorithm 1 NLS: This algorithm computes the solution for the problem
ming≥0 ‖Bg − y‖2 by the active set method, where B ∈ Rm×n and y ∈ Rm×1 are
given.

Initialization:
g := 0
E := {1, 2, . . . , n} % Initially all indices belong to Active set since g := 0
S := φ % Initially Passive set is empty
w := BT (b−Bg).

Do While (E = φ and ∃ j ∈ E such that wj > 0)
1. Find an index t ∈ E such that wt = max{wj : j ∈ E} % t is the column index

of B that can potentially reduce the objective function value by maximum
when brought into the Passive set.

2. Move the index t from set E to set S.
3. Let BS denote the m× n matrix defined by

Column j of BS :=

{
column j of B if j ∈ S,
0 if j ∈ E .

Solve minz ‖BSz − b‖2. (% Only the components zj , j ∈ S, are determined
by this problem.)
zj := 0 for j ∈ E .

4. Do While (zj ≤ 0 for any j ∈ S)
(a) Find an index q ∈ S such that gq/(gq − zq) = min{gj/(gj − zj) : zj ≤

0, j ∈ S}.
(b) α := gq/(gq − zq).
(c) g := g + α(z − g).
(d) Move from set S to set E all indices j ∈ S for which gj = 0.
(e) Define BS as in step 3 and

Solve minz ‖BSz − b‖2.
5. End While (% zj > 0 for all j ∈ S)
6. g := z.
7. w := BT (b−Bg).

End While (% E is empty (all indices are passive) or wj ≤ 0 for all j ∈ E (objective
function value cannot be reduced anymore))

To illustrate the situation in a simpler context, let us for now assume that there
is no nonnegativity constraints in the least squares problems shown in (3.2) and
(3.3). Then, since an optimal solution g∗

j for mingj
‖Bgj − yj‖2 is B†yj for j =

1, . . . , l, the pseudoinverse B† of B [9] needs to be computed only once (in fact, we
do not recommend forming the pseudoinverse explicitly and it is used here only for
explanation). Clearly, it would be extremely inefficient if we treat each subproblem
independently and process the matrix B each time. In the case of NLS with multiple
right-hand side vectors, the scenario is not this simple since the active set E may differ
in each iteration and for each right-hand side vector, and a solution is obtained based
on a subset of columns of the matrix B that corresponds to the passive set in each
iteration, as shown in step 3 of Algorithm NLS. However, much of the computation
which is potentially redundant in each iteration can be identified and precomputed
only once. For example, if the matrix B has full column rank, then by precomputing
BTB and BTY only once and extracting the necessary components from these for
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each passive set, one can obtain the solution efficiently by extracting the normal
equations for each passive set avoiding redundant computations [3]. In addition, for
the multiple right-hand side case, the computations can be rearranged to be column
parallel; i.e., the passive set columns in each step of the active set iteration for all
right-hand side vectors are identified collectively at once. Thus, larger sets of common
passive sets can be found and more redundant computations can be avoided. More
detailed explanations of this algorithm can be found in [36].

As we stated earlier, with the above-mentioned solution method NMF/ANLS,
which satisfies the nonnegativity constraint exactly, any limit point will be a station-
ary point [2, 12]. Lin [24] also discussed the convergence properties of alternating
nonnegativity constrained least squares and showed that any limit point of the se-
quence (W,H) generated by alternating nonnegativity constrained least squares is a
stationary point of (1.2) when the objective function is convex, and not necessarily
strictly convex. The NMF is clearly not unique since there exist nonsingular matri-
ces X ∈ R

k×k including scaling and permutation matrices satisfying WX ≥ 0 and
X−1H ≥ 0, and these factors give ‖A−WH‖F = ‖A−WXX−1H‖F . To provide a
fair comparison among the computed factors based on various algorithms in the pres-
ence of this nonuniqueness, after convergence, the columns of the basis matrix W are
often normalized to unit L2-norm and the rows of H are adjusted so that the objective
function value is not changed. However, we would like to note that normalizing the
computed factors after each iteration makes the convergence results of the two-block
coordinate descent method not applicable since the normalization alters the objective
function of the subproblems expressed in (2.1) and (2.2).

4. Algorithms for sparse NMF based on alternating nonnegativity con-
strained least squares. One of the interesting properties of NMF is that it often
generates sparse factors that allow us to discover parts-based basis vectors. Although
the results presented in [21] show that the computed NMF generated parts-based basis
vectors, the generation of a parts-based basis by NMF depends on the data and the
algorithm [14, 23]. Several approaches [7, 14, 29, 30] have been proposed to explicitly
control the degree of sparseness in the factors of NMF. In this section, we propose
algorithms for the sparse NMF that follows the framework of the two-block coordinate
descent methods and therefore guarantees that every limit point is a stationary point.
In particular, we propose an L1-norm–based constrained NMF formulation to control
the sparsity of one of the factors.

4.1. Constrained NMF based on alternating nonnegativity constrained
least squares. Pauca, Piper, and Plemmons [30] proposed the following constrained
NMF (CNMF) formulation for the purpose of obtaining a sparse NMF:

(4.1) min
W,H

1

2
{‖A−WH‖2

F + α‖W‖2
F + β‖H‖2

F } s.t. W,H ≥ 0,

where α ≥ 0 and β ≥ 0 are the parameters to be chosen and are supposed to con-
trol the sparsity of W and H, respectively. An algorithm was developed based on
multiplicative update rules for the CNMF formulation.

We now show how the formulation in (4.1) can be recast into the ANLS frame-
work and developed into an algorithm CNMF/ANLS for which every limit point is
a stationary point. The algorithm CNMF/ANLS begins with the initialization of H
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with nonnegative values. Then the following ANLS can be iterated:

(4.2) min
W≥0

∥∥∥∥
(

HT
√
αIk

)
WT −

(
AT

0k×m

)∥∥∥∥
2

F

,

where Ik is a k × k identity matrix and 0k×m is a zero matrix of size k ×m, and

(4.3) min
H≥0

∥∥∥∥
(

W√
βIk

)
H −

(
A

0k×n

)∥∥∥∥
2

F

,

where 0k×n is a zero matrix of size k × n. Similarly, one may initialize W ∈ R
m×k

and alternate the above in the order of solving (4.3) and (4.2). Equation (4.1) is
differentiable in the feasible region and (4.2)–(4.3) are strictly convex. Then again
according to convergence analysis for block coordinate descent methods [2], any limit
point of our CNMF/ANLS algorithm will be a stationary point.

4.2. Sparse NMF with L1-norm constraint. The idea of imposing L1-norm–
based constraints for the purpose of achieving sparsity in the solution has been suc-
cessfully utilized in a variety of problems [35]. For NMF, we propose the following
formulation of NMF that imposes sparsity on the right-side factor H (SNMF/R)
[16, 18],

(4.4) min
W,H

1

2

⎧⎨
⎩‖A−WH‖2

F + η‖W‖2
F + β

n∑
j=1

‖hj‖2
1

⎫⎬
⎭ s.t. W,H ≥ 0,

where hj is the jth column vector of H, the parameter η ≥ 0 suppresses the growth
of W , and the parameter β ≥ 0 balances the trade-off between the accuracy of the
approximation and the sparseness of H. Note that due to the nonnegativity constraint
on H, the last term in (4.4) becomes equivalent to β

∑n
j=1(

∑k
i=1 hij)

2 and accordingly
(4.4) is differentiable in the feasible domain. The SNMF/R algorithm begins with the
initialization of W with nonnegative values. Then it iterates the following ANLS until
a convergence criterion is satisfied:

(4.5) min
H≥0

∥∥∥∥
(

W√
βe1×k

)
H −

(
A

01×n

)∥∥∥∥
2

F

,

where e1×k ∈ R
1×k is a row vector with all components equal to one and 01×n ∈ R

1×n

is a zero vector, and

(4.6) min
W≥0

∥∥∥∥
(

HT

√
ηIk

)
WT −

(
AT

0k×m

)∥∥∥∥
2

F

,

where 0k×m is a zero matrix of size k ×m. Equation (4.5) minimizes the L1-norm of
each column of H ∈ R

k×n.
Similarly, sparsity in the NMF can be imposed on the left-side factor W (SNMF/L)

through the following formulation:

(4.7) min
W,H

1

2

{
‖A−WH‖2

F + ζ‖H‖2
F + α

m∑
i=1

‖wi‖2
1

}
s.t. W,H ≥ 0,

where wT
i is the ith row vector of W , ζ ≥ 0 is a parameter to suppress ‖H‖2

F , and
α ≥ 0 is a parameter to balance the trade-off between accuracy of approximation and
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sparseness of W . The corresponding algorithm SNMF/L begins with an initialization
of the nonnegative matrix H. Then it iterates the following ANLS until a convergence
criterion is satisfied:

(4.8) min
W

∥∥∥∥
(

HT
√
αe1×k

)
WT −

(
AT

01×m

)∥∥∥∥
2

F

s.t. W ≥ 0,

where e1×k ∈ R
1×k is a row vector whose elements are all one and 01×m ∈ R

1×m is a
zero vector, and

(4.9) min
H

∥∥∥∥
(

W√
ζIk

)
H −

(
A

0k×n

)∥∥∥∥
2

F

s.t. H ≥ 0,

where Ik is a k× k identity matrix and 0k×n is a zero matrix of size k×n. Note that
(4.8) can be rewritten as

(4.10) min
W

‖HTWT −AT ‖2
2 + α

m∑
i=1

(
k∑

q=1

WT (q, i)

)2

s.t. W ≥ 0,

and since all elements in W are nonnegative, (4.10) in turn becomes the following by
the definition of the L1-norm of a vector:

(4.11) min
W≥0

{
‖HTWT −AT ‖2

2 + α

m∑
i=1

‖wi‖2
1

}
,

which involves the L1-norm minimization of each row of W .
An advantage of the above formulation and algorithms is that they follow the

framework of the two-block coordinate descent method and therefore guarantee con-
vergence of limit points to a stationary point. Imposing additional sparsity constraints
on W or H may provide sparser factors and a simpler interpretation. However, impos-
ing sparsity in the factors does not necessarily improve the solution or interpretation.
Indeed, as the sparse constraints become stronger, the magnitude of perturbations to
the basic NMF solution may become larger and the degree of simplification becomes
higher.

5. Regularized NMF based on alternating nonnegativity constrained
least squares. As shown in section 2, in the algorithm NMF/ANLS, one of the
factors W and H is initialized and the iterations are repeated fixing one of the factors.
Let us assume that H is initialized. In NMF, the columns of the computed factor W
are interpreted as basis vectors, therefore, implicitly assumed to be of full rank and,
in fact, many of the NMF algorithms are designed assuming that the fixed matrices
HT and W involved in the subproblems are of full rank. We propose the following
regularized version of the NMF/ANLS, which we call RNMF/ANLS, where the terms√
αI and

√
βI with very small parameters α > 0 and β > 0 are attached to the fixed

matrices for the purpose of numerical stability. In RNMF/ANLS, after the matrix H
is initialized the following steps are iterated: solve

(5.1) min
W≥0

∥∥∥∥
(

HT
√
αIk

)
WT −

(
AT

0k×m

)∥∥∥∥
2

F

,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

722 HYUNSOO KIM AND HAESUN PARK

where Ik is a k× k identity matrix and 0k×m is a zero matrix of size k×m, and solve

(5.2) min
H≥0

∥∥∥∥
(

W√
βIk

)
H −

(
A

0k×n

)∥∥∥∥
2

F

,

where 0k×n is a zero matrix of size k × n. Similarly, one may initialize W ∈ R
m×k

and alternate the above in the order to solve (5.2) and then (5.1).
The above RNMF/ANLS is one way to formulate a two-block coordinate descent

method for the objective function

(5.3) min
W,H

1

2
{‖A−WH‖2

F + α‖W‖2
F + β‖H‖2

F } s.t. W,H ≥ 0,

where α ≥ and β ≥ are very small regularization parameters. Note that the objective
function (5.3) and ANLS iterations (5.1) and (5.2) are identical to the CNMF formu-
lation and our proposed CNMF/ANLS algorithm presented in section 4.1. However,
the purpose of the CNMF [30] was to obtain a sparser NMF and the role of the param-
eters α and β was supposed to control the sparsity of W and H. On the other hand,
the purpose of the RNMF/ANLS is to impose strong convexity on the subproblems of
NMF/ANLS. The role of the parameters α and β with very small values is to impose
full rank on the matrices on the left side of solution matrices in the NLS subproblems.
Consequently, we can guarantee that the symmetric square matrix appearing in the
normal equations for solving least squares subproblems in the fast NLS algorithm [36]
is symmetric positive definite with any passive set of columns, so that the solution
can be computed via the Cholesky factorization.

6. Numerical experiments and discussion. In this section, we present sev-
eral numerical experimental results to illustrate the behavior of our proposed al-
gorithms and compare them to two of the most commonly used algorithms in the
literature, NMF/NUR [21, 22] and NMF/ALS [1]. We implemented all algorithms in
MATLAB 6.5 [26] on a P3 600MHz machine with 512MB memory.

6.1. Data sets in experiments. We have used four data sets for our empirical
tests, of which two are from microarray analysis and are presented in [8, 16, 18] and
the others are artificially generated. All data sets contain only nonnegative entries.

I. Data set ALLAML. The leukemia gene expression data set ALLAML [10]
contains acute lymphoblastic leukemia (ALL) that has B and T cell subtypes, and
acute myelogenous leukemia (AML) that occurs more commonly in adults than in
children. This gene expression data set consists of 38 bone marrow samples (19 ALL-
B, 8 ALL-T, and 11 AML) with 5,000 genes forming a data matrix A ∈ R

5,000×38.
The gene expression values were in the range between 20 and 61,225, where a lower
cutoff threshold value of 20 was used to eliminate noisy fluctuations.

II. Data set CNS. The central nervous system tumors data set CNS [33] is
composed of four categories of CNS tumors with 5,597 genes. It consists of 34 samples
representing four distinct morphologies: 10 classic medulloblastomas, 10 malignant
gliomas, 10 rhabdoids, and 4 normals, forming a data matrix A ∈ R

5,597×34. In
addition to a lower cutoff threshold value of 20, an upper cutoff threshold value of
16,000 was used to eliminate expression values that are too high and may undesirably
dominate the objective function value in (1.2).
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III. Artificial data sets with zero residual. We generated the first artificial
data matrix Aa of size 200× 50 by Aa = WaHa, where Wa ∈ R

200×6 and Ha ∈ R
6×50

are artificial positive matrices. The rank of Aa is 6 and a zero residual solution for the
NMF with k = 6 exists. Accordingly, the NMF algorithms are expected to produce
the solutions W and H, which give very small relative residual ‖Aa −WH‖F /‖Aa‖F
with k = 6. We generated another artificial data matrix As of size 2,500 × 28 by
As = WsHs, where Ws ∈ R

2,500×3 and Hs ∈ R
3×28 are artificial nonnegative matrices.

The basis matrix Ws has columns of unit L2-norm. The maximal value in Hs is 105.
The rank of As is 3 and a zero residual solution for the NMF with k = 3 exists.

6.2. Convergence criteria.Reaching a smaller approximation error ‖A−W∗H∗‖F ,
where W∗ and H∗ are the solution matrices obtained from an algorithm for the NMF
formulation in (1.2), indicates the superiority of an algorithm in terms of approxi-
mation capability. Accordingly, the convergence of the proposed algorithms may be
tested by checking the decrease in the residual of the objective function f(W,H). We
may also test the convergence to a stationary point by checking the KKT optimality
conditions. The KKT conditions shown in (2.3) can be rewritten as

(6.1)
min(W,∂f(W,H)/∂W ) = 0,

min(H, ∂f(W,H)/∂H) = 0,

where the minimum is taken componentwise [11]. The normalized KKT residual Δ
is then defined as Δ = Δo

δW +δH
, which reflects the average of convergence errors for

elements in W and H that did not converge, where

(6.2)

Δo =

m∑
i=1

k∑
q=1

|min(Wiq, (∂f(W,H)/∂W )iq)|

+

k∑
q=1

n∑
j=1

|min(Hqj , (∂f(W,H)/∂H)qj)|,

δW = #(min(W ,∂f(W,H) / ∂W ) = 0), and δH = #(min(H,∂f(W,H) / ∂H) = 0).
Then the convergence criterion is defined as

(6.3) Δ ≤ εΔ1,

where Δ1 is the value of Δ after one iteration and ε is an assigned tolerance.

6.3. Performance comparisons. In this subsection, we present performance
results based on the three data sets described earlier. In the tests, we used the KKT
convergence criterion shown in (6.3) with ε = 10−9.

I. Test results on the ALLAML data set. Table 6.1 shows the perfor-
mance comparison among NMF/NUR, NMF/ALS, and NMF/ANLS on the ALLAML
leukemia data matrix with k = 3. There are three clusters in this data set.1 We report
the percentage of zero elements in the computed factors W and H, relative approx-
imation error (i.e., ‖A − WH‖F /‖A‖F ), the number of iterations, and computing
time. The results show that to reach the same convergence criterion, NMF/NUR
and NMF/ALS took much longer than NMF/ANLS, and the NMF/ALS generated
the solutions with the largest relative approximation error among them. We believe

1The results of NMF algorithms with k = 4 and k = 5 can be found in our paper [17].
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Table 6.1

Performance comparison among NMF/NUR [22], NMF/ALS [1], and NMF/ANLS on the
leukemia ALLAML data set with k = 3. We present the percentages of zero elements in W and
H, relative approximation error, the number of iterations, and computing time. ∗For NMF/NUR,
the computed W and H factors were not sparse, so the percentages of the number of nonnegative
elements that are smaller than 10−8 in W and H are shown instead.

Algorithms NMF/NUR NMF/ALS NMF/ANLS

#(W = 0) (%) 2.71%∗ 2.83% 2.71%

#(H = 0) (%) 18.42%∗ 16.67% 18.42%

‖A−WH‖F /‖A‖F 0.5027 0.5032 0.5027

No. of iterations 5385 3670 90

Computing time 284.0 sec. 192.8 sec. 8.3 sec.
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Fig. 6.1. The values of Δ vs. the number of iterations for NMF/ANLS, NMF/NUR [22], and
NMF/ALS [1] on the leukemia ALLAML data set with k = 3. We used the KKT convergence
criterion with ε = 10−9.

that the overall faster performance of the NMF/ANLS is a result of its convergence
properties. In the factors W and H, the NMF/NUR produced very small nonnegative
elements (< 10−8) in W and H, which are not necessarily zeros, while NMF/ANLS
generated the exact zero elements. This is an interesting property of the NMF algo-
rithms and illustrates that the NMF/ANLS does better at generating sparser factors,
which can be helpful in reducing computing complexity and storage requirement for
handling sparse data sets.

Figure 6.1 further illustrates the convergence behavior of NMF/ANLS, NMF/NUR,
and NMF/ALS on the ALLAML data set with k = 3. As for NMF/ALS, we solved
each least squares subproblem by normal equations and set the negative values to
zeros. All three algorithms began with the same random initial matrix of Ho. An
additional random initial matrix of Wo was needed for NMF/NUR. The NMF/ALS
generated the smallest Δ1 (Δ value after the first iteration), whereas NMF/NUR
produced the largest Δ1. While NMF/NUR converged after more than 5,000 iter-
ations from relatively large Δ1, the final Δ value is still larger than those of other
algorithms. We observed that the NMF/ALS algorithm required more running time
than NMF/ANLS even though its subproblem (unconstrained least squares problem)
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Fig. 6.2. The values of Δ vs. the number of iterations for SNMF/R [18] with β = 0.01 and
CNMF based on multiplicative update rules [30] with α = 0 and β = 0.01 on the leukemia ALLAML
data set with k = 3. We used the KKT convergence criterion with ε = 10−9.

requires less floating point operations. This slower computational time can be as-
cribed to the lack of convergence property of the NMF/ALS algorithm. In this test,
NMF/ANLS outperformed the others in terms of convergence speed.

Figure 6.2 illustrates the converge behavior of SNMF/R with β = 0.01 and CNMF
with α = 0 and β = 0.01 on the ALLAML data set with k = 3. We used the KKT
convergence criterion corresponding to each of the objective functions for SNMF/R
and CNMF. The η parameter in SNMF/R was set to the square of the maximal value
in the ALLAML data matrix. As for CNMF, we used the CNMF algorithm based on
multiplicative update rules [30] without column normalization of W in each iteration.
Two algorithms began with a random initial matrix Wo that has columns of unit L2-
norm. A random initial matrix of Ho was used only in CNMF. SNMF/R generated
much smaller Δ than CNMF within a short time. The percentages of zero elements in
W and H obtained from SNMF/R were 2.17% and 30.70%. On the other hand, the
percentages of elements in the range of [0, 10−8) in W and H obtained from CNMF
were 2.71% and 18.42% and only a small number of elements in W were exactly zeros.
It illustrates that the SNMF/R is more effective in producing a sparser H.

II. Test results on the CNS tumors data set. Table 6.2 shows the perfor-
mance comparison on the CNS tumors data set with various k values where NMF/
ANLS was a few orders of magnitude faster than NMF/NUR. NMF/NUR did not
satisfy the KKT convergence criterion within 20,000 iterations. The relative approx-
imation errors of NMF/NUR at the last iteration were still slightly larger than those
of NMF/ANLS after less than 200 iterations.

The sparsity obtained from NMF/NUR or NMF/ANLS is a general result due to
nonnegativity constraints. Even when the original data set has no zero element, the
factors W and H may have zero components. In case of NMF/ANLS, this becomes
clear when we note that at the core of NMF/ANLS is the active set–based iterations,
and in each iteration the solution components that correspond to the active set index
are set to be zeros.
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Table 6.2

Performance comparison between NMF/NUR [22] and NMF/ANLS on the CNS tumors data
set. We report the percentages of zero elements in W and H, relative approximation error, the
number of iterations, and computing time (in seconds). ∗For NMF/NUR, the computed W and H
factors were not sparse, so the percentages of the number of nonnegative elements that are smaller
than 10−8 in W and H are shown instead.

Algorithm NMF/NUR

Reduced rank k 3 4 5

#(|Wij | < 10−8) (%) 8.70%∗ 9.05%∗ 12.32%∗

#(|Hij | < 10−8) (%) 18.63%∗ 25.00%∗ 25.29%∗

‖A−WH‖F /‖A‖F 0.40246175083 0.37312046970 0.35409585961

No. of iterations 20000 20000 20000

Computing time 1310.0 sec. 1523.0 sec. 1913.9 sec.

Algorithm NMF/ANLS

Reduced rank k 3 4 5

#(W = 0) (%) 8.69% 9.03% 12.07%

#(H = 0) (%) 18.63% 25.00% 27.06%

‖A−WH‖F /‖A‖F 0.40246175028 0.37312046948 0.35409574992

No. of iterations 150 130 130

Computing time 14.8 sec. 16.6 sec. 20.4 sec.
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Fig. 6.3. The relative residuals vs. the number of iterations for RNMF/ANLS with α = β =
10−8, NMF/NUR [22], and NMF/ALS [1] with k = 6 for 3,000 iterations on the first artificial data
matrix Aa = WaHa of size 200 × 50, where Wa ∈ R

200×6 and Ha ∈ R
6×50 are artificial positive

matrices, and rank(Aa) = 6.

III. Test results on the zero residual artificial data sets. Figure 6.3
shows the performance of the three NMF algorithms, RNMF/ANLS, NMF/NUR,
and NMF/ALS, on the first artificial data matrix Aa = WaHa of size 200× 50 where
Wa ∈ R

200×6 and Ha ∈ R
6×50 are artificial positive matrices. The relative resid-

uals versus iteration or computing time are shown. We used α = β = 10−8 for
the RNMF/ANLS and implemented NMF/ALS with pseudoinverse. We note that
NMF/ALS sometimes generated ill-conditioned W and H when negative values are
set to zeros, which may happen even when we solve the least squares problem by a
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Fig. 6.4. The factors obtained from the truncated SVD [9] (As ≈ UkΣkV
T
k ) and NMF/ANLS

(As ≈WH s.t.W,H ≥ 0) with k = 3 on the second artificial data matrix As = WsHs of size 2,500×
28, where Ws ∈ R

2,500×3 and Hs ∈ R
3×28 are artificial nonnegative matrices, and rank(As) = 3.

The gray scale indicates the values of the elements in the matrix.

stable algorithm. In the worst case, the entire row or column in the matrices W or H
may become zero. The RNMF/ANLS rapidly converged, while NMF/NUR did not
converge to near zero residual within 3,000 iterations. The relative residual in the
middle of iterative optimization of NMF/ALS sometimes increased.

Figure 6.4 shows the comparison between the truncated SVD [9] and NMF/ANLS
on the second artificial data matrix As = WsHs of size 2,500 × 28, where Ws ∈
R

2,500×3 and Hs ∈ R
3×28 are artificial nonnegative matrices. We presented Uk and

ΣkV
T
k obtained from the truncated SVD (As ≈ UkΣkV

T
k ) with k = 3. We also

illustrated W and H obtained from NMF/ANLS (As ≈ WH s.t.W,H ≥ 0) with
k = 3. Although the approximation error of NMF/ANLS was larger than that of
the truncated SVD, it surprisingly recovered Ws and Hs factors much better. Our
NMF algorithm can be utilized for blind source separation when basis vectors are
nonnegative and observations are nonsubtractive combinations of basis vectors.

6.4. Summary of experimental results. In our tests, the convergence of
NMF/NUR was slower and, due to this, the algorithm was often prematurely termi-
nated before it reached a convergence criterion, whether it was based on the relative
residual or the KKT residual. The NMF/ALS does not provide a solution in a least
squares sense for each nonnegativity constrained subproblem although the problem is
formulated as a least squares problem. Therefore, its convergence is difficult to an-
alyze and exhibits nonmonotonic changes in the objective function value throughout
the iterations. On the other hand, NMF/ANLS generated solutions with satisfactory
accuracy within a reasonable time.
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An algorithm for nonnegativity constrained least squares is an essential compo-
nent of NMF/ANLS. There are several ways to solve the NLS problem with multiple
right-hand sides and we chose van Benthem and Keenan’s NLS algorithm [36]. This
algorithm is based on the active set method that is guaranteed to terminate in a fi-
nite number of steps of matrix computations. Some other implementations of NLS are
based on traditional gradient descent or quasi-Newton optimization methods. They
are iterative methods that require explicit convergence check parameters. Their speed
and accuracy depend on their convergence check parameters.

7. Summary and discussion. We have introduced the NMF algorithms based
on alternating nonnegativity constrained least squares, for which every limit point is
a stationary point. The core of our algorithm is the nonnegativity constrained least
squares algorithm for multiple right-hand sides based on the active set method, which
terminates in a finite number of steps. We applied the well-known convergence theory
for block coordinate descent methods in bound constrained optimization and built a
rigorous convergence criterion based on the KKT conditions.

We have established a framework of NMF/ANLS which is theoretically sound
and practically efficient. This framework was utilized to design formulations and al-
gorithms for sparse NMFs and regularized NMF. Some theoretical characteristics of
our proposed algorithms explain their superior behavior shown in the test results.
The NMF algorithms based on gradient descent method exhibit slow convergence.
Thus, it is possible, though undesirable, to use premature solutions for data analysis
owing to termination before convergence, which may sometimes lead to unreliable
conclusions. The inexact NMF/ALS algorithm [1] sets the negative components in
the unconstrained least squares solution to zero. Although the inexact method may
solve the subproblems faster, its convergence behavior is problematic. On the other
hand, our algorithm satisfies the nonnegativity constraints exactly in each subprob-
lem and shows faster overall convergence. The converged solutions obtained from
our algorithms make it possible to reach more physically reliable conclusions in many
applications of NMF. The NMF/ANLS can be applied to a wide variety of practical
problems in the fields of text data mining, image analysis, bioinformatics, computa-
tional biology, and so forth, especially when preserving nonnegativity is beneficial to
meaningful interpretation.

Acknowledgment. We would like to thank Prof. Chih-Jen Lin and Prof. Luigi
Grippo for discussions on the convergence properties.
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Abstract. Let P(G) be the set of all positive semidefinite matrices whose graph is G, and
msr(G) be the minimum rank of all matrices in P(G). Upper and lower bounds for msr(G) are given
and used to determine msr(G) for some well-known graphs, including chordal graphs, and for all
simple graphs on less than seven vertices.
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1. Introduction. If A is an n-by-n Hermitian matrix, then its graph G(A) is
the undirected, simple graph on vertices {1, 2, . . . , n}, which has an edge between
vertices i and j if and only if the i, j entry of A is nonzero and i �= j. The graph is
independent of the real diagonal entries of A. The set of all Hermitian matrices that
share a common graph G is denoted H(G): H(G) = {A | A = A∗, G(A) = G }. If
G is a simple connected graph, then matrices in H(G) may be viewed as the discrete
version of the continuous Schrödinger operators with magnetic fields [3].

The possible multiplicities of the eigenvalues among matrices in H(G) have been
of much recent interest [6, 7, 9, 10, 11, 13]. It is known, for example, that if G is a tree,
then the smallest eigenvalue of any matrix in H(G) has multiplicity one [10, Corollary

∗Received by the editors April 22, 2005; accepted for publication (in revised form) by P. Benner
February 8, 2008; published electronically July 3, 2008.

http://www.siam.org/journals/simax/30-2/62979.html
†Department of Mathematics, Oberlin College, Oberlin, OH 44074 (Matthew.Booth@oberlin.edu).

This author’s research was supported by NSF grant DMS 99-87803.
‡Department of Mathematics, Purdue University, West Lafayette, IN 47907-2067 (phackney@

math.purdue.edu).
§Department of Mathematics, Brown University, Providence, RI 02912 (Benjamin Harris@brown.

edu). This author’s research was supported by NSF grant DMS 02-43674.
¶Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795

(crjohnso@math.wm.edu). This author’s research was supported by NSF grant DMS 99-87803.
‖Department of Mathematics and Computer Science, Grinnell College, Grinnell, IA 50112-1690

(laymarga@grinnell.edu). This author’s research was supported by NSF grant DMS 02-43674.
#Department of Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014

(lmitchell2@vcu.edu).
††Corresponding author. Department of Mathematics, Central Michigan University, Mount Pleas-

ant, MI 48859 (sivaram.narayan@cmich.edu). This author’s research was supported by NSF grant
DMS 02-43674.

‡‡Department of Mathematics, Furman University, Greenville, SC 29613-1148 (amanda.pascoe@
furman.edu). This author’s research was supported by NSF grant DMS 02-43674.

§§Department of Mathematics, Indiana University, Bloomington, IN 47405 (kellyjs82@yahoo.com).
This author’s research was supported by NSF grant DMS 02-43674.
¶¶Department of Mathematics, Randolph–Macon College, Ashland, VA 23005 (bsutton@rmc.edu).

This author’s research was supported by NSF grant DMS 99-87803.
‖‖Department of Mathematics, Duke University, Durham, NC 27708-0320 (wendy.wang@

duke.edu). This author’s research was supported by NSF grant DMS 02-43674.

731



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

732 MATTHEW BOOTH ET AL.

3.9]. This implies that any Hermitian positive semidefinite (psd) matrix whose graph
is a tree has rank at least n − 1. The Laplacian matrix of a tree on n vertices is a
psd matrix with rank equal to n− 1 [14]. A converse to this statement, that, for any
nontree the minimum rank of a psd matrix is less than n−1, was proved independently
(Lemma 5, [8] and Theorem 4.1, [17]). This raises the following interesting question,
given a graph G, what is the minimum rank among psd matrices in H(G)?

Let P(G) denote the psd matrices in H(G). Define the minimum semidefinite
rank of G, msr(G), as min{rankA : A ∈ P(G)}. We present here some results about
msr(G), which give msr(G) for every chordal graph and for most graphs on fewer
than seven vertices. The few exceptions can be handled by separate arguments. It is
equally interesting to find the minimum psd rank over the symmetric real matrices
instead of Hermitian matrices. It is not known if these two problems are different,
though there can be differences in some related problems [12].

If G is not connected, it is clear that msr(G) is the sum of the minimum semidef-
inite ranks of each of G’s connected components, so that we may (and do) confine
our attention to connected graphs. Note that, if G is a connected graph with two or
more vertices, the diagonal entries of A ∈ P(G) are positive.

2. Lower bounds using induced subgraphs. We will obtain several lower
bounds using induced subgraphs. An induced subgraph H of a graph G is obtained by
deleting all vertices except for the vertices in a subset S. Since a principal submatrix
of a psd matrix is psd [5, p. 397], and the rank of a submatrix can never be greater
than that of the matrix, we have the following.

Lemma 2.1. If H is an induced subgraph of a connected graph G, then msr(H) ≤
msr(G).

Equality can occur in the inequality of Lemma 2.1 in important ways; of course,
strict inequality is common. One case of equality is that in which the induced subgraph
is the result of the deletion of a duplicate vertex from G. For a vertex w, let n(w)
denote the set of all vertices adjacent to w. The closed neighborhood of w is n(w)∪{w}.
A vertex u is a duplicate of a vertex v of G if u and v are adjacent, and their closed
neighborhoods are the same. We denote the induced subgraph of G resulting from
the deletion of a vertex u by G− u. We then have the following.

Proposition 2.2. Let G be a connected graph on three or more vertices. If u is
a duplicate vertex of v in G, then msr(G− u) = msr(G).

Proof. From Lemma 2.1, msr(G − u) ≤ msr(G). Let A′ ∈ P(G − u) be a psd
matrix such that rankA′ = msr(G − u). By permuting the rows and columns of A′

let the first row and column of A′ correspond to the vertex v. If A′ = B∗B, then

consider A =
[

B∗

eT1 B∗

]
[B Be1 ] where eT

1 = (1, 0, . . . , 0). Then rankA = rankA′ and

A ∈ P(G). Thus msr(G) ≤ msr(G− u).
From a sequential deletion of duplicate vertices and application of Proposition 2.2

we get the following.
Corollary 2.3. If H is the induced subgraph of a connected graph G obtained

by a sequential deletion of duplicate vertices of G and H has at least two vertices, then
msr(H) = msr(G).

Remark 2.4. As an easy consequence of Corollary 2.3, we obtain that, for n ≥
2, msr(Kn) = 1 where Kn denotes the complete graph on n vertices. Note that
Proposition 2.2 is incorrect if applied to two nonadjacent vertices with the same
neighbors. To see this, let G be K4 minus an edge. Deletion of a degree 3 vertex
gives msr(G) = 2 using Proposition 2.2, but deletion of a degree 2 vertex results in
K3 whose msr equals one.
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Fig. 2.1. fm(G) = 4.

Another important application of Lemma 2.1 is that in which H is an induced
tree on the maximum possible number of vertices as we know the msr for any tree.
For a graph G, we consider its “tree size,” denoted ts(G), which is the number of
vertices in a maximum induced tree [4]. As already noted, when T is a tree, msr(T )
is one less than the number of vertices of T . This fact, combined with Lemma 2.1,
immediately gives the following.

Lemma 2.5. If G is a connected graph, msr(G) ≥ ts(G) − 1.
As mentioned in the introduction, equality in Lemma 2.5 occurs whenever G is a

tree. It also occurs for any nontree G on n vertices for which ts(G) = n − 1; in this
case msr(G) ≥ n − 2 by Lemma 2.5, and msr(G) ≤ n − 2 because G is not a tree.
Thus msr(G) = n− 2. For example, if G is a cycle on n vertices, the tree size is n− 1
(because deletion of any one vertex leaves a path on n − 1 vertices). Therefore, the
msr of a cycle on n vertices is n− 2 (cf. [17, Theorem 4.3]).

For an induced forest of G with components T1, T2, . . . , Tk, count ts(T1)+ts(T2)+
· · · + ts(Tk) − (the number of components that are not isolated vertices). Among all
the induced forests of G maximize this count and call this result fm(G), the “forest
measure” of G. Any isolated vertices occurring in an induced subgraph of a connected
graph G contribute 1, rather than 0, to msr(G), as an irreducible psd matrix has
positive diagonal entries. We then have the following.

Proposition 2.6. If G is a connected graph, then msr(G) ≥ fm(G) ≥ ts(G)−1.
Figure 2.1 illustrates that strict inequality is possible in the second inequality of

Proposition 2.6, as fm(G) = 4 by deleting any single interior vertex.
One special case of an induced forest is an induced set of isolated vertices. The

maximum cardinality of such a set is the independence number i(G), the greatest
number of vertices among which there are no edges. Clearly fm(G) ≥ i(G), so that
we have the following.

Corollary 2.7. For a connected graph G, msr(G) ≥ i(G).
Suppose G is a connected graph with vertex set V = {v1, v2, . . . , vn}. We call

a set of vectors
−→
V = {−→v1 ,

−→v2 , . . . ,
−→vn} in C

m a vector representation (or orthogonal
representation) of G if

⎡
⎢⎢⎢⎣

−→v1−→v2

...
−→vn

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

−→v1−→v2

...
−→vn

⎤
⎥⎥⎥⎦

∗

= A ∈ P(G).

In other words, we associate a vector −→vi ∈ C
m to each vertex vi ∈ V (G) such that,

for i �= j, 〈−→vi ,−→vj 〉 �= 0 if vi and vj are adjacent in G, and 〈−→vi ,−→vj 〉 = 0 if vi and vj
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are not adjacent. Since every psd matrix A ∈ P(G) can be written as A = B∗B for
some matrix B, we can always find a vector representation of G(A) that produces
A. Also, the rank of the matrix and the dimension of the span of the vectors in the
vector representation (which we call the rank of the vector representation) are always
the same [5, p. 408].

We end this section by giving a sufficient condition on G so that msr(G) =
ts(G) − 1. To prove the result we need the following lemma.

Lemma 2.8. Suppose X1, . . . , Xm, Xi ⊆ C
n for 1 ≤ i ≤ m, are vector represen-

tations of subgraphs G1, . . . , Gm of a connected graph G such that
• for every pair of adjacent vertices v, w of G, there exists an i such that v and

w are adjacent in Gi; and
• for every pair of vertices v, w of G that are not adjacent, if −→xv represents

vertex v in Xi and −→xw represents vertex w in Xj, 〈−→xv,
−→xw〉 = 0.

Then there exists a vector representation X of G, with

rankX ≤ rank

⎛
⎝ ⋃

1≤i≤m

spanXi

⎞
⎠ ≤

∑
1≤i≤m

rankXi.

Proof. We prove the statement for the case of two vector representations as the
result can be easily generalized. Let X1 = {−→xi} and X2 = {−→wi} be vector represen-
tations of subgraphs G1 and G2 of a graph G. Extend X1 and X2 to represent all of
the vertices of G by adding copies of the zero vector if need be. We claim there exists
c ∈ R such that {−→xi + c−→wi} is a vector representation of G.

If (vi, vj) /∈ E, then 〈−→xi ,
−→xj〉 = 〈−→wi,

−→wj〉 = 〈−→xi ,
−→wj〉 = 〈−→wi,

−→xj〉 = 0. This implies
that 〈−→xi + c−→wi,

−→xj + c−→wj〉 = 0 for any c ∈ C. If vi and vj are adjacent, then {〈−→xi +
c−→wi,

−→xj + c−→wj〉} is a set of quadratics in c having finitely many roots. Thus we may
choose c ∈ R so that {−→xi + c−→wi} is a vector representation of G.

Suppose T is a maximum induced tree. If w is a vertex not belonging to T , denote
by E(w) the edge set of all paths in T between every pair of the vertices of T that are
adjacent to w.

Theorem 2.9. For a connected graph G, msr(G) = ts(G) − 1 if the following
condition � holds:

� There exists a maximum induced tree T such that, for u and w not on T ,
E(u) ∩ E(w) �= ∅ if and only if u and w are adjacent in G.

Proof. If G is a tree, we have already seen that msr(G) = ts(G)− 1. If G is not a
tree, we will cover G with subgraphs that have vector representations satisfying the
conditions of Lemma 2.8. If � holds for a maximum induced tree T of G, then every
vertex w not on T must be adjacent to some vertex on T . Moreover, by the definition
of T , w is adjacent to at least two vertices of T . Assign an orthonormal set of vectors
{−→xe} of dimension (ts(G) − 1) to the edges of T , one vector per edge. If v ∈ V (T ),
assign the vector −→v =

∑
e
−→xe to v, where the summation is over all edges incident to

v. This gives a vector representation
−→
T of T .

For any path p = (e1, e2, . . . , em) in T , let

−→p =

m∑
j=1

(−1)j−→xej .
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Given a vertex w not on T and an adjacent vertex v1 on T , w must have another
neighbor v2 on T . If p is a path between v1 and v2 in T , letting −→p represent w and−→
T represent T yields a vector representation of a subgraph of G containing the edge
between w and v1.

Given two vertices w1 and w2 not on T that are adjacent, by � there exist
intersecting paths p1 and p2 in T so that the end vertices of pi are neighbors of wi,

i = 1, 2. Letting −→pi represent wi for i = 1, 2 and
−→
T represent T yields a representation

of a subgraph of G containing the edge connecting w1 and w2.
By construction, these representations cover all the edges of G and are contained

in span{−→xe : e an edge of T}. We now show that these representations satisfy the con-
ditions of Lemma 2.8. If v and w are adjacent in G, we have explicitly constructed
above a representation of a subgraph of G in which v and w are adjacent.

If v and w are not adjacent, there are three cases to consider. First, if v and w
are both vertices in T , then in any two representations, v and w are represented by

the corresponding vectors in
−→
T , which are orthogonal. For other cases, first notice

that, if a vertex w is not on T , then w is represented by −→p derived from a path p. If
v is a vertex on T not adjacent to w, then v cannot be an endpoint of p. Thus the

vector representing v in
−→
T is orthogonal to −→p . Suppose v and w are both not on T

and are not adjacent in G. The vectors −→q and −→p representing v and w, respectively,
are derived from paths q and p, respectively. By � the paths p and q have no edges
in common and thus −→p and −→q must be orthogonal. Applying Lemma 2.8 we get
msr(G) ≤ ts(G) − 1.

3. Chordal graphs. The sum of two psd matrices is psd, and the rank of a sum
is never more than the sum of the ranks [5, p. 13]. If we cover all of the edges of
a graph G with (not necessarily induced) subgraphs of known msr, this can lead to
useful upper bounds for msr(G). First, suppose that G is labeled and that G1, . . . , Gk

are (labeled) subgraphs of G, that is, each Gi, i = 1, . . . , k is the result of deleting
some edges and/or vertices from G. We say that G1, . . . , Gk cover G if each vertex
of G is a vertex of at least one Gi, and for every pair of adjacent vertices v, w of G,
v and w are adjacent in at least one Gi. The cover C1, . . . , Ck of G is called a clique
cover of G if each of C1, . . . , Ck is a clique of G. The clique cover number cc(G) (see
[15]) of G is the minimum value of k for which there is a clique cover C1, . . . , Ck of G.

Proposition 3.1. For any simple connected graph G, msr(G) ≤ cc(G).
Proof. The proof follows from Lemma 2.8 and Remark 2.4.
Since the clique cover number of a cycle on n ≥ 4 vertices is n but its msr is n−2,

strict inequality is possible in Proposition 3.1.

Given a vector representation
−→
V of G, with −→v representing vertex v, replace each

vector −→w ∈ −→
V with the orthogonal projection

−→w − 〈−→v ,−→w 〉
〈−→v ,−→v 〉

−→v

to yield a set of vectors denoted
−→
V �−→v . It is easily verified that rank(

−→
V ) is one more

than rank(
−→
V �−→v ).

Consider the graph corresponding to
−→
V � −→v . It is obtained from the original

graph G, first by removing the vertex v and then modifying the graph in the following
manner: For u,w ∈ n(v), if (u,w) is not an edge of G, then (u,w) is an edge of the
modified graph and if (u,w) is an edge of G, then (u,w) may or may not be an edge
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of the modified graph. Notice in the latter case that the “may or may not” depends

on the choice of vector representation
−→
V . In what follows, we consider graphs which

have multiple edges. This allows us to define below a graph G � v, which better

captures the relationship between
−→
V �−→v and the “orthogonal removal of vertex v.”

Following van der Holst [17], let G be an undirected graph with no loops but
possibly multiple edges, with vertex set V = {1, 2, . . . , n}. Let HG be the set of all
n-by-n Hermitian matrices A = [aij ] such that

• aij �= 0 if i and j are connected by exactly one edge;
• aij = 0 if i and j are not adjacent, and i �= j.

Notice that we make no restriction on aij if i and j are connected by more than

one edge. Now,
−→
V = {−→v1 , . . . ,

−→vn} in C
m is a vector representation of a graph G

with multiple edges when 〈−→vi ,−→vj 〉 �= 0 if i and j are connected by a single edge and
〈−→vi ,−→vj 〉 = 0 if i and j are not adjacent.

Let G be a graph (with multiple edges). The graph G� v, called the orthogonal
removal of v from G, is obtained as follows: In the induced subgraph G − v of G,
between any u,w ∈ n(v) add e− 1 edges, where e is the sum of the number of edges
between u and v and the number of edges between w and v.

Remark 3.2. If
−→
V is a vector representation of a graph G, then

−→
V �−→v is a vector

representation of G� v. As mentioned earlier, this process results in a representation

that has rank one less than rank
−→
V . Unfortunately, msr(G) − msr(G � v) may be

arbitrarily large as demonstrated by the complete bipartite graph K2,n: For n ≥ 3, by
Corollary 2.7, msr(K2,n) ≥ n, but the orthogonal removal of a vertex from the smaller
independent set yields the complete graph on n+1 vertices, Kn+1, and msr(Kn+1) = 1
by Remark 2.4.

We say that subgraphs G1, . . . , Gm cover a graph G with multiple edges if each
vertex of G is a vertex of at least one Gi and, for every pair of vertices v and w of G
joined by exactly one edge, there exists an i such that v and w are joined by exactly
one edge in Gi. We now restate Lemma 2.8 for graphs with multiple edges.

Lemma 3.3. Suppose X1, . . . , Xm, Xi ⊆ C
n for 1 ≤ i ≤ m, are vector represen-

tations of subgraphs G1, . . . , Gm of a connected graph G (with multiple edges) such
that

• G1, . . . , Gm cover G;
• for every pair of vertices v, w that are not adjacent in G, if −→xv represents

vertex v in Xi and −→xw represents vertex w in Xj, 〈−→xv,
−→xw〉 = 0.

Then there exists a vector representation X of G, with

rankX ≤ rank

⎛
⎝ ⋃

1≤i≤m

spanXi

⎞
⎠ ≤

∑
1≤i≤m

rankXi.

Recall that a vertex v such that n(v) induces a complete graph is said to be
simplicial.

Lemma 3.4. Suppose v is a simplicial vertex of a connected graph G that is joined
to at least one neighbor by exactly one edge. Then msr(G) = msr(G� v) + 1.

Proof. From Remark 3.2, we have that msr(G) ≥ msr(G� v) + 1. From Remark
2.4, we may find a vector representation of rank one of the subgraph of G induced by
v and its neighbors. Choosing this representation to be orthogonal to a representation
of G� v, we may apply Lemma 3.3 to see that msr(G) ≤ msr(G� v) + 1.
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The following corollary simplifies finding the minimum rank of graphs with pen-
dant vertices, which are simply vertices of degree 1. This corollary is also found in
[17, Lemma 3.6] with a different proof.

Corollary 3.5. If a simple connected graph G has a pendant vertex v, then
msr(G) = msr(G− v) + 1.

A graph is said to be chordal if it has no induced cycles Cn with n ≥ 4. It
is known that every nonempty chordal graph has at least one simplicial vertex [2,
p. 175]. A clique cover of a graph G with multiple edges is a collection of cliques of
G that cover every single edge between the vertices of G. As before, the clique cover
number of G cc(G) is the minimum number of cliques in a clique cover of G. We are
now able to show that, for chordal graphs, the msr is the clique cover number.

Theorem 3.6. Let G be a connected chordal graph. Then msr(G) = cc(G).
Proof. Induct on the number of vertices of G. We start the induction with an

edge. For graphs with three or more vertices, identify a simplical vertex v of G. If, in
addition, v is a duplicate vertex, then cc(G− v) = cc(G) and msr(G− v) = msr(G).
If v is not a duplicate vertex and not connected to any other vertex by exactly one
edge, then cc(G− v) = cc(G) and msr(G− v) = msr(G).

Finally, if v is not a duplicate vertex and is connected to at least one other vertex
by exactly one edge, we observe that cc(G � v) = cc(G) − 1. To see this, when v is
simplicial, there are multiple edges between each pair of vertices in n(v) in G � v.
Thus remove exactly one clique from a minimum clique cover of G to obtain a clique
cover of G� v. Now using Lemma 3.4 we get msr(G) = cc(G).

4. Minimum psd rank for graphs on less than seven vertices. For all
the graphs G with |V (G)| ≤ 6, with a few exceptions listed below, we can determine
msr(G) using results discussed in this paper. A catalog of these graphs can be found
in [16]. Table 4.1 lists the minimum psd ranks of 142 connected graphs on 2 or more
vertices but less than seven vertices using the numbering found in [16].

We now detail how to use the results of this paper to find the msr of the graphs
listed in Table 4.1. The graphs G174, G175, G198, and G204 are the exceptional
cases which cannot be handled by the results presented above. We provide alternate
methods for these graphs.

The complete graphs G3, G7, G18, G52, and G208 have msr equal to 1 by Re-
mark 2.4. As mentioned in the introduction, the msr of a tree is one less than the
number of vertices. This gives the msr for the trees G3, G6, G13, G14, G29–31,
G77–81, and G83.

Among the nontree, noncomplete graphs, the following 64 graphs are chordal:
G15, G17, G34–36, G40–42, G45–47, G49, G51, G92–95, G97, G100, G102, G111–

Table 4.1

msr(G) Graph
5 G77–81 and G83.
4 G29–31, G92–100, G102–105, G111-115, G118, G120–125,

G127–129, G135–139, G145–149, G152, G161, G162, G164,
and G167.

3 G13, G14, G34-38, G40, G41, G43, G44, G46, G47, G117,
G119, G126, G130, G133, G134, G140–144, G150, G151,
G153, G154, G156–160, G163, G166, G168–175, G177–189,
G192, G193, G196–198, G201, and G202.

2 G6, G15–17, G42, G45, G48-51, G165, G190, G191, G194,
G195, G199, G200, and G203–207.

1 G3, G7, G18, G52, and G208.
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Fig. 4.1. G163.

1 6

3 4

2 5

Fig. 4.2. G152.

115, G117, G119, G120, G123, G130, G133–139, G142, G144, G150, G156, G157,
G160–165, G167, G177–181, G183, G191–193, G195, G200–G202, G205, and G207.
Theorem 3.6 gives that the msr of a chordal graph is its clique cover number. For
example, we have cc(G163) = msr(G163) = 3 (Figure 4.1).

There are 20 nonchordal graphs whose msr is 4. All but graph G152 (Figure 4.2)
satisfy ts(G) = 5. The discussion following Lemma 2.5 shows that, for these graphs,
msr(G) = 4. For G152, if we orthogonally remove simplicial vertices 2 and 5 and
apply Lemma 3.4, we observe that msr(G152) = 4. In addition, G152 is not chordal,
but msr(G) = cc(G) = 4, indicating that the converse to Theorem 3.6 is false.

Among the 32 nonchordal graphs whose msr is 3, G37, G38, G43, and G44 have
ts(G) = 4, hence they have msr(G) = 3. The msr of G140, G141, G143, G158, and
G159 is 3 by Corollary 3.5. A duplicate vertex is removed in G126, G153, G168, G169,
G170, G172, G185, and G189, and the resulting graph on 5 vertices has msr equal
to 3. The graphs G151, G154, G166, G171, G173, G182, G184, G186–G188, G196,
and G197 satisfy the sufficient condition of Theorem 2.9. The exceptional cases are
G174, G175, and G198. These three graphs could be handled using a construction
as shown below or by applying Theorem 3.1 and Proposition 3.2 of [17] along with
Lemma 2.5.

A maximum induced tree of G198 (Figure 4.3) is induced by {v1, v2, v3, v4}. Using
the Laplacian matrix of this tree in the top left 4-by-4 block, we construct rows 5 and
6 to represent the graph G198,

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 −1 1
−1 2 −1 0 1 −1

0 −1 2 −1 1 1
0 0 −1 1 −1 −1

−1 1 1 −1 2 0
1 −1 1 −1 0 2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The graph G198, with this rank 3 psd matrix, is an example which shows that the �
condition of Theorem 2.9 is not necessary.
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v1

v2

v3

v4

Fig. 4.3. G198.

3

2

6

1

5

4

Fig. 4.4. G204.

Among the 9 nonchordal graphs whose msr is 2, G16 is a cycle on 4 vertices,
while G50 and G203 satisfy the sufficient condition of Theorem 2.9. Removing one
duplicate vertex from G48 and G206, and removing two duplicate vertices from G190,
G194 and G199 reduce the graph to a known case. The one exceptional case is G204
(see Figure 4.4).

Suppose −→e1 = [ 1
0 ] and −→e2 = [ 0

1 ]. Then we can write a vector representation for
G204 as follows: −→v1 = −→e1 , −→v2 = −→e2 , −→v3 = 2−→e1 + −→e2 , −→v4 = −→e1 − 2−→e2 , −→v5 = −→e1 + −→e2 , and
−→v6 = −→e1 −−→e2 . Thus msr(G204) = 2. Alternatively, we may use [1, Theorem 15].
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MATRIX VALUED ORTHOGONAL POLYNOMIALS ARISING
FROM GROUP REPRESENTATION THEORY AND A FAMILY OF

QUASI-BIRTH-AND-DEATH PROCESSES∗
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Abstract. We consider a family of matrix valued orthogonal polynomials obtained by Pacharoni
and Tirao in connection with spherical functions for the pair (SU(N + 1), U(N)); see [I. Pacharoni
and J. A. Tirao, Constr. Approx., 25 (2007), pp. 177–192]. After an appropriate conjugation, we
obtain a new family of matrix valued orthogonal polynomials where the corresponding block Jacobi
matrix is stochastic and has special probabilistic properties. This gives a highly nontrivial example
of a nonhomogeneous quasi-birth-and-death process for which we can explicitly compute its “n-
step transition probability matrix” and its invariant distribution. The richness of the mathematical
structures involved here allows us to give these explicit results for a several parameter family of
quasi-birth-and-death processes with an arbitrary (finite) number of phases. Some of these results
are plotted to show the effect that choices of the parameter values have on the invariant distribution.

Key words. matrix valued orthogonal polynomials, Markov chains, block tridiagonal transition
matrix, quasi-birth-and-death processes

AMS subject classifications. 60J10, 42C05

DOI. 10.1137/070697604

1. Purpose and contents of the paper. The aim of this paper is to tie to-
gether two subjects that have received quite a bit of attention recently. We will not
give a detailed explanation of either one of them, since this would require too much
space and it has been done properly in the literature already. Besides, since these
two subjects require rather different backgrounds, an ab-initio exposition would be a
formidable task. To compensate for this we give a brief historical view of how these
topics developed and then combine them at the appropriate point. The contents of
this paper can be divided into three parts.

A first part gives a brief account of the subjects that are going to play a role in
this paper. The introduction contains some historical developments tying the moment
problem with spectral theory and a quick look at birth-and-death processes, including
the appearance of the appropriate orthogonal polynomials. Section 3 reviews very
briefly Krĕın’s theory of matrix valued orthogonal polynomials and discusses the first
example relevant to our considerations. Section 4 gives a minimal description of the
class of Markov chains known as quasi-birth-and-death processes and talks about the
very natural connection between this and the previous section.

The second part introduces the family of examples arising from group represen-
tation theory that we are going to use in this paper. Section 5 gives a guide to the
literature on matrix valued spherical functions aimed at showing how the examples
discussed in section 6 arose. Section 6 gives the bare-bones details of the extensive
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work carried out in [30] in the case of the complex projective space. Section 7 shows
how to conjugate the weight matrix from [30] to obtain a family of matrix valued
orthogonal polynomials with extra probabilistic properties.

The third part concentrates on the probabilistic aspects of our family of exam-
ples. Section 8 deals with a number of issues of probabilistic nature and displays the
network associated with our examples. In particular we find explicit expressions for
the invariant distribution. Section 9 gives graphical displays of some results obtained
from the exact formulas in the previous sections. The goal here is to show that by
varying the parameters afforded by the group theoretical situation one can obtain
quite a range of different probabilistic behaviors. Finally, section 10 gives a summary
of the results of the paper and the challenges that lie ahead.

2. Introduction. The classical Hausdorff moment problem, that of determining
a measure dψ(x) in the interval [−1, 1] from its moments

σn =

∫ 1

−1

xndψ(x),

originated in very concrete problems at the end of the 19th century and was discussed
by people such as Chebyshev, Markov, and Stieltjes. In the hands of Weyl and a few
others, this showed the far reaching power of the modern theory of functional analysis
in the early part of the 20th century. The main ingredient here is to connect this
problem with the spectral theory of a second order difference operator (built from the
moments σn) acting on functions defined on the nonnegative integers. The moments
in question determine (up to scalars) a family of polynomials {Qn(x)}n≥0, and these
polynomials are the eigenfunctions of the second order difference operator alluded to
above. In the appropriate Hilbert space this operator is symmetric, and the problem
of finding dψ(x) is the problem of finding self-adjoint extensions of this symmetric
operator. Under certain conditions there is a unique such extension and thus a unique
solution to the moment problem we started from, but at any rate any extension gives
a measure dψ(x) that makes the polynomials orthogonal with respect to each other.

To get closer to our subject we need a few more ingredients. One of them is given
in the rest of this section, and the other two in sections 3 and 4.

The presence of a second order difference operator acting on the space of functions
defined on the nonnegative integers, i.e., a semi-infinite tridiagonal matrix, makes it
natural to think of a very special kind of Markov chain on the space of nonnegative
integers. These are the so-called birth-and-death processes where at each discrete unit
of time a transition is allowed from state i to state j with probability Pij and we put
Pij = 0 if |i− j| > 1. The one-step transition probability matrix is given by

(2.1) P =

⎛
⎜⎜⎜⎜⎝

r0 p0

q1 r1 p1

q2 r2 p2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ .

We will assume that pj > 0, qj+1 > 0, and rj ≥ 0 for j ≥ 0. We also assume
pj + rj + qj = 1 for j ≥ 1 and by putting p0 + r0 ≤ 1 we allow for the state j = 0 to
be an absorbing state (with probability 1− p0 − r0). Some of these conditions can be
relaxed.
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The problem here is to obtain an expression for the so-called “n-step transition
probability matrix,” giving the probability of going between any two states in n steps.
By making use of the ideas mentioned above, i.e., by bringing in an appropriate Hilbert
space and applying then the spectral theorem, Karlin and McGregor [20] obtained a
neat representation formula for the quantity of interest, as recalled below.

If one introduces the polynomials {Qn(x)}n≥0 by the conditions Q−1(x) = 0,
Q0(x) = 1 and by using the notation

φ =

⎛
⎜⎜⎝
Q0(x)

Q1(x)

...

⎞
⎟⎟⎠ ,

one insists on the recursion relation

Pφ = xφ,

it is possible to prove the existence of a unique measure dψ(x) supported in [−1, 1]
such that

∫ 1

−1

Qi(x)Qj(x)dψ(x)

/∫ 1

−1

Qj(x)2dψ(x) = δij

and one gets the Karlin–McGregor representation formula

(2.2) Pn
ij =

∫ 1

−1

xnQi(x)Qj(x)dψ(x)

/∫ 1

−1

Qj(x)2dψ(x).

If time is taken to be continuous, as it is done in other papers by Karlin and
McGregor, then this formula and the matrix P suffer only cosmetic changes.

It is interesting to notice that this seminal paper of Karlin and McGregor refers
both to the standard text on the moment problem at the time [33], as well as to the
fact that Feller and McKean had already recognized the relevance of the Hilbert space
setup in the study of diffusion processes; see [7, 26]. One can mention other papers,
such as [8, 17, 19, 25], where similar ideas were at play.

The last section of [20] deals with the case of a finite state space and the case
when the nonnegative integers are replaced by the set of all integers. Since one is
using a very powerful tool such as the spectral theorem it is clear that an adaptation
of the ideas from birth-and-death processes will work here too. In the case of the
integers, one is dealing with a state space with two singular points (one at each end
of the line), and in this case Weyl and others had already found the correct tool: one
replaces the spectral measure dψ(x) by a 2 × 2 nonnegative matrix. The paper of
Karlin and McGregor concludes with the explicit computation of this matrix in the
case of the doubly infinite random walk. The general formula is given in expression
(12) of [20] for the case of discrete time and also in (6.8) of [18] for continuous time.

The representation formula given above is of intrinsic interest: the computation
of the left-hand side of (2.2) for fixed i, j and arbitrary values of n involves all of the
entries of (2.1). However, if dψ(x) is known, then the right-hand side of (2.2) gives a
way of computing this quantity using only a fixed number of entries of (2.1).

The applicability of (2.2) depends to a large extent on our ability to obtain useful
expressions for the orthogonal polynomials and the orthogonality measure associated
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with P . If one looks around in the literature one discovers that the number of cases
where this is possible is rather small.

We close this section by showing how one can compute in the case of a stochastic
matrix P its invariant (stationary) distribution, i.e., the (unique up to scalars) row
vector

π = (π0, π1, π2, . . . )

such that

πP = π.

Recall that a matrix P with nonnegative entries is called stochastic if the sum of the
elements in any row equals unity.

We first obtain, using r0 + p0 = 1, that π1 = π0p0/q1. Then one proves by
induction that for i ≥ 1 we have

πi = π0(p0p1 . . . pi−1)/(q1q2 . . . qi).

This has the consequence that

πi+1/πi = pi/qi+1.

Now for i ≥ 0 we have

xQi(x) = piQi+1(x) + riQi(x) + qiQi−1(x)

with q0 = 0. Integrating this after multiplication by Qi+1 or Qi−1 gives

∫ 1

−1

xQi(x)Qi+1(x)dψ(x) = pi

∫ 1

−1

Q2
i+1(x)dψ(x) = qi+1

∫ 1

−1

Q2
i (x)dψ(x).

Combining these two results we get that the ratio of the two integrals above is given
by the common value

qi+1/pi = πi/πi+1.

The moral of this is that the solution to πP = π can be computed (up to a common
multiplicative scalar) either from the matrix P itself or from the knowledge of the
integrals

∫ 1

−1

Q2
i (x)dψ(x).

In particular if we have an homogeneous birth-and-death process where pi = p and
qi = q independently of the value of i, then we have that the components of π are
given by πi = π0(p/q)

i, i ≥ 0.

3. Matrix valued orthogonal polynomials. We need two more characters
to be able to start our tale. The first one is the theory of matrix valued orthogonal
polynomials, whose bare-bones development is given in two papers by Krĕın [21, 22].
There is no written account of the motivation that led Krĕın to this theory, but one
can easily see the connection with the spectral theory of difference operators on the
integers. This is very nicely discussed in the book by Berezans’kĭı [2]. In fact the study
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of the classical second order difference operator on the integers is done in detail in [2]
and may constitute the first example of the theory of Krĕın, where the polynomials
and their orthogonality weight matrix W (x) are both explicitly given. This is, of
course, a special case of the matrix that appears in the last section of [20] for general
values of p and q (p + q = 1).

We give now a brief account of Krĕın’s theory.
Given a positive definite matrix valued measurable weight function W = W (x)

with finite moments we can consider the skew symmetric bilinear form defined for any
pair of matrix valued polynomial functions P (x) and Q(x) by the numerical matrix

(P,Q) = (P,Q)W =

∫
R

P (x)W (x)Q∗(x)dx,

where Q∗(x) denotes the conjugate transpose of Q(x). We define the matrix valued
norm of P by

(3.1) ‖P‖2 = (P, P )W .

One can also deal with a more general weight matrix W (x); see [4].
This leads, using the Gram–Schmidt process, to the existence of a sequence of

matrix valued orthogonal polynomials with nonsingular leading coefficients. Given an
orthogonal sequence {Qn(x)}n≥0 one gets a three term recursion relation

(3.2) xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x),

where An is nonsingular. We will denote by L the corresponding Jacobi matrix,
defined by the following block tridiagonal semi-infinite matrix:

L =

⎛
⎜⎜⎜⎜⎝

B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ .

Using the notation

Φ =

⎛
⎜⎜⎝
Q0(x)

Q1(x)

...

⎞
⎟⎟⎠

the relation (3.2) becomes

(3.3) LΦ = xΦ.

We will reserve the symbol P for the case where L becomes a one-step transition
probability matrix, thought of as a scalar matrix. The corresponding Markov chain
(to appear in section 4) will have a state space that is more complicated than the set
{0, 1, 2, . . . } corresponding to a birth-and-death process featured in section 2.

In the scalar case, concrete examples of orthogonal polynomials, including explicit
formulas for them as well as their orthogonality measure preceded the development
of any general theory. Prominent examples are the Hermite, Laguerre, and Jacobi



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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polynomials. These examples arose from concrete problems in the eighteenth and
nineteenth centuries and played a fundamental role, in the hands of Schrödinger, in
the development of quantum mechanics around 1925.

The situation in the matrix valued case is entirely different: the general theory
just described above came first. Until a few years ago, it may be that the only
nontrivial example was the one included in Berezans’kĭı’s book [2], alluded to above
and recalled below for the benefit of the reader.

Consider the block tridiagonal matrix

L =

⎛
⎜⎜⎜⎜⎝

B0 I

C1 B1 I

C2 B2 I

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠

with 2 × 2 blocks given as follows:

B0 =
1

2

(
0 1
1 0

)
, Bn = 0 if n ≥ 1,

Cn =
1

4
I if n ≥ 1,

where I stands for the identity matrix. In this case one can compute explicitly the
matrix valued polynomials {Qn(x)}n≥0 given by

xQn(x) = Qn+1(x) + BnQn(x) + CnQn−1(x), Q−1(x) = 0, Q0(x) = I.

One gets

Qn(x) =
1

2n

(
Un(x) −Un−1(x)

−Un−1(x) Un(x)

)
,

where Un(x) are the Chebyshev polynomials of the second kind.
The orthogonality measure is read off from the identity

4i

π

∫ 1

−1

Qi(x)
1√

1 − x2

(
1 x

x 1

)
Q∗

j (x)dx = δijI.

Proceeding as in [3, 10, 20] one obtains a Karlin–McGregor representation. We get,
for n = 0, 1, 2, . . . ,

Ln
ij =

4i

π

∫ 1

−1

xnQi(x)
1√

1 − x2

(
1 x

x 1

)
Q∗

j (x)dx,

where Ln
ij stands for the (i, j) block of the matrix Ln. As is usual for birth-and-death

processes, the indices i, j run from 0 on.
In this way, as noticed in [10], one can compute the entries of the powers Ln with
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L thought of as a pentadiagonal scalar matrix, namely

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 1 0

1
2 0 0 1 0

1
4 0 0 0 1

. . .

1
4 0 0 0

. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

L is not a stochastic matrix since its rows do not add up to unity. Nevertheless,
defining Δ to be the 2 × 2 block diagonal matrix with Δii = 2iI for every block, we
get from (3.3) that ΔLΔ−1ΔΦ = xΔΦ and thus if P = ΔLΔ−1 and Φ̃ = ΔΦ, we

have P Φ̃ = xΦ̃. The scalar version of P is now the stochastic matrix

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2

1
2 0

1
2 0 0 1

2 0

1
2 0 0 0 1

2

. . .

1
2 0 0 0

. . .

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Observe that the norm of Q̃n, defined in (3.1), satisfies ‖Q̃n‖2 = π. This is nothing
but the example considered at the end of [20] in the special case of p = q = 1/2.

In the last few years a number of new families of matrix valued orthogonal poly-
nomials have been computed explicitly along with their orthogonality measure. Typ-
ically they are joint eigenfunctions of some fixed differential operator with matrix
coefficients. This search was initiated in [5], but nontrivial examples were not discov-
ered until [6] and [13, 16]. The family of examples we will consider later is related to
one of these examples and is obtained by modifying the situation discussed in [30].

4. Quasi-birth-and-death processes. Now we come to the last character of
our story. For our purposes, we consider a two dimensional Markov chain with discrete
time. The state space consists of the pair of integers (i, j), i ∈ {0, 1, 2, . . . }, j ∈
{1, . . . , d}. The first component is usually called the level and the second one the
phase. The one-step transition probability matrix, which we will denote (as before)
by P has a block tridiagonal structure (see (4.2)). This indicates that in one unit
of time a transition can change the phase without changing the level, or can change
the level (and possibly the phase) to either of the adjacent levels. The probability of
going in one step from state (i, j) to state (i′, j′) is given by the (j, j′) element of the
block Pi,i′ . Clearly in the case when the number of phases d is one we are back to the
case of an ordinary birth-and-death process. In general, these processes are known as
(discrete time) quasi-birth-and-death processes.

For a much more detailed presentation of this field, as well as its connections with
queueing problems in network theory as well as the general field of communication
systems, the reader should consult [24, 27] and some of the references in [3].

Once one has the notions introduced in the previous sections it is very natu-
ral to connect them and to analyze these interesting Markov chains in terms of the
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corresponding spectral properties of the resulting family of matrix valued orthogonal
polynomials. As pointed out before one can see the seed for this in the work of Krĕın,
as well as in the original paper [20].

We have identified two references where the corresponding Karlin–McGregor rep-
resentation formula has been explicitly given, but there may be others since this is
such a natural extension of the scalar theory; see [3] and [10]. In the case of quasi-
birth-and-death processes one replaces (2.2) by

(4.1) Pn
ij =

(∫
xnQi(x)W (x)Q∗

j (x)dx

)(∫
Qj(x)W (x)Q∗

j (x)dx

)−1

.

A different but related path to this circle of ideas in connection with network
models can be seen in [1].

In [3] one finds some interesting examples where this representation formula is
computed explicitly, including a new derivation of the result dealing with the case of
random walk on the integers. In [10] one finds an example, taken from [9], where the
observation is made that one has a stochastic matrix. The family of examples to be
considered in the following sections is an extension of this example.

Given the block transition probability matrix P , the problem of computing an
invariant distribution row vector, i.e., a vector with nonnegative entries πi

j ,

π = (π0;π1; . . . ) ≡ (π0
1 , π

0
2 , . . . , π

0
d;π

1
1 , π

1
2 , . . . , π

1
d; . . . )

such that

πP = π

leads to a complicated system of equations.
If

(4.2) P =

⎛
⎜⎜⎜⎜⎝

B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠ ,

we have

π0B0 + π1C1 = π0

and then, for n ≥ 1,

πn−1An−1 + πnBn + πn+1Cn+1 = πn.

This gives, as is easy to check, the rather unpleasant expressions

π1 = π0(I −B0)C
−1
1 ,

π2 = π0[(I −B0)C
−1
1 (I −B1) −A0]C

−1
2 ,

π3 = π0[(I −B0)C
−1
1 (I −B1)C

−1
2 (I −B2) −A0C

−1
2 (I −B2) − (I −B0)C

−1
1 A1]C

−1
3 .

These formulas require that the matrices Cn be invertible. Under these conditions, one
can derive nicer looking expressions for the invariant distribution (see [23]). There are



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MATRIX VALUED ORTHOGONAL POLYNOMIALS AND QBDs 749

many issues here that we leave untouched in this analysis. For instance, the possibility
of choosing π0 with nonnegative entries so that all the subsequent πn will have this
property requires extra conditions.

The general theory of quasi-birth-and-death processes is not restricted to the case
when the matrices An, Bn, and Cn are all square matrices of the same size and An

and Cn are nonsingular. It remains an interesting challenge to find a mathematical
setup that can accommodate such a situation.

Now that we have seen how to extend the Karlin–McGregor representation for-
mula to the block tridiagonal case it is important to get examples where the poly-
nomials and the orthogonality matrix can be explicitly written down. This is the
purpose of the next three sections.

5. Matrix valued spherical functions and matrix valued orthogonal
polynomials. The theory of matrix valued spherical functions, initially discussed
in [34], is one of the routes leading to explicit families of matrix valued orthogonal
polynomials and their orthogonality measure. The first family of examples appeared
in [13, 16] in connection with G = SU(3). The size of the matrices here is already
arbitrary, and the orthogonality matrix has a scalar factor of the form xα(1 − x).
The extension to the case where this scalar factor can be taken to be xα(1 − x)β for
arbitrary α, β > −1 was undertaken in [9] in the 2 × 2 case without any reference to
group representation theory. Further examples of this kind are given in [14]. The role
of group representation theory in getting away from the 2×2 case can be seen in [15].
Finally, [30] displays for the case of G =SU(N +1) families of orthogonal polynomials
depending on three parameters, α, β, and k. In the special case of k = β+1

2 , one
recovers the results of [9].

These orthogonal polynomials are given by properly “packaged and conjugated”
sets of matrix valued spherical functions. These spherical functions correspond to
irreducible representations of U(N) and therefore are parameterized by partitions

μ = (m1,m2, . . . ,mN ) ∈ Z
N such that m1 ≥ m2 ≥ · · · ≥ mN .

In this paper, following [30], we use only “one step” representations given by a parti-
tion

μ = (m + 	, . . . ,m + 	︸ ︷︷ ︸
k

,m, . . . ,m︸ ︷︷ ︸
N−k

), 1 ≤ k ≤ N − 1.

In terms of the parameters α and β, one has α = m and β = N − 1. The remaining
free parameter 	 will determine the size of the corresponding matrix valued orthogonal
polynomials and is independent of N . In the next section it will be related to the
parameter d appearing in [3].

The examples that have been worked out so far indicate that the matrix valued
orthogonal polynomials that result from matrix valued spherical functions lead to a
block tridiagonal matrix that can be made into a stochastic one. This will be seen,
for our family of examples, in section 8.

Although it is possible to obtain examples of stochastic matrices arising in a
different fashion, see, for instance [2], we are not aware of any other general scheme
that would produce these desirable kinds of matrices in a systematic fashion.

6. A family of examples arising from the complex projective space. In
what follows we shall use Eij to denote the matrix with entry (i, j), which is equal to
1 and 0 elsewhere, where the indices i, j run from 0 on.
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Let d ∈ {1, 2, 3, . . . }, α, β > −1 and 0 < k < β + 1. From [30] we have that the
differential operator

D = x(1 − x)
d2

dx2
+ (C − xU)

d

dx
+ V,

with matrix coefficients given by

C =
d−1∑
i=0

(α + d− i)Eii −
d−2∑
i=0

(i + 1)Ei+1,i, U =

d−1∑
i=0

(α + β + d + i + 1)Eii,

V = −
d−1∑
i=0

i(α + β − k + i + 1)Eii +

d−2∑
i=0

(d− i− 1)(β − k + i + 1)Ei,i+1,

admits as eigenfunctions (the conjugates of) a family of orthogonal polynomials with
respect to the d× d weight function

W (x) = xα(1 − x)βZ(x), x ∈ [0, 1],

where

Z(x) =

d−1∑
i,j=0

( d−1∑
r=0

(
r
i

)(
r
j

)(
d + k − r − 2

d− r − 1

)(
β − k + r

r

)
(1 − x)i+jxd−r−1

)
Eij .

Initially the value of k is an integer, but (with the appropriate notation) this
can be taken to be any value in the range indicated above. Likewise, in the group
theoretical setup of [30] one first takes α and β to be integers but then observes that
this holds for α and β as above.

In the language of [14], {W,D} is a classical pair.
In [28] one finds an explicit expression for a family of eigenfunctions of D in terms

of the matrix valued hypergeometric function 2F1 introduced in [35].
In principle it is possible to obtain the coefficients for the three term recursion

relation satisfied by any family of orthogonal polynomials whose existence is proved in
[30]. We have not done this, but instead, since our goal is to obtain a family of matrix
valued orthogonal polynomials {Qn(x)}n≥0 with specific probabilistic properties, we
modify appropriately the classical pair in [30]. This is the goal of the next section.

Remark. Notice that the notation in [13, 14, 15, 16, 30] and the one in [3] (which
we follow here) are related by d = 	 + 1.

7. The new equivalent classical pair. Let us consider the following nonsin-
gular upper triangular matrix:

T =
∑
i≤j

(−1)i
(−j)i

(1 − d)i

(α + β − k + j + 1)i
(β − k + 1)i

Eij ,

where (a)n will denote the Pochhammer symbol defined by (a)n = a(a+1) · · · (a+n−1)
for n > 0, (a)0 = 1. The purpose of choosing T as above will be made clear below.

Let us consider the new classical pair { W̃ , D̃}, where

W̃ = T ∗WT
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and

D̃ = T−1DT = x(1 − x)
d2

dx2
+ (C̃ − xŨ)

d

dx
+ Ṽ ,

where

C̃ =
d−1∑
i=0

(
α + d− i +

i(d− i)(β − k + i)

α + β − k + 2i
− (i + 1)(d− i− 1)(β − k + i + 1)

α + β − k + 2i + 2

)
Eii

+

d−2∑
i=0

(
1 + i +

(i + 1)(d− i− 2)(β − k + i + 2)

α + β − k + 2i + 3

− (i + 1)(d− i− 1)(β − k + i + 1)

α + β − k + 2i + 2

)
Ei,i+1

+

d−2∑
i=0

(
(i + 1)(d− i− 1)(β − k + i + 1)

α + β − k + 2i + 2
− i(d− i− 1)(β − k + i + 1)

α + β − k + 2i + 1

)
Ei+1,i,

Ũ =
d−1∑
i=0

(α + β + d + i + 1)Eii +
∑
i<j

(
(−1)j−i(i + 1)j−i

α + β − k + 2i + 1

(α + β − k + i + 1)j−i

)
Eij ,

Ṽ = −
d−1∑
i=0

i(α + β − k + i + 1)Eii.

The pair { W̃ , D̃} is equivalent to {W,D} according to the definitions in [14]. Note

that T is chosen so that Ṽ turns out to be diagonal.
We now produce a particular family of polynomials {Qn(x)}n≥0 satisfying Q0(x) =

I and D̃Q∗
n(x) = Q∗

n(x)Λn with

Λn = −
d−1∑
i=0

(n2 + (α + β + d + i)n + i(α + β − k + i + 1))Eii.

If we put Qn(x) =
∑n

j=0 A
n
j x

j , we see that the leading coefficient An
n can be conve-

niently chosen to be the lower triangular matrix

∑
i≤j

(−1)i+j

(
j
i

)
(α + β − k + 2i + 1)

× (n)j−i(k + n)d−j−1(α + β − k + n + j + 1)i(α + β + n + d + j)n
(k)d−j−1(β + d)n(α + β − k + i + 1)j+1

Eji,

and that this determines An
j for j = n − 1, n − 2, . . . , 0. This is very similar to the

analysis in section 3.1 of [11], where the final result is equations (3)–(5), expressing
these polynomials in terms of the matrix valued hypergeometric function 2F1 of Tirao;
see [35]. As mentioned in the last section, such an expression in terms of 2F1 is
obtained in [28] for a family of polynomials that are related to {Qn(x)}n≥0 in the form

Qn(x) = An
nT

∗(Ãn
n)−1Pn(x)(T ∗)−1, where Pn(x) = Ãn

nx
n+· · · . These {Pn(x)}n≥0 do
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not satisfy the same recursion relation as ours. This choice of An
n above is motivated

by the remarkable fact that then our {Qn(x)}n≥0 satisfy

(7.1) Qn(1)e∗d = e∗d,

where ed is the d-dimensional row vector with all entries equal to 1. In other words,
the sum of the elements in each row of Qn(1) gives the value 1.

Below, we give the explicit expression for the stochastic block tridiagonal matrix
going with the sequence {Qn(x)}n≥0.

Theorem 7.1. The family of orthogonal polynomials introduced above satisfies
the three term recursion relation

(7.2) xQn(x) = AnQn+1(x) + BnQn(x) + CnQn−1(x), n ≥ 0,

where Q−1(x) = 0 and Q0(x) = I. For n ≥ 0, An is the lower bidiagonal matrix

An =

d−1∑
i=0

(k + n)(β + n + d)(α + β + n + d + i)(α + β − k + n + i + 1)

(k + n + d− i− 1)(α + β − k + n + 2i + 1)(α + β + 2n + d + i)2
Eii

+

d−2∑
i=0

(i + 1)(k + n)(k + d− i− 2)(β + n + d)

(α + β + 2n + d + i + 1)(α + β − k + n + 2i + 3)(k + n + d− i− 2)2
Ei+1,i,

for n ≥ 1, Cn is the upper bidiagonal matrix

Cn =

d−1∑
i=0

n(α + n + i)(k + n + d− 1)(α + β − k + n + d + i)

(k + n + d− i− 1)(α + β − k + n + 2i + 1)(α + β + 2n + d + i− 1)2
Eii

+

d−2∑
i=0

n(d− i− 1)(k + n + d− 1)(β − k + i + 1)

(α + β + 2n + d + i)(α + β − k + n + 2i + 1)(k + n + d− i− 2)2
Ei,i+1,
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and for n ≥ 0, Bn is the tridiagonal matrix

Bn =

d−1∑
i=0

(
1 +

n(k + n− 1)(k + n + d− 1)(β + n + d− 1)

(α + β + 2n + d + i− 1)(k + n + d− i− 2)2

− (n + 1)(k + n)(k + n + d)(β + n + d)

(α + β + 2n + d + i + 1)(k + n + d− i− 1)2

+
i(d− i)(k + d− i− 1)(β − k + i)

(α + β − k + n + 2i)(k + n + d− i− 1)2

− (i + 1)(d− i− 1)(k + d− i− 2)(β − k + i + 1)

(α + β − k + n + 2i + 2)(k + n + d− i− 2)2

)
Eii

+

d−2∑
i=0

(d− i− 1)(β − k+ i + 1)(α + β − k + n + i + 1)(α + β + n + d + i)

(k + n + d− i− 1)(α + β + 2n + d + i)(α + β − k + n + 2i + 1)2
Ei,i+1

+

d−2∑
i=0

(i+ 1)(α+n+ i+1)(k+ d− i− 2)(α+β− k+n+ d+ i+ 1)

(k+n+ d− i− 2)(α+β + 2n+ d+ i+ 1)(α + β − k + n + 2i + 2)2
Ei+1,i.

Proof. The tools required to prove these formulas are implicitly included in [12]
and [29] for the special case of β = k = 1. The detailed proof of these results can be
obtained following the program described above.

The advantage of dealing with this equivalent classical pair { W̃ , D̃}, normalized
as above, shows up, for instance, in the fact that we have a stochastic matrix. The
entries of An, Bn, and Cn are nonnegative, and by applying both sides of the identity
(7.2) to the vector e∗d, setting x = 1, and using (7.1) we obtain that the sum of the
entries in each row of our block tridiagonal matrix equals one.

In [31] one finds a nice and different proof for the fact that our Jacobi matrix is
stochastic in the special case of β = k = 1.

There are further advantages in dealing with the pair { W̃ , D̃}: an expression for

the norms of the family {Qn(x)}n≥0 with respect to the matrix measure W̃ , defined
in (3.1), is given by the diagonal matrix

‖Qn‖2
W̃

= (Qn, Qn)
W̃

=

d−1∑
i=0

(−1)i
Γ(n + 1)Γ(β + d)Γ(α + n + i + 1)(1 − k − d− n)i(

d− 1

i

)
Γ(d)Γ(α + β + d + i + 2n + 1)

(7.3)

× (k + d− i− 1)n(α + β + d + i + n)n(α + β − k + i + n + 1)d
(α + β − k + 2i + n + 1)(k)n(β − k + 1)i(β + d)n

Eii,

where Γ is the standard Gamma function. We point out that these matrix valued
norms are given in our case by diagonal matrices, a fact that will play an important
role later on.

For the benefit of the reader we include here the expression for all the quantities
above in the case d = 1. The weight W̃ and differential operator D̃ are given by

W̃ (x) = xα(1 − x)β , D̃ = x(1 − x)
d2

dx2
+ (α + 1 + x(α + β + 2))

d

dx
.
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Hence, we have that the coefficients of the three term recursion relation and the norms
of the orthogonal polynomials are given by

An =
(n + β + 1)(n + α + β + 1)

(2n + α + β + 1)(2n + α + β + 2)
, n ≥ 0,

Bn = 1 +
n(n + β)

2n + α + β
− (n + 1)(n + β + 1)

2n + α + β + 2
, n ≥ 0,

Cn =
n(n + α)

(2n + α + β)(2n + α + β + 1)
, n ≥ 1,

‖Qn‖2
W̃

=
Γ(n + 1)Γ(n + α + 1)Γ(β + 1)2

Γ(n + β + 1)Γ(n + α + β + 1)(2n + α + β + 1)
, n ≥ 0.

The polynomials {Qn(x)}n≥0 are exactly the Jacobi polynomials in the interval [0, 1],
normalized to satisfy Qn(1) = 1.

The case d = 2, for the special case of k = β+1
2 , can be found in [9].

8. Probabilistic aspects of our family of examples. The corresponding
Jacobi matrix

(8.1) P = L =

⎛
⎜⎜⎜⎜⎝

B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎠

made up from the coefficients introduced in Theorem 7.1 is stochastic; that is, Pe = e,
where e denotes the semi-infinite column vector with all entries equal to 1. There-
fore, it gives a block tridiagonal transition probability matrix depending on three
parameters, α, β, and k.

The Markov process that results from P is irreducible and aperiodic. Indeed, one
can see that for any pair of states (i, j), (i′, j′), every entry in the (i, i′)-block of Pn

is positive if n is large enough.
Theorem 8.1. The Markov process that results from P is never positive recur-

rent. If −1 < β ≤ 0, then the process is null recurrent. If β > 0, then the process is
transient.

Proof. One can use directly the Karlin–McGregor representation formula (4.1) to
obtain Corollary 4.1 of [3]. The process turns out to be recurrent if and only if

(8.2) eTj

(∫ 1

0

W̃ (x)

1 − x
S−1

0 dx

)
ej = ∞

for some j ∈ {1, . . . , d}, where eTj = (0, . . . , 0, 1, 0, . . . , 0) denotes the jth unit vec-

tor and S0 =
∫ 1

0
W̃ (x)dx = ‖Q0‖2

W̃
is the first moment. Otherwise, the process

is transient. The explicit expression of the weight matrix in our case is W̃ (x) =

xα(1 − x)βZ̃(x), where Z̃(x) is a matrix polynomial and a detailed look shows that

Z̃(1) =
(β + 1)d−1

(d− 1)!

d−1∑
i,j=0

Eij .

Hence, condition (8.2) holds if and only if −1 < β ≤ 0.
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Corollary 4.2 of [3] gives a necessary and sufficient condition for a process to be

positive recurrent. This happens exactly when one of the entries of the measure W̃ has
a jump at the point 1. But this is not true in our case given the form of W̃ indicated
above. So our process is never positive recurrent. This means that for −1 < β ≤ 0
the process is null recurrent.

All the considerations above result from explicit expressions for W̃ (x) and the
entries of P .

Now we come to a very delicate issue: the explicit computation of an invariant dis-
tribution. As noticed in (7.3), our matrix valued orthogonal polynomials {Qn(x)}n≥0

have the remarkable property that their norms are diagonal matrices. This provides
us, for each n, with d scalars which could be used (inspired by the case of birth-and-
death processes) as a way of getting an invariant row vector

π = (π0;π1; . . . )

with the property that

πP = π.

Thus, we find the remarkable fact that the components of π can be computed by the
recipe

πn = ed(‖Qn‖2
W̃

)−1, n ≥ 0,

where ed is the d-dimensional row vector with all entries equal to 1. The fact that the
process is never positive recurrent implies that there exists no invariant distribution
such that πe < ∞.

The unicity of the invariant distribution π holds as a consequence of the extended
Perron–Frobenius theorem for countable nonnegative matrices (see [32, Theorem 5.4]),
when the process is recurrent, i.e., −1 < β ≤ 0. However, we have extensive numerical
evidence that this is true for all values of β > −1.

The case of random walk on the integers with general values of p and q (p+q = 1)
treated in [20] gives (for p 	= q) an example of a transient process where the invariant
distribution is not unique. As mentioned above, it appears that even for values of β
when our process is transient we still have a unique invariant distribution which can
be computed explicitly in terms of the norms of our orthogonal polynomials.

To conclude this section we exhibit the network associated with our family of
examples. The states of our network are labeled (as in any two dimensional situation)
by two indices i = 0, 1, 2, . . . and j = 1, 2, . . . , d. However, to write down a one-step
transition probability matrix, one needs to agree on some linear order for the states.
We use the convenient ordering

(0, 1), (0, 2), . . . , (0, d), (1, 1), (1, 2), . . . , (1, d), (2, 1), (2, 2), . . . , (2, d), . . .

so that, for instance, the label 3 in the following graph refers to (0, 3), while the label
d+ 2 refers to (1, 2), etc. This choice of lexicographic order in one of the components
and then in the other is an unpleasant feature that cannot be avoided completely.
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The state space and the corresponding one-step transitions appear as follows:

.

.

.

.

.

.

.

.

.

.

.

.

1 d + 1 2d + 1 3d + 1

2 d + 2 2d + 2 3d + 2

3 d + 3 2d + 3 3d + 3

d 2d 3d 4d

9. The shape of the invariant distribution. In this section we will study in
more detail the behavior of the invariant distribution when the number of phases d
is equal to two, a luxury we can afford since we have an analytic expression. In this
case, the associated network takes the form

1 3 5 7

2 4 6 8
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Fig. 9.1. α = −0.9, β = 0.1, k = 0.8.
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Fig. 9.2. α = 2.5, β = 0.1, k = 0.55.

The invariant distribution π such that πP = π is given by

π = (π0;π1; . . . ),

where πn, n ≥ 0, is the 2-dimensional vector given by

πn = Γ(n+α+β+2)Γ(n+β+2)
Γ(n+α+1)Γ(n+1)Γ(β+2)2(n+α+β−k+2)(

k(2n+α+β+2)
n+k , (β−k+1)(2n+α+β+3)(n+α+β+2)

(n+α+1)(n+k+1)

)
.

From this explicit expression we can easily obtain several quantities. Data of special
interest may be the initial value and the asymptotic behavior. The initial value is
given by

π0 = Γ(α+β+3)
Γ(α+1)Γ(β+2)(α+β−k+2)

(
1 , (β−k+1)(α+β+3)

(α+1)(k+1)

)
.

The asymptotic behavior follows using asymptotic formulas for the Gamma func-

tion such as Γ(z+α)
Γ(z) ≈ zα as |z| → ∞. Hence, we have

lim
n→∞

πn =

⎧⎪⎨
⎪⎩

(∞,∞) if β > − 1
2 ,

4
π (2k, 1 − 2k) if β = − 1

2 ,

(0, 0) if −1 < β < − 1
2 .

In what follows we shall include plots of the two components πn
1 and πn

2 , as functions
of n, in a few representative cases. The general shape of both curves can change
depending on the values of the parameters α, β, and k. A look at the role of the
parameter β gives rise to four regions, namely −1 < β < −1/2, β = −1/2, −1/2 <
β < 0, and β ≥ 0. The parameter α only has influence on cosmetic changes like
curvature and initial values depending on −1 < α < 0 or α ≥ 0, while k affects the
shape of the plots when its value is the middle point β+1

2 of its possible range and the
situation in the rest of values is quite symmetric.

Figures 9.1 and 9.2 show the most interesting situations when β > 0.
Figures 9.3 and 9.4 show how the situation can change for small perturbations

around β = −1/2. In Figure 9.3 both curves have a logarithmic growth and the
second component has a minimum, while in Figure 9.4 both curves tend to 0.
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Fig. 9.3. α = −0.8, β = −0.4, k = 0.3.
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Fig. 9.4. α = −0.9, β = −0.6, k = 0.2.
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Fig. 9.5. α = −0.98, β = −0.6, k = 0.3.
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Fig. 9.6. α = −0.9, β = −0.8, k = 0.05.
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Fig. 9.7. α = −0.92, β = −0.5, k = 0.3.
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Fig. 9.8. α = −0.6857, β = −0.5, k = 0.3.
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Fig. 9.9. α = −0.4857, β = −0.5, k = 0.3.
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Fig. 9.10. α = −0.9, β = −0.5, k = 0.25.
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Fig. 9.11. α = −0.8, β = −0.5, k = 0.3421.
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Fig. 9.12. α = −0.7, β = −0.5, k = 0.25.

We observe that Figure 9.5, with k now approaching β+1, is similar to Figure 9.4.
In Figure 9.6 we observe the consequences of k being very small.

The remaining figures refer to the case β = −1/2, where both components con-
verge for large n. In Figure 9.7 we observe that the initial value of the first component
is always lower than that of the second component and that the initial value of the
second component is always greater than that of the first component. A small change
of the value of α has the effect that the first component is always greater than the
second component, as we can see in Figure 9.8.

Small perturbations on α change the curvatures of the components in Figure 9.9
with respect to Figure 9.8. In Figure 9.10 both components tend to the same value
without ever touching, a consequence of choosing k = β+1

2 .
The last two figures show how the situation can change for small perturbations of

α and k. In Figure 9.11 both curves start from the same value and then they converge
to different limits, while in Figure 9.12 both components converge to the same limit.

10. Concluding remarks. A block tridiagonal matrix L with nonnegative en-
tries and individual rows that add up to 1 gives rise to a quasi-birth-and-death process.
The explicit evaluation of Ln, for arbitrary n = 1, 2, 3, . . . , can be greatly simplified by
using ideas that go back to Karlin and McGregor and have been explicitly set forth in
[3, 10]. The only major difficulty here is that of computing the weight matrix W (x).
In this paper we start from a rich group theoretical situation that yields W (x) as well
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as a matrix L of the type envisaged previously. There are enough free parameters
here to give instances of transient as well as recurrent Markov chains. It remains
as interesting challenge to find some real life applications to this large collection of
examples.
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PERTURBATION BOUNDS FOR DETERMINANTS AND
CHARACTERISTIC POLYNOMIALS∗
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Abstract. We derive absolute perturbation bounds for the coefficients of the characteristic
polynomial of a n × n complex matrix. The bounds consist of elementary symmetric functions of
singular values, and suggest that coefficients of normal matrices are better conditioned with regard
to absolute perturbations than those of general matrices. When the matrix is Hermitian positive-
definite, the bounds can be expressed in terms of the coefficients themselves. We also improve absolute
and relative perturbation bounds for determinants. The basis for all bounds is an expansion of the
determinant of a perturbed diagonal matrix.

Key words. elementary symmetric functions, singular values, eigenvalues, condition number,
determinant
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1. Introduction. The characteristic polynomial of a n×n complex matrix A is
defined as

det(λI −A) = λn + c1λ
n−1 + · · · + cn−1λ + cn,

where in particular cn = (−1)n det(A) and c1 = − trace(A).
The coefficients of the characteristic polynomial of a complex matrix are of cen-

tral importance in a quantum physics application. There they supply information
about thermodynamic properties of fermionic systems, which arise, for instance, in
the study of structure and evolution of neutron stars. These thermodynamic quanti-
ties are calculated from partition functions. It turns out that the partition function
Zk for k noninteracting fermions is given by Zk = (−1)kck, where the matrix A is
a function of the particle Hamiltonian operator [9]. Partition functions for systems
of interacting fermions require repeated calculation of noninteracting partition func-
tions. The matrices A in these problems have fairly small dimension (n ≤ 1000) and
no discernible structure.

In order to assess the stability of numerical methods for computing the charac-
teristic polynomial, though, we first need to know the conditioning of the ck and their
sensitivity to perturbations in the matrix A. To this end, we derive perturbation
bounds for absolute normwise perturbations.

Main results. The main idea behind our perturbation bounds is a determi-
nant expansion of a perturbed diagonal matrix (Theorem 2.3). The expansion can
be extended to any square matrix via the SVD (Corollary 2.4). The resulting abso-
lute perturbation bounds contain elementary symmetric functions of singular values.
Below we present weaker, first-order versions of these bounds.

Let σ1 ≥ · · · ≥ σn ≥ 0 be the singular values of A, and let A + E be a n × n
complex matrix with ‖E‖2 < 1 and characteristic polynomial det(λI − (A + E)) =
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http://www.siam.org/journals/simax/30-2/70477.html
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 (ipsen@

ncsu.edu, http://www4.ncsu.edu/˜ipsen/, rrehman@unity.ncsu.edu).

762



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDS FOR CHARACTERISTIC POLYNOMIALS 763

λn + c̃1λ
n−1 + · · ·+ c̃n−1λ+ c̃n. The extreme coefficients c1 and cn have the simplest

bounds. The linearity of the trace implies

|c̃1 − c1| = | trace(A + E) − trace(A)| = | trace(E)| ≤ n‖E‖2,

so that coefficient c1 is well conditioned with regard to absolute perturbations if the
matrix order n is not too large. The determinant satisfies to first order (Remark 2.9)

|c̃n − cn| = |det(A) − det(A + E)| ≤ sn−1‖E‖2 + O(‖E‖2
2),

where sn−1 is the (n− 1)st elementary symmetric function in the singular values and
has the upper bound sn−1 ≤ nσ1 . . . σn−1.

The remaining coefficients ck satisfy to first order (Remark 3.4)

|c̃k − ck| ≤
(
n

k

)
s
(k)
k−1‖E‖2 + O(‖E‖2

2), 2 ≤ k ≤ n,

where s
(k)
k−1 is the (k − 1)st elementary symmetric function in the k largest singular

values, and s
(k)
k−1 ≤ kσ1 . . . σk−1. However, if the matrix is normal or Hermitian, then

the bound improves to (Remark 3.6)

|c̃k − ck| ≤ (n− k + 1)sk−1‖E‖2 + O(‖E‖2
2), 2 ≤ k ≤ n,

where sk−1 is the (k − 1)st function in all singular values. Also, since A is normal,
σi = |λi|, where λi are the eigenvalues. Since the binomial term

(
n
k

)
is reduced to

n− k + 1, the coefficients of a normal matrix are likely to be better conditioned than
those of a general matrix.

When the matrix is Hermitian positive-definite, eigenvalues are equal to singular
values, and the above bound can be written as (Corollary 3.7)

|c̃k − ck| ≤ (n− k + 1)|ck−1|‖E‖2 + O(‖E‖2
2), 2 ≤ k ≤ n.

As a result, ck is well conditioned in the absolute sense if the magnitude of the
preceding coefficient |ck−1| is not too large.

Overview. Section 2 deals with determinants. We first derive expansions for
determinants (section 2.1), and from them absolute perturbation bounds in terms
of elementary symmetric functions of singular values (section 2.2), as well as rela-
tive bounds for determinants (section 2.3), and local sensitivity results (section 2.4).
Section 3 deals with coefficients ck of the characteristic polynomial. We derive ab-
solute perturbation bounds for general matrices (section 3.1) and normal matrices
(section 3.2), as well as normwise bounds (section 3.3).

Notation. The matrix A is a n × n complex matrix with singular values σ1 ≥
· · · ≥ σn ≥ 0, and eigenvalues λi, labelled so that |λ1| ≥ · · · ≥ |λn|. The two-norm is
‖A‖2 = σ1, and A∗ is the conjugate transpose of A. The matrix I = diag

(
1 . . . 1

)
is the identity matrix, with columns ei, i ≥ 1. We denote by Ai the principal sub-
matrix of order n − 1 that is obtained by removing row and column i of A, and by
Ai1...ik the principal submatrix of order n−k, obtained by removing rows and columns
i1 . . . ik.

2. Determinants. We derive expansions and perturbation bounds for determi-
nants. We start with expansions for determinants of perturbed matrices (section 2.1),
and from them derive absolute perturbation bounds in terms of elementary symmetric
functions of singular values (section 2.2), as well as relative bounds for determinants
(section 2.3), and local sensitivity results (section 2.4).
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2.1. Expansions. We derive expansions for determinants of perturbed matrices
in several steps, by considering perturbations that have only a single nonzero diagonal
element (Lemma 2.1), perturbations of diagonal matrices (Theorem 2.3), and at last
perturbations of general matrices (Corollary 2.4).

Lemma 2.1. Let A be a n × n complex matrix, α a scalar, and Ai the principal
submatrix of order n− 1 obtained by deleting row and column i of A.

If B = A + αeie
∗
i , then det(B) = det(A) + α det(Ai), 1 ≤ i ≤ n.

Proof. This follows from a cofactor expansion [8, Theorem 2.3.1] along row i or
column i of B.

The above expansion can be used to expand the determinant of a perturbed diag-
onal matrix. Before deriving this expansion, we motivate its expression on matrices
of order 2 and 3.

Example 2.2. If

D =

(
δ1

δ2

)
, F =

(
f11 f12

f21 f22

)
,

then det(D + F ) = det(D) + det(F ) + S1, where S1 ≡ δ1f22 + δ2f11.
If

D =

⎛
⎝δ1

δ2
δ3

⎞
⎠ , F =

⎛
⎝f11 f12 f13

f21 f22 f23

f31 f32 f33

⎞
⎠ ,

then det(D + F ) = det(D) + det(F ) + S1 + S2, where

S1 ≡ δ1 det

(
f22 f23

f32 f33

)
+ δ2 det

(
f11 f13

f31 f33

)
+ δ3 det

(
f11 f12

f21 f22

)
,

and S2 ≡ δ1δ2f33 + δ1δ3f22 + δ2δ3f11.
These examples illustrate that the expansion of det(D + F ) can be written as

a sum, where each term consists of a product of k diagonal elements of D and the
determinant of the “complementary” submatrix of order n− k of F .

To derive expansions for diagonal matrices of any order, we denote by Fi1...ik the
principal submatrix of order n− k obtained by deleting rows and columns i1 . . . ik of
the n× n matrix F .

Theorem 2.3 (expansion for diagonal matrices). Let D and F be n×n complex
matrices. If D = diag

(
δ1 . . . δn

)
, then

det(D + F ) = det(D) + det(F ) + S1 + · · · + Sn−1,

where

Sk ≡
∑

1≤i1<···<ik≤n

δi1 · · · δik det(Fi1...ik), 1 ≤ k ≤ n− 1.

In particular, if δ1 = · · · = δj = 0 for some 1 ≤ j ≤ n− 1, then

det(D + F ) = det(F ) + S1 + · · · + Sn−j ,

where

Sk =
∑

j+1≤i1<···<ik≤n

δi1 · · · δik det(Fi1...ik), 1 ≤ k ≤ n− j.
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Proof. The proof is by induction over the matrix order n, and Example 2.2
represents the induction basis. Assuming the statement is true for matrices of order
n− 1, we show that it is also true for matrices of order n. Let

D(j) ≡ diag
(
0 . . . 0 δj+1 . . . δn

)
be a diagonal matrix of order n with j leading zeros. Applying Lemma 2.1 to A ≡
D(1) + F and B ≡ A + δ1e1e

∗
1 gives

det(D + F ) = δ1 det(D1 + F1) + det(D(1) + F ).

We repeat this process on the second summand det(D(1) +F ) to remove the diagonal
elements δj one by one; j ≥ 2. To this end, we apply Lemma 2.1 to A ≡ D(j) + F
and B ≡ A + δjeje

∗
j , and denote by (D(j))j the matrix of order n − 1 obtained by

removing row and column j from D(j). This gives

det(D(1) + F ) =

n−1∑
j=2

δj det
(
(D(j))j + Fj

)
+ δn det(Fn) + det(F ).

Putting the above expression into the expansion for det(D + F ) yields

det(D + F ) = det(F ) + δ1 det(D1 + F1) +

n−1∑
j=2

δj det
(
(D(j))j + Fj

)
+ δn det(Fn).

Since D1 +F1 and (D(j))j +Fj are matrices of order n−1, we can apply the induction
hypothesis. To take advantage of the fact that the j − 1 top diagonal elements of
(D(j))j are zero, we define the following sums for matrices of order n− 1,

S
(j)
k ≡

∑
j+1≤i1<···<ik≤n

δi1 · · · δik det(Fji1...ik), 1 ≤ j ≤ n− 1, 1 ≤ k ≤ n− j,

where Fji1...ik is the matrix of order n−k−1 obtained by removing rows and columns
j, i1, . . . , ik of F . The induction hypothesis yields

det(D1 + F1) = det(D1) + det(F1) + S
(1)
1 + · · · + S

(1)
n−2,

det
(
(D(j))j + Fj

)
= det(Fj) + S

(j)
1 + · · · + S

(j)
n−j , 2 ≤ j ≤ n− 2,

det
(
(D(n−1))n−1 + Fn−1

)
= det(Fn−1) + S

(n−1)
1 .

Now substitute the above expansions into the expression for det(D + F ) and use the
fact that δ1 det(D1) = det(D),

∑n
i=1 δi det(Fi) = S1, and

n−j∑
i=1

δiS
(i)
j = Sj+1, 1 ≤ j ≤ n− 2.

When the leading j diagonal elements of D are zero, then at most n− j of the Sk

are nonzero, and within each Sk one needs to account only for the nonzero summands.
We now extend Theorem 2.3 to general matrices, by transforming them to diagonal
form via the SVD. Let A = UΣV ∗ be a SVD of A, where Σ = diag

(
σ1 . . . σn

)
with σ1 ≥ · · · ≥ σn ≥ 0, and U and V are unitary.
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Corollary 2.4 (expansion for general matrices). Let A and E be n×n complex
matrices, and F ≡ U∗EV . Then

det(A + E) = det(A) + det(E) + S1 + · · · + Sn−1,

where

Sk ≡ det(UV ∗)
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ n− 1.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

det(A + E) = det(E) + S1 + · · · + Sr,

where

Sk = det(UV ∗)
∑

1≤i1<···<ik≤r

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ r.

Proof. The SVD of A implies A + E = U(Σ + F )V ∗, and Theorem 2.3 implies

det(Σ + F ) = det(Σ) + det(F ) + Ŝ1 + · · · + Ŝn−1,

where

Ŝk ≡
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1,...,ik), 1 ≤ k ≤ n− 1.

With Sk ≡ det(UV ∗)Ŝk we obtain det(A + E) = det(A) + det(E) + S1 + · · · + Sn−1.
Now suppose rank(A) = r ≤ n − 1. Then n − r singular values are zero, so that

all products of r + 1 or more singular values are zero. In particular, det(A) = 0. If
rank(A) = r < n − 1, then Sr+1 = · · · = Sn−1 = 0. Moreover, the terms S1, . . . , Sr

contain only the nonzero singular values σ1, . . . , σr.
Corollary 2.4 shows that the number of summands in the expansion decreases

with the rank of the matrix.

2.2. Absolute perturbation bounds. We derive absolute perturbation bounds
for determinants in terms of elementary symmetric functions of singular values. These
bounds give rise to absolute first-order condition numbers. We also derive simpler,
but weaker normwise bounds.

To bound the perturbations we need the following inequalities.
Lemma 2.5 (Hadamard’s inequality). If B is a n× n complex matrix, then

|det(B)| ≤
n∏

i=1

‖Bei‖2 ≤ ‖B‖n2 .

Proof. The first inequality is Hadamard’s inequality [6, Corollary 7.8.2].
The bounds also contain elementary symmetric functions, which are defined as

follows [6, Definition 1.2.9].
Definition 2.6 (elementary symmetric functions of singular values). Let A be

a n× n matrix with singular values σ1 ≥ . . . ≥ σn. The expressions

s0 ≡ 1, sk ≡
∑

1≤i1<···<ik≤n

σi1 · · ·σik , 1 ≤ k ≤ n,

are the kth elementary symmetric functions of the singular values of A.
Now we are ready to derive the first perturbation bound for determinants of

general matrices.
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Corollary 2.7 (general matrices). Let A and E be n × n complex matrices.
Then

|det(A) − det(A + E)| ≤
n∑

i=1

sn−i‖E‖i2.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|det(A + E)| ≤ ‖E‖n−r
2

r∑
i=0

sr−i‖E‖i2,

where the sj are elementary symmetric functions in the r largest singular values of
A, 1 ≤ j ≤ r.

The bounds hold with equality for E = εUV ∗ with ε > 0, where A = UΣV ∗ is a
SVD of A.

Proof. Corollary 2.4 implies |det(A)−det(A+E)| ≤ |det(E)|+ |S1|+ · · ·+ |Sn−1|.
To bound |Sk| use the fact that |det(UV ∗)| = 1 and σi ≥ 0 to obtain

|Sk| ≤ max
1≤i1<···<ik≤n

|det(Fi1...ik)|
∑

1≤i1<···<ik≤n

σi1 · · ·σik

= max
1≤i1<···<ik≤n

|det(Fi1...ik)|sk.

Lemma 2.5 implies |det(E)| ≤ ‖E‖n2 , and |det(Fi1...ik)| ≤ ‖F‖n−k
2 = ‖E‖n−k

2 . Hence
|Sk| ≤ sk‖E‖n−k

2 , 1 ≤ k ≤ n− 1.
Now suppose rank(A) = r. Then Corollary 2.4 implies

|det(A + E)| ≤ |det(E)| + |S1| + · · · + |Sr| ≤ ‖E‖n−r
2

r∑
i=0

sr−i‖E‖i2,

where the terms sr−i contain only nonzero singular values.
If E = εUV ∗, then F = εI and det(Fi1...ik) = εn−k = ‖E‖n−k

2 , so that Sk =
|Sk| = ‖E‖n−k

2 sk.
Corollary 2.7 bounds the absolute error in det(A + E) by elementary symmetric

functions of singular values and powers of ‖E‖2. Although the bounds for nonsingular
and rank-r matrices look different, because the sums start at different indices, they
are consistent. If rank(A) ≤ n− k for some k ≥ 1, then |det(A + E)| is bounded by
a multiple of ‖E‖k2 . Hence if ‖E‖2 < 1 then determinants of rank-deficient matrices
tend to be better conditioned in the absolute sense.

Remark 2.8 (Hermitian positive-definite matrices). In the special case when A
is Hermitian positive-definite, singular values are equal to eigenvalues, so that we can
write the elementary symmetric functions in terms of the eigenvalues λ1 ≥ · · · ≥ λn ≥
0. Hence in Corollary 2.7

sk =
∑

1≤i1<···<ik≤n

λi1 · · ·λik , 1 ≤ k ≤ n− 1.

Note that A + E does not have to be Hermitian positive-definite, because no restric-
tions are placed on E.

Remark 2.9 (first-order absolute condition numbers). Let A be a n× n complex
matrix with rank(A) ≥ n − 1 and ‖E‖2 < 1. Corollary 2.7 implies the first-order
bound

|det(A) − det(A + E)| ≤ sn−1‖E‖2 + O
(
‖E‖2

2

)
,
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where sn−1 ≤ nσ1 . . . σn−1. Hence we can view sn−1 or nσ1 . . . σn−1 as first-order
condition numbers for absolute perturbations in A.

Example 2.10. The perturbation of a diagonally scaled Jordan block below illus-
trates that the first-order bound in Remark 2.9 can hold with equality. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 α1 0 . . . 0
... 0 α2

. . .
...

...
. . .

. . . 0
0 0 αn−1

0 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, E = εene
∗
1,

where |ε| ≤ 1 and αi > 0, 1 ≤ i ≤ n− 1. Then |det(A + E) − det(A)| = α1 . . . αn−1ε.
Since the singular values of A are 0 and αi > 0, 1 ≤ i ≤ n − 1, we obtain |det(A +
E) − det(A)| = sn−1‖E‖2.

Replacing the singular values in Corollary 2.7 by powers of ‖A‖2 gives the simpler,
but weaker bounds below.

Corollary 2.11 (normwise bounds). Let A and E be n× n complex matrices.
Then

|det(A + E) − det(A)| ≤
n∑

i=1

(
n

i

)
‖A‖n−i

2 ‖E‖i2

= (‖A‖2 + ‖E‖2)
n − ‖A‖n2 .

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|det(A + E)| ≤ ‖E‖n−r
2

r∑
i=0

(
r

i

)
‖A‖r−i

2 ‖E‖i2

= ‖E‖n−r
2 (‖A‖2 + ‖E‖2)

r.

Proof. This follows from Corollary 2.7 and sn−i ≤
(

n
n−i

)
‖A‖n−i

2 =
(
n
i

)
‖A‖n−i

2 ,
1 ≤ i ≤ n− 1.

A bound similar to the one in Corollary 2.11 was already derived in [1, section 20],
[2, Problem I.6.11], [3, Theorem 4.7] for any p-norm, by taking Fréchet derivatives of
wedge products. Below we give a basic proof from first principles for the two-norm.

Theorem 2.12 (section 20 in [1], problem I.6.11 in [2], Theorem 4.7 in [3]). Let
A and E be n× n complex matrices. Then

|det(A + E) − det(A)| ≤ n‖E‖2 max{‖A‖2, ‖A + E‖2}n−1.

Proof. We first show the statement for a diagonal matrix. That is, if D =
diag

(
δ1 . . . δn

)
is diagonal, then

det(D + F ) = det(D) + z, where |z| ≤ n‖F‖2 max{‖D‖2, ‖D + F‖2}n−1.

The proof is by induction. For n = 2

D =

(
δ1

δ2

)
, F =

(
f11 f12

f21 f22

)
,

and

z ≡ det(D + F ) − det(D) = δ1f22 + det

(
f11 f12

f21 δ2 + f22

)
.
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Lemma 2.5 implies

|z| ≤ ‖F‖2‖D‖2 +

∥∥∥∥
(
f11

f21

)∥∥∥∥
2

∥∥∥∥
(

f12

δ2 + f22

)∥∥∥∥
2

≤ ‖F‖2‖D‖2 + ‖F‖2‖D + F‖2

≤ 2‖F‖2 max{‖D‖2, ‖D + F‖2}.

This completes the induction basis. Assuming the statement is true for matrices of
order n − 1, we show that it is also true for matrices of order n. As in the proof of
Theorem 2.3, let D(1) ≡ diag

(
0 δ2 . . . δn

)
be the matrix obtained from D by

replacing δ1 with 0, and apply Lemma 2.1 to conclude

det(D + F ) = δ1 det(D1 + F1) + det(D(1) + F ).

Since D1 + F1 is a matrix of order n− 1, the induction hypothesis applies and gives
det(D1 + F1) = det(D1) + z1, where

|z1| ≤ (n− 1)‖F1‖2 max{‖D1‖2, ‖D1 + F1‖2}n−2

≤ (n− 1)‖F‖2 max{‖D‖2, ‖D + F‖2}n−2.

Substitute the above expression into the expansion for det(D + F ) to obtain

z ≡ det(D + F ) − det(D) = δ1z1 + det(D(1) + F ),

where |δ1z1| ≤ (n − 1)‖F‖2 max{‖D‖2, ‖D + F‖2}n−1. Applying Lemma 2.5 to
det(D(1) + F ) yields

det(D(1) + F ) ≤ ‖Fe1‖2

n∏
i=2

‖(D + F )ei‖2 ≤ ‖F‖2‖D + F‖n−1
2 .

Therefore we have proved the theorem for diagonal matrices D.
To prove the theorem for general matrices A, let A = UΣV ∗ be a SVD of A.

Then det(A + E) = det(UV ∗) det(Σ + F ), where F ≡ U∗EV . Since Σ is diagonal,
det(Σ + F ) = det(Σ) + z, where

|z| ≤ n‖F‖2 max{‖Σ‖2, ‖Σ + F‖2}n−1 = n‖E‖2 max{‖A‖2, ‖A + E‖2}n−1.

Hence det(A + E) − det(A) = det(UV ∗)z, and the result follows from |det(UV ∗)|
= 1.

2.3. Relative perturbation bounds. We derive expansions for relative pertur-
bations of determinants, as well as relative perturbation bounds that improve existing
bounds.

Theorem 2.13 (expansion). Let A and E be n × n complex matrices. If A is
nonsingular, then

det(A + E) − det(A)

det(A)
= det(A−1E) + S1 + · · · + Sn−1,

where

Sk ≡
∑

1≤i1<···<ik≤n

det((A−1E)i1...ik), 1 ≤ k ≤ n− 1.
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Proof. Write det(A + E) = det(A) det(I + A−1E) and apply Theorem 2.3 to
det(I + A−1E).

Corollary 2.14 (relative perturbation bound). Let A and E be n× n complex
matrices. If A is nonsingular, then

|det(A + E) − det(A)|
|det(A)| ≤

(
κ
‖E‖2

‖A‖2
+ 1

)n

− 1,

where κ ≡ ‖A‖2‖A−1‖2.
Proof. Apply Corollary 2.7 to

|det(A + E) − det(A)|
|det(A)| = |det(I + A−1E) − det(I)|,

and bound ‖A−1E‖2 ≤ κ‖E‖2/‖A‖2.
Remark 2.15. Corollary 2.14 is more general and tighter than the following bound

from [4, (1.6)], [5, Problem 14.15]:

|det(A + E) − det(A)|
|det(A)| ≤ nκ‖E‖2/‖A‖2

1 − nκ‖E‖2/‖A‖2
,

which holds only for nκ‖E‖2/‖A‖2 < 1. This is true because of the following. With
q ≡ ‖A−1‖2‖E‖2 = κ‖E‖2/‖A‖2 we can write the first term in the bound of Corol-
lary 2.14 as

(q + 1)n =

n∑
i=0

(
n

i

)
qi ≤

n∑
i=0

niqi ≤
∞∑
i=0

(nq)i.

If nq < 1, then
∑∞

i=0(nq)
i = 1

1−nq , so that

(q + 1)n − 1 ≤ 1

1 − nq
− 1 =

nq

1 − nq
.

This implies for the bound in Corollary 2.14(
κ
‖E‖2

‖A‖2
+ 1

)n

− 1 ≤ nκ||E‖2/‖A‖2

1 − nκ‖E‖2/‖A‖2
,

where the last expression is the bound in [4, inequality (1.6)], [5, Problem 14.15].

2.4. Local sensitivity. We derive a local condition number for determinants
from directional derivatives. The directional derivative for det(A) in the direction E

is dk

dxk det(A + xE).
Although we derive the expressions below from the expansion in Theorem 2.3, we

could have also used the expression for derivatives of A(x) in [7, equation (6.5.9)].
Theorem 2.16. Let A and E be n × n complex matrices, F ≡ U∗EV , and x a

real scalar. Then

det(A + xE) =
n∑

i=1

Sn−ix
i + det(A),

where

S0 ≡ det(E), Sk ≡ det(UV ∗)
∑

1≤i1<···<ik≤n

σi1 · · ·σik det(Fi1...ik), 1 ≤ k ≤ n−1,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BOUNDS FOR CHARACTERISTIC POLYNOMIALS 771

and

dk

dxk
det(A + xE)|x=0 = k!Sn−k, 1 ≤ k ≤ n.

Proof. If D = diag
(
δ1 . . . δn

)
is a diagonal matrix, then Theorem 2.3 implies

det(D+xF ) = det(xF )+S̃1+· · ·+S̃n−1+det(D), where det(xF ) = xn det(F ) = xnS0

and

S̃k =
∑

1≤i1<···<ik≤n

δi1 · · · δik det(xFi1...ik) = xn−kSk.

To derive the expansion for a general matrix, use the SVD as in Corollary 2.4.
The first derivative gives the local condition number of the determinant with

regard to small perturbations.
Corollary 2.17 (local condition number). Let A and E be n × n complex

matrices, and x a real scalar. Then∣∣∣∣ ddx det(A + xE)|x=0

∣∣∣∣ ≤ sn−1‖E‖2, where sn−1 ≤ nσ1 . . . σn−1.

Proof. Theorem 2.16 implies for the first derivative

d

dx
det(A + xE)|x=0 = det(UV ∗)

∑
1≤i1<···<in−1≤n

σi1 · · ·σin−1
det(Fi1...in−1

),

where Fi1...in−1
is a diagonal element of F . Lemma 2.5 implies |det(Fi1...in−1

)| ≤
‖F‖2 = ‖E‖2.

Corollary 2.17 shows that the sensitivity of det(A) to small perturbations in any
direction E is determined by sn−1 or nσ1 . . . σn−1. A comparison with Remark 2.9
shows that the local condition number for det(A) is identical to the first-order condi-
tion number.

3. Characteristic polynomial. Based on the determinant results in section 2,
we derive absolute perturbation bounds for the coefficients of the characteristic poly-
nomial for general matrices (section 3.1) and normal matrices (section 3.2), as well as
simpler, but weaker normwise bounds (section 3.3).

Applying Theorem 2.3 to the characteristic polynomial

det(λI −A) = λn + c1λ
n−1 + · · · + cn−1λ + cn

of the n× n matrix A gives the well-known expressions [6, Theorem 1.2.12]

cn−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik), 0 ≤ k ≤ n− 1,

where Ai1...ik is the principal submatrix of order n− k obtained by deleting rows and
columns i1 . . . ik of A. The characteristic polynomial of the perturbed matrix A + E
is

det(λI − (A + E)) = λn + c̃1λ
n−1 + · · · + c̃n−1λ + c̃n,

where c̃n = (−1)n det(A + E) and

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik), 1 ≤ k ≤ n− 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

772 ILSE C. F. IPSEN AND RIZWANA REHMAN

The following example illustrates that products of singular values play an impor-
tant role in the conditioning of the coefficients ck.

Example 3.1 (companion matrices). The n× n matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

α1 α2 . . . . . . αn

η 0 . . . . . . 0

0 η
. . .

...
...

. . .
. . .

. . .
...

0 . . . 0 η 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, η > 0,

is a multiple of a companion matrix, and let E = e1

(
ε . . . ε

)
with ε > 0. The

respective coefficients of the characteristic polynomials of A and A+E are [5, section
28.6]

ci = αiη
i−1, c̃i = (αi + ε)ηi−1, 1 ≤ i ≤ n.

Then |c̃i − ci| = εηi−1, 1 ≤ i ≤ n. The singular values of A are [5, section 28.6]

σ2
1 =

1

2

(
α +

√
α2 − 4|αn|2

)
, σ2

n =
1

2

(
α−

√
α2 − 4|αn|2

)
,

where α ≡ 1+|α1|2+· · ·+|αn|2, and σi = η, 2 ≤ i ≤ n−1. Therefore the conditioning
of the coefficients ck is determined by products of singular values.

The products of singular values in our perturbation bounds are expressed in terms
of elementary symmetric functions of only the largest singular values of A.

Definition 3.2 (elementary symmetric functions in the largest singular values).
Let A be a n× n matrix with singular values σ1 ≥ . . . ≥ σn. Denote by

s
(k)
0 ≡ 1, s

(k)
j ≡

∑
1≤i1<...<ij≤k

σi1 . . . σij , 1 ≤ j ≤ k, 1 ≤ k ≤ n,

where s
(n)
j = sj. The expression s

(k)
j is the jth elementary symmetric function in the

k largest singular values of A.

3.1. General matrices. We use the determinant expansion in Corollary 2.4 to
derive perturbation bounds for coefficients ck of general matrices.

Theorem 3.3 (general matrices). Let A and E be n×n complex matrices. Then

|c̃k − ck| ≤
(
n

k

) k∑
i=1

s
(k)
k−i‖E‖i2, 1 ≤ k ≤ n.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|c̃k − ck| ≤
(
n

k

)
‖E‖k−r

2

r∑
i=0

s
(k)
r−i‖E‖i2, r + 1 ≤ k ≤ n.

Proof. In the perturbed coefficient

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik),
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the matrices Ai1...ik + Ei1...ik are of order n − k. Fix the indices i1, . . . , ik; set B ≡
Ai1...ik and F ≡ Ei1...ik ; and let μ1 ≥ . . . ≥ μn−k be the singular values of B.
Corollary 2.4 implies det(B + F ) = det(B) + det(F ) + S1 + · · · + Sn−k−1, where

Sj =
∑

1≤i1<...<ij≤n−k

μi1 . . . μij det(Fi1...ij ), 1 ≤ j ≤ n− k − 1.

Since B is a submatrix of A, the singular values interlace [6, Theorem 7.3.9], so that

σj ≥ μj , 1 ≤ j ≤ n − k. With Lemma 2.5 we obtain |Sj | ≤ s
(n−k)
j ‖E‖n−k−j

2 . Hence

|S1| + · · · + |Sn−k−1| ≤
∑n−k

i=1 s
(n−k)
n−k−i‖E‖i2. Summing up the terms associated with

all
(
n
k

)
submatrices Ai1...ik + Ei1...ik gives the desired bound for |c̃n−k − cn−k|.

Now suppose rank(A) = r ≤ n − 1. Since r singular values are nonzero, the

elementary symmetric functions s
(k)
j in the k largest singular values remain unchanged

for k ≤ r.
Since n−r singular values are equal to zero, all products of r+1 or more singular

values are zero. Hence for k ≥ r + 1 we have s
(k)
j = 0 whenever j ≥ r + 1, so that

k∑
i=1

s
(k)
k−i‖E‖i2 = ‖E‖k−r

2

r∑
i=0

s
(k)
r−i‖E‖i2.

Moreover, for j ≤ r the s
(k)
j are functions of the r largest singular values only, so that

s
(k)
j = s

(r)
j . Therefore

∑k
i=0 s

(k)
k−i‖E‖i2 = ‖E‖k−r

2

∑r
i=0 s

(r)
r−i‖E‖i2, giving the desired

bound for |c̃k − ck| when k ≥ r + 1.
For the two extreme coefficients, Theorem 3.3 produces the expected bounds: In

the case of cn = (−1)n det(A), the bound coincides with the determinant bound in
Corollary 2.7, while for c1 = − trace(A) we obtain |c̃1 − c1| ≤ n‖E‖2. Theorem 3.3
shows that the conditioning of ck with regard to absolute perturbations is determined
by the binomial term

(
n
k

)
and the elementary symmetric functions in the k largest

singular values. The binomial coefficient is largest for ck with k ≈ n/2, because(
n

n−k

)
=

(
n
k

)
, and

(
n
k

)
is monotonically increasing for k < n/2. In particular, if n is

even, then for k = n/2 we have k
(
n
k

)
≥ k

(
n
k

)k
= n2n/2−1.

If rank(A) = r ≤ n− 2, then the bounds for the coefficients cr+1, . . . , cn contain
higher powers of ‖E‖2. Hence if ‖E‖2 < 1, then the coefficients cr+1, . . . , cn of rank-
deficient matrices tend to be better conditioned in the absolute sense.

Remark 3.4 (first-order absolute condition numbers for general matrices). The-
orem 3.3 implies for ‖E‖2 < 1 the first-order bound

|c̃k − ck| ≤
(
n

k

)
s
(k)
k−1‖E‖2 + O(‖E‖2

2), 1 ≤ k ≤ n,

where s
(k)
k−1 ≤ kσ1 . . . σk−1. Hence we can view

(
n
k

)
s
(k)
k−1 or

(
n
k

)
kσ1 . . . σk−1 as first-

order condition numbers for absolute perturbations in the coefficient ck.

3.2. Normal matrices. We show that for normal matrices, the conditioning of
the coefficients improves because the binomial term is smaller, and the elementary
symmetric functions depend on all singular values, not just the largest ones. Note
that all statements for normal matrices apply in particular to Hermitian matrices.

Theorem 3.5 (normal matrices). If the n× n matrix A is normal, then

|c̃k − ck| ≤
k∑

i=1

(
n− k + i

i

)
sk−i‖E‖i2, 1 ≤ k ≤ n.
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The bound holds with equality if E = εI with ε > 0.
Proof. Since A is normal, it has an eigenvalue decomposition A = V ΛV ∗, where

Λ = diag
(
λ1 · · · λn

)
is complex diagonal, |λ1| ≥ . . . ≥ |λn|, and V is unitary.

Set D ≡ λI − Λ and F ≡ −V ∗EV , so that det(λI − (A + E)) = det(D + F ).
Theorem 2.3 implies det(D + F ) = det(D) + det(F ) + S1 + · · · + Sn−1. Substituting
det(D) = λn +

∑n
k=1 ckλ

n−k and det(D + F ) = λn +
∑n

k=1 c̃kλ
n−k in the above

expansion gives

n∑
k=1

(c̃k − ck)λ
n−k = det(F ) + S1 + · · · + Sn−1.

Thus c̃k−ck is equal to the coefficient of λn−k on the right-hand side, i.e., in det(F )+
S1 + · · · + Sn−1. Since

Sn−j ≡
∑

1≤i1<···<in−j≤n

(λ− λi1) · · · (λ− λin−j ) det(Fi1...in−j ), 1 ≤ j ≤ n− 1,

has as highest power λn−j , the term λn−k can occur only in Sn−k, . . . , Sn−1. This
means c̃k − ck is the sum of the coefficients of λn−k in Sn−1, . . . , Sn−k. To bound the
coefficient of λn−k in Sn−j in particular, we first bound all coefficients in Sn−j .

Observe that Sn−j is a sum of
(

n
n−j

)
products (λ− λi1) · · · (λ− λin−j

). For fixed
i1, . . . , in−j we can write the product as

(λ− λi1) · · · (λ− λin−j ) = λn−j + γ1λ
n−j−1 + · · · + γn−j−1λ + γn−j .

The coefficient γl is a sum of
(
n−j
l

)
products λj1 . . . λjl . Hence Sn−j contains

(
n

n−j

)(
n−j
l

)
such products. Therefore we can bound |Sn−j | by a sum of

(
n

n−j

)(
n−j
l

)
products

|λj1 | . . . |λjl |. Since A is normal |λi| = σi, so that these products are also sum-
mands of the elementary symmetric function sl. The sum sl contains

(
n
l

)
such

summands. Therefore the number of occurrences of sl in the bound for |Sn−j | is(
n

n−j

)(
n−j
l

)
/
(
n
l

)
=

(
n−l
j

)
.

Now we are ready to return to the coefficient of λn−k in particular; it is γk−j .
Applying the above counting argument with l = k − j shows that the coefficient
of λn−k in Sn−j is bounded by

(
n−k+j

j

)
sk−j |det(Fi1...in−j )|. Lemma 2.5 implies

|det(Fi1...in−j )| ≤ ‖F‖j2 = ‖E‖j2. Summing up the contributions from all Sn−j ,
1 ≤ j ≤ k, gives the desired result.

If E = εI, then F = εI and det(Fi1...ik) = εn−k = ‖E‖n−k
2 .

Remark 3.6 (first-order absolute condition numbers for normal matrices). If A
is normal and ‖E‖2 < 1, then Theorem 3.5 implies the first-order bound

|c̃k − ck| ≤ (n− k + 1)sk−1‖E‖2 + O(‖E‖2
2), 1 ≤ k ≤ n,

where sk−1 ≤ k|λ1 . . . λk−1|. Hence we can view (n − k + 1)sk−1 or (n − k +
1)k|λ1 . . . λk−1| as first-order condition numbers for absolute perturbations in the
coefficient ck.

For Hermitian positive-define matrices, the bound in Theorem 3.5 can be ex-
pressed in terms of the coefficients ck.

Corollary 3.7 (Hermitian positive-definite matrices). If the n× n matrix A is
Hermitian positive-definite, then

|c̃k − ck| ≤
k∑

i=1

(
n− k + i

i

)
|ck−i|‖E‖i2, 1 ≤ k ≤ n.
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Proof. The coefficients ck are also elementary symmetric functions in the eigenval-
ues [6, section 1.2], and the eigenvalue of a Hermitian positive-definite is equal to the
singular values. Thus ck = (−1)ksk, and the result follows from Theorem 3.5.

To first order, the conditioning of coefficient ck is determined by the magnitude of
the preceding coefficient, |ck−1|. As in Corollary 2.8, the matrix A+E in Corollary 3.7
does not have to be Hermitian positive-definite, because E can be arbitrary. Below we
illustrate that one cannot use the expression in Corollary 3.7 for indefinite matrices;
that is, positive-definiteness of A is crucial for the expression in Corollary 3.7.

Example 3.8. Corollary 3.7 is not valid for indefinite Hermitian matrices and in
particular matrices with zero trace.

To see this, let

A =

(
α

−α

)
, Ã =

(
α− ε

−α + ε

)
,

where α > 0 and ε > 0. The characteristic polynomials are

det(λI −A) = λ2 − α2, (λI − (A + E)) = λ2 − (α− ε)2,

so that c̃2 − c2 = 2αε − ε2. However, |c̃2 − c2| cannot be bounded in terms of c1, as
required by Corollary 3.7, because c1 = 0.

3.3. Normwise bounds. Replacing the singular value products by powers of
‖A‖2 gives the following simpler, but weaker bounds.

Corollary 3.9 (normwise bounds). Let A and E be n × n complex matrices.
Then

|c̃k − ck| ≤ k

(
n

k

) k∑
i=1

(
k

i

)
‖A‖k−i

2 ‖E‖i2,

=

(
n

k

)(
(‖A‖2 + ‖E‖2)

k − ‖A‖k
)
, 1 ≤ k ≤ n.

If rank(A) = r for some 1 ≤ r ≤ n− 1, then

|c̃k − ck| ≤ k

(
n

k

)
‖E‖k−r

2

r∑
i=1

(
k

i

)
‖A‖r−i

2 ‖E‖i2,

=

(
n

k

)
‖E‖k−r

2 ((‖A‖2 + ‖E‖2)
r − ‖A‖r) , r + 1 ≤ k ≤ n.

Proof. This follows from Theorem 3.3 and

s
(k)
k−i ≤

(
k

k − i

)
‖A‖k−i

2 =

(
k

i

)
‖A‖k−i

2 , 1 ≤ i ≤ k − 1.

A similar bound was was already derived in [1, section 20] and [2, Problem I.6.11]
for any p-norm, by taking Fréchet derivatives of wedge products. Below we give a
basic proof from first principles for the two-norm.

Theorem 3.10 (section 20 in [1], problem I.6.11 in [2]). Let A and E be n × n
complex matrices. Then

|c̃k − ck| ≤ k

(
n

k

)
‖E‖2 max{‖A‖2, ‖A + E‖2}k−1, 1 ≤ k ≤ n.
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Proof. As in the proof of Theorem 3.3, we use

c̃n−k = (−1)n−k
∑

1≤i1<...<ik≤n

det(Ai1...ik + Ei1...ik).

This gives for the absolute error

|c̃n−k − cn−k| ≤
∑

1≤i1<...<ik≤n

|det(Ai1...ik + Ei1...ik) − det(Ai1...ik)|.

Theorem 2.12 implies that |det(Ai1...ik + Ei1...ik) − det(Ai1...ik)| is bounded by

(n− k)‖Ei1...ik‖2 max{‖Ai1...ik‖2, ‖(A + E)i1...ik‖2}n−k−1.

Bounding the principal submatrices by the norms of the respective matrices and rec-
ognizing that the sum contains

(
n

n−k

)
summands yields the desired bound.
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LDU FACTORIZATION OF NONSINGULAR TOTALLY
NONPOSITIVE MATRICES∗

RAFAEL CANTÓ† , PLAMEN KOEV‡ , BEATRIZ RICARTE† , AND ANA M. URBANO†

Abstract. An n × n real matrix A is said to be (totally negative) totally nonpositive if every
minor is (negative) nonpositive. In this paper, we study the properties of a totally nonpositive matrix
and characterize the case of a nonsingular totally nonpositive matrix A, with a11 < 0 in terms of
its LDU factorization (L(U)) is a unit lower- (upper-) triangular matrix, respectively, and D is a
diagonal matrix). This characterization allows us to significantly reduce the number of minors to
be checked in order to decide the total nonpositivity of a nonsingular matrix with a negative (1, 1)
entry.

Key words. nonsingular matrix, totally nonpositive matrix, LDU factorization
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1. Introduction. Several types of matrices have an important role in the various
branches of mathematics and other sciences. A particular case of these matrices are
the totally positive matrices, which have a wide variety of applications in approxima-
tion theory, numerical mathematics, statistics, economics, computer aided geometric
design, and others fields [6, 12].

We recall that a matrix is called totally positive (strictly totally positive) if all its
minors are nonnegative (positive) and are abbreviated as TP and STP, respectively.

If, instead, all minors of a matrix are nonpositive (negative), the matrix is called
totally nonpositive (totally negative) and are abbreviated as t.n.p. and t.n., respec-
tively.

The TP and STP matrices have been studied by several authors ([1, 2, 3, 4, 5, 6,
7, 8, 11]) who have obtained properties and characterizations in terms of the factor-
izations obtained by Gaussian or Neville elimination that allow one to significantly
reduce the number of minors to be checked in order to decide if a matrix is TP or
STP.

For t.n. matrices, a characterization in terms of the parameters obtained from
Neville elimination is given in [9]. The spectral properties and UDL factorizations are
analyzed in [5]. UDL factorization (U(L)) is a unit upper- (lower-) triangular matrix,
respectively, and D is a diagonal matrix).

In this paper we extend the characterization of t.n. matrices given in [5] to non-
singular t.n.p. matrices. In particular, we characterize the t.n.p. matrices in terms of
the factors of their UDL factorization and provide a criteria to determine if a matrix
is t.n.p., which requires that only the sign of minors containing contiguous rows or
columns, and include the first row or column, respectively, be checked.
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València, Spain (rcanto@mat.upv.es, bearibe@mat.upv.es, amurbano@mat.upv.es). The authors’
research was supported by Spanish DGI grant MTM2007-64477 and by the UPV under its research
program.

‡Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (pskoev@ncsu.
edu).

777



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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We follow the notation of [1]. Given k, n ∈ N, 1 ≤ k ≤ n, Qk,n denotes the set of
all increasing sequences of k natural numbers less than or equal to n. If A is an n×n
matrix and α, β ∈ Qk,n, A[α|β] denotes the k× k submatrix of A lying in rows α and
columns β. The principal submatrix A[α|α] is abbreviated as A[α].

For a given k, 1 ≤ k ≤ n, a vector ε = (ε1, ε2, . . . , εk) is called signature sequence if
|εi| = 1, i = 1, 2, . . . , k. The matrix A is called sign-regular (strictly sign-regular) with
signature ε if εk detA[α|β] ≥ 0 (> 0), α, β ∈ Qk,n, k = 1, 2, . . . , n [1]. In particular, if
εi = 1, i = 1, 2, . . . , n, then A is TP and if εi = −1, i = 1, 2, . . . , n, then A is t.n.p.

Throughout this paper, an LDU or UDL factorization will mean the correspond-
ing factorization resulting from Gaussian elimination with no pivoting where L and
U are unit lower- and upper-triangular matrices, respectively, and D is diagonal.

2. Characterization of nonsingular t.n.p. matrices by triangular LDU
factorization. In this section we derive a characterization of t.n.p. matrices in terms
of their LDU factorizations. We use the fact that if A = LDU is the LDU factorization
of a nonsingular TP matrix, then L (U) is a unit lower- (upper-) triangular TP matrix,
respectively, and D is a positive diagonal matrix [1, 2].

Theorem 2.1. Let A be an n× n nonsingular t.n.p. matrix with a11 < 0. Then
A = LDU where L (U) is a unit lower- (upper-) triangular TP matrix, and D is a
diagonal matrix with positive diagonal entries except for a negative (1, 1) entry.

Proof. Let P be the permutation matrix [n, n− 1, . . . , 2, 1]. From Cauchy–Binet,
G = PAP is also a nonsingular t.n.p. matrix.1

Let S = diag(1,−1, 1, . . . ,±1). By [5, Theorem 2.4], B = SG−1S is sign-regular
with signature ε = (1, 1, . . . , 1,−1). Since a11 < 0,

detB[1, 2, . . . , n− 1] = det(SG−1S)[1, 2, . . . , n− 1] =
detG[n]

detG
=

a11

detA
> 0.

Thus we can choose an x > −1/a11 so that C = B + xEnn is TP where Enn is the
n×n matrix whose only nonzero entry is 1 in position (n, n). Therefore, C = L′D′U ′

where L′ (U ′) is a unit lower- (upper-) triangular TP matrix, and D′ is a positive
diagonal matrix. Consider

B = C − xEnn = L′D′U ′ − xEnn

=

[
L1 0
l1 1

] [
D1 0
0 dnn

] [
U1 u1

0 1

]
− x

[
0 0
0 1

]

=

[
L1 0
l1 1

] [
D1 0
0 dnn − x

] [
U1 u1

0 1

]
= L′D′′U ′.

Since D′ is a positive diagonal matrix, D1 is a positive diagonal matrix and since
detB < 0, we have dnn − x < 0. Now

A = PGP = P (SB−1S)P = P (S(L′D′′U ′)−1S)P

= P (S(U ′)−1(D′′)−1(L′)−1S)P

= [P (S(U ′)−1S)P ][P (S(D′′)−1S)P ][P (S(L′)−1S)P ]

= (PU ′′P )(PD′′′P )(PL′′P ) = LDU.

By [5, Theorem 2.4], L = P (S(U ′)−1S)P is a unit lower-triangular TP matrix, U =
P (S(L′)−1S)P is a unit upper-triangular TP matrix, and D = P (S(D′′)−1S)P is
diagonal with all diagonal entries positive except for a negative (1, 1) entry.

1Note that other permutation similarity transformations do not necessarily preserve the t.n.p.
structure.
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Remark 2.2. Consider the LDU factorization of a nonsingular t.n.p. matrix A,
with a11 < 0. The entries of the first column (row) of L (U) are positive because if
lj1 = 0 or u1j = 0 for some j ∈ {2, 3, . . . , n}, then ajj > 0, which is a contradiction.
Moreover, since L (U) is a TP matrix, we have detL[j, i|1, j] ≥ 0 (detU [1, j|j, i] ≥ 0),
and thus lij > 0 (uji > 0) for all i > j.

Therefore, L (U) is a unit lower- (upper-) triangular TP matrix with positive
entries below (above) the diagonal.

The converse of Theorem 2.1 is not true in general, as the next example shows.
Example 2.3. The matrix

A = LDU =

⎡
⎣ 1 0 0

2 1 0
1 2 1

⎤
⎦
⎡
⎣ −3 0 0

0 2 0
0 0 5

⎤
⎦
⎡
⎣ 1 2 4

0 1 2
0 0 1

⎤
⎦ =

⎡
⎣ −3 −6 −12

−6 −10 −20
−3 −2 1

⎤
⎦

is not t.n.p. despite the fact that L and U are TP matrices, and D has positive
diagonal entries except for the negative (1, 1) entry.

The following theorem gives a necessary condition for a product LDU to be a
t.n.p. matrix. Recall that an n× n triangular matrix is said to be a �STP matrix if
all of its nontrivial minors are positive.

Theorem 2.4. Let A = LDU be an n×n matrix where ann ≤ 0, L (U) be a unit
lower- (upper-) triangular TP matrix with positive entries below (above) the diagonal,
and D = diag(−d1, d2, . . . , dn) with di > 0, i = 1, 2, . . . , n. Then A is t.n.p.

Proof. First consider the case ann < 0. Since L is a unit lower-triangular TP
matrix, it can be written as a product of bidiagonal lower-triangular matrices [10] in
the form:

L = (En(mn1)En−1(mn−1,1) · · ·E2(m21)) (En(mn2) · · ·E3(m32)) · · ·En(mn,n−1),

where mij are the multipliers of the Neville elimination of L and Ei(x) is a bidiagonal
matrix which differs from the identity only in its (i, i− 1) entry x.

Since L is TP, we have mij ≥ 0. If we replace the zero multipliers mij in L by
δ > 0, then the resulting matrix, L(δ) is �STP [10]. Analogously, from U we obtain
a �STP matrix U(δ).

Now consider A(δ) = L(δ)DU(δ). From Cauchy–Binet,

A(δ) = A +

⎡
⎢⎢⎢⎣

0 0 . . . 0
0
... pij(δ)
0

⎤
⎥⎥⎥⎦ ,

where pij(δ) are polynomials in δ with nonnegative coefficients such that

lim
δ→0

pij(δ) = 0.

Since ann < 0 and A(δ)(n, n) = ann + pnn(δ), there exists δ0 such that A(δ)(n, n) < 0
for all δ < δ0. By [5, Theorem 4.2], A(δ) is a t.n. matrix for all δ < δ0 and, in
particular,

detA(δ)[α|β] < 0 ∀ α, β ∈ Qk,n, k = 1, 2, . . . , n.

In turn

detA[α|β] = lim
δ→0

detA(δ)[α|β] ≤ 0 ∀ α, β ∈ Qk,n, k = 1, 2, . . . , n,

that is, A is t.n.p.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Now, suppose that ann = 0. Then the (n, n) entry of B = A − xEnn is −x. We
have

B = A− xEnn = LDU − xEnn = L

⎡
⎢⎢⎢⎣

−d1

d2

. . .

dn − x

⎤
⎥⎥⎥⎦U.

Therefore for 0 < x < dn, by applying the previous case, B is a t.n.p. matrix.
By construction,

detA[α|β] = detB[α|β] ≤ 0 ∀ α, β ∈ Qk,n, k = 1, 2, . . . , n, n �∈ α ∩ β,

and consequently

detA[{α, n}|{β, n}] = detB[{α, n}|{β, n}] + xdetA[α|β] ≤ 0.

Thus, again, A is t.n.p.
Combining Theorems 2.1 and 2.4 we obtain the following result.
Theorem 2.5. An n × n nonsingular matrix A with a11 < 0 and ann ≤ 0 is

t.n.p. if and only if A = LDU where L (U) is a unit lower- (upper-) triangular TP
matrix with positive entries below (above) the diagonal, and D is a diagonal matrix
with all diagonal entries positive except for a negative (1, 1) entry.

Remark 2.6. By [5, Corollary 4.3], an n× n matrix A with ann < 0 is t.n. if and
only if A = LDU where L (U) is a unit lower- (upper-) �STP matrix, and D is a
diagonal matrix with all diagonal entries positive except for the negative (1, 1) entry.

3. Some properties of nonsingular t.n.p. matrices. In this section we show
some properties of nonsingular t.n.p. matrices analogous to those satisfied by nonsin-
gular TP matrices. From Theorem 2.1 we obtain the following result.

Proposition 3.1. If A is an n× n nonsingular t.n.p. matrix with a11 < 0, then
detA[1, α] < 0 for all α ⊂ {2, 3, . . . , n}.

By Proposition 3.1, the leading principal minors of a nonsingular t.n.p. matrix A
with a11 < 0 are less than zero, that is, detA[1, 2, . . . , k] < 0 for k = 1, 2, 3, . . . , n. It
is not difficult, but is tedious, to prove that this fact is also satisfied when a11 = 0
and k = 2, 3, . . . , n.

When a11 = 0 but ann < 0, we have that, PAP , where P is the permutation
matrix [n, n − 1, . . . , 2, 1], is a nonsingular t.n.p. matrix with a nonzero (1, 1) entry.
So, the matrix PAP admits an LDU factorization, and

A = PLDUP = (PLP )(PDP )(PUP ) = ÛD̂L̂.

Consequently, A admits a ÛD̂L̂ factorization where L̂ (Û) is a unit lower- (upper-)
triangular TP matrix and D̂ is a diagonal matrix with positive diagonal entries except
for a negative (n, n) entry. A triangular factorization of this type has been obtained
in [5, Theorem 4.1] for t.n. matrices, with L (U) being a �STP matrix.

Now, from Remark 2.2 we prove the following result about the entries of a non-
singular t.n.p. matrix A with a11 < 0.

Proposition 3.2. If A is an n× n nonsingular t.n.p. matrix with a11 < 0, then
aij < 0 for all i, j = 1, 2, . . . , n, with (i, j) �= (n, n).

Proof. By Remark 2.2 the entries of the first row and the first column of A are
negative.
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Now suppose aij = 0 where (i, j) �= (n, n) and (say) i ≤ j (the case i ≥ j being
analogous). Then detA[1, i|j, j + s] ≤ 0 implies ai,j+s = 0 for s = 1, 2, . . . , n − j. In
turn detA[i, t|1, j + s] = 0 implies that at,j+s = 0 for all t = i + 1, i + 2, . . . , n, s =
0, 1, 2, . . . , n− j. In particular, A[n− 1, n|n− 1, n] = 0. From the LDU factorization
A = LDU we get

A[n− 1, n|n− 1, n] = L[n− 1, n|1, 2, . . . , n] ·D · U [1, 2, . . . , n|n− 1, n] = 0,

which is impossible, since rank(L[n−1, n|1, 2, . . . , n]) = rank(U [1, 2, . . . , n|n−1, n]) =
2 and rank(D) = n.

We note that this result still holds when A is a nonsingular t.n.p. matrix with
a11 = 0.

Now, by Propositions 3.1 and 3.2, we prove an important property of nonsingular
t.n.p. matrices analogous to the one of nonsingular TP matrices [1, Corollary 3.8].

Proposition 3.3. Let A be an n×n nonsingular t.n.p. matrix with a11 < 0 and
ann < 0. Then detA[α] < 0 for all α ∈ Qk,n, k = 1, 2, . . . , n.

Proof. We proceed by induction on the cardinality of α. If |α| = 1, there is
nothing to prove by Proposition 3.2.

Assume that the result holds for |α| = k − 1, and consider α = (α1, α2, . . . , αk).
By Proposition 3.1, detA[1, α] < 0, and using Sylvester’s identity,

detA[1, α] =
detA[1, α1, α2, . . . , αk−1] detA[α1, α2, . . . , αk]

detA[α1, α2, . . . , αk−1]

− detA[1, α1, . . . , αk−1|α1, α2, . . . , αk] detA[α1, α2, . . . , αk|1, α1, . . . , αk−1]

detA[α1, α2, . . . , αk−1]
,

we conclude that detA[α] < 0, which concludes the induction.

4. A simplified characterization of nonsingular t.n.p. matrices by mi-
nors. The following result provides a simple characterization of nonsingular t.n.p.
matrices in terms of the sign of some of their minors when the (1, 1) entry is negative.

Theorem 4.1. Let A be an n × n nonsingular matrix with all entries negative
except for a nonpositive (n, n) entry. Then A is t.n.p. if and only if for each k =
1, 2, . . . , n, the following inequalities hold:

detA[α|1, 2, . . . , k] ≤ 0 for all α ∈ Qk,n,(4.1)

detA[1, 2, . . . , k|β] ≤ 0 for all β ∈ Qk,n,(4.2)

detA[1, 2, . . . , k] < 0.(4.3)

Proof. If A is t.n.p., then the inequalities (4.1) and (4.2) follow from the definition
of a t.n.p. matrix, and (4.3) is given in Proposition 3.1.

Conversely, from (4.3), let A = LDU be its LDU factorization. Then D =
diag(−d1, d2, . . . , dn) where di > 0, i = 1, 2, . . . , n. Hence, from Cauchy–Binet and
(4.1),

det(LD)[α|1, 2, . . . , k] = detL[α|1, 2, . . . , k](−d1)d2 · · · dk
= detA[α|1, 2, . . . , k] ≤ 0 for all α ∈ Qk,n, k = 1, 2, . . . , n.

Therefore, detL[α|1, 2, . . . , k] ≥ 0 and, by [1, Corollary 2.2], L is a TP matrix. More-
over, since the entries of the first column of A are negative, the entries of the first
column of L are positive. By Remark 2.2, L is a unit lower-triangular TP matrix with
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positive entries below the diagonal. Analogously, U is a unit upper-triangular TP ma-
trix with positive entries above the diagonal. Now, by Theorem 2.4, the nonsingular
matrix A is t.n.p.

Remark 4.2. By Remark 2.6 and [1, Corollary 2.6], we obtain the following
characterization for t.n. matrices in terms of their minors. An n× n matrix A is t.n.
if and only if for each k = 1, 2, . . . , n, the following inequalities hold:

detA[α|1, 2, . . . , k] < 0 for all α ∈ Qk,n with d(α) = 0,

detA[1, 2, . . . , k|β] < 0 for all β ∈ Qk,n with d(β) = 0.

The characterizations given in Theorem 4.1 and Remark 4.2 for t.n.p. and t.n.
matrices are analogous to the results for nonsingular TP and STP matrices given
in [8].
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OPTIMIZATION OF GENERALIZED MEAN-SQUARE ERROR IN
NOISY LINEAR ESTIMATION∗
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Abstract. A class of least squares problems that arises in linear Bayesian estimation is analyzed.
The data vector y is given by the model y = P(Hθ + η) + w, where H is a known matrix, while θ,
η, and w are uncorrelated random vectors. The goal is to obtain the best estimate for θ from the
measured data. Applications of this estimation problem arise in multisensor data fusion problems
and in wireless communication. The unknown matrix P is chosen to minimize the expected mean-
squared error E(‖θ − θ̂‖2) subject to a power constraint “trace (PP∗) ≤ P ,” where θ̂ is the best
affine estimate of θ. Earlier work characterized an optimal P in the case where the noise term η
vanished, while this paper analyzes the effect of η, assuming its covariance is a multiple of I. The
singular value decomposition of an optimal P is expressed in the form VΣΠU∗ where V and U are
unitary matrices related to the covariance of either θ or w, and singular vectors of H, Σ is diagonal,
and Π is a permutation matrix. The analysis is carried out in two special cases: (i) H = I and
(ii) covariance of θ is I. In case (i), Π does not depend on the power P . In case (ii), Π generally
depends on P . The optimal Π is determined in the limit as the power tends to zero or infinity; a
good approximation to an optimal Π is found for general P .

Key words. linear Bayesian estimation, mean-square error, MSE, CDMA systems, wireless
communication
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1. Introduction. Suppose that y ∈ C
m is a random vector that obeys the model

y = P(Hθ + η) + w,(1.1)

where H ∈ C
n×l is a known matrix, while θ ∈ C

l, η ∈ C
n, and w ∈ C

m are
uncorrelated random vectors with the property that η and w have zero mean. The
matrix P ∈ C

m×n is a “filter” which is applied to the noisy measurement Hθ + η,
and which is chosen to achieve an optimal estimate of the signal θ. We consider affine
estimators of the form

θ̂ = Ay + a,

where A ∈ C
l×m is a constant matrix and a ∈ C

l is a constant vector. For any
random vector v, let Cv denote the covariance defined by

Cv = E
(
(v − E(v))(v − E(v))∗

)
,

where E is expectation and * is conjugate transpose. According to [4, Thm. 12.1], the

affine estimator that minimizes the expected mean-square error E(‖θ − θ̂‖2) is given
by

θ̂ = E(θ) + (C−1
θ + H∗P∗C−1

ηwPH)−1(PH)∗C−1
ηw(y − PHE(θ)),
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where Cηw = PCηP
∗ +Cw. Moreover, the error θ− θ̂ has zero mean and covariance

C = E
(
(θ − θ̂)(θ − θ̂)∗

)
=

(
(PH)∗(Cw + PCηP

∗)−1PH + C−1
θ

)−1
.(1.2)

Since θ̂ depends on P, the estimation error E(‖θ − θ̂‖2) depends on P. The filter P
is chosen to minimize the estimation error, subject to the constraint tr (PP∗) ≤ P ,
where P is a positive scalar and “tr” denotes the trace of a matrix. The constraint
tr (PP∗) ≤ P represents a bound on the power associated with P.

Multisensor data fusion problems (see [6, 10, 15] and the references therein) fit
within the framework of the model (1.1). In these applications, θ is a random parame-
ter vector that is being measured by a collection of sensors. The sensor measurements
correspond to the observation matrix H. The term η in the model (1.1) could rep-
resent sensor noise. The output of the observer is sent to the “fusion center” which
leads to the final output y in (1.1). If the dimension of the column space of P is less
than the dimension of the row space, then there is a reduction in dimensionality of
the data. The term w might represent either noise or quantization error in the trans-
mission to the fusion center. The constraint tr (PP∗) ≤ P might also be viewed as a
constraint on the amplifier gain to prevent the amplified observations from exceeding
the dynamic range of the quantizer.

Another application which fits the model (1.1) concerns spreading sequence opti-
mization for code division multiple access (CDMA) communication systems [12, 13].
In CDMA systems, many users simultaneously share a communication channel. In
modeling the uplink (communication from the mobile units to the base station), y
is the signal received at the base station, the jth column of P is the “spreading se-
quence” assigned to the jth user, and θj is the symbol transmitted from the jth user.
H is a diagonal matrix corresponding to channel gains.

The problem of estimating the channel matrix for a multiple input, single output
(MISO) system can be expressed in the form (1.1) as observed in [2]. In this context,
there are multiple transmit antennas and a single receiver. The jth column of P is
the training signal to transmit from the jth antenna to obtain the best estimate for
the communication channel gains; the matrix H is the square root of the correlation
between the transmit antennas. The noise in the channel gains and in the transmitted
signal associated with atmospheric conditions is modeled by η and w.

The model (1.1) is related to the channel estimation problem for multiple input,
multiple output (MIMO) systems [5, 14]. That is, in [5] it is shown that when H and
Cw have a special Kronecker product form and when Cη = 0, then the covariance
of the best channel estimate is a multiple of C in (1.2). The model (1.1) is loosely
connected with joint linear transmitter-receiver design in MIMO communication [8, 9].
In MIMO communication, the precoder P precedes the channel matrix H. Hence, in
the special case H = I, the model (1.1) corresponds to a MIMO communication
channel with two noise terms.

Since E(‖θ − θ̂‖2) is the trace of C, minimizing the trace of the covariance C

is equivalent to minimizing E(‖θ − θ̂‖2). Hence, the P that minimizes the expected

mean-square error E(‖θ − θ̂‖2) is a solution of the problem

min
P

tr
(
(PH)∗(W + PNP∗)−1PH + T

)−1
(1.3)

subject to tr (PP∗) ≤ P, P ∈ C
m×n,

where W = Cw, N = Cη, and T = C−1
θ . Both Cw and Cθ are assumed positive

definite. This holds, for example, if the probability density function associated with
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θ and w is continuous. The wireless communication applications in [2] correspond
to N = 0 and T = I. The application in [5] corresponds to N = 0 and H = I. In
this paper, we again consider the cases (i) H = I or (ii) T = I; however, the noise
covariance N is no longer zero, but a multiple of I. By a rescaling of the variables
P, H, and the power P , there is no loss of generality in assuming that N = I. In
the multisensor data fusion problem studied in [6], it is pointed out that when the
sensor noise is uncorrelated with the signal θ and when the sensor noise is spatially
uncorrelated with zero mean, then by appropriate pre- and post-whitening if necessary,
there is no loss of generality in assuming that N = I and T = I. Hence, we focus on
the problem

min
P

tr
(
(PH)∗(W + PP∗)−1PH + T

)−1
(1.4)

subject to tr (PP∗) ≤ P, P ∈ C
m×n.

A unified analysis is developed for (1.4) which handles the special cases (i) or
(ii) and which exposes the similarities and differences in these two problems. In both
cases, the singular value decomposition of an optimal solution is expressed in the form
VΣΠU∗ where V and U are unitary matrices related to eigenvectors of W or T or
singular vectors of H, with a specific ordering for the columns described below. The
matrix Σ is diagonal, and Π is a permutation matrix. A fundamental difference in
these problems is that in case (i) (H = I), the permutation is independent of P , which
is the same result obtained in [5] for η = 0. For case (ii) (T = I), Π depends on
the choice of P and the singular values of H. When the noise term η vanishes and
P is large, the permutation arranges the singular values of H in increasing order, as
obtained in [2]; when noise η with covariance I is included in the model, the singular
values of H smaller than one are arranged in decreasing order, while the singular
values greater than one are arranged in increasing order (see Theorem 5.1). As a
result, depending on the size of the power P and the distribution of the singular
values of H, the noise term η can have a significant effect on the structure of the
optimal solution.

The paper is organized as follows: In section 2 we derive the singular value de-
composition VΣΠU∗ of a solution to (1.4). Section 3 gives the optimal solution,
assuming the permutation Π is known. In section 4, we evaluate Π in the special
case H = I. When H �= I, Π depends on P . Section 5 evaluates the permutation in
the limit as P tends to infinity, while section 6 analyzes the limit as P tends to zero.
Finally, section 7 explores the dependence of the permutation on P using randomly
generated test problems. For general P , we present a family of permutations which
often contains the optimal Π.

Notation. Throughout the paper, we use the following notation: UΛV∗ is the
singular value decomposition of H (see Figure 1.1) and λ is the diagonal of Λ. The di-
agonal of a rectangular matrix Λ are the entries Λii, i = 1, 2, . . . ,min{m,n}. VwΩV∗

w

and VtΘV∗
t are diagonalizations of the Hermitian matrices W and T, respectively,

while ω and θ are the diagonals of Ω and Θ. The diagonal elements are ordered as
follows:

λi ≥ λi+1, θi ≤ θi+1, and ωi ≤ ωi+1.(1.5)

M denotes the minimum of m and the rank of H. The trace of a matrix is denoted
“tr,” “*” denotes conjugate transpose, Sc denotes complement of the set S, and |S|
is the number of elements in S. A diagonal matrix D is said to be nondegenerate if
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Decomposition Dimension Description
H = UΛV∗ n× l Singular value decomposition of observer
W = VwΩV∗

w m×m Diagonalization of covariance of w
T = VtΘV∗

t l × l Diagonalization of inverse of covariance of θ
P = VwSV∗

t m× n Change of variables when H = I
P = VwSU∗ m× n Change of variables when Θ = I

Fig. 1.1. Summary of decompositions, l = n without loss of generality.

the following condition is satisfied:

dii �= djj > 0 for all i �= j.(1.6)

For any matrix A, Colk(A) denotes the submatrix formed by the first k columns, while
Prink(A) denotes the k by k leading principal submatrix. Pm is the set of bijections
of {1, 2, . . . ,m} onto itself (the set of all permutations of the integers between 1 and
m).

2. Solution structure. We begin by analyzing the structure of an optimal so-
lution to (1.4). Let us make the following change of variables:

P = VwSU∗ (if Θ = I) or P = VwSV∗
t (if H = I).(2.1)

With these substitutions, (1.4) reduces to the following problem in the cases H = I
or T = I:

min
S

tr ((SΛ)∗(Ω + SS∗)−1SΛ + Θ)−1(2.2)

subject to tr (SS∗) ≤ P, S ∈ C
m×n.

If H = I, then l = n. We now show that in general (2.2) can always be transformed
to an equivalent problem with l = n. Note though that the transformed problem may
have zero singular values in H even when the singular values of the original H are
strictly positive. If l > n, then define Λ = Coln(Λ), the submatrix formed by the
first n columns of Λ, and define

C = ((SΛ)∗(Ω + SS∗)−1SΛ + Θ1)
−1,

where Θ1 = Prinn(Θ), the leading n by n principal submatrix of Θ. Since the last
l − n columns of Λ are zero, the covariance matrix

C = ((SΛ)∗(Ω + SS∗)−1SΛ + Θ)−1

has the structure

C =

[
C 0
0 Θ2

]
,

where Θ2 is the trailing l − n by l − n submatrix of Θ. Hence,

tr (C) = tr (C) + tr (Θ−1
2 ),

and minimizing the trace of C is equivalent to minimizing the trace of C (since Θ2

does not depend on S).
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On the other hand, suppose that l < n. Let Λ0 be the matrix obtained by
appending n− l columns of zeros to the right side of Λ, let Θ be the matrix obtained
by appending n− l trailing ones on the diagonal of Θ, and define

C0 = ((SΛ0)
∗(Ω + SS∗)−1SΛ0 + Θ)−1.

The matrix C0 has the following structure:

C0 =

[
C 0
0 I

]
.

Hence, tr (C0) = tr (C) + n − l, and minimizing the trace of C is equivalent to
minimizing the trace of C0. In either case l > n or l < n, we are able to formulate
a problem with the associated Λ square and with the same solution as the original
problem. Consequently, it is assumed henceforth that l = n. We begin by formulating
the first-order optimality conditions for (2.2).

Lemma 2.1. If S is a solution of (2.2) and λ > 0, then there exists μ > 0 such
that

(I − S∗L−1S)ΛM−2ΛS∗L−1 = μS∗,(2.3)

where

L = Ω + SS∗ and M = ΛS∗L−1SΛ + Θ.(2.4)

Moreover, the matrices S∗L−1S and ΛM−2Λ commute.
Proof. If S = 0, then the results hold trivially. Suppose that S �= 0. The first-

order necessary optimality conditions are satisfied at any nonzero solution of (2.2)
since the gradient of the constraint does not vanish. Hence, if S is a solution of (2.2),
then there exists a μ ≥ 0 such that the Fréchet derivative of the Lagrangian vanishes
at S. The Lagrangian associated with the optimization problem (2.2) is

tr
(
(ΛS∗(Ω + SS∗)−1SΛ + Θ)−1 + μSS∗) ,(2.5)

where the multiplier μ ≥ 0 is a real scalar. As shown in the Appendix, when we
equate to zero the derivative of the Lagrangian, we obtain (2.3).

We now show that the multiplier μ is strictly positive. Suppose μ = 0. Since Ω
and Θ are positive definite (see section 1), the factors L and M in (2.3) are positive
definite. Since λ > 0, Λ is positive definite. If we can show that (I − S∗L−1S) is
invertible, then μ = 0 implies that S = 0, which is a contradiction. Thus μ > 0.

To show that (I − S∗L−1S) is invertible, we apply the matrix modification for-
mula [3]

(I + ZZ∗)−1 = I − Z(I + Z∗Z)−1Z∗(2.6)

with Z∗ = Ω−1/2S to obtain

I − S∗L−1S = I − S∗(Ω + SS∗)−1S

= I − S∗Ω−1/2(I + Ω−1/2SS∗Ω−1/2)−1Ω−1/2S

= I − Z(I + Z∗Z)−1Z∗ = (I + ZZ∗)−1

= (I + S∗Ω−1S)−1.
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Hence, the matrix I − S∗L−1S is positive definite and invertible. This completes the
proof that μ > 0.

We multiply (2.3) by S to obtain

μS∗S = (I − S∗L−1S)ΛM−2ΛS∗L−1S.(2.7)

Forming the conjugate transpose of (2.7) gives

μS∗S = S∗L−1SΛM−2Λ(I − S∗L−1S).(2.8)

Equating the right sides of (2.7) and (2.8) yields

(S∗L−1S)(ΛM−2Λ) = (ΛM−2Λ)(S∗L−1S).(2.9)

Hence, the matrices S∗L−1S and ΛM−2Λ commute.
We now present cases where (2.2) has a solution with at most one nonzero in each

row and column.
Lemma 2.2. Suppose S is a solution of (2.2) with the property that S∗L−1S is

block diagonal and Prink(S
∗L−1S) is diagonal for some k > 0. If Ω is nondegenerate

and Λ is positive definite, then Colk(S) = Π1ΣΠ2 where Π1 and Π2 are permutation
matrices and Σ is diagonal.

Proof. Since S is a solution of (2.2), (2.3) holds. We multiply (2.3) by L to obtain

(I − S∗L−1S)ΛM−2ΛS∗ = μS∗L = μS∗(Ω + SS∗).

Rearranging this, we have

S∗Ω = ES∗,(2.10)

where

E =
1

μ
(I − S∗L−1S)(ΛM−2Λ) − S∗S.

Since Λ, Ω, and Θ are diagonal and S∗L−1S is block diagonal, it follows that M =
ΛS∗L−1SΛ + Θ is block diagonal and Prink(M) is diagonal. By (2.7), S∗S is block
diagonal and Prink(S

∗S) is diagonal. Hence, E is block diagonal and Prink(E) is
diagonal. Let ei denote the ith diagonal element of E. For 1 ≤ i ≤ k and 1 ≤ j ≤ m,
we equate the (i, j) elements in (2.10) to obtain

(S∗)ijωj = ei(S
∗)ij or (S∗)ij(ωj − ei) = 0.

If (S∗)ij �= 0, then ωj = ei. By the nondegeneracy assumption, the ωj , 1 ≤ j ≤ m,
are all distinct. Consequently, there is at most one j for which (S∗)ij �= 0. In other
words, each of the first k columns of S has at most one nonzero. Since Prink(S

∗S) is
diagonal, no two of the leading k columns of S can have their single nonzero in the
same row. A suitable permutation of the rows and the first k columns of S yields a
diagonal matrix Σ.

We now apply Lemma 2.2 to the case Λ = I:
Lemma 2.3. If Λ = I, then there exists a solution of (2.2) of the form S =

Π1ΣΠ2 where Π1 and Π2 are permutation matrices and Σ is diagonal.
Proof. Since any Ω and Θ can be approximated arbitrarily closely by nondegener-

ate matrices, there is no loss of generality in assuming that Ω and Θ are nondegenerate
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(see [2]). There exists an optimal solution of (2.2) since the feasible set is compact
and the cost function is a continuous function of S.

By Lemma 2.1, the matrices S∗L−1S and ΛM−2Λ commute. Since Λ = I, it
follows that S∗L−1S and M−2 commute. Since commuting matrices share a common
set of eigenvectors [11, p. 249], and since the eigenvectors of M−2 and M are the
same, it follows that S∗L−1S and M commute:

(S∗L−1S)M = M(S∗L−1S).

This implies that

(S∗L−1S)(Θ + S∗L−1S) = (Θ + S∗L−1S)(S∗L−1S).

which reduces to

(S∗L−1S)Θ = Θ(S∗L−1S).

Since Θ satisfies the nondegeneracy condition, we conclude that S∗L−1S is diago-
nal. Taking k = n (the number of columns in S) in Lemma 2.2, S = Prink(S)
= Π1ΣΠ2.

The case Θ = I and Λ �= I is tougher to analyze. In an effort to simplify the
structure of a solution to (2.2), we will apply a permutation to our problem. Let Π
be a permutation matrix which we will apply to the columns of S. The permuted
matrix is Sp = SΠ. Let Λp = Π∗ΛΠ be the symmetric permutation of the rows and
columns of Λ. In essence, Λp is obtained from Λ by interchanging diagonal elements.
Similarly, Θp = Π∗ΘΠ denotes the symmetric permutation of Θ. We replace S,
Λ, and Θ by their representation in terms of the permuted quantities to obtain the
following equivalent form of (2.2) (after taking into account the fact that the trace is
invariant under a similarity transformation):

min
Sp

tr ((SpΛp)
∗(Ω + SpS

∗
p)

−1SpΛp + Θp)
−1(2.11)

subject to tr (SpS
∗
p) ≤ P, Sp ∈ C

m×n.

We begin with the following result:
Lemma 2.4. Let D be defined by

D = S∗L−1/2(I + W∗W)−2L−1/2S,(2.12)

where W = ΛS∗L−1/2 and L = Ω + SS∗. If dii = 0, then column i of S vanishes.
If Θ = I, S is a solution of (2.2), and Λ is nondegenerate, then D is diagonal.
Let Dp = Π∗DΠ be the symmetrically permuted D where Π is chosen so that the
diagonal elements of Λ2

pDp are in decreasing order. Then the matrix S∗
pL

−1Sp is
block diagonal and the size of the diagonal blocks is equal to the number of times the
associated diagonal elements of Λ2

pDp repeat.
Proof. By the definition of D, we have

dii = ‖(I + W∗W)−1L−1/2si‖2,

where si is the ith column of S. If dii = 0, then si = 0.
If Θ = I, then M in (2.4) has the form I+WW∗ with W = ΛS∗L−1/2. It follows

from the matrix modification formula (2.6) that

M−1W = (I − W(I + W∗W)−1W∗)W

= W − W(I + W∗W)−1W∗W

= W(I + W∗W)−1.
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Hence, we have

M−2W = W(I + W∗W)−2,

which implies that

ΛM−2ΛS∗L−1S = ΛM−2WL−1/2S

= ΛW(I + W∗W)−2L−1/2S

= Λ2S∗L−1/2(I + W∗W)−2L−1/2S = Λ2D,(2.13)

where D is defined in (2.12). By (2.13), Λ2D is the product of Hermitian matrices
ΛM−2Λ and S∗L−1S. The matrices ΛM−2Λ and S∗L−1S commute by Lemma 2.1.
Consequently, Λ2D is Hermitian. Since D and Λ are also Hermitian, we have

(Λ2D) = (Λ2D)∗ = DΛ2.

Since the diagonal elements of Λ are distinct, D is diagonal.
By Lemma 2.1, we can commute the factors S∗L−1S and ΛM−2Λ in (2.8). Uti-

lizing (2.13) in (2.8) gives

μS∗S = Λ2D(I − S∗L−1S).(2.14)

Inserting (2.13) in (2.7) gives

μS∗S = (I − S∗L−1S)Λ2D.(2.15)

We equate the right sides of (2.14) and (2.15) to deduce that

(I − S∗L−1S)Λ2D = Λ2D(I − S∗L−1S).

Hence, the matrix (I − S∗L−1S) and the diagonal matrix Λ2D commute, and they
share a common set of eigenvectors.

Suppose that Π is chosen so that the diagonal elements of Λ2
pDp are in decreasing

order. Hence, zero diagonal elements in Dp trail at the end of the diagonal, and the
corresponding (trailing) columns of Sp vanish, as shown at the start of the proof.
Suppose that λ2

i dii = λ2
jdjj for i and j ∈ [p, q]. The eigenvectors of Λ2

pDp correspond

to columns p through q of the identity matrix. Since Λ2
pDp and (I− S∗

pL
−1Sp) share

a common set of eigenvectors, the corresponding eigenvectors of (I − S∗
pL

−1Sp) are
linear combinations of columns p through q of the identity matrix. Hence, S∗

pL
−1Sp

is block diagonal and the size of the blocks is equal to the number of times a positive
diagonal element of Λ2

pDp repeats.
Let Λk and Ωk, k = 1, 2, . . . , be nondegenerate matrices which approach limits

Λ and Ω, respectively. Let Sk be a solution to (2.2) corresponding to (Λk,Ωk). Such
a solution exists for each k since the objective function in (2.2) is continuous when Ω
and Θ are positive definite and the feasible set is a compact set. By suitable pruning
of the sequence (Λk,Ωk) if necessary, there is no loss in generality in assuming that
the sequence Sk, k = 1, 2, . . . , converges to a limit S, which is a solution of (2.2) (by
the continuity of the objective function). We now show, under suitable hypothesis,
that the limit S is a permutation of a diagonal matrix.

Lemma 2.5. Suppose Θ = I and let S be a solution of (2.2), which is a limit of a
sequence of solutions Sk, k = 1, 2, . . . , associated with nondegenerate matrices Λk and
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Ωk. If the positive diagonal elements of Λ2D are distinct, then S can be expressed
Π1ΣΠ2 where Π1 and Π2 are permutation matrices and Σ is diagonal.

In randomly generated test problems, the “distinct diagonal” property of Lemma
2.5 was always satisfied.

Proof. Since the matrices Λk and Ωk are nondegenerate, the associated matrices
Dk (see (2.12)) are diagonal. Since the Dk converge to D, the limit D is diagonal.
Since the positive diagonal elements of Λ2D are distinct, the associated diagonal
elements of Λ2

kDk are distinct for k sufficiently large. Assume that the columns of S
and the rows of Λ are permuted so that the diagonal elements of the limit Λ2D are in
decreasing order. Let p be the number of positive diagonal elements of D. By Lemma
2.4, Prinp(S

∗
kL

−1
k Sk) is diagonal. By Lemma 2.2, Colp(Sk) = Π1kΣkΠ2k. Also, by

Lemma 2.4, columns l+1 through n of S vanish. Hence, the limit S can be expressed
as a product Π1ΣΠ2.

Due to the ordering (1.5), one of the permutations in Lemma 2.3 or Lemma 2.5
can be eliminated.

Theorem 2.6. If either Θ = I or Λ = I and (2.2) has a solution of the form
S = Π1ΣΠ2, where Σ is diagonal and the Πi are permutation matrices, then (2.2)
has a solution of the form S = ΣΠ where Σ is diagonal and Π is a permutation
matrix. Moreover, if the diagonal σ of an optimal Σ has p positive components, then
p is less than or equal to the rank of Λ and Π permutes only the first p column of Σ.
There also exists a solution of (2.2) of the form S = ΠΣ.

Proof. The substitution S = Π1ΣΠ2 in (2.2) yields the following equivalent
problem (assuming l = n):

min
σ,Π1,Π2

tr
(
(Π2ΛΠ∗

2)Σ
∗(Π∗

1ΩΠ1 + ΣΣ∗)−1Σ(Π2ΛΠ∗
2) + Π2ΘΠ∗

2

)−1
(2.16)

subject to

N∑
i=1

σ2
i ≤ P,

where N is the minimum of m and n. Here the minimization is over diagonal matrices
Σ with σ on the diagonal, and permutation matrices Π1 and Π2.

A symmetric permutation such as Π2ΛΠ∗
2 interchanges diagonal elements. Hence,

(2.16) is equivalent to

min
σ,π1,π2

N∑
i=1

ωπ1(i) + σ2
i

θπ2(i)ωπ1(i) + (θπ2(i) + λ2
π2(i)

)σ2
i

(2.17)

subject to

N∑
i=1

σ2
i ≤ P, π1 ∈ Pm, π2 ∈ Pn,

where Pm is the set of bijections of {1, 2, . . . ,m} onto itself.
Let σ denote an optimal solution of (2.17). If λπ2(i) = 0, then the associated term

in the objective function of (2.17) reduces to 1/θπ2(i), independent of σi. In this case
σi = 0 is optimal (see Theorem 3.1 and (3.2) in the next section). Hence, the number
of positive components of σ is less than or equal to the rank of Λ. Define the set

S = {i : σi > 0},

and let p = |S|. The function

ω + x

ωθ + (θ + λ2)x
, x > 0
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is monotone increasing in ω ≥ 0 and monotone decreasing in λ ≥ 0. Since the
objective function is being minimized in (2.17), it follows that ωπ1(i) is one of the p
smallest elements of ω. In the same fashion, if Θ = I and i ∈ S, then λπ2(i) is one of
the p largest elements of λ.

Finally, let us consider the case Λ = I. The cost function in (2.17) is the sum of
two expressions:

∑
i∈S

ωπ1(i) + σ2
i

θπ2(i)ωπ1(i) + (θπ2(i) + λ2
π2(i)

)σ2
i

+
∑
j∈Sc

1

θπ2(j)
.(2.18)

We now show that if i ∈ S, but θπ2(i) is not one of the p smallest elements of θ,
then the cost function is decreased by exchanging π2(i) with π2(j) where j ∈ Sc and
θπ2(j) < θπ2(i). Let β1 = θπ2(i) and β2 = θπ2(j), and define

V1 =
ω + σ2

ωβ1 + σ2(β1 + 1)
+

1

β2
and V2 =

ω + σ2

ωβ2 + σ2(β2 + 1)
+

1

β1
.

Here V1 represents the i and j terms in (2.18) after substituting λπ2(i) = 1, while
V2 reflects the corresponding terms after the exchange of π2(i) with π2(j). Since
β1 > β2, it can be shown that V1 − V2 ≥ 0 (cross multiply and cancel terms). Hence,
by exchanging π2(j) with π2(i), the cost function is decreased. In summary, if either
Θ = I or Λ = I, then for i ∈ S, λπ2(i) is one of the p largest elements in λ while
θπ2(i) and ωπ1(i) are among the p smallest elements in θ and ω, respectively. Due to
the ordering (1.5),

{π1(i) : i ∈ S} ⊂ {1, 2, . . . , p} and {π2(i) : i ∈ S} ⊂ {1, 2, . . . , p}.

Let π3 ∈ PN be chosen so that

σπ3(1) ≥ σπ3(2) ≥ . . . ≥ σπ3(N).

Since S is the set of indices of positive components of σ, we have

S = {π3(i) : i = 1, 2, . . . , p}.

Define π̂1 = π1(π3), π̂2 = π2(π3), and σ̂i = σπ3(i). The optimal cost (2.18) can be
written

p∑
i=1

ωπ̂1(i) + σ̂2
i

θπ̂2(i)ωπ̂1(i) + (θπ̂2(i) + λ2
π̂2(i)

)σ̂2
i

+
∑
i>p

1

θπ̂2(i)
.

Hence, (2.2) has a solution of the form Ŝ = Π̂1Σ̂Π̂2 where Π̂1 permutes only the first

p rows and Π̂2 permutes only the first p columns of Σ̂. Let Π1 be a permutation
matrix which is the same as Π̂1 except that it has been expanded (by an identity

matrix) or chopped (Π1 = Prinn(Π̂1)) to match the number of columns of S. Define

Σ′ = Π̂1Σ̂Π
∗
1. Σ′ is diagonal since it is a symmetric permutation of a diagonal matrix.

Consequently, we have

Ŝ = Π̂1Σ̂Π̂2 = Π̂1Σ̂Π
∗
1Π1Π̂2 = Σ′Π,

where Π = Π1Π̂2. In a similar manner, we obtain S = ΠΣ for a different choice of
Π and Σ.
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Based on Theorem 2.6, one of the permutation in (2.17) can be deleted when
Λ = I or Θ = I. We delete the permutation π2 to obtain the following problem:

min
s,π

M∑
i=1

ωπ(i) + si

θiωπ(i) + (θi + λi)si
(2.19)

subject to

M∑
i=1

si ≤ P, s ≥ 0, π ∈ PM ,

where si = σ2
i and M is the minimum of m and the rank of Λ. If s and π are solutions

of (2.19), then S = ΠΣ where σ2
i = si is a solution of (2.2). We now combine Theorem

2.6 with the change of variables (2.1).
Corollary 2.7. If H = I, then (1.4) has a solution of the form P = VwΣΠV∗

t ,
where Π is a permutation matrix and Σ is diagonal. If Θ = I and (2.2) has a
nondegenerate solution as described in Lemma 2.5, then (1.4) has a solution of the
form P = VwΣΠU∗.

Remark. As in Theorem 2.6, the factor ΣΠ in Corollary 2.7 can be replaced by
ΠΣ.

3. The optimal Σ. Assuming the permutation π in (2.19) is given, let us now
consider the problem of optimizing over σ. To simplify the indexing, the permutation
is suppressed and we consider the problem:

min
σ

M∑
i=1

ωi + si
θiωi + (θi + λ2

i )si
subject to

M∑
i=1

si ≤ P, s ≥ 0.(3.1)

The solution of (3.1) can be expressed in terms of a Lagrange multiplier for the con-
straint (this solution technique is often called “water filling” [1] in the communication
literature).

Theorem 3.1. The optimal solution of (3.1) is given by

si =
1

θi + λ2
i

max

⎧⎨
⎩
√

ωiλ2
i

μ
− θiωi, 0

⎫⎬
⎭ ,(3.2)

where the parameter μ is chosen so that

M∑
i=1

si = P.(3.3)

Proof. Since the minimization in (3.1) takes place over a closed, bounded set,
there exists a solution. Since the function (ωi + x)/(θiωi + (1 + λ2

i )x) is a decreasing
function of x ≥ 0, the objective function decreases when si increases. Hence, there
exists a solution of (3.1) with the inequality constraint active. Due to the strict
convexity of the cost function and the convexity of the constraints, (3.1) has a unique
solution.

The first-order optimality conditions (KKT conditions) for an optimal solution of
(3.1) are the following: There exists a scalar μ ≥ 0 and a vector ν ∈ R

M such that

μ− νi −
ωiλ

2
i

(θiωi + (θi + λ2
i )si)

2
= 0, νi ≥ 0, si ≥ 0, and νisi = 0,(3.4)

1 ≤ i ≤ M . Any solution of (3.4) is the unique optimal solution of (3.1).
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A solution to (3.4) is obtained as follows: Define the function

si(μ) =
1

θi + λ2
i

⎛
⎝
√

ωiλ2
i

μ
− θiωi

⎞
⎠

+

.(3.5)

Here x+ = max{x, 0}. This particular value for si is obtained by setting νi = 0 in
(3.4), solving for si, and replacing the solution by 0 when it is negative. Observe that
si(μ) is a decreasing function of μ that approaches +∞ as μ approaches 0 and that
approaches 0 as μ tends to +∞. Hence, the equation

M∑
i=1

si(μ) = P(3.6)

has a unique positive solution. Observe that si(μ) = 0 if and only if μ ≥ λ2
i /(θ

2
i ωi).

Moreover, if μ ≥ λ2
i /(ωiθ

2
i ), then

μ− ωiλ
2
i

(θiωi + (θi + λ2
i )si(μ))2

= μ− λ2
i

ωiθ2
i

≥ 0.

It follows that the KKT conditions are satisfied by the positive solution of (3.6).

4. Optimal permutation for Λ = I. Starting with this section, we will deter-
mine optimal permutations π in (2.19). When Λ = I, the optimal permutation is the
identity (due to the ordering (1.5)):

Theorem 4.1. If Λ = I, then π(i) = i, for all i is optimal in (2.19).
Proof. Recall that the components of ω and θ are in increasing order. Let p be

the number of positive components of an optimal s in (2.19). By Theorem 2.6, an
optimal permutation π permutes only the first p components of ω; moreover, si > 0
for i ≤ p and si = 0 for i > p.

Suppose that there exists a permutation π which is optimal in (2.19) and with
the property that ωπ(i) > ωπ(j) for some i < j ≤ p. Since the components of θ are
in increasing order, θi ≤ θj . We will show that by interchanging components i and
j of π, the objective function value does not increase. Consequently, after a finite
number of pairwise exchanges, and without increasing the cost, it can be arranged so
that ωπ(i) is an increasing function of i. Since 1 ≤ π(i) ≤ p for i ≤ p and since the
components of ω are in increasing order, we conclude that π(i) = i for all i is optimal
in (2.19).

Let s denote a solution of (2.19) associated with the permutation π and suppose
that ωπ(i) > ωπ(j) for some i < j ≤ p. For notational convenience, let us take i = 1,
j = 2, π(1) = 2, and π(2) = 1. Define ω′

1 = ωπ(1) = ω2 and ω′
2 = ωπ(2) = ω1. Due to

the optimality of s and π, t1 = s1 > 0 and t2 = s2 > 0 is an optimal solution of the
following 2-variable problem:

min
t

2∑
i=1

ω′
i + ti

θiω′
i + (θi + 1)ti

(4.1)

subject to

2∑
i=1

ti ≤ P̄ := s1 + s2, t ≥ 0.
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We will show that the optimal objective function value for the following unpermuted
problem is less than or equal to the objective function value for (4.1):

min
t

2∑
i=1

ωi + ti
θiωi + (θi + 1)ti

(4.2)

subject to

2∑
i=1

ti ≤ P̄ , t ≥ 0.

By assumption, the solution of (4.1) is strictly positive. We now show that this
implies the solution of (4.2) is strictly positive. By Theorem 3.1, the condition s > 0
is equivalent to

1/
√
μ > θi

√
ω′
i.(4.3)

The multiplier μ is given by

1
√
μ

=

P̄ +

2∑
j=1

θjω
′
j

(θj + 1)

2∑
j=1

ω′
j
1/2

(θj + 1)

.(4.4)

Combining (4.3) and (4.4) gives

P̄ >
θ1

√
ω′

1ω
′
2

(1 + θ2)
− θ2ω

′
1

(1 + θ2)
=

θ1
√
ω1ω2

(1 + θ2)
− θ2ω2

(1 + θ2)
and(4.5)

P̄ >
θ2

√
ω′

1ω
′
2

(1 + θ1)
− θ1ω

′
2

(1 + θ1)
=

θ2
√
ω1ω2

(1 + θ1)
− θ1ω1

(1 + θ1)
.(4.6)

Above, the first inequality corresponds to the condition s1 > 0 while the second
corresponds to s2 > 0. Similarly, the optimal t in (4.2) is positive if and only if

P̄ >
θ1
√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)
and(4.7)

P̄ >
θ2
√
ω1ω2

(1 + θ1)
− θ1ω2

(1 + θ1)
.(4.8)

Since ω1 ≤ ω2, (4.6) implies that (4.8) holds. Since θ1 ≤ θ2, we have

1

1 + θ1
≥ 1

1 + θ2
and

θ1

1 + θ1
≤ θ2

1 + θ2
.(4.9)

Combining this with (4.6) gives

P̄ >
θ2
√
ω1ω2

(1 + θ1)
− θ1ω1

(1 + θ1)
≥ θ2

√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)

≥ θ1
√
ω1ω2

(1 + θ2)
− θ2ω1

(1 + θ2)
.
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Hence, (4.7) is satisfied. Since both (4.7) and (4.8) are satisfied, it follows that the
solution to (4.2) is strictly positive.

Using the solution given by Theorem 3.1 and the multiplier (4.4), we obtain the
following expression for the optimal objective function value C ′ for (4.1) (the algebra
is omitted):

C ′ =
1

1 + θ1
+

1

1 + θ2
+

( √
ω′

1

(1 + θ1)
+

√
ω′

2

(1 + θ2)

)2

P̄ +
θ1ω

′
1

(1 + θ1)
+

θ2ω
′
2

(1 + θ2)

=
1

1 + θ1
+

1

1 + θ2
+

( √
ω2

(1 + θ1)
+

√
ω1

(1 + θ2)

)2

P̄ +
θ1ω2

(1 + θ1)
+

θ2ω1

(1 + θ2)

.(4.10)

Similarly, the optimal objective function value C for (4.2) is obtained by erasing the
primes in (4.10):

C =
1

1 + θ1
+

1

1 + θ2
+

( √
ω1

(1 + θ1)
+

√
ω2

(1 + θ2)

)2

P̄ +
θ1ω1

(1 + θ1)
+

θ2ω2

(1 + θ2)

.(4.11)

We will show that C ≤ C ′.
Recall the following majorization property [7, p. 141]: If a and b ∈ R

n, then

n∑
i=1

a[i]b[n−i+1] ≤
n∑

i=1

aibi ≤
n∑

i=1

a[i]b[i],

where a[i] denotes the ith largest component of a. We apply the inequality (4.9) and
ω1 ≤ ω2 and the majorization property to the numerators in (4.10) and (4.11) to
obtain

( √
ω1

1 + θ1
+

√
ω2

1 + θ2

)2

≤
( √

ω2

1 + θ1
+

√
ω1

1 + θ2

)2

=

( √
ω′

1

1 + θ1
+

√
ω′

2

1 + θ2

)2

.

Also, by (4.9) and the majorization property, the denominators in (4.10) and (4.11)
satisfy

(
θ1ω1

1 + θ1
+

θ2ω2

1 + θ2

)
≥

(
θ1ω2

1 + θ1
+

θ2ω1

1 + θ2

)
.

Hence, C ≤ C ′. This completes the proof.

5. Optimal permutation for Θ = I and large power. When Θ = I, the
optimal permutation depends on P . In this section, we determine the optimal per-
mutation when P is large, while the next section analyzes the case of small P . As
shown in Theorem 2.6, the solution to (2.2) can written as either ΠΣ or ΣΠ. When
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Θ = I, the analysis is simpler when we take S = ΣΠ, in which case (2.2) reduces to
(see (2.17))

min
s,π

M∑
i=1

ωi + si
ωi + (1 + λ2

π(i))si
(5.1)

subject to

M∑
i=1

si ≤ P, s ≥ 0, π ∈ PM ,

where M is the minimum of m and the rank of Λ.
Theorem 5.1. For P sufficiently large, an optimal permutation π in (5.1) is

given by

λπ(1)

1 + λ2
π(1)

≥
λπ(2)

1 + λ2
π(2)

≥ · · · ≥
λπ(M)

1 + λ2
π(M)

.(5.2)

In the noise term η vanishes, the optimal permutation arranged the singular values
in increasing order for large P . Since the function λ/(1 + λ2) is monotone increasing
for λ ∈ [0, 1] and monotone decreasing for λ > 1, it follows that when η is included
in the model and when its covariance is I, the singular values smaller than one are
in decreasing order, while the singular values larger than one are in increasing order.
Hence, when Θ = I, the solution of the problem when η is included in the model is
fundamentally different from the solution when the noise η is neglected.

Proof. Referring to Theorem 3.1, as P tends to infinity, the optimal multiplier μ
tends to zero; consequently, as P tends to infinity, all the components of the optimal
s tend to infinity. We assume that P is large enough that for any permutation of the
components of λ, the s that satisfies (3.2) and (3.3) is strictly positive.

So far, we have assumed that the components of λ are in decreasing order (1.5).
In the proof of this theorem, it is more convenient to assume that the components of
λ are arranged in the order (5.2). In other words,

λ1

1 + λ2
1

≥ λ2

1 + λ2
2

≥ · · · ≥ λM

1 + λ2
M

.

Let π by an optimal permutation in (5.1) and define λ′
i = λπ(i). Suppose for

some i < j, we have λ′
i/(1 + λ′

i
2
) < λ′

j/(1 + λ′
j
2
). We will show that by interchanging

the values of π(i) and π(j), the objective function cannot increase. Hence, after a
finite series of pairwise exchanges, we obtain (5.2) without increasing the objective
function.

As in Theorem 4.1, we assume for notational convenience that i = 1, j = 2,
π(1) = 2, and π(2) = 1. To summarize, we have

ω1 ≤ ω2, λ′
1 = λ2, λ′

2 = λ1, and
λ1

1 + λ2
1

>
λ2

1 + λ2
2

.(5.3)

If s is a solution of (5.1), then t1 = s1 and t2 = s2 is a solution to

min
σ,π

2∑
i=1

ωi + ti

ωi + (1 + λ′
i
2)ti

(5.4)

subject to

2∑
i=1

ti ≤ P̄ := s1 + s2, t ≥ 0.
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The unpermuted problem is obtained by erasing the prime:

min
σ,π

2∑
i=1

ωi + ti

ωi + (1 + λi
2)ti

(5.5)

subject to

2∑
i=1

ti ≤ P̄ , t ≥ 0.

If ω1 = ω2, then the optimal cost C ′ for the permuted problem (5.4) equals the optimal
cost C for the unpermuted problem since the objective functions are identical. Hence,
by interchanging the values of π(1) and π(2), the objective function value does not
change.

Now, let us consider the case where ω1 < ω2. We define

N ′ =
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2 and D′ =

ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2 =

ω1

1 + λ2
2 +

ω2

1 + λ1
2 .

Parameters N and D are obtained by erasing the primes in N ′ and D′. With this
notation the multiplier μ given by Theorem 3.1 for the problem (5.4) can be expressed

1
√
μ

=
P̄ + D′

N ′ .(5.6)

Moreover, the optimal objective function value C ′ for (5.4) is

C ′ =
1

1 + λ′
1
2 +

1

1 + λ′
2
2 +

N ′2

P̄ + D′ =
1

1 + λ1
2 +

1

1 + λ2
2 +

N ′2

P̄ + D′ .(5.7)

Similarly, the optimal objective function value C for the unpermuted problem is ob-
tained by erasing the primes:

C =
1

1 + λ1
2 +

1

1 + λ2
2 +

N2

P̄ + D
.

The inequality C < C ′ is equivalent to

N2(P̄ + D′) < N ′2(P̄ + D).

Rearranging this, we have

P̄ (N + N ′)(N −N ′) = P̄ (N2 −N ′2) < N ′2D −N2D′.

Since N + N ′ > 0, it follows that

N −N ′ ≤ N ′2D −N2D′

P̄ (N + N ′)
.(5.8)

By the definitions of N and N ′, we obtain

N −N ′ = (
√
ω1 −

√
ω2)

(
λ1

1 + λ2
1

− λ2

1 + λ2
2

)
< 0

since ω1 < ω2 and (5.3) holds. Since N − N ′ < 0, it follows that (5.8) holds for P
sufficiently large. Equivalently, for P sufficiently large, C < C ′. This completes the
proof.
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6. Optimal permutation for Θ = I and small power. We now evaluate the
optimal solution to (5.1) when P is small.

Theorem 6.1. Let L be the minimum of the multiplicities of γ1 and λ1 and let
ε be the positive separation parameter defined by

ε = min

{∣∣∣∣
√
ωk(λi

√
ωl − λj

√
ωk)

(1 + λ2
i )λj

∣∣∣∣ : i, j, k, l ∈ [1,M ], λi
√
ωl �= λj

√
ωk

}
.

If P < ε, then an optimal solution of (5.1) is

si = P/L, 1 ≤ i ≤ L, si = 0, i > L, π(i) = i for all i.(6.1)

Proof. Let π and s be optimal in (5.1) and define λ′
i = λπ(i). We now show that

if si > 0, sj > 0, and P < ε, then we have λ′
i
√
ωj = λ′

j

√
ωi. To simplify the notation,

we take i = 1 and j = 2, but in general, i and j are distinct integers between 1 and
M . Since s yields an optimal solution of (5.1), it follows that an optimal solution for
the following reduced problem is t1 = s1 and t2 = s2:

mint1,t2

ω1 + t1

ω1 + (1 + λ′
1
2)t1

+
ω2 + t2

ω2 + (1 + λ′
2
2)t2

subject to t1 + t2 = P̄ := s1 + s2, t ≥ 0.

(6.2)

By Theorem 3.1, the ti can be expressed:

ti =
1

1 + λ′
i
2

(
λ′
i

√
ωi

μ
− ωi

)
,(6.3)

where μ is obtained from the condition t1 + t2 = P̄ :

μ =

⎛
⎜⎜⎜⎜⎝

2∑
i=1

λ′
i

√
ωi

1 + λ′
i
2

P̄ +

2∑
i=1

ωi

1 + λ′
i
2

⎞
⎟⎟⎟⎟⎠

2

.

By (6.3), ti > 0 is equivalent to

λ′
i
2
> ωiμ = ωi

⎛
⎜⎜⎜⎜⎝

2∑
i=1

λ′
i

√
ωi

1 + λ′
i
2

P̄ +

2∑
i=1

ωi

1 + λ′
i
2

⎞
⎟⎟⎟⎟⎠

2

.

We rearrange this to obtain

λ′
i

(
P̄ +

ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

)
>

√
ωi

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)
,

which reduces to

P̄ λ′
i >

√
ωi

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)
− λ′

i

(
ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

800 WILLIAM W. HAGER AND JIANGTAO LUO

Setting i = 1 and i = 2, respectively, we get

P̄ >

√
ω2(λ

′
2

√
ω1 − λ′

1

√
ω2)

(1 + λ′
2
2)λ′

1

and

P̄ >

√
ω1(λ

′
1

√
ω2 − λ′

2

√
ω1)

(1 + λ′
1
2)λ′

2

.

Unless λ′
1

√
ω2 = λ′

2

√
ω1, the condition ε ≥ P ≥ P̄ is violated. Hence, λ′

1

√
ω2 =

λ′
2

√
ω1, and in general, λ′

i
√
ωj = λ′

j

√
ωi for each i and j with si > 0 and sj > 0.

By the ordering (1.5), we have ω1 ≤ ω2. If ω1 < ω2, then we will show that
by exchanging π(1) and π(2) in (5.1), the value of the objective function is strictly
decreased, which violates the optimality of π. In general, whenever si > 0 and sj > 0,
we have ωi = ωj . Since λ′

i
√
ωj = λ′

j

√
ωi for each i and j for which si > 0 and

sj > 0, it follows that λ′
i = λ′

j . By Theorem 2.6, if s has p positive components,
then π permutes only the p largest components of λ. Since the components of λ and
ω associated with the positive components of s are all equal, we conclude that the
positive components of s correspond to the minimum of the multiplicities of λ1 and
ω1, and π(i) = i for all i is optimal. Since the L largest components of λ and the L
smallest components of ω are all equal, it follows from Theorem 3.1 that the first L
components of s are all equal. Since the si sum to P , si = P/L for 1 ≤ i ≤ L and
si = 0 for i > L, which completes the proof.

Now, let us prove that when ω1 < ω2, the exchange of π(1) and π(2) yields a
strictly smaller value of the objective function, violating the optimality of π (hence,
ω1 = ω2). By (5.7) the optimal objective function value C ′ for (6.2) is

C ′ =

(
λ′

1

√
ω1

1 + λ′
1
2 +

λ′
2

√
ω2

1 + λ′
2
2

)2

P̄ +
ω1

1 + λ′
1
2 +

ω2

1 + λ′
2
2

+
1

1 + λ′
1
2 +

1

1 + λ′
2
2 .(6.4)

Since λ′
1

√
ω2 = λ′

2

√
ω1, (6.4) can be written

C ′ =

ω1λ
′
1
2

(
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)

)2

P̄ + ω1

(
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)

) +
1

1 + λ′
1
2 +

1

1 + λ′
2
2

=
ω1λ

′
1
2
x2

P̄ + ω1x
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2

= λ′
1
2
x− P̄ λ′

1
2
x

P̄ + ω1x
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2

= λ′
1
2
x− P̄ λ′

1
2

ω1
+

P̄ 2λ′
1
2

ω1(P̄ + ω1x)
+

1

1 + λ′
1
2 +

1

1 + λ′
2
2 ,

where

x =
1

1 + λ′
1
2 +

λ′
2
2

λ′
1
2(1 + λ′

2
2)
.
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Exploiting the identity

λ′
1
2
x +

1

1 + λ′
1
2 +

1

1 + λ′
2
2 = 2,

it follows that

C ′ = 2 − P̄ λ′
1
2

ω1
+

P̄ 2λ′
1
2

ω1(P̄ + ω1x)
.

Exchanging the values of π(1) and π(2) leads to the following permuted version
of (6.2):

mint1,t2

ω1 + t1

ω1 + (1 + λ′
2
2)t1

+
ω2 + t2

ω2 + (1 + λ′
1
2)t2

subject to t1 + t2 = P̄ , t1 ≥ 0, t2 ≥ 0.

(6.5)

The choice t1 = P̄ and t2 = 0 is feasible in (6.5). Hence, an upper bound C+ for the
optimal objective function value is

C+ = 1 +
ω1 + P̄

(ω1 + P̄ ) + P̄ λ′
2
2 = 2 − P̄ λ′

2
2

ω1 + P̄ (1 + λ′
2
2)

= 2 − P̄ λ′
2
2

ω1
+ O(P̄ 2).

Since ω1 < ω2, it follows from the condition ω1λ
′
2
2

= ω2λ
′
1
2

that λ′
1
2
< λ′

2
2
. Compar-

ing C ′ and C+, we conclude that for P sufficiently small, C+ < C ′, which contradicts
the optimality of C ′. This completes the proof.

7. Numerical experiments. Some small test problems were solved to see how
P should be chosen in order to observe Theorems 5.1 and 6.1, and to evaluate a
conjecture concerning the structure of the optimal permutation in general. In the
first experiment, we randomly generate ωi ∈ [0, 1] and λi ∈ [0, 2] in the special case
l = m = n = 10. The interval [0, 2] for λ was chosen so that λi would be generated
on each side of the maximum x = 1 for the function x/(1 + x2). These dimensions
are small enough that we can enumerate all permutations π ∈ P5 and select the best.
Table 7.1 shows how many times the solution given in Theorems 5.1 or 6.1 is correct
for 100 randomly generated problems and for various choices of P .

In another series of experiments, we evaluated the quality of the following M
permutations: For each k = 1, 2, . . . , M , let πk be the permutation defined by

πk(i) = i for i > k, πk(i) ∈ [1, k] for i ∈ [1, k],(7.1)

Table 7.1

Number of times the permutation given by Theorem 5.1 or 6.1 was exact out of 100 trials
(ωi ∈ [0, 1] and λi ∈ [0, 2], l = m = n = 10).

P Thm. 5.1 exact Thm. 6.1 exact
(out of 100) (out of 100)

104 100 0
103 97 0
102 68 0
101 15 0
100 1 0
10−1 0 0
10−2 0 44
10−3 0 98
10−4 0 100
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Table 7.2

Number of times that one of the permutations π1, π2, . . . , πM was optimal in (5.1) out of 100
trials (ωi ∈ [0, 1] and λi ∈ [0, 2], l = m = n = 10).

P Some πk exact Relative error
(out of 100) (no πk exact)

104 100 0
103 98 7.8e−08
102 74 2.6e−06
101 46 5.0e−05
100 92 3.0e−05
10−1 96 4.9e−05
10−2 100 0
10−3 100 0
10−4 100 0

and

λπk(1)

1 + λ2
πk(1)

≥
λπk(2)

1 + λ2
πk(2)

≥ . . . ≥
λπk(k)

1 + λ2
πk(k)

.(7.2)

We optimized (5.1) with the added constraint that π was one of the M permutation
πk, k = 1, 2, . . . ,M . In Table 7.2 we consider the same set of test problems used for
Table 7.1, and we evaluate the number of times that one of these M permutation
yields the exact minimizer. When none of these M permutations yields the exact
minimum, we evaluate the relative error in the cost (best approximate cost minus
exact cost divided by the exact cost). The average relative error for the best inexact
approximation in the set πk, 1 ≤ k ≤ M , is shown in the last column of Table 7.2.
Thus, one of the πk often yields the optimal solution of (5.1). When none of the πk

approximations is optimal, the best approximate cost is nearly optimal.
The motivation for considering the permutations πk is the following: By Theorem

2.6, there exists an integer p ≥ 1 (p is the number of positive components of σ in
an optimal solution) with the property that π(i) = i when π is optimal in (5.1) and
i > p. Hence, we try M different permutations of the form (7.1). When the power P
is sufficiently large, we know that the permutation (5.2) is optimal. Thus, we try the
same ordering, but applied to the k largest singular values as in (7.2).

8. Conclusions. We analyze the optimization problem (1.4) which arises in lin-
ear Bayesian estimation in the presence of noise, and which is relevant to multisensor
data fusion problems and wireless communication. Unlike our earlier work [2, 5], we
now take into account the noise term η in the model (1.1).

By letting the covariance of η tends to zero, the results given in the present paper
include the results given in [2, 5]. In particular, if we take N = αI in (1.3), then a
rescaling of P and H yields (1.4). In the rescaled problem, the singular values of H
are divided by

√
α. Hence, as α tends to zero, all the singular values in the rescaled

problem become larger than 1. Since the function x/(1 + x2) is monotone decreasing
for x > 1, we deduce that for P sufficiently large, the optimal permutation arranges
the singular values in increasing order, the same ordering derived in [2] when the noise
η was neglected.

For general P , computing the optimal permutation π in (5.1) may not be easy.
Nonetheless, we exhibit in section 7 a set of M permutations π1, π2, . . . , πM which
often contains the optimal permutation.
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In the case H = I, the analysis in this paper also yields the results in [5] by taking
N = αI and letting α tend to zero. It is interesting to note that the analysis in [5] for
the case η = 0 was much more difficult than the analysis of the case η �= 0 considered
in this paper. Hence, by including the noise term η in the model and by letting η
tend to 0, we could recover with less effort the solution given in [5].

9. Appendix. First-order optimality condition. We evaluate the derivative
of the Lagrangian (2.5) and set it to zero. Since tr (A + A∗) = 2(Real [tr (A)]) and
tr (AB) = tr (BA), it follows that the derivative of SS∗ in the direction δS is

tr (SδS∗ + δSS∗) = 2(Real [tr δSS∗]) = 2(Real [tr S∗δS]).(9.1)

For any invertible matrix M, we have

dM−1

dT
= −M−1

(
dM

dT

)
M−1.(9.2)

We equate to zero the derivative of the Lagrangian in the direction δS and utilize
(9.1) and (9.2) to obtain

Real
[
tr

(
(I − S∗L−1S)ΛM−2ΛS∗L−1 − μS∗) δS

]
= 0,

where L and M are defined in (2.4). Inserting

δS =
(
(I − S∗L−1S)ΛM−2ΛS∗L−1 − μS∗)∗

gives

(I − S∗L−1S)ΛM−2ΛS∗L−1 = μS∗.
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THE EFFECT OF AGGRESSIVE EARLY DEFLATION ON THE
CONVERGENCE OF THE QR ALGORITHM∗

DANIEL KRESSNER†

Abstract. Aggressive early deflation has proven to significantly enhance the convergence of the
QR algorithm for computing the eigenvalues of a nonsymmetric matrix. One purpose of this paper
is to point out that this deflation strategy is equivalent to extracting converged Ritz vectors from
certain Krylov subspaces. As a special case, the single-shift QR algorithm enhanced with aggressive
early deflation corresponds to a Krylov subspace method whose starting vector undergoes a Rayleigh-
quotient iteration. It is shown how these observations can be used to derive improved convergence
bounds for the QR algorithm.

Key words. QR algorithm, deflation, Krylov subspace, convergence
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1. Introduction. Let A be a complex n × n matrix. The aim of the QR al-
gorithm is to compute a Schur decomposition S = QHAQ, where Q ∈ C

n×n is
unitary and S ∈ C

n×n is upper triangular. The QR algorithm, as introduced by
Francis [13, 14] and Kublanovskaya [20], is an iterative process that generates a se-
quence of unitarily similar matrices A0 ← A,A1, A2, . . . . Before each iteration, m
so-called shifts σ1, . . . , σm ∈ C are skillfully chosen, defining the shift polynomial
pi(λ) = (λ − σ1) · · · (λ − σm). The QR decomposition of pi(Ai−1) determines the
unitary similarity transformation that yields the next iterate:

(1)
pi(Ai−1) = QiRi, (QR decomposition),

Ai ← QH
iAi−1Qi.

Any practically viable implementation of (1) contains at least two further ingredients:
initial reduction to condensed form and deflation.

In the following, we assume that A is already in upper Hessenberg form [15].
It is well known that this condensed form is preserved during the iteration (1) and
helps greatly to reduce its computational cost. To be more precise, the implicit Q
theorem [15] implies that if the Hessenberg matrix Ai−1 is unreduced (all subdiagonal
entries are different from zero), then (1) is equivalent to reducing V HAi−1V back to
Hessenberg form, where V is a unitary matrix that maps the first column of pi(Ai−1)
to a scalar multiple of the first unit vector e1. Such an implicit shifted QR iteration
requires only O(mn2) flops (floating point operations), compared to O(mn3) flops
needed by a literal implementation of (1).

As the QR algorithm proceeds, one or more subdiagonal entries of Ai are expected
to approach zero. For example, if σ1, . . . , σm are chosen to be the eigenvalues of the
trailing m×m principal submatrix of the current iterate, then—under some mild extra
assumptions—the (n−m+1, n−m) subdiagonal entry of Ai converges quadratically
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to zero [31]. The classical deflation criterion is to consider a subdiagonal element

a
(i)
l,l+1 negligible if it satisfies

(2)
∣∣a(i)

l,l+1

∣∣ ≤ u
(∣∣a(i)

l,l

∣∣ +
∣∣a(i)

l+1,l+1

∣∣),
where a

(i)
kl denotes the (k, l) entry of Ai and u the unit roundoff. A negligible subdi-

agonal entry is set to zero, effectively bringing Ai to block upper triangular form:

Ai =

[
A

(i)
11 A

(i)
12

0 A
(i)
22

]
, A

(i)
11 ∈ C

l×l, A
(i)
22 ∈ C

(n−l)×(n−l).

This allows one to apply all subsequent QR iterations to the diagonal blocks A
(i)
11 and

A
(i)
22 separately and therefore deflate the problem of computing the Schur decomposi-

tion of an n× n matrix into two smaller problems. The QR algorithm is said to have
converged when all deflated diagonal blocks are 1 × 1.

The state-of-the-art LAPACK implementation of the QR algorithm attains high
performance by making use of level 3 BLAS operations [6, 21] and employing addi-
tional deflation criteria going far beyond the classical criterion (2). Specifically, the
aggressive early deflation strategy developed by Braman, Byers, and Mathias [7] of-
ten detects converged eigenvalues much earlier than (2) and therefore significantly
decreases the overall number of QR iterations needed until convergence. In this pa-
per, we approach this deflation technique from a rather different direction, based on
Krylov subspace relations implicitly maintained during the QR algorithm. It turns
out that aggressive early deflation amounts to finding and extracting converged Ritz
pairs from a Krylov subspace Kw(AH, un), where un denotes the last column of the
accumulated unitary transformation matrix. This not only complements the analyses
in [7, 33], partially explaining the remarkable success of aggressive early deflation,
but also allows for improved convergence bounds. In particular, we can combine the
classical convergence theory of the QR algorithm [31] with the convergence of Krylov
subspaces to an invariant subspace [4, 5, 25]. The obtained convergence bounds clearly
exhibit the benefits of aggressive early deflation.

The rest of this paper is organized as follows. In section 2, we explore different
Krylov subspaces associated with the QR algorithm. The Krylov–Schur algorithm, a
reliable means to extract and lock converged Ritz pairs from these Krylov subspaces, is
recalled in section 3. Reinterpreting this algorithm in terms of unitary transformations
on the QR iterate Ai in section 4 reveals its equivalence to aggressive early deflation.
Finally, in section 5 we use this relationship to derive convergence bounds for the QR
algorithm with aggressive early deflation. In the following, ‖ · ‖ denotes the 2-norm
of a vector or matrix while ‖ · ‖F denotes the Frobenius norm of a matrix.

2. Krylov subspace relations. The QR algorithm can be viewed as a nested
subspace iteration [3, 8, 24, 29, 32]. Well suited for theoretical purposes, this ap-
proach forms the basis of the elegant convergence theory developed by Watkins and
Elsner [31]. Starting with a linear subspace S0 ⊆ C

n, it can be shown that the QR
iteration (1) effects a subspace iteration of the form

(3) Si = pi(A)Si−1, i = 1, 2, . . . .

If we let p̂i = pipi−1 · · · p1 denote the product of the shift polynomials, then

(4) Si = p̂i(A)S0, i = 1, 2, . . . .
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Setting A0 ≡ A, we can define

S0 = span{e1, e2, . . . , ek},

where k satisfies 1 ≤ k ≤ n and ej denotes the jth unit vector of appropriate length.
It is important to note that (3) and (4) hold for all k simultaneously (giving rise to a
nested subspace iteration).

To avoid technical difficulties, we assume for the rest of this section that each pi(A)
is nonsingular (a singular pi(A) results in sudden convergence), which is equivalent
to requiring that none of the zeros of pi coincides with an eigenvalue of A. Then the
concrete relation of (3) to the QR iteration (1) is revealed by

(5) Si = span{Q̂ie1, Q̂ie2, . . . , Q̂iek}

for i ≥ 0 with Q̂i = Q1 · · ·Qi. Here, Q1, . . . , Qi are the unitary matrices computed
during the QR iteration while Q̂0 is defined to be the identity In. A simple way to
show (5) is to note that (1) implies a QR decomposition

(6) p̂i(A) = Q̂i(RiRi−1 · · ·R1)

with nonsingular, upper triangular RiRi−1 · · ·R1.
That the implicit shifted QR algorithm operates on Hessenberg matrices links it

intimately to Krylov subspace methods; see, e.g., [30] for a recent discussion. Addi-
tionally, assuming that A is in unreduced Hessenberg form, it is well known that

(7) Si = Kk(A, u1) = span{u1, Au1, . . . , A
k−1u1},

where u1 denotes the first column of Q̂i. In fact, if we let uj denote the jth column

of Q̂i and partition

(8) Ai = Q̂H

iAQ̂i =

⎡
⎢⎣

k 1 n−k−1

k H11 H12 H13

1 H21 H22 H23

n−k−1 0 H32 H33

⎤
⎥⎦,

then trivially

(9) A[u1, u2, . . . , uk] = [u1, u2, . . . , uk]H11 + uk+1H21.

Under the given assumptions, Ai is in unreduced Hessenberg form and hence the
relation (9) happens to be an unreduced Arnoldi decomposition, which implies (7) by
[26, Theorem 5.1.1].

Although occasionally mentioned in the literature [10, 29], it is less well known
that S⊥

i , the orthogonal complement of Si, is also a Krylov subspace. To show this, we
employ the “flip transpose” of a matrix. Given an l×m matrix B, let BF = FmBHFl,
where Fj denotes the j × j flip matrix, having ones on the antidiagonal and zeros
everywhere else. It can be directly seen that a square matrix BF is in upper Hessenberg
(triangular) form if and only if B is in upper Hessenberg (triangular) form. Setting
w = n− k − 1, the partitioning (8) immediately implies

AH[un−w+1, . . . , un−1, un] = [un−w+1, . . . , un−1, un]HH

33 + un−wH
H

32
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and, after applying the flip matrix F ≡ Fw,

(10) AH[un, un−1, . . . , un−w+1] = [un, un−1, . . . , un−w+1]H
F

33 + un−wH
H

32F.

Again, (10) is an unreduced Arnoldi decomposition, and therefore

span{un, un−1, . . . , un−w+1} = Kw(AH, un)

holds for every w = 1, . . . , n. Adjusting w to w = n − k, this proves that S⊥
i indeed

coincides with the Krylov subspace Kn−k(A
H, un). Since p̂i(A) is invertible, (6) shows

that un is parallel to (p̂i(A)−1)Hen =: p̂i(A)−Hen. Therefore, using the fact that A
and p̂i(A)−1 commute,

Kw(AH, un) = Kw(AH, p̂i(A)−Hen) = p̂i(A)−H Kw(AH, en).

3. Extracting Ritz pairs from Krylov subspaces. Given an Arnoldi decom-
position of the form (10), a conventional way to extract approximations to eigenvec-
tors from the corresponding Krylov subspace is to compute Ritz pairs and check their
residuals. A Ritz value λ from the subspace Kw(AH, un) is defined as an eigenvalue
of the w ×w matrix HF

33. The corresponding Ritz vector is given by x = Uwz, where
z is an eigenvector of HF

33 belonging to λ and Uw = [un−w+1, . . . , un−1, un]. Taken
together, (λ, x) form a so-called Ritz pair.

With the normalization ‖x‖ = ‖z‖ = 1, a Ritz pair is usually regarded as con-
verged toward an eigenpair of AH if the norm of the residual r = AHx−λx is sufficiently
small. A practical criterion for deciding upon smallness can be found in the ARPACK
manual [23, section 4.6]:

(11) ‖r‖ ≤ max{u‖HF

33‖F , tol × |λ|},

where u denotes the unit roundoff and tol is a tolerance chosen by the user. Note
that (10) implies r = (HH

32Fz)un−w and hence ‖r‖ = |HH
32Fz|. For tol = 0, the

criterion (11) yields normwise backward stability: (λ, x) is the exact eigenpair of the
perturbed matrix AH + (	A)H, where

(12) 	A = −xrH = −(zHFH32)(Uwz)u
H

n−w

satisfies ‖	A‖F = ‖r‖ ≤ u‖HF
33‖F ≤ u‖A‖F .

3.1. Locking converged Ritz values. Stewart’s Krylov–Schur algorithm [27]
provides a numerically reliable means to detect, extract, and lock converged Ritz pairs.
For some Ritz value λ, an ordered Schur decomposition [15] of HF

33 is computed such
that λ appears in the top left corner of the triangular factor:

(13) V HHF

33V =

[
λ T12

0 T22

]
,

where V ∈ C
w×w is unitary and T22 ∈ C

(w−1)×(w−1). A corresponding Ritz vector is
given by x = Uwz with z = V e1. If (11) is satisfied, we partition UwV = [x, Ûw−1]
and

(14) HH

32FV = [s̄1, s
H

2],
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where s1 = zHFH32. Together with (10), this implies

(15) AH[x, Ûw−1] = [x, Ûw−1]

[
λ T12

0 T22

]
+ un−w[s̄1, s

H

2].

If (11) is not satisfied, we can test any other Ritz pair by reordering the eigenvalues
in the Schur form (13).

Continuing the described process for the Ritz values contained in T22 eventually
leads to a decomposition of the form

(16) AH[X, Ûw−d] = [X, Ûw−d]

[
T̂11 T̂12

0 T̂22

]
+ un−w[ŝH

1, ŝ
H

2],

where the upper triangular matrix T̂11 contains all d converged Ritz values on its
diagonal and

(17) ‖ŝ1‖ ≤
√
dmax{u, tol}‖HF

33‖F .

The matrices Uw and [X, Ûw−d] span the same space, i.e., there is a unitary matrix

V̂ such that [X, Ûw−d] = UwV̂ .

3.2. Restoring the Arnoldi decomposition. Note that (16) is not a standard
Arnoldi decomposition, which would require [ŝH

1, ŝ
H
2] to be a multiple of eH

w. The vector
ŝH
1 is negligible but ŝH

2 is not. Therefore, the last (optional) step of the Krylov–Schur
algorithm consists of transforming ŝH

2 back to a multiple of eH

w−d while maintaining[
T̂11 T̂12

0 T̂22

]
in upper Hessenberg form.

To achieve this goal, first a unitary matrix V1 is computed such that V H
1 ŝ2 =

βew−d with |β| = ‖ŝ2‖. By a row-oriented version of the usual Hessenberg reduction
algorithm [26, p. 312], a unitary matrix V2 = Ṽ2 ⊕ 1 can be computed such that

T̃22 = V H
2 (V H

1 T̂22V1)V2 is again in Hessenberg form. Setting T̃12 = T̂12V1V2 and

Ũw−d = Ûw−dV1V2 finally yields

(18) AH[X, Ũw−d] = [X, Ũw−d]

[
T̂11 T̃12

0 T̃22

]
+ un−w[ŝH

1, β̄e
H

w−d],

which becomes an Arnoldi decomposition after setting ŝ1 to zero.

4. Aggressive early deflation. In this section, we reinterpret the extraction of
Ritz pairs from the Arnoldi decomposition (10) in terms of transformations operating
on the n×n Hessenberg matrix Ai. Let us recall the partitioning (8) with w = n−k−1:

Ai = Q̂H

iAQ̂i =

⎡
⎢⎣

n−w−1 1 w

w H11 H12 H13

1 H21 H22 H23

n−w−1 0 H32 H33

⎤
⎥⎦.

In the context of the QR algorithm, we refer to w as the deflation window size and
assume w � n to make sure that the cost of the extraction process remains modest
in comparison to the cost of a QR iteration.
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4.1. Locking converged Ritz values. Note that all variables used in this sec-
tion refer precisely to the same quantities introduced in section 3. A Ritz value λ has
been defined to be an eigenvalue of HF

33, and z denotes a corresponding normalized
eigenvector. It directly follows that λ̄ is an eigenvalue of H33 having Fwz as a corre-
sponding left eigenvector. Setting VF = FwV Fw, the ordered Schur decomposition (13)
implies

(19) V H

F H33VF = Fw (V HHF

33V )
H
Fw = Fw

[
λ̄ 0

T H
12 T H

22

]
Fw =

[
T F

22 Fw−1T
H
12

0 λ̄

]
,

which is an ordered Schur decomposition for H33. Moreover, it follows from (14) that

V H

F H32 = FwV
H(FwH32) = Fw

[
s1

s2

]
=

[
Fw−1s2

s1

]
.

These two relations yield

(I ⊕ VF)
HAi(I ⊕ VF) =

⎡
⎢⎢⎢⎣

H11 H12 Ȟ13 Ȟ14

H21 H22 Ȟ23 Ȟ24

0 Fw−1s2 T F
22 T F

12

0 s1 0 λ̄

⎤
⎥⎥⎥⎦ ,

where we define
[
Ȟ13 Ȟ14

Ȟ23 Ȟ24

]
:=

[
H13

H23

]
VF. Note that the vector

[
Fw−1s2

s1

]
is called the

spike in [7] .
Let us recall that the residual r of the Ritz value λ satisfies r = (HH

32Fz)un−w =
s̄1un−w, and hence ‖r‖ = |s1|. Thus if (11) is satisfied for tol = 0, the trailing spike
element can be safely set to zero and λ̄ can be regarded as a computed eigenvalue of
A without spoiling the numerical backward stability of the QR algorithm. If |s1| >
u‖H33‖F , we can test any other eigenvalue of H33 by considering a differently ordered
Schur decomposition. This is equivalent to the search for converged Ritz values, since
the ordered Schur decompositions of H33 and HF

33 are connected to each other in the
one-to-one relationship (19).

Extracting and locking further converged Ritz values of HF
33, as described in

section 3, eventually yields a unitary matrix V̂F ∈ C
w×w such that

(20) Âi = (I ⊕ V̂F)
HAi(I ⊕ V̂F) =

⎡
⎢⎢⎢⎢⎣

H11 H12 Ĥ13 Ĥ14

H21 H22 Ĥ23 Ĥ24

0 Fw−dŝ2 T̂ F
22 T̂ F

12

0 Fdŝ1 0 T̂ F
11

⎤
⎥⎥⎥⎥⎦ ,

where the diagonal of the upper triangular matrix T̂ F
11 contains the complex conjugates

of all converged Ritz values. The d trailing spike elements in Fdŝ1 are all negligible,
since (17) amounts to ‖Fdŝ1‖ ≤

√
du‖H33‖F ≤

√
du‖A‖F for tol = 0.

4.2. Restoring the Hessenberg form. To continue the QR algorithm, the
matrix Âi in (20) needs to be restored to Hessenberg form. This is exactly what
is achieved by the unitary transformations defined in section 3.2. Setting V1,F =
Fw−dV1Fw−d and V2,F = Fw−dV2Fw−d yields

V H

1,F(Fw−dŝ2) = βe1, V H

2,F(V
H

1,FT̂
F

22V1,F)V2,F = T̃ F

22,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

THE EFFECT OF AGGRESSIVE EARLY DEFLATION 811

where T̃ F
22 is in upper Hessenberg form. Hence,

Ãi = (I ⊕ V1,FV2,F ⊕ Id)
HÂi(I ⊕ V1,FV2,F ⊕ Id) =

⎡
⎢⎢⎢⎢⎣

H11 H12 H̃13 Ĥ14

H21 H22 H̃23 Ĥ24

0 βe1 T̃ F
22 T̃ F

12

0 Fdŝ1 0 T̂ F
11

⎤
⎥⎥⎥⎥⎦

with
[ H̃13

H̃23

]
=

[ H̃13

H̃23

]
V1,FV2,F. Setting ŝ1 to zero returns Ãi to Hessenberg form, and the

QR algorithm can be continued on the leading (n− d) × (n− d) principal submatrix

of Ãi.

4.3. Comparison to classical deflation. The reader is invited to check that
the presented deflation algorithm obtained via the extraction of Ritz pairs from the
Krylov subspace Kw(AH, un) is precisely the same as the aggressive early deflation
algorithm originally described in [7]. Let us contemplate what the different deflation
criteria for the QR algorithm mean in terms of Krylov subspaces.

The classical deflation criterion (2) tests the smallness of |a(i)
l,l+1| for each l =

1, . . . , n−1. From the Arnoldi decomposition (10) it is immediately clear that |a(i)
l,l+1|

is the minimal norm of a backward error matrix 	A such that Kn−l(A
H, un) becomes

an invariant subspace of (A + 	A)H. In other words, classical deflation considers the
nested sequence of Krylov subspaces

K1(A
H, un), K2(A

H, un), . . . ,Kn−1(A
H, un)

and checks whether any of them is a good approximation to an invariant subspace of
AH as a whole. If the shifts in the QR algorithm are chosen as the eigenvalues of the
m×m trailing submatrix, a choice sometimes called Francis shifts, then deflation is
most likely to happen for Kn−l(A

H, un) with n − l ≤ m, as the convergence theory
[31] states that Km(AH, un) converges locally quadratically to an invariant subspace
of AH. Roughly speaking (neglecting the effects of ill-conditioning), the approxima-
tion quality of Kn−l(A

H, un) as a whole is determined by the poorest Ritz vector
approximation that can be extracted from Kn−l(A

H, un). Hence, slowly converging
Ritz vectors hinder the deflation of other, quickly converging Ritz vectors. Aggres-
sive early deflation is fundamentally different and avoids this effect. Only one Krylov
subspace Kw(AH, un) for some fixed value of w is considered. Moreover, not the con-
vergence of Kw(AH, un) as a whole but the convergence of each individual Ritz vector
to an eigenvector of AH is checked. Provided that A has distinct eigenvalues, all Ritz
vectors from the Krylov subspace Km(AH, un) converge locally quadratically, but some
may converge at a significantly faster rate and can be deflated much earlier. This is
demonstrated by the following example.

Example 1. We applied the QR algorithm with m = 4 Francis shifts to a 250×250
random matrix generated by the following MATLAB commands:

randn(‘state’,0); A = hess(randn(250)+1i*randn(250)).

Table 1 compares classical with aggressive early deflation and clearly exhibits the
advantages of the latter. For example, consider the Krylov subspace K4(A

H, un) after
i = 3 QR iterations. The norms of the residuals for the four corresponding Ritz
pairs are 3.8 × 10−2, 1.3 × 10−3, 6.0 × 10−4, and 1.2 × 10−6. The magnitude of the

corresponding subdiagonal element, |a(3)
n−4,n−3| = 4.6 × 10−2, is nearly the maximum
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Table 1

Magnitudes of trailing subdiagonal elements (left set of columns) and minimal residuals for the
Ritz pairs extracted from Kw(AH, un) (right set of columns) after i QR iterations with 4 Francis
shifts applied to the matrix from Example 1.

Classical deflation: |a(i)
l+1,l|, l = Aggressive early deflation: min ‖r‖, w =

n− 4 n− 3 n− 2 n− 1 2 4 6 8

i = 0 2.3×10+0 1.7×10+0 1.9×10+0 2.1×10+0 1.3×10+0 2.2×10−1 9.1×10−2 7.3×10−2

i = 1 9.1×10−1 1.2×10+0 1.8×10+0 2.7×10+0 1.2×10+0 6.0×10−2 1.5×10−2 6.4×10−3

i = 2 4.9×10−1 5.8×10−1 1.3×10+0 6.0×10−1 2.1×10−1 2.0×10−3 8.6×10−5 5.0×10−5

i = 3 4.6×10−2 9.2×10−2 1.7×10+0 1.8×10−2 8.5×10−3 1.2×10−6 9.6×10−9 7.7×10−9

of these numbers, demonstrating that the convergence of K4(A
H, un) as a whole is

determined by the poorest Ritz pair approximation.
In Table 1, aggressive early deflation already shows dramatic improvements for

w = m, i.e., when the size of the deflation window coincides with the number of
Francis shifts. Choosing w > m enlarges the Krylov subspace and adds a Krylov
subspace acceleration to the quadratically converging Ritz vectors. This is explored
in more detail in the next section.

Remark 2. If each QR iteration is based on a single shift that is defined to be the
(n, n) entry of the current iterate, then it is well known that un undergoes a Rayleigh-

quotient iteration; see, e.g., [26, section 2.1]. To be more specific, let u
(i−1)
n denote

the last column of the accumulated unitary transformation matrix Ui−1 satisfying
Ai−1 = UH

i−1AUi−1. Then

u(i)
n =

(
AH − σ

(i)
1

)−1
u

(i−1)
n∥∥(AH − σ

(i)
1

)−1
u

(i−1)
n

∥∥ ,

provided that σ
(i)
1 = u

(i−1)H

n Au
(i−1)
n is not an eigenvalue of AH. Using aggressive early

deflation, we deflate converged Ritz pairs from the Krylov subspace Kw(AH, u
(i)
n ). This

shows that the single-shifted QR iteration equipped with such a deflation strategy is,
in fact, a Krylov subspace method where the starting vector undergoes a quadratically
convergent iteration.

There are situations for which the classical criterion detects deflations that go
undetected if only aggressive early deflation is used. Probably the most practically
relevant situation is that linear convergence phenomena occur if the shifts vary slightly
in the course of several QR iterations. The typical consequence is that one or more of
the leading subdiagonal elements of Ai approach zero. As w � n, the Krylov subspace
Kw(AH, un) will not benefit from this effect. As a remedy, one could additionally
use a variant of aggressive early deflation that considers Ritz pairs from Kw(A, u1).
However, numerical experiments reported in [18] reveal that these linear convergence
phenomena seem to be too rare to justify the extra computational effort.

A quite different situation is pointed out in [7, section 2.5] and it is interesting to
see this example in the light of Krylov subspaces. Let

(21) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 3 4 5 6

1 2 0 0 1

0 1 2 0 0

0 0 ε 2 0

0 0 0 1 2

⎤
⎥⎥⎥⎥⎥⎥⎦
,
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where 0 < ε � 1. The norm of the residual for every Ritz pair from K4(A
H, e5) is

approximately given by
√
ε, even though a perturbation of norm ε within the deflation

window deflates two eigenvalues. Caused by the high nonnormality of A(2 : 5, 2 : 5),
standard Ritz pair extraction fails to detect the converged left eigenvector contained
in K4(A

H, e5). Refined Ritz pairs [16, 17] aim to avoid this effect. For each Ritz value
λ, the refined Ritz vector is chosen to minimize the norm of the corresponding resid-
ual. Unfortunately, for our example each refined Ritz pair has residual norm of about√
ε/2. In [19], a computational procedure based on the distance to uncontrollability

was described that optimizes both the refined Ritz vector and the value. For our ex-
ample, applying this costly procedure leads to a refined Ritz pair whose residual norm
nearly attains ε. So, in principle, refined Ritz pairs can be used to improve aggressive
early deflation even further. However, preliminary numerical experiments with sev-
eral matrices from the matrix market collection [2] indicate that a situation like (21)
occurs rarely in practice, at least too seldom to justify the extra computational effort
needed for extracting refined Ritz pairs.

5. Convergence bounds. To discuss the impact of aggressive early deflation
on the convergence of the QR algorithm, let us return to the notation of section 2.
Watkins and Elsner [31, Theorem 6.3] have shown that Si = Kn−m(A, u1) converges
locally quadratically to an (n−m)-dimensional invariant subspace X of A, provided
that A has distinct eigenvalues and that in each iteration m Francis shifts σ1, . . . , σm

are chosen. To formalize this statement, let us employ the (containment) gap between
two subspaces S and T (not necessarily of the same dimension) defined as

d(S, T ) := sup
s∈S

‖s‖=1

inf
t∈T

‖s− t‖.

For convenience, we write d(y, T ) if S is spanned by a single vector y. With this
notation, the convergence statement reads as follows:

If d(Si,X ) → 0 converges to zero as i → ∞, then this convergence is quadratic.

At the time of this writing, the task of finding conditions for global convergence, which
seems to hold almost always in practice, remains open and is not the subject of this
paper.

Relevant properties of the gap d(·, ·) are summarized, e.g., in [4, 31]. We have
d(S, T ) = 0 if and only if S ⊆ T . If ΠS and ΠT denote orthogonal projections
onto S and T , respectively, then d(S, T ) = ‖(I − ΠT )ΠS‖. This readily implies
d(T ⊥,S⊥) = d(S, T ). The last property allows us to replace d(Si,X ) by

d(Y,S⊥
i ) = d

(
Y,Km(AH, un)

)
= d

(
Y, p̂i(A)−HK(AH, en)

)
,

with Y = X⊥, in the convergence discussion of the QR algorithm. Note that Y is an
invariant subspace of AH, or, equivalently, a left invariant subspace of A.

5.1. Convergence of eigenvectors. As discussed in section 4.3, aggressive
early deflation has two advantages: (1) approximation by Ritz vectors instead of
the whole Krylov subspace, and (2) additional Krylov subspace acceleration. The
convergence theory by Watkins and Elsner must be modified in order to accommodate
both advantages; the following theorem addresses the first one.

Theorem 3. Let A ∈ C
n×n have a block Schur decomposition

QHAQ =

[
A11 A12

0 A22

]
, A11 ∈ C

(n−m)×(n−m), A22 ∈ C
m×m,
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for some unitary matrix Q ∈ C
n×n, such that λ(A11) ∩ λ(A22) = ∅. Choose a left

eigenvector y belonging to a simple eigenvalue λ2 ∈ λ(A22). Moreover, let Y denote
the left invariant subspace of A belonging to λ(A22).

Consider a function f that is analytic and nonzero on the spectrum of A. Then

(22) d
(
y, f(A)−HV

)
≤ CT

1 − CT d(Y,V)
‖f(A11)

−1‖ |f(λ2)| d(y,V)

holds for any m-dimensional subspace V satisfying CT d(Y,V) < 1, where

CT =
(
‖PA11

‖ +
√

1 + ‖PA11‖2
)(

‖Pλ2‖ +
√

1 + ‖Pλ2‖2
)
.

Here, PA11 ∈ C
n×n denotes the spectral projector for A associated with λ(A11), and

Pλ2 ∈ C
m×m denotes the spectral projector for A22 associated with λ2.

Proof. In the following, κ(·) denotes the 2-norm condition number of a matrix.
By [11], there are invertible lower block triangular matrices T1, T2 with

κ(T1) = ‖PA11‖ +
√

1 + ‖PA11‖2, κ(T2) = ‖Pλ2‖ +
√

1 + ‖Pλ2‖2,

such that

T−1
1

[
A11 A12

0 A22

]
T1 =

[
A11 0

0 A22

]
, T−1

2 A22T2 =

[
Ã22 0

0 λ2

]
.

The matrix T := QT1(I ⊕ T2) satisfies κ(T ) ≤ κ(T1)κ(T2) = CT and block diagonal-
izes A:

(23) D := T−1AT = A11 ⊕ Ã22 ⊕ λ2.

In the following, we first derive a bound for the accordingly transformed subspaces
Ṽ = T HV and f(D)−HṼ, which will then be turned into a bound for the original
subspaces.

Since ỹ := T Hy is a left eigenvector of the block diagonal matrix D = T−1AT
belonging to the simple eigenvalue λ2, we must have ỹ = βen for some β ∈ C. To sim-
plify the description, we assume without loss of generality that ỹ = en. Analogously,
we have

(24) Ỹ := T HY = span

[
0

Im

]
.

By [31, Lemma 4.1], the condition CT d(Y,V) < 1 implies d(Ỹ, Ṽ) < 1, Hence, no

vector in Ṽ is perpendicular to Ỹ. Taking (24) into account, this means that no

nonzero vector contained in Ṽ can have m trailing zero entries. Therefore we can
choose a basis of the form V =

[
F
Im

]
for Ṽ. The norm of F determines the distance

between Ṽ and Ỹ. Specifically, we have

(25) ‖F‖ = d(Ỹ, Ṽ)/

√
1 − d(Ỹ, Ṽ)2;

see, e.g., [28].
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To obtain a bound on d
(
en, f(D)−HṼ

)
, we select the particularly convenient vector

(26) v1 = V em =

[
Fem

em

]
∈ Ṽ.

We have

f(D)−Hv1 =

[
f(A11)

−HFem

1/f(λ2)em

]
,

which implies

(27) d
(
en, f(D)−Hv1

)
≤ ‖f(A11)

−HFem‖|f(λ2)| ≤ ‖f(A11)
−1‖|f(λ2)| ‖en − v1‖.

Note that v1 is in general not the vector in Ṽ that is closest to en, so we cannot
simply replace ‖en− v1‖ by d

(
en, Ṽ

)
in (27). In fact, the closest vector is the solution

of the minimization problem d(en, Ṽ) = infv∈Ṽ ‖en − v‖ and takes the form v0 =

V (V HV )−1V Hen = V (V HV )−1em. Lemma 8 from the appendix reveals the relationship

(28) ‖en − v1‖ ≤
√

1 + ‖F‖2√
1 + ‖F‖2 − ‖F‖

‖en − v0‖ =
‖en − v0‖

1 − d(Ỹ, Ṽ)
,

where we used (25) for the latter equality.
Combining (27) with (28) shows

d
(
en, f(D)−HṼ

)
≤ d

(
en, f(D)−Hv1

)
≤ ‖f(A11)

−1‖|f(λ2)|
1 − d(Ỹ, Ṽ)

d(ỹ, Ṽ).

Recall that y = T−Hen, V = T−HṼ, and f(A)−HV = T−Hf(D)−HṼ. Using Lemma 9
from the appendix, we obtain

d
(
y, f(A)−HV

)
≤ CT

‖f(A11)
−1‖ |f(λ2)|

1 − d(Ỹ, Ṽ)
d(y,V),

using κ(T ) ≤ CT . The proof is completed after applying the estimate d(Ỹ, Ṽ) ≤
CT d(Y,V).

Remark 4. The condition CT d(Y,Km(AH, en)) < 1 in Theorem 3 is an artifact of
the proof technique and can be removed. Let U denote the right invariant subspace of
A belonging to λ(A11). Then U ∩V = {0} is sufficient to guarantee that the condition

d(Ỹ, Ṽ) < 1 needed in the proof of Theorem 3 is satisfied. Hence, there is a constant
C independent of f such that

d
(
y, f(A)−HV

)
≤ C ‖f(A11)

−1‖ |f(λ2)| d(y,V),

even under this rather mild assumption. Note that U ∩ V = {0} is always satisfied if
A is in unreduced Hessenberg form and V = Km(AH, en) [31].

Theorem 3 is applied to the convergence analysis of the QR algorithm by setting
f = p̂i and V = Km(AH, en). The classical convergence analysis [31, Lemma 4.4]
provides bounds of the form

(29) d
(
Y, p̂i(A)−HKm(AH, en)

)
≤ C ‖p̂i(A11)

−1‖ ‖p̂i(A22)‖ d(Y,Km(AH, en))
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for some constant C. All shifts (i.e., the roots of pi) need to converge simultaneously to
eigenvalues of A22 in order to attain superlinear converge. In contrast, the bound (22)
predicts superlinear convergence even if only one shift converges to a simple eigenvalue
of A22.

Corollary 5. Under the notation of Theorem 3, let p1, p2, . . . be a sequence
of monomials of bounded degree such that p̂i(A) is invertible for all p̂i = p1p2 · · · pi.
Assume that one root of pj converges to a simple eigenvalue λ2 as j → ∞, while the
other roots and pj(A11)

−1 remain bounded. Then for every ρ > 0 there is a constant
C so that

d
(
y, p̂i(A)−HKm(AH, en)

)
≤ Cρi,

provided U ∩ Km(AH, en) = {0}, where U denotes the right invariant subspace of A
belonging to λ(A11).

Proof. Let d be the maximal degree of pj , and let C2 = max{1, C̃2 + |λ2|}, where

C̃2 is a uniform upper bound for the magnitude of all roots of pj for j = 1, 2, . . . .
Then |pj(λ2)| ≤ Cd−1

2 |λ2 − σ(j)|, where σ(j) denotes the root that converges to λ2.
Moreover, there is a constant C1 such that ‖pj(A11)

−1‖ ≤ C1 for all j. Choosing k
sufficiently large guarantees C1C

d−1
2 |λ2 − σ(j)| ≤ ρ for all j ≥ k. Hence, there is a

constant C̃ such that

‖p̂i(A11)
−1‖ |p̂i(λ2)| ≤

(
C1C

d−1
2

)i i∏
j=1

|λ2 − σ(j)| ≤ C̃ρi.

Combined with Theorem 3 and Remark 4, this concludes the proof.
The following theorem incorporates the Krylov subspace acceleration benefited

from choosing the deflation window size w larger than m.
Theorem 6. Under the notation of Theorem 3, assume that CT d(Y,Km(AH,

en)) < 1. Then for any function f that is analytic and nonzero on the spectrum of A,

(30)

d
(
y, f(A)−HKw(AH, en)

)
≤ CT ‖f(A11)

−1‖ |f(λ2)|d(y,Km(AH, en))

1 − CT d(Y,Km(AH, en))
inf

φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

,

where Pw−m denotes the set of all polynomials of degree at most w −m.
Proof. As in the proof of Theorem 3, we first block diagonalize A and obtain

bounds for the accordingly transformed subspaces. Let T−1AT = D with D as
in (23) and set ỹ = T Hy, Ỹ = T HY. Without loss of generality, we may again assume
ỹ = en. Moreover, we have

T Hf(A)−HKw(AH, en) = Kw(DH, t)

with t = f(D)−HT Hen. It follows that

d(en,Kw(DH, t)) = inf
v∈Kw(DH,t)

‖en − v‖ = inf
p∈Pw−1

‖en − p(DH)t‖

= inf
φ∈Pw−m

inf
q∈Pm−1

‖en − φ(DH)q(DH)t‖(31)

= inf
φ∈Pw−m

inf
q∈Pm−1

1

|φ(λ2)|
‖φ(DH)(en − q(DH)t)‖

= inf
φ∈Pw−m

inf
v∈Km(DH,t)

1

|φ(λ2)|
‖φ(DH)(en − v)‖.(32)
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The implicit assumption that no root of φ coincides with λ2 can be justified by the
following simple argument. If φ(λ2) is zero, then ‖en − φ(DH)q(DH)t‖ ≥ 1. But since
the choice φ ≡ q ≡ 0 already gives ‖en − φ(DH)q(DH)t‖ = 1, the infimum in (31) is
not increased if φ(λ2) �= 0 is imposed.

The vector v̂ = −f(λ2)f(D)−Hv1 with v1 defined as in (26) satisfies v̂ ∈ Km(DH, t)
and

en − v̂ =

[
f(λ2)f(A11)

−HFem

0

]
.

Choosing v = v̂ in (32) and using (28) yields

d(en,Kw(DH, t)) ≤ ‖f(A11)
−H‖|f(λ2)|

1 − d(Ỹ,Km(DH, t))
d(en, Ṽ) inf

φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

.

Together with Lemma 9 from the appendix, this completes the proof.

Remark 4 applies analogously to Theorem 6. Comparing (30) with (22), the
bound gains the factor infφ∈Pw−m ‖φ(A11)‖/|φ(λ2)|. Consider a compact set Ω1 ⊂ C

containing the eigenvalues of A11 and define κ(Ω1) to be the smallest constant for
which

(33) ‖g(A11)‖ ≤ κ(Ω1) max
z∈Ω1

|g(z)|

holds uniformly for every analytic function g on Ω1. Then, trivially,

inf
φ∈Pw−m

‖φ(A11)‖
|φ(λ2)|

≤ κ(Ω1) inf
φ∈Pw−m

max{|φ(z)| : z ∈ Ω1}
|φ(λ2)|

.

Such approximation problems play a prominent role in the convergence analysis
of Krylov subspace methods for nonnormal matrices. It is clear that infφ∈Pw−m

max{|φ(z)| : z ∈ Ω1}/|φ(λ2)| cannot be larger than 1 (choose φ ≡ 1) and decays
as w − m becomes larger. Estimates for this decay can be found using potential
theory (see [4, 12]), but this is beyond the scope of this paper.

In LAPACK 3.1 [1], the default values for the number of shifts and the size of
the deflation window for 3000 ≤ n < 6000 are m = 128 and w = 192, respectively.
As explained in more detail in [9], this choice was based on computational experi-
ments with pseudo-random matrices and matrices from [2]. A good choice of these
parameters is crucial for the performance of the QR algorithm. For example, choos-
ing a larger w increases the cost of the deflation procedure (which requires O(w2n)
operations) but also results in earlier deflations and therefore in fewer multishift QR
iterations (each requires O(mn2) operations). While Theorem 6 does not provide any
new insight into the choice of m, it does shed some light on a beneficial choice of w.

Unfortunately, the exact computation of the quantity infφ∈Pw−m

‖φ(A11)‖
|φ(λ2)| in (30) is

infeasible, simply because A11 and λ2 are available only after the Schur form of A has
been computed. The results in this paper should thus be understood only as a first
step toward developing a strategy that chooses w nearly optimal in each iteration.

For this purpose, cheap estimates on the decay of infφ∈Pw−m

‖φ(A11)‖
|φ(λ2)| as w increases

need to be developed, possibly using heuristics on the distribution of the eigenvalues
of A11.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

818 DANIEL KRESSNER

5.2. Convergence of invariant subspaces. Not only the convergence of in-
dividual eigenvectors but also the convergence of the left invariant subspace Y as a
whole is improved using Krylov subspaces of larger dimension. To quantify this effect,
we can combine the bound (29) with results by Beattie, Embree, and Rossi [4] on the
convergence of invariant subspaces in Krylov subspaces.

Theorem 7. Let A ∈ C
n×n have a block Schur decomposition

QHAQ =

[
A11 A12

0 A22

]
, A11 ∈ C

(n−m)×(n−m), A22 ∈ C
m×m,

for some unitary matrix Q ∈ C
n×n such that λ(A11)∩λ(A22) = ∅. Let Y denote the left

invariant subspace of A belonging to λ(A22). Assume that CT d
(
Y,Km(AH, en)

)
< 1,

where CT = ‖PA11‖ +
√

1 + ‖PA11‖2 with PA11 being the spectral projector belonging
to A11.

Then for any function f that is analytic and nonzero on the spectrum of A,

(34)

d
(
Y, f(A)−HKw(AH, en)

)
≤ C ‖f(A11)

−1‖‖f(A22)‖ inf
φ∈Pw−m

‖φ(A11)‖‖φ(A22)
−1‖,

where

C =
C2

T d(Y,Km(AH, en))√
1 − C2

T d(Y,Km(AH, en))2
.

Proof. There is an invertible lower block triangular matrix T1 with κ(T1) =
‖PA11‖ +

√
1 + ‖PA11‖2 such that

(QT1)
−1A(QT1) =

[
A11 0

0 A22

]
=: D.

Let T = QT and Ỹ = T HY. Then

T Hf(A)−HKw(AH, en) = Kw(DH, f(D)−Hu)

with u = T Hen. Partition u =
[
u1

u2

]
with u2 ∈ C

m. Then Theorem 3.4 in [4] states

d
(
Ỹ,Kw(DH, f(D)−Hu)

)
≤ C1 inf

φ∈Pw−m

‖φ(A11)‖‖φ(A22)
−1‖,

where

C1 = max
ψ∈Pm−1

‖ψ(A11)
Hf(A11)

−Hu1‖
‖ψ(A22)Hf(A22)−Hu2‖

.

Using the fact that ψ(D)H and f(D)−H commute, we have

C1 ≤ ‖f(A11)
−1‖‖f(A22)‖ max

ψ∈Pm−1

‖ψ(A11)
Hu1‖

‖ψ(A22)Hu2‖

= ‖f(A11)
−1‖‖f(A22)‖ max

[v1
v2

]∈Km(DH,u)

‖v1‖
‖v2‖

≤ ‖f(A11)
−1‖‖f(A22)‖

d
(
Ỹ,Km(DH, u)

)
√

1 − d
(
Ỹ,Km(DH, u)

)2 ,
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where the latter inequality follows as in the proof of Lemma 4.4 in [31]. The proof
is concluded by applying Lemma 4.2 in [31] twice, relating the distances between the
transformed subspaces to the distances of the original subspaces.

Once again, an analogue of Remark 4 applies, showing that CT d
(
Y,Km(AH, en)

)
< 1 can be replaced by the weaker assumption U ∩ Km(AH, en) = {0}. Comparing
(34) with the classical bound (29), the extra factor infφ∈Pw−m ‖φ(A11)‖‖φ(A22)

−1‖ is
gained. If Ω1,Ω2 ⊂ C are compact sets containing λ(A11), λ(A22), respectively, then

inf
φ∈Pw−m

‖φ(A11)‖‖φ(A22)
−1‖ ≤ κ(Ω1)κ(Ω2) min

φ∈Pw−m

max{|φ(z)| : z ∈ Ω1}
min{|φ(z)| : z ∈ Ω2}

,

where κ(Ω1)κ(Ω2) are defined as in (33). Note that the factor κ(Ω2) can actually
be removed (see [5, Theorem 3.3]) at the expense of having a different polynomial
approximation problem. In any case, the bound can be expected to decay as w −m
increases; see [4, section 4] and [5, section 3] for estimates of this decay. When using
Francis shifts, this means that besides the quadratically vanishing p̂i(A22) we have
an additional factor that may become very small for larger w, resulting in nearly
superquadratic convergence.

Finally, let us remark that there is always a polynomial q, depending on A and
f , such that q(A) = f−1(A). This implies an equivalence between the QR algorithm
and the Arnoldi method with polynomial restarts, as discussed by Lehoucq [22]. In
principle, this connection could be used to apply the bounds in [4, 5] verbatim to
the QR algorithm. In contrast, Theorem 7 treats the convergence obtained from the
shifts and from the Krylov subspace separately, having the advantage that it allows
more insight into the benefits gained from choosing a larger deflation window.

6. Conclusions. This paper contributes to the understanding of why aggressive
early deflation works so well in practice. A very intuitive explanation can be drawn
from practical experiences with Krylov subspace methods for computing eigenvalues.
Extracting Ritz pairs (= aggressive early deflation) is a much more effective strategy
for detecting converged eigenvalues than only testing the subdiagonal entries of the
Hessenberg factor in an Arnoldi decomposition (= classical deflation). The conver-
gence bounds from section 5 provide a mathematical explanation, stating individual
bounds for each converging eigenvalue and showing that the bounds are multiplied by
a factor that approaches zero as the deflation window size w increases.

This paper should be seen as a first step toward developing a strategy for choosing
w optimally in each QR iteration. In a serial computing environment, the current de-
fault value for w implemented in LAPACK already delivers good performance across
a wide range of examples, and more sophisticated strategies might not lead to signif-
icant speedup. However, in a parallel computing environment, where aggressive early
deflation will constitute a bottleneck, we expect the performance to become more
sensitive with respect to the choice of w.

Finally, it is tempting to ask whether other Ritz pair extraction techniques, such
as refined Ritz vectors, could be used to enhance the convergence of the QR algorithm
even further. Although preliminary numerical experiments have indicated no obvious
beneficial effect on the average performance of the QR algorithm, the use of these
techniques in avoiding exceptional global convergence failures remains to be studied.

Appendix. This section collects two elementary facts needed in the proofs of
section 5.
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Lemma 8. Let V =
[

F
Im

]
∈ C

n×m. Then

‖en − V em‖ ≤
√

1 + ‖F‖2√
1 + ‖F‖2 − ‖F‖

∥∥en − V (V HV )−1em
∥∥ .

Proof. Set r0 = en − V (V HV )−1em and r1 = en − V em. Then

r0 =

[
−F (I + F HF )−1

I − (I + F HF )−1

]
em =

[
−(I + FF H)−1F

(I + F HF )−1F HF

]
em

=

[
(I + FF H)−1 F (I + F HF )−1

−(I + F HF )−1F H (I + F HF )−1

]
r1 = (I + E)r1,

where

E =

[
−F (I + F HF )−1F H F (I + F HF )−1

−(I + F HF )−1F H −F H(I + FF H)−1F

]
.

A singular value decomposition of F verifies ‖E‖ = ‖F‖/
√

1 + ‖F‖2. Thus ‖E‖ < 1
and (I + E) is invertible. Finally,

‖r1‖ ≤ ‖(I + E)−1‖‖r0‖ ≤ 1

1 − ‖E‖‖r0‖ =

√
1 + ‖F‖2√

1 + ‖F‖2 − ‖F‖
‖r0‖

concludes the proof.
Lemma 9. Let T ,U be subspaces, and let P be an invertible matrix. Then for

any s ∈ C
n, d(s, T ) ≤ αd(s,U) implies d(Ps, PT ) ≤ α‖P‖‖P−1‖ d(Ps, PU).

Proof. Without loss of generality, we may assume ‖s‖ = 1. Then

d(Ps, PT ) = inf
t∈T

‖Ps− Pt‖
‖Ps‖ ≤ ‖P‖

‖Ps‖ inf
t∈T

‖s− t‖

≤ α
‖P‖
‖Ps‖ inf

u∈U
‖s− u‖ ≤ α ‖P‖‖P−1‖ inf

u∈U

‖Ps− Pu‖
‖Ps‖

= α ‖P‖‖P−1‖ d(Ps, PU).
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A NEW SCALING FOR NEWTON’S ITERATION FOR THE POLAR
DECOMPOSITION AND ITS BACKWARD STABILITY∗

RALPH BYERS† AND HONGGUO XU‡

Abstract. We propose a scaling scheme for Newton’s iteration for calculating the polar decom-
position. The scaling factors are generated by a simple scalar iteration in which the initial value
depends only on estimates of the extreme singular values of the original matrix, which can, for ex-
ample, be the Frobenius norms of the matrix and its inverse. In exact arithmetic, for matrices with
condition number no greater than 1016, with this scaling scheme no more than 9 iterations are needed
for convergence to the unitary polar factor with a convergence tolerance roughly equal to 10−16. It
is proved that if matrix inverses computed in finite precision arithmetic satisfy a backward-forward
error model, then the numerical method is backward stable. It is also proved that Newton’s method
with Higham’s scaling or with Frobenius norm scaling is backward stable.

Key words. matrix sign function, polar decomposition, singular value decomposition (SVD),
Newton’s method, numerical stability, scaling
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1. Introduction. Every matrix A ∈ C
n×n has a polar decomposition A = QH,

where H = H∗ ∈ C
n×n is Hermitian positive semidefinite and Q ∈ C

n×n is unitary,
i.e., Q∗Q = I. The polar decomposition is unique with positive definite symmetric
factor H iff A is nonsingular. Its applications include unitary approximation and
distance calculations [8, 9, 12]. The polar decomposition generalizes to rectangular
matrices; see, for example, [15]. We consider only the square matrix case here, because
numerical methods for computing the polar decomposition typically begin by reducing
the problem down to the square matrix case using, for example, a QR factorization
[5, 8]. (An algorithm that works directly with rectangular matrices appears in [6].)

The polar decomposition may be easily constructed from a singular value decom-
position (SVD) of A. However, the SVD is a substantial calculation that displays
much more of the structure of A than does the polar decomposition. Constructing
the polar decomposition from the SVD destroys this extra information and wastes the
arithmetic work used to compute it. It is intuitively more appealing to use the polar
decomposition as a preliminary step in the computation of the SVD as in [12].

When A is nonsingular, one way to compute the polar decomposition is through
Newton’s iteration:

Qk+1 =
1

2

(
ζkQk + (ζkQk)

−∗) , Q0 = A,(1.1)

where ζk = ζ(Qk) > 0 is a positive scalar function of Qk chosen to accelerate con-
vergence [8]. Each iterate Qk has polar decomposition Qk = QHk, where Q is
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the unitary polar factor of A, H0 = H is the Hermitian polar factor of A, and
Hk+1 = (ζkHk + (ζkHk)

−1)/2, k ≥ 0. For appropriately chosen acceleration parame-
ters ζk, limk→∞ Hk = I. Hence, the unitary polar factor is Q = limk→∞ Qk, and the
Hermitian polar factor is H = limk→∞ Q∗

kA.
Iteration (1.1) was first proposed in [8] and studied further in [5, 6, 14]. It is

called “Newton’s iteration” because it can be derived from Newton’s method applied
to the equation X∗X = I. It is closely related to Newton’s iteration for the matrix
sign function [17, 22].

Simplicity is an attractive feature of (1.1). Apart from the computation of ζk,
each iteration needs only one matrix inversion and one matrix-matrix addition. The
simplicity allows implementations of (1.1) to take advantage of the hierarchical mem-
ory and parallelism [1, 2, 13]. Many authors have studied choices of the acceleration
parameters ζk [3, 4, 8, 16, 17, 22]. If ζk ≡ 1, then the iterates Qk converge quadrati-
cally to the unitary polar factor Q [8]. Convergence is also quadratic if ζ = ζ(U) is a
smooth function of U ∈ C

n×n and ζ(U) = 1 whenever U is unitary.
The choice

ζ
(2)
k =

√
||Q−1

k ||2
||Qk||2

,(1.2)

where || · ||2 is the spectral norm is proposed in [8]. This scale factor is optimal in the
sense that, given Qk, (1.2) minimizes the next error ||Qk+1 − Q||2. With this scale
factor, for the matrices Qk generated by (1.1), the error sequence ||Qk−Q||2 converges
monotonically to zero. Unfortunately, to determine the scale factor (1.2), one needs
to compute two extreme singular values of Qk at each iteration. In order to preserve
the rapid convergence of (1.1) with scaling (1.2), the highly accurate values of these

extreme singular values are required to guarantee ζ
(2)
k → 1. This is expensive enough

to make scale factor (1.2) unattractive.
To save the cost of computing the extreme singular values, one might approximate

(1.2). A commonly used scale factor is the (1,∞)-scaling

ζ
(1,∞)
k =

(
||Q−1

k ||1||Q−1
k ||∞

||Qk||1||Qk||∞

) 1
4

,(1.3)

(where || · ||1 and || · ||∞ are the 1-norm and ∞-norm, respectively) which was proposed

by Higham in [8]. The factor ζ
(1,∞)
k is within a constant factor of ζ

(2)
k . It adds a

negligible amount of arithmetic work compared to the cost of Q−1
k , which is needed

at each iteration anyway.
The scale factor

ζ
(F )
k = ||Q−1

k ||1/2F ||Qk||−1/2
F ,(1.4)

(where || · ||F is the Frobenius norm) is discussed in [5, 8, 16]. It can also be computed
at a negligible cost. It is optimal in the sense that, given Qk, it minimizes ||Qk+1||F
and causes the sequence ||Qk||F to converge monotonically [5].

Another relatively inexpensive scale factor is [4]

ζ
(d)
k = |det(Qk)|−1/n.(1.5)

The complex modulus of the determinant is very inexpensively obtained from the
same matrix factorization used to calculate Q−1

k . This scaling is optimal in the sense
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that, for a given iterate Qk, it minimizes D(Qk+1) =
∑n

j=1(ln(σ
(k+1)
j ))2, where σ

(k+1)
j

is the jth singular value of Qk+1. The function D(Qk+1) is a measure of the departure
of Qk+1 from the unitary matrices.

This paper considers the suboptimal scaling strategy

ζ0 = 1/
√
ab, ζ1 =

√
2
√
ab

a + b
, ζk = 1/

√
ρ(ζk−1), k = 2, 3, . . . ,(1.6)

where ρ(x) = (x+x−1)/2 and a and b are any numbers such that 0 < a ≤ ||A−1||−1
2 ≤

||A||2 ≤ b. Apart from estimating the extreme singular values of the initial matrix
Q0 = A, the scale factor costs only several floating point operations per iteration.
Moreover, only the rough estimates of ||A||2 and ||A−1||−1

2 are needed. One may simply
choose a = ||A−1||−1

F and b = ||A||F . From Table 2.1 with such choices for any matrices
with condition number no greater than 1016 and size no greater than 1011, at most
nine iterations of (1.1) with scaling (1.6) are necessary to approximate the unitary
polar factor Q to within 2-norm distance less than 10−16.

We show below that, in the presence of rounding error, (1.1) with (1.6) is numeri-
cally stable assuming that matrix inverses are calculated with small forward-backward
error. This is the case, for example, when matrix inverses are computed using the
bidiagonal reduction [7, p. 252]. We also prove the numerical stability of Newton’s
iteration with any of the scalings (1.2)–(1.4).

Commenting on an early draft of this paper, Ziȩtak pointed out that the subopti-
mal (quasi-optimal) scaling parameters were discovered independently by Kie�lbasiński
but not published in the open literature. They were presented by Ziȩtak at the 1999
Householder meeting at Whistler and the 1999 ILAS conference at Barcelona. In
section 5 of their recent paper [19], Kie�lbasiński, Zieliński, and Ziȩtak mention the
quasi-optimal scaling parameters. In [18], these authors gave an error analysis of
Higham’s method [8] with the same mixed backward-forward stability assumption for
matrix inversion. They gave numerical experiments in [23].

In the following A ∈ C
n×n is always nonsingular. A = UΣV ∗ is the SVD of A,

where U and V are unitary, Σ = diag(σ1, · · · , σn) is diagonal, and σ1 ≥ · · · ≥ σn ≥ 0
are the singular values of A. The set of the singular values is denoted by σ(A). The
condition number with respect to the spectral norm of A is denoted by κ2(A) = σ1/σn.
Following [7, p. 18], a flop is the computational work of a floating point addition,
subtraction, multiplication, or division together with the associated subscripting and
indexing overhead. It takes two flops to execute the Fortran statement A(I,J) =

A(I,J) + C*A(K,J).

2. Scaling and convergence. Let A ∈ C
n×n be nonsingular, with the SVD

A = UΣV ∗, with Σ = diag(σ1, σ2, . . . , σn). Each Newton iterate Qk in (1.1) has the
SVD Qk = UΣkV

∗, where

Σk+1 =
(
ζkΣk + (ζkΣk)

−1
)
/2, Σ0 = Σ.(2.1)

In particular, Qk has singular values σ
(k)
1 , σ

(k)
2 , . . .σ

(k)
n (in no particular order when

k > 0) that obey

σ
(0)
j = σj , σ

(k+1)
j =

1

2

(
ζkσ

(k)
j +

1

ζkσ
(k)
j

)
= ρ(ζkσ

(k)
j ), k = 0, 1, 2, . . . ,(2.2)
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where ρ(x) = (x + x−1)/2. For appropriately chosen ζk, limk→∞ σ
(k)
j = 1, and

limk→∞ Qk = UV ∗ = Q. Consequently, the convergence properties of (1.1) derive

directly from the n scalar sequences σ
(k)
j determined by (2.2). To attain good con-

vergence behavior in (1.1), the acceleration parameters ζk must interact well with
ρ(x) = (x + x−1)/2.

The following two lemmas list some easily verified elementary properties of ρ(x) =
(x + x−1)/2.

Lemma 2.1. If x > 0, then
1. ρ( 1

x ) = ρ(x).
2. 1 ≤ ρ(x) ≤ max(x, x−1), with either equality iff x = 1.
3. ρ(x) is decreasing on x ∈ (0, 1] and increasing on x ∈ [1,∞).

Lemma 2.2. Suppose that 0 < a ≤ b. Define αζ = max{(ζa)−1, ζb}, and
ζopt = (ab)−1/2. Then we have the following properties.

1. For any ζ > 0, 1 ≤ maxa<x<b ρ(ζx) = ρ(αζ), and 1 = maxa<x<b ρ(ζx) iff
αζ = 1.

2. For any ζ > 0, 1 ≤ mina<x<b ρ(ζx), and 1 = min
a<x<b

ρ(ζx) iff ζa ≤ 1 ≤ ζb.

3. minζ>0 αζ = αζopt =
√
b/a, and ζ = ζopt is the only minimizer.

4. minζ>0 maxa≤x≤b ρ(ζx) = minζ>0 ρ(αζ) = ρ(αζopt) = ρ(
√

b/a).
In the following, for ease of notation let τ(x) be the function

τ(x) = ρ(
√
x) =

1

2

(√
x +

1√
x

)
.(2.3)

The k-fold composition of τ(x) with itself is written τk(x), i.e., τ0(x) = x, τ1(x) =
τ(x), and for k > 1, τk+1(x) = τ(τk(x)). Similarly ρk(x) is the k-fold composition of
ρ(x) = (x + x−1)/2 with itself.

Suppose that 0 < a ≤ σn ≤ σ1 ≤ b. Consider the sequence of intervals generated
by Newton’s iteration: [a0, b0] = [a, b], [a1, b1] = ρ(ζ0[a0, b0]), [a2, b2] = ρ(ζ1[a1, b1]),

. . . . It follows from (2.2) that σ
(k)
j ∈ [ak, bk], j = 1, 2, . . . , n, k = 0, 1, . . .. Note that

minx>0 ρ(x) = 1, so for k ≥ 1, [ak, bk] ⊆ [1, bk] and

1 ≤ σ
(k)
j ≤ bk.(2.4)

It is intuitively satisfying to choose the sequence of acceleration parameters ζk in (1.1)
to minimize the sequence bk.

From Lemma 2.2, the initial optimal scaling factor is ζ0 = (ab)−1/2. The initial
interval is scaled to be ζ0[a, b] = [

√
a/b,

√
b/a] which contains 1. The next interval

is

[a1, b1] = ρ(ζ0[a, b]) = [1, ρ(
√
b/a)] = [1, τ(b/a)],

where τ(x) is given by (2.3). The left endpoint is a1 = 1, so the optimal scaling factor

for the next iteration is ζ1 = b
−1/2
1 = 1/

√
τ(b/a). The next interval is

[a2, b2] = ρ(ζ1[a1, b1]) = [1, ρ(
√

τ(b/a))] = [1, τ2(b/a)].

An easy induction shows that the sequence of intervals is [a0, b0] = [a, b] and for
k ≥ 1, [ak, bk] = [1, τk(b/a)], and the sequence of optimal scaling factors is

ζ0 = 1/
√
ab, ζk = 1/

√
τk(b/a), k = 1, 2, 3, . . . ,(2.5)

which is equivalent to (1.6).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

826 RALPH BYERS AND HONGGUO XU

Since τ(x) = ρ(
√
x) ≤ ρ(x) for x ≥ 1,

τ(b/a) ≤ ρ(b/a).

By induction we have

τk(b/a) ≤ ρk(b/a)

for all k ≥ 1. The sequence b/a, ρ(b/a), ρ2(b/a), . . . , is generated by Newton’s iteration
xk+1 = ρ(xk), with x0 = b/a. It converges to 1 quadratically. Obviously τk(b/a) ≥ 1
for k ≥ 0. So b/a, τ(b/a), τ2(b/a), . . . also converges to 1 at least quadratically. It is
not difficult to show that 1 ≤ τ(x) ≤ x for any x ≥ 1. We have

bk = τk(b/a) = τ(τk−1(b/a)) ≤ τk−1(b/a) = bk−1.

Hence, after the first step, the sequence of intervals satisfies

[a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [ak, bk] ⊇ . . . ,

and it converges to the single point 1 quadratically. (Note ak = 1 for all k ≥ 1.) The
initial interval, [a0, b0] = [a, b] is an exception, because, in general, [a, b] � [1, τ(b/a)].

Based on this fact and (2.4), the convergence properties of (1.1) with (1.6) are
clear, and we summarize them in the following theorem.

Theorem 2.3. If

0 < a ≤ ||A−1||−1
2 ≤ ||A||2 ≤ b(2.6)

and Qk is obtained from the Newton iteration (1.1) with scaling (1.6), then

||Qk −Q|| ≤ τk(b/a) − 1 ≤ ρk(b/a) − 1, k = 1, 2, . . . .(2.7)

In fact the convergence properties are highly satisfactory even when b/a is large.
Table 2.1 uses Theorem 2.3 to list the number of Newton’s iteration (1.1) with
scaling (1.6) (and exact arithmetic) required to guarantee selected absolute errors
δ > ||Qk − Q||2 and values of b/a. The table demonstrates that Newton’s iteration
(1.1) with scaling (1.6) typically needs no more than nine iterations to attain typi-
cal floating point precision accuracy. The table also demonstrates that convergence
is insensitive to the choice of a and b—widely differing values of b/a need similar
numbers of iterations to attain similar accuracy. In particular the easy-to-compute
choices a = ||A−1||−1

F and b = ||A||F satisfy (2.6) and are unlikely to lead to even one
more iteration than the optimum choices of a = ||A−1||−1

2 and b = ||A||2, particularly
for ill-conditioned matrices. For instance, for any A ∈ C

n×n with κ2(A) = 1016, for
a = ||A−1||−1

F and b = ||A||F , we have b/a ≤ nκ(A) = n1016. Then b/a ≤ 1027 for any
n ≤ 1011, and the number of iterations is 9, the same as with the optimum choices.

In Theorem 2.3, smaller values of b/a give smaller values of τk(b/a) and hence
better error bounds. Inequality (2.6) implies that b/a ≥ κ2(A) = ||A−1||2 ||A||2, and
equality can be achieved only with a = ||A−1||−1

2 = σn and b = ||A||2 = σ1. With
a = σn and b = σ1, the scaling factors (1.6) are

ζ0 = 1/
√
σ1σn, ζk = 1/

√
τk(κ2(A)), (k ≥ 1),(2.8)

and the corresponding intervals are [σn, σ1], and [1, τk(κ2(A))] for k ≥ 1. Let Σk be
the matrices generated by (2.1), with a = σn and b = σ1. It is easy to verify that in
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Table 2.1

The number of Newton iterations (1.1) with scaling (1.6) (and exact arithmetic) required to
guarantee absolute error ||Qk−Q||2 < δ for selected values of δ and b/a such that 0 < a ≤ ||A−1||−1

2 ≤
||A||2 ≤ b. See Theorem 2.3.

δ \ b/a 10 105 1010 1015 1020 1025 1027

10−1 2 4 5 6 6 6 6

10−4 4 5 6 7 7 8 8

10−7 4 6 7 8 8 8 8

10−10 5 7 7 8 8 9 9

10−13 5 7 8 8 9 9 9

10−16 5 7 8 9 9 9 9

10−19 6 7 8 9 9 10 10

this case, the right endpoint of the kth interval is a singular value of Σk. This in turn
implies that inequality (2.7) is an equality, i.e.,

||Qk −Q||2 = ||Σk − I||2 = τk(κ2(A)) − 1.

The number sequence bk was also derived in [16] in order to show the convergence
behavior of Newton’s method with the optimal scale factors. It is shown that when

a = σn and b = σ1, for Qk generated with ζ
(2)
k−1 defined in (1.2), one has ||Qk||2 ≤ bk

[16, 11]. Due to this fact we call ζk defined in (2.5) suboptimal scale factors. Note
that bk is derived based on different interpretations here. It is the right endpoint of
the kth interval generated by applying Newton’s iteration to the initial interval [a, b].
For this interval iteration, ζk is the scale factor that minimizes bk+1 −1 (i.e., it makes
[ak+1, bk+1] as close to 1 as possible).

3. The algorithm. The Newton’s method (1.1) with scaling scheme (1.6) is
implemented by the following algorithm.

Algorithm 3.1 (Newton’s method (1.1) with scaling (1.6)).
Input: Nonsingular matrix A ∈ C

n×n and a stopping criterion δ > 0.
Output: The polar decomposition A = QH.

Step 0: a. Set Q0 = A; Compute Q−∗
0

b. Choose a ≤ ||Q−1
0 ||−1

2 and b ≥ ||Q0||2; ζ0 = 1/
√
ab

c. Set k = 0
Step 1: While ||Qk −Q−∗

k ||F ≥ δ
a. Qk+1 = (ζkQk + ζ−1

k Q−∗
k )/2

b.
If k = 0, ζ1 =

√
2√

b/a+
√

a/b

Else ζk+1 =
√

2
ζ−1
k +ζk

End if
c. Compute Q−∗

k+1

d. k = k + 1
End while

Step 2: Q = (Qk + Q−∗
k )/2; H = 1

2 (Q∗A + (Q∗A)∗)
Here are some remarks.

1. The matrix A−1 = Q−1
0 needs to be computed in the first iteration anyway.

Hence, power iterations on A and A−1 may be used evaluate the extreme singular
values σ1 and σ−1

n , respectively, using only O(n2) extra flops per iteration. These
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estimates may then serve as the suboptimal scaling factors b and a−1, respectively.
Since highly accurate estimates of σ1 and σn are unnecessary, a few power iterations
should suffice. Alternatively, ||A||F and ||A−1||−1

F may be used for b and a.
2. The stopping criterion ||Qk −Q−∗

k ||F < δ is essentially equivalent to ||Qk+1 −
Qk||F < δ, which is used in [11, section 8.9]. This follows from the fact that when
ζk ≈ 1 (which is usually the case for a small δ),

Qk+1 −Qk =
1

2
(ζ−1

k Q−∗
k − (2 − ζk)Qk) ≈

1

2
(Q−∗

k −Qk).

In practice, in order for the computed Qk to be within O(ε) of a unitary matrix,
where ε is the machine epsilon, it is sufficient to choose δ = O(

√
ε). See (4.16).

3. Commonly the matrix inversion method used in the algorithm is an LU
factorization-based method such as the Gaussian elimination with partial pivoting
or complete pivoting [8]. Such an inversion method usually works well in practice
[18]. In order to guarantee the algorithm to be numerically backward stable, one may
use the more expensive bidiagonal reduction-based matrix inversion method provided
in Appendix A.1. So the computed matrix inverses satisfy the backward-forward error
model. See Assumption 4.1 in section 4 below.

4. Estimating σ1 and σn usually uses O(n2) flops. Each iteration uses 2n3 flops
for the matrix inverse by an LU factorization-based method and O(n2) flops for matrix
addition. Computing H uses 2n3 flops. If p is the number of iterations for convergence,
then the algorithm uses a total of roughly 2(p+1)n3 flops [8]. When p = 9 it is about
20n3 flops, which is less than the QR-like SVD method (which takes 22n3 to 26n3

flops for the SVD and 4n3 for Q and H). If the bidiagonal reduction-based matrix
inversion method is used, the total cost will be 2(3p + 1)n3 flops.

5. In order to reduce the cost while maintaining numerical stability, one may
first use the bidiagonal reduction-based method for a few iterations. When κ2(Qk) is
not too large, say 100, one shifts to an LU factorization-based inversion method for the
subsequent iterations. The matrix inverses essentially satisfy the backward-forward
error model in the latter case [10, section 14]. Also, it takes only a few iterations
for the condition number to drop below 100. In the case when κ2(A) = 10−16, with
a = σn and b = σ1, then ||Q3||2 = τ3(10−16) ≈ 42. Since this is usually the worst
case in practice, the bidiagonal reduction-based method is required in no more than
3 iterations. With this strategy, the maximum cost (with p = 9) is 3 · 6n3 + (9 − 3) ·
2n3 + 2n3 = 32n3 flops.

6. Although the cost for computing the scale factors (1.3)–(1.5) is negligible
in Newton’s iteration, computing the suboptimal scale factors is essentially costless.
Also, the use of suboptimal scaling simplifies the algorithm, since the “shifting scale
factor to 1” strategy, which is used for the (1,∞)-scaling ([8]), is not needed. Finally,
with suboptimal scaling, in general, the number of iterations is no greater than 9, and
it can be obtained by simply computing τk(b/a)−1. It is still not clear how to predict
the number of iterations with other scalings, although in practice it is observed that
the (1,∞)-scaling and the suboptimal scaling essentially have the same convergence
rate.

4. Stability and rounding error analysis. In this section, a first order error
analysis establishes that Newton’s method (1.1) with scaling (1.6) can be implemented
in a backward stable way. The same conclusion is drawn for the scalings (1.2), (1.3),

and (1.4). In outline, the approach is to estimate the residual ||A − Q̂Ĥ||2 for the

rounding-error-perturbed unitary factor Q̂ and Hermitian factor Ĥ produced by finite
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precision arithmetic in the algorithm in section 3. The method here is to first estimate
the forward errors Q̂−Q and Ĥ −H and then use them to estimate the residual.

For the error analysis, we employ the standard model of floating point arithmetic
with machine epsilon ε [10, section 2.2].

We also need the following assumptions.
Assumption 4.1. If a nonsingular matrix A ∈ C

n×n is inverted using finite
precision arithmetic with machine epsilon ε to obtain a “computed inverse” X, then

X = (A + E)−1 + F,

where E, F ∈ C
n×n are perturbation matrices satisfying

||E||2 ≤ c1(n)ε||A||2, ||F ||2 ≤ c2(n)ε||A−1||2,

and ci(n) (i = 1, 2) are some low-degree polynomials of n.
In Newton’s method it is typical to use Gaussian elimination with partial or

complete pivoting for computing matrix inverses. Although it works well in practice,
the computed matrix inverses may not satisfy Assumption 4.1 [10, section 14.1]. We
show in Appendix A.1 that Assumption 4.1 is satisfied by a matrix inversion algorithm
that uses the bidiagonal reduction method.

Assumption 4.2.

c3(n)κ2(A)ε < 1,

where c3(n) is a low-degree polynomial of n.
Note that 1/κ2(A) is the measure of the relative distance of a nonsingular A to

the nearest singular matrices [7, p. 73], i.e.,

1

κ2(A)
= min

det(A+E)=0

||E||2
||A||2

.

If such a condition doesn’t hold, then matrices like A + E in Assumption 4.1 can be
singular. So this is a condition about the numerical nonsingularity of A. It is essential
in the subsequent first order error analysis, although it won’t be explicitly stated.

We now begin the error analysis. In practice, rounding errors perturb Newton’s
method recurrence (1.1). Under Assumptions 4.1, if Q̂k is the computed version of
Qk, then

Q̂k+1 =
ζk
2
Q̂k + Fk,1 +

1

2ζk

(
(Q̂k + Fk,2)

−∗ + Fk,3

)

=
ζk
2

(Q̂k + Fk,2) +
1

2ζk
(Q̂k + Fk,2)

−∗ +

(
Fk,1 +

1

2ζk
Fk,3 −

ζk
2
Fk,2

)

=:
ζk
2

(Q̂k + Fkb) +
1

2ζk
(Q̂k + Fkb)

−∗ + Fkf ,(4.1)

where Fkb = Fk,2 and Fkf = (Fk,1 + 1
2ζk

Fk,3 − ζk
2 Fk,2). The perturbation matrix Fk,1

represents rounding errors introduced by floating point matrix addition and scalar
multiplication, and the perturbation matrices Fk,2 and Fk,3 represent rounding errors
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introduced by matrix inversion under Assumption 4.1. The F ’s obey the bounds

||Fk,1||2 ≤ d1εmax
(
||ζkQ̂k||2, ||ζ−1

k Q̂−∗
k ||2

)

||Fk,2||2 ≤ d2ε||Q̂k||2
||Fk,3||2 ≤ d3ε||Q̂−∗

k ||2
||Fkb||2 ≤ dbε||Q̂k||2
||Fkf ||2 ≤ df

ε

2
max

(
||ζkQ̂k||2, ||ζ−1

k Q̂−∗
k ||2

)
,

where ε is the machine epsilon and d1, d2 = db, d3, and df are some modest constants
that may depend on n, the details of the arithmetic and the inversion algorithm but
depend neither on Qk nor Q̂k. Each Qk is a smooth function of Qk−1 and each
Fk,j = O(ε), so, by induction,

Q̂k = Qk + O(ε).(4.2)

Hence, the bounds above may be loosely expressed in terms of Qk as

||Fkb||2 ≤ dbε||Qk||2 + O(ε2)(4.3)

||Fkf ||2 ≤ df
ε

2
max

(
||ζkQk||2, ||ζ−1

k Q−∗
k ||2

)
+ O(ε2)

≤ dfε||Qk+1||2 + O(ε2).(4.4)

Inequality (4.4) is a consequence of (2.2).
We need the following lemma for continuing our analysis.
Lemma 4.3. Let A ∈ C

n×n be a nonsingular matrix with polar decomposition
A = QH, with Q ∈ C

n×n unitary and H ∈ C
n×n Hermitian positive definite. If

F ∈ C
n×n with ||F ||2 = 1 and t ≥ 0, then when t is sufficiently small, A + tF has the

polar decomposition

A + tF = Q
(
(I + tE) + O(t2)

) (
H + tG + O(t2)

)
,

where G ∈ C
n×n is the unique Hermitian solution to

F ∗A + A∗F = GH + HG,(4.5)

and E ∈ C
n×n is the unique skew-Hermitian solution to

Q∗F − F ∗Q = EH + HE.(4.6)

Also, E is given by

E = (Q∗F −G)H−1.(4.7)

Proof. See proof in Appendix A.2.
At each of the perturbed Newton iteration (4.1) rounding errors are equivalent to

perturbing Q̂k to Q̂k + Fkb, taking one Newton step (1.1), then perturbing the result

by adding Fkf . Let Q̂k = WkĤk and Q̂k + Fkb = W̃kH̃k be the polar decompositions

of Q̂k and Q̂k + Fkb, respectively. By Lemma 4.3,

W̃k = Wk(I + Ekb) + O(ε2),(4.8)
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where Ekb satisfies

EkbĤk + ĤkEkb = W ∗
kFkb − F ∗

kbWk + O(ε2).(4.9)

From (4.1),

ζk
2

(Q̂k + Fkb) +
1

2ζk
(Q̂k + Fkb)

−∗ = Q̂k+1 − Fkf .

Since the unitary factor in the polar decomposition of the left-hand side matrix is W̃k,
applying Lemma 4.3 to Q̂k+1, we have

W̃k = Wk+1(I − Ekf ) + O(ε2),

or equivalently,

Wk+1 = W̃k(I + Ekf ) + O(ε2),(4.10)

where Ekf satisfies

Ekf Ĥk+1 + Ĥk+1Ekf = W ∗
k+1Fkf − F ∗

kfWk+1 + O(ε2).(4.11)

Since Qk has the polar decomposition Qk = QHk and Q̂k satisfies (4.2), by Lemma 4.3

one also has Ĥk = Hk+O(ε), Wk = Q+O(ε). Based on these first order error results,
(4.9) and (4.11) can be expressed as

EkbHk + HkEkb = Q∗Fkb − F ∗
kbQ + O(ε2),(4.12)

EkfHk+1 + Hk+1Ekf = Q∗Fkf − F ∗
kfQ + O(ε2).(4.13)

Combining (4.8) and (4.10), one has

Wk+1 = Wk(I + Ekb + Ekf ) + O(ε2).

It follows by induction (with W0 = Q) that

Wj = Q(I + Ej) + O(ε2), j > 0,

where

Ej =

j−1∑
k=0

(Ekb + Ekf ).(4.14)

Suppose that Algorithm 3.1 applied to a nonsingular matrix A ∈ C
n×n, with polar

decomposition A = QH completes after p iterations in Step 1. We obtain Q̂p that

satisfies ||Q̂p− Q̂−∗
p ||2 ≤ ||Q̂p− Q̂−∗

p ||F < δ. With the polar decomposition Q̂p = WpĤp

and (2.2), we have (see the proof in Appendix A.3)

1

2
(Q̂p + Q̂−∗

p ) = Wp + ΔQ̂p,(4.15)

where

||ΔQ̂p||2 < δ2/8.
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Suppose δ is small. Step 2 of the algorithm produces approximate polar factors

Q̂ =
1

2
(Q̂p + Q̂−∗

p ) + F, Ĥ =
1

2

(
Q̂∗A + A∗Q̂ + K

)
,

where F accounts for rounding error forming Q̂ from Q̂p and K for rounding error

forming Ĥ from A and Q̂ obeying

||F || ≤ dF ε, ||K|| ≤ dKε||A||2,

with modest constants dF and dK . So we have

||Q̂−Wp||2 ≤ dF ε + δ2/8.(4.16)

Since Wp = Q(I + E) with E := Ep defined in (4.14), by (4.15),

Q̂ = Q(I + E) + ΔQ̂p + F = Q(I + E + L),(4.17)

where L = Q∗(ΔQ̂p + F ) satisfies

||L||2 ≤ dL max(ε, δ2)

for some modest constant dL, which combines the rounding error F and the effect of
stopping criterion. Both dL and dK may depend on n and the details of the finite
precision arithmetic and computational algorithm, but not on A, Q̂, or Ĥ. With
(4.17) and the fact that E is skew-Hermitian,

Ĥ =
1

2
((I + E + L)∗Q∗A + A∗Q(I + E + L) + K)

=
1

2
(1 − E + L∗)H + H(I + E + L) + K)

=
1

2
(2H − EH + HE + L∗H + HL + K).(4.18)

So by (4.17) and (4.18), to the first order,

Q̂Ĥ −A =
1

2
Q(I + E + L)(2H − EH + HE + L∗H + HL + K) −A

=
1

2
Q (2H − EH + HE + L∗H + HL + 2EH + 2LH + K) −A

+ O(||L||22) + O(ε||L||2) + O(ε2)

=
1

2
Q (EH + HE + L∗H + HL + 2LH + K) + O(max(ε2, εδ2, δ4)).

From (4.14) this expression can be written

Q̂Ĥ −A =
1

2
Q

p−1∑
k=0

(EkbH + HEkb + EkfH + HEkf )

+
1

2
Q(L∗H + HL + 2LH + K) + O(max(ε2, εδ2, δ4)).(4.19)

Note that so far the suboptimal scale factors have not played a role. In order
to continue the analysis, we need the following lemma which involves the suboptimal
scaling.
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Lemma 4.4. Let A ∈ C
n×n be a nonsingular matrix with singular value decompo-

sition UΣV ∗, Σ = diag(σ1, σ2, . . . , σn), and σ1 ≥ σ2 ≥ · · · ≥ σn. Consider Newton’s

iteration (2.1) with scaling (1.6) and initial iterate Σ0 = Σ. Let σ
(k)
j be the jth diago-

nal entry of Σk, and let σ
(k)
max = max1≤j≤n σ

(k)
j . If a, b satisfy 0 < a ≤ σn and b ≥ σ1,

then, for all k ≥ 0 and 1 ≤ i, j ≤ n,

σ
(k)
max

σ
(k)
i + σ

(k)
j

≤ b

σi + σj
.

Proof. See Appendix A.4.
Recall that Ekb, Ekf satisfy (4.12) and (4.13), respectively. Let

Hk = V ΣkV
∗

be an eigen-decomposition, where V is unitary and Σk is diagonal obeying (2.1).
(Recall that throughout the algorithm the singular vectors of the Qk’s are the singular
vectors of A. In particular, for all k, the unitary matrix of the right singular vectors
of A is also a unitary matrix of the eigenvectors of Hk.) In this notation, (4.12) and
(4.13) can be written

ẼkbΣk + ΣkẼkb = F̃kb − F̃ ∗
kb + O(ε2),

ẼkfΣk+1 + Σk+1Ẽkf = F̃kf − F̃ ∗
kf + O(ε2),

where

Ẽkb = V ∗EkbV, Ẽkf = V ∗EkfV, F̃kb = V ∗Q∗FkbV, F̃kf = V ∗Q∗FkfV.(4.20)

So, the (i, j)th entries of Ẽkb and Ẽkf are

ẽij,kb =
f̃ij,kb − f̃ji,kb

σ
(k)
i + σ

(k)
j

+ O(ε2), ẽij,kf =
f̃ij,kf − f̃ji,kf

σ
(k+1)
i + σ

(k+1)
j

+ O(ε2).(4.21)

Note that ||Ẽkj ||2 = ||Ekj ||2 and ||F̃kj ||2 = ||Fkj ||2 for j = b, f , because V and Q are
unitary.

Multiplying (4.19) on the left by V ∗ and on the right by V gives

V ∗(Q̂Ĥ −A)V =
1

2
V ∗QV

p−1∑
k=0

(
ẼkbΣ + ΣẼkb + ẼkfΣ + ΣẼkf

)

+
1

2
V ∗ (L∗H + HL + 2LH + K)V + O(max(ε2, εδ2, δ4)),

where Ẽkb and Ẽkf are given by (4.20). From (4.21), the (i, j)th entry of the sum∑p−1
k=0(ẼkbΣ + ΣẼkb + ẼkfΣ + ΣẼkf ) is

p−1∑
k=0

(ẽij,kb + ẽij,kf )(σi + σj)

=

p−1∑
k=0

(
f̃ij,kb − f̃ji,kb

σ
(k)
i + σ

(k)
j

+
f̃ij,kf − f̃ji,kf

σ
(k+1)
i + σ

(k+1)
j

)
(σi + σj) + O(ε2)

=

p−1∑
k=0

(
f̃ij,kb − f̃ji,kb

σ
(k)
max

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

+
f̃ij,kf − f̃ji,kf

σ
(k+1)
max

(σi + σj)σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

)

+ O(ε2).
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Inequalities (4.3) and (4.4) and Lemma 4.4 imply

∣∣∣∣∣
p−1∑
k=0

(ẽij,kb + ẽij,kf )(σi + σj)

∣∣∣∣∣
≤ 2ε

p−1∑
k=0

(
db

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

+ df
(σi + σj)σ

(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

)
+ O(ε2)

≤ 2pε(db + df )b + O(ε2).

Hence, the residual is bounded as

||Q̂Ĥ −A||2 ≤ ||Q
p−1∑
k=0

(EkbH + HEkb + EkfH + HEkf ) /2||2

+ ||Q(L∗H + HL + 2LH + K)/2||2 + O(max(ε2, εδ2, δ4))

≤ npε(db + df )b + (2dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4)).

In the same way, from (4.18) we can obtain

||Ĥ −H||2 ≤ ||(−EH + HE)/2||2 + ||(L∗H + HL + K)/2||2 + O(δ4)

≤ npε(db + df )b + (dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4)).

By applying Lemma 4.4 to (4.21) to estimate ||E||2, then from (4.17) we can derive

||Q̂−Q||2 ≤ ||QE||2 + ||QL||2 ≤ θnpε(db + df )b + dL max(ε, δ2),

where

θ =

{ 1
σn

A is complex,
2

σn−1+σn
A is real.

(4.22)

(The formula in the real case is based on the fact that ẽii,kb = ẽii,kf = 0 from (4.21).)
We present the above error analysis results as well as (4.16) in the following

theorem.
Theorem 4.5. Suppose that A ∈ C

n×n satisfies Assumption 4.2 and has the polar
decomposition A = QH. Let Q̂ and Ĥ be the matrices computed by Algorithm 3.1
after p iterations with a matrix inversion method that satisfies the error model in
Assumption 4.1. Then

||Q̂Ĥ −A||2 ≤ npε(db + df )b + (2dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4))

||Ĥ −H||2 ≤ npε(db + df )b + (dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4))

||Q̂−Q||2 ≤ θnpε(db + df )b + dL max(ε, δ2)

||Q̂−Wp||2 ≤ dF ε + δ2/8,

where db, df , dL, dK , dF are some modest constants, Wp is a unitary matrix, and θ is
defined in (4.22).

As noted in Table 2.1, in most practical situations p ≤ 9. Therefore, if b is not too
much greater than ||A||2 and the algorithm uses a stopping criterion δ not too much
greater than

√
ε, then the algorithm is backward stable.
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Corollary 4.6. If b = ||A||2 and δ = n
1
4
√
ε, then

||Q̂Ĥ −A||2 ≤ (np(db + df ) +
√
n(2dL + dK/2))ε||A||2 + O(ε2)

||Ĥ −H||2 ≤ (np(db + df ) +
√
n(dL + dK/2))ε||A||2 + O(ε2)

||Q̂−Q||2 ≤ np(db + df )ε(θ||A||2) +
√
ndLε

||Q̂−Wp||2 ≤ (dF +
√
n/8)ε.

Note that the error bounds for ||Ĥ−H||2 and ||Q̂−Q||2 coincide with the perturbation
results; see, for example, [8, 21, 20] and [11, section 8.2]. The quantity θ||A||2 serves
as the condition number for the perturbation of Q.

Remark 1. The same procedure can be used to give an error analysis for Newton’s
method with other scalings. Note that the backward stability depends on whether

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

= O(||A||2),(4.23)

which depends on scaling factors. From Remark 2 in Appendix A.4, (4.23) holds for
the optimal scaling (1.2). Lemma A.3 in Appendix A.5 shows that (4.23) also holds
for the (1,∞)-scaling (1.3) and the scaling (1.4). Therefore, Newton’s method with
these three scalings is also backward stable under the same conditions of Theorem 4.5
and an appropriate stopping criterion, when the number of iterations is not too large.
(See Remark 3 in Appendix A.5.)

We also observed that the numerical stability doesn’t necessarily depend on how
fast the method converges. In fact, one can show that when ||A||2 ≥ ||A−1||2, Newton’s
method without scaling (a = b = 1) computes a polar decomposition satisfying the
same error bounds given in Theorem 4.5.

5. Numerical examples. We did some numerical experiments with Newton’s
method (1.1) with scaling (1.6) using a = ||A−1||−1

F , b = ||A||F , and also with the
(1,∞)-scaling (1.3). The main purpose is to test the numerical stability results and
convergence rate and to compare the suboptimal scaling and (1,∞)-scaling. For this
reason we used the bidiagonal reduction matrix inversion method Algorithm BR for
computing matrix inverses.

All numerical experiments were done on a Dell personal computer with a Pentium-
IV processor, in Matlab version 7.2 with machine epsilon ε ≈ 2.22 × 10−16.

In the numerical experiments we use stopping criterion δ = n
1
4
√
ε, where n is

the size of matrices. For Newton’s method with the (1,∞)-scaling, the scale factor
is shifted to 1 when ||Xk+1 −Xk||F /||Xk+1||F < 10−2. Based on the results in Corol-

lary 4.6, if Q̂ and Ĥ are the computed unitary and Hermitian polar factors produced
by Algorithm 3.1, then we expect to observe that ||A− Q̂Ĥ||2/||A||2, ||H − Ĥ||2/||H||2,
and ||Q− Q̂||2/(θ||A||2) are not much larger than ε.

In the tables we will use the following notations:

eQ =
||Q− Q̂||2
θ||A||2

, eH =
||H − Ĥ||2

||H||2
, res =

||A− Q̂Ĥ||2
||A||2

, ror = ||Q̂∗Q̂− I||2,

where the “exact” factors Q and H for the matrices in the first example are obtained
from the SVD of A using Matlab’s variable precision arithmetic vpa with 24 signi-
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Table 5.1

The extreme values of errors, residuals, and iteration counts from Example 1.

kappa 102 108 1015

Min Max Min Max Min Max
p SUB 6 6 8 8 8 9

HSF 6 7 8 8 8 9
eQ SUB 2.6e−17 7.2e−17 7.4e−19 1.7e−17 6.9e−19 2.3e−17

HSF 2.2e−17 7.7e−17 7.4e−19 1.7e−17 6.9e−19 2.3e−17
eH SUB 2.2e−16 4.1e−16 2.5e−16 4.1e−16 1.9e−16 4.4e−16

HSF 1.7e−16 3.9e−16 1.9e−16 3.9e−16 2.2e−16 4.0e−16
res SUB 4.1e−16 8.9e−16 4.0e−16 7.5e−16 3.5e−16 6.3e−16

HSF 3.5e−16 8.2e−16 2.7e−16 5.9e−16 3.9e−16 7.2e−16
ror SUB 7.9e−16 1.1e−15 8.0e−16 1.1e−15 7.8e−16 1.3e−15

HSF 7.0e−16 1.2e−15 7.9e−16 1.2e−15 8.2e−16 1.1e−15

Table 5.2

Errors, residuals, and iteration counts for Hilbert matrices from Example 2.

n 6 8 10 12 14
p SUB 8 8 9 9 9

HSF 7 8 8 9 9
eQ SUB 1.2e−18 1.6e−19 2.7e−19 4.1e−19 2.0e−17

HSF 1.2e−18 1.6e−19 2.7e−19 4.1e−19 2.0e−17
eH SUB 2.3e−16 1.9e−16 8.7e−17 1.4e−16 2.3e−16

HSF 1.9e−16 1.4e−16 8.7e−17 1.6e−16 2.7e−16
res SUB 2.6e−16 2.4e−16 1.8e−16 3.0e−16 3.8e−16

HSF 2.5e−16 2.5e−16 1.8e−16 3.3e−16 6.3e−16
ror SUB 2.6e−16 3.9e−16 6.2e−16 6.3e−16 6.5e−16

HSF 2.8e−16 5.3e−16 6.8e−16 8.5e−16 1.0e−15

ficant decimal digits. p is the number of iterations, and n is the dimension of matrices.
The symbol “HSF” refers to Newton’s method (1.1) with Higham’s (1,∞)-scaling.
The symbol “SUB” refers to (1.1) with scaling (1.6) using the Frobenius norms for
the initial interval, i.e., a = ||A−1||−1

F and b = ||A||F .
Example 1. Three groups of twenty real matrices were constructed with dimen-

sion 20 by using Matlab’s gallery(’randsvd’,20,kappa,5), with kappa equal to
102, 108, 1015, respectively. The singular values of the generated matrices are ran-
dom values with uniformly distributed logarithm. For each group the ranges of the
condition numbers κ2(A) and θ||A||2 are listed below:
kappa = 102 : κ2(A) ∈ [37.7, 90.6], θ||A||2 ∈ [33.5, 83.7],
kappa = 108 : κ2(A) ∈ [1.13, 6.75] × 107, θ||A||2 ∈ [0.2, 5.44] × 107,
kappa = 1015 : κ2(A) ∈ [6.35× 1010, 7.53× 1014], θ||A||2 ∈ [1.78× 1010, 5.22× 1014].

The test results are summarized in Table 5.1, where, for each group, the minimum
and maximum values of the errors, residuals, and numbers of iterations are listed.

Example 2. In this example the test matrices are the Hilbert matrices, which are
n× n matrices with entries aij = 1/(i + j − 1). The example uses dimensions n = 6,
n = 8, n = 10, n = 12, and n = 14. For every Hilbert matrix, the polar decomposition
is An = InAn.

The condition number κ2(An) ranges from 1.5 × 107 to 5.1 × 1017, and θ||An||2
ranges from 2.6 × 105 to 1.0 × 1017. The test results are reported in Table 5.2.

Newton’s method with the suboptimal scaling performed well in both examples
calculating the polar factors to nearly full precision. As predicted it takes at most 9
iterations. Newton’s method with the (1,∞)-scaling performs equally well.
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6. Conclusion. The suboptimal scaling scheme (1.6) is essentially costless and
simplifies the algorithm of Newton’s iteration (1.1) for computing polar factors. In a
typical floating point system, with this scaling scheme, for matrices with κ2(A) < 1016,
no more than 9 iterations are needed for convergence to the unitary polar factor
with a convergence tolerance roughly equal to the machine epsilon. By employing
the bidiagonal factorization for matrix inversion, (1.1) with (1.6) forms a provably
backward stable algorithm. Newton’s method with (1,∞)-scaling and scaling (1.4) is
also proved to be backward stable, provided the number of iterations is not too large.

Appendix A.

A.1. Bidiagonal reduction-based matrix inversion algorithm.
Algorithm BR.
Input: Nonsingular matrix A ∈ C

n×n

Output: G = A−1

Step 1: Compute A = UBV ∗, with U, V unitary and B upper bidiagonal.
Step 2: Solve BY = U∗ for Y by back substitution.
Step 3: Compute G = V Y .

In Step 1 one may use the Householder reflectors to perform the reduction. The
reduction needs 8

3n
3 flops and computing U needs 4

3n
3 flops. The matrix V is stored

in factorized form. The cost for solving the matrix equation is O(n2) flops. With the
factorized form of V , it needs 2n3 flops to compute G. So the total cost is 6n3 flops.

In order to show that a matrix inverse computed by Algorithm BR follows As-
sumption 4.1, we need the following lemma.

Lemma A.1. Consider the system Bx = z, where z ∈ C
n and B is nonsingular

and upper bidiagonal denoted by

B =

⎡
⎢⎢⎢⎢⎣

α1 β1 0
. . .

. . .

. . . βn−1

0 αn

⎤
⎥⎥⎥⎥⎦ .

Let x̂ be the numerical solution with back substitution. Then x̂ satisfies

x̂ = B−1(z + δz) + δx,

where

|δz| ≤ 3nε|z| + O(ε2), |δx| ≤ 3nε|x̂| + O(ε2).

Proof. The components of the computed vector x̂ can be formulated as

x̂n =
zn

αn(1 + εn)
, x̂k =

zk(1 + δk) − βkx̂k+1

αk(1 + εk)
, 1 ≤ k ≤ n− 1,

where |εn|, |δk| < ε, |εk| < 3ε, k ≤ n− 1. So we have

αnx̂n(1 + εn) = zn

αn−1x̂n−1(1 + εn−1) + βn−1x̂n = zn−1(1 + δn−1)

...(A.1)

α1x̂1(1 + ε1) + β1x̂2 = z1(1 + δ1).
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Define x̃ = [x̃1, . . . , x̃n]T , z̃ = [z̃1, . . . , z̃n]T , with

x̃n = x̂n(1 + εn), x̃n−1 = x̂n−1(1 + εn−1)(1 + εn), . . . , x̃1 = x̂1

n∏
k=1

(1 + εk),

z̃n = zn, z̃n−1 = zn−1(1 + δn−1)(1 + εn), . . . , z̃1 = z1(1 + δ1)

n∏
k=2

(1 + εk).

By multiplying (1+εn) to the second equation, (1+εn)(1+εn−1) to the third equation,
and so on in (A.1), we obtain that x̃ and z̃ satisfy

Bx̃ = z̃.

Let δz = z̃ − z, and δx = x̂− x̃. Then from x̃ = B−1z̃ we have

x̂ = B−1(z + δz) + δx.

The error bounds for |δx| and |δz| follow simply from the definitions.
Theorem A.2. Let X be the inverse of A computed by Algorithm BR. Then X

satisfies Assumption 4.1.
Proof. We only consider the first order errors.
Let Û B̂V̂ ∗ be the computed bidiagonal factorization of A. Then Û = U + ΔU1,

V̂ = V + ΔV1, where U, V are unitary and ||ΔU1||2 ≤ d1ε, ||ΔV1||2 ≤ d2ε, and

UB̂V ∗ = A + E,

where ||E||2 ≤ d3ε||A||2 for some modest constants d1, d2, d3. Let Ŷ be the numerical
solution of B̂Y = Û∗ computed by back substitution. By Lemma A.1,

Ŷ = B̂−1(Û∗ + ΔU2) + ΔY,

where

||ΔU2||2 ≤ 3n
3
2 ε, ||ΔY ||2 ≤ 3n

3
2 ε||Ŷ ||2.

Let X be the computed matrix product V̂ Ŷ . We have

X = V̂ Ŷ + ΔX,

where ||ΔX||2 ≤ d4ε||Ŷ ||2 for some modest constant d4. Now

X = V̂ B̂−1(Û∗ + ΔU2) + V̂ ΔY + ΔX = V̂ B̂−1Û∗ + V̂ B̂−1ΔU2 + V̂ ΔY + ΔX

=: V B̂−1U∗ + F = (A + E)−1 + F,

where

F = ΔV1B̂
−1U∗ + V B̂−1(ΔU1)

∗ + V̂ B̂−1ΔU2 + V̂ ΔY + ΔX.

It is easily verified that ||F ||F ≤ (6n
3
2 + d1 + d2 + d4)ε||A−1||2.
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A.2. Proof of Lemma 4.3. Equations (4.5) and (4.7) are established in the
proof of Theorem 2.5 in [8]. Here we slightly modify that proof to establish (4.6).

Let A(t) = A + tF have polar decompositions Q(t)H(t). Note that H(t) =
(A(t)∗A(t))1/2 (positive definite square root) and Q(t) = A(t)H(t)−1 are sums, dif-
ferences, products, quotients, and compositions with C∞ functions of the entries of
A(t), which is trivially a C∞ function. Hence, Q(t) and H(t) are also C∞. (Here we
use the fact that A is nonsingular to observe that H(t) = (A(t)∗A(t))1/2 avoids the
singularity of the square root at zero.) Using Q̇ and Ḣ to denote differentiation by t,
Taylor’s theorem implies that

Q(t) = Q(0) + tQ̇(0) + O(t2) = Q(I + tQ∗Q̇(0)) + O(t2)

H(t) = H(0) + tḢ(0) + O(t2).

The proof of Theorem 2.5 in [8] shows Ḣ(0) = G = G∗, with G given by (4.5) and
Q∗(0)Q̇(0) = E = −E∗, with E given by (4.7).

Differentiate A + tF = Q(t)H(t) to get F = Q̇H + QḢ. Evaluating at t = 0,
letting E = Q∗(0)Q̇(0), G = Ḣ(0) gives Q∗F = EH + G. Using the facts that E is
skew-Hermitian and G is Hermitian while subtracting this equation to its Hermitian
transpose gives (4.6). The Lyapunov operator on the right is nonsingular, because A
nonsingular implies that the eigenvalues of the Hermitian polar factor H are real and
positive. Hence, the solution E is unique.

A.3. Proof for (4.15). Let Q̂p = UpΣpV
∗
p be the SVD. Recall that the singular

values satisfy σ
(p)
i ≥ 1. Then ||Q̂p − Q̂−∗

p ||2 < δ implies that

σ
(p)
i − 1

σ
(p)
i

< δ, i = 1, 2, . . . , n.

Because

σ
(p)
i − 1

σ
(p)
i

=
(σ

(p)
i + 1)(σ

(p)
i − 1)

σ
(p)
i

,

we have

σ
(p)
i − 1 <

δσ
(p)
i

σ
(p)
i + 1

.

Then

1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1 =

(σ
(p)
i − 1)2

2σ
(p)
i

<
σ

(p)
i

2(σ
(p)
i + 1)2

δ2.

Since the function x/(x+1)2 is decreasing when x ≥ 1, we have σ
(p)
i /(σ

(p)
i +1)2 ≤ 1/4.

Hence

1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1 < δ2/8

and using Wp = UpV
∗
p ,

||ΔQ̂p||2 = ||(Q̂p + Q̂−∗
p )/2 −Wp||2 = ||Up((Σp + Σ−1

p )/2 − I)V ∗
p ||2

= max
i

(
1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1

)
< δ2/8.
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A.4. Proof of Lemma 4.4. By (2.4), σ
(k)
max ≤ bk for k ≥ 0.

So we only need to show that

bk

σ
(k)
i + σ

(k)
j

≤ b

σi + σj
, k ≥ 0.

An easy calculation shows, for all i and j,

σ
(k)
i + σ

(k)
j =

ζk−1

2
(σ

(k−1)
i + σ

(k−1)
j )

(
1 +

1

ζ2
k−1σ

(k−1)
i σ

(k−1)
j

)
.

Recall bk satisfies

bk =
1

2

(
ζk−1bk−1 +

1

ζk−1bk−1

)
=

ζk−1

2
bk−1

(
1 +

1

ζ2
k−1b

2
k−1

)
.

Because σ
(k−1)
i σ

(k−1)
j ≤ b2k−1,

bk

σ
(k)
i + σ

(k)
j

=

ζk−1

2 bk−1

(
1 + 1

ζ2
k−1b

2
k−1

)

ζk−1

2 (σ
(k−1)
i + σ

(k−1)
j )

(
1 + 1

ζ2
k−1σ

(k−1)
i σ

(k−1)
j

)

≤ bk−1

σ
(k−1)
i + σ

(k−1)
j

.

An easy induction on k now implies that

bk

σ
(k)
i + σ

(k)
j

≤ b0

σ
(0)
i + σ

(0)
j

=
b

σi + σj
, k ≥ 0.

Remark 2.

1. The condition a ≤ ||A−1||−1
2 is essential for proving Lemma 4.4. Without it

one may not have the inequality σ
(k)
j ≤ bk, and the result cannot be proved.

2. In the case that the optimal scaling is employed, bk = σ
(k)
max, and one has the

same result.

A.5. Relation (4.23) for the scalings (1.3) and (1.4).
Lemma A.3. Suppose that the matrix sequence Qk is generated by Newton’s

iteration with scaling ζk that is either ζ
(1,∞)
k in (1.3) or ζ

(F )
k in (1.4). The singular

values of Qk satisfy

σ
(k)
max

σ
(k)
i + σ

(k)
j

≤
(

k−1∏
�=0

ψ�

)
||A||2

σi + σj
≤ n

k
2

||A||2
σi + σj

, k ≥ 0, 1 ≤ i, j ≤ n,(A.2)

where ψ� = max{1, 1

ζ2
�σ

(�)
maxσ

(�)
min

} ≤
√
n.

Proof. Let

wk =
1

ζ2
kσ

(k)
minσ

(k)
max

, k ≥ 0.
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If

ζk = ζ
(1,∞)
k =

4

√
||Q−1

k ||1||Q−1
k ||∞

||Qk||1||Qk||∞
,

using the inequalities ||A||2 ≤
√
||A||1||A||∞ ≤

√
n||A||2, we have ([11, p. 208])

1
4
√
n
ζk ≤ 1√

σ
(k)
minσ

(k)
max

≤ 4
√
n ζk.(A.3)

If

ζk = ζ
(F )
k =

√
||Q−1

k ||F
||Qk||F

,

using the inequalities ||A||2 ≤ ||A||F ≤
√
n ||A||2, we also have (A.3).

So in both cases we have

1√
n
≤ wk ≤

√
n.

Construct an interval [ak, bk] according to the rule

ak = σ
(k)
minwk, bk = σ

(k)
max, wk ≤ 1,

ak = σ
(k)
min, bk = σ

(k)
maxwk, wk ≥ 1.

Because ak ≤ σ
(k)
min and bk ≥ σ

(k)
max, we have σ

(k)
1 , . . . , σ

(k)
n ∈ [ak, bk]. Also, in both

cases we have (ζkak)
−1 = ζkbk. So ρ(ζkak) = ρ(ζkbk) and

σ
(k+1)
j = ρ(ζkσ

(k)
j ) ∈ ρ(ζk[ak, bk]) = [1, ρ(ζkbk)], j = 1, 2, . . . , n.

Since

ρ(ζkbk) =
1

2

(
ζkbk +

1

ζkbk

)
=

ζkbk
2

(
1 +

1

(ζkbk)2

)
,

we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ ρ(ζkbk)

σ
(k+1)
i + σ

(k+1)
j

=

ζkbk
2

(
1 + 1

(ζkbk)2

)

ζk
2 (σ

(k)
i + σ

(k)
j )

(
1 + 1

ζ2
kσ

(k)
i σ

(k)
j

)

=
bk

(
1 + 1

(ζkbk)2

)

(σ
(k)
i + σ

(k)
j )

(
1 + 1

ζ2
kσ

(k)
i σ

(k)
j

) .

If wk ≤ 1, then bk = σ
(k)
max. Because σ

(k)
i σ

(k)
j ≤

(
σ

(k)
max

)2

= b2k, we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ bk

σ
(k)
i + σ

(k)
j

=
σ

(k)
max

σ
(k)
i + σ

(k)
j

.
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If wk ≥ 1, then bk = σ
(k)
maxwk. Because σ

(k)
i σ

(k)
j ≤

(
σ

(k)
max

)2

≤ b2k, we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ bk

σ
(k)
i + σ

(k)
j

= wk
σ

(k)
max

σ
(k)
i + σ

(k)
j

.

Hence

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ ψk
σ

(k)
max

σ
(k)
i + σ

(k)
j

, ψk = max{1, wk} ≤
√
n.

Then the inequalities in (A.2) can be easily derived.

Remark 3. Suppose that Newton’s method with scaling ζ
(1,∞)
k or ζ

(F )
k terminates

after p iterations. We have the same error bounds as in Theorem 4.5 but with a factor
n

p
2 in the first term of the bounds for ||Q̂Ĥ −A||2, ||Ĥ −H||2, and ||Q̂−Q||2. When n

and p are both large, this factor is notably large, and one may not be able to use the
bounds to claim backward stability. Unfortunately, we are unable to provide an upper
bound for p, although it is observed that p is usually moderate in practice (p ≤ 9 for
the (1,∞)-scaling for all examples in section 5).

However, we argue that the factor n
p
2 is an overestimate. The point is that, when

Qk is getting close to a unitary matrix, ζ
(1,∞)
k and ζ

(F )
k are getting close to 1. Then

wk as well as ψk will be close to 1. So in practice wk will be around 1 after a couple
of iterations.

Acknowledgments. We thank Nick Higham for detailed suggestions and send-
ing part of his unpublished book [11]. We thank Andrzej Kie�lbasiński for pointing out
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RELATIVE-ERROR CUR MATRIX DECOMPOSITIONS∗

PETROS DRINEAS† , MICHAEL W. MAHONEY‡ , AND S. MUTHUKRISHNAN§

Abstract. Many data analysis applications deal with large matrices and involve approximating
the matrix using a small number of “components.” Typically, these components are linear combi-
nations of the rows and columns of the matrix, and are thus difficult to interpret in terms of the
original features of the input data. In this paper, we propose and study matrix approximations
that are explicitly expressed in terms of a small number of columns and/or rows of the data matrix,
and thereby more amenable to interpretation in terms of the original data. Our main algorithmic
results are two randomized algorithms which take as input an m×n matrix A and a rank parameter
k. In our first algorithm, C is chosen, and we let A′ = CC+A, where C+ is the Moore–Penrose
generalized inverse of C. In our second algorithm C, U , R are chosen, and we let A′ = CUR. (C
and R are matrices that consist of actual columns and rows, respectively, of A, and U is a gen-
eralized inverse of their intersection.) For each algorithm, we show that with probability at least
1 − δ, ‖A − A′‖F ≤ (1 + ε) ‖A − Ak‖F , where Ak is the “best” rank-k approximation provided by
truncating the SVD of A, and where ‖X‖F is the Frobenius norm of the matrix X. The number of
columns of C and rows of R is a low-degree polynomial in k, 1/ε, and log(1/δ). Both the Numerical
Linear Algebra community and the Theoretical Computer Science community have studied variants
of these matrix decompositions over the last ten years. However, our two algorithms are the first
polynomial time algorithms for such low-rank matrix approximations that come with relative-error
guarantees; previously, in some cases, it was not even known whether such matrix decompositions
exist. Both of our algorithms are simple and they take time of the order needed to approximately
compute the top k singular vectors of A. The technical crux of our analysis is a novel, intuitive
sampling method we introduce in this paper called “subspace sampling.” In subspace sampling, the
sampling probabilities depend on the Euclidean norms of the rows of the top singular vectors. This
allows us to obtain provable relative-error guarantees by deconvoluting “subspace” information and
“size-of-A” information in the input matrix. This technique is likely to be useful for other matrix
approximation and data analysis problems.

Key words. CUR matrix decomposition, random sampling algorithms, data analysis, approxi-
mate least squares
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1. Introduction. Large m × n matrices are common in applications since the
data often consist of m objects, each of which is described by n features. Examples
of object–feature pairs include: documents and words contained in those documents;
genomes and environmental conditions under which gene responses are measured;
stocks and their associated temporal resolution; hyperspectral images and frequency
resolution; and web groups and individual users. In each of these application areas,
practitioners spend vast amounts of time analyzing the data in order to understand,
interpret, and ultimately use this data for some application-specific task.
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Say that A is the m× n data matrix. In many cases, an important step in data
analysis is to construct a compressed representation of A that may be easier to ana-
lyze and interpret. The most common such representation is obtained by truncating
the SVD at some number k � min{m,n} terms, in large part because this provides
the “best” rank-k approximation to A when measured with respect to any unitarily
invariant matrix norm. Unfortunately, the basis vectors (the so-called eigencolumns
and eigenrows) provided by this approximation (and with respect to which every col-
umn and row of the original data matrix is expressed) are notoriously difficult to
interpret in terms of the underlying data and processes generating that data. For
example, the vector [(1/2) age − (1/

√
2) height + (1/2) income], being one of the

significant uncorrelated “factors” from a dataset of people’s features, is not partic-
ularly informative. It would be highly preferable to have a low-rank approximation
that is nearly as good as that provided by the SVD but that is expressed in terms of
a small number of actual columns and/or actual rows of a matrix, rather than linear
combinations of those columns and rows.

The main contribution of this paper is to provide such decompositions. In par-
ticular, we provide what we call a relative-error CUR matrix decomposition: given an
m×n matrix A, we decompose it as a product of three matrices, C, U , and R, where
C consists of a small number of actual columns of A, R consists of a small number of
actual rows of A, and U is a small carefully constructed matrix that guarantees that
the product CUR is “close” to A. In fact, CUR will be nearly as good as the best
low-rank approximation to A that is traditionally used and that is obtained by trun-
cating the SVD. Hence, the columns of A that are included in C, as well as the rows
of A that are included in R, can be used in place of the eigencolumns and eigenrows,
with the added benefit of improved interpretability in terms of the original data.

Before describing applications of our main results in the next subsection, we would
like to emphasize that two research communities, the Numerical Linear Algebra (NLA)
community and the Theoretical Computer Science (TCS) community, have provided
significant practical and theoretical motivation for studying variants of these matrix
decompositions over the last ten years. In section 3, we provide a detailed treatment
of relevant prior work in both the NLA and the TCS literature. The two algorithms
presented in this paper are the first polynomial time algorithms for such low-rank
matrix approximations that come with relative-error guarantees; previously, in some
cases, it was not even known whether such matrix decompositions exist.

1.1. Applications. As an example of this preference for having the data matrix
expressed in terms of a small number of actual columns and rows of the original matrix,
as opposed to a small number of eigencolumns and eigenrows, consider recent data
analysis work in DNA microarray and DNA Single Nucleotide Polymorphism (SNP)
analysis [44, 47, 52]. DNA SNP data are often modeled as an m×n matrix A, where
m is the number of individuals in the study, n is the number of SNPs being analyzed,
and Aij is an encoding of the jth SNP value for the ith individual. Similarly, for DNA
microarray data, m is the number of genes under consideration, n is the number of
arrays or environmental conditions, and Aij is the absolute or relative expression
level of the ith gene in the jth environmental condition. Biologists typically have
an understanding of a single gene that they fail to have about a linear combination
of 6000 genes (and also similarly for SNPs, individuals, and arrays); thus, recent
work in genetics on DNA microarray and DNA SNP data has focused on heuristics
to extract actual genes, environmental conditions, individuals, and SNPs from the
eigengenes, eigenconditions, eigenpeople, and eigenSNPs computed from the original
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data matrices [44, 47].1 Our CUR matrix decomposition is a direct formulation of this
problem: determine a small number of actual SNPs that serve as a basis with which
to express the remaining SNPs, and a small number of individuals to serve as a basis
with which to express the remaining individuals. In fact, motivated in part by this,
we have successfully applied a variant of the CUR matrix decomposition presented in
this paper to intra- and interpopulation genotype reconstruction from tagging SNPs in
DNA SNP data from a geographically diverse set of populations [52]. In addition, we
have applied a different variant of our CUR matrix decomposition to hyperspectrally
resolved medical imaging data [48]. In this application, a column corresponds to
an image at a single physical frequency and a row corresponds to a single spectrally
resolved pixel, and we have shown that data reconstruction and classification tasks can
be performed with little loss in quality even after substantial data compression [48].

A quite different motivation for low-rank matrix approximations expressed in
terms of a small number of columns and/or rows of the original matrix is to decom-
pose efficiently large low-rank matrices that possess additional structure such as spar-
sity or nonnegativity. This often arises in the analysis of, e.g., large term-document
matrices [58, 59, 8]. Another motivation comes from statistical learning theory, where
the data need not even be elements in a vector space, and thus expressing the Gram
matrix in terms of a small number of actual data points is of interest [64, 63, 24, 25].
This procedure has been shown empirically to perform well for approximate Gaussian
process classification and regression [64], to approximate the solution of spectral par-
titioning for image and video segmentation [32], and to extend the eigenfunctions of a
data-dependent kernel to new data points [7, 45]. Yet another motivation is provided
by integral equation applications [40, 39, 38], where large coefficient matrices arise
that have blocks corresponding to regions where the kernel is smooth and that are
thus well-approximated by low-rank matrices. In these applications, partial SVD al-
gorithms can be expensive, and a description in terms of actual columns and/or rows
is of interest [39, 38]. A final motivation for studying matrix decompositions of this
form is to obtain low-rank matrix approximations to extremely large matrices where
a computation of the SVD is too expensive [33, 34, 21, 22, 23].

1.2. Our main results. Our main algorithmic results have to do with efficiently
computing low-rank matrix approximations that are explicitly expressed in terms of a
small number of columns and/or rows of the input matrix. We start with the following
definition.

Definition 1. Let A be an m × n matrix. For any given C, an m × c matrix
whose columns consist of c columns of the matrix A, the m × n matrix A′ = CX is
a column-based matrix approximation to A, or CX matrix decomposition, for any
c× n matrix X.

Several things should be noted about this definition. First, we will be interested
in c � n in our applications. For example, depending on the application, c could be
constant, independent of n, logarithmic in the size of n, or simply a large constant
factor less than n. Second, a CX matrix decomposition expresses each of the columns

1For example, in their review article “Vector algebra in the analysis of genome-wide expression
data” [44], which appeared in Genome Biology, Kuruvilla, Park, and Schreiber describe many uses
of the vectors provided by the SVD and PCA in DNA microarray analysis. The three biologists then
conclude by stating that: “While very efficient basis vectors, the vectors themselves are completely
artificial and do not correspond to actual (DNA expression) profiles. ... Thus, it would be interesting
to try to find basis vectors for all experiment vectors, using actual experiment vectors and not artificial
bases that offer little insight.” That is, they explicitly state that they would like decompositions of
the form we provide in this paper!



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RELATIVE-ERROR CUR MATRIX DECOMPOSITIONS 847

of A in terms of a linear combination of “dictionary elements” or “basis columns,”
each of which is an actual column of A. Thus, a CX matrix decomposition provides
a low-rank approximation to the original matrix, although one with structural prop-
erties that are quite different than those provided by the SVD. Third, given a set of
columns C, the approximation A′ = PCA = CC+A (where PCA is the projection
of A onto the subspace spanned by the columns of C and C+ is the Moore–Penrose
generalized inverse of C, as defined in section 2) clearly satisfies the requirements of
Definition 1. Indeed, this is the “best” such approximation to A, in the sense that
‖A− C (C+A)‖F = minX∈Rc×n ‖A− CX‖F .

Our first main result is the following.
Theorem 1. Given a matrix A ∈ R

m×n and an integer k � min{m,n}, there
exist randomized algorithms such that either exactly c = O(k2 log(1/δ)/ε2) columns
of A are chosen to construct C, or c = O(k log k log(1/δ)/ε2) columns are chosen in
expectation to construct C, such that with probability at least 1 − δ,

(1) min
X∈Rc×n

‖A− CX‖F =
∥∥A− CC+A

∥∥
F
≤ (1 + ε) ‖A−Ak‖F .

Here, C is a matrix consisting of the chosen columns of A, CC+A is the projection of
A on the subspace spanned by the chosen columns, and Ak is the best rank-k approxi-
mation to A. Both algorithms run in time O(SV D(A, k)), which is the time required
to compute the best rank-k approximation to the matrix A [37].

Note that we use c > k and have an ε error, which allows us to take advantage
of linear algebraic structure in order to obtain an efficient algorithm. In general, this
would not be the case if, given an m × n matrix A, we had specified a parameter
k and asked for the “best” subset of k columns, where “best” is measured, e.g.,
by maximizing the Frobenius norm captured by projecting onto those columns or
by maximizing the volume of the parallelepiped defined by those columns. Also, it
is not clear a priori that C with properties above even exists; see the discussion in
sections 3.2 and 3.3. Finally, our result does not include any reference to regularization
or conditioning, as is common in certain application domains; a discussion of similar
work on related problems in numerical linear algebra may be found in section 3.1.

Our second main result extends the previous result to CUR matrix decomposi-
tions.

Definition 2. Let A be an m × n matrix. For any given C, an m × c matrix
whose columns consist of c columns of the matrix A, and R, an r × n matrix whose
rows consist of r rows of the matrix A, the m × n matrix A′ = CUR is a column-
row-based matrix approximation to A, or CUR matrix decomposition, for any c× r
matrix U .

Several things should be noted about this definition. First, a CUR matrix de-
composition is a CX matrix decomposition, but one with a very special structure;
i.e., every column of A can be expressed in terms of the basis provided by C using
only the information contained in a small number of rows of A and a low-dimensional
encoding matrix. Second, in terms of its singular value structure, U must clearly con-
tain “inverse-of-A” information. For the CUR decomposition described in this paper,
U will be a generalized inverse of the intersection between C and R. More precisely,
if C = ASCDC and R = DRS

T
RA, then U = (DRS

T
RASCDC)+. (See section 2 for a

review of linear algebra and notation, such as that for SC , DC , SR, and DR.) Third,
the combined size of C, U , and R is O(mc + rn + cr), which is an improvement over
A’s size of O(mn) when c, r � n,m. Finally, note the structural simplicity of a CUR
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matrix decomposition:

(2)

⎛
⎜⎜⎜⎜⎝ A

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
m×n

≈

⎛
⎜⎜⎜⎜⎝ C

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
m×c

⎛
⎝ U

⎞
⎠

︸ ︷︷ ︸
c×r

⎛
⎝ R

⎞
⎠

︸ ︷︷ ︸
r×n

.

Our main result for CUR matrix decomposition is the following.
Theorem 2. Given a matrix A ∈ R

m×n and an integer k � min{m,n}, there
exist randomized algorithms such that exactly c = O(k2 log(1/δ)/ε2) columns of A are
chosen to construct C, and then exactly r = O(c2 log(1/δ)/ε2) rows of A are chosen to
construct R, or c = O(k log k log(1/δ)/ε2) columns of A in expectation are chosen to
construct C, and then r = O(c log c log(1/δ)/ε2) rows of A in expectation are chosen
to construct R, such that with probability at least 1 − δ,

(3) ‖A− CUR‖F ≤ (1 + ε) ‖A−Ak‖F .

Here, the matrix U is a weighted Moore–Penrose inverse of the intersection between
C and R, and Ak is the best rank-k approximation to A. Both algorithms run in time
O(SV D(A, k)), which is the time required to compute the best rank-k approximation
to the matrix A [37].

1.3. Summary of main technical result. The key technical insight that leads
to the relative-error guarantees is that the columns are selected by a novel sampling
procedure that we call “subspace sampling.” Rather than sample columns from A
with a probability distribution that depends on the Euclidean norms of the columns
of A (which gives provable additive-error bounds [21, 22, 23]), in “subspace sampling”
we randomly sample columns of A with a probability distribution that depends on the
Euclidean norms of the rows of the top k right singular vectors of A. This allows us
to capture entirely a certain subspace of interest. Let VA,k be the n×k matrix whose
columns consist of the top k right singular vectors of A. The “subspace sampling”
probabilities pi, i ∈ [n] will satisfy

(4) pi ≥
β
∣∣∣(VA,k)(i)

∣∣∣2
2

k
∀i ∈ [n],

for some β ∈ (0, 1], where (VA,k)(i) is the ith row of VA,k. That is, we will sample based
on the norms of the rows (not the columns) of the truncated matrix of singular vectors.
Note that

∑n
j=1 |(VA,k)(j)|22 = k and that

∑
i∈[n] pi = 1. To construct sampling

probabilities satisfying Condition (4), it is sufficient to spend O(SV D(A, k)) time to
compute (exactly or approximately, in which case β = 1 or β < 1, respectively) the
top k right singular vectors of A. Sampling probabilities of this form will allow us to
deconvolute subspace information and “size-of-A” information in the input matrix A,
which in turn will allow us to obtain the relative-error guarantees we desire. Note that
we have used this method previously [29], but in that case the sampling probabilities
contained other terms that complicated their interpretation.

We will use these “subspace sampling” probabilities in our main technical result,
which is a random sampling algorithm for approximating the following generalized
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version of the standard �2 regression problem. Our main column/row-based approx-
imation algorithmic results will follow from this result. Given as input a matrix
A ∈ R

m×n that has rank no more than k and a matrix of target vectors B ∈ R
m×p

compute

(5) Z = min
X∈Rn×p

‖B −AX‖F .

That is, fit every column of the matrix B to the basis provided by the columns of the
rank-k matrix A. Also of interest is the computation of

(6) Xopt = A+B.

The main technical result of this paper is a simple sampling algorithm that represents
the matrices A and B by a small number of rows so that this generalized �2 regression
problem can be solved to accuracy 1 ± ε for any ε > 0.

More precisely, we present and analyze an algorithm (Algorithm 3 of section 6)
that constructs and solves an induced subproblem of the generalized �2 regression
problem of (5) and (6). Let DSTA be the r × n matrix consisting of the sampled
and appropriately rescaled rows of the original matrix A, and let DSTB be the r× p
matrix consisting of the sampled and appropriately rescaled rows of B. Then consider
the problem

(7) Z̃ = min
X∈Rn×p

∥∥DSTB −DSTAX
∥∥
F
.

The “smallest” matrix X̃opt ∈ R
n×p among those that achieve the minimum value Z̃

in this sampled �2 regression problem is

(8) X̃opt =
(
DSTA

)+
DSTB.

Since we will sample a number of rows r � m of the original problem, we will com-
pute (8), and thus (7), exactly. Our main theorem, Theorem 5, states that under
appropriate assumptions on the original problem and on the sampling probabilities,
the computed quantities Z̃ and X̃opt will provide very accurate relative-error approx-
imations to the exact solution Z and the optimal vector Xopt. Rows will be sampled
with one of two random sampling procedures. In one case, exactly r = O(k2/ε2) rows
are chosen, and in the other case, r = O(k log k/ε2) rows in expectation are chosen.
In either case, the most expensive part of the computation involves the computation
of the Euclidean norms of the rows of the right singular vectors of A which are used
in the sampling probabilities.

1.4. Outline of the remainder of the paper. In the next two sections, we
provide a review of relevant linear algebra, and we discuss related work. Then, in
sections 4 and 5, we present in detail our main algorithmic results. In section 4, we
describe our main column-based matrix approximation algorithm, and in section 5,
we describe our main column-row-based matrix approximation algorithm. Then, in
section 6, we present an approximation algorithm for generalized �2 regression. This
is our main technical result, and from it our two main algorithmic results will follow.
Finally, in section 7 we present an empirical evaluation of our algorithms, and in
section 8 we present a brief conclusion. We devote Appendix A to two prior algorithms
for approximate matrix multiplication. These two algorithms select columns and rows
in a complementary manner, and they are essential in the proof of our main results.
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2. Review of linear algebra. In this section, we provide a review of linear
algebra that will be useful throughout the paper; for more details, see [50, 43, 60,
37, 9, 6]. We also review a sampling matrix formalism that will be convenient in our
discussion [21].

Let [n] denote the set {1, 2, . . . , n}. For any matrix A ∈ R
m×n, let A(i), i ∈ [m]

denote the ith row of A as a row vector, and let A(j), j ∈ [n] denote the jth column

of A as a column vector. In addition, let ‖A‖2
F =

∑m
i=1

∑n
j=1 A

2
ij denote the square

of its Frobenius norm, and let ‖A‖2 = supx∈Rn, x �=0 |Ax|2 / |x|2 denote its spectral

norm. These norms satisfy ‖A‖2 ≤ ‖A‖F ≤
√

min{m,n} ‖A‖2 for any matrix A,
and also ‖AB‖F ≤ ‖A‖F ‖B‖2 for any matrices A and B.

If A ∈ R
m×n, then there exist orthogonal matrices U = [u1u2 . . . um] ∈ R

m×m and
V = [v1v2 . . . vn] ∈ R

n×n such that UTAV = Σ = diag(σ1, . . . , σξ), where Σ ∈ R
m×n,

ξ = min{m,n} and σ1 ≥ σ2 ≥ . . . ≥ σξ ≥ 0. Equivalently, A = UΣV T . The three
matrices U , V , and Σ constitute the SVD of A. The σi are the singular values of A, the
vectors ui and vi are the ith left and the ith right singular vectors of A, respectively,
and the condition number of A is κ(A) = σmax(A)/σmin(A). If k ≤ r = rank(A), then
the SVD of A may be written as

(9)

A = UAΣAV
T
A =

[
Uk U⊥

k

] [ Σk 0
0 Σk,⊥

] [
V T
k

V ⊥
k

T

]
= UkΣkV

T
k + U⊥

k Σk,⊥V
⊥
k

T
.

Here, Σk is the k × k diagonal matrix containing the top k singular values of A, and
Σk,⊥ is the (r−k)×(r−k) diagonal matrix containing the bottom r−k nonzero singular
values of A. Also, V T

k is the k × n matrix whose rows are the top k right singular

vectors of A, V ⊥
k

T
is the (r − k) × n matrix whose rows are the bottom r − k right

singular vectors of A, and Uk and U⊥
k are defined similarly. If we define Ak = UkΣkV

T
k ,

then the distance (as measured by both ‖·‖2 and ‖·‖F ) between A and any rank k
approximation to A is minimized by Ak. We will denote by O(SV D(A, k)) the time
required to compute the best rank-k approximation to the matrix A [37]. Finally,
for any orthogonal matrix U ∈ R

m×c, let U⊥ ∈ R
m×(m−c) denote an orthogonal

matrix whose columns are an orthonormal basis spanning the subspace of R
m that is

orthogonal to the column space of U .
Given a matrix A ∈ R

m×n, the unweighted Moore–Penrose generalized inverse of
A, denoted by A+, is the unique n×m matrix that satisfies the four Moore–Penrose
conditions [50, 6]. In terms of the SVD this generalized inverse may be written as
A+ = VAΣ−1

A UT
A (where the square diagonal rank(A)×rank(A) matrix ΣA, as in (9), is

invertible by construction). If, in addition, D1 ∈ R
m×m and D2 ∈ R

n×n are diagonal
matrices with positive entries along the diagonal, then the {D1, D2}-Moore–Penrose
generalized inverse of A, denoted by A+

(D1,D2)
, is a generalization of the Moore–Penrose

inverse that can be expressed in terms of the unweighted generalized inverse of A as

A+
(D1,D2)

= D
−1/2
2 (D

1/2
1 AD

−1/2
2 )+D

1/2
1 . Also, in terms of the generalized inverse, the

projection onto the column space of any matrix A may be written as PA = AA+.
Since our main algorithms will involve sampling columns and/or rows from in-

put matrices (using one of two related random sampling procedures described in
Appendix A), we conclude this subsection with a brief review of a sampling ma-
trix formalism that was introduced in [21] and with respect to which our sampling
matrix operations may be conveniently expressed. First, assume that c′ (= c ex-
actly) columns of A are chosen in c i.i.d. trials by randomly sampling according to
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a probability distribution {pi}ni=1 with the Exactly(c) algorithm (described in de-
tail in Appendix A), and assume that the itth column of A is chosen in the tth (for
t = 1, . . . , c) independent random trial. Then, define the sampling matrix S ∈ R

n×c

to be the zero-one matrix where Sitt = 1 and Sij = 0 otherwise, and define the di-
agonal rescaling matrix D ∈ R

c×c to be the diagonal matrix with Dtt = 1/
√
cpit ,

where pit is the probability of choosing the itth column. Alternatively, assume that
c′ (≤ c in expectation) columns of A are chosen with the Expected(c) algorithm
(also described in detail in Appendix A) by including the ith column of A in C with
probability p̃i = min{1, cpi}. Then, define the sampling matrix S ∈ R

n×n to be the
zero-one matrix where Sii = 1 if the ith column is chosen and Sij = 0 otherwise, and

define the rescaling matrix D ∈ R
n×c′ to be the matrix with Dij = 1/

√
cp̃j if i − 1

of the previous columns have been chosen and Dij = 0 otherwise. Clearly, in both of
these cases, C = ASD is an m×c′ matrix consisting of sampled and rescaled copies of
the columns of A, and R = (SD)TA = DSTA is a c′×n matrix consisting of sampled
and rescaled copies of the rows of A. In certain cases, we will subscript S and D with
C or R (e.g., C = ASCDC and R = DRS

T
RA) to make explicit that the corresponding

sampling and rescaling matrices are operating on the columns or rows, respectively,
of A.

3. Relationship with previous related work. In this section, we discuss the
relationship between our results and related work in numerical linear algebra and
theoretical computer science.

3.1. Related work in numerical linear algebra. Within the numerical linear
algebra community, several groups have studied matrix decompositions with similar
structural, if not algorithmic, properties to the CX and CUR matrix decompositions
we have defined. Much of this work is related to the QR decomposition, originally
used extensively in pivoted form by Golub [36, 11].

Stewart and collaborators were interested in computing sparse low-rank approxi-
mations to large sparse term-document matrices [58, 59, 8]. He developed the quasi-
Gram–Schmidt method. This method is a variant of the QR decomposition which,
when given as input an m × n matrix A and a rank parameter k, returns an m × k
matrix C consisting of k columns of A whose span approximates the column space
of A and also a nonsingular upper-triangular k × k matrix TC that orthogonalizes
these columns (but it does not explicitly compute the nonsparse orthogonal matrix
QC = CT−1

C ). This provides a matrix decomposition of the form A ≈ CX. By apply-
ing this method to A to obtain C and to AT to obtain an k × n matrix R consisting
of k rows of A, one can show that A ≈ CUR, where the matrix U is computed to
minimize ‖A− CUR‖2

F . Although provable approximation guarantees of the form we
present were not provided, backward error analysis was performed, and the method
was shown to perform well empirically [58, 59, 8].

Goreinov, Tyrtyshnikov, and Zamarashkin [39, 38, 61] were interested in appli-
cations such as scattering, in which large coefficient matrices have blocks that can
be easily approximated by low-rank matrices. They show that if the matrix A is
approximated by a rank-k matrix to within an accuracy ε, then there exists a choice
of k columns and k rows, i.e., C and R, and a low-dimensional k × k matrix U
constructed from the elements of C and R, such that A ≈ CUR in the sense that
‖A− CUR‖2 ≤ εf(m,n, k), where f(m,n, k) = 1 + 2

√
km + 2

√
kn. In [39], the

choice for these matrices is related to the problem of determining the minimum sin-
gular value σk of k× k submatrices of n× k orthogonal matrices. In addition, in [38]
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the choice for C and R is interpreted in terms of the maximum volume concept from
interpolation theory, in the sense that columns and rows should be chosen such that
their intersection W defines a parallelepiped of maximum volume among all k × k
submatrices of A; in [61] an empirically effective deterministic algorithm is presented
which ensures that U is well-conditioned.

Gu and Eisenstat, in their seminal paper [40], describe a strong rank-revealing
QR factorization that deterministically selects exactly k columns from an m× n ma-
trix A. The algorithms of [40] are efficient, in that their running time is O(mn2)
(assuming that m ≥ n), which is essentially the time required to compute the SVD
of A. In addition, Gu and Eisenstat prove that if the m × k matrix C contains the
k selected columns (without any rescaling), then σmin(C) ≥ σk(A)/f(k, n), where
f(k, n) = O(

√
k(n− k)). Thus, the columns of C span a parallelepiped whose vol-

ume (equivalently, the product of the singular values of C) is “large.” Currently, we
do not know how to convert this property into a statement similar to that of Theo-
rem 1, although perhaps this can be accomplished by relaxing the number of columns
selected by the algorithms of [40] to O(poly(k, 1/ε)). For related work prior to Gu
and Eisenstat, see Chan and Hansen [12, 13].

Finally, very recently, Martinsson, Rokhlin, and Tygert [49] proposed another
related method to efficiently compute an approximation to the best rank-k approxi-
mation of an m × n matrix A. The heart of their algorithm is a random projection
method, which projects A to a small number, say �, of random vectors; the entries
of these random vectors are i.i.d. Gaussians of zero mean and unit variance. The
general form of their bounds is quite complicated, but by setting, e.g., � = k + 20,
they construct a rank-k approximation A′ to A such that

(10) ‖A−A′‖2 ≤ 10
√

(k + 20)m ‖A−Ak‖2

holds with probability at least 1 − 10−17. In addition, the authors extend their
algorithm to compute the so-called interpolative decomposition of a matrix A. This
decomposition is explicitly expressed in terms of a small number of columns of A, and
is a more restrictive version of our CX matrix decomposition. More specifically, it
additionally requires that every entry of X is bounded in absolute value by a small
constant (e.g., two). Thus, their algorithm computes an interpolative approximation
A′ = CX to A, where C has only � = k + 20 columns—as opposed to the O(k log k)
columns that are necessary in our work—and satisfies the bound of (10). Notice that
their work provides bounds for the spectral norm, whereas our work focuses only on
the Frobenius norm. However, their bounds are much weaker than our relative error
bounds, since

√
m(k + 20) ‖A−Ak‖2 might in general be larger even than ‖A‖F .

3.2. Related work in theoretical computer science. Within the theory
of algorithms community, much research has followed the seminal work of Frieze,
Kannan, and Vempala [33, 34]. Their work may be viewed, in our parlance, as
sampling columns from a matrix A to form a matrix C such that ‖A− CX‖F ≤
‖A−Ak‖F + ε ‖A‖F . The matrix C has poly(k, 1/ε, 1/δ) columns and is constructed
after making only two passes over A using O(m+n) work space. Under similar resource
constraints, a series of papers have followed [33, 34] in the past seven years [19, 22, 55],
improving the dependency of c on k, 1/ε, and 1/δ, and analyzing the spectral as well
as the Frobenius norm, yielding bounds of the form

(11) ‖A− CX‖ξ ≤ ‖A−Ak‖ξ + ε ‖A‖F
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for ξ = 2, F , and thus providing additive-error guarantees for column-based low-rank
matrix approximations.

Additive-error approximation algorithms for CUR matrix decompositions have
also been analyzed by Drineas, Kannan, and Mahoney [20, 21, 22, 23, 24, 25]. In
particular, in [23], they compute an approximation to an m×n matrix A by sampling
c columns and r rows from A to form m × c and r × n matrices C and R, respec-
tively. From C and R, a c × r matrix U is constructed such that under appropriate
assumptions

(12) ‖A− CUR‖ξ ≤ ‖A−Ak‖ξ + ε ‖A‖F ,

with high probability, for both the spectral and Frobenius norms, ξ = 2, F . In [24, 25],
it is further shown that if A is a symmetric positive semidefinite (SPSD) matrix, then
one can choose R = CT and U = W+, where W is the c×c intersection between C and
R = CT , thus obtaining an approximation A ≈ A′ = CW+CT . This approximation is
SPSD and has provable bounds of the form (12), except that the scale of the additional
additive error is somewhat larger [24, 25].

Most relevant for our relative-error CX and CUR matrix decomposition algo-
rithms is the recent work of Rademacher, Vempala, and Wang [53] and Deshpande,
Rademacher, Vempala, and Wang [17]. Using two different methods (in one case it-
erative sampling in a backwards manner and an induction on k argument [53], and in
the other case an argument that relies on estimating the volume of the simplex formed
by each of the k-sized subsets of the columns [17]), they reported the existence of a
set of O(k2/ε2) columns that provide relative-error CX matrix decomposition. No al-
gorithmic result was presented, except for an exhaustive algorithm that ran in Ω(nk)
time. Note that their results did not apply to columns and rows simultaneously. Thus,
ours is the first CUR matrix decomposition algorithm with relative error, and it was
previously not even known whether such a relative-error CUR representation existed;
i.e., it was not previously known whether columns and rows satisfying the conditions
of Theorem 2 existed.

Other related work includes that of Rudelson and Vershynin [54, 62, 56], who
provide an algorithm for CX matrix decomposition which has an improved additive
error spectral norm bound of the form

‖A− CX‖2 ≤ ‖A−Ak‖2 + ε
√

‖A‖2 ‖A‖F .

Their proof uses an elegant result on random vectors in the isotropic position [54],
and since we use a variant of their result, it is described in more detail in Appendix A.
Achlioptas and McSherry have computed low-rank matrix approximations using sam-
pling techniques that involve zeroing-out and/or quantizing individual elements [2, 1].
The primary focus of their work was in introducing methods to accelerate orthogonal
iteration and Lanczos iteration methods, and their analysis relied heavily on ideas from
random matrix theory [2, 1]. Agarwal, Har-Peled, and Varadarajan have analyzed so-
called “core sets” as a tool for efficiently approximating various extent measures of a
point set [3, 4]. The choice of columns and/or rows we present are a “core set” for ap-
proximate matrix computations; in fact, our algorithmic solution to Theorem 1 solves
an open question in their survey [4]. The choice of columns and rows we present may
also be viewed as a set of variables and features chosen from a data matrix [10, 14, 41].
“Feature selection” is a broad area that addresses the choice of columns explicitly for
dimension reduction, but the metrics there are typically optimization based [14] or
machine-learning based [10]. These formulations tend to have set cover-like solutions
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and are incomparable with the linear-algebraic structure such as the low-rank criteria
we consider here that is common among data analysts.

3.3. Very recent work on relative-error approximation algorithms. To
the best of our knowledge, the first nontrivial algorithmic result for relative-error
low-rank matrix approximation was provided by a preliminary version of this paper
[27, 28]. In particular, an earlier version of Theorem 1 provided the first known
relative-error, column-based, low-rank approximation in polynomial time [27, 28].
The major difference between our Theorem 1 and our result in [27, 28] is that the
sampling probabilities in [27, 28] are more complicated. (See section 6.2 for details
on this.) The algorithm from [27, 28] runs in O(SV D(A, k)) time (although it was
originally reported to run in only O(SV D(A)) time), and it has a sampling complexity
of O(k2 log(1/δ)/ε2) columns.

Subsequent to the completion of the preliminary version of this paper [27, 28],
several developments have been made on relative-error low-rank matrix approximation
algorithms. First, Har-Peled reported an algorithm that takes as input an m×n matrix
A, and in roughly O(mnk2 log k) time returns as output a rank-k matrix A′ with a
relative-error approximation guarantee [42]. His algorithm uses geometric ideas and
involves sampling and merging approximately optimal k-flats; it is not clear if this
approximation can be expressed in terms of a small number of columns of A. Then,
Deshpande and Vempala [18] reported an algorithm that takes as input an m × n
matrix A that also returns a relative-error approximation guarantee. Their algorithm
extends ideas from [53, 17], and it leads to a CX matrix decomposition consisting of
O(k log k) columns of A. The complexity of their algorithm is O(Mk2 log k), where
M is the number of nonzero elements of A, and their algorithm can be implemented
in a data-streaming framework with O(k log k) passes over the data. In light of these
developments, we simplified and generalized our preliminary results [27, 28], and we
performed a more refined analysis to improve our sampling complexity to O(k log k).
Most recently, we learned of work by Sarlos [57], who used ideas from the recently
developed fast Johnson–Lindenstrauss transform of Ailon and Chazelle [5] to yield
further improvements to a CX matrix decomposition.

4. Our main column-based matrix approximation algorithm. In this sec-
tion, we describe an algorithm and a theorem, from which our first main result, The-
orem 1, will follow.

4.1. Description of the algorithm. Algorithm 1 takes as input an m × n
matrix A, a rank parameter k, and an error parameter ε. It returns as output an
m × c matrix C consisting of a small number of columns of A. The algorithm is
very simple: sample a small number of columns according to a carefully constructed
nonuniform probability distribution. Algorithm 1 uses the sampling probabilities

(13) pi =
1

k

∣∣∣(V T
A,k

)(i)∣∣∣2
2
, ∀i ∈ [n],

but it will be clear from the analysis of section 6 that any sampling probabilities such
that pi ≥ β|(V T

A,k)
(i)|22/k, for some β ∈ (0, 1], will also work with a small β-dependent

loss in accuracy. Note that Algorithm 1 actually consists of two related algorithms,
depending on how exactly the columns are chosen. The Exactly(c) algorithm picks
exactly c columns of A to be included in C in c i.i.d. trials, where in each trial the
ith column of A is picked with probability pi. The Expected(c) algorithm picks in
expectation at most c columns of A to create C, by including the ith column of A
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in C with probability min {1, cpi}. See Algorithms 4 and 5 in Appendix A for more
details about these two column-sampling procedures.

Algorithm 1. A randomized algorithm for CX matrix decomposition.

The running time of Algorithm 1 is dominated by the computation of the sam-
pling probabilities (13), for which O(SV D(A, k)) time suffices. The top k right sin-
gular vectors of A can be efficiently (approximately) computed using standard algo-
rithms [37, 51]. The building block of these algorithms is a series of matrix-vector
multiplications, where the input matrix A is iteratively multiplied with a changing
set of k orthogonal vectors. In each iteration (which can be implemented by making
passes over the input matrix A), the accuracy of the approximation improves. Even
though the number of iterations required to bound the error depends on quantities
such as the gap between the singular values of A, these algorithms work extremely well
in practice. As such, they are often treated as “black boxes” for SVD computation in
the TCS literature; see, e.g., [2, 1].

4.2. Statement of the theorem. Theorem 3 is our main quality-of-approx-
imation result for Algorithm 1.

Theorem 3. Let A ∈ R
m×n, let k be a rank parameter, and let ε ∈ (0, 1]. If we

set c = 3200k2/ε2 and run Algorithm 1 by choosing exactly c columns from A with
the Exactly(c) algorithm, then with probability at least 0.7

(14)
∥∥A− CC+A

∥∥
F
≤ (1 + ε) ‖A−Ak‖F .

Similarly, if we set c = O(k log k/ε2) and run Algorithm 1 by choosing no more than
c columns in expectation from A with the Expected(c) algorithm, then (14) holds
with probability at least 0.7.

Proof. Since for every set of columns C = ASCDC , Xopt = C+A is the matrix
that minimizes ‖A− CX‖F , it follows that∥∥A− CC+A

∥∥
F

=
∥∥A− (ASCDC)(ASCDC)+A

∥∥
F

≤
∥∥A− (ASCDC)(PA,kASCDC)+PA,kA

∥∥
F
,(15)

where PA,k = UA,kU
T
A,k is a projection onto the top k left singular vectors of A.

To bound (15), consider the problem of approximating the solution to minX∈Rm×m

‖XAk −A‖F by randomly sampling columns of Ak and of A. It follows as a corollary
of (21) of Theorem 5 of section 6 that

(16)∥∥A− (ASCDC)(AkSCDC)+Ak

∥∥
F
≤ (1 + ε)

∥∥A−AA+
k Ak

∥∥
F

= (1 + ε) ‖A−Ak‖F ,

which, when combined with (15), establishes the theorem.
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Remark. For simplicity of presentation, we have presented Algorithm 1 and The-
orem 3 such that (14) holds with only constant probability, but this can be boosted
to hold with probability at least 1 − δ using standard methods. In particular, con-
sider the following: run Algorithm 1 (using either the Exactly(c) algorithm or the
Expected(c) algorithm, but with the appropriate value of c) independently ln(1/δ)
times, and return the C such that ‖A− CC+A‖F is smallest. Then, since in each
trial the claim of Theorem 3 fails with probability less than 0.3 < 1/e, the claim of
Theorem 3 will fail for every trial with probability less than (1/e)ln(1/δ) = δ. This
establishes Theorem 1.

Remark. For simplicity of presentation, we have also stated Theorem 3 in such
a way that the rank of the approximating matrix A′ = CC+A may be greater than
k. This possibility may be undesirable in certain applications, and it can be easily
removed. Let A

′′
= C(PA,kC)+PA,kA. Then, it follows from (16) that A

′′
is a CX

matrix approximation that is within relative error ε of the best rank-k approximation
to A and that has rank no more than k.

4.3. Discussion of the analysis. Given a matrix A, Theorem 1 asks us to find
a set of columns C = ASCDC such that CC+A “captures” almost as much of A as
does Ak = UA,kU

T
A,kA. Given that set (or any other set) of columns C, it is well

known that the matrix Xopt = C+A is the “smallest” matrix among those that solve
the optimization problem (19). For a given A and C, let us approximate Xopt as

Xopt = C+A ≈ (PA,kC)
+
PA,kA.

This approximation is suboptimal with respect to solving the optimization problem
(19), i.e.,

∥∥A− CC+A
∥∥
F
≤
∥∥∥A− C (PA,kC)

+
PA,kA

∥∥∥
F
,

but it can be shown that by choosing C properly, i.e., by choosing SC and DC (the
column sampling and rescaling matrices) properly, we have that

∥∥∥A− C (PA,kC)
+
PA,kA

∥∥∥
F
≤ (1 + ε) ‖A−Ak‖F .

The main technical challenge is to sample in a manner such that the column-sampled
version of the matrix consisting of the top k right singular vectors of A is full rank;
i.e., rank(V T

A,kSCDC) = rank(V T
A,k) = k. To accomplish this, we sample with respect

to probabilities of the form (13). To understand these sampling probabilities, recall
that we seek to pick columns that span almost the same subspace as the top k left
singular vectors of A (i.e., Uk), and recall that the ith column of A is equal to

A(i) = UkΣk

(
V T
k

)(i)
+ Uρ−kΣρ−k

(
V T
ρ−k

)(i)
.

Since postmultiplying Uk by Σk does not change the span of the columns of Uk,
|(V T

k )(i)|22 measures “how much” of the ith column of A lies in the span of UA,k,
independent of the magnitude of the singular values associated with those directions.

5. Our main column-row-based matrix approximation algorithm. In
this section, we describe an algorithm and a theorem that, when combined with the
results of section 4, will establish our second main result, Theorem 2.
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5.1. Description of the algorithm. Algorithm 2 takes as input an m × n
matrix A, an m × c matrix C consisting of a small number of columns of A, and
an error parameter ε. It returns as output an r × n matrix R consisting of a small
number of rows of A and an r × c matrix W consisting of the corresponding rows
of C. The algorithm is very simple: sample a small number of rows according to
a carefully constructed nonuniform probability distribution. Algorithm 2 uses the
sampling probabilities

(17) pi =
1

c

∣∣∣(UT
C

)(i)∣∣∣2
2
, ∀i ∈ [m],

but it will be clear from the analysis of section 6 that any sampling probabilities
pi, i ∈ [m], such that pi ≥ β|(UT

C )(i)|22/c, for some β ∈ (0, 1], will also work with a
small β-dependent loss in accuracy. Note that Algorithm 2 actually consists of two
related algorithms, depending on how exactly the rows are chosen. The Exactly(c)
algorithm picks exactly r rows of A to be included in R in r i.i.d. trials, where in
each trial the ith row of A is picked with probability pi. The Expected(c) algorithm
picks in expectation at most r rows of A to create R, by including the ith column of
A in C with probability min {1, rpi}. See Algorithms 4 and 5 in Appendix A for more
details about these two row-sampling procedures.

Algorithm 2. A randomized algorithm for CUR matrix decomposition.

Reading the input matrices to Algorithm 2 takes O(mn) time; computing the
full SVD of C requires O(c2m) time; constructing the matrix R requires O(rn) time;
constructing the matrix W requires O(rc) time; and computing U requires O(c2r)
time. Overall, the running time of the algorithm is O(mn) since c, r are constants
independent of m,n. This can be improved if the input matrices are sparse, but for
simplicity we omit this discussion.

5.2. Statement of the theorem. Theorem 4 is our main quality-of-approx-
imation result for Algorithm 2.

Theorem 4. Let A ∈ R
m×n, let C ∈ R

m×c be a matrix consisting of any c
columns of A, and let ε ∈ (0, 1]. If we set r = 3200c2/ε2 and run Algorithm 2 by
choosing r rows exactly from A and from C with the Exactly(c) algorithm, then
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with probability at least 0.7

(18) ‖A− CUR‖F ≤ (1 + ε)
∥∥A− CC+A

∥∥
F
.

Similarly, if we set r = O(c log c/ε2) and run Algorithm 2 by choosing no more than r
rows in expectation from A and from C with the Expected(c) algorithm, then (18)
holds with probability at least 0.7.

Proof. Consider the problem of approximating the solution to minX∈Rc×n

‖CX −A‖F by randomly sampling rows from C and A. It follows as a corollary
of (21) of Theorem 5 of section 6 that∥∥A− C(DRS

T
RC)+DRS

T
RA
∥∥
F
≤ (1 + ε)

∥∥A− CC+A
∥∥
F
,

where R = DRS
T
RA and U = (DRS

T
RC)+, which establishes the theorem.

Remark. For simplicity of presentation, we have presented Algorithm 2 and The-
orem 4 such that (18) holds with only constant probability, but this can be boosted to
hold with probability at least 1− δ using standard methods. In addition, this can be
combined with Algorithm 1 and Theorem 3 by doing the following: run Algorithm 1
ln(2/δ) times, and return the best C; then, with that C run Algorithm 2 ln(2/δ)
times, and return the best U,R pair. Then

‖A− CUR‖F ≤ (1 + ε)
∥∥A− CC+A

∥∥
F
≤ (1 + ε)2 ‖A−Ak‖F ≤ (1 + ε′) ‖A−Ak‖F ,

where ε
′
= 3ε, and the combined failure probability is no more than δ/2 + δ/2 = δ.

This establishes Theorem 2.

5.3. Discussion of the analysis. Assume that we are given an m × c matrix
C, consisting of any set of c columns of an m×n matrix A, and consider the following
idea for approximating the matrix A. The columns of C are a set of “basis vectors”
that are, in general, neither orthogonal nor normal. To express all the columns of A
as linear combinations of the columns of C, we can solve

min
xj∈Rc

∣∣∣A(j) − Cxj

∣∣∣
2
,

for each column A(j), j ∈ [n], in order to find a c-vector of coefficients xj and get
the optimal least-squares fit for A(j). Equivalently, we can solve an optimization
problem of the form (19). Note that if m and n are large and c = O(1), then this is
an overconstrained least-squares fit problem. It is well known that Xopt = C+A is
the “smallest” matrix solving this optimization problem, in which case we are using
information from every row of A to compute the optimal coefficient matrix. Let us
approximate Xopt as

Xopt = C+A ≈
(
DRS

T
RC

)+
DRS

T
RA = X̃opt,

and note that X̃opt = W+R. This matrix X̃opt is clearly suboptimal with respect to
solving the optimization problem (19), i.e.,∥∥A− CC+A

∥∥
F
≤
∥∥A− CW+R

∥∥
F
,

but it can be shown that by choosing SR and DR (the row sampling and rescaling
matrices) properly we have that∥∥A− CW+R

∥∥
F
≤ (1 + ε)

∥∥A− CC+A
∥∥
F
.

As in section 4.3, the main technical challenge is to sample in a manner such that the
row-sampled version of the matrix consisting of the top c left singular vectors of C is
full rank, i.e., rank(DRS

T
RUC,c) = rank(UC,c) = c.
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6. An approximation algorithm for generalized �2 regression. The basic
linear-algebraic problem of �2 regression is one of the most fundamental regression
problems, and it has found many applications in mathematics and statistical data
analysis. Recall the standard �2 regression (or least-squares fit) problem: given as in-
put a matrix A ∈ R

m×n and a target vector b ∈ R
m, compute Z = minx∈Rn |b−Ax|2.

Also of interest is the computation of vectors that achieve the minimum Z. If m > n
there are more constraints than variables and the problem is an overconstrained least-
squares fit problem; in this case, there does not in general exist a vector x such that
Ax = b. It is well known that the minimum-length vector among those minimizing
|b−Ax|2 is xopt = A+b. We previously presented an elaborate sampling algorithm
that represents the matrix A by a matrix by a small number of rows so that this �2
regression problem can be solved to accuracy 1 ± ε for any ε > 0 [29].

This problem is of interest for CX and CUR matrix decomposition for the follow-
ing reason. Given a matrix A and a set of its columns C, if we want to get the best
fit for every column of A in terms of that basis, we want to solve CX ≈ A for the
matrix X. More precisely, we would like to solve the optimization problem such as

(19) Z = min
X∈Rc×n

‖A− CX‖F .

It is well known that the matrix X = C+A is the “smallest” matrix among those that
solve this problem. In this case, we are approximating the matrix A as A′ = CC+A =
PCA, and by keeping only the columns C we are incurring an error of ‖A− CC+A‖F .
Two questions arise:

• First, how do we choose the columns C such that ‖A− CC+A‖F is within
relative error ε of ‖A−Ak‖F ?

• Second, how do we choose the rows R and a matrix U such that ‖A− CUR‖F
is within relative error ε of ‖A− CC+A‖F ?

Motivated by these observations, we will consider the generalized version of the stan-
dard �2 regression problem, as defined in (5) and (6).

In this section, we first present Algorithm 3, which is our main random sampling
algorithm for approximating the solution to the generalized �2 regression problem, and
Theorem 5, which provides our main quality-of-approximation bound for Algorithm 3.
Then, we discuss the novel nonuniform “subspace sampling” probabilities used by the
algorithm. Finally, we present the proof of Theorem 5.

6.1. Description of the algorithm and theorem. Algorithm 3 takes as input
an m×n matrix A with rank no greater than k, an m×p matrix B, a set of sampling
probabilities {pi}mi=1, and a positive integer r ≤ m. It returns as output a number Z̃
and a n×p matrix X̃opt. Using the sampling matrix formalism described in section 2,
the algorithm (implicitly) forms a sampling matrix S, the transpose of which samples
a few rows of A and the corresponding rows of B, and a rescaling matrix D, which is a
matrix scaling the sampled rows of A and B. Since r rows of A and the corresponding
r rows of B are sampled, the algorithm randomly samples r of the m constraints in
the original �2 regression problem. Thus, the algorithm approximates the solution of
the regression problem AX ≈ B, as formalized in (19) and (5), with the exact solution
of the downsampled regression problem DSTAX ≈ DSTB. Note that it is the space
of constraints that is sampled and that the dimensions of the unknown matrix X are
the same in both problems. Note also that although both m and n are permitted to
be large, the problem is effectively overconstrained since rank(A) ≤ k. As we will see
below, r = O(k log k) or r = O(k2), depending on exactly how the random sample is
constructed. Thus, we will compute the solution to the sampled problem exactly.
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Algorithm 3. A Monte-Carlo algorithm for approximating �2 regression.

Theorem 5 is our main quality-of-approximation result for Algorithm 3. Its proof
may be found in section 6.3. Recall that for our generalized �2 regression problem,
the matrix A has rank no greater than k.

Theorem 5. Suppose A ∈ R
m×n has rank no greater than k, B ∈ R

m×p, ε ∈
(0, 1], and let Z = minX∈Rn×p ‖B −AX‖F = ‖B −AXopt‖F , where Xopt = A+B =
A+

k B. Run Algorithm 3 with any sampling probabilities of the form

(20) pi ≥ β

∣∣∣(UA,k)(i)

∣∣∣2
2∑n

j=1

∣∣∣(UA,k)(j)

∣∣∣2
2

=
β

k

∣∣∣(UA,k)(i)

∣∣∣2
2
, ∀i ∈ [n],

for some β ∈ (0, 1], and assume that the output of the algorithm is a number Z̃ and an
n× p matrix X̃opt. If exactly r = 3200k2/βε2 rows are chosen with the Exactly(c)
algorithm, then with probability at least 0.7:

∥∥∥B −AX̃opt

∥∥∥
F
≤ (1 + ε)Z,(21) ∥∥∥Xopt − X̃opt

∥∥∥
F
≤ ε

σmin(Ak)
Z.(22)

If, in addition, we assume that ‖UA,kU
T
A,kB‖F ≥ γ ‖B‖F , for some fixed γ ∈ (0, 1],

then with probability at least 0.7:

(23)
∥∥∥Xopt − X̃opt

∥∥∥
F
≤ ε

(
κ(Ak)

√
γ−2 − 1

)
‖Xopt‖F .

Similarly, under the same assumptions, if r = O(k log k/βε2) rows are chosen in
expectation with the Expected(c) algorithm, then with probability at least 0.7, (21),
(22), and (23) hold.

Equation (21) states that if the matrix of minimum-length vectors achieving the
minimum in the sampled problem is substituted back into the residual norm for the
original problem, then a good approximation to the original �2 regression problem is
obtained. Equation (22) provides a bound for ||Xopt−X̃opt||F in terms of σmin(Ak) and
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Z. If most of the “weight” of B lies in the complement of the column space of A = Ak

then this will provide a very poor approximation in terms of ‖Xopt‖F . However, if we
also assume that a constant fraction of the “weight” of B lies in the subspace spanned
by the columns of A, then we obtain the relative-error approximation of (23). Thus,
Theorem 5 returns a good bound for ||Xopt − X̃opt||F if Ak is well-conditioned and if
B lies “reasonably well” in the column space of A. Note that if the matrix of target
vectors B lies completely within the column space of A, then Z = 0 and γ = 1.
In this case, Theorem 5 shows that Algorithm 3 returns Z̃ and x̃opt that are exact
solutions of the original �2 regression problem, independent of κ(Ak). Finally, note
that in our analysis of CX and CUR matrix decompositions we use only the result
(21) from Theorem 5, but (22) and (23) are included for completeness.

6.2. Discussion of the method of “Subspace Sampling”. An important
aspect of Algorithm 3 is the nonuniform sampling probabilities (20) used by the
Exactly(c) algorithm and the Expected(c) algorithm in the construction of the
induced subproblem. We call sampling probabilities satisfying condition (20) “sub-
space sampling” probabilities. Condition (20) states that the sampling probabilities
should be close to, or rather not much less than, the lengths, i.e., the Euclidean norms,
of the rows of the left singular vectors of the matrix A = Ak. (Recall that in this
section A is an m×n matrix with rank no more than k, and thus UA,k is an m×k ma-
trix. Thus, the Euclidean norm of every column of UA,k equals 1, but the Euclidean
norm of every row of UA,k is in general not equal and is only bounded above by 1.)
Sampling probabilities of the form (20) should be contrasted with sampling proba-
bilities that depend on the Euclidean norms of the columns or rows of A and that
have received much attention recently [33, 34, 21, 22, 23, 26]. Since A = UAΣAV

T
A ,

sampling probabilities with this latter form depend in a complicated manner on a
mixture of subspace information (as found in UA and VA) and “size-of-A” informa-
tion (as found in ΣA). This convolution of information may account for their ability
to capture coarse statistics such as approximating matrix multiplication or computing
low-rank matrix approximations to additive error, but it also accounts for their dif-
ficulty in dealing with problems such as �2 regression or computing low-rank matrix
approximations to relative error.

Since the solution of the �2 regression problem involves the computation of a
pseudoinverse, the problem is not well-conditioned with respect to a perturbation
(such as that introduced by sampling) that entails a change in dimensionality, even if
(actually, especially if) that change in dimensionality corresponds to a small singular
value. Since sampling probabilities satisfying (20) allow us to disentangle subspace
information and “size-of-A” information, we will see that they will allow us to capture
(with high probability) the entire subspace of interest by sampling. More precisely,
as we will see in Lemma 1, by using sampling probabilities that satisfy condition (20)
and by choosing r appropriately, it will follow that

rank(DSTUA,k) = rank(UA,k) = k.

Thus, the lengths of the Euclidean norms of the rows of UA,k may be interpreted as
capturing a notion of information dispersal by the matrix A since they indicate to
which part of the m-dimensional vector space the singular value information of A is
being dispersed. In this case, condition (20) ensures that the sampling probabilities
provide a bias toward the part of the high-dimensional constraint space to which A
disperses its singular value information. Then, having constructed the sample, we
will go to the low-dimensional, i.e., the r-dimensional rather than the m-dimensional
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space, and approximate the �2 regression problem by doing computations that involve
“size-of-A” information on the random sample.

This method of “subspace sampling” was first used in a preliminary version of
the �2 regression results of this section [29]. Note that an immediate generalization of
the results of [29] to the generalized �2 regression problem considered in this section
would involve sampling probabilities of the form
(24)

pi =
(1/3)

∣∣∣(UA,k)(i)

∣∣∣2
2∑n

j=1

∣∣∣(UA,k)(j)

∣∣∣2
2

+
(1/3)

∣∣∣(UA,k)(i)

∣∣∣
2

(
U⊥
A,kU

⊥
A,k

T
B
)
i∑n

j=1

∣∣∣(UA,k)(j)

∣∣∣
2

(
U⊥
A,kU

⊥
A,k

T
B
)
j

+
(1/3)

(
U⊥
A,kU

⊥
A,k

T
B
)2

i∑n
j=1

(
U⊥
A,kU

⊥
A,k

T
B
)2

j

,

rather than of the form (20). Since the second and third terms in (24) provide a
bias toward the part of the complement of the column space of A = Ak where B has
significant weight, we directly obtain variance reduction. Thus, by using probabilities
of the form (24) we can sample O(k2 log(1/δ)/ε2) columns and directly obtain the
claims of Theorem 5 with probability at least 1− δ. Although sampling probabilities
of the form (20) are substantially simpler, we obtain variance control indirectly. We
first establish that each of the claims of Theorem 5 holds with constant probability,
and we then can show that each of the claims holds with probability at least 1− δ by
running O(log(1/δ)) trials and using standard boosting procedures.

6.3. Proof of Theorem 5. In this section we provide a proof of Theorem 5. We
will first prove (21), (22), and (23) under the assumption that the rows of A and B
are sampled with the Exactly(c) algorithm. Then, in section 6.3.5, we will outline
modifications to the proof if the rows of A and B are sampled with the Expected(c)
algorithm. For simplicity of notation in this section, we will let S = DST denote the
r ×m rescaled row-sampling matrix. Let the rank of the m × n matrix A be ρ ≤ k,
and let its SVD be

A = UAΣAV
T
A ,

where UA ∈ R
n×ρ, ΣA ∈ R

ρ×ρ, and VA ∈ R
d×ρ. In addition, let the rank of the r× ρ

matrix SUA = DSTUA be ρ̃, and let its SVD be

SUA = USUA
ΣSUA

V T
SUA

,

where USUA
∈ R

r×ρ̃, ΣSUA
∈ R

ρ̃×ρ̃, and VSUA
∈ R

ρ×ρ̃. Recall that ρ̃ ≤ ρ ≤ k ≤ r.
In order to illustrate the essential difficulty in constructing a sampling algorithm

to approximate the solution of the generalized �2 regression problem, consider inserting
X̃opt = (SAk)

+SB into B −AkX:

B −AkX̃opt = B −Ak (SAk)
+ SB

= B − UA,kΣA,kV
T
A,k

(
SUA,kΣA,kV

T
A,k

)+ SB
= B − UA,kΣA,k (SUA,kΣA,k)

+ SB

= B − UA,kΣA,k

(
USUA,k

ΣSUA,k
V T
SUA,k

ΣA,k

)+

SB

= B − UA,kΣA,k

(
ΣSUA,k

V T
SUA,k

ΣA,k

)+

UT
SUA,k

SB.

To proceed further, we must deal with the pseudoinverse, which is not well-behaved
with respect to perturbations that involve a change in dimensionality. To deal with
this, we will focus on probabilities that depend on the subspace that we are down-
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sampling, i.e., that depend on UA,k, in order to guarantee that we capture the full
subspace of interest.

6.3.1. Several lemmas of general interest. In this subsection, we will present
three lemmas of general interest. Then, in the next subsections, we will use these
lemmas to prove each of the claims of Theorem 5.

Since the m× k matrix UA,k is a matrix with orthogonal columns, several prop-
erties hold for it. For example, rank(UA,k) = k, U+ = UT , and A+

k = VA,kΣ
−1
A,kU

T
A,k.

Although the r × k matrix SUA,k does not have orthogonal columns, the following
lemma characterizes the manner in which each of these three properties holds, either
exactly or approximately. For the first lemma, r depends quadratically on k.

Lemma 1. Let ε ∈ (0, 1], and define Ω = (SUA,k)
+ − (SUA,k)

T
. If the sampling

probabilities satisfy (20) and if r ≥ 400k2/βε2, then with probability at least 0.9:

ρ̃ = ρ, i.e., rank(SUA,k) = rank(UA,k) = rank(Ak),(25)

‖Ω‖2 =
∥∥∥Σ−1

SUA,k
− ΣSUA,k

∥∥∥
2
,(26)

(SAk)
+

= VA,kΣ
−1
A,k (SUA,k)

+
,(27) ∥∥∥ΣSUA,k

− Σ−1
SUA,k

∥∥∥
2
≤ ε/

√
2.(28)

Proof. To prove the first claim, note that for all i ∈ [ρ]∣∣1 − σ2
i (SUA,k)

∣∣ =
∣∣σi

(
UT
A,kUA,k

)
− σi

(
UT
A,kSTSUA,k

)∣∣
≤
∥∥UT

A,kUA,k − UT
A,kSTSUA,k

∥∥
2

(29)

≤
∥∥UT

A,kUA,k − UT
A,kSTSUA,k

∥∥
F
.(30)

Note that (29) follows from Corollary 8.1.6 of [37], and (30) follows since ‖·‖2 ≤
‖·‖F . To bound the error of approximating UT

A,kUA,k by UT
A,kSTSUA,k, we apply

Theorem 6 of Appendix A. Since the sampling probabilities pi satisfy (20), it follows
from Theorem 6 and by applying Markov’s inequality that with probability at least
0.9: ∥∥UT

A,kUA,k − UT
A,kSTSUA,k

∥∥
F
≤ 10 E

[ ∥∥UT
A,kUA,k − UT

A,kSTSUA,k

∥∥
F

]

≤ 10√
βr

‖UA,k‖2
F ,(31)

where E [·] denotes the expectation operator. By combining (30) and (31), recalling

that ‖UA,k‖2
F = ρ ≤ k, and using the assumed choice of r, it follows that∣∣1 − σ2

i (SUA,k)
∣∣ ≤ ε/2 ≤ 1/2

since ε ≤ 1. This implies that all singular values of SUA,k are strictly positive, and
thus that rank(SUA,k) = rank(UA,k) = rank(Ak), which establishes the first claim.

To prove the second claim, we use the SVD of SUA,k and note that

‖Ω‖2 =
∥∥∥(SUA,k)

+ − (SUA,k)
T
∥∥∥

2

=

∥∥∥∥
(
USUA,k

ΣSUA,k
V T
SUA,k

)+

−
(
USUA,k

ΣSUA,k
V T
SUA,k

)T∥∥∥∥
2

=
∥∥∥VSUA,k

(
Σ−1

SUA,k
− ΣSUA,k

)
UT
SUA,k

∥∥∥
2
.

The claim follows since VSUA,k
and USUA,k

are matrices with orthonormal columns.
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To prove the third claim, note that

(SAk)
+

=
(
SUA,kΣA,kV

T
A,k

)+
=
(
USUA,k

ΣSUA,k
V T
SUA,k

ΣA,kV
T
A,k

)+

= VA,k

(
ΣSUA,k

V T
SUA,k

ΣA,k

)+

UT
SUA,k

.(32)

To remove the pseudoinverse in the above derivations, notice that since ρ = ρ̃ with
probability at least 0.9, all three matrices ΣSUA,k

, VSUA,k
, and ΣA,k are full rank

square ρ× ρ matrices, and thus are invertible. In this case,

(
ΣSUA,k

V T
SUA,k

ΣA,k

)+

=
(
ΣSUA,k

V T
SUA,k

ΣA,k

)−1

= Σ−1
A,kVSUA,k

Σ−1
SUA,k

.(33)

By combining (32) and (33) we have that

(SAk)
+

= VA,kΣ
−1
A,kVSUA,k

Σ−1
SUA,k

UT
SUA,k

= VA,kΣ
−1
A,k (SUA,k)

+
,

which establishes the third claim.2

Finally, to prove the fourth claim, recall that under the assumptions of the lemma
ρ = ρ̃ with probability at least 0.9, and thus σi (SUA,k) > 0 for all i ∈ [ρ]. Thus,

∥∥∥Σ−1
SUA,k

− ΣSUA,k

∥∥∥
2

= max
i,j∈[ρ]

∣∣∣∣σi (SUA,k) −
1

σj (SUA,k)

∣∣∣∣
= max

i,j∈[ρ]

|σi (SUA,k)σj (SUA,k) − 1|
|σj (SUA,k)|

≤ max
j∈[ρ]

∣∣σ2
j (SUA,k) − 1

∣∣
|σj (SUA,k)|

.(34)

Using the fact that, by (29), for all i ∈ [ρ],∣∣1 − σ2
i (SUA,k)

∣∣ ≤ ∥∥UT
A,kUA,k − UT

A,kSTSUA,k

∥∥
2
,

it follows that for all i ∈ [ρ]

1

σi (SUA,k)
≤ 1√

1 −
∥∥∥UT

A,kUA,k − UT
A,kSTSUA,k

∥∥∥
2

.

When these are combined with (34) it follows that

∥∥∥ΣSUA,k
− Σ−1

SUA,k

∥∥∥
2
≤

∥∥∥UT
A,kUA,k − UT

A,kSTSUA,k

∥∥∥
2√

1 −
∥∥∥UT

A,kUA,k − UT
A,kSTSUA,k

∥∥∥
2

.

2One might be tempted to suggest that the proof of this third claim should be “simplified” by
appealing to the result that the generalized inverse of the product of two matrices equals the product
of the generalized inverse of those matrices. This result is, of course, false—see, e.g., section 3.1.1 of
[60]—and so we need a more refined analysis such as the one presented here.
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Combining this with the Frobenius norm bound of (31), and noticing that our choice
for r guarantees that 1 − ||UT

A,kUA,k − UT
A,kSTSUA,k||2 ≥ 1/2, concludes the proof of

the fourth claim.
This concludes the proof of the lemma.
The next lemma provides an approximate matrix multiplication bound that is

useful in the proof of Theorem 5. For this lemma, r depends linearly on k.
Lemma 2. Let ε ∈ (0, 1]. If the sampling probabilities satisfy (20) and if r ≥

400k/βε2, then with probability at least 0.9:

∥∥∥UT
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F
≤ ε

2

∥∥∥U⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
.

Proof. First, note that since UA,k is an orthogonal matrix and since UT
A,kU

⊥
A,k = 0,

we have that∥∥∥UT
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

=
∥∥∥UA,kU

T
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

=
∥∥∥UA,kU

T
A,kU

⊥
A,kU

⊥
A,k

T
B − UA,kU

T
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F
.(35)

Since |(UA,kU
T
A,k)(i)|2 = |(UT

A,k)(i)|2, the sampling probabilities (20) satisfy (45),
where (45) will appear in Appendix A.2, and thus are appropriate for bounding the
right-hand side of (35). Thus, it follows from Markov’s inequality and Theorem 6 that
with probability at least 0.9:

∥∥∥UT
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F
≤ 10 E

[ ∥∥∥UT
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

]

≤ 10√
βr

∥∥UA,kU
T
A,k

∥∥
F

∥∥∥U⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
.

The lemma follows by the choice of r and since ||UA,kU
T
A,k||F =

√
ρ ≤

√
k.

The final lemma of this subsection relates the norm of the m × p matrix U⊥
A,k

U⊥
A,k

T
B to the norm of the r × p matrix SU⊥

A,kU
⊥
A,k

T
B, i.e., the row sampled and

rescaled version of the original m× p matrix. For this lemma, r is independent of k.
Lemma 3. With probability at least 0.9:

∥∥∥SU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
≤ 10

∥∥∥U⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
.

Proof. Let Q = U⊥
A,kU

⊥
A,k

T
B, and let j1, j2, . . . , jr be the r rows of Q that were

included in SQ = DSTQ. Clearly,

(36)

E
[ ∥∥DSTQ

∥∥2

F

]
= E

[
r∑

t=1

∣∣Q(jt)

∣∣2
2

]
=

r∑
t=1

E
[ ∣∣Q(jt)

∣∣2
2

]
=

r∑
t=1

n∑
j=1

pj

∣∣Q(j)

∣∣2
2

rpj
= ‖Q‖2

F ,

where the penultimate equality follows by evaluating the expectation. The lemma
follows by applying Markov’s inequality and taking the square root of both sides of
the resulting inequality.

6.3.2. Proof of (21). In this subsection, we will bound B−AkX̃opt, thus proving
(21). For the moment, let us assume that r = 400k2/βε2, in which case the assumption
on r is satisfied for each of Lemma 1, Lemma 2, and Lemma 3. Thus, the claims of
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all three lemmas hold simultaneously with probability at least 1 − 3(0.1) ≥ 0.7, and
so let us condition on this event.

First, we have that

B −AkX̃opt = B −Ak (SAk)
+ SB

= B − UA,k (SUA,k)
+ SB(37)

= B − UA,k (SUA,k)
+ SUA,kU

T
A,kB − UA,k (SUA,k)

+ SU⊥
A,kU

⊥
A,k

T
B(38)

= U⊥
A,kU

⊥
A,k

T
B − UA,k (SUA,k)

+ SU⊥
A,kU

⊥
A,k

T
B.(39)

Equation (37) follows from (27) of Lemma 1, (38) follows by inserting UA,kU
T
A,k +

U⊥
A,kU

⊥
A,k

T
= In, and (39) follows since (SUA,k)

+ SUA,k = Iρ by Lemma 1. We em-

phasize that (SUA,k)
+ SUA,k = VSUA,k

V T
SUA,k

= Iρ does not hold for general sampling
methods, but it does hold in this case since ρ̃ = ρ, which follows from Lemma 1.

By taking the Frobenius norm of both sides of (39), by using the triangle inequal-

ity, and recalling that Ω = (SUA,k)
+ − (SUA,k)

T
, we have that

∥∥∥B −AkX̃opt

∥∥∥
F
≤
∥∥∥U⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

+
∥∥∥UA,k (SUA,k)

T SU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F

+
∥∥∥UA,kΩSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

≤
∥∥∥U⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

+
∥∥∥UT

A,kSTSU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F

(40)

+ ‖Ω‖2

∥∥∥SU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
,

where (40) follows by submultiplicativity and since UA,k has orthogonal columns. By
combining (40) with the bounds provided by Lemma 1 through Lemma 3, it follows
that ∥∥∥B −AkX̃opt

∥∥∥
F
≤ (1 + ε/2 + 10ε/

√
2)Z

≤ (1 + 8ε)Z.

Equation (21) follows by setting ε′ = ε/8 and using the value of r assumed by the
theorem.

6.3.3. Proof of (22). In this subsection, we will provide a bound for ||X̃opt −
Xopt||F in terms of Z, thus proving (22). For the moment, let us assume that
r = 400k2/βε2, in which case the assumption on r is satisfied for each of Lemma 1,
Lemma 2, and Lemma 3. Thus, the claims of all three lemmas hold simultaneously
with probability at least 1 − 3(0.1) ≥ 0.7, and so let us condition on this event.

Since UA,kU
T
A,k + U⊥

A,kU
⊥
A,k

T
= In and (SUA,k)

+ SUA,k = Iρ, we have that

Xopt − X̃opt = A+
k B − (SAk)

+ SB
= VA,kΣ

−1
A,kU

T
A,kB − VA,kΣ

−1
A,k (SUA,k)

+ SB
= VA,kΣ

−1
A,kU

T
A,kB − VA,kΣ

−1
A,k (SUA,k)

+ SUA,kU
T
A,kB

−VA,kΣ
−1
A,k (SUA,k)

+ SU⊥
A,kU

⊥
A,k

T
B

= −VA,kΣ
−1
A,k (SUA,k)

+ SU⊥
A,kU

⊥
A,k

T
B.
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Thus, it follows that

∥∥∥Xopt − X̃opt

∥∥∥
F

=
∥∥∥VA,kΣ

−1
A,k (SUA,k)

+ SU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F

=
∥∥∥Σ−1

A,k

(
(SUA,k)

T
+ Ω

)
SU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

≤ 1

σmin(Ak)

∥∥∥(SUA,k)
T SU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

+
1

σmin(Ak)

∥∥∥ΩSU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F

≤ 1

σmin(Ak)

∥∥∥UT
A,kSTSU⊥

A,kU
⊥
A,k

T
B
∥∥∥
F

(41)

+
1

σmin(Ak)
‖Ω‖2

∥∥∥SU⊥
A,kU

⊥
A,k

T
B
∥∥∥
F
.

By combining (41) with Lemmas 1, 2, and 3, it follows that

∥∥∥X̃opt −Xopt

∥∥∥
F
≤ σ−1

min(Ak)
(
ε/2 + 10ε/

√
2
)
Z

≤ 8ε

σmin(Ak)
Z.

Equation (22) follows by setting ε′ = ε/8 and using the value of r assumed by the
theorem.

6.3.4. Proof of (23). The error bound provided by (22) could be quite weak,
since minX∈Rn×p ‖B −AkX‖F could be quite close or even equal to ‖B‖F , if B has
most or all of its “weight” outside of the column space of Ak. Under a slightly
stronger assumption, we will provide a bound ||X̃opt −Xopt||F in terms of ‖Xopt‖F ,
thus proving (23).

If we make the additional assumption that a constant fraction of the “weight” of
B lies in the subspace spanned by the columns of Ak, then it follows that

Z2 =

(
min

X∈Rn×p
‖B −AkX‖F

)2

=
∥∥∥U⊥

A,kU
⊥
A,k

T
B
∥∥∥2

F

= ‖B‖2
F −

∥∥UA,kU
T
A,kB

∥∥2

F

≤ (γ−2 − 1)
∥∥UA,kU

T
A,kB

∥∥2

F
.(42)

In order to relate ||UA,kU
T
A,kB||F and thus Z to ‖Xopt‖F note that

‖Xopt‖F =
∥∥∥VA,kΣ

−1
A,kU

T
A,kB

∥∥∥
F

=
∥∥∥Σ−1

A,kU
T
A,kB

∥∥∥
F

≥ σmin(Σ−1
A,k)

∥∥UT
A,kB

∥∥
F

=

∥∥∥UA,kU
T
A,kB

∥∥∥
F

σmax(Ak)
.(43)
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By combining (22) with (42) and (43), we get

∥∥∥X̃opt −Xopt

∥∥∥
F
≤ ε

σmin(Ak)
Z

≤ ε

σmin(Ak)

√
γ−2 − 1

∥∥UA,kU
T
A,kB

∥∥
F

≤ ε
σmax(Ak)

σmin(Ak)

√
γ−2 − 1 ‖Xopt‖F ,

which establishes (23).

6.3.5. Modifications to the proof with alternate row sampling proce-
dure. If, in Algorithm 3, the rows are sampled with the Expected(c) algorithm,
then the proof of the claims of Theorem 5 is analogous to the proof described in the
four previous subsections, with the following major exception. The claims of Lemma 1
hold if r = O(k log k/βε2) rows are chosen with the Expected(c) algorithm. To see
this, recall that to bound the first claim of Lemma 1, we must bound the spectral
norm ‖UT

A,kUA,k − UT
A,kSTSUA,k‖2 in (29). If the sampling is performed with the

Exactly(c) algorithm, then this is bounded in (30) by the corresponding Frobenius
norm, which is then bounded with Theorem 6. On the other hand, if the sampling is
performed with the Expected(c) algorithm, then we can bound (29) directly with
the spectral norm bound provided by Theorem 7.

Since the remaining claims of Lemma 1 follow from the first, they are also valid
if r = O(k log k/βε2) rows are chosen with the Expected(c) algorithm. Lemma 2
still follows if r = 400k/βε2, by using the Frobenius norm bound of Theorem 7, and
Lemma 3 also follows immediately. The proofs of (21), (22), and (23) are identical,
and thus Theorem 5, under the assumption that the the rows are chosen with the
Expected(c) algorithm, follows.

7. Empirical evaluation. Although this is a theoretical paper, it is motivated
by applications, and thus one might wonder about the empirical applicability of our
methods. For example, if we want to do as well as the best rank k = 100 (respectively,
k = 10) approximation, with relative error bound ε = 0.1, then our main theorem
samples 3.2 billion (respectively, 32 million) columns of the matrix A using the Ex-

actly(c) algorithm. Of course, our main theorem states that it in order to obtain our
strong provable worst-case relative-error guarantees it suffices to choose that many
columns. But, it would be a source of concern if anything like that number of columns
is needed in “real” scientific and internet data applications.

In this section, we provide an empirical evaluation of the performance of our
two main sampling procedures both for CX and CUR decompositions. In particular,
we will evaluate how well the proposed column/row selection strategies perform at
capturing the Frobenius norm for matrices derived from DNA SNP analysis, recom-
mendation system analysis, and term-document analysis. By applying our algorithms
to data sets drawn from these three diverse domains of modern data analysis, we will
demonstrate that we can obtain very good Frobenius norm reconstruction by sam-
pling a number of columns and/or rows that equals a small constant, e.g., 2 or 3 or 4
(as opposed to, e.g., a million or a billion), times the rank parameter k.

7.1. Details of our empirical evaluation. The empirical evaluation of our
CX and CUR matrix decompositions has been performed using the following two
types of column/row selection methods:
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• “Subspace sampling” (with replacement) using the Exactly(c) algorithm;
and

• “Subspace sampling” (without replacement) using the Expected(c) algo-
rithm.

In addition, the empirical evaluation has been performed on the following three data
sets:

• Matrices derived from the DNA SNP HapMap data [15, 52]—see section 7.2;
• A matrix derived from the Jester recommendation system corpus [35, 48]—see

section 7.3; and
• A matrix derived from the Reuters term-document corpus [46, 16]—see sec-

tion 7.4.
We have chosen these three data sets on which to evaluate the empirical applicability
of our algorithms for three reasons: first, these three application domains are rep-
resentative of a wide range of areas of modern scientific and internet data analysis;
second, these matrices are all approximately (to a greater or lesser extent) low-rank,
and they are all data for which spectral methods such as low-rank approximations
have been successfully applied; and third, we have already (with collaboraters from
these application areas) applied our algorithms to these data sets [48, 52, 16]. In
these data application papers [48, 52, 16], we have shown that our main CX and CUR
decomposition algorithms (either the algorithms for which we have provable perfor-
mance guarantees and/or greedy variants of these basic algorithms) perform well on
tasks such as classification, denoising, reconstruction, prediction, and clustering—
tasks that are of more immediate interest to data practitioners than simply capturing
the norm of the data matrix.

In this section, however, we we will restrict ourselves to an empirical evaluation of
our two main theorems. To do so, we will fix a rank parameter k, and we will present
plots of the Frobenius norm error (normalized by ||A − Ak||F ), as a function of the
number of samples chosen. For example, we will consider Θ1 ≡ ||A−CC+A||F /||A−
Ak||F , where Ak is the best rank-k approximation to the matrix A, as a function of the
number c of columns chosen. This ratio corresponds to the quantity that is bounded
by 1 + ε in Theorem 3. For c = k, this quantity will be no less than 1; of course, if we
choose c > k columns, then this ratio may be less than 1. Following the remark after
Theorem 3, we will also consider Θ2 ≡ ||A − CC+Ak||F /||A − Ak||F . This ensures
that the approximation has a rank no greater than k (which is of interest in certain
applications), and thus the plotted ratio will clearly be no less than 1, for every value
of c. We will also consider Θ3 ≡ ||A−CUR||F /||A−Ak||F , which corresponds to the
quantity that is bounded by 1 + ε in Theorem 4.

Two technical points should be noted about these plots in the upcoming subsec-
tions. First, we ran our CX or CUR decomposition algorithm several—e.g., three or
five, depending on the size of the data being plotted—times (corresponding, say, to
multiple runs to boost the δ failure probability), and the minimum value over these
repetitions was returned; this was repeated several times, and the average of those val-
ues is plotted. Second, for the plots of ||A−CUR||F /||A−Ak||F , the number of rows
selected is set to be twice the corresponding number of columns selected; optimizing
over this would lead to marginally better performance than that presented.

7.2. DNA SNP HapMap data. Our first dataset comes from the field of
human genetics. The HapMap project, a continuation of the Human Genome project,
aims to map the loci in the human genome that differ among individuals [15]. The
HapMap project focuses on the so-called SNPs, which are a very common type of
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variation in the genome (nearly 107 such loci have been identified in the human
genome). Significant motivation exists in the genetics community for minimizing the
number of SNPs that must be assayed, and in [52], we demonstrated how CUR-type
methods may be used to efficiently reconstruct unassayed SNPs from a small number
of assayed SNPs.

Both in [52] and here, we consider two regions of the genome known as HOXB
and 17q25. Three populations were studied for each region: Yoruban, a sub-Saharan
African population; a European population; and a joint Japanese/Chinese population.
Each population had 90 individuals, each corresponding to a row of the input matrix.
Columns of each matrix correspond to SNPs within the HOXB or 17q25 regions. The
genotypic data were encoded appropriately in order to be converted to numeric data
in the form of matrices. (Careful preprocessing was done to remove fixed SNPs, as
well as SNPs with too many missing entries, etc.) The HapMap project provided data
on 370 SNPs in 17q25 and 571 SNP in HOXB [15]. Thus, for example, our matrix
for the Yoruban population in HOXB is a 90 × 571 matrix, whose entries are in the
set {−1, 0,+1}.3 The other data matrices are of similar (not extremely large) size.
See [52] and references therein for details.

Data not presented indicate that for all three populations and for both genomic
regions, the data possess a great deal of linear structure. For example, in the 17q25
matrices, one needs 9, 9, and 7 singular vectors to capture 80% of the Frobenius norm
for the Yoruban, European, and the Japanese/Chinese populations, respectively; and
one needs 18, 16, and 13 singular vectors, respectively, to capture 90%. The matrices
for the HOXB region of the genome are even more redundant; one needs only 7, 6,
and 4 singular vectors, respectively, to capture 80% of the Frobenius norm.

In Figure 1, data are presented for the Yoruban HOXB data matrix. Each of the
six subfigures presents a plot of the Frobenius norm error as a function of the number
c of samples chosen. In particular, for two values of the rank parameter, i.e., k = 5
and k = 10, the ratio Θi = ||A−A′||F /||A−Ak||F is plotted, where A′ = CC+A for
i = 1; A′ = CC+Ak for i = 2; and A′ = CUR for i = 3. Clearly, in all these cases,
only modest oversampling is needed to capture “nearly all” of the dominant part of
the spectrum of the data matrix. For example, for k = 5: if c = 5, then Θ1 = 1.12; if
c ≥ 6, then Θ1 < 1.1; and if c ≥ 9, then Θ1 < 1.0. Similarly, for k = 10: if c = 10,
then Θ1 = 1.22; if c ≥ 15, then Θ1 < 1.1; and if c ≥ 18, then Θ1 < 1.0. Similar results
hold if the projection onto the span of the columns is regularized through a rank-k
space and also if rows are chosen after the columns. For example, for k = 10: if c ≥ 16,
then Θ2 < 1.2 and if c � 30, then Θ2 < 1.1. Similarly, even though the computations
for Θ3 are slightly worse and somewhat noisier due to the second level of sampling
(columns and then rows), the results still show that only modest oversampling (of c
relative to k) is needed. For example, if k = 10, then Θ3 < 1.1 if c ≥ 20 or c ≥ 28,
depending on precisely how the columns are chosen. Interestingly, in this last case,
not only are the plots noisier, but the Expected(c) algorithm and the Exactly(c)
algorithm seem to lead to (slightly) different results as a function of c.

Qualitatively similar results are seen for the other populations and the other
genomic regions. For example, in Figure 2, data are presented for the European

3The encoding should be interpreted as follows: each SNP consists of two alleles (nucleotide
bases); these bases are the same for all humans. Say that these bases are A and G. Then a value of
+1 corresponds to an individual whose genotype (pair of alleles) is AA, a value of 0 corresponds to
an individual whose genotype is AG or GA, and a value of −1 corresponds to an individual whose
genotype is GG.
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Fig. 1. Reconstruction error for the Yoruban population in the HOXB region of the genome.
Shown are Θ1, Θ2, and Θ3 (as defined in the text) for two values of the rank parameter k. The X-axis
corresponds to the number of columns sampled with the Exactly(c) algorithm or the Expected(c)
algorithm.

population for both the HOXB and the 17q25 regions of the genome for the value of
the rank parameter k = 10. For the HOXB region, Θ1 = 1.36 if c = 10 (this is higher
than for the corresponding Yoruban data), Θ1 < 1.0 if c � 17 (this is similar to the
corresponding Yoruban data), and Θ1 = 0.62 if c = 30 (this is less than the Yoruban
data). Similar trends are seen for Θ2 and Θ3 and also for the 17q25 region. In all cases,
only very modest oversampling is needed for accurate Frobenius norm reconstruction.
Data not presented indicate that the data for the joint Japanese/Chinese population
is quite similar to or slightly better than those results presented.

7.3. Recommendation system jester data. Our second dataset comes from
the field of recommendation system analysis, in which one is typically interested in
making purchase recommendations to a user at an electronic commerce web site [35].
Collaborative methods (as opposed to content-based or hybrid) involve recommending
to the user items that people with similar tastes or preferences liked in the past. Many
collaborative filtering algorithms represent a user as an n dimensional vector, where
n is the number of distinct products, and where the components of the vector are a
measure of the rating provided by that user for that product. Thus, for a set of m
users, the user-product ratings matrix is an m× n matrix A, where Aij is the rating
by user i for product j (or is null if the rating is not provided).

The so-called Jester joke dataset is a commonly used benchmark for recommenda-
tion system research and development [35]. In [48], we applied a CUR decomposition
on this data to the problem of reconstructing missing entries and making accurate
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Fig. 2. Reconstruction error for the European population in both the HOXB and 17q25 regions
of the genome. Shown are Θ1, Θ2, and Θ3 (as defined in the text) for k = 10. The X-axis
corresponds to the number of columns sampled with the Exactly(c) algorithm or the Expected(c)
algorithm.

recommendations. Here, we consider the m = 14,116 (out of ca. 73,000) users who
rated all of the n = 100 products (i.e., jokes) in the Jester data. The entries in this
14,116 × 100 matrix A are real numbers between −10 and +10 that represent the
user’s rating of a product.

Figure 3 presents the empirical results for the Jester recommendation system
data. The rank of the 14,116 × 100 matrix is 100, and although only seven singular
vectors are needed to capture 50% of the Frobenius norm, 50 are needed to capture
80%, and 73 are needed to capture 90%. Thus, the spectrum and shape of this matrix
(this matrix is very rectangular) are very different from that of the matrices of the
previous subsection.

Figure 3 presents reconstruction error results for selecting columns (i.e., products
or jokes), for selecting rows (i.e., users), and for selecting both columns and rows
simultaneously. For example, when selecting columns from A, if k = 15, then Θ1 =
1.14 if c = 15, Θ1 ≤ 1 if c � 29, and Θ1 = 0.99 when c = 30. Although the matrix
is very rectangular, quantitatively very similar results are obtained for the analogue
of Θ1 (called ΘR

1 in the figure) if rows are sampled (or, equivalently if columns are
sampled from AT ). Thus, when our main CX decomposition is applied to either A
or to AT , a small number of columns (products) or rows (users), capture most of
the Frobenius norm of A that is captured by the best rank k approximation to A.
A similar result holds for the simultaneously choosing columns and rows of A (both
users and products), and applying our CUR approximation algorithm. As with the
data of the previous subsection, the data for Θ3 are much noisier when both columns
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Fig. 3. Empirical results for the Jester recommendation system data. Shown are: the percentage
of the Frobenius norm captured as a function of the number of singular components; Θ1 for sampling
columns from A for k = 5 and k = 15; the analogue of Θ1 for selecting rows from A (i.e., Θ1 for
sampling columns from AT ); and Θ3 for selecting columns and then rows for k = 5 and k = 15.

and rows are chosen, but even in this case Θ3 ≤ 1.1 for k = 5 if c � 25 and Θ3 ≤ 1.2
for k = 15 if c � 30. In all these cases, data not presented indicate that qualitatively
similar (but shifted) results are obtained for higher values of the rank parameter k.

7.4. Term-document Reuters data. Our third data set comes from the field
of text categorization and information retrieval. In these applications, documents are
often represented as a so-called “bag of words” and a vector space model is used. In
2000, Reuters Ltd made available a large collection of Reuters News stories for use
in research and development of natural language processing, information retrieval,
and machine learning systems. This corpus, known as ”Reuters Corpus, Volume 1”
or RCV1, is significantly larger (it contains over 800,000 news items from 1996-97)
than the older, well-known Reuters-21578 collection, which has been heavily used in
the text classification community [46]. In [16], we considered the problem of feature
selection for improved classification, and we compared a CX-like column selection
procedure to several traditional methods. The data come with class labels and possess
a hierarchical class structure (which we used in [16]) which we ignored here. Here,
we used the ltc-normalized term-document matrix and the training data from the one
test-train split provided by Lewis, Yang, Rose, and Li [46]. Thus, the Reuters matrix
we considered here is a (very sparse) 47,236 × 23,149 matrix whose elements are real
numbers between 0 and 1 that represent a normalized frequency.

Figure 4 presents the empirical results for the Reuters term-document data. Note
that this data is not only much larger than the data from the previous two subsec-
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Fig. 4. Empirical results for the Reuters term-document data. Shown are the percentage of
the Frobenius norm captured as a function of the number of singular components; Θ1, Θ2, and Θ3

as a function of the number of sampled columns and/or rows for three different values of the rank
parameter k.

tions, it is also less well-approximated by a low rank matrix. Less than 50% of the
Frobenius norm is captured by the first k = 100 singular components, and less than
80% is captured by the first k = 1500 singular components. (Nevertheless, spectral
methods have frequently been applied to this data.) The matrix is very sparse, and
performing computations is expensive in terms of space and time (due to multiple
randomized trials and since the dense matrices of singular vectors are large) if the
rank parameter k is chosen to be more than a few hundred. Thus, to demonstrate the
empirical applicability of our main algorithms, we considered several smaller values
of k. Here, we report results for k = 10 and c = 10 to 250; for k = 20 and c = 20
to 500; and for k = 100 and c = 100 to 700. Note that we report results only for
columns chosen with the Expected(c) algorithm; initial unreported computations
on several smaller systems indicate that very similar results will be obtained with the
Exactly(c) algorithm.

In all of these cases, and for all values of Θ1, Θ2, and Θ3, only modest over-
sampling leads to fairly small reconstruction error. The worst data point reported
was for Θ3 = 1.272 for k = 100 and c = 100, and even in that case Θ3 < 1.1 for
c ≥ 300. Interestingly, all the curves tend to decrease somewhat more slowly (as a
function of oversampling c, relative to k) than the corresponding curves in the previ-
ous subsections do. Note that Θ1 does not decrease below 1.0 for k = 10 until after
c = 500; for k = 20, it drops below 1.0 by c = 400, and for k = 100 (which obviously
captures the largest fraction of the Frobenius norm) it drops below 1.0 at c ≈ 350.
Thus, this phenomenon is likely related to the degree to which the chosen value for
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the rank parameter k captures a reasonable fraction of the norm of the original ma-
trix. Nevertheless, in all cases, we can achieve Θi < 1.1 with only a modest degree of
oversampling c relative to k.

8. Conclusion. We have presented and analyzed randomized algorithms for
computing low-rank matrix approximations that are explicitly expressed in terms of
a small number of columns and/or rows of the input matrix. These algorithm achieve
relative-error guarantees, whereas previous algorithms for these problems achieved
only additive-error guarantees. These algorithms randomly sample in a novel manner
that we call “subspace sampling,” and their analysis amounts to approximating a
generalized �2 regression problem by random sampling. As described in section 1.1
and in [52, 48], such low-rank matrix approximations have numerous applications for
the improved analysis of data.

We conclude with several open problems:
• To what extent do the results of this paper generalize to other matrix norms?
• What hardness results can be established for the optimal choice of columns

and/or rows?
• Does there exist a deterministic approximation algorithm for either of the

problems we consider?
• Does there exist an efficient deterministic algorithm to choose columns and/or

rows that exactly or approximately optimize the maximum volume of the
induced parallelepiped? (As pointed out to us by an anonymous reviewer,
[40, 61] provide such procedures; it would be interesting to see if bounds of
the form we prove can be established for the algorithms of [40, 61]).

• Can we formulate a simple condition that we can check after we have sampled
the columns and/or rows to determine whether we have achieved a 1 + ε
approximation with that sample?

• Can we obtain similar algorithms and comparable bounds for formulations of
these problems that include regularization and/or conditioning?

• What heuristic variants of these algorithms are most appropriate in different
application domains?

• Are the algorithms presented in this paper numerically stable?

Appendix A. Approximating matrix multiplication. In this section, we de-
scribe two complementary procedures for randomly sampling (and rescaling) columns
and/or rows from an input matrix. Then, we describe an algorithm for approximating
the product of two matrices by randomly sampling columns and rows from the input
matrices using one of the two sampling procedures.

A.1. Sampling columns and rows from matrices. We describe two simple
algorithms for randomly sampling a set of columns from an input matrix. Each
algorithm takes as input an m × n matrix A and a probability distribution {pi}ni=1,
and each constructs a matrix C consisting of a rescaled copy of a small number
of columns from A. Clearly, each algorithm can be modified to sample rows from
a matrix. The first algorithm is the Exactly(c) algorithm, which is described in
Algorithm 4 using the sampling matrix formalism described in section 2. In this
algorithm, c columns exactly of A are chosen in c i.i.d. trials, where in each trial the
ith column of A is picked with probability pi. Note that because the sampling is
performed with replacement, a single column of A may be included in C more than
once. The second algorithm is the Expected(c) algorithm, which is described in
Algorithm 5, also using the sampling matrix formalism described in section 2. In
this algorithm, at most c columns in expectation of A are chosen by including the
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ith column of A in C with probability p̃i = min{1, cpi}. Note that the exact value
of the number of columns returned is not known before the execution of this second
algorithm; we do not perform an analysis of this random variable.

Algorithm 4. The Exactly(c) algorithm to create S, D, and C.

Algorithm 5. The Expected(c) algorithm to create S, D, and C.

A.2. Approximate matrix multiplication algorithms. Algorithm 6 takes
as input two matrices A and B, a number c ≤ n, and a probability distribution {pi}ni=1

over [n]. It returns as output two matrices C and R, where the columns of C are a
small number of sampled and rescaled columns of A and where the rows of R are a
small number of sampled and rescaled rows of B. The sampling and rescaling are per-
formed by calling either the Exactly(c) algorithm or the Expected(c) algorithm.
When the Exactly(c) algorithm is used to choose column-row pairs in Algorithm 6,
this is identical to the algorithm of [21]. In particular, note that exactly c column-
row pairs are chosen, and a column-row pair could be included in the sample more
than once. When the Expected(c) algorithm is used to choose column-row pairs
in Algorithm 6, this is a minor variation of the algorithm of [21]. In particular, the
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main difference is that at most c column-row pairs in expectation are chosen, and no
column-row pair is included in the sample more than once.

Algorithm 6. A fast Monte-Carlo algorithm for approximate matrix multiplication.

The next two theorems are our basic quality-of-approximation results for Algo-
rithm 6. Each states that, under appropriate assumptions, CR = ASDDSTB ≈ AB.
The most interesting of these assumptions is that the sampling probabilities used to
randomly sample the columns of A and the corresponding rows of B are nonuniform
and depend on the product of the Euclidean norms of the columns of A and/or the
corresponding rows of B. For example, consider sampling probabilities {pi}ni=1 such
that

(44) pi ≥ β

∣∣A(i)
∣∣
2

∣∣B(i)

∣∣
2∑n

j=1

∣∣A(j)
∣∣
2

∣∣B(j)

∣∣
2

,

for some β ∈ (0, 1]. Sampling probabilities of the form (44) use information from
the matrices A and B in a very particular manner. If β = 1, they are optimal for
approximating AB by CR in a sense made precise in [21]. Alternatively, sampling
probabilities {pi}ni=1 such that

(45) pi ≥ β

∣∣A(i)
∣∣2
2

‖A‖2
F

,

for some β ∈ (0, 1], are also of interest in approximating the product AB by CR if,
e.g., only information about A is easily available.

The following theorem is our main quality-of-approximation result for approxi-
mating the product of two matrices with Algorithm 6, when column-row pairs are
sampled using the Exactly(c) algorithm. Its proof (and the statement and proof of
similar stronger results) may be found in [21].

Theorem 6. Suppose A ∈ R
m×n, B ∈ R

n×p, and c ≤ n. Construct C and
R with Algorithm 6, using the Exactly(c) algorithm. If the sampling probabilities
{pi}ni=1 used by the algorithm are of the form (44) or (45), then

E [ ‖AB − CR‖F ] ≤ 1√
βc

‖A‖F ‖B‖F .

The following theorem is our main quality-of-approximation result for approxi-
mating the product of two matrices with Algorithm 6, when column-row pairs are
sampled using the Expected(c) algorithm. The Frobenius norm bound (46) is new,
and the spectral norm bound (47) is due to Rudelson and Vershynin, who proved a
similar result in a more general setting [54, 62, 56].
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Theorem 7. Suppose A ∈ R
m×n, B ∈ R

n×p, and c ≤ n. Construct C and R
with Algorithm 6, using the Expected(c) algorithm. If the sampling probabilities
{pi}ni=1 used by the algorithm are of the form (44) or (45), then

(46) E [ ‖AB − CR‖F ] ≤ 1√
βc

‖A‖F ‖B‖F .

If, in addition, B = AT , then

(47) E
[ ∥∥AAT − CCT

∥∥
2

]
≤ O(1)

√
log c

βc
‖A‖F ‖A‖2 .

Proof. Equation (47) follows from the analysis of Rudelson and Vershynin, who
considered spectral norm bounds on approximating the product of two matrices [54,
62, 56]. Note that they considered approximating the product AAT by sampling with
respect to probabilities of the form (45) with β = 1, but the analysis for general
β ∈ (0, 1] is analogous.

Next, we prove that for any set of probabilities {pi}ni=1 the following holds:

(48) E
[
‖AB − CR‖2

F

]
≤ 1

c

n∑
j=1

∣∣A(j)
∣∣2
2

∣∣B(j)

∣∣2
2

pj
.

Equation (46) follows from (48) by using Jensen’s inequality and using the form of
the sampling probabilities (44) and (45).

To establish (48), recall that the sampling is performed with the Expected(c)
algorithm. Let Ij , j ∈ [n] be the indicator variable that is set to 1 if the jth column
of A and the jth row of B are sampled (with probability min{1, cpj}) and is set to 0
otherwise. Recall that if Ij = 1, we scale both the jth column of A and the jth row

of B by 1/
√

min{1, cpj}. Thus,

‖AB − CR‖2
F =

∥∥AB −ASDDSTB
∥∥2

F

=

∥∥∥∥∥∥
n∑

j=1

(
1 − Ij

min{1, cpj}

)
A(j)B(j)

∥∥∥∥∥∥
2

F

.(49)

Clearly, if min{1, cpj} = 1, then Ij = 1 with probability 1, and 1−Ij/min{1, cpj} = 0.
Thus, we can focus on the set of indices Λ = {j ∈ [n] : cpj < 1} ⊆ [n]. By taking the
expectation of both sides of (49), it follows that

E
[
‖AB − CR‖2

F

]
= E

⎡
⎢⎣
∥∥∥∥∥∥
∑
j∈Λ

(
1 − Ij

cpj

)
A(j)B(j)

∥∥∥∥∥∥
2

F

⎤
⎥⎦

= E

⎡
⎢⎣

m∑
i1=1

p∑
i2=1

⎛
⎝∑

j∈Λ

(
1 − Ij

cpj

)
A(j)B(j)

⎞
⎠

2

i1i2

⎤
⎥⎦

= E

⎡
⎢⎣

m∑
i1=1

p∑
i2=1

⎛
⎝∑

j∈Λ

(
1 − Ij

cpj

)
Ai1jBji2

⎞
⎠

2
⎤
⎥⎦ .
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By multiplying out the right-hand side, it follows that

(50)

E
[
‖AB − CR‖2

F

]
=E

⎡
⎣ m∑
i1=1

p∑
i2=1

∑
j1∈Λ

∑
j2∈Λ

(
1 − Ij1

cpj1

)(
1 − Ij2

cpj2

)
Ai1j1Bj1i2Ai1j2Bj2i2

⎤
⎦

=
m∑

i1=1

p∑
i2=1

∑
j1∈Λ

∑
j2∈Λ

E

[(
1 − Ij1

cpj1

)(
1 − Ij2

cpj2

)]
Ai1j1Bj1i2Ai1j2Bj2i2 .

Notice that for j ∈ [Λ], E [1 − Ij/cpj ] = 0 and E
[
(1 − Ij/cpj)

2
]

= (1/cpj)−1 ≤ 1/cpj .

Hence,

E
[
‖AB − CR‖2

F

]
=

m∑
i1=1

p∑
i2=1

∑
j∈Λ

E
[
(1 − Ij/cpj)

2
]
A2

i1jB
2
ji2

≤
∑
j∈Λ

1

cpj

m∑
i1=1

p∑
i2=1

A2
i1jB

2
ji2 =

1

c

∑
j∈Λ

∣∣A(j)
∣∣2
2

∣∣B(j)

∣∣2
2

pj
.

This concludes the proof of (48) and thus of the theorem.
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1. Introduction and preliminaries. Let A ∈ C
n×n be any complex square

matrix of order n with ind(A) = r, where ind(A), the index of A, is the smallest
nonnegative integer r such that rankAr = rankAr+1. Let R(A) and N (A) denote
the range space of A and the null space of A, respectively. In our development we
consider matrices B ∈ C

n×n, which satisfy the following condition for some positive
integer s:

(Cs) R(Bs) ∩N (Ar) = {0} and N (Bs) ∩R(Ar) = {0}.

A particular case is when the matrix B satisfies

(1.1) R(Bs) = R(Ar) and N (Bs) = N (Ar) .

The class of perturbation matrices B related to A by the condition (1.1), which is
equivalent to the fact that both matrices have equal eigenprojection at zero, Bπ = Aπ

with Aπ = I − AAD, were characterized in [4]. The Drazin inverse of B satisfying
(1.1) is given by the formula BD = (I + AD(B − A))−1AD. This latter formula was
given in [15] for B = A + E, where E = AADEAAD and E sufficiently small.

The first and third authors gave in [5] characterizations of the matrices B related
to A by the condition that, involving the eigenprojections at zero, I − (Bπ −Aπ)2 is
nonsingular. Therein, it was proved that BD = (I + AD(B − A) + S)−1AD(I − S)
where S = Bπ −Aπ and an upper bound for ‖BD −AD‖/‖AD‖ was given in terms of
‖AD(B −A)‖ and ‖Bπ −Aπ‖.

The continuity of the Drazin inverse was studied in [1, 2, 3, 11]. In [2], Campbell
and Meyer established that if Aj converges to A, then AD

j converges to AD if and

only if rankA
rj
j = rankAr for all sufficiently large j, where rj = ind(Aj). Recently,

the perturbation of the Drazin inverse was studied by several authors, and upper
bounds for the relative error ‖BD − AD‖/‖AD‖ were given under certain conditions
[4, 5, 6, 8, 9, 12, 13, 14, 15, 16].
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In this paper, in section 2 we prove that, for a matrix B with ind(B) = s, the
fact that B satisfies condition (Cs) is equivalent to that I− (Bπ−Aπ)2 is nonsingular.
We establish several new characterizations of the matrices which satisfy condition
(Cs). In terms of matrix rank, this class of matrices is characterized by the condition
rankAr = rankBs = rankArBsAr whenever s = ind(B).

In section 3 we study further characterizations for the class (C1), giving a represen-
tation of matrices B ∈ (C1) such that ind(B) = 1, with respect to the core-nilpotent
block form of the matrix A. We mention that the perturbation of the group inverse
is a case of special interest due to its application to stability of Markov chains [3, 10].

In section 4 we extend the characterizations for the group inverse to the general
case of perturbations satisfying condition (Cs). We give an expression for the index
1-nilpotent decomposition of the matrices B ∈ (Cs), ind(B) = s, which will be the
main tool in the development of perturbation results.

Finally, in section 5 we give an explicit representation of BD, and we derive upper
bounds for the errors ‖BD−AD‖/‖AD‖ and ‖BBD−AAD‖ in terms of norms involving
the powers Bs−As. In a numerical example we compare our bounds with others given
recently in [13, 14].

In relation to the study of the continuity of the Drazin inverse, we can say that
if Aj converges to A and rankA

rj
j = rankArA

rj
j Ar = rankAr for all sufficiently large

j, where rj = ind(Aj), then an explicit representation for AD
j and an explicit error

bound of ‖AD
j −AD‖/‖AD‖ are provided.

We recall that the Drazin inverse of A ∈ C
n×n is the unique matrix AD ∈ C

n×n

satisfying the relations

ADAAD = AD, AAD = ADA, Al+1AD = Al for all l ≥ r,

where r = ind(A). If A is nonsingular, then ind(A) = 0 and the solution to the above
equations is AD = A−1. The case when ind(A) = 1, i.e., rankA = rankA2, the Drazin
inverse is called the group inverse of A and is denoted by A�.

We denote by O a null matrix. Each A ∈ C
n×n with ind(A) = r has a unique

index 1-nilpotent decomposition (see [1, Theorem 11, Chapter 4]),

(1.2) A = CA + NA, ind(CA) = 1, CANA = NACA = O, Nr
A = O.

Moreover, we have Ak = Ck
A + Nk

A for all integers k ≥ 1, and AD = C�
A.

The following lemma gives a condition for the existence of the group inverse of
a partitioned matrix and a formula for its computation (see [3, Theorems 7.7.5 and
7.7.7]).

Lemma 1.1. Let M = ( A B
C D ) be square with A ∈ C

d×d nonsingular and denote
Ψ = I + A−1BCA−1. Then

(i) rankM = rankA ⇐⇒ D = CA−1B.

In this case, for all integers k ≥ 1, Mk may be partitioned as

(1.3) Mk =

[
I

CA−1

]
(AΨ)k−1A

[
I A−1B

]
.

(ii) If rankM = rankA, then ind(M) = 1 ⇐⇒ Ψ is nonsingular.

In this case, the group inverse of M is given by
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(1.4) M � =

[
I

CA−1

]
(ΨAΨ)−1

[
I A−1B

]
.

Let A ∈ C
n×n with ind(A) = r. The eigenprojection of A corresponding to the

eigenvalue 0, denoted by Aπ, is the uniquely determined projector such that R(Aπ) =
N (Ar) and N (Aπ) = R(Ar).

If ind(A) = r > 0, then there exists a nonsingular matrix P such that we can
write A in the core-nilpotent block form

(1.5) A = P

(
A1 O

O A2

)
P−1 A1 ∈ C

d×d nonsingular, d = rankAr, Ar
2 = O.

By [3, Theorem 7.2.1], relative to the form (1.5), the Drazin inverse of A and the
eigenprojection of A at zero are given by

AD = P

(
A−1

1 O

O O

)
P−1, Aπ = I −AAD = P

(
O O

O I

)
P−1.

The case when ind(A) = 1 is equivalent to having A2 = O in (1.5), and so
AπA = AAπ = O. Moreover, we have N (Aπ) = R(A) and R(Aπ) = N (A).

Lemma 1.2. Let A,C ∈ C
n×n with ind(A) = r and C nonsingular. Then

I −Aπ + CAπC−1Aπ is nonsingular ⇐⇒ I −Aπ + C−1AπCAπ is nonsingular .

Proof. Write

C = P

(
C11 C12

C21 C22

)
P−1 and C−1 = P

(
X11 X12

X21 X22

)
P−1,

where C11, X11, and A1 as in (1.5) are the same size. Then

I −Aπ + CAπC−1Aπ = P

(
I C12X22

O C22X22

)
P−1,

I −Aπ + C−1AπCAπ = P

(
I X12C22

O X22C22

)
P−1.

Hence, since C22X22 is nonsingular ⇐⇒ X22C22 is nonsingular, the equivalence
given in this lemma follows.

The following lemma is concerned with the rank of a product of matrices (see [17,
sec. 2.4]).

Lemma 1.3. Let A,B,C ∈ C
n×n. Then

rankAB = rankB − dim(R(B) ∩N (A)),(1.6)

rankABC ≥ rankAB + rankBC − rankB.(1.7)
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2. Characterizations of matrices satisfying condition (Cs). First, for a
matrix B with ind(B) = s we establish the equivalence among condition (Cs) and
conditions involving the matrix rank, and other conditions expressed in terms of the
eigenprojections at zero.

Theorem 2.1. Let A ∈ C
n×n, ind(A) = r. Then the following statements on

B ∈ C
n×n with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
(b) rankBs = rankAr = rankArBs = rankBsAr.
(c) rankBs = rankAr = rankArBsAr.
(d) rankBs = rankAr, I −Aπ + BπAπ is nonsingular.
(e) I − (Bπ −Aπ)2 is nonsingular.
(f) I −Bπ −Aπ is nonsingular.

Proof. (a) ⇒ (b). From the space decomposition C
n = R(Ar) ⊕ N (Ar) =

R(Bs)⊕N (Bs) and the conditions N (Bs)∩R(Ar) = {0} and R(Bs)∩N (Ar) = {0},
it is clear that rankBs = rankAr. Moreover, using Lemma 1.3, identity (1.6), we get

rankArBs = rankBs − dimR(Bs) ∩N (Ar)

and

rankBsAr = rankAr − dimR(Ar) ∩N (Bs).

Hence, rankArBs = rankBs and rankBsAr = rankAr. So, (b) is proved.
(b) ⇒ (c). Applying Lemma 1.3, formula (1.7), we get

rankArBsAr ≥ rankArBs + rankBsAr − rankBs.

Hence rankArBsAr ≥ rankBs. We also have rankArBsAr ≤ rankAr = rankBs, so
we conclude that rankArBsAr = rankBs.

(c) ⇒ (d). From condition rankArBsAr = rankAr = rankBs, using Lemma 1.3,
identity (1.6), we easily derive R(Ar) ∩ N (Bs) = {0} and N (Ar) ∩ R(Bs) = {0}.
Now, let (I − Aπ + BπAπ)x = 0. Then (I − Aπ)x = −BπAπx. From this latter
relation it follows that (I−Aπ)x ∈ R(Ar)∩N (Bs), and thus (I−Aπ)x = 0. Further,
we also have BπAπx = 0. Hence Aπx ∈ R(Bs)∩N (Ar) and, consequently, Aπx = 0.
Therefore x = 0, and I −Aπ + BπAπ is nonsingular.

(d) ⇒ (e). Since I− (Bπ −Aπ)2 = (I−Aπ +BπAπ)(I−Bπ +AπBπ), we have to
prove that I − Bπ + AπBπ is nonsingular. We write the core-nilpotent block forms,
as in (1.5), A = P (A1 O

O A2
)P−1 and B = Q(B1 O

O B2
)Q−1 with A1 and B1 nonsingular

matrices. We note that A1 and B1 have the same size because rankBs = rankAr.
Moreover, (Q−1BπQ = O O

O I ) = P−1AπP and, thus, Bπ = QP−1AπPQ−1. Hence
I − Aπ + BπAπ = I − Aπ + QP−1AπPQ−1Aπ. So I − Aπ + QP−1AπPQ−1Aπ is
nonsingular, and by Lemma 1.2 we conclude that PQ−1(I − Bπ + AπBπ)QP−1 =
I −Aπ + PQ−1AπQP−1Aπ is also nonsingular.

(e) ⇒ (f). Let (I − Bπ − Aπ)x = 0. Then (I − Bπ + Aπ)x = 2Aπx, and hence
(I + Bπ − Aπ)(I − Bπ + Aπ)x = 2BπAπx = 0. So, we have (I − (Bπ − Aπ)2)x = 0.
This implies that x = 0, and therefore I −Bπ −Aπ is nonsingular.

(f) ⇒ (a). This equivalence follows from [7, Theorem 1.2], applying the equiva-
lence of (iii) and (iv) given therein with the projectors I −Aπ and Bπ.

The next lemma gives properties that are needed in what follows.
Lemma 2.2. Let A ∈ C

n×n, ind(A) = r. If B ∈ C
n×n with ind(B) = s satisfies

condition (Cs), then
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(i) for any integer l ≥ s, I + (AD)l(Bl −Al) is nonsingular.
(ii) I − (I + (AD)s(Bs −As))−1Aπ −Aπ(I + (Bs −As)(AD)s)−1 is nonsingular.
Proof. (i) Let l ≥ s and (I+(AD)l(Bl−Al))x = 0. Then, Aπx = −(AD)lBlx = 0.

Hence, x ∈ N (Aπ) = R(Ar) and Blx ∈ N
(
(AD)l

)
= N (Ar). Since R(Bl) = R(Bs),

then Blx ∈ R(Bs) ∩N (Ar). So, Blx = 0. Therefore, x ∈ N
(
Bl

)
∩R(Ar), and thus

x = 0. So, I + (AD)l(Bl −Al) is nonsingular.
(ii) Let x− (I +(AD)s(Bs−As))−1Aπx−Aπ(I +(Bs−As)(AD)s)−1x = 0. Then

(I + (AD)s(Bs −As))−1(AD)sBsx = Aπ(I + (Bs −As)(AD)s)−1x. From this identity
and the fact that (I + (AD)s(Bs −As))−1(AD)s = (AD)s(I + (Bs −As)(AD)s)−1, we
conclude that (I+(AD)s(Bs−As))−1(AD)sBsx = 0 and Aπ(I+(Bs−As)(AD)s)−1x =
0. Therefore, (AD)sBsx = 0 and so Bsx ∈ R(Bs) ∩ N (Ar). Thus, Bsx = 0.
Moreover, since (I + (Bs −As)(AD)s)−1x ∈ R(Ar), (I + (Bs −As)(AD)s)−1x = Ary
for some y. This implies that x = Bs(AD)sAry, and so x ∈ R(Bs) ∩ N (Bs). Hence,
x = 0 because ind(B) = s. So, (ii) is proved.

In the following theorem, we will derive a formula for the eigenprojection of B at
zero, Bπ.

Theorem 2.3. Let A ∈ C
n×n, ind(A) = r. If B ∈ C

n×n with ind(B) = s
satisfies condition (Cs), then

Bπ = −(I + (AD)s(Bs −As))−1AπX−1 = −X−1Aπ(I + (Bs −As)(AD)s)−1,

where

X = I − (I + (AD)s(Bs −As))−1Aπ −Aπ(I + (Bs −As)(AD)s)−1.

Proof. From Lemma 2.2 we know that I+(AD)s(Bs−As) and X are nonsingular.
Using that Aπ(I +(AD)s(Bs−As))−1 = Aπ = (I +(Bs−As)(AD)s)−1Aπ, it is easily
checked that

X(I + (AD)s(Bs −As))−1Aπ

= −Aπ(I + (Bs −As)(AD)s)−1(I + (AD)s(Bs −As))−1Aπ

= Aπ(I + (Bs −As)(AD)s)−1X.

(2.1)

Hence

(2.2) (I + (AD)s(Bs −As))−1AπX−1 = X−1Aπ(I + (Bs −As)(AD)s)−1.

Let Q = −(I + (AD)s(Bs −As))−1AπX−1. We observe that

R(Q) = R((I + (AD)s(Bs −As))−1Aπ)

because X is nonsingular. Let us show that Q is the projector with N (Q) = R(Bs)
and R(Q) = N (Bs). First, using (2.2) and (2.1) we see that

Q2 = X−1Aπ(I + (Bs −As)(AD)s)−1(I + (AD)s(Bs −As))−1AπX−1 = Q.

Now, let us assume that x ∈ N (Bs). Then Aπx + (AD)sBsx = Aπx. From this
relation it follows that x = (Aπ + (AD)sBs)−1Aπx and, thus, x ∈ R(Q). Conversely,
assuming x ∈ R(Q) we get (Aπ + (AD)sBs)x = Aπy for some y ∈ C

n. Hence
(AD)sBsx = Aπ(y − x). Then (AD)sBsx = 0. Therefore, Bsx ∈ R(Bs) ∩N (Ar). So
Bsx = 0. Consequently, R(Q) = N (Bs).
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By (2.2) we have that N (Q) = N
(
X−1Aπ(I + (Bs −As)(AD)s)−1

)
. Hence it

follows that N (Q) = N
(
Aπ(I + (Bs −As)(AD)s)−1

)
because X is nonsingular. Let

us assume that x ∈ N (Q). Then

Aπ(Aπ + Bs(AD)s)−1x = (I −Bs(AD)s(Aπ + Bs(AD)s)−1)x = 0.

Hence, x = BsAD(Aπ + Bs(AD)s)−1x, and thus x ∈ R(Bs). Since N (Q) ⊆ R(Bs),
and C

n = R(Q) ⊕ N (Q) = R(Bs) ⊕ N (Bs) because ind(B) = s, we conclude that
N (Q) = R(Bs). So we have Bπ = Q, which is the desired result.

3. The class (C1). We shall first give further characterizations of matrices B
satisfying condition (C1) and ind(B) = 1. We obtain a representation of B with
respect to the core-nilpotent block form of the matrix A.

Theorem 3.1. Let A ∈ C
n×n, ind(A) = r. Then the following conditions on

B ∈ C
n×n are equivalent:

(a) B satisfies condition (C1) and ind(B) = 1.
(b) B(I + AD(B − A))−1Aπ = O, I + AD(B − A) and I + (AD)2(B2 − A2) are

nonsingular.
(c) Relative to the core-nilpotent block form of A in (1.5), B has the following

representation:

(3.1) B = P

(
B11 B12

B21 B21B
−1
11 B12

)
P−1,

where B11 and I + B−1
11 B12B21B

−1
11 are nonsingular.

(d) rankB = rankAr, I +AD(B −A) and I + (AD)2(B2 −A2) are nonsingular.
Proof. (a) ⇒ (b). Since ind(B) = 1, from Lemma 2.2(i) we get that I+AD(B−A)

and I + (AD)2(B2 −A2) are nonsingular. Finally, using that BBπ = O and applying
Theorem 2.3, we conclude that B(I + AD(B −A))−1Aπ = O.

(b) ⇒ (c). Write

B = P

(
B11 B12

B21 B22

)
P−1.

We compute

I + AD(B −A) = P

(
A−1

1 B11 A−1
1 B12

O I

)
P−1.

Hence B11 is nonsingular because I + AD(B −A) is nonsingular. We have

I + (AD)2(B2 −A2) = P

(
A−2

1 (B2
11 + B12B21) A−2

1 (B11B12 + B12B22)

O I

)
P−1.

Thus, B2
11 + B12B21 is nonsingular because I + (AD)2(B2 − A2) is nonsingular. On

the other hand,

B(I + AD(B −A))−1Aπ = P

(
B11 B12

B21 B22

)(
B−1

11 A1 −B−1
11 B12

O I

)(
O O

O I

)
P−1

= P

(
O O

O −B21B
−1
11 B12 + B22

)
P−1.
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From the assumption B(I + AD(B − A))−1Aπ = O it follows that B22 = B21B
−1
11 B12.

(c) ⇔ (d). From the representation (3.1), applying Lemma 1.1, it follows that
rankB = rankB11 = rankAr. The rest is easily seen.

Conversely, write

B = P

(
B11 B12

B21 B22

)
P−1.

Since I +AD(B−A) and I +(AD)2(B2−A2) are nonsingular, arguing as in the proof
of (b) ⇒ (c), we get that B11 and I +B−1

11 B12B21B
−1
11 are nonsingular. Finally, from

rankB = rankAr we obtain that rankB = rankB11, and hence by Lemma 1.1(i) we
conclude that B22 = B21B

−1
11 B12.

(c) ⇒ (a). Assume that B has the block representation (3.1). By Lemma 1.1(i),
(ii), we conclude that rankB = rankB11 = rankAr and ind(B) = 1. On the other
hand,

rankArBAr = rankP

(
Ar

1B11A
r
1 O

O O

)
P−1 = rankAr

1B11A
r
1 = rankAr.

Hence, in view of Theorem 2.1 (a)⇔(c), we conclude that B satisfy condition (C1).
Remark 3.2. Conditions (b) and (d) in the above theorem can be replaced by the

following symmetrical conditions:
(b′) Aπ(I + (B − A)AD)−1B = O, I + (B − A)AD and I + (B2 − A2)(AD)2 are

nonsingular.
(d′) rankB = rankAr, I + (B −A)AD and I + (B2 −A2)(AD)2 are nonsingular.
Next, we state the following compact representation for B and B�.
Lemma 3.3. Let A ∈ C

n×n, ind(A) = r and let B ∈ C
n×n, ind(B) = 1, satisfying

condition (C1). Then we have the representation

(3.2) B = P

[
I
S

]
B1

[
I T

]
P−1,

where B1 and I+TS are nonsingular. According to this expression, the group inverse
of B can be represented in the form

(3.3) B� = P

[
I
S

]
[(I + TS)B1(I + TS)]−1

[
I T

]
P−1.

Proof. By Theorem 3.1 (c),

B = P

(
B11 B12

B21 B21B
−1
11 B12

)
P−1,

where B11 and I + B−1
11 B12B21B

−1
11 are nonsingular. By denoting B1 = B11, T =

B−1
11 B12, and S = B21B

−1
11 we get the representation (3.2). Now, applying formula

(1.4) given in Lemma 1.1, we obtain the representation for B�.

4. The class (Cs). Next, based on Theorem 3.1, we establish the following new
characterizations of B satisfying condition (Cs).

Theorem 4.1. Let A ∈ C
n×n, ind(A) = r. Then the following conditions on

B ∈ C
n×n are equivalent:

(a) B satisfies condition (Cs) and ind(B) = s.
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(b) For the smallest positive integer s such that Bs(I+(AD)s(Bs−As))−1Aπ = O,
I + (AD)s(Bs −As) and I + (AD)s+1(Bs+1 −As+1) are nonsingular.

(c) The index 1-nilpotent decomposition of B has the following representation
relative to the core-nilpotent block form of A in (1.5),

B = CB + NB = P

[
I
S

]
B1

[
I T

]
P−1 + P

[
T
−I

]
B2

[
S −I

]
P−1,(4.1)

where B1 and I + TS are nonsingular and B2(I + ST ) is nilpotent of index
s.

(d) For the smallest positive integer s such that rankBs = rankAr, I+(AD)s(Bs−
As) and I + (AD)s+1(Bs+1 −As+1) are nonsingular.

Proof. If ind(B) = s and B satisfies condition (Cs), then s is the smallest positive
integer such that Bs satisfies condition (C1) and ind(Bs) = 1. Moreover, we observe
that for any k ≥ s, I + (AD)k(Bk −Ak) is nonsingular if and only if I +AD(Bk −A)
is nonsingular. So, applying Theorem 3.1 with Bs, it follows the equivalence between
condition (a) and the following:

(b′) For the smallest positive integer s such that Bs(I+(AD)s(Bs−As))−1Aπ = O,
I + (AD)s(Bs −As) and I + (AD)2s(B2s −A2s) are nonsingular.

We now note that conditions (b′) and (b) are equivalent.
A similar device proves the equivalence between conditions (a) and (d) in this

theorem. Applying Theorem 3.1 with Bs we get the equivalence of (a) and the
following:

(d′) For the smallest positive integer s such that rankBs = rankAr, we have that
I + (AD)s(Bs −As) and I + (AD)2s(B2s −A2s) are nonsingular.

Finally, we note that conditions (d′) and (d) are equivalent.
Now, we will prove the equivalence between (a) and (c). Suppose B = CB + NB

is the index 1-nilpotent decomposition (1.2) of B. We know that if s is the index of
B, then N (CB) = N (Bs) and R(CB) = R(Bs). Hence if B satisfies condition (Cs),
then CB satisfies condition (C1) and ind(CB) = 1. By Lemma 3.3 it follows that

(4.2) CB = P

[
I
S

]
B1

[
I T

]
P−1,

where B1 and I + TS are nonsingular. We observe that I + ST is also nonsingular.
Now, write

NB = P

(
N11 N12

N21 N22

)
P−1.

Since CBNB = NBCB = O, by direct computations it follows that N11 = TN22S,
N12 = −TN22, and N21 = −N22S. So,

(4.3) NB = P

[
T
−I

]
B2

[
S −I

]
P−1,

where we have renamed B2 = N22. Thus, for every positive integer k,

(4.4) Nk
B = P

[
T
−I

]
(B2(I + ST ))k−1B2

[
S −I

]
P−1.

Condition Ns
B = O implies that (B2(I + ST ))s = O. Therefore, B2(I + ST ) is

nilpotent of index s. Hence, from (4.2) and (4.3) we get the representation (4.1).
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Conversely, assume that we have the splitting B = CB + NB , where CB and NB

have the representation given by (4.1). Clearly CBNB = NBCB = O. Moreover, by
Theorem 3.1, equivalence between (a) and (c), it follows that CB satisfies condition
(C1) and ind(CB) = 1. Using (4.4), we see that Ns

B = O. So B = CB + NB is
the core-nilpotent decomposition of B and ind(B) = s. Since R(Bs) = R(CB) and
N (Bs) = N (CB), we conclude that R(Bs)∩N (Ar) = {0} and N (Bs)∩R(Ar) = {0}.
Thus B ∈ (Cs) and ind(B) = s.

Remark 4.2. Conditions (b) and (d) in Theorem 4.1 can be replaced by the
corresponding symmetrical conditions, as expressed in Remark 3.2.

Corollary 4.3. Let A ∈ C
n×n, ind(A) = r. Then the following statements

about B ∈ C
n×n with ind(B) = s are equivalent:

(a) B satisfies condition (Cs).
(b) I + (AD)s(Bs −As) is nonsingular and Bs(I + (AD)s(Bs −As))−1Aπ = O.
(c) rankBs = rankAr and I + (AD)s(Bs −As) is nonsingular.

Proof. (a)⇔(b). This equivalence follows from the equivalence (a)⇔(b) estab-
lished in Theorem 4.1 if we show that, under assumption ind(B) = s, the con-
dition (b) in this theorem implies that I + (AD)s+1(Bs+1 − As+1) is nonsingular.
First, we observe that N (Bs) = N

(
Bs+1

)
because ind(B) = s. Now, since Aπ +

(AD)sBs is nonsingular, then N (Aπ) ∩ N (Bs) = {0}. From Bs(I + (AD)s(Bs −
As))−1Aπ = O it follows that Bs = Bs(I + (AD)s(Bs − As))−1(AD)sBs. So, we see
that N

(
(AD)s+1Bs+1

)
= N

(
(AD)sBs+1

)
⊆ N

(
Bs+1

)
. Thus Aπ + (AD)s+1Bs+1 is

nonsingular because N (Aπ) ∩N
(
Bs+1

)
= {0}.

(a)⇔(c). This equivalence follows from the equivalence (a)⇔(d) established in
Theorem 4.1. The details are omitted.

Next, we give a representation for the powers of B.

Lemma 4.4. Let A ∈ C
n×n, ind(A) = r and let B ∈ C

n×n, ind(B) = s, satisfying
condition (Cs). Then, for all integer k ≥ 1, we have the representation

Bk = P

{[
I
S

]
(B1(I + TS))k−1B1

[
I T

]
+

[
T
−I

]
(B2(I + ST ))k−1B2

[
S −I

]}
P−1,

where B1 and I + TS are nonsingular and B2(I + ST ) is nilpotent of index s.

Proof. The formula for the powers Bk can be derived from the representation
(4.1), using the formula (1.3) of Lemma 1.1 and the formula (4.4).

5. Perturbation results. In this section we give an explicit representation of
BD and we derive perturbation bounds of the Drazin inverse and the eigenprojection
at zero.

Theorem 5.1. Let A ∈ C
n×n, ind(A) = r > 0 and let B ∈ C

n×n, ind(B) = s,
satisfying condition (Cs). Denote E1 = E = B − A and Es = Bs − As. Assume that
I + ADE is nonsingular. Then

BD =Φ−1
1

(
AD + ADΨ−1

ss Φ−1
s (AD)sEsA

π(I −AπEs(A
D)sΦ̃−1

s ) + AπEs(A
D)sΦ̃−1

s Ψ−1
1s

×
(
AD − Φ−1

1 ADEAD − Φ−1
1 AD(Ψss − I)Ψ−1

ss

)
(I + Φ−1

s (AD)sEsA
π)
)
,

(5.1)
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where Φi = I+(AD)iEi, Φ̃i = I+Ei(A
D)i, and Ψis = I+Φ−1

i (AD)iEiA
πEs(A

D)sΦ̃−1
s

for i = 1 and i = s. If max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, then

‖BD −AD‖
‖AD‖

≤ ‖ADE‖
1 − ‖ADE‖ +

‖(AD)sEsA
π‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖(AD)sEs‖)

(
1 +

‖AπEs(A
D)s‖

1 − ‖Es(AD)s‖

)

+
‖AπEs(A

D)s‖‖Ψ−1
1s ‖

(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)

×
(

1 +
‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖‖AπEs(A
D)s‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)(1 − ‖(AD)sEs‖)

)
.

(5.2)

Furthermore, if

max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} <

1

1 +
√
‖Aπ‖

,

then we have the following upper bounds for i = 1 and i = s:

(5.3) ‖Ψ−1
is ‖ ≤ (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖)
(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) − ‖(AD)iEi‖‖AπEs(AD)s‖ .

Proof. From Theorem 4.1(c), we have that the index 1-nilpotent decomposi-

tion of B is given by B = CB + NB , with CB = P
[
I
S

]
B1

[
I T

]
P−1 and NB =

P
[
T
−I

]
B2

[
S −I

]
P−1, where B1 and I + TS are nonsingular and B2(I + ST ) is

nilpotent of index s. Hence, applying Lemma 3.3, formulae (3.3), we obtain

(5.4) BD = C�
B = P

[
I
S

]
[(I + TS)B1(I + TS)]−1

[
I T

]
P−1.

Furthermore, we can write E = B −A as

(5.5) E = P

(
B1 + TB2S −A1 B1T − TB2

SB1 −B2S SB1T + B2 −A2

)
P−1.

In view of this latter representation we get

(5.6) I + ADE = P

(
A−1

1 (B1 + TB2S) A−1
1 (B1T − TB2)

O I

)
P−1.

From the assumption that I + ADE is nonsingular, it follows that B1 + TB2S is
nonsingular. Using (5.6) and (5.4) we obtain
(5.7)

(I +ADE)BD = P

(
A−1

1 (I + TS)−1 A−1
1 (I + TS)−1T

S((I + TS)B1(I + TS))−1 S((I + TS)B1(I + TS))−1T

)
P−1.
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By denoting Φ1 = I + ADE, in view of (5.6) we obtain

(5.8) Φ−1
1 = P

(
(B1 + TB2S)−1A1 −(B1 + TB2S)−1(B1T − TB2)

O I

)
P−1.

Utilizing the representations of the powers of B given in Lemma 4.4, we write
Es = Bs −As as

Es = P

(
(B1(I + TS))s−1B1 −As

1 (B1(I + TS))s−1B1T

S(B1(I + TS))s−1B1 S(B1(I + TS))s−1B1T −As
2

)
P−1 .

By denoting Φs = I + (AD)sEs and Φ̃s = I + Es(A
D)s we get

(5.9)

Φ−1
s = P

(
B−1

1

(
(B1(I + TS))(s−1)

)−1
As

1 −T

O I

)
P−1,

Φ̃−1
s = P

(
As

1B
−1
1

(
(B1(I + TS))(s−1)

)−1
O

−S I

)
P−1,

and, hence,

Φ−1
s (AD)s = (AD)sΦ̃−1

s = P

(
B−1

1

(
(B1(I + TS))(s−1)

)−1
O

O O

)
P−1.

Furthermore,

(5.10) Φ−1
s (AD)sEsA

π = P

(
O T

O O

)
P−1, AπEs(A

D)sΦ̃−1
s = P

(
O O

S O

)
P−1.

Let Ψis = I + Φ−1
i (AD)iEiA

πEs(A
D)sΦ̃−1

s for i = 1 and i = s. Using (5.10) we see
that

(5.11) Ψ−1
ss = P

(
(I + TS)−1 O

O I

)
P−1,

and, using (5.5), (5.6), and (5.10) we obtain

Ψ1s = P

[(
I O

O I

)

+

(
I − (B1 + TB2S)−1A1 (B1 + TB2S)−1(B1T − TB2)

O O

)(
O O

S O

)]
P−1

= P

(
(B1 + TB2S)−1B1(I + TS) O

O I

)
P−1,

and, thus,

(5.12) Ψ−1
1s = P

(
(I + TS)−1B−1

1 (B1 + TB2S) O

O I

)
P−1.
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Now, let us introduce

(5.13)

Σ1 = AD + ADΨ−1
ss Φ−1

s (AD)sEsA
π(I −AπEs(A

D)sΦ̃−1
s ),

Ω = AD − Φ−1
1 ADEAD − Φ−1

1 AD(Ψss − I)Ψ−1
ss ,

Σ2 = AπEs(A
D)sΦ̃−1

s Ψ−1
1s Ω(I + Φ−1

s (AD)sEsA
π).

In order to verify identity (5.1) we will see that the matrix representation of Σ1 + Σ2

is equal to the right-hand side of (5.7). We compute

Σ1 = P

[(
A−1

1 O

O O

)
+

(
O A−1

1 (I + TS)−1T

O O

)(
I O

−S I

)]
P−1

= P

(
A−1

1 (I + TS)−1 A−1
1 (I + TS)−1T

O O

)
P−1.

On the other hand, utilizing (5.5), (5.8), and (5.11) we see that

Ω = P

(
(B1 + TB2S)−1(I + TS)−1 O

O O

)
P−1,

and, hence, using (5.12), we get

Ψ−1
1s Ω = P

(
(I + TS)−1B−1

1 (I + TS)−1 O
O O

)
P−1.

Therefore,

Σ2 =P

(
O O

S O

)(
(I + TS)−1B−1

1 (I + TS)−1 O

O I

)(
I T

O I

)
P−1

=P

(
O O

S(I + TS)−1B−1
1 (I + TS)−1 S(I + TS)−1B−1

1 (I + TS)−1T

)
P−1.

In view of these expressions of Σ1 and Σ2 we conclude the proof of the first part.
From the identity BD − AD + ADE(BD − AD + AD) = Σ1 − AD + Σ2, taking norms
we obtain

‖BD −AD‖ ≤ ‖ADE‖‖BD −AD‖ + ‖ADE‖‖AD‖ + ‖Σ1 −AD‖ + ‖Σ2‖.

Since max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, we have

(5.14) ‖BD −AD‖ ≤ ‖AD‖‖ADE‖ + ‖Σ1 −AD‖ + ‖Σ2‖
1 − ‖ADE‖

and

(5.15) ‖Φ−1
s ‖ ≤ 1

1 − ‖(AD)sEs‖
and ‖Φ̃−1

s ‖ ≤ 1

1 − ‖Es(AD)s‖ .

Taking norms in (5.13), and using these upper bounds, we get

‖Σ1 −AD‖ ≤ ‖AD‖‖(AD)sEsA
π‖‖Ψ−1

ss ‖
1 − ‖(AD)sEs‖

(
1 +

‖AπEs(A
D)s‖

1 − ‖Es(AD)s‖

)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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and

‖Σ2‖ ≤‖AD‖‖AπEs(A
D)s‖‖Ψ−1

1s ‖
1 − ‖Es(AD)s‖

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)

×
(

1 +
‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖‖AπEs(A
D)s‖‖Ψ−1

ss ‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖)(1 − ‖(AD)sEs‖)

)
.

Substituting these upper bounds of ‖Σ1 − AD‖ and ‖Σ2‖ in (5.14) we conclude the
proof of (5.2). Finally, if max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A

D)s‖} < 1

1+
√

‖Aπ‖
, then

‖Ψis − I‖ ≤ ‖(AD)iEi‖‖AπEs(A
D)s‖

(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) < 1, i = 1, s.

Hence, it follows that

‖Ψ−1
is ‖ ≤ (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖)
(1 − ‖(AD)iEi‖)(1 − ‖Es(AD)s‖) − ‖(AD)iEi‖‖AπEs(AD)s‖ , i = 1, s.

This completes the proof.
Remark 5.2. If we denote δis = (1 − ‖(AD)iEi‖)(1 − ‖Es(A

D)s‖) − ‖(AD)iEi‖
‖AπEs(A

D)s‖, then the upper bounds (5.3), for i = 1 and i = s, can be expressed as

‖Ψ−1
is ‖ ≤ 1 +

‖(AD)iEi‖‖AπEs(A
D)s‖

δis
= 1 + O(‖E‖2),

where in the last identity we have taken into account that ‖Es‖ = O(‖E‖) (see [11]).
Substituting this in (5.2) we get that the upper bound of ‖BD − AD‖ up to the

first order of ‖E‖, has the following expression

‖BD −AD‖
‖AD‖ ≤ ‖ADE‖

1 − ‖ADE‖ +
‖(AD)sEsA

π‖
(1 − ‖ADE‖)(1 − ‖(AD)sEs‖)

+
‖AπEs(A

D)s‖
(1 − ‖ADE‖)(1 − ‖Es(AD)s‖) + O(‖E‖2).

(5.16)

In the following corollary we show that the matrices satisfying condition (1.1), or
equivalently Bπ = Aπ, are a particular case of the matrices satisfying condition (Cs).

Corollary 5.3. Let A ∈ C
n×n, ind(A) = r > 0, and let B ∈ C

n×n ind(B) = s
satisfying condition (Cs). Denote E = B − A. If AπEAD = ADEAπ, then we have
BD = (I + ADE)−1AD. Further, if ‖ADE‖ < 1, then

(5.17)
‖BD −AD‖

‖AD‖ ≤ ‖ADE‖
1 − ‖ADE‖ .

Proof. We have that E has the representation (5.5) given in the proof of Theo-
rem 5.1. From condition AπEAD = ADEAπ it follows that

B1T = TB2 and SB1 = B2S.

Using these relations we get that

S(B1(I + TS))s = B2(I + ST )S(B1(I + TS))s−1 = · · · = (B2(I + ST ))sS.
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Applying that B2(I + ST ) is nilpotent of index s and B1(I + TS) is nonsingular we
obtain that S = O. Analogously, we can see that T = O. Thus, expression (5.6) takes
the form

I + ADE = P

(
A−1

1 B1 O

O I

)
P−1.

Clearly I + ADE is nonsingular. In view of (5.4) we get

BD = P

(
B−1

1 O

O O

)
P−1 = (I + ADE)−1AD.

Hence, we get that Bπ = Aπ and the upper bound (5.17).
Theorem 5.4. Let A ∈ C

n×n, ind(A) = r > 0, and let B ∈ C
n×n, ind(B) = s,

satisfying condition (Cs). Denote Es = Bs−As. If max{‖(AD)sEs‖, ‖Es(A
D)s‖} < 1,

then

‖Bπ −Aπ‖ ≤ ‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

+
‖AπEs(A

D)s‖‖Ψ−1
ss ‖

(1 − ‖(AD)sEs‖)(1 − ‖Es(AD)s‖)

(
1 +

‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖

)
,

(5.18)

where Ψss = I + (I + (AD)sEs)
−1(AD)sEsA

πEs(A
D)s(I + Es(A

D)s)−1.
If max{‖(AD)sEs‖, ‖Es(A

D)s‖} < 1

1+
√

‖Aπ‖
, then an upper bound of ‖Ψ−1

ss ‖ is

given by (5.3).
Proof. From Theorem 2.3 we have

(5.19) Bπ + (AD)sEsB
π = −AπX−1,

where X = I − (I + (AD)sEs)
−1Aπ − Aπ(I + Es(A

D)s)−1. Utilizing the expressions

of Φ−1
s and Φ̃−1

s given in the proof of Theorem 5.1 by (5.9), we can represent

X = P

(
I T

S −I

)
P−1 and X−1 = P

(
(I + TS)−1 (I + TS)−1T

S(I + TS)−1 −I + S(I + TS)−1T

)
P−1.

Thus,

−AπX−1 = Aπ + P

(
O O

−S(I + TS)−1 −S(I + TS)−1T

)
P−1.

Hence, in view of the representations (5.10) and (5.11) we may write

−AπX−1 = Aπ −AπEs(A
D)sΦ̃−1

s Ψ−1
ss (I + Φ−1

s (AD)sEsA
π).

Substituting the latter identity in (5.19) we obtain

Bπ −Aπ = −(AD)sEs(B
π −Aπ + Aπ) −AπEs(A

D)sΦ̃−1
s Ψ−1

ss (I + Φ−1
s (AD)sEsA

π).

Taking norms

‖Bπ −Aπ‖ ≤‖(AD)sEs‖‖Bπ −Aπ‖ + ‖(AD)sEsA
π‖

+ ‖AπEs(A
D)s‖‖Φ̃−1

s ‖‖Ψ−1
ss ‖(1 + ‖Φ−1

s ‖‖(AD)sEsA
π‖).
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Table 5.1

Comparison of upper bounds of ‖BBD −AAD‖2.

Exact value [13, Thm. 5], (15) (5.18)
B = A + E1 9.99× 10−10 1.00× 10−5 1.00× 10−9

B = A + E2 1.85× 10−9 2.74× 10−5 2.74× 10−9

Table 5.2

Comparison of upper bounds of ‖BD −AD‖2/‖AD‖2.

B = A + E1 B = A + E2

Exact Value 1.12× 10−10 3.44× 10−11

[13, Thm. 1], (1) 0.7649 0.9008
[13, Thm. 4], (6) 1.00× 10−5 + O(‖E‖2) 2.73× 10−5 + O(‖E‖2)

(5.20)+(5.18) 3.41× 10−9 6.88× 10−9

(5.2) 2.41× 10−9 4.15× 10−9

(5.16) 2.41× 10−9 + O(‖E‖2) 4.15× 10−9 + O(‖E‖2)

Table 5.3

Comparison of upper bounds of ‖BD −AD‖F /‖AD‖F .

Exact value [14, Thm. 4.1], (4.1) (5.2)
B = A + E1 1.14× 10−10 8.39× 10−5 2.42× 10−9

B = A + E2 3.47× 10−11 8.39× 10−5 4.15× 10−9

Since max{‖(AD)sEs‖, ‖Es(A
D)s‖} < 1, regrouping in ‖Bπ − Aπ‖ and substituting

‖Φ−1
s ‖ and ‖Φ̃−1

s ‖ by the upper bounds (5.15), we get (5.18).

Remark 5.5. If max{‖ADE‖, ‖(AD)sEs‖, ‖Es(A
D)s‖} < 1

1+
√

‖Aπ‖
, as we have

seen in Remark 5.2, the upper bound of ‖Bπ − Aπ‖ up to the first order of ‖E‖ has
the following expression:

‖Bπ −Aπ‖ ≤ ‖(AD)sEsA
π‖

1 − ‖(AD)sEs‖
+

‖AπEs(A
D)s‖

(1 − ‖(AD)sEs‖)(1 − ‖Es(AD)s‖) + O(‖E‖2).

Remark 5.6. In [5, Theorem 3.1 and Remark 3.3], under assumption Δ+‖ADE‖ <
1, where Δ is un upper bound of ‖Bπ − Aπ‖, the following estimation of the Drazin
inverse was given:

(5.20)
‖BD −AD‖

‖AD‖ ≤ ‖ADE‖ + 2Δ

1 − ‖ADE‖ − Δ
.

Example 5.7. In Table 5.1 we compare the upper bound for ‖Bπ −Aπ‖2 derived
in Theorem 5.4 with the upper bound given in [13, Theorem 5]. The upper bounds
for ‖BD−AD‖2/‖AD‖2 given in Theorem 5.1, Remark 5.2, and Remark 5.6, replacing
Δ in (5.20) by the upper bound given in (5.18), are compared in Table 5.2 with the
upper bounds given in [13]. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
100 0 0 0 0

0 1 0 0 0

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, E1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 ε 0 ε 0

0 0 0 ε 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, E2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 ε ε 0

0 0 0 ε 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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where ε = 10−9. We have ind(A) = ind(A + Ei) = 2 and rankA2 = rank(A + Ei)
2 =

rankA2(A + Ei)
2A2 = 3, i = 1, 2. By Theorem 2.1 we have that B = A+Ei satisfies

condition (C2).
In Table 5.3 we compare the upper bound (5.2) using the Frobenius norm with

the upper bound given in [14], formula (4.1). That formula is based on the separation
of matrices sepF (C,N), with C and N being the matrices in the following Schur
decomposition,

QHAQ =

[
C G

O N

]
,

where Q is an unitary matrix, C is nonsingular, and N is nilpotent of index ind(A).
In this example sepF (C,N) = 1.42 × 10−4.
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Abstract. In this paper, the unique weighted polar decomposition theorem for rectangular com-
plex matrices is first proved based on introducing the weighted partial isometric matrices. Then the
simultaneous weighted polar decomposition of two rectangular complex matrices is studied, for which
two sufficient conditions and one criterion are proposed. In order to obtain further characteristics of
the simultaneous weighted polar decomposition, a new partial ordering called WGL partial ordering
is defined on the set of rectangular matrices. Some basic properties of this new partial ordering are
derived. In addition, we also provide methods for computing the weighted polar decomposition and
discuss error bounds for the approximate generalized positive semidefinite polar factor.
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1. Introduction. Let C
m×n be the set of m×n complex matrices and C

m×n
r be

the subset of C
m×n consisting of matrices with rank r. Let C

m
≥ be the set of Hermitian

positive semidefinite matrices of order m, and C
m
> be the subset of C

m
≥ consisting of

Hermitian positive definite matrices. Let Ir denote the identity matrix of order r.
Given A ∈ C

m×n, the symbols A∗, r(A), λ1(A), tr(A), R(A), N(A), ‖A‖F , ‖A‖2,
and ‖A‖ will stand for the conjugate transpose, rank, the largest eigenvalue, trace,
range, null space, Frobenius norm, spectral norm, and unitarily invariant norm of A,
respectively. Furthermore, without specification, we always assume that m > n > r
and the given weight matrices M ∈ C

m
> , N ∈ C

n
>.

For an arbitrary matrix A ∈ C
m×n, there is a unique matrix X ∈ C

n×m satisfying
the following equations:

(1.1) AXA = A, XAX = X, (MAX)∗ = MAX, (NXA)∗ = NXA.

Matrix X is known as the weighted Moore–Penrose inverse of A and denoted by
X = A+

MN . The weighted Moore–Penrose inverse has many applications in weighted
linear least squares problems, prediction theory, numerical analysis, and so on (see,
e.g., [19, 24]). In particular, when M = Im and N = In, the matrix X is reduced to
the Moore–Penrose inverse of A and denoted by X = A+.

Given the weight matrices M and N , the weighted inner products in C
m and C

n

may be defined as

(1.2) (x, y)M = y∗Mx, x, y ∈ C
m, and (x, y)N = y∗Nx, x, y ∈ C

n,

and the weighted vector norms are defined as

‖x‖M = (x∗Mx)1/2 =
∥∥∥M1/2x

∥∥∥
2
, x ∈ C

m,
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WEIGHTED POLAR DECOMPOSITION 899

and

‖x‖N = (x∗Nx)1/2 =
∥∥∥N1/2x

∥∥∥
2
, x ∈ C

n.

Moreover, if A ∈ C
m×n, then from [19, 24], the matrix X ∈ C

n×m satisfying

(Ax, y)M = (x,Xy)N for all x ∈ C
n, y ∈ C

m

is called the weighted conjugate transpose (or adjoint) of the matrix A and denoted
by X = A#. This together with (1.2) implies

(1.3) A# = N−1A∗M.

We now recall two partial orderings and (generalized) polar decomposition of
complex matrices as follows.

For A,B ∈ C
m×n, we say that A is below B with respect to the weighted star

partial ordering [16] and write A
#

≤ B whenever A#A = A#B and AA# = BA#. For
A,B ∈ C

m×m, we say that A is below B with respect to the Löwner partial ordering
and write A ≤L B whenever (B −A) ∈ C

m
≥ .

For A ∈ C
m×n
r , there are a partial isometric matrix E ∈ C

m×n and two Hermitian
positive semidefinite matrices G ∈ C

m×m, H ∈ C
n×n such that

(1.4) A = GE = EH.

This decomposition is called the generalized polar decomposition [2, 22] of A, and E
and G,H are called the subunitary polar factor and positive semidefinite polar factors
of this decomposition, respectively. Usually, when r = n, decomposition (1.4) is called
the polar decomposition and, in this case, E and H are called the unitary polar factor
and positive definite polar factor, respectively.

There have been many published works on both the partial orderings of matrices
and the (generalized) polar decomposition (see, e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 18, 21, 22, 25]). Among these works, the properties of the (generalized)
polar decomposition involved in the partial orderings of matrices were studied by
Hauke, Markiewicz, Groß, and Zhuang [6, 8, 18, 25], and numerical methods including
direct and iterative methods for computing the (generalized) polar decomposition
could be found in [4, 5, 9, 10, 11, 12, 15, 22].

After obtaining an approximate solution X of the unitary polar factor E using
iterative methods, Sun [21] took K = 1

2 (X∗A+A∗X) as an approximate solution of the
positive definite polar factor H and presented the error estimates for the approximate
positive definite polar factor K. Chen and Li [3] extended some results obtained by
Sun [21] to the generalized polar decomposition, and derived some error bounds for the
approximate positive semidefinite polar factor. In the present paper, we will consider
the weighted polar decomposition (WPD), a generalization of the (generalized) polar
decomposition.

The rest of this paper is organized as follows. Section 2 provides some preliminar-
ies. Section 3 first proves the unique WPD theorem for rectangular complex matrices
after introducing the weighted partial isometric matrices and then defines and studies
the simultaneous weighted polar decomposition (SWPD) of two rectangular complex
matrices. Two sufficient conditions and a criterion for SWPD are obtained. In sec-
tion 4, we present a new partial ordering of matrices called WGL partial ordering,
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900 HU YANG AND HANYU LI

and then we discuss its basic properties. Using this new partial ordering, we study
the characteristics of SWPD further. The methods for computing WPD and the error
bounds for the approximate generalized positive semidefinite (AGPSD) polar factor
are derived in section 5 and section 6, respectively.

2. Preliminaries. First, we introduce some results on the weighted matrix
norms. From [24], we know that the weighted matrix norm may be defined as

(2.1) ‖A‖MN = max
‖x‖N=1

‖Ax‖M , A ∈ C
m×n, x ∈ C

n,

from which it is easy to get the following relation:

(2.2) ‖A‖MN =
∥∥∥M1/2AN−1/2

∥∥∥
2
.

We now define two other weighted matrix norms called the weighted Frobenius
norm and the weighted unitary invariant norm, respectively, as follows:

‖A‖F (MN) =
∥∥∥M1/2AN−1/2

∥∥∥
F
, A ∈ C

m×n,(2.3)

‖A‖(MN) =
∥∥∥M1/2AN−1/2

∥∥∥ , A ∈ C
m×n.(2.4)

It is worth pointing out that the weighted unitary invariant norm defined in (2.4) is
essentially equivalent to the (M,N)-invariant norm presented by Rao and Rao [20].

According to the properties of the Frobenius norm and (1.3), we have

(2.5) ‖A‖F (MN) =
(
tr((M1/2AN−1/2)∗(M1/2AN−1/2))

)1/2

= (tr(A#A))1/2.

Hence, the weighted Frobenius norm is similar to the Frobenius norm in form.
From Van Loan [23], we know that the (M,N) weighted singular values of A ∈

C
m×n
r are the elements of the set σMN (A) defined by

σMN (A) =

{
σ : σ ≥ 0, σ is a stationary value of

‖Ax‖M
‖x‖N

}
.

By using Lagrange multipliers, for every nonzero element of the set σMN (A), we have

(2.6) σi = λ
1/2
i (N−1A∗MA) = λ

1/2
i (A#A), i = 1, . . . , r,

which together with (2.5) gives

(2.7) ‖A‖2
F (MN) =

r∑
i=1

σ2
i .

Van Loan [23] also presented the following (M,N) weighted singular value decompo-
sition (MN-SVD), which is useful in this paper.

Lemma 2.1. Let A ∈ C
m×n
r . Then there are matrices U ∈ C

m×m and V ∈ C
n×n

satisfying U∗MU = Im and V ∗N−1V = In such that

(2.8) A = U

(
Σ 0

0 0

)
V ∗,
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where Σ = diag(σ1, . . . , σr), σi =
√
λi and λ1 ≥ · · · ≥ λr > 0 are the nonzero

eigenvalues of A#A = N−1A∗MA. Then σ1 ≥ · · · ≥ σr > 0 are the nonzero (M,N)
weighted singular values of A. In this case, the weighted Moore–Penrose inverse of A
can be written as

(2.9) A+
MN = N−1V

(
Σ−1 0

0 0

)
U∗M.

Further, let U = (Ur, Um−r) and V = (Vr, Vn−r), where Ur = [u1, . . . , ur] ∈ C
m×r

and Vr = [v1, . . . , vr] ∈ C
n×r. Then

(2.10) A = UrΣV ∗
r and A+

MN = N−1VrΣ
−1U∗

rM.

Moreover,

‖A‖MN = σ1 and
∥∥A+

MN

∥∥
NM

=
1

σr
.(2.11)

The following four lemmas will be needed in this paper. Lemmas 2.2 and 2.3 can
be found in [1] and [13], respectively, and Lemmas 2.4 and 2.5 can be found in [24].

Lemma 2.2. If A,B ∈ C
m
≥ , then

A ≤L B if and only if λ1(B
+A) ≤ 1 and R(A) ⊆ R(B).

Lemma 2.3. Let A,B ∈ C
m×m be Hermitian matrices, and let P ∈ C

m×k. Then

if A ≤L B, then P ∗AP ≤L P ∗BP.

Lemma 2.4. Let A ∈ C
m×n
r . If P ∈ C

k×m and Q ∈ C
l×n satisfy P ∗P = Im and

Q∗Q = In, then

(PAQ∗)+ = QA+P ∗.

Lemma 2.5. Let A ∈ C
m×n
r . Then A+

MN is unique and

A+
MN = N−1/2(M1/2AN−1/2)+M1/2.

3. Weighted partial isometric matrix and WPD. Now we give the defini-
tion of the weighted partial isometric matrix.

Definition 3.1. If E ∈ C
m×n satisfies

‖Ex‖M = ‖x‖N for all x ∈ R(E#),

then E is called an (M,N) weighted partial isometric (MN-WPI) matrix. Similarly,
if E ∈ C

n×m satisfies

‖Ex‖N = ‖x‖M for all x ∈ R(E#),

then E is called an (N,M) weighted partial isometric (NM-WPI) matrix. In particu-
lar, when M = Im and N = In, then E is called a partial isometric (or subunitary)
matrix (see, e.g., [2, 19, 22]).

The following lemma from [19] can be used to determine the orthogonal projector
in the weighted inner product.
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Lemma 3.2. If the weighted inner product in C
m is defined as in (1.2), then

P ∈ C
m×m is an orthogonal projector if and only if

(a) P 2 = P and (b) (MP )∗ = MP (or P# = P ).

From this lemma and the properties of the weighted Moore–Penrose inverse [24],
i.e.,

(3.1) R(AA+
MN ) = R(A), R(A+

MNA) = N−1R(A∗) = R(A#),

we can get that the orthogonal projectors on R(A) and R(A#) in the weighted inner
product (1.2) may be given by

PR(A) = AA+
MN and PR(A#) = A+

MNA.(3.2)

Using results from [17], Definition 3.1, and Lemma 3.2, we can draw some equiv-
alent characterizations of the weighted partial isometric matrices.

Lemma 3.3. Let E ∈ C
m×n. Then the following statements are equivalent.

(a) E is an MN-WPI matrix.

(b) E# is an NM-WPI matrix.

(c) E+
MN = E#.

(d) E#E is an orthogonal projector, i.e., E#E = PR(E#).

(e) EE# is an orthogonal projector, i.e., EE# = PR(E).

(f) EE#E = E.

(g) E#EE# = E#.

In order to prove the WPD theorem, we need to introduce the following theorem.
Theorem 3.4. Let A ∈ C

m×n
r . If the MN-SVDs of A, Ur, and Vr are as in

Lemma 2.1, then

(a) U∗
rMUr = V ∗

r N
−1Vr = Ir and E = UrV

∗
r is an MN-WPI matrix;

(b) EE# = PR(A) and E#E = PR(A#).

Proof. (a) The first part can be obtained from U∗MU = Im, V ∗N−1V = In, and
the definitions of Ur and Vr easily.

That E = UrV
∗
r is an MN-WPI matrix can be obtained from Lemma 3.3 and the

following result:

EE#E = UrV
∗
r (UrV

∗
r )#UrV

∗
r = UrV

∗
r N

−1(UrV
∗
r )∗MUrV

∗
r = UrV

∗
r = E.

(b) From (3.2), Lemma 2.1, and the fact that E = UrV
∗
r , we have

PR(A) = AA+
MN = UrΣV ∗

r N
−1VrΣ

−1U∗
rM = UU∗

rM,

EE# = UrV
∗
r (UrV

∗
r )# = UrV

∗
r N

−1(UrV
∗
r )∗M = UU∗

rM.
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Therefore, EE# = PR(A).

The equality E#E = PR(A#) can also be proved in a similar way.
Theorem 3.5. Let A ∈ C

m×n
r . Then A can be written as

(3.3) A = GE = EH,

where E ∈ C
m×n is an MN-WPI matrix, MG ∈ C

m
≥ , and NH ∈ C

n
≥. Here, G and H

can be called generalized positive semidefinite matrices, and thus G# = G, H# = H.
Proof. Let the MN-SVD of A be as in (2.8). For any k, where r ≤ k ≤ min{m,n},

similar to Ur and Vr in Lemma 2.1, we define Uk, Vk, and Σk as follows:

Uk = [u1, . . . , uk] ∈ C
m×k, Vk = [v1, . . . , vk] ∈ C

n×k, Σk =

(
Σ 0
0 0

)
∈ C

k×k.

It is easy to obtain U∗
kMUk = V ∗

k N
−1Vk = Ik; then (2.8) can be rewritten as

A = UkΣkV
∗
k = UkΣkU

∗
kMUkV

∗
k = (UkΣkU

∗
kM)(UkV

∗
k )

= UkV
∗
k N

−1VkΣkV
∗
k = (UkV

∗
k )(N−1VkΣkV

∗
k ),

which together with Theorem 3.4 proves (3.3) with the MN-WPI matrix

(3.4) E = UkV
∗
k

and the generalized positive semidefinite matrices

(3.5) G = UkΣkU
∗
kM, H = N−1VkΣkV

∗
k .

In fact,

MG = MUkΣkU
∗
kM ∈ C

m
≥ , NH = VkΣkV

∗
k ∈ C

n
≥,

which imply G# = G and H# = H according to (1.3).
The decomposition (3.3) is called the weighted polar decomposition (WPD) of the

rectangular complex matrix A, and E and G,H are called the weighted unitary polar
factor and the generalized positive semidefinite polar factors of this decomposition,
respectively. From the proof of Theorem 3.5, we find that WPD may not be unique.
The uniqueness of WPD can be obtained through the right WPD (3.6) and the left
WPD (3.11) as follows.

Theorem 3.6. Let A ∈ C
m×n
r . Then A can be written as

(3.6) A = GE with R(A) ⊆ R(E),

where E ∈ C
m×n is an MN-WPI matrix, and MG ∈ C

m
≥ . Here, G is a generalized

positive semidefinite matrix, and thus G# = G.
The matrices G and E are not unique in general. However,
if r(E) = r(A), then E is uniquely determined by E = ((AA#)1/2)+MMA =

A((A#A)1/2)+NN ;
if r(G) = r(A), then G is uniquely determined by G = (AA#)1/2.

Moreover, given G and E in (3.6), A = (AA#)1/2E.
Proof. From Theorem 3.5, we need only to prove the second part of this theorem.
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Since E is an MN-WPI matrix and R(A) ⊆ R(E), from Lemma 3.3, we have

(3.7) A = EE#A = EE#GE.

Then we can get

(AA#)1/2 = (EE#GEE#GEE#)1/2 = EE#GEE#

⇔ (AA#)1/2E = AE#E,(3.8)

(A#A)1/2 = (E#GEE#EE#GE)1/2 = E#GE

⇔ E(A#A)1/2 = A.(3.9)

Let r(E) = r(A). Then R(A) = R(E) and r(E#) = r(A#). Meanwhile, observing
that R(A#) ⊆ R(E#) from A = GE, we have R(A#) = R(E#). Thus, according to
(3.8) and the fact that R((AA#)1/2) = R(A) = R(E), we can get

(AA#)1/2E = AE#E = A

⇔ ((AA#)1/2)+MM (AA#)1/2E = ((AA#)1/2)+MMA

⇔ (AA#)1/2((AA#)1/2)+MME = ((AA#)1/2)+MMA

⇔ E = ((AA#)1/2)+MMA.

Similarly, from (3.9) and the fact that R((A#A)1/2) = R(A#) = R(E#), we can get

E = A((A#A)1/2)+NN .

Therefore, E is uniquely determined and

E = ((AA#)1/2)+MMA = A((A#A)1/2)+NN .

Let r(G) = r(A). Then, in view of the fact that A = GE, we have R(G) = R(A),
which together with R(A) ⊆ R(E) gives

(3.10) R(G) ⊆ R(E).

Thus, by (3.8) and (3.10), we conclude that

(AA#)1/2 = AE# ⇔ (AA#)1/2 = GEE# ⇔ (AA#)1/2 = EE#G = G.

Therefore, G is uniquely determined and G = (AA#)1/2. Moreover, given G and E
in (3.6), A = (AA#)1/2E can be obtained by (3.7) and (3.8).

Similar to the right WPD, we can present the left WPD as follows.
Theorem 3.7. Let A ∈ C

m×n
r . Then A can be written as

(3.11) A = EH with R(A#) ⊆ R(E#),

where E ∈ C
m×n is an MN-WPI matrix, and NH ∈ C

n
≥. Here, H is a generalized

positive semidefinite matrix, and thus H# = H.
The matrices H and E are not unique in general. However,
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if r(E) = r(A), then E is uniquely determined by E = A((A#A)1/2)+NN =
((AA#)1/2)+MMA;

if r(H) = r(A), then H is uniquely determined by H = (A#A)1/2.

Moreover, given E and H in (3.11), A = E(A#A)1/2.

The following unique WPD theorem follows from Theorems 3.6 and 3.7.

Theorem 3.8. Let A ∈ C
m×n
r , G = (AA#)1/2, and H = (A#A)1/2. Then

(3.12) A = GE = EH,

where E = ((AA#)1/2)+MMA = A((A#A)1/2)+NN is an MN-WPI matrix.

Considering the WPDs of two rectangular complex matrices, we introduce the
simultaneous weighted polar decomposition (SWPD) as follows.

Definition 3.9. Matrices A,B ∈ C
m×n are said to be simultaneously weighted

polar decomposable if there exists an MN-WPI matrix E ∈ C
m×n such that A =

G1E = EH1 and B = G2E = EH2 for some generalized positive semidefinite matrices
G1, G2 ∈ C

m×m and H1, H2 ∈ C
n×n.

From the proof of Theorem 3.5 and the simultaneous (M,N) weighted singular
value decomposition (MN-SSVD) [16], we can obtain the following sufficient condition
for SWPD.

Theorem 3.10. Let A,B ∈ C
m×n. If A,B are simultaneously (M,N) weighted

singular value decomposable, then A,B are simultaneously weighted polar decompos-
able.

The following lemma provides a necessary and sufficient condition for MN-SSVD
given by Liu [16]. From this lemma, another sufficient condition for SWPD can be
presented.

Lemma 3.11. Let A,B ∈ C
m×n. Then A,B are simultaneously (M,N) weighted

singular value decomposable if and only if (A#B)# = A#B, (AB#)# = AB#, and
NA#B ∈ C

n
≥, MAB# ∈ C

m
≥ .

Corollary 3.12. Let A,B ∈ C
m×n. If (A#B)# = A#B, (AB#)# = AB#,

and NA#B ∈ C
n
≥, MAB# ∈ C

m
≥ , then A,B are simultaneously weighted polar de-

composable.

In order to derive further criteria for SWPD, next we will show that SWPD can
be equivalently defined via left SWPD and right SWPD, respectively.

Definition 3.13. Let A,B ∈ C
m×n.

(a) A,B are said to be simultaneously left weighted polar decomposable if there
exists an MN-WPI matrix E ∈ C

m×n such that A = EH1 with R(A#) ⊆ R(E#) and
B = EH2 with R(B#) ⊆ R(E#) for some generalized positive semidefinite matrices
H1, H2 ∈ C

n×n.

(b) A,B are said to be simultaneously right weighted polar decomposable if there
exists an MN-WPI matrix E ∈ C

m×n such that A = G1E with R(A) ⊆ R(E) and
B = G2E with R(B) ⊆ R(E) for some generalized positive semidefinite matrices
G1, G2 ∈ C

m×m.

Lemma 3.14. Let A,B ∈ C
m×n. Then A,B are simultaneously left weighted polar

decomposable if and only if they are simultaneously right weighted polar decomposable
if and only if they are simultaneously weighted polar decomposable.

Proof. Let A,B be simultaneously left weighted polar decomposable. From Defi-
nition 3.13(a), we have R(A) ⊆ R(E) and R(B) ⊆ R(E). Furthermore, observe that
E is an MN-WPI matrix and R(A#) ⊆ R(E#), R(B#) ⊆ R(E#). Then we have



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

906 HU YANG AND HANYU LI

A = EH1 ⇒ A# = H1E
# ⇒ E#EA# = E#EH1E

#

⇒ A# = E#EH1E
# ⇒ A = G1E,

B = EH2 ⇒ B# = H2E
# ⇒ E#EB# = E#EH2E

#

⇒ B# = E#EH2E
# ⇒ B = G2E,

where G1 = EH1E
# and G2 = EH2E

# are generalized positive semidefinite matrices.
Thus, we get that A,B are simultaneously right weighted polar decomposable. Now
the proof can be completed using similar arguments.

From Theorem 3.6 and Lemma 3.14, we can easily deduce the following theorem.
Theorem 3.15. Let A,B ∈ C

m×n. Then A,B are simultaneously weighted polar
decomposable if and only if there exists an MN-WPI matrix E ∈ C

m×nsuch that

A = (AA#)1/2E,R(A) ⊆ R(E) and B = (BB#)1/2E,R(B) ⊆ R(E).

Another characterization (Theorem 4.9) for SWPD is associated with a new ma-
trix partial ordering which will be discussed in the following section.

4. WGL partial ordering. Before introducing WGL partial ordering, we first
define the following partial ordering of complex matrices which is a generalization of
the Löwner partial ordering.

Definition 4.1. Let A,B ∈ C
m×m. Then we say that A is below B with respect

to the WL partial ordering, and we write A ≤WL B whenever M(B −A) ∈ C
m
≥ .

The WL partial ordering, important for studying the WGL partial ordering, can
be interpreted as the weighted Löwner partial ordering.

A similar definition and some characteristics can be found in [7]. Those character-
istics can be used to prove some of our results. However, it will increase the complexity
of proof to some extent; therefore, in this paper we use alternative methods to obtain
these results.

Now we present the definition of WGL partial ordering formally.
Definition 4.2. For A,B ∈ C

m×n, we say A is below B with respect to the
WGL partial ordering and write A ≤WGL B whenever (AA#)1/2 ≤WL (BB#)1/2

and AB# = (AA#)1/2(BB#)1/2.
Next we show that the relation ≤WGL satisfies the three laws of the matrix partial

ordering.
(1) A ≤WGL A holds obviously.
(2) If A ≤WGL B and B ≤WGL C, to verify A ≤WGL C, in view of Definition 4.1,

we need only to verify that AC# = (AA#)1/2(CC#)1/2.
From Definition 4.2, Definition 4.1, and Lemma 2.2, we have

M(AA#)1/2 = M(BB#)1/2K#(4.1)

⇔ (AA#)1/2M = K(BB#)1/2M for some K ∈ C
m×m.

Meanwhile, note that R(A#) ⊆ R(B#) (see Theorem 4.5 and Lemma 4.3). Hence,

(4.2) A# = B+
MNBA# ⇒ A = AB+

MNB.

Thus, according to (4.1) and (4.2), we conclude that
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AC# = AB+
MNBB+

MNBC# = AB#(B+
MN )#B+

MNBC#

= (AA#)1/2(BB#)1/2(B+
MN )#B+

MNBC#

= (AA#)1/2MM−1(BB#)1/2(B+
MN )#B+

MN (BB#)1/2(CC#)1/2

= K(BB#)1/2MM−1(BB#)1/2(B+
MN )#B+

MN (BB#)1/2(CC#)1/2

= KB(B+
MNB)#B+

MN (BB#)1/2(CC#)1/2

= KBB+
MN (BB#)1/2(CC#)1/2

= K(BB#)1/2MM−1(CC#)1/2

= (AA#)1/2(CC#)1/2.

(3) If A ≤WGL B, B ≤WGL A, then

(A−B)(A−B)# = AA# −AB# −BA# + BB# = 0,

which implies A = B.
Therefore, the relation ≤WGL is a partial ordering of matrices. From Defini-

tion 4.1, the WGL partial ordering can be viewed as the weighted GL partial order-
ing [8].

The following lemma is useful for studying the properties of WGL partial ordering
later in this paper.

Lemma 4.3. Let A,B ∈ C
m×n. Then

if AB# = (AA#)1/2(BB#)1/2 and R(A) ⊆ R(B), then R(A#) ⊆ R(B#).

Proof. Premultiplying the equality AB# = (AA#)1/2(BB#)1/2 by A+
MN and

postmultiplying it by (B+
MN )#A#(A+

MN )# gives

A+
MNAB#(B+

MN )#A#(A+
MN )# = A+

MN (AA#)1/2(BB#)1/2(B+
MN )#A#(A+

MN )#,

which is equivalent to

PR(A#)PR(B#)PR(A#) = A+
MN (AA#)1/2(BB#)1/2(B+

MN )#A#(A+
MN )#,(4.3)

while from R(A) ⊆ R(B) and the fact that AB# = (AA#)1/2(BB#)1/2, we have

(BB#)1/2(B+
MN )#A# = (BB#)1/2(AB+

MN )# = (BB#)1/2(AB+
MNBB+

MN )#

= (BB#)1/2(B+
MN )#(B+

MNB)#A# = (BB#)1/2(B+
MN )#B+

MNBA#

= (BB#)1/2(B+
MN )#B+

MN (BB#)1/2(AA#)1/2

= (BB#)1/2(BB#)+MN (BB#)1/2(AA#)1/2

= (AA#)1/2,

which combined with (4.3) leads to

PR(A#)PR(B#)PR(A#) = A+
MN (AA#)1/2(AA#)1/2(A+

MN )#

= A+
MNAA#(A+

MN )# = PR(A#).
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Therefore,

0 = PR(A#)PR(B#)PR(A#) − PR(A#) = PR(A#)(I − PR(B#))PR(A#)

⇔ (I − PR(B#))PR(A#) = 0

⇔ R(PR(A#)) ⊆ N(I − PR(B#)) ⇔ R(A#) ⊆ N(I − PR(B#)).(4.4)

Observe that the matrix I − PR(B#) is idempotent. Hence, N(I − PR(B#)) =

R(PR(B#)) = R(B#), which together with (4.4) gives R(A#) ⊆ R(B#).
In the following, we discuss the properties of WGL partial ordering.
Theorem 4.4. Let A,B ∈ C

m×n; then

A ≤WGL B if and only if A# ≤WGL B#.

Proof. Let r(A) = a and r(B) = b. From Lemma 2.1, we suppose that the MN-
SVDs for A and B are A = UaΣaV

∗
a and B = UbΣbV

∗
b , where Σa ∈ C

a
> and Σb ∈ C

b
>

are diagonal matrices, and Ua ∈ C
m×a, Ub ∈ C

m×b, Va ∈ C
n×a, Vb ∈ C

n×b satisfy
U∗
aMUa = V ∗

a N
−1Va = Ia and U∗

b MUb = V ∗
b N

−1Vb = Ib.
From Definition 4.1 and Definition 4.2, we can get A ≤WGL B if and only if

(a) (AA#)1/2 ≤WL (BB#)1/2

⇔ M(UaΣaV
∗
a N

−1VaΣaU
∗
aM)1/2 ≤L M(UbΣbV

∗
b N

−1VbΣbU
∗
b M)1/2

⇔ M(UaΣaU
∗
aMUaΣaU

∗
aM)1/2 ≤L M(UbΣbU

∗
b MUbΣbU

∗
b M)1/2

⇔ MUaΣaU
∗
aM ≤L MUbΣbU

∗
b M ⇔ UaΣaU

∗
a ≤L UbΣbU

∗
b ,(4.5)

(b) AB# = (AA#)1/2(BB#)1/2

⇔ UaΣaV
∗
a N

−1VbΣbU
∗
b M = UaΣaU

∗
aMUbΣbU

∗
b M

⇔ V ∗
a N

−1Vb = U∗
aMUb,(4.6)

and A# ≤WGL B# if and only if

(c) (A#A)1/2 ≤WL (B#B)1/2

⇔ N(N−1VaΣaU
∗
aMUaΣaV

∗
a )1/2 ≤L N(N−1VbΣbU

∗
b MUbΣbV

∗
b )1/2

⇔ N(N−1VaΣaV
∗
a N

−1VaΣaV
∗
a )1/2 ≤L N(N−1VbΣbV

∗
b N

−1VbΣbV
∗
b )1/2

⇔ NN−1VaΣaV
∗
a ≤L NN−1VbΣbV

∗
b ⇔ VaΣaV

∗
a ≤L VbΣbV

∗
b ,(4.7)

(d) A#B = (A#A)1/2(B#B)1/2

⇔ N−1VaΣaU
∗
aMUbΣbV

∗
b = N−1VaΣaV

∗
a N

−1VbΣbV
∗
b

⇔ U∗
aMUb = V ∗

a N
−1Vb.(4.8)

Then, by (4.5), (4.6), (4.7), and (4.8), we have A ≤WGL B ⇔ A# ≤WGL B# if and
only if the following relation (4.9) holds under the condition (4.6) (or (4.8)):

(4.9) UaΣaU
∗
a ≤L UbΣbU

∗
b ⇔ VaΣaV

∗
a ≤L VbΣbV

∗
b .
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According to A ≤WGL B, we can get R(A#) ⊆ R(B#) (see Theorem 4.5 and
Lemma 4.3), which combined with the MN-SVDs of A and B gives

(4.10) R(N−1VaΣaU
∗
aM) ⊆ R(N−1VbΣbU

∗
b M).

Note that

r(N−1ViΣiU
∗
i M) = r(N−1Vi), R(N−1ViΣiU

∗
i M) ⊆ R(N−1Vi), i = a, b,

and hence, R(N−1ViDiU
∗
i M) = R(N−1Vi), i = a, b. Therefore, R(N−1Va) ⊆

R(N−1Vb). Thus there exists a matrix H such that N−1Va = N−1VbH. Premul-
tiplying the last equality by N1/2, we can get

N−1/2Va = N−1/2VbH.

Consequently,

(4.11) R(N−1/2Va) ⊆ R(N−1/2Vb).

Note that N−1/2Vb(N
−1/2Vb)

∗N−1/2Vb = N−1/2Vb. Then N−1/2Vb is a partial iso-
metric matrix [2]. Thus, by (4.11), we have

(4.12) N−1/2Vb(N
−1/2Vb)

∗N−1/2Va = N−1/2Va, i.e., VbV
∗
b N

−1Va = Va.

According to Lemma 2.3, and considering (4.6) and (4.12), we can conclude that

UaΣaU
∗
a ≤L UbΣbU

∗
b ⇒ U∗

b MUaΣaU
∗
aMUb ≤L U∗

b MUbΣbU
∗
b MUb

⇒ U∗
b MUaΣaU

∗
aMUb ≤L Σb

⇒ VbU
∗
b MUaΣaU

∗
aMUbV

∗
b ≤L VbΣbV

∗
b

⇒ VbV
∗
b N

−1VaΣaV
∗
a N

−1VbV
∗
b ≤L VbΣbV

∗
b

⇒ VaΣaV
∗
a ≤L VbΣbV

∗
b .

In the similar way, we can get UbU
∗
b MUa = Ua through A# ≤WGL B#. Thus from

Lemma 2.3 and (4.6), we have

VaΣaV
∗
a ≤L VbΣbV

∗
b ⇒ VbV

∗
b N

−1VaΣaV
∗
a N

−1VbV
∗
b ≤L VbΣbV

∗
b

⇒ VbU
∗
b MUaΣaU

∗
aMUbV

∗
b ≤L VbΣbV

∗
b

⇒ U∗
b MUaΣaU

∗
aMUb ≤L Σb

⇒ UbU
∗
b MUaΣaU

∗
aMUbU

∗
b ≤L UbΣbU

∗
b

⇒ UaΣaU
∗
a ≤L UbΣbU

∗
b .

Theorem 4.5. Let A,B ∈ C
m×n; then

A ≤WGL B

if and only if

λ1(B
+
MNA) ≤ 1, R(A) ⊆ R(B), and AB# = (AA#)1/2(BB#)1/2.
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Proof. According to Lemma 2.2 and the proof of Theorem 4.4 (using the symbols
in Theorem 4.4), we can get

(AA#)1/2 ≤WL (BB#)1/2 ⇔ M1/2UaΣaU
∗
aM

1/2 ≤L M1/2UbΣbU
∗
b M

1/2

⇔
{

λ1(((M
1/2Ub)Σb(M

1/2Ub)
∗)+M1/2UaΣaU

∗
aM

1/2) ≤ 1,

R(M1/2UaΣaU
∗
aM

1/2) ⊆ R(M1/2UbΣbU
∗
b M

1/2).
(4.13)

Observing (4.6), i.e., V ∗
a N

−1Vb = U∗
aMUb, and Lemma 2.4, we have

λ1(((M
1/2Ub)Σb(M

1/2Ub)
∗)+M1/2UaΣaU

∗
aM

1/2)

= λ1(M
1/2UbΣ

−1
b U∗

b MUaΣaU
∗
aM

1/2) = λ1(U
∗
aMUbΣ

−1
b U∗

b MUaΣa)

= λ1(V
∗
a N

−1VbΣ
−1
b U∗

b MUaΣa) = λ1(N
−1VbΣ

−1
b U∗

b MUaΣaV
∗
a )

= λ1(B
+
MNA) ≤ 1.(4.14)

Meanwhile, by (4.13), we can also get that there exists a matrix H ∈ C
m×m such that

M1/2UaΣaU
∗
aM

1/2 = M1/2UbΣbU
∗
b M

1/2H.

Therefore,

UaΣaU
∗
aM

1/2 = UbΣbU
∗
b M

1/2H and R(UaΣaU
∗
aM

1/2) ⊆ R(UbΣbU
∗
b M

1/2).

As a result,

R(Ua) ⊆ R(Ub),

which together with the MN-SVDs of A and B gives R(A) ⊆ R(B). Then the proof
is completed in view of Definition 4.2.

The weighted star partial ordering of matrices was characterized by Liu using
MN-SSVD in [16]. Its characteristics can be useful in comparing the WGL partial
ordering with the weighted star partial ordering. The following result is from [16].

Lemma 4.6. Let A,B ∈ C
m×n and r(B) = b > r(A) = a ≥ 1. Then A

#

≤ B if
and only if there exist matrices U ∈ C

m×m and V ∈ C
n×n satisfying U∗MU = Im

and V ∗N−1V = In such that

A = U

(
Σa 0

0 0

)
V ∗, B = U

⎛
⎜⎝

Σa 0 0

0 Σ 0

0 0 0

⎞
⎟⎠V ∗,(4.15)

where Σa ∈ C
a
> and Σ ∈ C

b−a
> .

The following theorem is a straightforward consequence of Lemma 4.6, Defini-
tion 4.1, and Definition 4.2.

Theorem 4.7. Let A,B ∈ C
m×n. Then

if A
#

≤ B, then A ≤WGL B.

In the next two theorems, we will study WGL partial ordering by WPD and
discuss the characteristic for SWPD via WGL partial ordering.
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Theorem 4.8. Let A,B ∈ C
m×n, and let A = G1E1, B = G2E2 be their weighted

polar decompositions, where G1 = (AA#)1/2 and G2 = (BB#)1/2. Then

A ≤WGL B if and only if G1 ≤WL G2 and E1

#

≤ E2.

Proof. From Definition 4.2, we have

A ≤WGL B ⇔
{

(AA#)1/2 ≤WL (BB#)1/2,

AB# = (AA#)1/2(BB#)1/2
⇔

{
G1 ≤WL G2,

AB# = (AA#)1/2(BB#)1/2.

However,

(4.16) AB# = (AA#)1/2(BB#)1/2 ⇔ G1E1E
#
2 G2 = G1G2.

Premultiplying the second equality of (4.16) by G+
1,MM and postmultiplying it by

G+
2,MM , and observing the following equalities:

(4.17)

{
G1G

+
1,MM = G+

1,MMG1 = E1E
#
1 = PR(A),

G2G
+
2,MM = G+

2,MMG2 = E2E
#
2 = PR(B),

we can get

(4.18) G+
1,MMG1E1E

#
2 G2G

+
2,MM = G+

1,MMG1G2G
+
2,MM ⇔ E1E

#
2 = E1E

#
1 E2E

#
2 .

According to the fact that G1 ≤WL G2 and the proof of Theorem 4.5, we have

R(A) ⊆ R(B),

which combined with (4.17) and (4.18) gives

PR(B)PR(A) = PR(A) ⇔ E2E
#
2 E1E

#
1 = E1E

#
1 ⇔ E2E

#
1 = E1E

#
1 .(4.19)

Similarly, according to the fact that G1 ≤WL G2, the proof of Theorem 4.5, the first
equality of (4.16), and Lemma 4.3, we can get

R(A#) ⊆ R(B#).

Observing that E#
1 E1 = PR(A#), E

#
2 E2 = PR(B#), and (4.19), we have

PR(B#)PR(A#) = PR(A#) ⇔ E#
2 E2E

#
1 E1 = E#

1 E1 ⇔ E#
2 E1 = E#

1 E1.

Therefore, E#
1 E2 = E#

1 E1, which combined with (4.19) leads to E1

#

≤ E2.

Conversely, according to E1

#

≤ E2, we have E2E
#
1 = E1E

#
1 , which together with

(4.17) gives G1E1E
#
2 G2 = G1G2. Thus, the proof is completed.

Theorem 4.9. The matrices A,B ∈ C
m×n are simultaneously weighted polar

decomposable if and only if AB# = (AA#)1/2(BB#)1/2.
Proof. The necessity of the condition follows from Theorem 3.15. Now we prove

the sufficiency.
Since AB# = (AA#)1/2(BB#)1/2, we have

BA# = (AB#)# = ((AA#)1/2(BB#)1/2)# = (BB#)1/2(AA#)1/2.
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As a result,

((A + B)(A + B)#)1/2 = (AA# + AB# + BA# + BB#)1/2

= (AA#)1/2 + (BB#)1/2.(4.20)

Then the following relations (4.21) and (4.22) hold:

A(A + B)# = (AA#)1/2((A + B)(A + B)#)1/2,(4.21)

(BB#)1/2 = ((A + B)(A + B)#)1/2 − (AA#)1/2,(4.22)

where the equality (4.22) implies

(4.23) M(BB#)1/2 = M((A + B)(A + B)#)1/2 −M(AA#)1/2.

According to the proof of Theorem 4.4 (using the symbols of Theorem 4.4), we know
that M(BB#)1/2 = MUbΣbU

∗
b M ∈ C

m
≥ , which together with (4.23) and Definition 4.1

leads to

(4.24) (AA#)1/2 ≤WL ((A + B)(A + B)#)1/2.

Similarly, we can get that

B(A + B)# = (BB#)1/2((A + B)(A + B)#)1/2,(4.25)

(BB#)1/2 ≤WL ((A + B)(A + B)#)1/2.(4.26)

Then, according to (4.21), (4.24), (4.25), (4.26), and Definition 4.2, we conclude that

A ≤WGL (A + B) and B ≤WGL (A + B),

and hence from Theorem 4.8, we have

(4.27) E1

#

≤ E and E2

#

≤ E,

where

E1 = ((AA#)1/2)+MMA = A((A#A)1/2)+NN ,

E2 = ((BB#)1/2)+MMB = B((B#B)1/2)+NN ,

E = (((A + B)(A + B)#)1/2)+MM (A + B)

= (A + B)(((A + B)#(A + B))1/2)+NN .

According to the fact that A = (AA#)1/2((AA#)1/2)+MMA and (4.27), we can obtain
that

AE# = (AA#)1/2E1E
#
1 = (AA#)1/2((AA#)1/2)+MMAA#((AA#)1/2)+MM

= (AA#)1/2(AA#)1/2((AA#)1/2)+MM = (AA#)1/2.

Therefore,

(4.28) AE#E = (AA#)1/2E.
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Meanwhile, according to the fact that

A = G1E1 ⇔ A# = E#
1 G1 ⇒ R(A#) ⊆ R(E#

1 )

and (4.27), we can get R(A#) ⊆ R(E#), which combined with (4.28) gives

(4.29) A = (AA#)1/2E.

Similarly, according to E1 = A((A#A)1/2)+NN , we can derive that

EE#A = E(A#A)1/2 ⇔ A = E(A#A)1/2,

and according to E2 = ((BB#)1/2)+MMB = B((B#B)1/2)+NN , we can derive that

BE# = (BB#)1/2 ⇔ BE#E = (BB#)1/2E ⇔ B = (BB#)1/2E,(4.30)

E#B = (B#B)1/2 ⇔ EE#B = E(B#B)1/2 ⇔ B = E(B#B)1/2.(4.31)

Further, since AE# = EA# = (AA#)1/2, we have R((AA#)1/2) ⊆ R(E). Thus,
noting the fact that R((AA#)1/2) = R(A), we can get

(4.32) R(A) ⊆ R(E).

Similarly, we can get

(4.33) R(B) ⊆ R(E).

In view of (4.29), (4.30), (4.32), (4.33), and Theorem 3.15, we can see that the suffi-
ciency of the condition holds.

5. Methods for computing the WPD. From Lemma 2.1 and Theorem 3.8,
the generalized positive semidefinite polar factor G can be computed by

G = (AA#)1/2 = (UrΣV ∗
r N

−1VrΣU∗
rM)1/2(5.1)

= (UrΣU∗
rMUrΣU∗

rM)1/2 = UrΣU∗
rM.

Similarly, H can be computed by

H = (A#A)1/2 = N−1VrΣV ∗
r .(5.2)

Then, we have

E = ((AA#)1/2)+MMA = A((A#A)1/2)+NN(5.3)

= (UrΣU∗
rM)+MMUrΣV ∗

r = UrΣV ∗
r (N−1VrΣV ∗

r )+NN

= UrΣ
−1U∗

rMUrΣV ∗
r = UrΣV ∗

r N
−1VrΣ

−1V ∗
r

= UrV
∗
r .

Thus, the WPD can be computed by using MN-SVD.
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5.1. Method based on MN-SVD. The method for computing WPD based
on MN-SVD can be described by the following computational procedure:

1. Compute the MN-SVD (2.8) of A ∈ C
m×n
r , forming only the first r columns

Ur and Vr of U and V , respectively;
2. Form G,H, and E according to (5.1), (5.2), and (5.3), respectively.

The algorithm and programs for (2.8) can be obtained according to the proof of
Theorem 5.2.2 in [24] (i.e., Lemma 2.1 in this paper) or Theorem 3 in [23] and the
algorithm and programs for singular value decomposition (SVD).

The values of the weighted unitary polar factor E and the generalized positive
semidefinite polar factors G,H obtained above are accurate. However, it is unnec-
essary and expensive to calculate their exact values for most applications [9]. The
following subsection will develop an alternative method for computing WPD, which
is more effective in practice.

5.2. An iterative method. Consider the following iteration:

X0 = A ∈ C
m×n
r ,(5.4a)

Xk+1 =
1

2

(
Xk + (X+

k,MN )#
)
, k = 0, 1, 2, . . . .(5.4b)

We claim that the sequence Xk converges to the weighted unitary polar factor E of
A’s WPD. To prove this, we make use of MN-SVD introduced in Lemma 2.1. Define

Dk = U∗MXkN
−1V.(5.5)

Then, from Lemma 2.1 and (5.4), we obtain

D0 = U∗MX0N
−1V = U∗MAN−1V =

(
Σ 0

0 0

)
,(5.6)

Dk+1 =
1

2
(Dk + U∗M(X+

k,MN )#N−1V ).(5.7)

According to Lemma 2.5, we can get

U∗M(X+
k,MN )#N−1V = U∗MM−1(X+

k,MN )∗NN−1V = U∗(X+
k,MN )∗V(5.8)

= U∗(N−1/2(M1/2XkN
−1/2)+M1/2)∗V

= U∗M1/2((M1/2XkN
−1/2)+)∗N−1/2V,

while

(M−1/2DkN
1/2)+MN = N−1/2(M1/2M−1/2DkN

1/2N−1/2)+M1/2(5.9)

= N−1/2D+
k M

1/2,

which implies

N1/2(M−1/2DkN
1/2)+MNM−1/2 = D+

k .(5.10)
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Meanwhile, according to (5.5), Lemma 2.5, and Lemma 2.4, we have

(5.11)

N1/2(M−1/2DkN
1/2)+MNM−1/2 = N1/2(M−1/2U∗MXkN

−1V N1/2)+MNM−1/2

= N1/2[N−1/2(M1/2M−1/2U∗MXkN
−1V N1/2N−1/2)+M1/2]M−1/2

= (U∗M1/2M1/2XkN
−1/2N−1/2V )+

= (N−1/2V )∗(M1/2XkN
−1/2)+(U∗M1/2)∗

= V ∗N−1/2(M1/2XkN
−1/2)+M1/2U,

which together with (5.10) and (5.8) gives

U∗M(X+
k,MN )#N−1V = (D+

k )∗.(5.12)

Then, (5.7) can be rewritten as

Dk+1 =
1

2
(Dk + (D+

k )∗).(5.13)

Using the method from [4, 9], we can conclude that

Dk →
(

Ir 0

0 0

)
, k → ∞.(5.14)

Furthermore, by (5.5), we can obtain

UDkV
∗ = UU∗MXkN

−1V V ∗ = UU−1Xk(V
∗)−1V ∗ = Xk.(5.15)

Therefore,

Xk → U

(
Ir 0

0 0

)
V ∗ = UrV

∗
r = E, k → ∞.(5.16)

Then the sequence Xk converges to the weighted unitary polar factor E.

In addition, similarly as in the discussions in [9], we can get

Dk+1 −
(

Ir 0

0 0

)
=

1

2

(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))
.(5.17)

Premultiplying and postmultiplying the equation (5.17) by U and V ∗, respectively,
and considering (5.15), we have

Xk+1 − E =
1

2
U

(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))
V ∗,(5.18)
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which combined with (2.2) leads to

‖Xk+1 − E‖MN =

∥∥∥∥∥
1

2
U

(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))
V ∗

∥∥∥∥∥
MN

(5.19)

=
1

2

∥∥∥∥∥M1/2U

(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))
V ∗N−1/2

∥∥∥∥∥
2

=
1

2

∥∥∥∥∥
(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))∥∥∥∥∥
2

=
1

2
max
1≤i≤r

(
(σi(Xk) − 1)2

σi(Xk)

)
.

Similarly,

‖Xk+1 − E‖F (MN) =
1

2

∥∥∥∥∥
(
Dk −

(
Ir 0

0 0

))
D+

k

(
Dk −

(
Ir 0

0 0

))∥∥∥∥∥
F

(5.20)

=
1

2

(
r∑

i=1

(
(σi(Xk) − 1)2

σi(Xk)

)2
)1/2

,

where σi(Xk) is the nonzero (M,N) weighted singular value of Xk. Thus, we have
the following theorem.

Theorem 5.1. Let A ∈ C
m×n
r and consider iteration (5.4). Then the sequence

Xk converges to the weighted unitary polar factor E of A’s WPD, and (5.19) and
(5.20) hold.

5.3. Accelerating convergence. Similar to the explanations in [4, 9], the
quadratic convergence of iteration (5.4) ensures rapid convergence in the final stages
of the iteration. Initially, however, the speed of convergence can be inordinately slow;
hence it is necessary to scale the matrix A before the iteration.

5.3.1. The theoretical result. Higham [9] provides a quite good method to
scale the matrix A for computing the polar decomposition; the method can be applied
to the iteration (5.4).

Consider the scaling Xk → γkXk, γk > 0. From (5.4), we have

X0 = A ∈ C
m×n
r ,(5.21a)

Xk+1 =
1

2

(
γkXk +

1

γk
(X+

k,MN )#
)
, k = 0, 1, 2, . . . .(5.21b)

In this case, the equalities (5.19) and (5.20) are changed to

‖Xk+1 − E‖MN =
1

2
max
1≤i≤r

(
(γkσi(Xk) − 1)2

γkσi(Xk)

)
,(5.22)

‖Xk+1 − E‖F (MN) =
1

2

(
r∑

i=1

(
(γkσi(Xk) − 1)2

γkσi(Xk)

)2
)1/2

.(5.23)
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Applying the method introduced in [22], we can show that the optimal parameter is

γ
(k)
opt = (σ1(Xk)σr(Xk))

−1/2.(5.24)

However, it is not feasible to compute γ
(k)
opt exactly at each stage, since this would

require computation of the extremal (M,N) weighted singular values of Xk, but a

good approximation to γ
(k)
opt can be computed at negligible cost.

5.3.2. The practical algorithm. Define

αk =
√∥∥M1/2XkN−1/2

∥∥
1

∥∥M1/2XkN−1/2
∥∥
∞,

βk =

√∥∥∥N1/2X+
k,MNM−1/2

∥∥∥
1

∥∥∥N1/2X+
k,MNM−1/2

∥∥∥
∞
,

where ‖X‖1 and ‖X‖∞ denote the 1-norm and ∞-norm (see, e.g., [2]) of the matrix

X, respectively. According to the introductions in [4, 9], the optimal parameter γ
(k)
opt

can be replaced by γ
(k)
pra =

√
βk/αk. (A detailed proof can be found in [9].) As a

result, we have the following practical algorithm.

Given weight matrices M and N ;

X0 = A ∈ C
m×n
r ,

Yk = X+
k,MN , k = 0, 1, 2, . . . .

if ‖Xk − E‖MN ≤ ε (a very small positive number),
γk = 1,

else

αk =
√∥∥M1/2XkN−1/2

∥∥
1

∥∥M1/2XkN−1/2
∥∥
∞,

βk =
√∥∥N1/2YkM−1/2

∥∥
1

∥∥N1/2YkM−1/2
∥∥
∞,

γk =
√

βk

αk
,

Xk+1 = 1
2

(
γkXk + 1

γk
Y #
k

)
.

Until converged.

Thus, we have E ≈ X = Xk+1. In order to compute the approximate solution
of the generalized positive semidefinite polar factor H (G can be discussed similarly;
hereafter we study only H) and ensure that it would satisfy H# = H, we take the
following matrix K as an AGPSD polar factor of H:

K =
1

2
(X#A + A#X).(5.25)

In section 6, we will discuss the error bounds for the AGPSD polar factor K.

5.4. Numerical experiment. Next we use a testing matrix from [4] to test the
iterative methods given above. The matrix is

A =

(
B + C 0

0 0

)
∈ C

38×36
35 ,
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where

B = diag(1, 24, 34, · · · , 354) × 10,

C =

⎛
⎜⎜⎝

sum(rand(1, 10)) . . . sum(rand(1, 10))

...
. . .

...

sum(rand(1, 10)) · · · sum(rand(1, 10))

⎞
⎟⎟⎠× 106 ∈ C

35×35,

and the stopping criterion is

‖Xk+1 − E‖MN ≤ 2 × 10−8,(5.26)

in which the weighted unitary polar factor E is computed by MN-SVD.
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iterative method (5.4)

iterative method (5.21) with γ 
opt
(k)

iterative method (5.21) with γ 
pra
(k)

Fig. 5.1. Performance of different iterative methods.

Moreover, in order to obtain the reasonable weight matrices, a method to derive
the Hermitian positive definite matrix is introduced as follows.

1. Generate an m × m random array with normal distribution: M1 = randn
(m,m);

2. Compute the covariance matrix of the random array: M2 = cov(M1);
3. Form the m×m Hermitian positive definite matrix: M = M2 + eye(m) ∗m;

where the commands can be found in detail in any book on MATLAB.
Figure 5.1 describes the comparisons among the above iterative methods. Ac-

cording to the stopping criteria (5.26), the iterative method (5.4) needs to iterate 31

times, while the iterative method (5.21) with γ
(k)
opt needs 6 times and the iterative

method (5.21) with γ
(k)
pra needs 7 times.
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6. Error bounds for AGPSD polar factor. In this section, we will present
the error bounds for the AGPSD polar factor K defined in (5.25) in weighted unitary
invariant norm and weighted Frobenius norm, respectively.

Theorem 6.1. Let A ∈ C
m×n
r have the unique WPD according to Theorem 3.8.

For the approximate solution X ∈ C
m×n of the weighted unitary polar factor E and

the AGPSD polar factor K defined in (5.25), we have

‖H −K‖(NN) ≤ ‖A‖MN ‖X − E‖(MN) .(6.1)

Proof. By (5.2), (5.3), and (2.10), we can obtain

2H = E#A + A#E,

which combined with (5.25) implies

H −K =
1

2
(2H −X#A−A#X) =

1

2
(E#A + A#E −X#A−A#X)(6.2)

=
1

2

(
(E# −X#)A + A#(E −X)

)
,

which together with (2.4) and (2.2) gives

‖H −K‖(NN) =
1

2

∥∥(E# −X#)A + A#(E −X)
∥∥

(NN)
(6.3)

=
1

2

∥∥∥N1/2
(
(E# −X#)A + A#(E −X)

)
N−1/2

∥∥∥
≤ 1

2

(∥∥∥N1/2(E# −X#)AN−1/2
∥∥∥ +

∥∥∥N1/2A#(E −X)N−1/2
∥∥∥)

=
1

2

∥∥∥N−1/2(E −X)∗M1/2M1/2AN−1/2
∥∥∥

+
1

2

∥∥∥N−1/2A∗M1/2M1/2(E −X)N−1/2
∥∥∥

≤ 1

2

∥∥∥N−1/2(E −X)∗M1/2
∥∥∥
∥∥∥M1/2AN−1/2

∥∥∥
2

+
1

2

∥∥∥N−1/2A∗M1/2
∥∥∥

2

∥∥∥M1/2(E −X)N−1/2
∥∥∥

= ‖A‖MN ‖E −X‖(MN) = ‖A‖MN ‖E −X‖(MN) .

Theorem 6.2. Let A ∈ C
m×n
r have the unique WPD according to Theorem 3.8.

If the approximate solution X ∈ C
m×n of the weighted unitary polar factor E is an

MN-WPI matrix and satisfies R(X#) = R(A#), then for the AGPSD polar factor K
defined in (5.25), we have

‖H −K‖ F (NN) ≤
1

2
‖A‖MN

∥∥(E −X)#(E −X)
∥∥
F (NN)

(6.4)

+
1

2

(
‖A‖MN − 1∥∥A+

MN

∥∥
NM

)√
‖X#(E −X)‖2

F (NN) −
1

r
|tr[X#(E −X)]|2.
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Proof. From Theorem 3.8 and (5.2), we can obtain

R(A#) = R(E#) = R(H) = R(N−1Vr).

Then

R(X#) = R(A#) = R(E#) = R(H) = R(N−1Vr),

which combined with Lemma 3.3 and (5.3) leads to

X#X = E#E = N−1VrV
∗
r .(6.5)

According to (6.2) and (3.12), and observing the fact that H# = H, we have

H −K =
1

2
(E#A + A#E −X#A−A#X)(6.6)

=
1

2
(E#EH + HE#E −X#EH −HE#X)

=
1

2
H(E#E − E#X −X#E + X#X)

+
1

2
(HX#E −HX#X + E#EH −X#EH)

=
1

2

(
H(E −X)#(E −X) + HX#(E −X) + (E# −X#)EH

)
,

whereas if (E# −X#)E = E#E −X#E = X#X −X#E = X#(X − E), then

‖H −K‖F (NN)(6.7)

=
1

2

∥∥H(E −X)#(E −X) + HX#(E −X) −X#(E −X)H
∥∥
F (NN)

≤ 1

2

∥∥∥N1/2H(E −X)#(E −X)N−1/2
∥∥∥
F

+
1

2

∥∥∥N1/2(HX#(E −X) −X#(E −X)H)N−1/2
∥∥∥
F

≤ 1

2
‖H‖NN

∥∥(E −X)#(E −X)
∥∥
F (NN)

+
1

2

∥∥∥N1/2(HX#(E −X) −X#(E −X)H)N−1/2
∥∥∥
F
.

However, considering (5.2) and the fact that V ∗N−1V = (N−1/2V )∗N−1/2V = In,
we have∥∥∥N1/2(HX#(E −X) −X#(E −X)H)N−1/2

∥∥∥
F

=
∥∥∥N1/2(N−1VrΣV ∗

r X
#(E −X) −X#(E −X)N−1VrΣV ∗

r )N−1/2
∥∥∥
F

=
∥∥∥N−1/2VrΣV ∗

r X
#(E −X)N−1/2 −N1/2X#(E −X)N−1VrΣV ∗

r N
−1/2

∥∥∥
F

=
∥∥V ∗N−1VrΣV ∗

r X
#(E −X)N−1V − V ∗X#(E −X)N−1VrΣV ∗

r N
−1V

∥∥
F
,
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which together with V ∗
r N

−1Vr = Ir, V
∗
n−rN

−1Vr = V ∗
r N

−1Vn−r = 0, (5.3), and (6.5)
gives ∥∥∥N1/2(HX#(E −X) −X#(E −X)H)N−1/2

∥∥∥
F

(6.8)

=
∥∥ΣV ∗

r X
#(E −X)N−1Vr − V ∗

r X
#(E −X)N−1VrΣ

∥∥
F
.

Let C = V ∗
r X

#(E −X)N−1Vr = (cij). Then (6.8) can be rewritten as

∥∥∥N1/2(HX#(E −X) −X#(E −X)H)N−1/2
∥∥∥2

F
= ‖ΣC − CΣ‖2

F(6.9)

=

r∑
i,j=1

((σi − σj)|cij |)2 ≤ (σ1 − σr)
2

(
‖C‖2

F −
r∑

i=1

(|cii|)2
)
.

Since tr(AB) = tr(BA) and N−1VrV
∗
r X

# = X#, N−1VrV
∗
r E

# = E#, we have

r∑
i=1

(|cii|)2 ≥ 1

r

∣∣∣∣∣
r∑

i=1

cii

∣∣∣∣∣
2

=
1

r
|tr(C)|2 =

1

r

∣∣tr(V ∗
r X

#(E −X)N−1Vr)
∣∣2(6.10)

=
1

r

∣∣tr(N−1VrV
∗
r X

#(E −X))
∣∣2 =

1

r

∣∣tr(X#(E −X))
∣∣2

and

‖C‖2
F = tr(C∗C) = tr

(
(V ∗

r X
#(E −X)N−1Vr)

∗V ∗
r X

#(E −X)N−1Vr

)
(6.11)

= tr
(
V ∗
r N

−1(E −X)∗(X#)∗VrV
∗
r X

#(E −X)N−1Vr

)

= tr
(
N−1VrV

∗
r N

−1(E −X)∗MXN−1VrV
∗
r X

#(E −X)
)

= tr
(
N−1VrV

∗
r (E −X)#XX#(E −X)

)

= tr
(
(E −X)#XX#(E −X)

)
.

Then, observing (2.5) and (6.11), we have

‖C‖2
F =

∥∥X#(E −X)
∥∥2

F (NN)
.(6.12)

Therefore, together with (6.12), (6.10), (6.9), and (6.7), we can conclude that

‖H −K‖F (NN) ≤
1

2
‖H‖NN

∥∥(E −X)#(E −X)
∥∥
F (NN)

(6.13)

+
1

2
(σ1 − σr)

√
‖X#(E −X)‖2

F (NN) −
1

r
|tr(X#(E −X))|2.

The desired result follows from ‖A‖MN = ‖H‖NN = σ1 and
∥∥A+

MN

∥∥
MN

= 1
σr

.
If R = A−XK is defined as the residual of A about X, then we have the following

theorem.
Theorem 6.3. Assume that the conditions of Theorem 6.2 hold. Then

‖H −K‖F (NN) ≤
√
‖A‖2

MN ‖X#(X − E)‖2
F (NN) − ‖X#R‖2

F (NN).(6.14)
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Proof. According to (5.25) and the fact that X#XH = HX#X = H, we have

H −K =
1

2
(X#XH + HX#X −X#EH −HE#X)(6.15)

=
1

2

(
H(X − E)#X + X#(X − E)H

)
.

Meanwhile, from R = A−XK, we can get

X#R = X#EH − 1

2
X#X(X#EH + HE#X)(6.16)

=
1

2
(2X#EH −X#XX#EH −X#XHE#X)

=
1

2
(X#EH −HE#X) =

1

2
(X#EH −H + H −HE#X)

=
1

2
(X#EH −X#XH + HX#X −HE#X)

=
1

2

(
H(X# − E#)X −X#(X − E)H

)
.

In addition, we have the following fact:

‖Z‖2
F (NN) =

∥∥∥N1/2ZN−1/2
∥∥∥2

F
=

∥∥∥∥1

2
(N1/2ZN−1/2 + N−1/2Z∗N1/2)

∥∥∥∥
2

F

+

∥∥∥∥1

2
(N1/2ZN−1/2 −N−1/2Z∗N1/2)

∥∥∥∥
2

F

.

Setting Z = X#(X − E)H and considering (6.15), (6.16), we have

‖H −K‖2
F (NN) =

∥∥∥∥1

2
(Z# + Z)

∥∥∥∥
2

F (NN)

=

∥∥∥∥1

2
(N1/2(Z# + Z)N−1/2)

∥∥∥∥
2

F

(6.17)

=

∥∥∥∥1

2
(N−1/2Z∗N1/2 + N1/2ZN−1/2)

∥∥∥∥
2

F

= ‖Z‖2
F (NN) −

∥∥∥∥1

2
(N−1/2Z∗N1/2 −N1/2ZN−1/2)

∥∥∥∥
2

F

= ‖Z‖2
F (NN) −

∥∥X#R
∥∥2

F (NN)
,

i.e.,

‖H −K‖2
F (NN) =

∥∥X#(X − E)H
∥∥2

F (NN)
−
∥∥X#R

∥∥2

F (NN)
(6.18)

≤ ‖H‖2
NN

∥∥X#(X − E)
∥∥2

F (NN)
−
∥∥X#R

∥∥2

F (NN)
.

Then, the proof is completed by noting that ‖A‖MN = ‖H‖NN = σ1.
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7. Conclusions. In this paper, we prove the unique WPD theorem and derive
some necessary and sufficient conditions for SWPD. A new partial ordering of matrices
called WGL partial ordering is also defined and studied. Using the new partial or-
dering, we present a characteristic of SWPD. In addition, the methods for computing
WPD and the error bounds for the AGPSD polar factor are also discussed. However,
this paper is not involved with various applications of WPD. As we all know, the
(generalized) polar decomposition has a wide range of applications. Therefore, it is
of interest to probe the applications of WPD with the development of research on the
weighted generalized inverses of matrices, weighted least squares problems, weighted
optimization problem, and so on. This will be our future work.
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Abstract. A simple proof is presented of a quite general theorem on the convergence of station-
ary iterations for solving singular linear systems whose coefficient matrix is Hermitian and positive
semidefinite. In this manner, elegant proofs are obtained of some known convergence results, includ-
ing the necessity of the P -regular splitting result due to Keller, as well as recent results involving
generalized inverses. Other generalizations are also presented. These results are then used to ana-
lyze the convergence of several versions of algebraic additive and multiplicative Schwarz methods for
Hermitian positive semidefinite systems.

Key words. linear systems, Hermitian semidefinite systems, singular systems, stationary iter-
ative methods, seminorm, convergence analysis, algebraic Schwarz methods
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1. Introduction. We consider the linear system

(1.1) Ax = b,

where the coefficient matrix A ∈ C
n×n is assumed to be singular and Hermitian

positive semidefinite. Denoting by Null(A) the nullspace of A and by Range(A) its
range, we assume that b ∈ Range(A). This implies that the solution set of (1.1) is
nonempty and it is given as an affine space x∗ + Null(A) for some x∗ ∈ C

n solution
of (1.1).

If A is large and sparse, iterative methods for solving (1.1) are the standard
approach. In this paper, we focus on stationary iterative methods, including, for
example, certain algebraic multigrid methods and additive and multiplicative Schwarz
methods. Sometimes, these iterations are accelerated by using them as preconditioners
to Krylov subspace methods like conjugate gradients. While we do not consider the
latter aspect in any detail in this work, let us just mention that one usually assumes
convergence of the preconditioner as a prerequisite in this context, so our work is
relevant in this case as well.

We consider the very general situation in which we are given an iteration matrix
H for (1.1) of the form

(1.2) H = I − M̃A,
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where M̃ ∈ C
n×n is a matrix which might be singular but is injective on Range(A),

i.e.,

(1.3) Null(M̃A) = Null(A).

The matrices H and M̃ induce the iteration

(1.4) xk+1 = Hxk + M̃b.

Since any solution x∗ of (1.1) satisfies M̃Ax∗ = M̃b, we see that each such x∗ is
a fixed point of the iteration (1.4). Conversely, if x∗ is a fixed point of (1.4), then

0 = −M̃Ax∗ + M̃b, and since M̃ is injective on Range(A) we get Ax∗ = b. We
conclude that under the conditions (1.2) and (1.3), x∗ is a solution of (1.1) if and only
if x∗ is a fixed point of (1.4).

The rest of this paper is devoted to the analysis of situations where we can
guarantee that the iteration (1.4) converges to a fixed point. Due to the singularity
of A, such a limiting fixed point usually depends on the starting vector x0. Actually,
condition (1.3) implies that convergence of the iteration (1.4) is equivalent to H being
semiconvergent according to the following definition;1 see, e.g., [3], [7], [18].

Definition 1.1. A matrix H ∈ C
n×n is called semiconvergent if ρ(H) = 1,

λ = 1 is the only eigenvalue of modulus 1, and λ = 1 is a semisimple eigenvalue of
H; i.e., its geometric multiplicity is equal to its algebraic multiplicity.

It follows, then, that one goal is to find simple conditions for which we can show
that H of the form (1.2) is such that (1.3) holds and it is semiconvergent.

Our general form of the iteration operator from (1.2) applies in particular to
iterations induced by splittings of the form A = M − N , M nonsingular, in which
M̃ is taken to be M−1. Then condition (1.3) is automatically satisfied. There are

iterations which can be interpreted as being of the form (1.2) with M̃ = M†, the
Moore–Penrose pseudoinverse of some singular matrix M ; see [7], [12], [13], where
such iterations are studied. This situation occurs in particular in the analysis of
Schwarz iterations where the artificial boundary conditions between subdomains are
of Neumann type; see, e.g., [17], [19].

The rest of the paper is organized as follows. In section 2 we derive a fundamental
convergence result based on an estimate in the energy seminorm. In section 3 the
fundamental result is used in two directions: We obtain simple and elegant proofs
for some known convergence results, and we develop new convergence results which
improve over some that have been published previously. We then consider algebraic
additive and multiplicative Schwarz methods. The paper finishes with a conclusion
in section 4. We mention that applications of the fundamental result to algebraic
multigrid methods are presented in the forthcoming paper [8].

2. A fundamental result. In the analysis to follow, we use the bilinear form
〈·, ·〉A defined for a Hermitian matrix A ∈ C

n×n as

〈·, ·〉A : C
n × C

n → C, (x, y) �→ 〈x, y〉A = 〈Ax, y〉 (= 〈x,Ay〉).

Here, 〈x, y〉 denotes the standard Euclidean inner product. Since in our context A is
only positive semidefinite, the bilinear form is only semidefinite as well. We collect
some trivial properties of 〈·, ·〉A in the following lemma.

Lemma 2.1. Assume that A is Hermitian and positive semidefinite. Then

1We note that in some papers such a matrix is simply called convergent.
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(i) for all x ∈ C
n we have 〈x, x〉A ≥ 0;

(ii) 〈x, x〉A = 0 if and only if x ∈ Null(A);
(iii) if x ∈ Null(A) or y ∈ Null(A), then 〈x, y〉A = 0.

In what follows, ‖x‖A denotes the seminorm 〈x, x〉1/2A .
We now turn to formulate a fundamental theorem on the convergence of the

iteration (1.4). We include a simple proof before discussing how it is related to similar
results in recent publications.

Theorem 2.2. Let H = I − M̃A ∈ C
n×n be the iteration operator of the itera-

tion (1.4). Assume that the following holds:

(2.1) x 	∈ Null(A) =⇒ ‖Hx‖A < ‖x‖A.

Then
(i) Null(M̃A) = Null(A), i.e., M̃ is injective on Range(A);
(ii) H is semiconvergent.

As a consequence, for b ∈ Range(A) the iteration (1.4) converges to a solution of (1.1)
for any starting vector x0.

Proof. First observe that Null(M̃A) = Null(I −H). For y /∈ Null(A) the hypoth-
esis (2.1) gives Hy 	= y, i.e., y /∈ Null(I −H). On the other hand y ∈ Null(A) implies

y ∈ Null(I − H), by the definition of H. This shows Null(M̃A) = Null(I − H) =
Null(A), i.e., (i) holds.

To prove (ii), let x be an eigenvector for an eigenvalue λ of H. If x 	∈ Null(A),
we have ‖x‖A > 0, and from (2.1) we get |λ| · ‖x‖A < ‖x‖A which implies |λ| < 1. If
x ∈ Null(A), we know that Hx = x, i.e., λ = 1. So ρ(H) = 1, and λ = 1 is the only
eigenvalue of modulus 1. It remains to show that λ = 1 is semisimple.

Assume that, on the contrary, λ = 1 is not a semisimple eigenvalue of H. Then
there exists a level-2 generalized eigenvector for the eigenvalue λ = 1, i.e., a vector
v 	= 0 satisfying

Hv = v + u, where Hu = u, u 	= 0.

Since v is not an eigenvector of H we have v 	∈ Null(A). We also have u ∈ Null(A),

since u is an eigenvector of H for the eigenvalue λ = 1 and M̃ is injective on Range(A).
Thus, using parts (ii) and (iii) of Lemma 2.1, we get

〈Hv,Hv〉A = 〈v, v〉A + 〈v, u〉A + 〈u, v〉A + 〈u, u〉A = 〈v, v〉A,

which contradicts (2.1). Therefore, there is no level-2 generalized eigenvector for the
eigenvalue λ = 1; i.e., λ = 1 is semisimple.

Remark 2.3. Since Hx = x for x ∈ Null(A), the operator H canonically induces a
linear operator H on the quotient space Q = C

n/Null(A) on which ‖ · ‖A canonically
induces a true norm ‖x + Null(A)‖A := ‖x‖A. Therefore, the implication (2.1) is
actually equivalent to

(2.2) ‖Hx‖A ≤ ‖H‖A · ‖x‖A with ‖H‖A < 1.

We will write ‖H‖A for ‖H‖A in what follows and, for simplicity, we will always
formulate our convergence results to come by stating that ‖H‖A < 1, having in mind

that this means that M̃ is injective on Range(A) and that the iteration (1.4) converges
to a solution of (1.1) whenever b ∈ Range(A).
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Theorem 2.2 complements several recently published results. In [12], it was ob-
served that ‖H‖A < 1 is sufficient for limk→∞(Axk − b) = 0 for the iterates of

(1.4) in the case that M̃ = M†, the Moore–Penrose inverse of a matrix M satisfy-
ing Range(A) ⊆ Range(M) and b ∈ Range(A). This kind of convergence is called
quotient convergence, and an iterative scheme (1.4) satisfying ‖H‖A < 1 is called
energy norm convergent (or energy seminorm convergent) in [12]. It was then shown
in [7] that quotient convergence is actually equivalent to “usual” convergence, i.e.,
limk→∞ xk = x∗ with Ax∗ = b. This is precisely the assertion of Theorem 2.2 ex-
cept that we do not require M̃ to be a Moore–Penrose pseudoinverse. The references
[7], [12] use such pseudoinverses since they view the iteration (1.4) as arising from a

splitting A = M −N of A. Since every matrix M̃ is the Moore–Penrose inverse of its
own Moore–Penrose inverse, i.e., M̃ = (M̃†)†, we see that there is nothing special in

requiring M̃ to be a Moore–Penrose pseudoinverse.
The crucial condition is (2.1) (or, equivalently, (2.2)), implying (1.3) and the semi-

convergence of H, which is equivalent to convergence and quotient convergence [7].
The beauty of Theorem 2.2 is that, on one hand, only the condition (2.1) is required
for convergence and, on the other, its proof is simple.

3. Applications of the fundamental result. As first applications of Theo-
rem 2.2 we give simple proofs of the necessity of a well-known result of Keller [11] (see
also [7]) and a generalization which contains as a special case a recent result from [13].

Theorem 3.1. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let M

be nonsingular and let H = I − M−1A. Then M + MH − A is positive definite on
Range(M−1A) if and only if ‖H‖A < 1.

Here, MH denotes the conjugate transpose of the matrix M .
Proof. Using the identity

HHAH = A−AM−H(M + MH −A)M−1A,

we see that

(3.1) 〈Hx,Hx〉A = xHHHAHx = 〈x, x〉A − 〈M−1Ax, (M + MH −A)M−1Ax〉.

For x 	∈ Null(A) the vector M−1Ax is nonzero, so that due to the positive definiteness
of M + MH −A on Range(M−1A) we obtain

x 	∈ Null(A) =⇒ 〈Hx,Hx〉A < 〈x, x〉A,

and ‖H‖A < 1 follows by Remark 2.3.
On the other hand, if ‖H‖A < 1, then 〈Hx,Hx〉A < 〈x, x〉A for all x 	∈ Null(A),

so that (3.1) gives

〈M−1Ax, (M + MH −A)M−1Ax〉 = 〈x, x〉A − 〈Hx,Hx〉A > 0.

Since every nonzero y ∈ Range(M−1A) can be expressed as y = M−1Ax with x 	∈
Null(A), this shows that M + MH −A is positive definite on Range(M−1A).

Recall that by Theorem 2.2 and Remark 2.3, ‖H‖A < 1 implies that the itera-
tion (1.4) converges towards a solution of (1.1) for every starting vector. It is in these
terms that the above theorem was originally formulated in [11].

One application of Theorem 3.1 is for the relaxed Gauss–Seidel iteration. With
A = D − L − LH denoting the canonical decomposition of A into its diagonal part
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D, its lower triangular part −L and its upper triangular part −LH , one then has
M = 1

ωD−L. This matrix M is nonsingular if no diagonal element of A is zero, and
M + MH −A = 2−ω

ω D is positive definite on the whole space for ω ∈ (0, 2).
We now turn to the announced generalization, where M is allowed to be singular.
Theorem 3.2. Let A ∈ C

n×n be Hermitian and positive semidefinite. Let
M, M̃ ∈ C

n×n satisfy

(3.2) MM̃A = A

and put H = I−M̃A. Then ‖H‖A < 1 if and only if M +MH −A is positive definite

on Range(M̃A).

Proof. We first observe that since MM̃A = A we have Null(M̃A) = Null(A), i.e.,

M̃ is injective on Range(A). We also have A(M̃)HMH = A and thus

HHAH = A−AM̃A−A(M̃)HA + A(M̃)HAM̃A

= A−A(M̃)H ·
(
M + MH −A

)
· M̃A.(3.3)

So, if M+MH−A is positive definite on Range(M̃A), we see that for x 	∈ Null(M̃A) =
Null(A) one has

‖Hx‖A < ‖x‖A

so that ‖H‖A < 1 follows again from Remark 2.3.
The converse follows in the same manner as in the proof of Theorem 3.1, so we

do not reproduce it here.
This result allows us to use for M̃ various generalized inverses of M . In the case

that M̃ is the Moore–Penrose inverse M† of M , a sufficient condition for MM̃A = A is
to require Range(A) ⊆ Range(M). With this more restrictive condition, Theorem 3.2
was essentially proved in [12, Theorem 4.4]; see also [7]. The paper [13] uses the same

condition Range(A) ⊆ Range(M) but allows M̃ to just be an inner inverse of M , i.e.,

an operator satisfying MM̃M = M . The convergence results there, however, come in
a quite different flavor. Instead of assuming the positive definiteness of M +MH −A
on Range(M̃A), they require a further, more indirectly defined matrix to be an inner
inverse.

We note that Cao [7] presents the following example indicating that condition (3.2)
is essential for the necessity part of Theorem 3.2.

Example 3.3. Let

A =

[
0 0
0 1

]
, M =

1

2

[
0 −1
0 1

]
, M̃ = M† =

[
0 0

−1 1

]
,

for which it holds that M̃A = A, and thus MM̃A = MA = M 	= A. On the other
hand, we have that

H = I − M̃A = I −A =

[
1 0
0 0

]
,

so that ‖H‖A = 0 < 1, but it holds that (M̃A)H(MH + M −A)(M̃A) = 0, and thus

MH + M −A is not positive definite on Range(M̃A).
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Theorem 2.2 can be used to derive further conditions implying the convergence
of iteration (1.4). The following result has the same spirit as Theorem 3.1, but note
that the hypothesis (3.2) is not needed here. This result is used later in the paper.

Theorem 3.4. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let

H = I − M̃A. Then

(3.4) M̃ + M̃H − M̃HAM̃ is positive definite on Range(A)

if and only if ‖H‖A < 1.
Proof. We have

(3.5) HHAH = A−A(M̃ + M̃H − M̃HAM̃)A.

So if M̃ + M̃H − M̃HAM̃ is positive definite on Range(A), we immediately get that
for x 	∈ Null(A) we have ‖Hx‖A < ‖x‖A, i.e., ‖H‖A < 1. On the other hand, if
‖H‖A < 1 and x 	∈ Null(A), then ‖Hx‖2

A < ‖x‖2
A. From (3.5) we see that this means

〈Ax, (M̃ + M̃H − M̃HAM̃)Ax〉 > 0, i.e., (M̃ + M̃H − M̃HAM̃) is positive definite on
Range(A).

We note that for the matrices of Example 3.3 we have that

M̃ + M̃H − M̃HAM̃ =

[
−1 0

0 1

]
,

which is the identity on Range(A), and thus positive definite on Range(A).

3.1. Application to additive Schwarz. We start this section with a general
result where the generic operator M̃ is decomposed into p operators and involves a
positive damping factor θ; i.e., we have M̃ = θ

∑p
i=1 M̃i and

(3.6) H = I − M̃A = I − θ

p∑
i=1

M̃iA.

As we shall see, this general formulation applies in particular to several variants of
additive Schwarz iterations.

One of the hypotheses we use is that there exists a number γ > 0 such that

(3.7) 〈x, M̃iAx〉A ≥ γ · 〈M̃iAx, M̃iAx〉A for all x ∈ C
n and for i = 1, . . . , p.

Here, z denotes the real part of a complex number z. It is easy to see that (3.7) is
equivalent to the hypothesis (cf. (3.4))

(3.8) M̃i + M̃H
i − 2γM̃H

i AM̃i is positive semidefinite on Range(A).

In the following theorems we give convergence results requiring upper bounds for
the damping factor θ in (3.6). These upper bounds are given in terms of p (usually
representing the number of subdomains). Nevertheless, in the same way as is done in
the convergence analysis for classical additive Schwarz methods for Hermitian positive
definite matrices, where q “colors” are used, the bounds can be enlarged to be in terms
of q; see Remark 3.14.

Theorem 3.5. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let

M̃i ∈ C
n×n, i = 1, . . . , p, be such that

(i) there exists a number γ > 0 such that (3.7) holds;
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(ii) ∩p
i=1Null(AM̃iA) = Null(A).

Then there exists θ̄ ≥ 2γ
p such that if 0 < θ < θ̄, the matrix H from (3.6) satisfies

‖H‖A < 1, and M̃ satisfies (3.4).
Moreover, if the strengthened Cauchy–Schwarz inequalities

(3.9) |〈M̃iAx, M̃jAx〉A| ≤ cij · ‖M̃iAx‖A · ‖M̃jAx‖A for all x ∈ C
n, i, j = 1, . . . , p,

hold with 0 ≤ cij = cji ≤ 1 and cii = 1, then θ̄ can be chosen such that
θ̄ ≥ (2γ)/λmax(C), where λmax(C) is the largest eigenvalue of the matrix C = (cij).

Proof. For all x ∈ C
n we have

〈Hx,Hx〉A = 〈x, x〉A − 2θ

p∑
i=1

〈x, M̃iAx〉A + θ2

p∑
i,j=1

〈M̃iAx, M̃jAx〉A.(3.10)

For ease of notation we put

(3.11) mi = ‖M̃iAx‖A, i = 1, . . . , p,

and observe that using hypothesis (i) it holds that

(3.12) γ ·m2
i = γ · 〈M̃iAx, M̃iAx〉A ≤ 〈x, M̃iAx〉A.

Also, using the Cauchy–Schwarz inequality, one has 〈M̃iAx, M̃jAx〉A ≤ mimj . Let
now m = (m1, . . . ,mp)

T and E ∈ C
p×p be the matrix of all ones. Then from (3.10)

we obtain

〈Hx,Hx〉A ≤ 〈x, x〉A − 2θγ

p∑
i=1

m2
i + θ2

p∑
i,j=1

mimj

= 〈x, x〉A − θ · 〈m, (2γI − θE)m〉.(3.13)

For θ < (2γ)/p the matrix 2γI−θE is strictly diagonally dominant and thus Hermitian
and positive definite. Therefore, once we have shown that m 	= 0 for x 	∈ Null(A)
we will have proven the first part of the theorem, since then, by (3.13), we have
〈Hx,Hx〉A < 〈x, x〉A, i.e., ‖H‖A < 1. But if mi = 0 for i = 1, . . . , p, we have

M̃iAx ∈ Null(A) and thus x ∈ Null(AM̃iA) for i = 1, . . . , p. By (ii) this gives
x ∈ Null(A).

The fact that M̃ fulfills (3.4) follows directly from Theorem 3.4.
If the strengthened Cauchy–Schwarz inequalities (3.9) hold, we can replace (3.13)

with the stronger

〈Hx,Hx〉A ≤ 〈x, x〉A − θ · 〈m, (2γI − θC)m〉.

Since 2γI − θC is Hermitian and positive definite for θ < (2γ)/λmax(C), the same
arguments as before prove the last part of the theorem.

Theorem 3.6. Assume that A ∈ C
n×n is Hermitian and positive semidefinite

and that (i) and (ii) of Theorem 3.5 hold. With the notation from Theorem 3.5, assume
that there exists a natural number q < p such that for each i ∈ {1, . . . , p} the space

Range(M̃i) is orthogonal to all spaces Range(M̃j), j = 1, . . . , p, j 	= i, except for at
most q − 1 such indices. Then θ̄ can be chosen such that θ̄ ≥ (2γ)/q.

Proof. By the hypothesis, we have strengthened Cauchy–Schwarz inequalities
(3.9), where for each i at most q of the cij are nonzero, and the nonzero ones can be
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chosen to be equal to 1. Therefore, all row sums of C are bounded by q, and thus by
Gershgorin’s theorem (see, e.g., [20]), we have λmax(C) ≤ q.

In the results presented so far, the operators M̃i were allowed to be of quite general
nature; in particular, they may be non-Hermitian. In many situations, however, the
operators M̃i are Hermitian and positive semidefinite on Range(A). In this case,

x ∈ Null(AM̃iA) implies 0 = 〈x, (AM̃iA)x〉 = 〈Ax, M̃iAx〉 and thus Ax ∈ Null(M̃i),

i.e., x ∈ Null(M̃iA). In this situation we consequently have ∩p
i=1Null(AM̃iA) =

∩p
i=1Null(M̃iA), which directly gives the following corollary to Theorem 3.5.

Theorem 3.7. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let

M̃i ∈ C
n×n, i = 1, . . . , p, be such that

(i) M̃i is Hermitian, i = 1, . . . , p;
(ii) there exists a number γ > 0 such that (3.7) holds;

(iii) ∩p
i=1Null(M̃iA) = Null(A).

Then all conclusions of Theorem 3.5 hold.
To study additive Schwarz methods, we need some further notation. We consider

a decomposition of C
n into p subspaces of dimensions ni, i = 1, . . . , p, represented

by C
ni . By Ri we denote the projections (“restrictions”) onto these subspaces, repre-

sented as matrices Ri ∈ C
ni×n having full rank ni. We define the Galerkin operators

Ai = RiARH
i ∈ C

ni×ni , i = 1, . . . , p.

The following result on the range of the Galerkin operator will be useful later.
Lemma 3.8. If A is Hermitian and positive semidefinite, then

Range(Ai) = Range(RiA).

Proof. Since Ai is Hermitian, the assertion is equivalent to Null(Ai) = Null(ARH
i ).

Clearly, Null(Ai) ⊇ Null(ARH
i ). On the other hand, if x ∈ Null(Ai), it satisfies

0 = 〈Aix, x〉 = 〈ARH
i x,RH

i x〉, which implies RH
i x ∈ Null(A), i.e., x ∈ Null(ARH

i ),
showing that we also have Null(Ai) ⊆ Null(ARH

i ).
For the moment, let us assume that, although A is only Hermitian positive

semidefinite, all Galerkin operators are nonsingular (and thus positive definite); i.e.,
we assume that Range(RH

i ) ∩ Null(A) = {0} for all i; see, e.g., [4], [6], [15], [16], for
examples when this situation occurs. The additive (damped) Schwarz iteration for
solving Ax = b is then given as (1.4) with

M̃ = θ

p∑
i=1

RH
i A−1

i Ri and H = I − M̃A.(3.14)

We refer the reader, e.g., to [17], [19], and references therein for details on Schwarz
methods, and to [2], [9] for algebraic formulations.

Theorem 3.9. Let A ∈ C
n×n be Hermitian and positive semidefinite. Moreover,

assume that the projection operators Ri satisfy

(3.15) ∩p
i=1Null(Ri) = {0},

and that Ai = RiARH
i is nonsingular, i = 1, . . . , p. Finally, let 0 < θ < 2

p . Then H

from (3.14) satisfies ‖H‖A < 1, and M̃ satisfies (3.4).

Proof. We show that M̃i = RH
i A−1

i Ri satisfies hypotheses (i)–(iii) of Theorem 3.7

with γ = 1. Obviously, M̃i is Hermitian. For (ii) we have

M̃iAM̃iA = RH
i A−1

i RiARH
i A−1

i RiA = RH
i A−1

i AiA
−1
i RiA = RH

i A−1
i RiA = M̃iA,
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which shows that the M̃iA are projections, i.e., (ii) holds with γ = 1. For (iii) let

x ∈ ∩p
i=1Null(M̃iA); then

0 = 〈RH
i A−1

i RiAx, x〉A = 〈A−1
i RiAx,RiAx〉,

which, since Ai is Hermitian positive definite, implies RiAx = 0, i = 1, . . . , p, i.e.,

Ax ∈ ∩p
i=1Null(Ri) = {0}.

Thus, x ∈ Null(A). So we have ∩p
i=1Null(M̃iA) ⊆ Null(A), and since the opposite

inclusion is trivial we have (iii).
Remark 3.10. The restriction operators Ri in our formulation of Schwarz methods

are very general. In the special case when they are Boolean gather operators (i.e.,
their rows being rows of the identity), using Theorem 3.9 we recover the convergence
part of [16, Theorem 4.2].

Let us also note that for the “prolongation” operators Pi = RH
i , we have

Range(Pi) = Null(Ri)
⊥. Thus, condition (3.15) can equivalently be stated as

p∑
i=1

Range(Pi) = C
n,

as is done, e.g., in [10].
Theorem 3.9 can be extended to the case where the Galerkin matrices Ai are

singular, if we replace their inverses by the Moore-Penrose pseudoinverses A†
i .

Theorem 3.11. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let

0 < θ < 2
p and put

(3.16) H = I − M̃A, with M̃ = θ

p∑
i=1

RH
i A†

iRi, where Ai = RiARH
i .

Finally, assume that the projection operators Ri satisfy

∩p
i=1Null(RH

i A†
iRiA) = Null(A).

Then H from (3.16) satisfies ‖H‖A < 1, and M̃ satisfies (3.4).

Proof. All we need to do is show that with M̃i = RH
i A†

iRi, i = 1, . . . , p, the
hypotheses (i) and (ii) of Theorem 3.7 (with γ = 1) are satisfied, (iii) being assumed.

Since Ai is Hermitian positive semidefinite, so is A†
i , and therefore also is M̃i. For (ii),

we have

(3.17) RH
i A†

iRiARH
i A†

iRiA = RH
i A†

iAiA
†
iRiA = RH

i A†
iRiA

showing that the matrices RH
i A†

iRiA are again projections, i.e., (ii) holds with equal-
ity.

We next consider a situation usually referred to as inexact solution of the local
problems; see, e.g., [1], [5], [17], [19]. This is the situation, e.g., when the solution of
the local problem

(3.18) Aiyi = zi

is not obtained exactly. Thus one replaces A−1
i zi or A†

izi with a vector other than a

solution of (3.18), and this is represented by Ãizi. In this case we have M̃i = RH
i ÃiRi;
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and using Lemma 3.8 it is easy to see that the hypothesis (3.8), or equivalently (3.7),
can be rewritten as

(3.19) Ãi + ÃH
i − 2γÃH

i AiÃi is positive semidefinite on Range(Ai).

Observe that here Ãi is not assumed to be symmetric, and thus neither is M̃i.
We are ready now to establish the convergence of (damped) additive Schwarz

iterations with inexact local solvers, which follows directly from Theorem 3.5.
Theorem 3.12. Let A ∈ C

n×n be Hermitian and positive semidefinite, and let
Ai = RiAR

H
i , i = 1, . . . , p. Let Ãi be such that there exists a number γ for which

(3.19) holds. Let 0 < θ < (2γ)/p and put

H = I − M̃A, with M̃ = θ

p∑
i=1

M̃i = θ

p∑
i=1

RH
i ÃiRi.

Finally, assume that the projection operators Ri satisfy

∩p
i=1Null(ARH

i ÃiRiA) = Null(A).

Then H satisfies ‖H‖A < 1, and M̃ satisfies (3.4).
Note that condition (3.19) is fulfilled with γ = 1

2 if Ãi + ÃH
i − ÃH

i AiÃi is positive
definite on Range(Ai), which is precisely (3.4) from Theorem 3.4. So in this special
case, by Theorem 3.4, we have ‖I−ÃiAi‖Ai < 1, or that an iteration for the solution of
the local problem (3.18) with iteration matrix I − ÃiAi is convergent. One particular
general example of this situation is when one uses a splitting of Ai = Bi − Ci, and
the solution of the system (3.18) is approximated by κ classical stationary iterations
associated with this splitting. Thus, for this example

(3.20) Ãi =

κ−1∑
j=0

(B−1
i Ci)

jB−1
i .

Of course one can have different values of κ for different local problems. As a particular
case, consider the canonical decompositions Ai = Di−Li−LH

i and put Bi = 1
ωDi−Li,

i.e., relaxed Gauss–Seidel. If one sets Ãi = B−1
i the local solutions are approximated

by one step of the relaxed Gauss–Seidel, i.e., κ = 1. Assuming that no diagonal
element of Ai is zero and that ω ∈ (0, 2), a simple calculation shows that (3.19) is
fulfilled with γ = 1

2 . Since we then have that the relaxed Gauss–Seidel iteration is

convergent, using Theorem 3.4, we see that the Ãi of (3.20) also fulfills (3.19) with
γ = 1

2 for all integer values of κ.
Remark 3.13. We note that a special case of Theorem 3.12 when Ri are Boolean

gather operators and Ãi are symmetric and nonsingular is [16, Theorem 6.1], where
the hypothesis used there is equivalent to

〈z, Ãiz〉 ≤ 〈z,A−1
i z〉 for all z ∈ C

ni and for i = 1, . . . , p,

which implies (3.19) with γ ≤ 1. Indeed, in this case, we have that the difference
Ã−1

i −Ai is positive semidefinite, and we write

2Ãi − 2γÃH
i AiÃi = 2Ãi

(
Ã−1

i − γAi

)
Ãi.
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Remark 3.14. If in Theorems 3.7, 3.9, 3.11, and 3.12, we add the hypothesis
that there exists a natural number q < p such that for each i ∈ {1, . . . , p} the space
Range(RH

i ) is orthogonal to all spaces Range(RH
j ), j = 1, . . . , p, j 	= i, except for at

most q − 1 such indices, then, using Theorem 3.6, the results hold for θ < 2/q (or
θ < (2γ)/q in Theorem 3.12); cf. [10, Chapter 11.2.4], where this is done for classical
additive Schwarz for A Hermitian positive definite. See also [2], [9], and [16] for other
such situations.

We note that Hermitian positive semidefinite matrices M̃i different from those
considered in Theorems 3.9, 3.11, and 3.12 also do appear in other Schwarz contexts,
and our general Theorem 3.5 would apply to such cases as well. For example, in [14]

matrices of the form M̃i = RH
i (Ai +Gi)Ri are used, where Gi derives from the Robin

boundary conditions.

3.2. Multiplicative Schwarz. Instead of an additive we now consider a multi-
plicative combination of p operators M̃i resulting in

(3.21) H = (I − M̃pA)(I − M̃p−1A) · · · (I − M̃1A) =

1∏
i=p

(I − M̃iA).

Of course, the iteration operator H can be written in the form H = I − M̃A, but an
explicit formula for M̃ is not needed in our convergence analysis. As in the additive
case, the general formulation (3.21) applies, for particular choices of the matrices M̃i,
to several variants of multiplicative Schwarz methods, including, for example, those
corresponding to Robin boundary conditions [14].

As we did in the additive case, we first state a general theorem which we then
apply to the multiplicative Schwarz setting.

Theorem 3.15. Let A ∈ C
n×n be Hermitian and positive semidefinite. Let

M̃i ∈ C
n×n, i = 1, . . . , p, be such that

(i) A is injective on M̃iA for i = 1, . . . , p, i.e., Null(AM̃iA) = Null(M̃iA) for
i = 1, . . . , p;

(ii) there exists a number γ > 1
2 such that (3.7) holds;

(iii) ∩p
i=1Null(M̃iA) = Null(A).

Let H be as in (3.21). Then H satisfies ‖H‖A < 1. Furthermore, if we write

H = I − M̃A, then M̃ satisfies (3.4).
Proof. We first note that by (ii) we have, for x ∈ C

n and i = 1, . . . , p,

〈(I − M̃iA)x, (I − M̃iA)x〉A = 〈x, x〉A − 2〈x, M̃iAx〉A + 〈M̃iAx, M̃iAx〉A
≤ 〈x, x〉A − (2γ − 1)〈M̃iAx, M̃iAx〉A.(3.22)

Now let x(1) = z and x(i+1) = (I − M̃iA)x(i), i = 1, . . . , p, so that x(p+1) = Hx(1) =
Hz. Using (3.22) repeatedly we obtain

〈Hz,Hz〉A − 〈z, z〉A ≤ −(2γ − 1)

p∑
i=1

〈M̃iAx(i), M̃iAx(i)〉A.(3.23)

The right-hand side of (3.23) is nonpositive. It remains to show that it is zero
only when z ∈ Null(A). Now the right-hand side of (3.23) is zero if and only if

〈M̃iAx
(i), M̃iAx(i)〉A = 0 for i = 1, . . . , p. This is equivalent to M̃iAx(i) ∈ Null(A),

i.e., x(i) ∈ Null(AM̃iA), which by assumption (i) implies x(i) ∈ Null(M̃iA) for
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i = 1, . . . , p. But then x(i+1) = (I − M̃iA)x(i) = x(i) for i = 1, . . . , p, resulting

in x(i) = z for i = 1, . . . , p, and z ∈ Null(M̃iA) for i = 1, . . . , p. By assumption (iii)

this means z ∈ Null(A). So we have shown ‖H‖A < 1. The fact that M̃ fulfills
condition (3.4) follows directly from Theorem 3.4.

We now use Theorem 3.15 for the analysis of multiplicative Schwarz methods. We
use the notation introduced in section 3.1. As in the additive case, we first consider
the case where the Galerkin operators Ai = RiARH

i are nonsingular, i.e., we have

M̃i = RH
i A−1

i Ri, i = 1, . . . , p.(3.24)

Theorem 3.16. Let A ∈ C
n×n be Hermitian and positive semidefinite. Moreover,

assume that the projection operators Ri satisfy

∩p
i=1Null(Ri) = {0},

and that Ai = RiARH
i is nonsingular, i = 1, . . . , p. Then H from (3.21) with M̃i

from (3.24) satisfies ‖H‖A < 1. Furthermore, if we write H = I − M̃A, then M̃
satisfies (3.4).

Proof. We need to show that the hypotheses (i)–(iii) of Theorem 3.15 are fulfilled
with γ = 1. For (ii) and (iii), this was already done in the proof of Theorem 3.9. To

show that (i) holds, we first note that, trivially, Null(AM̃iA) ⊇ Null(M̃iA). On the

other hand, x ∈ Null(AM̃iA) implies 0 = 〈x,AM̃iAx〉 = 〈Ax, M̃iAx〉, which, since M̃i

is Hermitian positive semidefinite, yields Ax ∈ Null(M̃i), i.e., x ∈ Null(M̃iA).
The next theorem considers the case where the Galerkin operators can be singular.
Theorem 3.17. Let A ∈ C

n×n be Hermitian and positive semidefinite. Let
Ai = RiAR

H
i and M̃i = RH

i A†
iRi for i = 1, . . . , p, and let H be as in (3.21). Finally,

assume that the projection operators Ri satisfy

∩p
i=1Null(RH

i A†
iRiA) = Null(A).

Then H satisfies ‖H‖A < 1. Furthermore, if we write H = I − M̃A, then M̃ satis-
fies (3.4).

Proof. The proof follows again by showing that assumptions (i) to (iii) of Theo-
rem 3.15 are fulfilled with γ = 1. But (iii) is assumed and (i) follows in exactly the
same manner as in the proof of Theorem 3.16, whereas (ii) holds with γ = 1 since the

M̃iA are projections as shown in (3.17).
We end this section considering multiplicative Schwarz iterations with inexact

solutions of the local problems (3.18), i.e., when M̃i = RH
i ÃiRi.

Theorem 3.18. Let A ∈ C
n×n be Hermitian and positive semidefinite, and let

Ai = RiAR
H
i , i = 1, . . . , p. Let M̃i = RH

i ÃiRi. Assume that each operator Ãi fulfills
one of the two conditions

(a) Ãi is Hermitian positive semidefinite,
(b) Ãi + ÃH

i is positive definite on Range(Ai)
and that there exists a number γ > 1

2 for which (3.19) holds. Finally, assume that the
projection operators Ri satisfy

∩p
i=1Null(RH

i ÃiRiA) = Null(A).

Then H from (3.21) satisfies ‖H‖A < 1. Furthermore, if we write H = I− M̃A, then

M̃ satisfies (3.4).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ITERATIVE METHODS FOR SEMIDEFINITE LINEAR SYSTEMS 937

Proof. We have to prove that assumptions (i) and (ii) of Theorem 3.15 hold,
(iii) being part of the assumptions. Recall that (i) from Theorem 3.15 says that

Null(AM̃iA) = Null(M̃iA), where only the inclusion Null(AM̃iA) ⊆ Null(M̃iA) is

nontrivial. In the case that Ãi is Hermitian positive definite, M̃i is Hermitian positive
definite, too, and (i) of Theorem 3.15 follows as in the proof of Theorem 3.16. In the

case that Ãi + ÃH
i is positive definite on Range(Ai), assume that AM̃iAx = 0. Then

0 = 〈x,ARH
i ÃiRiAx〉 = 〈RiAx, ÃiRiAx〉,

0 = 〈ARH
i ÃiRiAx, x〉 = 〈RiAx, ÃH

i RiAx〉,

and thus 0 = 〈RiAx, (Ãi + ÃH
i )RiAx〉. By Lemma 3.8, we have RiAx ∈ Range(Ai),

and since Ãi + ÃH
i is positive definite on that space we get RiAx = 0. This yields

RH
i ÃiRiAx = 0, i.e., x ∈ Null(M̃iA), so that we have again shown that (i) of Theo-

rem 3.15 holds.
Finally, since (3.19) is equivalent to (3.7), we also have (ii).
We observe again that assuming ‖I − ÃiAi‖Ai < 1 is sufficient for (3.19) to hold.

Indeed, by Theorem 3.4, this assumption is equivalent to that Ãi + ÃH
i − ÃH

i AiÃi

is positive definite on Range(Ai), which implies that Ãi + ÃH
i is positive definite on

Range(Ai) and that Ãi + ÃH
i − 2γÃH

i AiÃi is still positive semidefinite on Range(Ai)
for γ > 1

2 sufficiently close to 1
2 . Hence, we have the following corollary.

Corollary 3.19. Let A ∈ C
n×n be Hermitian and positive semidefinite, and

let Ai = RiAR
H
i , i = 1, . . . , p. Let M̃i = RH

i ÃiRi. Assume that each operator Ãi

satisfies

(3.25) ‖I − ÃiAi‖Ai < 1.

Finally, assume that the projection operators Ri satisfy

∩p
i=1Null(RH

i ÃiRiA) = Null(A).

Then H from (3.21) satisfies ‖H‖A < 1. Furthermore, if we write H = I− M̃A, then

M̃ satisfies (3.4).
Again, one can use relaxed Gauss–Seidel, i.e., Ãi = Bi = 1

ωDi − Li, where

Ai = Di − Li − LH
i . We have Ãi + ÃH

i = 2−ω
ω D + A, which is positive definite for

ω ∈ (0, 2) if Ai has no zero diagonal elements. Thus, assumption (ii) of Theorem 3.18
and assumption (3.25) of Corollary 3.19 are fulfilled in this case, as well as for Ãi as
in (3.20).

We note also that for Ãi nonsingular, [16, Theorem 6.4] follows from Theo-
rem 3.18, since in [16] it is assumed that Ã−1

i + Ã−H
i − Ai is positive definite. This

assumption can be written Ã−H
i (ÃH

i + Ãi − ÃH
i AiÃi)Ã

−1
i being positive definite, so

that (3.19) holds for some γ > 1/2.

4. Conclusions. We presented a very general convergence result for stationary
iterative methods for linear systems whose coefficient matrix A is Hermitian and
positive semidefinite. It is shown that if for x /∈ Null(A), 〈x,Hx〉A < 〈x, x〉A, with

H = I−M̃A, then M̃ is injective on Range(A), and H is semiconvergent. This result
allowed us to give simple proofs of well-known results as well as to generalize them
in several directions. We further used these new results to give convergence proofs
of several variants of additive and multiplicative Schwarz iterations. These variants
include those with local problems with Neumann or Robin boundary conditions as
well as the inexact solution of the local problems.
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TUCKER DIMENSIONALITY REDUCTION OF
THREE-DIMENSIONAL ARRAYS IN LINEAR TIME∗

I. V. OSELEDETS† , D. V. SAVOSTIANOV† , AND E. E. TYRTYSHNIKOV†

Abstract. We consider Tucker-like approximations with an r × r × r core tensor for three-
dimensional n × n × n arrays in the case of r � n and possibly very large n (up to 104–106). As
the approximation contains only O(rn + r3) parameters, it is natural to ask if it can be computed
using only a small amount of entries of the given array. A similar question for matrices (two-
dimensional tensors) was asked and positively answered in [S. A. Goreinov, E. E. Tyrtyshnikov, and
N. L. Zamarashkin, A theory of pseudo-skeleton approximations, Linear Algebra Appl., 261 (1997),
pp. 1–21]. In the present paper we extend the positive answer to the case of three-dimensional
tensors. More specifically, it is shown that if the tensor admits a good Tucker approximation for
some (small) rank r, then this approximation can be computed using only O(nr) entries with O(nr3)
complexity.

Key words. multidimensional arrays, Tucker decomposition, tensor approximations, low-rank
approximations, skeleton decompositions, dimensionality reduction, data compression, large-scale
matrices, data-sparse methods

AMS subject classifications. 15A69, 15A18, 65F30

DOI. 10.1137/060655894

1. Introduction. Multidimensional arrays of data appear in many different ap-
plications. One can mention signal processing, statistics [3, 1, 4], chemometrics [5],
face recognition [7], and solving multidimensional integral and differential equations
[6] (a very comprehensive list of references on the subject can be found on the Three-
Mode Company’s Web site, [2]). These arrays often cannot be handled by standard
methods because of their huge sizes: we cannot solve linear systems or calculate re-
quired decompositions due to speed or memory restrictions. The obvious solution is
to perform a sort of dimensionality reduction: an initial “large” array is transformed
to a smaller array for which we can use standard methods. However, such a reduction
by conventional approaches may be computationally still too expensive. In this paper
we suggest a way to make it not only feasible but even quite fast. We will focus only
on three-dimensional arrays mostly to simplify the presentation and note that our
results can be generalized to more dimensions.

The most useful method to reduce dimension is based on the celebrated Tucker
decomposition [22] and solves the following problem: given a three-dimensional ar-
ray (tensor) A = [aijk], i = 1, . . . , n1, j = 1, . . . , n2, k = 1, . . . , n3, compute its
approximation

(1.1) aijk =

r1∑
i′=1

r2∑
j′=1

r3∑
k′=1

gi′j′k′uii′vjj′wkk′ + eijk

with the eijk to be sufficiently small for prescribed r1, r2, r3. The matrices U = [uii′ ],

∗Received by the editors March 31, 2006; accepted for publication (in revised form) by N. Mas-
tronardi October 11, 2006; published electronically September 25, 2008. This research was supported
by the Russian Fund of Basic Research (grants 05-01-00721, 04-07-90336, and 06-01-08052) and a
Priority Research Grant ONM-3 from the Department of Mathematical Sciences of the Russian
Academy of Sciences.
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V = [vjj′ ], W = [wkk′ ] will be referred to as Tucker factors, and the r1×r2×r3 tensor
G = [gi′j′k′ ] as the core tensor.

A well-known method for the computation of the Tucker decomposition is based
on the SVD algorithm. Consider three rectangular “unfolding” matrices of appropri-
ate sizes A(1), A(2), A(3), which contain n-mode vectors (columns, rows, and fibers,
respectively) of the tensor A. The left (“short”) singular vectors of the SVDs of these
matrices

(1.2) A(1) = UΣ1Φ
�
1 , A(2) = V Σ2Φ

�
2 , A(3) = WΣ3Φ

�
3

give the factors U, V,W of the Tucker decomposition, possibly after an appropriate
truncation, and the core is computed as

(1.3) gi′j′k′ =

n∑
i=1

n∑
j=1

n∑
k=1

aijkuii′vjj′wkk′ .

The tensor dimension can be large (for example, n = 104 − 106 for some tensors
coming from three-dimensional integral equations). The array itself cannot even be
stored in the operative memory as O(n3) memory cells are needed. The computation
of the SVDs in (1.2) by standard methods costs O(n4) operations and is prohibitive
for n ≥ 1000.

However, we are chiefly interested in the case r � n, and the Tucker decom-
position contains only O(rn + r3) parameters. If a good approximation exists, we
can ask if it can be computed using only a small amount of entries of the tensor A.
A similar question for matrices (two-dimensional tensors) was asked and positively
answered in [14]. In the present paper we extend the positive answer to the case of
three-dimensional tensors. More specifically, it will be shown that if the tensor admits
a good Tucker approximation for some (small) rank r, then this approximation can
be computed using only O(nr) entries with O(nr3) complexity.

Prior to investigation of special low-parametric (data-sparse) representations ob-
tained only from the knowledge of a small portion of the data entries, we use a gen-
eral assumption that some low-parametric approximations exist. In other words, we
consider the cases with sufficiently small approximate tensor rank estimates. Several
estimates for many interesting for practial purposes cases are developed in [15, 18, 19].
We can mention also some practical algorithms using interpolation and other function
approximation techniques or additional structural properties rather than the given ar-
rays of data [15, 21]. [20] is closest to the paradigm of a completely data-based method
(using no knowledge beyond the data themselves); however, [20] contains no proof for
the existence of a sufficiently good low-rank representation and does not suggest a
general adaptive procedure for selecting “most meaningful” entries. Recently, much
attention has been paid to the approximation of a given matrix by a low-rank matrix
using randomized algorithms, for example, see [23]. To our best knowledge, these algo-
rithms are fast only asymptotically with very large constants in the estimates and can-
not be applied in practice. Moreover, the authors do not report any numerical results
in their articles, so we cannot compare their methods with our method. In this paper
we present the existence results and the adaptive three-dimensional cross algorithms.

2. Notations and definitions. Let us recall some basic facts about tensors
[10, 11].
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Definition 2.1. The unfoldings of n1×n2×n3 tensor A are rectangular matrices
A(1) of size n1×n2n3, A

(2) of size n2×n1n3, and A(3) of size n3×n1n2 with elements

(2.1) A(1) = [a1
i(jk)] = [aijk], A(2) = [a2

j(ki)] = [aijk], A(3) = [a3
k(ij)] = [aijk].

The superscripts 1, 2, 3 in the definitions of unfoldings define which index (first, sec-
ond, or third) is used; two other indices are merged into one “long” index.

Definition 2.2. The norm of the n1 × n2 × n3 tensor A = [aijk] is defined
similarly to the Frobenius norm for matrices as

||A|| = ||A||F =

⎛
⎝ n1∑

i=1

n2∑
j=1

n3∑
k=1

a2
ijk

⎞
⎠

1/2

.

Also, let

||A||C = max
i,j,k

|aijk|

be a Chebyshev norm of a tensor A.
Definition 2.3 (outer product). If A is a p-index array ai1,i2,...,ip and B is

a q-index array bj1,j2,...,jq , then C = A ⊗ B is defined as a (p+q)-index array with
elements

ci1,i2,...,ip,j1,j2,...,jq = ai1,i2,...,ipbj1,j2,...,jq .

Tensors can be multiplied by matrices along a specified index (mode) direction.
Definition 2.4 (mode convolution or n-mode product). If A = [aijk] is a

n1 × n2 × n3 array and U is a m1 × n1 matrix, then their product B = [bijk] is a
m1 × n2 × n3 array defined as

B = A×i U, bijk =

n1∑
i′=1

uii′ai′jk.

The operations A ×j U, A ×k U are defined analogously, provided that U and
A have appropriate sizes. In this notation, the Tucker decomposition (1.1) can be
written as

A = G ×i U ×j V ×k W.

We will say that a tensor has a rank-(r1, r2, r3) (Tucker) decomposition if (1.1) holds
[10, 11].

The important objects are slices of the three-dimensional arrays.
Definition 2.5. If A = [aijk] is a n1 × n2 × n3 array, then its kth slice by the

third index1 is a n1 × n2 matrix Ak with elements

(Ak)ij = aijk.

The “short” vectors along the modes i, j, and k will be referred to as columns,
rows, and fibers, respectively.

1The slices by other two indices can also be defined, but it may lead to ambiguity. Since in this
paper only kth slices are used, we omit these definitions here.
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3. Existence theory. Suppose an n1 × n2 × n3 tensor A = [aijk] is given and
there exists a rank-(r1, r2, r3) Tucker approximation to A with the accuracy ε:

(3.1) A = G ×i U ×j V ×k W + E , ||E|| = ε.

If we are aware that such an approximation exists, then a generally different approx-
imation of the same type with the accuracy bound cε (where c > 1 is a deterioration
coefficient) can be constructed from the knowledge of roughly the same amount of
entries as those explicitly involved in (3.1). We want to prove this together with a
bound on the deterioration coefficient c depending only upon dimensions and ranks
but not on the entries of the array.

Theorem 3.1. Suppose (3.1) holds for some U, V, and W and G. Then there
exist matrices U ′, V ′, and W ′ of sizes n1 × r1, n2 × r2, and n3 × r3 and consisting of
some r1 columns, r2 rows, and r3 fibers, of A, respectively, and there exists a tensor
G′ such that

A = G′ ×i U
′ ×j V

′ ×k W ′ + E ′,

where

||E ′||C ≤ (r1r2r3 + 2r1r2 + 2r1 + 1)ε.

Proof. Consider an unfolding matrix A(1) of the array A. Since A has a rank-
(r1, r2, r3) approximation with accuracy ε, it is easy to see from (3.1) that A(1) has a
rank-r1 approximation with the same accuracy. A low-rank matrix can be approxi-
mated by its skeleton decomposition

A(1) = CĈ−1B� + E1,

where C is a n1 × r1 matrix containing some r1 columns of A(1), B is a n2n3 × r1
matrix containing some r1 rows of A(1), and Ĉ is a submatrix on the intersection of
these rows and columns. In [13] it was proved that if Ĉ is a submatrix of maximal
volume (that is, the r1 × r1 submatrix which has the largest absolute value of the
determinant) in A(1), then ε1 is bounded as follows:

||E1||C ≤ (r1 + 1)ε,

where || · ||C denotes the largest magnitude element of a matrix (array). Also, if Ĉ is
a maximal volume submatrix, it is easy to prove (cf. [13]) that the elements of CĈ−1

are not greater than 1 in modulus. Consequently,∣∣∣∣∣aijk −
r1∑
s=1

γiszjks

∣∣∣∣∣ ≤ (r1 + 1)ε,

where

|γis| ≤ 1, 1 ≤ i ≤ n1,

and zjks are in a one-to-one correspondence with the entries of B� (for a fixed s these
elements present a slice by the index i of the array A). Also note that

γis =

r1∑
l=1

uilφls,

where the matrix [uil] consists of some columns of A.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TUCKER DIMENSIONALITY REDUCTION IN LINEAR TIME 943

Now let us look more closely at the matrix B�. In a reshaped form, it becomes
the tensor with the elements zjks. As previously, unfold this tensor along the index j.
The ε-rank2 of the unfolding matrix does not exceed r2.

Again using the result of [13], we obtain the following inequalities:

∣∣∣∣∣zjks −
r2∑
t=1

r2∑
τ=1

ψtτvjtwksτ

∣∣∣∣∣ ≤ (r2 + 1)ε,

where the arrays [vjt] and [wksτ ] consist of some rows and fibers of A.
Unfolding the array [wksτ ] by the index k, we observe that the ε-rank of the

unfolding matrix cannot be larger than k3. Hence, this matrix admits the skeleton
approximation with the error bound

∣∣∣∣∣∣wksτ −
k3∑

α=1

k3∑
β=1

xkαζαβyαsτ

∣∣∣∣∣∣ ≤ (r3 + 1)ε.

Finally,

∣∣∣∣∣∣aijk −
r1∑
l=1

r1∑
s=1

r2∑
t=1

r2∑
τ=1

r3∑
α=1

r3∑
β=1

(φlsψtτζαβyαtτ )uilvjtxkα

∣∣∣∣∣∣ ≤
∣∣∣∣∣aijk −

r1∑
s=1

γiszjks

∣∣∣∣∣

+

r1∑
s=1

∣∣∣∣∣zjks −
r2∑
t=1

r2∑
τ=1

ψtτvjtwksτ

∣∣∣∣∣ +

r1∑
s=1

r2∑
τ=1

∣∣∣∣∣∣wksτ −
k3∑

α=1

k3∑
β=1

xkαζαβyαsτ

∣∣∣∣∣∣
≤ (r1 + 1)ε + r1(r2 + 1)ε + r1r2(r3 + 1)ε,

which completes the proof.
If r1 = r2 = r3 = r, then the error bound becomes (r+1)(r2 +r+1)ε ≤ (r+1)3ε.

In the general case, we are not completely satisfied with the error bound of this
theorem because it is not a symmetric function of r1, r2, r3. Of course, the answer
can be formally symmetrized, using different permutations of modes (for example,
n3 × n2 × n1) and taking the minimum of all these error bounds, but the obtained
result seems to be rather artificial. So here we note that a “truly symmetric” version
of this theorem is likely to need a different technique.

Corollary 3.2. Under the premises of the theorem,

||E ′||F ≤ (r1r2r3 + 2r1r2 + 2r1 + 1)
√
n1n2n3ε.

4. The cross approximation method. For presentation purposes from now
on we will assume that n1 = n2 = n3 = n and r1 = r2 = r3 = r.

4.1. The two-dimensional-cross method. In the works [13, 14, 17] the prob-
lem of finding a rank-r approximation to a given matrix was connected with finding
in matrix A a submatrix of maximal volume (that is, determinant in modulus) among
all r × r submatrices. The latter problem is hard to solve. However, we may be
satisfied with a “sufficiently good” submatrix and some heuristic algorithms. Since
these algorithms are to fetch a cross of some columns and rows, we call them cross

2The matrix A is said to have ε-rank r if there exists a rank-r matrix B such that ‖A−B‖ ≤ ε.
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Fig. 1. How a cross method works. Filled dots: elements used for the calculation of cross(ip, jp).
Empty dots: row–pivot, step (2).

algorithms. Probably the most simple and effective cross algorithm is the Gauss elim-
ination method using some pivoting technique over dynamically selected sets of the
entries of the “active matrix” (for a general description, see [9]). We will use here the
column and row pivoting considered in [8]. This method is simple but may breakdown
(quit when a good approximation is not obtained) if applied as it is. A cheap practical
remedy proposed in [16] is a restarted version of this cross method. For the readers
convenience, we give here a brief description of the algorithm.

Algorithm 1 (Cross2D). Given a matrix A of approximate rank r, approximate
it by a matrix Ãr, which is a sum of r rank-1 matrices upv

�
p (so-called skeletons). The

principle scheme is given in Figure 1.
(0) Numbering the steps by p, set p = 1. Choose some column in A, and assign

its index to jp.
(1) Calculate column jp of the matrix A, and subtract from all elements the

corresponding elements of already calculated skeletons. In the resulting vector
find the largest magnitude element. Suppose it is located in the row ip.

(2) Calculate the row ip of the residue and the next pivot which is its largest
magnitude element with a restriction that the element from the jpth column
cannot be chosen again (see Figure 1). Suppose this pivot is located in the
jp+1th column.

(3) Calculate the new cross centered at (ip, jp).
(4) If a stopping criterion is not satisfied, set p := p + 1, and go to step (1).
The approximation Ãp =

∑p
α=1 uαv

�
α is considered good if

‖A− Ãp‖ ≤ ε‖A‖F ≈ ε‖Ãp‖F .

However, the exact computation of the error requires all matrix elements and n2 op-
erations, which is unacceptable. At the same time, the norm ‖Ãp‖F can be computed
via the formula

‖Ãp‖2
F =

m∑
i=1

n∑
j=1

(
r∑

α=1

uiαvjα

)2

=

r∑
α=1

r∑
α′=1

(uα, uα′)(vα, vα′)

using O(p2n) operations. And as a practical estimator of the error (stopping criterion),
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we use the norm of a newly computed rank-1 correction. Specifically, we stop if

(n− p)‖up‖2‖vp‖2 ≤ ε‖Ãr‖F .

The number n−p is a heuristic constant. Note that after p steps of the cross algorithm
exactly p rows and columns of the residue are zeroed, so if we assume that the error
is “equally distributed” among the remaining n− p rows, then we immediately arrive
at the presented stopping criteria.

Such version of the cross method requires 2rn evaluations of matrix elements
and O(r2n) additional operations (the reason for counting the number of element
computations is that the calculation of one element may be a very time-consuming
operation). Even if the stopping criteria is satisfied, in some cases the obtained
approximation is not good enough (but this does not happen very often). To make
the method more robust, the restart step is performed: we create a sample from the
elements of the residue matrix A − Ãr. If the error estimated from that sample is
large, we proceed with step (3) using the largest magnitude element in the sample as
a pivot.

4.2. Towards the three-dimensional-cross method. Consider the unfold-
ings of the array A (rectangular matrices of sizes n× n2 defined by (2.1)), and apply
to them the cross approximation algorithm. If the array A possesses a good Tucker
rank-(r, r, r) approximation, then there exist rank-r approximations for the unfoldings
A(1), A(2), and A(3) which are also good:

Ã(1)
r = UΨ�, Ã(2)

r = V Φ�, Ã(3)
r = WΥ�,

where U, V,W are n× r matrices with orthonormal columns and matrices Ψ,Φ,Υ are
n2 × r. The Tucker core is calculated by the convolution of the form (1.3) with aijk
being replaced with their approximate values. For example, using the decomposition

by the first direction, Ã
(1)
r = UΨ�, we have

aijk ≈ ãijk =

r∑
α=1

uiαψjkα,

where the rows of the matrix Ψ = [ψ(jk)α] are numbered by a pair of indices (jk).
Substituting this into (1.3), we obtain

gi′j′k′ =

n∑
i=1

n∑
j=1

n∑
k=1

(
r∑

α=1

uiαψjkα

)
uii′vjj′wkk′

=

r∑
α=1

(uα, ui′)

⎛
⎝ n∑

j=1

n∑
k=1

vjj′wkk′ψjkα

⎞
⎠

=
n∑

j=1

n∑
k=1

vjj′wkk′ψjki′ .

(4.1)

This computation needs O(n2r) evaluations of the elements of A plus O(n2r2) oper-
ations.

Of course, O(n2) is much smaller than the total number of elements in the array
A, but it is still too large when n is about 103.
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Fig. 2. The work of the three-dimensional-cross method. The big filled and empty dots cor-
respond to elements for the “outer” cross algorithm, and small dots show elements used for the
“inner” cross algorithm, approximating a particular two-dimensional slice

4.3. How to achieve linear complexity. We want to achieve linear complexity
in n. To this end, we have to get rid of the computation of all elements in the slices
of A used in the unfoldings (2.1) (then we avoid n2-long vectors). We suggest to
approximate the slices by the same cross algorithm developed for matrices. Since A
has a good Tucker approximation with the accuracy ε, each slice Ak = [(ak)ij ] can be
accurately approximated by a rank-r matrix. In what follows, we will never store a
slice as a full n × n matrix and will never refer to all its elements. Instead, we deal
only with some low-rank approximations for the slices.

Algorithm 2. Given an n× n× n array A, take one of the indices i, j, k as the
“leading index,” let it be k. Then consider the corresponding unfolding matrix of size
n×n2, and approximate it applying the cross method. The columns of the unfolding
matrix are calculated as usual, but each of the long rows is considered as a matrix of
size n× n to be approximated by the same cross method. Therefore, at each step of
the “outer” cross method we add one skeleton of form A⊗ w with the long vector A
represented by the sum of r skeletons in the “inner” cross method; therefore, we add
a tensor of form

∑r
q=1 uq ⊗ vq ⊗ w. After r steps the approximant has the form

Ã =

r∑
p=1

(
r∑

q=1

u{p}
q ⊗ v{p}q

)
⊗ w{p},

where u
{p}
q and v

{p}
q , q = 1, . . . , r, are vectors comprising the skeleton approximation

to the long vector at the step with number p. Note that unlike vectors u and v, vectors
w are numbered only by p, because k is the leading index. The principle scheme is
given in Figure 2.

The expected number of arithmetic operations is almost linear in sizes of the
array: the complexity is O(nrd) operations for some small d > 0.

(0) Numbering the steps by p, set p to 1. Choose a slice Ak = [(ak)ij ] in A, for

example, and assume its index to k1. Set Ã = 0.
(1a) Find an approximation Akp to the kpth slice of the residue R = A − Ãp by

the cross method:

Akp =

r∑
q=1

uqv
�
q .
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(1b) Find the largest magnitude element in the matrix Akp
; let it be located at

(ip, jp).
(2) Compute the vector w corresponding to the fiber of R with index (ip, jp),

wk = Rip,jp,k,

perform the scaling

w := w/wkp ,

and find in w the largest magnitude element from those whose index is not
equal to kp.

3 Suppose it is located at the kp+1th position of w.
(3) Compute a new approximation:

Ã := Ã + Akp ⊗ w = Ã +

(
r∑

q=1

uqv
�
q

)
⊗ w = Ã +

r∑
q=1

uq ⊗ vq ⊗ w.

(4) If the stopping criterion is not satisfied, set p := p + 1, and go to step (1).
In the end, the array A is approximated by Ã = [ãijk] having a Tucker-like de-

composition (also viewed as a trilinear, PARAFAC, or CANDECOMP decomposition
[1, 5]) of the form (in elementwise notation)

(4.2) ãijk =

r∑
p=1

(
r∑

q=1

u
{p}
iq v

{p}
jq

)
w

{p}
k =

r2∑
α=1

uiαvjαwkα,

where in the second sum for simplicity all terms are numbered by a single index α
instead of a complicated sum on the left.

During the implementation of this method, we encounter several problems that
should be solved with a linear complexity in n:

• determine the largest magnitude element in a low-rank matrix, step (1)b;
• estimate the quantities in the relationships

‖A − Ã‖F ≤ ε‖A‖F ≈ ε‖Ã‖F

so as to have a sound stopping criterion, step (4).
The first problem is not trivial, and we do not know if there is an exact and fast

way to find a maximal element in a low-rank matrix. However, we are able to design
a heuristic algorithm, based on the submatrix of maximal volume. It manifests a very
good practical performance (see Appendix A).

The stopping criterion in the Cross3D method is identical to the two-dimensional
case, by the comparison of the approximant norm and the norm of a newly computed
cross-correction. The norm ‖Ã‖F is computed by the formulas

‖Ã‖2
F =

n∑
i=1

n∑
j=1

n∑
k=1

⎛
⎝ r2∑

α=1

uiαvjαwkα

⎞
⎠

2

=

r2∑
α=1

r2∑
α′=1

(uα, uα′)(vα, vα′)(wα, wα′).

3It is worthy to note that we cannot also use elements with indices k1, . . . , kp−1, but it can be
verified that they are all zeroes, so they cannot have maximal modulus.
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The cost of Algorithm 2 is O(nr2) evaluations of the elements of A plus O(nr4)
arithmetic operations (at each outer step of the method we compute a new slice from
which we should subtract the elements of the previously computed approximation,
and that results in a relatively big constant r4 at the size n). This is already a
linear complexity. However, we are going to present a “clever” implementation with
a significantly better performance.

4.4. The three-dimensional-cross algorithm. We can improve the efficiency
of Algorithm 2 by using a more compact way to store and handle the slices Akp

so
that the required number of vectors to represent them is reduced from O(r2) to O(r).

At each step we approximate the computed slices Akp in the format

(4.3) Akp
= UBpV

�,

where n×r matrices U, V are orthogonal and the core matrices Bp are r×r. It is worth
noting that (4.3) is also known as a Tucker2 decomposition, where only 2 of 3 modes
are compressed. The storage for p slices is now 2nr+pr2 which is asymptotically equal
to O(nr). The existence of matrices U, V, follows from the existence of a “good” Tucker
approximation. In fact, we can try U and V as the Tucker factors. The computation
of this simultaneous matrix decomposition is equivalent to the computation of the
Tucker decomposition of a n× n× p array:

A′ = [Ak1 . . . Akp ].

Indeed, if

aijkp =

r∑
i′=1

r∑
j′=1

r∑
p′=1

gi′j′p′uii′vjj′wpp′ ,

then, setting

r∑
p′=1

gi′j′p′wpp′ = bi′j′p = (bp)i′j′ ,

we immediately arrive at (4.3).
Another important modification concerns the computation of the slices. Suppose

the p steps are done and we are going to compute the p + 1th slice Akp+1 . Instead of
using the “full” cross method for this slice, we first find an approximation of the form

Akp+1
≈ UΦV �,

where U, V come from (4.3) and a matrix Φ is r × r. Such an approximation can be
obtained quite cheaply by the following scheme:

• Find r × r submatrices of maximal volume in U and V. Suppose they have
indices i1, . . . , ir and j1, . . . , jr. Denote these submatrices by Û and V̂ .

• Compute the r × r submatrix S in Akp+1
lying on the intersection of rows

with indices i1, . . . , ir and columns with indices j1, . . . jr.
• Compute

(4.4) Φ = Û−1SV̂ −1.
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We can prove that this approximation approach is robust (see Appendix B). After Φ
is computed, we check the approximation error by taking some random samples of a
true matrix Akp . If the approximation is not good enough, then we perform some steps
of the cross approximation algorithm, starting from a good approximation. However,
as a rule, only a few steps (or even none) of the cross algorithm are required.

Algorithm 3 (Cross3D). Suppose an n× n× n three-way array A is given.
(0) Perform one step of Algorithm 2 (with p = 1). Upon completion, p = 2, and

A is represented as

Ã =

(
r∑

q=1

u{1}
q (v{1}q )�

)
⊗ w{1} =

r∑
q=1

u{1}
q ⊗ v{1}q ⊗ w{1}.

Form matrices U1 = [u
{1}
q ], V1 = [v

{1}
q ], and compute orthonormal bases U, V

of these subspaces using two QR-decompositions:

U1 = URu, V1 = V Rv.

Then A is represented as

Ã = (URuR
�
v V

�) ⊗ w{1} = (UB1V
�) ⊗ (w{1}/‖w{1}‖2),

B1 = RuR
�
v ‖w{1}‖2.

Set w{1} := w{1}/‖w{1}‖. (Note that in this algorithm we will keep bases U,
V, and W orthonormal.) In the vector w{1} compute the largest magnitude
element; suppose it has index k2.

(1.1) Compute Φ from (4.4). If necessary, perform some additional steps of the
cross method to obtain an approximation to the slice Akp :

Akp
≈ Ãkp = UΦV � +

rp∑
q=1

u{p}
q (v{p}q )�.

(Note that rp is supposed to be small even compared to r.)

(1.2) Add new vectors Up = [u
{p}
q ], Vp = [v

{p}
q ], q = 1, . . . , r, to bases U, V, and

orthogonalize the extended matrices [UUp], [V Vp]:

[UUp] = [UÛp]

[
I Mu

0 Ru

]
, [V Vp] = [V V̂p]

[
I Mv

0 Rv

]
,

U�Ûp = 0, V �V̂p = 0, Û�
p Ûp = I, V̂ �

p V̂p = I.

(1.3) Compute new (r + rp) × (r + rp) core Bp:

Bp =

[
Mu

Ru

] [
M�

v R�
v

]
.

Other slices in a new basis have the form

Akq = [UÛp]

[
Bq 0
0 0

]
[V V̂p]

�, q = 1, . . . , p− 1.
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Therefore, approximation Ãp−1 is represented as

Ãp−1 =

p−1∑
q=1

(
U ′B′

qV
′�)⊗ wq,

U ′ = [UÛp], V ′ = [V V̂p], B′
q =

[
Bq 0
0 0

]
, q = 1, . . . , p− 1.

Set also B′
p = Bp.

(1.4) In the new slice Akp the largest magnitude element is found. Suppose it is
located in (ip, jp).

(2.1) The fiber w{p} of the residue A−Ãp−1 corresponding to (ip, jp) is computed.
(2.2) Vector w{p} is orthogonalized to vectors W = [w{1}, . . . , w{p−1}]:

w{p} =

p−1∑
q=1

cqw
{q} + ŵ{p}, (ω{q})�ŵ{p} = 0, q = 1, . . . , p− 1.

Cores of old slices B′
q, q = 1, . . . , p− 1, are modified:

B′′
q = B′

q + cqB
′
p, q = 1, . . . , p− 1.

Vector ŵ{p} is normalized:

w{p} := ŵ{p}/‖ŵ{p}‖2, B′′
p = ‖ŵ{p}‖2B

′
p.

(3) The approximation Ãp is represented as

(4.5) Ãp =

p∑
q=1

(
U ′B′′

q V
′�)⊗ w{q}.

To reduce the sizes of the (r+rp)× (r+rp) matrices B′′
q , we apply the Tucker

reduction method.
(3.1) Create a three-way array B′′ = [B′′

1 . . . B′′
p ] of size (r+ rp)× (r+ rp)× p,

and compute its Tucker decomposition.

b′′ijk =

r∑
i′=1

r∑
j′=1

r∑
k′=1

g♣i′j′k′u
♣
ii′v

♣
jj′w

♣
kk′ .

If we introduce matrices B♣k with elements

(B♣k)i′j′ =

r∑
k′=1

g♣i′j′k′w
♣
kk′ ,

then we have

(4.6) B′′
k = U♣B♣kV

�
♣ , k = 1, . . . , p,

where matrices U♣ and V♣ are (r + r1) × r and cores B♣k are r × r.
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(3.2) Substituting (4.6) into (4.5), we obtain that

(4.7) Ãp =

p∑
k=1

(
(U ′U♣)B♣k(V

′V♣)�
)
⊗w{k} =

p∑
k=1

(
UBkV

�)⊗w{k},

where U = U ′U♣, V = V ′V♣ are orthogonal and cores Bk = B♣k are
r × r. The format (4.3) is restored.

(4) Check stopping criteria; if it is not satisfied, go to (1.1).
At each step of the outer cross method we obtain a new Tucker approximant with the
core of the dimension (r + rp) × (r + rp) × r; the purpose of steps (3.1)–(3.2) is to
compress this tensor back.

The Algorithm 3 is the final version of Cross3D. The numerical complexity of the
method is O(nr) evaluations of the array elements and O(nr3) additional operations.

5. Numerical experiments. We illustrate the performance of our algorithm
on some model tensors which allow good low-rank approximation.

Specifically, we consider the following two types of arrays:

A = [aijk], aijk =
1

i + j + k
, 1 ≤ i, j, k ≤ n,

B = [bijk], bijk =
1√

i2 + j2 + k2
, 1 ≤ i, j, k ≤ n.

The rank estimates obtained in [15, 18, 19] have the form

r ≤ C(log n log2 ε),

where ε is an error of the approximation, so the rank grows only logarithmically with
n and ε.

These two examples arise from the numerical solution of integral equations. For
example, the array B is obtained from the integral equation with kernel 1

||x−y|| acting

on a unit cube and being disretized by the Nyström method on a uniform grid.
Table 1 shows the ranks, accuracies, and size of the computed Tucker approxima-

tion for the array A; Table 2 shows the same for B. The accuracy of the approximation
was computed by sampling the elements of the array, since it is not possible to check
all the elements for large n. The size of the sample was determined by the following
rule: if the sample size was doubled, the estimated error should change by no more
than 10%. As it can be seen, the approximation method is robust and leads to aston-
ishing memory savings: the arrays that would need in the full format an enormous
storage of 2 petabytes (2 · 250 PB) are compressed to the sizes of 100 MB.

Moreover, our algorithm works with arrays on this huge scale on a personal work-
station. The timings made on a personal computer (Pentium-4 with 3.4 Ghz clock)
are shown in Figure 3. This figure confirms that the approximation time is almost
linear in n. More precisely, we demonstrate the O(nr3) complexity of the Cross3D
algorithm with rank estimated as r ∼ log n for fixed ε. Therefore, the complexity of
the algorithm is estimated as

t ≤ cn log3 n.

In Figure 3 real timings, measured for different ε, are shown together with “theo-
retical” bounds cn log3 n, plotted for two different values of c. The somewhat irregular
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Table 1

Numerical results

A = [aijk], aijk =
1

i + j + k
, 1 ≤ i, j, k ≤ n.

Rank and accuracy of the decomposition.

ε 1.10−3 1.10−5 1.10−7 1.10−9
n r err r err r err r err

64 5 2.5710−4 8 2.3310−6 10 1.4610−8 12 3.0910−10
128 6 6.8610−4 8 4.4710−6 11 3.1910−8 13 6.410−10
256 6 8.8410−4 9 3.9710−6 12 5.4910−8 15 3.0310−10
512 7 7.4910−4 10 1.4110−6 13 6.8410−8 16 5.210−10
1024 7 5.7110−4 11 4.8310−6 14 4.0910−8 18 2.7410−10
2048 7 6.6310−4 12 2.0810−6 16 4.0110−8 19 3.9710−10
4096 8 3.2310−4 12 6.3210−6 17 3.4410−8 21 3.4710−10
8192 8 6.3610−4 13 3.3610−6 18 1.9310−8 22 4.5610−10
16384 9 7.9510−4 14 3.5210−6 19 7.2110−8 24 5.6410−10
32768 9 6.410−4 14 8.8610−6 20 5.2710−8 25 3.7910−10
65536 9 4.0710−4 15 6.3110−6 21 2.5110−8 26 5.2510−10

Rank and size (MB) of the Tucker decomposition.
The sizes smaller than 1MB are not shown.

ε 1.10−3 1.10−5 1.10−7 1.10−9
n full r mem r mem r mem r mem

64 2MB 5 8 10 12
128 16MB 6 8 11 13
256 128MB 6 9 12 15
512 1GB 7 10 13 16
1024 8GB 7 11 14 18
2048 64GB 7 12 16 19
4096 512GB 8 < 1 12 1.1 17 1.6 21 2
8192 4TB 8 1.5 13 2.5 18 3.5 22 4.2
16384 32TB 9 3.4 14 5.25 19 7.2 24 9
32768 256TB 9 6.75 14 10.5 20 15 25 19
65536 2PB 9 13.5 15 22 21 31 26 39

behavior on the timing plots is caused by the effects of caching (for small n) and by
some rank overestimation by the stopping criteria for large n.

Two dense tensors considered come from a simple disretization of integral equa-
tions. Despite their “regularity” they are quite representative: in more complex cases
our method behaves similarly. In other areas where tensor decomposition is used, the
researchers often obtain more irregular and possibly sparse tensors. We want to note
that sparseness is ideal for Cross3D because in that case the residue can be measured
exactly and the pivots during the cross approximation stage can be also found exactly,
leading to a theoretically robust method. The applications of the three-dimensional-
cross approach to more complex tensors will be reported elsewhere.

Appendix A. How to find the maximal element in a slice. One of the
important ingredients of the three-dimensional-cross method is the determination of
the maximal element in a given low-rank matrix in linear time.

Suppose we have computed a skeleton approximation to a low-rank matrix

A = UV �,

where U, V are n× r, and we want to find the largest magnitude element in it. This
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Table 2

Numerical results

B = [bijk], bijk =
1√

i2 + j2 + k2
, 1 ≤ i, j, k ≤ n.

Rank and accuracy of the Tucker decomposition.

ε 1.10−3 1.10−5 1.10−7 1.10−9
n r err r err r err r err

64 7 3.7710−4 11 3.9110−6 14 5.710−8 18 2.2110−10
128 8 5.1910−4 12 5.9210−6 17 2.10−8 20 5.6310−10
256 9 4.1110−4 14 6.410−6 19 3.4610−8 23 4.510−10
512 10 4.9310−4 15 6.6710−6 21 2.9210−8 26 3.2710−10
1024 10 5.4710−4 17 3.2110−6 23 3.9510−8 29 4.7310−10
2048 11 4.9810−4 18 5.2610−6 25 6.8310−8 31 5.9410−10
4096 12 8.410−4 19 4.2510−6 27 3.5610−8 34 3.3810−10
8192 12 6.810−4 20 6.10−6 28 5.810−8 36 3.6610−10
16384 13 2.6910−4 22 4.7810−6 31 5.6510−8 39 2.6710−10
32768 13 8.5210−4 23 6.0910−6 32 7.1610−8 41 5.5110−10
65536 14 6.2710−4 24 6.5210−6 34 7.8910−8 44 1.4110−9

Rank and size (MB) of the Tucker decomposition.
Values less than 1MB are not shown

ε 1.10−3 1.10−5 1.10−7 1.10−9
n full r mem r mem r mem r mem

64 2MB 7 11 14 18
128 16MB 8 12 17 20
256 128MB 9 14 19 23
512 1GB 10 15 21 26
1024 8GB 10 17 23 29
2048 64GB 11 < 1 18 < 1 25 1.18 31 1.46
4096 512GB 12 1.15 19 1.78 27 2.54 34 3.2
8192 4TB 12 2.25 20 3.75 28 5.3 36 6.8
16384 32TB 13 4.9 22 8.25 31 11.7 39 14.7
32768 256TB 13 9.75 23 17.25 32 24 41 31
65536 2PB 14 21 24 36 34 51 44 66

problem can be solved by comparing all the elements of the matrix, but it costs O(n2)
operations. The proposed algorithm is based on the following hypothesis.

Hypothesis. Consider r×r submatrices in a rank-r matrix A. Let B be a submatrix
of maximal volume among all such submatrices. Then

||B||C ≥ ||A||C
r

.

So the maximal element in the submatrix of maximal volume cannot be very
much different from the maximal element in the whole matrix A.

How does one determine a submatrix of maximal volume? This submatrix of A lies
on the intersection of rows i1, . . . , ir, coinciding with rows which contain the submatrix
of maximal volume in U, and columns j1, . . . , jr, which contain the submatrix of
maximal volume in V �. To find the submatrix of maximal volume in a n× r matrix,
we will use the algorithm, proposed in [12]. For the readers convenience we describe
it below.

Algorithm 4. Suppose U is a n×r matrix and its r×r submatrix with maximal
volume is needed.
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A = [aijk], aijk =
1

i + j + k
, 1 ≤ i, j, k ≤ n
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Fig. 3. Approximation time, sec.

(0) Let Aγ be a leading submatrix. In the beginning set Aγ to any nonsingular
submatrix of A, and permute the rows so that Aγ is located in the first r
rows.

(1) Compute

AA−1
γ =

[
Ir×r

Z

]
= B.
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(2) Find the largest magnitude element |zij | in Z.
(3) If γ = |zij | > 1, then

Permute in B rows r + i and j. The upper submatrix in B after the
permutation has the form

⎛
⎜⎜⎜⎜⎜⎜⎝

1
. . .

∗ ∗ γ ∗ ∗
. . .

1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and its determinant is equal to γ ≥ 1 + ε, that is, it increased. Denote
by Aγ the new submatrix in the first r rows of A, and return to step (1).

Otherwise terminate the algorithm.
In practice, to avoid a huge number of transpositions a more “soft” stopping criteria
is used in step (3). The algorithm stops if |zij | ≤ 1 + ν, where ν is a some small
parameter.

Appendix B. The UΦV � decomposition. In this appendix we will prove
that the usage of (4.4) for the construction of the low-rank approximation to a slice
is “legal.”

Theorem B.1. Suppose A is a n1 × n2 matrix, U, V are n1 × r1 and n2 × r2
matrices with orthonormal columns, and there exists a matrix Φ such that

A = UΦV � + E, ||E||F ≤ ε.

If we compute Φ′ by the formula (4.4), then

||A− UΦ′V �||F ≤ (
√
n1r1n2r2 + 1)ε.

Proof. If Û and V̂ are submatrices of maximal volume in U and V , respectively,
and Â is a submatrix in A lying on the intersection of the selected rows from U and
columns from V �, then

Â = ÛΦV̂ � + Ê,

where Ê is a submatrix of E occupying the same positions in E as Â in A.

||Φ − Φ′|| ≤ ||Û−1|| ||Ê|| ||V̂ −1||.

The norms Û−1, V̂ −1 can be estimated as follows. We know that the elements of

UÛ−1

are not greater than 1 in modulus (because Û is a submatrix of maximal volume).
Therefore,

||Û−1||F ≤ √
n1r1.

Using this estimate we immediately complete the proof as follows:

‖A−UΦ′V �‖F ≤ ‖UΦV �−UΦ′V �‖F+‖E‖F = ‖Φ−Φ′‖+ε ≤ √
n1r1

√
n2r2ε+ε.
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TENSOR-CUR DECOMPOSITIONS FOR TENSOR-BASED DATA∗

MICHAEL W. MAHONEY† , MAURO MAGGIONI‡ , AND PETROS DRINEAS§

Abstract. Motivated by numerous applications in which the data may be modeled by a vari-
able subscripted by three or more indices, we develop a tensor-based extension of the matrix CUR
decomposition. The tensor-CUR decomposition is most relevant as a data analysis tool when the
data consist of one mode that is qualitatively different from the others. In this case, the tensor-CUR
decomposition approximately expresses the original data tensor in terms of a basis consisting of
underlying subtensors that are actual data elements and thus that have a natural interpretation in
terms of the processes generating the data. Assume the data may be modeled as a (2+1)-tensor, i.e.,
an m×n×p tensor A in which the first two modes are similar and the third is qualitatively different.
We refer to each of the p different m× n matrices as “slabs” and each of the mn different p-vectors
as “fibers.” In this case, the tensor-CUR algorithm computes an approximation to the data tensor A
that is of the form CUR, where C is an m×n×c tensor consisting of a small number c of the slabs, R
is an r× p matrix consisting of a small number r of the fibers, and U is an appropriately defined and
easily computed c× r encoding matrix. Both C and R may be chosen by randomly sampling either
slabs or fibers according to a judiciously chosen and data-dependent probability distribution, and
both c and r depend on a rank parameter k, an error parameter ε, and a failure probability δ. Under
appropriate assumptions, provable bounds on the Frobenius norm of the error tensor A− CUR are
obtained. In order to demonstrate the general applicability of this tensor decomposition, we apply
it to problems in two diverse domains of data analysis: hyperspectral medical image analysis and
consumer recommendation system analysis. In the hyperspectral data application, the tensor-CUR
decomposition is used to compress the data, and we show that classification quality is not substan-
tially reduced even after substantial data compression. In the recommendation system application,
the tensor-CUR decomposition is used to reconstruct missing entries in a user-product-product pref-
erence tensor, and we show that high quality recommendations can be made on the basis of a small
number of basis users and a small number of product-product comparisons from a new user.

Key words. CUR decomposition, tensor decomposition, hyperspectral imagery, recommenda-
tion system
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1. Introduction. Novel algorithmic methods to structure large data sets are of
continuing interest. A particular challenge is presented by tensor-based data, i.e., data
which are modeled by a variable subscripted by three or more indices [44, 31, 46, 61,
11]. Numerous examples suggest themselves, but to guide the discussion consider the
following three. First, in internet data applications, if one is studying the properties
of a large time-evolving graph, the data may consist of a graph or its adjacency matrix
sampled at a large number of sequential time steps, in which case Aijk may represent
the weight of the edge between nodes i and j at time step k. Second, in biomedical
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data applications, if one is studying cancer diagnosis, the data may consist of a large
number of hyperspectrally resolved biopsy images, in which case Aijk may represent
the absorbed or transmitted light intensity of a biopsy sample at pixel ij at frequency
k. Third, in consumer data applications, if one is studying recommendation systems,
the data may consist of product-product preference data for a large number of users,
in which case Aijk may be ±1, depending on whether product i or j is preferred by
user k. Tensor-based data are particularly challenging due to their size and since many
data analysis tools based on graph theory and linear algebra do not easily generalize.

When compared with algorithmic results for data modeled by either matrices or
graphs, algorithmic results for data modeled by multimode tensors are modest. For
example, even computing the rank of a general tensor A (defined as the minimum
number of rank-one tensors into which A can be decomposed) is an NP-hard prob-
lem [32]. On the other hand, the model proposed by Tucker [61], as well as the related
“canonical decomposition” [11] or “parallel factors” models [31], have a long history
in applied data analysis [39, 40, 41, 44]. They provide exact or approximate decom-
positions for higher-order tensors. Recent research has focused on the relationship
between these data tensor models and efforts to extend linear algebraic notions such
as the SVD to multimode data tensors [44, 45, 46, 48].

A seemingly unrelated line of work has focused on matrix CUR decompositions
[19, 22, 23]. As discussed in more detail in section 2.2, a matrix CUR decomposition
provides a low-rank approximation of the form A ≈ Ã = CUR, where C is a matrix
consisting of a small number of columns of A, R is a matrix consisting of a small
number of rows of A, and U is an appropriately defined low-dimensional encoding
matrix [19]. Thus, a matrix CUR decomposition provides a dimensionally reduced
low-rank approximation to the original data matrix A that is expressed in terms of
a small number of actual columns and a small number of actual rows of the original
data matrix, rather than, e.g., orthogonal linear combinations of those columns and
rows.

In this paper, we extend a recently developed and provably accurate matrix CUR
decomposition to tensor-based data sets in which there is a “distinguished” mode, and
we apply it to problems in two of the three data set domains mentioned previously.
When applied to hyperspectral image data, we use tensor-CUR to perform compres-
sion in order to run a classification on a more concise input, and when applied to
recommendation system data, we use tensor-CUR to perform reconstruction in the
absence of the full input.

By a “distinguished” mode, we mean a mode that is qualitatively different from
the other modes in an application-dependent manner. The most appropriate data
structure for a data set consisting of, e.g., a time-evolving internet graph or a set of
hyperspectrally resolved biopsy images or user-product-product preference data for
consumers depends on the application and is a matter of debate. Nevertheless, we
will view such a data set as a tensor, albeit one in which one of the modes is “distin-
guished.” For example, in these three applications, the distinguished mode would be
the mode describing, respectively, the temporal evolution of the graph, the frequency
or spectral variation in the images, and the users. The tensor-CUR decomposition
computes an approximation to the original data tensor that is expressed as a linear
combination of subtensors of the original data tensor. As we shall see, since these sub-
tensors are actual data elements, rather than, e.g., more complex functions of data
elements, in many cases they lend themselves more readily to application-specific
interpretation.
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2. Review of relevant linear and multilinear algebra. In this section, we
provide a brief review of relevant multilinear algebra as well as recent work on matrix
CUR decompositions.

2.1. Tensor-based extension of the SVD. We shall use calligraphic letters
to denote higher-order or multimode tensors with d > 2 modes. For example, let
A ∈ R

n1×n2×···×nd be a d-mode tensor of size n1×n2×· · ·×nd and let Nα =
∏

i �=α ni.
Consider the following definitions:

• Given a tensor A and a particular mode α ∈ {1, . . . , d}, define the matrix
A[α] ∈ R

nα×Nα , where the columns of the matrix consist of varying the αth
coordinate of A while leaving the rest fixed. We refer to the (usually implicit)
construction of A[α] as matricizing [36] or unfolding [44] A along mode α and
define the α-rank of the tensor A to be the rank of the matrix A[α].

• Given an n1 × n2 × · · · × nd d-mode tensor A, a particular mode α, and any
nα× cα matrix B, define the α-mode tensor-matrix product to be the d-mode
tensor of size n1 × · · ·×nα−1 × cα ×nα+1 × · · ·×nd whose i1 · · · id element is

(1) (A⊗α B)i1···id =

nα∑
i=1

Ai1···iα−1iiα+1···idBiiα .

Note that the α-mode tensor-matrix product satisfies (A ⊗α B) ⊗α′ C =
(A ⊗α′ C) ⊗α B = A ⊗α B ⊗α′ C, assuming that the various individual
products are defined.

• Given a tensor A, let us denote the SVD of A[α] by

(2) A[α] = U[α]Σ[α]V
T
[α],

where, e.g., U[α] is an nα×rank(A[α]) matrix and U[α],kα
is an nα×kα matrix

consisting of the left singular vectors corresponding to the top kα singular
values of A[α].

• Given a d-mode tensor A, define the (square of its) Frobenius norm to be

(3) ‖A‖2
F =

n1∑
i1=1

· · ·
nd∑

id=1

A2
i1···id .

• Given a tensor A and a particular mode α, let us refer to slabs as each of the
nα d−1-mode tensors of size n1×· · ·×nα−1×nα+1×· · ·×nd constructed by
fixing the αth coordinate to some particular value iα ∈ {1, . . . , nα}. Similarly,
let us refer to as fibers each of the Nα vectors (mode-one tensors) of size nα

constructed by fixing each of the other coordinates to a particular value.
Remark. See [44, 45, 36] and the references therein for a more detailed description

of these tensor-related definitions. In particular, note that, although they will not be
of interest to our main result, the higher-order SVD of A has been defined as the
decomposition of A of the form A = S ×1 U[1] ×2 · · · ×d U[d], where the rank(A[1]) ×
· · ·× rank(A[d]) tensor S is the so-called core tensor, and the best rank-(k1, k2, . . . , kd)

approximation to the tensor A has been defined as Ã = S ×1 U[1],k1
×2 · · · ×d U[d],kd

.
See [23] for a randomized algorithm that computes an approximation to this quantity.
The algorithm of [23] is similar to the algorithms presented in this paper, except that
it “unfolds” the tensor along every mode and computes an approximation to the top
singular vectors of the unfolded matrix by random sampling.
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Remark. Tensors are a natural generalization of matrices (see, e.g., [30] for more
details) and have been studied in several fields. For example, tensors have been studied
in mathematics and computer science for their algebraic properties, their ability to
efficiently represent multidimensional functions, and the relationship between their
properties and problems in complexity theory [30, 27, 32, 50, 8]. In addition, tensors
provide a natural way to represent many large and complex data sets [44, 43, 31, 36,
46, 61, 11, 65].

Remark. The dimensionality of the linear space generated by the α-slabs is the
α-rank of A. It is worth emphasizing that computing the rank of a general tensor A
(defined as the minimum number of rank-one tensors into which A can be decomposed)
is an NP-hard problem, that only weak bounds are known relating the α-rank and
the tensor rank, and that there do not exist definitions of tensor rank and associated
tensor SVD such that the optimality properties of the matrix rank and matrix SVD
are preserved [40, 33, 41, 32, 45, 38, 48, 67].

2.2. Matrix CUR decomposition. Recent work in theoretical computer sci-
ence, numerical linear algebra, and statistical learning theory [19, 23, 59, 60, 7, 29,
28, 66, 22] has focused on low-rank matrix decompositions with structural properties
that satisfy the following definition.

Definition 1. Let A be an m×n matrix. In addition, let C be an m× c matrix
whose columns consist of a small number c of columns of the matrix A, let R be an
r×n matrix whose rows consist of a small number r of rows of the original matrix A,
and let U be a c× r matrix. Then Ã is a column-row-based low-rank approximation,
or a CUR approximation, to A if it may be explicitly written as

(4) Ã = CUR.

Several things should be noted about this definition. First, for data applications,
we prefer not to provide too precise a characterization of what we mean by a “small”
number of columns and/or rows, but one should think of r, c � m,n. For example,
they could be constant, independent of m and n, logarithmic in the size of m and n,
or simply a large constant factor less than m,n. Second, since the approximation is
expressed in terms of a small number of columns and rows of the original data matrix,
it will provide a low-rank approximation to the original matrix, although one with
structural properties that are quite different from those provided by truncating the
SVD. Third, a CUR approximation approximately expresses all of the columns of A
in terms of a linear combination of a small number of “basis columns,” and it does
this similarly for the rows.

Finally, and most relevant for the present paper, note that a matrix CUR de-
composition has structural properties that are auspicious for its use as a tool in the
analysis of large data sets. For example, if the data matrix A is large and sparse but
well-approximated by a low-rank matrix, then C and R (consisting of actual columns
and rows) are sparse, whereas the matrices consisting of the top left and right singular
vectors will not, in general, be sparse. In addition, in many applications, interpretabil-
ity is important; practitioners often have an intuition about the actual columns and
rows that they fail to have about linear combinations of (up to) all the columns or
rows.

The following algorithmic result regarding a matrix CUR approximation was re-
cently proven [19].

Theorem 1. There exists a randomized algorithm (see the LinearTimeCUR

algorithm of [19]) that takes as input an m× n matrix A and a fixed rank parameter
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Fig. 1. Pictorial representation of a (2 + 1)-data tensor.

k and that returns as output an m×c matrix C consisting of c columns of A, an r×n
matrix R consisting of r rows of A, and a c × r matrix U . The columns/rows are
randomly sampled in c/r independent trials according to a judiciously chosen proba-
bility distribution depending on the Euclidean norm of the corresponding column/row.
If c = O(k log(1/δ)/ε4) and r = O(k/δ2ε2), then

(5) ‖A− CUR‖F ≤ ‖A−Ak‖F + ε ‖A‖F

holds with probability at least 1− δ. The algorithm requires O(m+n) additional time
and scratch space after reading the matrix A twice from external storage.

Our two tensor-CUR algorithms are tensor-based extensions of this matrix algo-
rithm. For more details about these results, see [17, 18, 19, 22].

3. A tensor-based extension of the matrix CUR decomposition.

3.1. A tensor-CUR decomposition for (2 + 1)-data tensors. In this sub-
section, for simplicity of exposition and in light of the two applications we will consider,
we restrict ourselves to tensors that are subscripted by three indices, i.e., so-called
3-mode tensors.

Consider an n1 × n2 × n3 tensor A, defined as the collection of elements

{Aijk|i = 1, . . . , n1; j = 1, . . . , n2; k = 1, . . . , n3}.

The elements may be thought of as a data cube, i.e, a three-dimensional block such
that index i runs along the vertical axis, index j runs along the horizontal axis, and
index k runs along the “depth” axis. Since by assumption there is a “distinguished”
mode, we are considering the special case of a (2 + 1)-tensor, i.e., an n1 × n2 × n3

tensor in which two modes (without loss of generality, we will assume they are the first
two) are similar in some application-dependent manner and the third is qualitatively
different. See Figure 1 for a pictorial description of a (2+1)-data tensor. In this case,
we refer to each of the n3 different n1 × n2 matrices as “slabs” and each of the n1n2

different n3-vectors as “fibers.”
With this in mind, consider the (2 + 1)-Tensor-CUR algorithm, described in

Figure 2. This algorithm takes as input an n1 × n2 × n3 tensor A, a probability
distribution {pi}n3

i=1 over the slabs, a probability distribution {qi}n1n2
i=1 over the fibers,

a number c of slabs to choose, and a number r of fibers to choose. (Without loss
of generality, we have assumed that the preferred mode α ∈ {1, 2, 3} is the third
mode.) The tensor A is decomposed along this mode in a manner analogous to the
original CUR matrix decomposition [19]. More precisely, this algorithm computes the
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Input: An n1 × n2 × n3 tensor A, a probability distribution {pi}n3
i=1, a probability

distribution {qi}n1n2
i=1 , and positive integers c and r.

Output: An n1 × n2 × c tensor C, a c× r matrix U , and an r × n3 matrix R.
1. Select c slabs of A in c independent and identically distributed (i.i.d.) trials

according to {pi}n3
i=1.

(a) Let C be the n1 × n2 × c tensor consisting of the chosen slabs.
(b) Let DC be the c× c diagonal scaling matrix with (DC)tt = 1√

cpit
if the

itth slab is chosen in the tth independent trial.
2. Select r fibers of A in r i.i.d. trials according to {qi}n1n2

i=1 .
(a) Let R be the r × n3 matrix consisting of the chosen fibers.
(b) Let DR be the r × r diagonal scaling matrix with (DR)tt = 1√

rqjt
if the

jtth slab is chosen in the tth independent trial.
3. Let the r × c matrix W be the matricized intersection between C and R.
4. Define the c× r matrix U = DC (DRWDC)

+
DR.

Fig. 2. The (2 + 1)-Tensor-CUR algorithm.

Fig. 3. Pictorial representation of the action of the tensor-CUR decomposition.

approximation by performing the following: first, choose c slabs (2-mode subtensors,
i.e., matrices) in independent random trials and choose r fibers (1-mode subtensors,
i.e., vectors) in independent random trials according to the input probability distri-
butions; second, define the n1 × n2 × c tensor C to consist of the c chosen slabs and
also define the r × n3 matrix R to consist of the chosen fibers; third, let U be an
appropriately defined and easily computed (given C and R) c× r matrix.

Clearly, Ã = C⊗3UR, where ⊗3 is a tensor-matrix multiplication, is an n1×n2×n3

tensor. Thus, by using the (2 + 1)-Tensor-CUR algorithm, we make the following
approximation:

(6) A ≈ Ã = C ⊗3 UR.

Thus, in particular, if i ∈ 1, . . . , n3 is one of the slabs that is not randomly selected,
then by using the (2 + 1)-Tensor-CUR algorithm, we make the following approxi-
mation:

(7) A(:, :, i) ≈
∑
ξ∈C

A(:, :, ξ)X(ξ, i),

where A(:, :, i) is the n1 × n2 matrix formed from A by fixing the value of the third
mode to be i, C is a set indicating which c indices were randomly chosen, and X(:, i)
is a vector consisting of the ith column of the matrix UR.

See Figure 3 for a pictorial description of the action of the algorithm and this
approximation. In particular, note that a small number of slabs are sampled, and
every other slab is approximately reconstructed using the information in those slabs as
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a basis along with the information in a small number of fibers (depicted as the dashed
lines). The extent to which (6) or (7) is a good approximation has to do with the
selection of slabs and fibers. In sections 4 and 5, we show that (6) holds empirically for
our two applications if the slabs and fibers are chosen uniformly and/or nonuniformly
with probabilities that depend on the Frobenius norms of slabs and Euclidean norms
of fibers, respectively. See the proof of Theorem 2 in section 3.2 and also [17, 18, 19]
for a discussion of the algorithmic justification for this sampling.

We emphasize that, as with the matrix CUR decomposition, when this tensor-
CUR decomposition is applied to data, there is a natural interpretation in terms of un-
derlying data elements. For our imaging application, a “slab” corresponds to an image
at a given frequency step and a “fiber” corresponds to a time- or frequency-resolved
pixel. Similarly, for our recommendation system application, a “slab” corresponds to
a product-product preference matrix for a single user and a “fiber” corresponds to
preference information from every user about a single product-product pair.

3.2. A general tensor-CUR decomposition for very large data tensors.
In this subsection, to provide a theoretical justification for the tensor-CUR decompo-
sition of section 3.1, we present our main algorithmic result. Our main algorithmic
result is a generalization of the (2 + 1)-Tensor-CUR algorithm and an associated
provable quality-of-approximation bound for the Frobenius norm of the error tensor
A− C ⊗3 UR.

The Tensor-CUR algorithm, described in Figure 4, takes as input a d-mode
tensor A ∈ R

n1×···×nd , a “distinguished” mode α ∈ {1, . . . , d}, a rank parameter kα,
an error parameter ε > 0, and a failure probability δ ∈ (0, 1). The algorithm returns
as output three carefully constructed subtensors that, when multiplied together, are
an approximation Ã to A. Both the number of slabs cα and the number of fibers rα
that are randomly sampled depend on the rank parameter kα, an error parameter ε,
and a failure probability δ. The subtensors C and R are chosen by sampling according
to a carefully constructed nonuniform probability distribution. In order to obtain the
provable quality-of-approximation bounds of Theorem 2, the probability distribution
depends on the Frobenius norms of the slabs and the Euclidean norms of the fibers,
respectively. Intuitively, this biases the random sampling toward the subtensors that
are of most interest; see [17, 18, 19] for details.

In more detail, the approximation Ã is computed by performing the following:
first, form (implicitly) each of the nα subtensors (slabs of mode d−1) defined by fixing
i ∈ {1, . . . , nα}, and also form (implicitly) each of the Nα =

∏
i �=α ni subtensors (fibers

of mode 1, i.e., vectors) defined by fixing a value for each of the modes i �= α; second,
construct nonuniform probability distributions with which to sample the slabs and
the fibers; third, choose cα of the d− 1-mode slabs in independent random trials, and
also choose rα of the 1-mode fibers in independent random trials; fourth, define the
tensor C ∈ R

n1×···×nα−1×cα×nα+1×···×nd to consist of the cα chosen d− 1-mode slabs,
and also define the tensor R ∈ R

rα×nα to consist of the rα chosen 1-mode fibers; and
finally, let U ∈ R

cα×rα be an appropriately defined and easily computed (given C and
R) tensor of mode 2 (i.e., matrix). Then we may define

(8) Ã = C ⊗α UR,

where C ⊗α UR is the α-mode tensor-matrix product between C and UR, to be an
n1 ×· · ·×nα−1 ×nα×nα+1 ×· · ·×nd tensor that is an approximation to the original
tensor A. (The awkward form of U is currently necessary for our provable results.
Nevertheless, U is a subspace perturbation of the Moore–Penrose generalized inverse
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Input: An n1 ×n2 × · · · ×nd tensor A, a mode α ∈ {1, . . . , d}, a rank parameter kα,
an error parameter ε > 0, and a failure probability δ ∈ (0, 1).
Output: An n1 × · · · × nα−1 × cα × nα+1 × · · · × nd tensor C, a cα × rα matrix U ,
and an rα × nα matrix R.

1. Let cα = 4kα
(
1 +

√
8 log(2/δ)

)2
/ε4, rα = 4kα/δ

2ε2, and Nα =
∏

i �=α ni.

2. Define {pi}nα
i=1 to be pi =

|(Aα)(i)|2
‖A‖2

F

.

3. Define {qj}Nα
j=1 to be qj =

|(Aα)(j)|2
‖A‖2

F

.

4. Select cα slabs of A in cα i.i.d. trials according to the probability distribution
{pi}nα

i=1.
(a) Let C be the n1 × · · · × nα−1 × cα × nα+1 × · · · × nd tensor consisting of

the chosen slabs.
(b) Let DC be the cα × cα diagonal scaling matrix with (DC)tt = 1√

cpit
if

the itth slab is chosen in the tth independent trial.
5. Select rα fibers of A in rα i.i.d. trials according to the probability distribution

{qi}Nα
i=1.

(a) Let R be the rα×nα matrix consisting of the chosen fibers (from all the
slabs).

(b) Let Ψ be the rα × cα matrix consisting of the chosen fibers (from the
chosen slabs).

(c) Let DR be the rα × rα diagonal scaling matrix with (DR)tt = 1√
rqjt

if

the jtth slab is chosen in the tth independent trial.
6. Let Φ be the best rank-k approximation to the Moore–Penrose generalized

inverse of (C ⊗α DC)
T
[α] (C ⊗α DC)[α].

7. Define the cα × rα matrix U = Φ (DRΨ)
T
.

Fig. 4. The Tensor-CUR algorithm.

of the matricized intersection between C and R. Thus, for the (2 + 1)-Tensor-CUR

algorithm and for the applications described in sections 4 and 5, we have taken it to
be exactly this quantity.)

Our main quality-of-approximation bound for the Tensor-CUR algorithm is
given by the following theorem, in which we bound the Frobenius norm of the error
tensor Ẽ = A− Ã.

Theorem 2. Let A be an n1 × n2 × · · · × nd tensor, and let α ∈ {1, . . . , d} be a
particular mode, kα be a rank parameter, ε > 0 be an error parameter, and δ ∈ (0, 1)
be a failure probability. Construct a tensor-CUR approximate decomposition to A with
the output of the Tensor-CUR algorithm. Then, with probability at least 1 − δ,

(9) ‖A − C ⊗α UR‖F ≤
∥∥∥A[α] −

(
A[α]

)
kα

∥∥∥
F

+ ε ‖A‖F .

Proof. Since “unfolding” A along any mode does not change the value of its
Frobenius norm (as it is simply a reordering of indices in a summation), it follows
that

(10) ‖A − C ⊗α UR‖F =
∥∥∥A[α] − (C ⊗α UR)[α]

∥∥∥
F
.

Note that the Frobenius norm on the left-hand side of (10) is a tensor norm and that
the Frobenius norm on the right-hand side of (10) is a matrix norm. Due to the form
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of the sampling probabilities used in the Tensor-CUR algorithm, it is this latter
quantity that Theorem 5 of [19] bounds. By applying this result [19], the theorem
follows.

3.3. Remarks on tensor-CUR decompositions and data applications.
Remark. In (9), the

∥∥A[α] − (A[α])kα

∥∥
F

term is a measure of the extent to which
the “unfolded” matrix A[α] is not well-approximated by a rank-kα matrix, and the
ε ‖A‖F term is a measure of the loss in approximation quality due to the choice of
slabs and fibers (rather than, e.g., the top kα eigenslabs and eigenfibers along the α
mode). This latter measure is of the form of an arbitrary (but fixed) precision, scaled
by a measure of the size of the tensor A.

Remark. The values for cα and rα in general differ, as they do with matrix CUR
decompositions. Although this is an artifact of the proof techniques [19], this allows
for greater flexibility in data applications. For example, if the noise properties of the
slabs and fibers differ, then one may wish to oversample the slabs or fibers in different
ways.

Remark. The choice for slabs and fibers in the Tensor-CUR algorithm takes ad-
vantage only of linear and not multilinear structure in the data tensors. Equivalently,
the algorithm reduces to the corresponding matrix algorithm. It is an open problem
whether one can choose slabs and/or fibers to preserve some nontrivial multilinear
tensor structure in the original tensor A.

Remark. A crucial decision in applying these techniques to data will be the proper
choice (if any) of the preferred mode α. This depends on the application area from
which the data are drawn. The theorems will be true but uninteresting if this choice
is not made carefully.

Remark. Assume, for simplicity, that the tensor A is stored externally, and assume
that ki = O(1) and that ni = n for every i = 1, . . . , d. Then the matrices C[i] each

occupy only O(n) additional scratch space. In general, O(nd−1) additional scratch
space will be needed to compute the probabilities of the form used by the Tensor-

CUR algorithm, and this will be comparable to the overall memory requirements if
d is large. On the other hand, if the uniform probabilities are approximately optimal
for each of the d nodes, then only O(n) additional scratch space and computation
time are needed, resulting in a substantial scratch memory and time savings. See [17]
for additional discussion of resource issues within the framework of the pass-efficient
model of data streaming computation.

Remark. Although sampling with respect to the proper probability distribution is
critical for our provable results, one might expect that in many cases the slabs and/or
fibers will all be approximately the same length due to the manner in which the data
are generated, in which case uniform sampling may be successfully employed. This
was seen to be the case for an application of the CUR algorithm of [19] to kernel-based
learning [21, 22, 66].

Remark. Alternatively, one might expect that in many cases the data are gener-
ated in such a way that information about the Frobenius norm of each of the slabs
and/or fibers is easily computed at the data generation step. For example, in the case
of a (2+1)-imaging application, the Frobenius norm of a slab corresponds to the total
absorption at one time step or frequency value. In this case, these approximations to
the probabilities could be used in the Tensor-CUR algorithm.

Remark. Although cα = 4kα
(
1+

√
8 log(2/δ)

)2
/ε4 slabs and rα = 4kα/δ

2ε2 fibers
suffice to prove the claims of Theorem 2, they can be rather large for even moderate
values of kα, δ, and ε. In the applications we consider, choosing many fewer slabs and
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fibers suffices, e.g., on the order of tens or hundreds; see sections 4 and 5 for more
detail.

4. Application to hyperspectral image data. In hyperspectral imagery, an
object or scene is imaged at a large number of contiguous wavelengths [51]. Although
hyperspectral imagery originated in astronomy and geosensing, it has been employed
more recently in numerous other application areas, including agriculture, manufac-
turing, forensics, and medicine. In many of these applications, target resolution is
limited by available spatial resolution. By considering the spectral variation of light
intensity, one obtains rich information about the object or scene being imaged that
complements traditional spatial information. One also obtains very large data sets
that may be represented as a tensor and that contain much redundancy. For ex-
ample, if a single scene is imaged at 128 frequency bands, where at each frequency
a 495 × 656 image is generated, then the data cube generated for this single object
consists of 40 million values and may be represented by a 495 × 656 × 128 tensor
A, where Aijk represents the absorbed or transmitted light intensity at pixel ij at
physical frequency k.

In this section, we describe an application of the tensor-CUR decomposition to
a problem in hyperspectral medical image analysis. In particular, the tensor-CUR
decomposition is used to compress the data, and we show that tissue segmentation and
nuclei classification quality are not substantially reduced even after substantial data
compression. In more detail, in section 4.1, we describe the data and its generation.
Then, in section 4.2, we describe the reconstruction of the full data from a small
sample of slabs and fibers. In section 4.3, we describe the classification task of tissue
segmentation, i.e., classifying the pixels in a single image into different tissue types,
as a function of how heavily we downsample on the slabs and fibers. This task is of
intermediate interest, since nuclei are the most discriminative structures in the final
classification task of interest. Finally, in section 4.4, we describe the classification of
data cubes into, e.g., normal and malignant, as a function of downsampling on the
slabs and fibers.

4.1. Description of data and data generation. The application of hyper-
spectral imaging to medicine, and pathology in particular, while not new, is be-
coming more widespread and powerful. A variety of proprietary spectral splitting
devices, including prisms and mirrors [64], interferometers [25, 55], variable interfer-
ence filter-based monochromometers [53], and tuned liquid crystals [47], mounted on
microscopes in combination with CCD cameras and computers, have been used to
discriminate among cell types, tissue patterns, and endogenous and exogenous pig-
ments [47]. Although the increasing power of these methods holds the promise for
developing automatic diagnostics, the increased volume and formal dimensionality of
the data make the development of more efficient algorithms necessary in order to
extract statistically useful and reliable information about the data.

The prototype-tuned light source used to generate the data we studied (Plain
Sight Systems, Inc.; see [16] for details) can generate a large number of combinations
of light frequencies, ranging from about 440 nm to about 700 nm, with a wavelength
resolution of up to approximately 6 nm. The light modulated by the prototype is
shone via a fiber optic cable directed in a Nikon Biophot microscope and transillu-
minates hematoxylin and eosin (H & E) stained microarray tissue sections of normal,
benign (adenoma), and malignant carcinoma colon biopsies. Hyperspectral photomi-
crographs, collected in random order at 400X magnification, are obtained with a CCD
camera (Sensovation) from 59 different patient biopsies (20 normal, 19 benign ade-
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Fig. 5. Examples of Hadamard patterns (left) and randomized Hadamard patterns (right). The
latter are used at the data generation step to improve the signal-to-noise ratio; see the text for
details.

noma, and 20 malignant carcinoma), mounted as a microarray on a single glass slide
[14, 2, 3, 5]. From these, 59 hyperspectral grayscale images at 400X magnification
are derived. The biopsies are collected randomly on the slide across and within the
different groups of biopsies in order to avoid any biases due to instrumentation, e.g.,
due to temperature or time of collection. This data was collected by G. L. Davis,
M.D., as discussed in [51].

Each measurement yields a data cube, which is a set {Ii}i=1...128 of 128 images,
each of which is 495 by 656 pixels in size. (That is, there is one data cube for each of
the 59 biopsies.) The intensity of the pixel Ii(x, y) is (ideally) the transmitted light at
location (x, y) when the ith light pattern ψi shone through the sample. The data is
collected by using randomized Hadamard patterns in order to maximize the signal-to-
noise ratio. The noise in the measurement of the hyperspectral image can be modeled
as independent of the intensity of light shown through the sample. The signal-to-noise
ratio of the measurement of each Ii, for a fixed integration time for the measurement
of Ii, is maximized when the amount of modulated light shone through the sample
is maximized. The instrument allows us to shine patterns {ψi}i=1,...,S = {ψi(ν) =∑N

j=1 εijδj(ν)}, where (ε)ij is an S by N matrix with entries in {0, 1}, and (δ)j , an
S-dimensional vector, represents (ideally) a Dirac δ-function at physical frequency
νj ∼ (700−440)j/N +440. In our experiment, we set N = 256 (the instrument would
allow up to N = 1024) and S = 128. Ideally, Ii(x, y), i = 1, . . . , S, is the value of the
inner product (in the frequency variable ν)

Ii(x, y) = 〈f(x, y, ν), ψi(ν)〉ν =
∑
j

f(x, y, νj)ψi(νj) ,

where f(x, y, ν) is the transmittance of the sample at location (x, y) and frequency ν.
The choice of the patterns ψi is crucial in determining the signal-to-noise ratio of the
measurements for a fixed integration time and total intensity of the light source: we
use the idea of multiplexing and shine a sequence of randomized Hadamard patterns
{ψH

i }i=1,...,N , obtained from standard Hadamard patterns by randomly shuffling the
frequency axis. See Figure 5 for examples of Hadamard and randomized Hadamard
patterns.

Thus, each data cube consists of 128 images, each 495 by 656 pixels in size (for a
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Fig. 6. Two different spectral slices, i.e., two different images each at a single frequency, from
a hyperspectral data cube derived from a normal sample (top) and from a hyperspectral data cube
derived from a very malignant sample (bottom).

total of about 40 million pixels), measuring the modulated light transmitted through
the sample. We view this as a 495 × 656 × 128 3-mode tensor A, where the entry
Aijk is proportional to the light with spectral modulation k transmitted at location
(i, j). Each biopsy contains either normal, benign (adenoma), or malignant (cancer-
ous) tissue and is labeled by G. L. Davis, M.D., pathologist. Various algorithms have
previously been shown to find and classify automatically normal, abnormal, and ma-
lignant small portions of each biopsy [14, 15, 51] using the complete data cube. As
we describe in more detail in the next three subsections, we couple the tensor-CUR
decomposition described in section 3.1 with ideas from [14, 15, 51] in order to speed
up computations, denoise, compress, and preprocess the data, and we show that this
causes only a small loss of performance of these algorithms.

In order to gain a feel for the data, consider Figures 6 and 7. Figure 6 illustrates
two of the 128 images, i.e., two hyperspectral images at two distinct frequencies, in
a normal sample and in a very malignant sample. Similarly, Figure 7 illustrates a
typical frequency-resolved pixel in both a normal and a malignant nucleus as well as a
single spectrum in the malignant sample and the spectrum averaged over every one of
the ca. 324,000 frequency-resolved pixels in the malignant data cube. Note that both
successive images and pixels from different spatial regions are strongly correlated with
one another.

In this imaging application, the tensor C in the tensor-CUR decomposition con-
sists of a small number of dictionary or basis images (which are actual and not eigen-
images) with respect to which the remaining images are expressed. Similarly, the
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Fig. 7. Left: Average normalized nuclei spectrum from a normal and a malignant sample.
Right: Average normalized spectrum and a single typical spectrum in one hyperspectral data cube.
The vertical axis represents normalized energy per frequency in the spectra, and the horizontal axis
is the slab index.

matrix R consists of the spectral variation of a small number of dictionary or basis
pixels with respect to which spectral variation of the remaining pixels is expressed.
In the next three subsections, we will see that the tensor-CUR decomposition can be
applied to this hyperspectral image data in order to compress the data and to perform
two classification tasks of interest on the data. That is, the tensor-CUR algorithm
will downsample slabs A(:, :, νi) by sampling a set of images at certain randomly
chosen wavelengths {νi}128

i=1 and fibers A(xi, yi, :) by sampling spectra at certain ran-
domly chosen locations {(xi, yi)}. Slabs will be chosen randomly with a probability
proportional to the average normalized spectrum of Figure 7, i.e., with probability
proportional to ||A(:, :, ν)||F , and fibers will be chosen uniformly at random. The
data-dependent motivation for this is that the intensity of transmitted light captures
a meaningful notion of information as a function of varying frequency but not as a
function of varying spatial coordinates due to the particular staining technology.

4.2. Reconstruction of hyperspectral data. For each slab we did not ran-
domly sample, we use the tensor-CUR decomposition to reconstruct that slab in the
basis provided by the sampled slabs, and we do so using only a small number of pixels
in that slab. In Figure 8, we present a representative example of the reconstruction
of two spectral slices from a normal biopsy and two spectral slices from a malignant
biopsy. The redundancy in the data is evident by the quality of the reconstruction
under very heavy downsampling. For example, it suffices to judiciously choose as few
as 8 or even 2 of the original 128 slabs, and to reconstruct the remaining slabs, it
suffices to choose ca. 1000 (or fewer) of the original ca. 324,000 fibers.

In Figure 9, we present the approximation error as a function of downsampling
to different numbers of slabs and then to different numbers of fibers. As expected, as
the number of sampled slabs and fibers increases, the approximation error decreases.
The approximation error is very small in the middle range of the frequencies, where
the energy per frequency is larger, and hence the sampling probability is larger. Thus,
due to the form of the slab sampling probabilities, slabs between ca. 30 and ca. 60
tend to be reproduced much better than those toward the tails of the spectrum. Slabs
below ca. 20 and above ca. 70 tend to have a lower signal-to-noise ratio and are less
important for the problem of approximate data reconstruction (but not necessarily
for other problems). Sampling more than 1200 fibers does not lead to significant
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Fig. 8. Typical reconstruction of the hyperspectral data cubes as a function of sampling. Shown
in this figure are two different spectral slabs from a normal biopsy and two from a malignant biopsy,
each reconstructed under three different compression ratios. In particular, the three figures in the
first column are from slab number 30 (out of 128) from a normal sample; the second column is from
slab number 60 from the same normal sample; and the third and fourth columns are slabs number
30 and 60, respectively, from another biopsy that is malignant. Presented are the original data (in
the top row), the data when it is compressed with 8 slabs and 1200 fibers (in the middle row), and
even more compressed data with only 2 slabs and 1200 fibers (in the bottom row).

improvements (unless several tens of thousands fibers are sampled).

At this point, we observe that the spectra reconstructed after compression are
far less noisy than the original spectra. More precisely, a close examination of images
such as those presented in Figure 8 reveals a subtle interplay between sampling-
induced error and denoising due to the low dimensionality of the sample. This has
a denoising and a regularization effect on the spectra, and we can interpret the low-
dimensional projection achieved by compression as a denoising mechanism, tuned
to each data cube. Note that by giving our tensor-CUR algorithm the flexibility
to sample different numbers of slabs and fibers, we can, e.g., sample slabs to a level
appropriate for structure identification and sample more fibers for denoising purposes.

4.3. Tissue-type segmentation. In medical applications, one is interested in
the classification of an entire data cube, i.e., a medical sample, as normal or malignant.
Biological reasons suggest that nuclei are the most discriminative structures for this
task. Thus, as an intermediate step, one is interested in classifying the pixels in a
single data cube into different tissue types, e.g., nuclei, cytoplasm, or lamina propria,
based on the spectral response (“fiber”) associated with each pixel. For each of the
59 images, we use the algorithm described in [14, 15, 51] for segmenting the pixels
in the image into three sets of regions corresponding to different tissue types. This
algorithm is based on the local discriminant basis (LDB) algorithm [13, 56, 57] to find
features that best discriminate among the different classes and a nearest neighbor
classifier in a discriminant projection found by LDB. Note that for the normal versus
malignant classification task of the next subsection (in which we classify entire data
cubes), we have access to a label (assumed correct) provided by a pathologist [51],
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Fig. 9. Reconstruction error. The caption indicates how many slabs (S) and fibers (F) were
sampled. The vertical axis is the relative reconstruction error (for the Frobenius norm). The hor-
izontal axis is the slab index. Average and standard deviation are over 4 slab draws and 3 fiber
draws.

while no such ground truth is available for this tissue classification in this section (in
which we classify pixels in each image).

In Figure 10, we present typical results for running this tissue classification algo-
rithm on two data cubes (one normal and one malignant) with increasing compression
ratios. We see that the tissue classification is affected in two different ways. When
we sample 16 slabs, the tissue classification, at least qualitatively speaking, improves
by becoming less noisy and by generating fewer misclassification errors. See, e.g., the
isolated red pixels, which correspond to nuclei, in the images in the leftmost column
of Figure 10. As the compression ratio increases further, we observe a slight decreased
performance in the tissue classification algorithm. As with the reconstruction prob-
lem, in both cases there is little quality loss until the number of fiber samples is less
than ca. 1000. In addition, as before, a careful analysis reveals a complex interplay
between sampling-induced information loss and sampling-induced denoising. Unfor-
tunately, it is not possible for us to quantify these results, since this would require an
individual to mark, by hand and with high precision, the correct tissue segmentation.

4.4. Classification of nuclei and data cubes. If the nuclei identified by the
tissue classification described in section 4.3 are then used to classify data cubes, the
results can be compared with the true value (assigned by the pathologist). For each
nucleus, we consider the mean spectrum, and we use partial least squares (PLS)
to build a linear classifier to classify this spectrum. We consider the following two
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Fig. 10. Segmentation into three tissue types in a normal biopsy (top row) and a malignant
biopsy (bottom row): red for nuclei (the only class that we are interested in for the next classification
task), green for cytoplasm, and blue for lamina propria and other regions. From left to right:
classification on original data; on compressed data (16 slabs and 1200 fibers); and on compressed
data (8 slabs and 1200 fibers).

classification tasks: classify as normal or malignant; and classify as normal, abnormal,
or malignant. In addition, we use two cross-validation procedures, described below,
for each classification task. See [14, 15, 51] for more details on these procedures.

We define the patches we want to classify as follows. A patch is a subset of a data
cube of the form Ql

x0,y0
× S, where Ql

x0,y0
is a square of side l pixels long, centered

at (x0, y0), and S denotes the complete spectral range. A patch is admissible if it
contains at least 8

10 l
2 nuclei pixels. From now on, we will consider each patch simply

as a collection of the nuclei spectra it contains and hence as a cloud in R
128. For the

results reported here, we have chosen and fixed l = 64, which provides a size that
roughly corresponds to the size of a single nucleus. The set of l× l patches we consider
consists of 3298 patches chosen by the algorithm by randomly picking a square in the
slide and checking if it is admissible. About 60 patches per slide are collected. We
denote by {Ni,k}k∈Ki the set of nuclei spectra in the ith patch Pi.

For each admissible patch Pi collected, we compute the mean of the nuclei spectra
{Ni,k}k, and we normalize it to unit energy. We denote this set of normalized average
nuclei spectra by N . (Therefore, |N | = 3298, as above.) The label (e.g., normal or
abnormal) attached to the patch is transferred to the corresponding mean nucleus
spectrum. We used PLS, keeping k = 15 top vectors, and we ran 50 rounds of 25-
fold cross-validation to avoid overfitting. We run this cross-validation in two different
ways:

• (Weak CV) Extract a random training subset of size 3
4 |N | and predict on the

remaining subset of size 1
4 |N |.

• (Strong CV) Extract a random subset of biopsies, of size 3
4#biopsies, train

the algorithm on the corresponding normalized average nuclei in N extracted
from those biopsies, and test the algorithm on the remaining subset of N ,
corresponding to averaged normalized nuclei extracted from the remaining
biopsies.

Thus, in each case, the training and testing sets are subsets of biopsies. Note that the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TENSOR-CUR DECOMPOSITIONS FOR TENSOR-BASED DATA 973

Table 1

Confusion matrix of predictions of normal and malignant nuclei (patches of size 64 by 64 with
averaged 25-fold cross-validated error) using average (weak CV) error. TN, TM stand for true
normal and true malignant, and PN, PM stand for the corresponding predictions. From left to
right, the number of random slabs sampled is 128(all), 16, 8, 2.

PN PM
TN 90% 10%
TM 10% 90%

PN PM
TN 100% 0%
TM 0% 100%

PN PM
TN 100% 0%
TM 0% 100%

PN PM
TN 100% 0%
TM 0% 100%

Table 2

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei patches,
as in Table 1, but errors corresponding to (strong CV).

PN PM
TN 79% 21%
TM 26% 74%

PN PM
TN 77% 23%
TM 30% 70%

PN PM
TN 79% 22%
TM 29% 71%

PN PM
TN 68% 32%
TM 33% 67%

first cross-validation is weaker. Since we expect correlations between (nuclei) spectra
in the same data cube, and since in (weak CV) the training set contains, with high
probability, nuclei spectra from all the biopsies, training and testing sets cannot be
assumed to be completely independent. Most of this lack of independence, we think,
is due to normalization issues, sample preparation, lighting, and other data collection
conditions, which exhibit variations across biopsies. Since we can consider different
biopsies as being independent samples as they were collected in random order and
independently of the type (e.g., normal, abnormal, or malignant), the second cross-
validation is stronger.

We are interested in measuring any change of performance of the classification
algorithm as a function of the compression ratio. The confusion matrices of the clas-
sifiers obtained are summarized in Tables 1, 2, 3, and 4 for classifiers of patches of size
l = 64. These confusion matrices are averages over the performance on the testing
set in several cross-validation runs. For the full data, the two-class discrimination
between normal and carcinoma nuclei correctly identifies 79% of normal and 74% of
malignant nuclei. The three-class discrimination among normal, abnormal (adenoma),
and carcinoma nuclei is much more challenging (independently of compression), with
identification rates of 33%, 73%, and 40% for normal, abnormal, and carcinoma sam-
ples, respectively. We study how this performance changes under compression of the
data cubes. As can be seen, in general, high quality results are obtained using sam-
ples of 16 and 8 slabs, but quality degrades if only 2 slabs are used. Also, note that
the algorithm performs more poorly (about 25% error in the discrimination of the
3 classes of biopsies) on completely new biopsies. This is related to normalization of
the data, due both to the process of staining and to the instrument calibration and
data collection. Current research is addressing these issues.

In Tables 1 and 2, we classify normal and malignant, and then we run the same
classifier on data cubes compressed at different compression ratios; we also show the
difference between weak and strong cross-validation. Observe that the performance of
the algorithm is very good across compression ratios, except for a significant decrease
of performance for a very high compression ratio (sampling of only 2 slabs!). We
interpret this as a balancing effect between the possible loss of information due to
compression and the denoising and regularization effect due to the dimensionality
reduction.

In Tables 3 and 4, we classify normal, abnormal, and malignant, and again we
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Table 3

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei (patches
of size 64 by 64 with averaged 25-fold cross-validated error) using average (weak CV) error. TN,
TB, TM stand for true normal, true benign (adenoma), and true malignant, and PN, PB, PM
stand for the corresponding predictions. From left to right, the number of random slabs sampled is
128(all), 16, 8, 2.

PN PB PM
TN 45% 51% 4%
TB 17% 76% 7%
TM 4% 36% 60%

PN PB PM
TN 96% 4% 0%
TB 1% 98% 0%
TM 0% 3% 97%

PN PB PM
TN 99% 1% 0%
TB 0% 100% 0%
TM 0% 1% 99%

PN PB PM
TN 100% 0% 0%
TB 0% 100% 0%
TM 0% 0% 100%

Table 4

Confusion matrix of predictions of normal, benign (adenoma), and malignant nuclei patches,
as in Table 3, but with (strong CV).

PN PB PM
TN 33% 61% 6%
TB 22% 73% 5%
TM 9% 51% 40%

PN PB PM
TN 42% 24% 34%
TB 31% 36% 33%
TM 23% 28% 49%

PN PB PM
TN 30% 53% 17%
TB 26% 61% 13%
TM 7% 48% 51%

PN PB PM
TN 30% 45% 25%
TB 29% 53% 16%
TM 12% 35% 53%

run the same classifier on data cubes compressed at different compression ratios; we
also show the difference between weak and strong cross-validation. Here we observe
a interesting phenomenon: under (weak CV), the algorithm performs much more
poorly on the original data than on the compressed data. Hence the compression
has a regularization effect that greatly helps the learning phase. This advantage is
partly lost when we consider the (strong CV). Of course, the three-class problem
is expected to be much harder than the two-class problem, not only because, from
a machine-learning perspective, multiclass problems are harder but also because the
abnormal samples are often quite similar to normal samples, and even in the field of
pathology, the differences are qualitative and often not large.

5. Application to recommendation system analysis. In recommendation
system analysis, one is typically interested in making purchase recommendations to
a user at an electronic commerce web site. Collaborative methods (as opposed to
content-based or hybrid) involve recommending to the user items that people with
similar tastes or preferences liked in the past. Probably the most well-known example
of a collaborative filtering system is that of Amazon.com, which is based on rules of the
form “users who are interested in item X are also likely to be interested in item Y” [49].
Many collaborative filtering algorithms represent a user as an n-dimensional vector,
where n is the number of distinct products, and where the components of the vector
are a measure of the rating provided by that user for that product. Thus, for a set of
m users, the user-product ratings matrix is an m×n matrix A, where Aij is the rating
by user i for product j (or is null if the rating is not provided). A recommendation
algorithm generates recommendations for a new user based on a few users who are
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most similar to the user after querying the new user about his (or her) rating on a
small number of products. For more details, see [54, 10, 1].

A matrix CUR decomposition has been used to obtain competitive recommenda-
tion performance by judiciously sampling O(m+n) entries of the user-product ratings
matrix and reconstructing missing entries [20]. In more detail, assuming access to a
matrix C consisting of the ratings of every user for a small number of products and
a matrix R consisting of the ratings of a small number of users for every product,
then, under assumptions, CUR is a provably good approximation to the user-product
matrix A [20]. Prior theoretical work on recommendation systems includes Kumar
et al. [42], who offer competitive algorithms even with only two samples/customer,
assuming a strong clustering of the products; Azar et al. [4], who use spectral meth-
ods to recreate very accurately the user-product ratings matrix A, assuming a certain
gap requirement and a sample of Ω(mn) entries of A; Kleinberg and Sandler [37],
who develop recommendation algorithms with provable performance guarantees in a
probabilistic mixture mode; and (most relevant for our work) Drineas, Kerenidis, and
Raghavan [20], who obtain competitive performance by sampling O(m + n) entries
of the user-product ratings matrix and reconstructing missing entries with a matrix
CUR decomposition. Other applications of linear algebra have used the SVD for
dimensionality reduction [9, 58, 26].

Although the ratings in the user-product matrix A are often interpreted in terms
of the utility of product j for user i, utility in neoclassical economics is an ordinal
and not a cardinal concept. This is because utility functions are constructs that
encode preference information and because the same preferences are described when
the utility function is subject to a wide class of monotonic transformations. This
observation motivates the definition of an m × n × n user-product-product (2 + 1)-
tensor A, where Aijk is +1 or −1 depending on whether product j or product k is
preferred by user i. Similar preference-based models have appeared [12, 24, 35, 34]
and have been motivated by such observations as that two users with very similar
preferences for items may have very different rating schemes. When faced with a new
user, this preference model depends on obtaining pairwise preference information such
as that the user bought product A when he could have bought product B or that the
user clicked on link A when he could have clicked on link B.

5.1. Description of data and the model. Under this preference model for
recommendation system analysis, the tensor C consists of a small number of dictionary
or basis elements from a small number of users, where each element corresponds to
the full n × n pairwise preference matrix for a single user. Similarly, the matrix R
consists of a dictionary or basis set of preference information from every user about
a small number of product-product pairs.

In the next subsection, we will see that the tensor-CUR decomposition can be ap-
plied to recommendation system data under this model to reconstruct missing entries
in the user-product-product preference tensor in order to make high-quality recom-
mendations. Since most recommendation system databases do not provide data in
this preference-based format, the data set we will consider will be derived from the
ratings in the well-studied Jester data [26]. As an initial application, we consider the
m = 14,116 (out of ca. 73,421) users who rated all of the n = 100 products (i.e.,
jokes). From this m × n user-product ratings matrix, we define an m × n × n user-
product-product preference tensor by performing the following for each user: convert
the n-dimensional rating vector into an n×n preference matrix in which the ij entry
is +1 or −1 depending on whether or not the user prefers product i to product j.
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(Although this results in ordered and fully consistent preferences, this is not required
by our decomposition.) In this application, in the absence of a better model, both
slabs and fibers will be chosen uniformly at random.

5.2. Recommendation quality results. We now describe our results for the
tensor-CUR decomposition when applied to the Jester dataset in the context of rec-
ommendation systems. Let c be an integer between 1 and 14,116 (recall that this is
the total number of users that fully rated all 100 jokes in the Jester data), and assume
that we sample uniformly at random c of the 14,116 users. For each sampled user, we
assume that the corresponding 100× 100 slab of the 100× 100× 14,116 tensor repre-
senting the Jester dataset (see the previous section for details) is fully known or, in
other words, that we know all pairwise product-product (i.e., joke-joke) comparisons
for the c sampled users.

Consider the 14,116 − c slabs (i.e., users) that we did not sample. For each such
target slab (i.e., target user), we use the tensor-CUR decomposition to reconstruct
it as a linear combination of the c sampled slabs. Thus, it suffices to compute c
coefficients such that a linear combination of the basis slabs using these coefficients
achieves a satisfactory reconstruction of the target slab. However, in order to do such
a reconstruction, we need some information from the target slab. This information
consists of a small number of product-product preference queries sampled uniformly
at random from the target slab. These elements of the target slab will allow us to
approximately infer the coefficients to be used in expressing the target slab as a linear
combination of the c basis slabs. Once the target slab (i.e., preference matrix) is
reconstructed, we can use this reconstruction to make recommendations by picking
the N products with the largest row sums. In our model, where the (i, j)th entry of
the preference matrix is set to 1 if product i is preferred over product j and to −1
otherwise, such rows correspond to the most desirable products for this user.

To formally evaluate the quality of our recommender system, we use the well-
known top-N procedure and compute the precision, recall, and the F1 statistic [58].
More specifically, let TN be the actual set of the top N products for a certain user,
and let SK be a set of K products that are suggested to this user by a recommender
system. Clearly, K can be equal to or larger than N , whereas values of K that are
smaller than N are typically not interesting. For some combinations of N and K, we
shall measure the following four quantities.
Successful recommendations. The number of elements in the intersection of TN

and SK or, in other words, the number of products that are in the top-
N preferred products for a particular user and were recommended by an
algorithm that made K suggestions.

Recall. The number of successful recommendations divided by the number of sug-
gestions (K) made by the algorithm. This quantity normalizes the number of
successful recommendations to take into account the fact that increasing the
number of suggestions increases the number of top-N products recommended
by the algorithm.

Precision. The number of successful recommendations divided by N . Remember
that N essentially determines the number of products that a user is interested
in, and hence this quantity normalizes the number of successful recommen-
dations to take into account the fact that increasing N increases the number
of top-N products recommended by the algorithm.

F1 statistic. The formal definition is

F1 statistic =
2 · Precision · Recall

Precision + Recall
,
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and it is commonly used to reconcile the mutually conflicting nature of the
precision and recall statistics. (Notice, for example, that increasing N tends
to increase recall but decreases precision [58].)

Prior to presenting the results of our experimental evaluation, we briefly discuss our
choices for the four parameters involved in our experiments. First, recall that c
denotes the number of basis users that reveal all their pairwise product preferences to
the algorithm; we let c be all powers of 2 between 2 and 1024. This choice provides a
clear picture of the behavior of tensor-CUR for very small (e.g., c ≤ 32), medium-sized
(e.g., 64 ≤ c ≤ 256), and large (e.g., c = 512, 1024) basis sets. Second, N is set to be
either 5 or 10, implying the algorithm is successful if it recommends one of the top 5
or top 10 products for a certain user. Third, K is set to be equal to N or 2N , and
hence the algorithm is allowed to suggest either 5 or 10 products for the top-5 case
and either 10 or 20 products for the top-10 case. Fourth, the number of fibers that
the tensor-CUR algorithm samples or, in other words, the number of product-product
pairwise comparisons of a target user that are revealed to the algorithm is again set
to all powers of 2 between 2 and 1024; the rationale is the same as above. In the first
experiment, we will set the number of fibers to 1002 = 10,000 (all available fibers), in
order to illustrate the limiting behavior of tensor-CUR. We emphasize that both the
sampling of slabs and the sampling of fibers are done uniformly at random without
replacement, and hence sampling 10,000 fibers is equivalent to picking all the fibers.

In our first experiment, we seek to determine an upper bound on the quality of
recommendations based on using a small number of basis slabs and all fibers for the
remaining users. Clearly, this experiment seeks only to characterize the limiting be-
havior of tensor-CUR, since having all fibers trivially allows perfect recommendations.
Figures 11 and 12 illustrate that almost all users can be very accurately expressed as
a linear combination of a small number of basis users, chosen uniformly at random
without replacement. In later experiments, given this observation, we will attempt to
approximate the coefficients of this linear combination using a small number of fibers.

Figure 11 shows the results for N = 5. Notice that using 512 or 1024 slabs and
only 5 suggestions results in 4 or more successful recommendations; if the algorithm
is allowed to make 10 suggestions, 64 or more slabs are enough to make roughly
four successful recommendations. (As a trivial but weak lower bound on quality, by
making five suggestions uniformly at random, we expect that we will make ca. .5 pre-
dictions correctly, since we are making 5 predictions and there are 100 products.)
Notice that the F1 statistic shows a change of phase as the number of slabs increases
above 256: making more than 5 suggestions is not necessary anymore, since the num-
ber of basis slabs suffices to accurately capture the high-ranking products. Given less
than 256 basis slabs (e.g., 128 slabs), our results suggest that making 10 suggestions
is qualitatively better. The same conclusions essentially apply to Figure 12 as well,
which shows the results for N = 10. However, we should emphasize that the effect
of making 20 versus 10 suggestions, as measured by the F1 statistic, is much less ob-
vious in this case. Notice that making 20 suggestions does not result in a significant
advantage even for a small number of basis slabs and is clearly worse as the number
of basis slabs increases above 128.

In our second experiment, we show that by using a basis of preference information
from (say) 128 users and performing a small number of product-product preference
queries on a new user, we can make a large number of high-quality recommendations
both for the top-5 and top-10 cases; see Figures 13 and 14, respectively. Since we are
sampling a small number of fibers in this case, we are performing an approximate least-
squares fit using just the information about a new user contained in a small number
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Fig. 11. Effect of user basis size on top-5 recommendation quality using complete pairwise
product-product preference information. The basis users are sampled uniformly at random without
replacement.

of fibers. If the algorithm is allowed to make 10 suggestions, the statistics for top-5
recommendations remain competitive with the upper bounds suggested in Figure 11.
However, if the algorithm is allowed only 5 suggestions, the results are markedly worse,
especially given a small number of pairwise product-product comparisons. Naturally,
the F1 statistic illustrates that suggesting 10 products is now always preferable to
suggesting 5 products. This observation changes when we evaluate the algorithm
on top-10 recommendations, where the F1 statistic shows that suggesting 10 or 20
products is essentially the same, and thus suggesting 10 products is the right course
of action. Notice that even though the performance of the algorithm is worse than
the optimal one of Figure 12, it is clearly well above the random level. We would also
like to note the nonmonotonicity near ca. 64 queries; this seems to be a fitting issue.
Figures 15 and 16 show the results for top-10 recommendations when the number of
basis users is set to 64 and 256, respectively. The results are qualitatively similar,
but it is worth noticing that the algorithm making 10 suggestions outperforms the
algorithm making 20 suggestions given 256 basis slabs and more than 256 fibers. The
results for top-5 recommendations using 64 and 256 basis users are omitted, since
they are qualitatively the same as in Figure 11.

In our third and final experiment, we present the distribution of correct top-10
predictions for the 14,116 users by using 64 or 128 basis users and a variable number
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Fig. 12. Effect of user basis size on top-10 recommendation quality using complete pairwise
product-product preference information. The basis users are sampled uniformly at random without
replacement.
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Fig. 13. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-5
recommendation quality given 128 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.
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Fig. 14. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 128 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.
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Fig. 15. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 64 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.

of pairwise product-product comparisons; see Figure 17. Clearly, as the number of
basis slabs or sampled fibers increases, the curves are shifted to the right, illustrating
that a larger number of users receives more accurate recommendations. In this case,
we plot results for the algorithm making 10 suggestions. Similar results are seen in
all other cases.

In evaluating performance, we distinguish between prediction and reconstruction.
In the former, we want to know how much user i will like product j (in a ratings model)
or whether user i will prefer product j or product k (in a preference model). In the
latter, which is of interest to us, we want to give a list of, e.g., the top-10 products for
user i. We use tensor reconstruction as an intermediate step to making high-quality
recommendations.

6. Conclusion. We have developed a tensor-based extension of the matrix CUR
decomposition. This tensor-CUR decomposition is of most interest when the data may
be modeled by a variable subscripted by three or more indices and when one of those
indices/modes is qualitatively different from the others. In this case, the tensor-CUR
decomposition approximately expresses the original data tensor in terms of a basis
consisting of underlying subtensors that are actual data elements and thus that have
natural interpretation in terms of the processes generating the data. In addition, we
have applied the tensor-CUR decomposition to problems in two diverse domains of
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Fig. 16. Effect of number of sampled fibers (pairwise product-product comparisons) on the top-
10 recommendation quality given 256 basis users, sampled uniformly at random without replacement.
The fibers are also sampled uniformly at random without replacement.

data analysis: hyperspectral medical image analysis and consumer recommendation
system analysis.

Similarities and differences between the methods discussed in this paper and the
image analysis techniques known as “eigenfaces” and “tensor-faces” should be men-
tioned. The method of eigenfaces computes the eigenvectors of the covariance matrix
of a large number of images of faces [62]. Eigenanalysis (and, more generally, SVD
analysis) successively computes axes of maximum variation in the data, conditioned
on being orthogonal to previously computed axes. Since this orthogonality is not
present in natural images of faces, its imposition results in the characteristic “ring-
ing” oscillations generated by eigenanalysis of facial images that in turn leads to
difficulty interpreting the eigenfaces after the first few. The methods of the present
paper are applicable to a set of time-resolved or frequency-resolved images of a single
object. One could apply SVD-type analysis for data compression, i.e., to reduce the
dimensionality along the slabs and/or the fibers. On the other hand, it will likely
be difficult to interpret the principal components. Our tensor-CUR algorithms pro-
vide approximate low-rank tensor decompositions in terms of actual data elements.
If orthogonality is not present in the data, e.g., if there are different fibers and/or
pixels, then the tensor-CUR decompositions will be in terms of nonorthogonal data
elements. Partly in response to ringing artifacts of eigenface analysis, a tensor-based
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Fig. 17. Distribution of number of users getting a given number of successful top-10 recom-
mendations for a basis consisting of 64 or 128 users for different numbers of sampled fibers. Both
the basis slabs and the fibers are sampled uniformly at random without replacement.

analysis of facial images has been introduced [65]. This analysis involves applying a
tensor-based generalization of the SVD to a user-defined set of features derived from a
set of images of faces. A randomized variant of this generalization has been presented
and analyzed in [23]. This randomized tensor-SVD algorithm bears some similarity
to the randomized tensor-CUR algorithms described in this paper. It differs, how-
ever, in that there is no preferred mode; instead, the tensor is “unfolded” along every
mode, and a projection along each mode is constructed by sampling columns along
that mode.

We conclude with several related extensions of the present work. First, it would be
worth examining how these methods can be coupled with more traditional methods
of image analysis and recommendation system analysis. This could be performed
either by choosing slabs and fibers and then analyzing each slab or fiber with more
traditional methods, or by using structural insights from more traditional methods
to construct the sample of slabs and fibers, or by compressing each individual slab
with more traditional methods. Second, it would be worth determining whether the
sample of slabs and/or fibers could be chosen to preserve some interesting multilinear
structure in the data tensors that is damaged by the sampling techniques we have
used. Third, it would be worth determining the extent to which it would be possible
to combine fibers from several data cubes into a “dictionary” that could be used, along
with a few slabs in a new data cube, to describe the entire new data cube. Fourth, it
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would be worth understanding in greater detail the relationship between the methods
we have presented for analyzing tensor data and the well-studied model proposed
by Tucker, the “canonical decomposition” model, the “parallel factors” model, and
the higher-order SVD model; due to lack of space, a comparison with these models
has been omitted. Finally, cross-approximation techniques are powerful and well-
developed adaptive methods for low-rank approximation of matrices [6, 63]; it is
worth understanding in greater detail the relationship between these methods and
matrix CUR decompositions.

Acknowledgment. We thank the authors of [51], in particular Gustave L. Davis
of Yale University, for making available the hyperspectral data.

REFERENCES

[1] G. Adomavicius and A. Tuzhilin, Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions, IEEE Trans. Knowl. Data Eng., 17
(2005), pp. 734–749.

[2] C. Angeletti, N. R. Harvey, V. Khomitch, R. Levenson, and D. L. Rimm, Detection of
malignant cells in cytology specimen using genie hybrid genetic algorithm, Mod. Pathol.,
17 (2004), Suppl 1:350A.

[3] C. Angeletti, R. Jaganth, R. M. Levenson, and D. L. Rimm, Spectral analysis: A novel
method for classification of urine cytology. Mod. Pathol., 16 (2003), 57A.

[4] Y. Azar, A. Fiat, A. R. Karlin, F. McSherry, and J. Saiaz, Spectral analysis of data,
in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp.
619–626.

[5] T. S. Barry, A. M. Gown, H. E. Yaziji, and R. W. Levenson, Use of spectral imaging
analysis for evaluation of multi-color immuno-histochemistry, Mod. Pathol., 17 (2004),
Suppl 1:350A.

[6] M. Bebendorf, Approximation of boundary element matrices, Numer. Math., 86 (2000), pp.
565–589.

[7] M. W. Berry, S. A. Pulatova, and G. W. Stewart, Computing Sparse Reduced-Rank Ap-
proximations to Sparse Matrices, Technical report UMIACS TR-2004-32 CMSC TR-4589,
University of Maryland, College Park, MD, 2004.

[8] G. Beylkin and M. J. Mohlenkamp, Numerical operator calculus in higher dimensions, Proc.
Natl. Acad. Sci. USA, 99 (2002), pp. 10246–10251.

[9] D. Billsus and M. J. Pazzani, Learning collaborative information filters, in Proceedings of
the 15th International Conference on Machine Learning, Morgan Kaufman, San Francisco,
1998, pp. 46–54.

[10] J. Breese, D. Heckerman, and C. Kadie, Empirical analysis of predictive algorithms for
collaborative filtering, in Proceedings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence, Morgan Kaufman, San Francisco, 1998, pp. 43–52.

[11] J. D. Carroll and J. J. Chang, Analysis of individual differences in multidimensional scaling
via an N-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[12] W. W. Cohen, R. E. Schapire, and Y. Singer, Learning to order things, in Annual Advances
in Neural Information Processing Systems 10: Proceedings of the 1997 Conference, 1998,
pp. 451–457.

[13] R. R. Coifman, Multiresolution analysis in non-homogeneous media, in Wavelets. Time-
Frequency Methods and Phase Space, J.-M. Combes, A. Grossmann, and P. Tchamitchian,
eds., Springer-Verlag, Berlin, 1989, p. 259.

[14] G. L. Davis, M. Maggioni, R. R. Coifman, D. L. Rimm, and R. M. Levenson, Spectral/
spatial analysis of colon carcinoma, Mod. Pathol., 16 (2003), 3320:3321A.

[15] G. L. Davis, M. Maggioni, F. J. Warner, F. B. Geshwind, A. C. Coppi, R. A. DeVerse,

and R. R. Coifman, Spectral analysis of normal and malignant microarray tissue sections
using a novel micro-optoelectricalmechanical system, Mod. Pathol., 17 (2004), 1:358A.

[16] R. A. DeVerse, R. R. Coifman, A. C. Coppi, W. G. Fateley, F. Geshwind, R. M. Ham-

maker, S. Valenti, F. J. Warner, and G. L. Davis, Application of spatial light modu-
lators for new modalities in spectrometry and imaging, in Proceedings of the SPIE 4959,
2003, pp. 12–22.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

986 M. W. MAHONEY, M. MAGGIONI, AND P. DRINEAS

[17] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication, SIAM J. Comput., 36 (2006), pp. 132–157.

[18] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
II: Computing a low-rank approximation to a matrix, SIAM J. Comput., 36 (2006), pp.
158–183.

[19] P. Drineas, R. Kannan, and M. W. Mahoney, Fast Monte Carlo algorithms for matrices
III: Computing a compressed approximate matrix decomposition, SIAM J. Comput., 36
(2006), pp. 184–206.

[20] P. Drineas, I. Kerenidis, and P. Raghavan, Competitive recommendation systems, in Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, pp. 82–90.

[21] P. Drineas and M. W. Mahoney, Approximating a Gram matrix for improved kernel-based
learning, in Proceedings of the 18th Annual Conference on Learning Theory, Springer-
Verlag, Berlin, 2005, pp. 323–337.

[22] P. Drineas and M. W. Mahoney, On the Nyström method for approximating a Gram matrix
for improved kernel-based learning, J. Mach. Learn. Res., 6 (2005), pp. 2153–2175.

[23] P. Drineas and M. W. Mahoney, A randomized algorithm for a tensor-based generalization
of the singular value decomposition, Linear Algebra Appl., 420 (2007), pp. 553–571.

[24] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, An efficient boosting algorithm for
combining preferences, J. Mach. Learn. Res., 4 (2003), pp. 933–969.

[25] Y. Garini, N. Katzir, D. Cabib, R. A. Buckwald, D.G. Soenksen, and Z. Malik, Spectral
bio-imaging, in Fluorescence Imaging Spectroscopy and Microscopy, John Wiley and Sons,
New York, 1996, pp. 87–124.

[26] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, Eigentaste: A constant time collabo-
rative filtering algorithm, Inform. Retrieval, 4 (2001), pp. 133–151.

[27] T. Gonzalez and J. Ja’Ja’, On the complexity of computing bilinear forms with {0, 1} con-
stants, J. Comput. System Sci., 20 (1980), pp. 77–95.

[28] S. A. Goreinov and E. E. Tyrtyshnikov, The maximum-volume concept in approximation
by low-rank matrices, in Structured Matrices in Mathematics, Computer Science, and
Engineering, I., Contemp. Math. 280, AMS, Providence, RI, 2001, pp. 47–51.

[29] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, A theory of pseudoskeleton
approximations, Linear Algebra Appl., 261 (1997), pp. 1–21.

[30] W. H. Greub, Multilinear Algebra, Springer-Verlag, Berlin, 1967.
[31] R. A. Harshman and M. E. Lundy, The PARAFAC model for three-way factor analysis and

multidimensional scaling, in Research Methods for Multimode Data Analysis, H. G. Law,
C. W. Snyder, Jr., J. Hattie, and R. P. McDonald, eds., Praeger, New York, 1984, pp.
122–215.
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Abstract. We consider the low-rank approximation over the real field of generic p×q×2 arrays.
For all possible combinations of p, q, and R, we present conjectures on the existence of a best rank-R
approximation. Our conjectures are motivated by a detailed analysis of the boundary of the set
of arrays with at most rank R. We link these results to the Candecomp/Parafac (CP) model for
three-way component analysis. Essentially, CP tries to find a best rank-R approximation to a given
three-way array. In the case of p× q× 2 arrays, we show (under some regularity condition) that if a
best rank-R approximation does not exist, then any sequence of CP updates will exhibit diverging
CP components, which implies that several components are highly correlated in all three modes
and their component weights become arbitrarily large. This extends Stegeman [Psychometrika, 71
(2006), pp. 483–501], who considers p× p× 2 arrays of rank p+1 or higher. We illustrate our results
by means of simulations.
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1. Introduction. We consider the problem of finding a best low-rank approxi-
mation to a three-way array X ∈ R

p×q×2. In this introductory section, we discuss the
general problem of finding a best low-rank approximation to a k-way array and its
applications in algebraic complexity theory (the multiplicative complexity of the com-
putation of bilinear forms) and psychometrics (the Candecomp/Parafac (CP) model
for three-way component analysis). Also, the consequences of an array not having
a best low-rank approximation are discussed for these fields of research. Finally, we
consider some results of the theory of matrix pencils with implications on the rank of
p× q × 2 arrays, and show how our analysis fits into this literature.

1.1. Low-rank approximation of arrays. Let the rank over a field F of a
k-way array X ∈ Fd1×···×dk be defined in the usual way, i.e., as the smallest number
of rank-1 arrays in Fd1×···×dk whose sum equals X; see Hitchcock [15, 16]. A k-way
array has rank 1 over F if it is the outer product of k vectors in Fd1 , . . . ,Fdk . The
problem of finding a best rank-R approximation of X ∈ R

d1×···×dk boils down to
minimizing

∥∥∥∥∥X −
R∑

r=1

a(1)
r ◦ · · · ◦ a(k)

r

∥∥∥∥∥(1.1)

over the vectors a
(j)
r ∈ Fdj , j = 1, . . . , k, r = 1, . . . , R, where ◦ denotes the outer

product and ‖ · ‖ denotes some norm on Fd1×···×dk . Unless stated otherwise, we will
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assume that F = R and ‖ · ‖ is the Frobenius norm. We denote the rank of an array
X as rank◦(X).

For k = 2, all best rank-R approximations can be obtained from the singular
value decomposition of the matrix to be approximated; see Eckart and Young [11].
However, for k ≥ 3 a best rank-R approximation does not always exist. Examples of
arrays that can be approximated arbitrarily well by arrays of lower rank are known
from the algebraic complexity literature; see Bini et al. [1], Bini, Lotti, and Romani
[2], and Bini [3], as well as from the psychometric and chemometric literature; see
ten Berge, Kiers, and De Leeuw [37] and Paatero [30]. Stegeman [34] has shown,
under some regularity condition, that generic p× p× 2 arrays of rank p + 1 (a set of
positive volume in R

p×p×2) do not have a best rank-p approximation. De Silva and
Lim [10] show that a best rank-1 approximation always exists, while for any k ≥ 3,
any d1, . . . , dk ≥ 2, and any R ∈ {2, . . . ,min(d1, . . . , dk)}, a rank-(R + 1) array exists
which has no best rank-R approximation. Also, [10] show that all 2× 2× 2 arrays of
rank 3 (a set of positive volume in R

2×2×2) have no best rank-2 approximation, and
that, for any d1, d2, d3 ≥ 2, the set of arrays in R

d1×d2×d3 which have no best rank-2
approximation has positive volume.

1.2. Algebraic complexity theory and array rank. An important problem
in algebraic complexity theory is the multiplicative complexity of the computation of
a set of bilinear forms uTXkv, k = 1, . . .K, where u and v are indeterminates and
the Xk have elements in a field F . Strassen [36] showed that the K bilinear forms
uTXkv can be computed with R nonscalar multiplications (i.e., multiplications of
two elements not in F), where R is the rank over F of the array X with slices Xk.

Indeed, if X =
∑R

r=1 ar ◦ br ◦ cr, for vectors ar, br, and cr with elements in F , then
we have

uTXkv =

R∑
r=1

(uTar) (bT
r v) ckr ,(1.2)

and the K bilinear forms uTXkv can be computed using R nonscalar multiplications.
See also Brockett and Dobkin [6].

Suppose F = R and X can be approximated arbitrarily well by rank-(R − 1)
arrays. In that case, we could replace X in (1.2) by a rank-(R − 1) array close to
it and use only R − 1 nonscalar multiplications in the computation of the bilinear
form. Since the rank-(R − 1) array can be chosen arbitrarily close to X, the error in
the computation of the bilinear form can be made arbitrarily small. This idea was
pointed out by Bini et al. [1], Bini, Lotti, and Romani [2], and Bini [3, 4] and has
been used in the design of algorithms for matrix multiplication; see Bürgisser, Clausen,
and Shokrollahi [7, Chapter 15] and the references therein. Hence, the nonexistence
of a best rank-(R − 1) approximation of X yields a faster and arbitrarily accurate
computation of the bilinear forms.

To express the optimal computational gain that can be achieved by approximating
X with arrays of lower rank, Bini, Lotti, and Romani [2] have introduced the notion
of border rank. The border rank of an array X, which we denote by rankB(X), is
defined as

rankB(X) = min{R : X can be approximated arbitrarily well by arrays of rank R} .
(1.3)
From this definition it follows that rankB(X) ≤ rank◦(X). Results on the border
rank of various arrays have been obtained by Bini [4, 5] and Landsberg [25]. For later
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use we state the following result. Let ranki(X) denote the rank of the set of mode i
fibers of X, where a mode i fiber is a vector obtained by varying the mode i index
and keeping all other indices fixed. This notion of rank is due to Hitchcock [15, 16]
and the set of ranki(X) for all i is called the multilinear rank of X in De Silva and
Lim [10]

Proposition 1.1. For a k-way array X ∈ R
d1×···×dk , there holds

max
i

ranki(X) ≤ rankB(X) ≤ rank◦(X) .(1.4)

Proof. The second inequality follows from (1.3). A proof of the inequality
ranki(X) ≤ rank◦(X) is given by De Silva and Lim [10]. We state it here for com-

pleteness. Let R = rank◦(X) and X =
∑R

r=1 a
(1)
r ◦ · · · ◦ a

(k)
r . Then all mode i fibers

lie in the span of a
(i)
1 , . . . ,a

(i)
R . This implies ranki(X) ≤ R.

We show the first inequality by contradiction. Suppose t = rankB(X) < ranki(X).

Then there exists a sequence of rank-t arrays Y(n) converging to X. But then also

the matrices Y
(n)
i , containing as columns the mode i fibers of Y(n), must converge

to the matrix Xi containing the mode i fibers of X. This is a contradiction, since

rank(Y
(n)
i ) ≤ t < rank(Xi) for all n, and a matrix cannot be approximated arbitrarily

well by matrices of lower rank. Note that the upper semicontinuity of the multilinear
rank is used here; see De Silva and Lim [10].

1.3. The CP model and diverging components. Carroll and Chang [9]
and Harshman [13] have independently proposed the same method for component
analysis of three-way data arrays and named it Candecomp and Parafac, respectively.
We denote the CP model as

X =

R∑
r=1

ωr (ar ◦ br ◦ cr) + E ,(1.5)

where X is a d1 × d2 × d3 data array, ωr is the weight of component r, and ‖ar‖ =
‖br‖ = ‖cr‖ = 1 for r = 1, . . . , R. The Frobenius norm of E is minimized to find the
R components ar ◦br ◦cr and the weights ωr. For an overview and comparison of CP
algorithms, see Hopke et al. [17] and Tomasi and Bro [41]. From (1.5) it is clear that
the CP model tries to find a best rank-R approximation to the three-way array X.

The CP model (1.5) can be seen as a three-way extension of the principal com-
ponent analysis model for matrices. For example, if the vectors ar are interpreted as
the components in mode 1, then br and cr are the loadings on these components for
modes 2 and 3, respectively. The real-valued CP model, i.e., where X and the model
parameters are real-valued, is used in a majority of applications in psychometrics
and chemometrics; see Kroonenberg [21] and Smilde, Bro, and Geladi [33]. Complex-
valued applications of CP occur in, e.g., signal processing and telecommunications
research; see Sidiropoulos [32]. In this paper, we consider only the real-valued CP
model.

A matrix notation of the CP model (1.5) is as follows. Let Xk (d1 × d2) and Ek

(d1 × d2) denote the kth slices of X and E, respectively. Then (1.5) can be written as

Xk = ACk ΩBT + Ek , k = 1, . . .K ,(1.6)

where A (d1×R) and B (d2×R) have the vectors ar and br as columns, respectively,
Ω (R×R) is the diagonal matrix with the weights ωr on its diagonal, and Ck (R×R)
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is the diagonal matrix with the kth elements of the vectors cr on its diagonal. The
model part of the CP model is characterized by (A,B,C,Ω), where C (d3 × R) has
the vectors cr as columns. We refer to A,B,C as the component matrices and to Ω
as the weights matrix.

The most attractive feature of CP is its uniqueness property. Kruskal [22] has
shown that, for fixed residuals E, the vectors ar, br, and cr and the weights ωr are
unique up to sign changes and a reordering of the summands in (1.5) if

kA + kB + kC ≥ 2R + 2 ,(1.7)

where kA, kB, kC denote the k-ranks of the component matrices. The k-rank of a
matrix is the largest number x such that every subset of x columns of the matrix is
linearly independent. Hence, contrary to the matrix principal components model, the
CP components are rotationally unique if (1.7) holds.

However, the practical use of CP has been hampered by the occurrence of diverg-
ing CP components. In the majority of such cases, exactly two components displayed
the following pattern. Let the model parameters of the nth update of a CP algorithm
be denoted by a superscript (n). In the case of two diverging CP components, say

s and t, the weights ω
(n)
s and ω

(n)
t become arbitrarily large in magnitude while the

vectors a
(n)
s , b

(n)
s , and c

(n)
s become nearly identical (up to sign changes) to a

(n)
t , b

(n)
t ,

and c
(n)
t such that ∑

r=s,t

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

remains “small.” Hence, the contributions of components s and t diverge in nearly
opposite directions, but their sum still contributes to a better fit of the CP model.
The CP algorithm becomes very slow when this occurs; see Mitchell and Burdick [28].
When the CP algorithm is terminated, the CP components obtained are said to form
a degenerate CP solution. Since this use of the term degenerate is different from its
general meaning in mathematics, we will speak of diverging CP components instead.
This also reflects the fact that this phenomenon occurs when running a CP algorithm,
while a degenerate CP solution suggests a property of one CP solution only.

The first case of two diverging CP components was reported in Harshman and
Lundy [14]. Contrived examples are given by ten Berge, Kiers, and De Leeuw [37]
and Paatero [30]. The latter has also constructed sequences of CP updates with three
and four diverging components.

Kruskal, Harshman, and Lundy [24] have argued that diverging CP components
occur due to the fact that the array X has no best rank-R approximation. They
reason that every sequence of CP updates of which the objective value is approaching
the infimum of the CP objective function must fail to converge and displays a pattern
of diverging CP components. Stegeman [34] confirms this statement (under some
regularity condition) for generic p× p× 2 arrays of rank p+ 1 with R = p. Stegeman
[35] confirms the statement of [24] for generic 3 × 3 × p arrays with symmetric slices
of rank p + 1 with R = p, p = 4, 5, for generic 3 × 3 × 5 arrays of rank 6 with R = 5,
and for generic 8 × 4 × 3 arrays of rank 9 with R = 8.

For given d1, d2, d3 ≥ 2, let

SR = {Y ∈ R
d1×d2×d3 : rank◦(Y) ≤ R} ,(1.8)

and let SR denote its closure. We assume that rank◦(X) > R. Hence, if X has a
best rank-R approximation, it will be a boundary point of SR. So far, all but one
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mathematically analyzed case of diverging CP components (i.e., ten Berge, Kiers,
and De Leeuw [37], Paatero [30], Stegeman [34, 35], and the results in the present

paper) are due to the fact that the sequence Y(n) ∈ SR of CP updates converges

to a boundary point X̃ of SR with rank◦(X̃) > R, i.e., X̃ ∈ SR\SR, where X̃ is a
best approximation of X from SR. In these cases, the phenomenon of diverging CP
components can be formalized as follows. There exist disjoint index sets I1, . . . , Im ⊂
{1, . . . , R} such that as Y(n) → X̃,

|ω(n)
r | → ∞ for all r ∈ Ij , j = 1, . . . ,m ,(1.9)

while

∥∥∥∥∥∥
∑
r∈Ij

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

∥∥∥∥∥∥ is bounded , j = 1, . . . ,m .(1.10)

For two diverging CP components, we have m = 1 and card(I1) = 2. For three
diverging CP components, we have m = 1 and card(I1) = 3. For two groups of
diverging CP components we have m = 2, et cetera. For the case of generic p× q × 2
arrays it will be shown in section 3 how the rank of X̃ is related to the number of
groups m and the number of diverging CP components in each group.

Note that we do not consider cases where rank◦(X) = R and its CP decomposition
resembles a case of diverging CP components, examples of which can be found in
Mitchell and Burdick [28] and Paatero [30].

If X does not have a best rank-R approximation, this implies that all best ap-
proximations X̃ of X from SR have at least rank R + 1. In the cases analyzed so
far, any sequence Y(n) of CP updates converging to X̃ has been shown (under some
regularity conditions) to exhibit diverging CP components in this situation. Hence,
modified CP algorithms designed to avoid diverging CP components (e.g., Rayens and
Mitchell [31] and Cao et al. [8]) are no remedy here.

As mentioned above, there is one known case where X has a best rank-R approx-
imation, but diverging CP components may still occur. This is the case of 3 × 3 × 5
arrays of rank 6 and R = 5. Here, a best rank-5 approximation X̃ of X may exist
while sequences Y(n) of CP updates converging to X̃ sometimes show diverging CP
components and sometimes do not; see Stegeman [35]. This is due to the partial

uniqueness of the CP decomposition of Y(n); see ten Berge [40].

Diverging CP components are a problem in the analysis of three-way arrays,
since the obtained CP solution is hardly interpretable. Diverging CP components can
be avoided by imposing orthogonality constraints on the components matrices (see
Harshman and Lundy [14]) but this will come with some loss of fit. Lim [27] shows
that for nonnegative X and nonnegative component matrices there always exists an
optimal CP solution and diverging CP components do not occur.

1.4. Matrix pencils and the rank of p × q × 2 arrays. A matrix pencil
X1 +λX2 consists of two matrices X1 and X2 with elements in a field F and a scalar
λ. A matrix pencil is called regular if both X1 and X2 are square matrices and there
exists an λ such that det(X1 + λX2) 
= 0. In all other cases, the pencil is called
singular. For regular matrix pencils, equivalence results and a canonical form were
established by Weierstrass [42]. The corresponding theory for singular pencils was
developed by Kronecker [20]. For an overview of matrix pencil theory we refer the
reader to Gantmacher [12, Chapter XII].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK APPROXIMATION OF p× q × 2 ARRAYS 993

Ja’ Ja’ [19] has extended Kronecker’s [20] equivalence results for p × q matrix
pencils to p×q×2 arrays. The same author [18] obtained results on the multiplicative
complexity of computing two bilinear forms by considering the Kronecker canonical
form of the associated matrix pencil and gave a complete characterization of the rank
of the associated p× q × 2 array. In particular, Ja’ Ja’ [18] showed that for p ≥ q,

X ∈ R
p×q×2 =⇒ rank◦(X) ≤ q + min(q, floor(p/2)) ,(1.11)

where the rank is over the real field and floor(x) denotes the largest integer smaller
than or equal to x; see also Kruskal [23]. The upper bound (1.11) is sharp, i.e., there
exist p× q× 2 arrays with rank equal to the upper bound. For later use, we state the
following result, also due to Ja’ Ja’ [18].

Proposition 1.2. Let X ∈ R
p×p×2 with p × p slices Xi, i = 1, 2. Suppose

det(X1) 
= 0 and X2X
−1
1 has p real eigenvalues. Let the Jordan normal form (see

Gantmacher [12, Chapter VI]) of X2X
−1
1 be given by diag(Jn1(λ1), . . . , Jnr (λr)),

where Jnj (λj) denotes an nj × nj Jordan block with diagonal elements equal to λj.
Then

rank◦(X) = p + k ,(1.12)

where the rank is over the real field and k is the number of Jordan blocks Jnj (λj) with
nj > 1.

For a p×p matrix Z with eigenvalues λ1, . . . , λr, we define the algebraic multiplicity
of λj as the multiplicity of λj as root of the characteristic polynomial det(Z − λIp),
and the geometric multiplicity of λj as the maximum number of linearly independent
eigenvectors of Z associated with λj (i.e., the dimensionality of the eigenspace of
λj). Recall that for Z = diag(Jn1(λ1), . . . , Jnr (λr)), the eigenvalues are λ1, . . . , λr

(not necessarily distinct), and each Jordan block Jnj (λj) adds nj to the algebraic
multiplicity of λj and 1 to the geometric multiplicity of λj . This establishes a relation
between the eigenvalues of X2X

−1
1 and the rank of the array X in Proposition 1.2. In

particular, if X2X
−1
1 has p real eigenvalues and is diagonalizable, then rank◦(X) = p

(see also Ten Berge [38]). Ja’ Ja’ [18] also showed that if X2X
−1
1 has at least one pair

of complex eigenvalues, then rank◦(X) ≥ p + 1 (see also [38]).
For generic p× q× 2 arrays, Ten Berge and Kiers [39] showed that, for p > q, the

rank of X is equal to min(p, 2q) almost everywhere, i.e., rank(X) 
= min(p, 2q) on a set
of zero volume in R

p×q×2. We call this rank value the typical rank. The same authors
show that for p = q, the typical rank of X is two-valued, namely {p, p+1}, where the
sets of both rank values have positive volume. Notice that for p× q× 2 arrays the set
SR of arrays with rank less than or equal to R has dimensionality 2pq if R is larger
than or equal to the typical rank. If R is smaller than the typical rank, then SR has
dimensionality lower than 2pq. Analogously, if R is larger than the typical rank, then
the set Sc

R = R
p×q×2\SR has dimensionality lower than 2pq.

Notice that if p ≥ 2q, then both the typical rank and the maximum rank (1.11)
are equal to 2q. If 2q > p > q, then the typical rank equals p, while the maximum
rank equals

q + floor(p/2) ≥ ((p + 1)/2) + floor(p/2) ≥ p .(1.13)

Bini [4] has studied the border rank of so-called nondegenerate p× q×2 arrays, where
a 3-way array X ∈ R

d1×d2×d3 is called nondegenerate if ranki(X) = di for i = 1, 2, 3.
The use of the term nondegenerate here is a bit strange, since generic p× q× 2 arrays
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are nondegenerate only if p ≤ 2q and q ≤ 2p. The following result is based on the
results of Ja’ Ja’ [18] and is due to Bini [4].

Proposition 1.3. Let X ∈ R
p×q×2 such that rank1(X) = p, rank2(X) = q, and

rank3(X) = 2. Let X1 and X2 be the p× q slices of X.
(i) Let p = q and det(X1) 
= 0. Then rankB(X) = p if and only if X2X

−1
1 has p

real eigenvalues. If X2X
−1
1 has at least one pair of complex eigenvalues, then

rankB(X) = p + 1.
(ii) Let p = q and det(X1) = 0. Then rankB(X) = p if det(X1 + λX2) has p

real roots λ. If det(X1 + λX2) has at least one pair of complex roots, then
rankB(X) ∈ {p, p + 1}.

(iii) If p > q, then rankB(X) = p if det(Y1 + λY2) has only real roots λ, where
Y1 + λY2 is the regular pencil kernel in the Kronecker canonical form of
X1 + λX2. If det(Y1 + λY2) has at least one pair of complex roots, then
rankB(X) ∈ {p, p + 1}.

Next, we discuss the link between the results in the present paper and the existing
results mentioned above. In this paper, we consider the low-rank approximation of
generic real-valued p× q×2 arrays, where we assume p ≥ q without loss of generality.
Such an array has typical rank min(p, 2q) and we show whether or not it has a best
rank-R approximation, with R < min(p, 2q). If such a generic array is nondegenerate
in the sense of Bini [4], then it has typical rank min(p, 2q) = p and rank◦(X) ≥ p; see
(1.4). If rank◦(X) = p, then it follows from (1.4) that also rankB(X) = p. The case
rankB(X) = p+1 is possible only for arrays X with rank larger than the typical rank p,
and such arrays are not generic. Hence, our results are not covered by Proposition 1.3.

To obtain our results, we study the boundary of SR, the set of p × q × 2 arrays
with rank at most R, and distinguish boundary arrays lying in SR from those with
rank larger than R. Clearly, a boundary array X̃ of SR has border rank at most R
and is not a nondegenerate array in the sense of Bini [4] since rank1(X̃) ≤ R < p; see
(1.4). However, we transform the set SR to a subset of the smaller space of R×R× 2
arrays if R ≤ q, or R × q × 2 arrays if R > q, and Propositions 1.2 and 1.3 apply to
individual boundary arrays in this smaller space. But to answer the question whether
a generic p× q× 2 array has a best rank-R approximation almost everywhere, or on a
set of positive volume, or on a set of zero volume, we need dimensionality arguments
to establish which rank values have positive volume on the boundary of SR. Moreover,
we do not use the Kronecker canonical form in (iii) of Proposition 1.3 to obtain our
results.

This paper is organized as follows. We present our results on the existence of a
best rank-R approximation to generic p × q × 2 arrays in section 2. In section 3 we
show (under some regularity condition) that if there is no best rank-R approximation,

then, in the CP model, any sequence Y(n) ∈ SR converging to an optimal boundary
point X̃ of SR (with rank◦(X̃) > R) will exhibit diverging CP components as defined
by (1.9) and (1.10). Moreover, we show that there is a direct relation between the rank

of X̃ and the number of groups of diverging CP components. This extends Stegeman
[34] who considered rank-p approximations to generic p× p× 2 arrays of rank p + 1.
In section 4 we illustrate our results by means of calculating rank-R approximations
to random p × q × 2 arrays for a variety of values for p, q, and R. Finally, section 5
contains a discussion on the presented results.

2. Low-rank approximation of generic p× q × 2 arrays. For generic X ∈
R

p×q×2, we consider the problem
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Minimize‖X − Y‖(2.1)

subject to Y ∈ SR ,

where SR is the set of real-valued p× q × 2 arrays of rank at most R (see (1.8)) and
the rank is taken over the real field. We also consider the related problem

Minimize‖X − Y‖(2.2)

subject to Y ∈ SR ,

where SR is the closure of SR, i.e., the union of SR and all its boundary points.
Suppose rank◦(X) > R. There holds that any optimal solution of problem (2.2) is a
boundary point of SR. Indeed, from any interior point Y of SR a line to X can be
drawn which intersects with the boundary of SR. Suppose the intersection occurs at
boundary point X̃. Then X̃ has a lower objective value (i.e., is closer to X) than the
interior point Y. Hence, problem (2.1) has an optimal solution, or, equivalently, X

has a best rank-R approximation, if there exists a boundary point X̃ ∈ SR which is
an optimal solution of problem (2.2). Clearly, this always holds if SR is a closed set.
However, De Silva and Lim [10] have shown that SR is closed only for R = 1. Hence,
an investigation of the boundary points of SR is necessary to ascertain whether a best
rank-R approximation exists almost everywhere, or on a set of positive volume, or on
a set of zero volume.

We consider all possible combinations of p, q, and R, where, without loss of
generality, we assume that p ≥ q. As mentioned in section 1, we transform the set
SR to a subset of the smaller space of R×R× 2 arrays if R ≤ q or R× q × 2 arrays
if R > q and use the results of Stegeman [34] and Proposition 1.2 to characterize the
boundary points of SR; in particular, whether they are in SR or in Sc

R.
Unfortunately, our results are not complete. That is, they rely on conjectures

relating the dimensionality of parts of the boundary of SR to the existence of optimal
solutions of problem (2.1). Table 2.1 gives a summary of our results. Below, we
consider all cases in Table 2.1 and state explicitly whether we use a conjecture. Except
for cases 1, 4, and 6, the statements on the existence of a best rank-R approximation
are (partly) based on conjectures.

Cases 1, 4, and 6. In these cases, R is larger than or equal to the typical rank of
X, i.e., X itself lies in SR almost everywhere. Hence, the best rank-R approximation
of X is X itself.

Cases 2, 3, 5, 7, 8, and 9. For these cases, there holds X /∈ SR almost
everywhere. As discussed above, we need to characterize the boundary of SR. We
define the following subsets of R

p×q×2. Let

WR = {Y ∈ R
p×q×2 : rank[Y1|Y2] ≤ R} = {Y ∈ R

p×q×2 : rank1(Y) ≤ R} ,(2.3)

where Y1 and Y2 denote the p× q slices of Y, and let

VR+1 = {Y ∈ WR : rank◦(Y) ≥ R + 1} = WR ∩ Sc
R .(2.4)

We need the following lemma.
Lemma 2.1. We have the following results.
(i) The set WR is closed and the boundary of WR is the set WR itself.
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Table 2.1

Results (cases 1, 4, and 6) and conjectures (cases 2, 3, 5, 7, 8, and 9) on the existence of a best
rank-R approximation to generic p× q × 2 arrays. Here, p ≥ q ≥ 2 and R ≥ 2.

Case X ∈ R
p×q×2 rank◦(X) R Best rank-R approx. exists?

1 p = q p + 1 R ≥ p + 1 almost everywhere

2 p = q p + 1 R = p zero volume

3 p = q p + 1 R < p positive volume

4 p = q p R ≥ p almost everywhere

5 p = q p R < p positive volume

6 p > q min(p, 2q) R ≥ min(p, 2q) almost everywhere

7 p > q min(p, 2q) min(p, 2q) > R > q almost everywhere

8 p > q min(p, 2q) R = q positive volume

9 p > q min(p, 2q) R < q positive volume

(ii) There holds

WR = SR ∪ VR+1 and SR ∩ VR+1 = ∅ .(2.5)

(iii) In case 2, there holds WR = R
p×q×2.

Proof. Statement (i) follows from the fact that any matrix of rank at most R can
be approximated arbitrarily well by rank-(R + 1) matrices.

Next, we prove (ii). From (1.4) it follows that SR ⊆ WR. Since VR+1 = WR∩Sc
R,

we have SR ∩ VR+1 = ∅ by definition. Hence, WR = (WR ∩ SR) ∪ (WR ∩ Sc
R) =

SR ∪ VR+1.
In case 2, we have R = p = q, which implies that [Y1|Y2] is a matrix of order

p × 2p. Obviously, this matrix always has rank less than or equal to p. Hence,
WR = R

p×q×2 in case 2. This proves (iii).
Next, we consider the boundary points of SR. The complement of SR is equal to

Sc
R = Wc

R ∪ VR+1 with Wc
R ∩ VR+1 = ∅ .(2.6)

Hence, the boundary of SR consists of the boundary between SR and VR+1 and the
boundary between SR and Wc

R. Note that these two boundaries may have a nonempty
intersection. We denote the boundary of SR as ∂SR and partition it into the following
two sets. Let

U (1)
R = ∂SR ∩ ∂VR+1 and U (2)

R = ∂SR ∩ (∂VR+1)
c .(2.7)

Hence, U (1)
R consists of all points on the boundary between SR and VR+1, i.e., all

points which can be approximated arbitrarily well from both SR and VR+1.
From Lemma 2.1 it follows that

∂SR ⊆ WR = SR ∪ VR+1 .(2.8)

The following lemma states that U (2)
R is either the empty set or is a subset of SR.

Lemma 2.2. We have the following results.

(i) In case 2, there holds U (2)
R = ∅.
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(ii) In cases 3, 5, 7, 8, and 9, there holds U (2)
R ⊆ SR.

Proof. From (2.8) it follows that U (1)
R ⊆ WR and U (2)

R ⊆ WR. In case 2, we

have WR = R
p×q×2 (see Lemma 2.1) and, hence, VR+1 = Sc

R. This implies that U (1)
R

consists of all points which can be approximated arbitrarily well from SR and Sc
R.

Since these are all boundary points of SR, it follows that U (2)
R = ∅. This proves (i).

Next, consider cases 3, 5, 7, 8, and 9. Here, Wc
R 
= ∅. Suppose Y ∈ VR+1 and

Y ∈ ∂SR. Since SR ∩ VR+1 = ∅, it follows that Y ∈ ∂VR+1 and, hence, Y ∈ U (1)
R .

This implies VR+1 ∩ U (2)
R = ∅. Moreover, from U (2)

R ⊆ WR = SR ∪ VR+1, we obtain

U (2)
R ⊆ SR. This proves (ii).

In the remaining part of this section, we consider the part U (1)
R of the boundary

of SR. For each of the cases 2, 3, 5, 7, 8 and 9 in Table 2.1, we argue that the

nonexistence of a best rank-R approximation is due to the fact that U (1)
R 
⊆ SR.

Case 2. We have p = q = R, WR = R
p×q×2 = SR ∪ VR+1, VR+1 = Sc

R, U (2)
R = ∅,

and X ∈ Sc
R. The typical rank of p×p×2 arrays is equal to {p, p+1}, where the sets

of both rank values have positive volume. This implies that the sets SR and VR+1

have equal dimensionality 2p2. We partition ∂SR = U (1)
R into the following three sets.

Let

U (11)
R = {Y ∈ U (1)

R with Y1 nonsingular and Y2Y
−1
1 diagonalizable} ,(2.9)

U (12)
R = {Y ∈ U (1)

R with Y1 nonsingular and Y2Y
−1
1 not diagonalizable} ,(2.10)

U (13)
R = {Y ∈ U (1)

R with Y1 singular} .(2.11)

In Stegeman [34], it is shown that Y ∈ U (11)
R ∪ U (12)

R if and only if Y2Y
−1
1 has p real

eigenvalues which are not all distinct. Although its proof is entirely different, this
result is closely related to Propositions 1.2 and 1.3(i). From Proposition 1.2 it follows

that U (11)
R ⊂ SR and U (12)

R ⊂ Sc
R. Stegeman [34] also shows that the dimensionality

of U (11)
R is lower that the dimensionality of U (12)

R .

Any array in U (13)
R can be approximated arbitrarily well by arrays in U (11)

R ∪U (12)
R .

The reverse, however, is not true. This implies that U (13)
R has lower dimensionality

than U (11)
R ∪ U (12)

R . Combined with the reasoning above, this implies that the subset

of the boundary of SR with the highest dimensionality is U (12)
R . Since these boundary

points have rank larger than R, we conjecture that for a generic X ∈ R
p×p×2 array

an optimal solution X̃ of problem (2.2) has rank larger than R almost everywhere.
Hence, we conjecture that problem (2.1) does not have an optimal solution almost
everywhere, and X does not have a best rank-R approximation almost everywhere.

Case 7. We have p > q and min(p, 2q) > R > q. From the definition of WR in
(2.3) it follows that Y ∈ WR if and only if there exists a nonsingular matrix S such
that

SY1 =

[
H1

O

]
and SY2 =

[
H2

O

]
,(2.12)

where H1 and H2 are R× q matrices and O is the (p−R)× q all-zero matrix. By H
we denote the R× q× 2 array with slices H1 and H2. The transformation S in (2.12)
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is rank preserving, i.e., rank◦(Y) = rank◦(H). Hence, it follows from (2.4) and (2.5)
that

SR = {Y ∈ WR : rank◦(H) ≤ R for H in (2.12)}(2.13)

and

VR+1 = {Y ∈ WR : rank◦(H) ≥ R + 1 for H in (2.12)} .(2.14)

It is important to note that the set of arrays H which can be obtained in (2.12) has
full dimensionality 2qR. The typical rank of R × q × 2 arrays (with 2q > R > q)
equals R. When the maximal rank of R × q × 2 arrays equals their typical rank, we
have VR+1 = ∅, and SR = WR is a closed set. This is the case when R = 4 and q = 3,
e.g., see (1.11). Since SR is closed, a best rank-R approximation to X exists almost
everywhere.

Next, suppose the maximal rank of R × q × 2 arrays is larger than their typical
rank R, i.e., VR+1 
= ∅. This is the case when R = 5 and q = 3, e.g., see (1.11). For
the arrays in VR+1, the array H has a nontypical rank value, i.e., larger than or equal
to R + 1. This implies that VR+1 has lower dimensionality than the set SR. From
(2.4) and (2.5) it then follows that any Y ∈ VR+1 can be approximated arbitrarily

closely by arrays in SR and it holds that U (1)
R = VR+1; see (2.7). Moreover, any array

in SR can be approximated arbitrarily well from Wc
R and, hence, U (2)

R = SR. This
implies that

∂SR = VR+1 ∪ SR = WR = SR .(2.15)

Since VR+1 has lower dimensionality than SR, we conjecture that an optimal solution

X̃ of problem (2.2) lies in SR almost everywhere. Hence, we conjecture that X has a
best rank-R approximation almost everywhere.

Case 8. We have p > q and R = q. As in case 7, there holds Y ∈ WR if and only
if a nonsingular S exists such that (2.12) holds. The sets SR and VR+1 are defined by
(2.13) and (2.14), respectively. The array H in (2.12) has order R × R × 2 and the
typical rank of R ×R × 2 arrays is equal to {R, R + 1}, where the sets of both rank
values have positive volume. As in case 2, this implies that the sets SR and VR+1

have equal dimensionality.
Let X∗ be an optimal solution of the following problem:

Minimize‖X − Y‖(2.16)

subject to Y ∈ WR .

Based on Lemma 2.1, we conjecture that, for generic X, the set where X∗ ∈ SR

and the set where X∗ ∈ VR+1 both have positive volume. If X∗ ∈ SR, then X∗ is an
optimal solution of the problem (2.1) and, hence, X has a best rank-R approximation.
If all optimal solutions of problem (2.16) lie in VR+1, then X may not have a best
rank-R approximation. This will be explained below.

The boundary of SR is partitioned into U (1)
R and U (2)

R , where U (2)
R ⊆ SR; see (2.7)

and Lemma 2.2. Analogous to case 2, we partition U (1)
R into the following sets:

(2.17)

U (11)
R = {Y ∈ U (1)

R with H1 in (2.12) nonsingular and H2H
−1
1 diagonalizable} ,
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U (12)
R = {Y ∈ U (1)

R with H1 in (2.12) nonsingular and H2H
−1
1 not diagonalizable} ,

(2.18)

U (13)
R = {Y ∈ U (1)

R with H1 in (2.12) singular} .(2.19)

Note that since rank(H1) = rank(SY1) = rank(Y1) and rank◦(Y) = rank◦(H),
combined with Proposition 1.2, it follows that the sets in (??)–(2.19) do not depend

on the choice of S in (2.12). Analogous to case 2, there holds Y ∈ U (11)
R ∪ U (12)

R

if and only if H2H
−1
1 has R real eigenvalues which are not all distinct. Also, we

have U (11)
R ⊂ SR and U (12)

R ⊂ Sc
R. Moreover, the sets U (11)

R and U (13)
R have lower

dimensionality than U (12)
R . Hence, if all optimal solutions of problem (2.2) lie in U (1)

R ,

then they have rank larger than R almost everywhere on U (1)
R , and X does not have

a best rank-R approximation.

Above, we conjectured that, for generic X, an optimal solution X∗ of problem
(2.16) lies in SR on a set of positive volume. Hence, we conjecture that X has a best
rank-R approximation on a set of positive volume. Next, we argue that the set on
which X has no best rank-R approximation also has positive volume. This can be
seen as follows. Let Y ∈ VR+1 be an interior point of VR+1 on WR, i.e., for a small
ε > 0 we have Bε(Y) = {Z ∈ WR : ‖Z − Y‖ < ε} ⊂ VR+1. This is the case if
H2(H1)

−1 has R distinct eigenvalues which are not all real, where Hi are as in (2.12);
see Stegeman [34]. For any interior point Y of VR+1, we can find a set D ⊂ Wc

R

close to Bε(Y) such that D has positive volume and for any X ∈ D problem (2.16)
will have all optimal solutions in Bε(Y). Moreover, for Y close enough to some point

on U (12)
R , i.e., the boundary between SR and VR+1, we conjecture that all optimal

solutions of problem (2.2) will lie on the boundary U (12)
R and have rank larger than

R. Hence, we conjecture that no X ∈ D has a best rank-R approximation, where D
has positive volume. Therefore, we conjecture that the set on which X has no best
rank-R approximation has positive volume.

Cases 3, 5, and 9. We have p ≥ q and R < q. Instead of WR, we define

W̃R =

{
Y ∈ R

p×q×2 : rank[Y1|Y2] ≤ R and rank

[
Y1

Y2

]
≤ R

}

= {Y ∈ R
p×q×2 : rank1(Y) ≤ R and rank2(Y) ≤ R } .(2.20)

Analogous to Lemma 2.1, the set W̃R is closed. It can be seen that Y ∈ W̃R if and
only if there exist nonsingular S and T such that

SY1 T =

[
G1 O
O O

]
and SY2 T =

[
G2 O
O O

]
,(2.21)

where G1 and G2 are R × R matrices. We denote the R × R × 2 array with slices
G1 and G2 by G. Note that the set of arrays G which can be obtained by (2.21) has
full dimensionality 2R2. Since the transformations S and T are rank preserving, we
have, analogous to (2.13), that

SR = {Y ∈ W̃R : rank◦(G) ≤ R for G in (2.21)} .(2.22)
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We define

ṼR+1 = {Y ∈ W̃R : rank◦(G) ≥ R + 1 for G in (2.21)} .(2.23)

Analogous to Lemma 2.1, there holds

W̃R = SR ∪ ṼR+1 and SR ∩ ṼR+1 = ∅ .(2.24)

The typical rank of R×R× 2 arrays is equal to {R, R + 1}, where both sets of rank

values have positive volume. As in case 2, this implies that the sets SR and ṼR+1

have equal dimensionality. We are in the same situation as in case 8, with W̃R playing
the role of WR, ṼR+1 playing the role of VR+1, and G playing the role of H. The
remaining part of the explanation for cases 3, 5, and 9 is completely analogous to case
8 and is therefore omitted.

3. Diverging CP components for p×q×2 arrays. In the previous section,
we showed that if X does not have a best rank-R approximation, this is due to the
fact that the optimal solutions of problem (2.2) do not lie in SR, i.e., they have rank

of at least R+1. From now on we assume there is one optimal solution X̃ of problem
(2.2). The general case is completely analogous. As a regularity condition, we assume

that X̃ ∈ ∂SR ∩Sc
R lies in a subset QR+1 ⊂ ∂SR ∩Sc

R such that the dimensionality of
(∂SR∩Sc

R)\QR+1 is lower than the dimensionality of QR+1 itself. In each of cases 2, 3,
5, 8, and 9 of Table 2.1, the set QR+1 will be specified, and we show that if a sequence

of CP updates Y(n) converges to X̃, then Y(n) will exhibit diverging CP components
as defined by (1.9) and (1.10). This implies that in these cases of Table 2.1, we
conjecture that diverging CP components occur almost everywhere (case 2) or on a
set of positive volume (cases 3, 5, 8, and 9). In Table 3.1 these conjectures are stated
explicitly.

Table 3.1

Conjectures on the occurrence of diverging CP components when calculating a best rank-R
approximation to generic p× q × 2 arrays. Here, p ≥ q ≥ 2 and R ≥ 2.

Case X ∈ R
p×q×2 rank◦(X) R Diverging CP components?

2 p = q p + 1 R = p almost everywhere

3 p = q p + 1 R < p positive volume

5 p = q p R < p positive volume

7 p > q min(p, 2q) min(p, 2q) > R > q zero volume

8 p > q min(p, 2q) R = q positive volume

9 p > q min(p, 2q) R < q positive volume

Case 2. We have p = q = R and rank◦(X) = p + 1. We assume that X̃ lies in

U (12)
R , which is the set QR+1 in this case. The set U (12)

R is defined by (2.10). This

implies that X̃2X̃
−1
1 has p real eigenvalues and is not diagonalizable; see Stegeman

[34]. From Proposition 1.2 it follows that rank◦(X̃) = p + k, where k is the number

of eigenvalues of X̃2X̃
−1
1 with algebraic multiplicity larger than the geometric multi-

plicity. Suppose the sequence of CP updates Y(n) converges to X̃. Since Y(n) ∈ SR

and a singular Y
(n)
1 does not occur in practice, it follows from Proposition 1.2 that



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOW-RANK APPROXIMATION OF p× q × 2 ARRAYS 1001

Y
(n)
2 (Y

(n)
1 )−1 has p real eigenvalues and is diagonalizable. Let Y

(n)
2 (Y

(n)
1 )−1 have

the eigendecomposition

Y
(n)
2 (Y

(n)
1 )−1 = K(n)Λ(n)(K(n))−1 ,(3.1)

where K(n) has columns of length 1. A rank-p decomposition (1.6) of Y(n) is given
by

A(n) = K(n) , (B(n))T = Ω
(n)
b (K(n))−1Y

(n)
1 ,(3.2)

C(n) =

[
1 · · · 1

λ
(n)
1 . . . λ

(n)
p

]
Ω(n)

c , Ω(n) = (Ω
(n)
b Ω(n)

c )−1 ,(3.3)

where Ω
(n)
b and Ω

(n)
c are the p × p diagonal matrices such that the columns of B(n)

and C(n), respectively, have length 1. Hence, C
(n)
1 = Ω

(n)
c and C

(n)
2 = Λ(n)Ω

(n)
c in

(1.6). It is clear that kA(n) = p, kB(n) = p, and kC(n) = 2 if the eigenvalues in Λ(n) are
distinct. In this case, Kruskal’s condition (1.7) holds and the rank-p decomposition

(3.2)–(3.3) of Y(n) is unique. Since identical eigenvalues in Λ(n) do not occur in
practice, we assume they are all distinct (see Stegeman [34] for identical eigenvalues).

By continuity, the matrix Y
(n)
2 (Y

(n)
1 )−1 will converge to X̃2X̃

−1
1 . Since the latter

matrix does not have p linearly independent eigenvectors and the rank-p decomposi-
tion (3.2)–(3.3) is unique, it follows that A(n) in (3.2) converges to the singular matrix

of eigenvectors of X̃2X̃
−1
1 . Let I1, . . . , Im ⊂ {1, . . . , R} be the disjoint index sets of

linearly dependent columns of the latter matrix such that each Ij contains the lin-

early dependent eigenvectors associated with a different eigenvalue of X̃2X̃
−1
1 which

has algebraic multiplicity larger than the geometric multiplicity. Then the columns
I1, . . . , Im of the matrix (K(n))−1 will become arbitrarily large as Y(n) → X̃. The
columns Ij of C(n) will become identical, since these correspond to identical eigenval-

ues of X̃2X̃
−1
1 , j = 1, . . . ,m. It follows that in (3.2)–(3.3), we have |ω(n)

r | → ∞ for all
r ∈ Ij , j = 1, . . . ,m. Hence, (1.9) holds.

Next, we show that (1.10) also holds. For j ∈ {1, . . . ,m}, we consider the contri-

bution of components Ij to the rank-p decomposition (3.2)–(3.3) for slices Y
(n)
1 and

Y
(n)
2 separately. For Y

(n)
1 , the contribution of Ij equals

P
(n)
j = K

(n)
j (K(n))−1

j Y
(n)
1 ,(3.4)

where K
(n)
j denotes columns Ij of K(n) and (K(n))−1

j denotes rows Ij of (K(n))−1.

The limit point of K(n) has columns Ij linearly dependent, while they are linearly
independent of all its other columns. Hence, for n large enough, K(n) will have
columns Ij close to linear dependence but linearly independent of all its other columns.

This, together with ‖Y(n)
1 ‖ being bounded, yields that ‖P(n)

j ‖ in (3.4) is bounded.

For Y
(n)
2 , the contribution of Ij equals

Q
(n)
j = K

(n)
j Λ

(n)
j (K(n))−1

j Y
(n)
1 ,(3.5)

where Λ
(n)
j denotes the submatrix of Λ(n) containing rows Ij and columns Ij . The

diagonal matrix Λ
(n)
j converges to λ Iz, where λ is the eigenvalue of X̃2X̃

−1
1 associated
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with eigenvectors Ij and z = card(Ij). The matrix K
(n)
j contains the z eigenvectors

associated with the eigenvalues of Y
(n)
2 (Y

(n)
1 )−1 on the diagonal of Λ

(n)
j . As Y(n) →

X̃, the eigenvectors K
(n)
j converge to linear dependence but they remain linearly

independent of all other eigenvectors. This, together with ‖Y(n)
1 ‖ being bounded,

yields that ‖Q(n)
j ‖ in (3.5) is bounded. Since

∥∥∥∥∥∥
∑
r∈Ij

ω(n)
r (a(n)

r ◦ b(n)
r ◦ c(n)

r )

∥∥∥∥∥∥ =

√
‖P(n)

j ‖2 + ‖Q(n)
j ‖2 ,(3.6)

it follows that the left-hand side of (3.6) is bounded. Hence, (1.10) holds and the

sequence of rank-p decompositions of Y(n) will exhibit diverging CP components as
Y(n) → X̃. Moreover, the groups I1, . . . , Im of diverging CP components and the
number of components in each group are related to the eigenvalues and eigenvectors
of X̃2X̃

−1
1 as we have seen above.

Case 8. We have p > q and R = q. We assume that the optimal solution X̃ of

problem (2.2) lies in U (12)
R , which is the set QR+1 in this case. The set U (12)

R is defined
by (2.18). This implies that for any nonsingular S such that

S X̃1 =

[
H1

O

]
and S X̃2 =

[
H2

O

]
,(3.7)

the R × R matrix H2H
−1
1 has R real eigenvalues (which are not all distinct) and is

not diagonalizable. By Proposition 1.2, rank◦(X̃) = rank◦(H) ≥ R + 1. Let Y(n) be

a sequence of CP updates converging to X̃. For a fixed S in (3.7), let S(n) be such
that it is nonsingular for all n, S(n) → S and

S(n) Y
(n)
1 =

[
H

(n)
1

O

]
and S(n) Y

(n)
2 =

[
H

(n)
2

O

]
.(3.8)

Then rank◦(H
(n)) ≤ R and H(n) → H as Y(n) → X̃. Since H(n), H ∈ R

R×R×2,

it follows from case 2 above that the sequence H(n) will exhibit diverging CP com-
ponents as it converges to H. Denote the unique rank-R decomposition of H(n) by
(A(n),B(n),C(n),Ω(n)). Then the rank-R decomposition of Y(n) is

(
(S(n))−1

[
A(n)

O

]
, B(n),C(n),Ω(n)

)
.(3.9)

The k-rank of A(n) equals the k-rank of the first component matrix in (3.9). Hence,
by virtue of Kruskal’s condition (1.7) also the rank-R decomposition (3.9) is unique.
Moreover, the decomposition will exhibit the same pattern of diverging CP compo-
nents as (A(n),B(n),C(n),Ω(n)) when Y(n) → X̃. Note that rank◦(H) = rank◦(X̃)
and Proposition 1.2 imply that the number of groups of diverging CP components
does not depend on S.

Cases 3, 5, and 9. We have p ≥ q and R < q. We assume that the optimal
solution X̃ of problem (2.2) satisfies

S X̃1 T =

[
G1 O
O O

]
and S X̃2 T =

[
G2 O
O O

]
,(3.10)
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where S and T are nonsingular and the R×R matrix G2G
−1
1 has R real eigenvalues

(which are not all distinct) and is not diagonalizable. By Proposition 1.2, rank◦(X̃) =

rank◦(G) ≥ R+1. Let Y(n) be a sequence of CP updates converging to X̃. For fixed
S and T in (3.10), let S(n) and T(n) be such that they are nonsingular for all n,
S(n) → S, T(n) → T, and

S(n) Y
(n)
1 T(n) =

[
G

(n)
1 O
O O

]
and S(n) Y

(n)
2 T(n) =

[
G

(n)
2 O
O O

]
.(3.11)

Then rank◦(G
(n)) ≤ R and G(n) → G as Y(n) → X̃. Since G(n), G ∈ R

R×R×2,

it follows from case 2 that the sequence G(n) will exhibit diverging CP compo-
nents as it converges to G. Denote the unique rank-R decomposition of G(n) by
(A(n),B(n),C(n),Ω(n)). Then the rank-R decomposition of Y(n) is

(
(S(n))−1

[
A(n)

O

]
, (T(n))−T

[
B(n)

O

]
, C(n),Ω(n)

)
.(3.12)

The k-ranks of A(n) and B(n) equal the k-ranks of the first two component matrices in
(3.12). Hence, by virtue of Kruskal’s condition (1.7) the rank-R decomposition (3.12)
is also unique. Moreover, the decomposition will exhibit the same pattern of diverging
CP components as (A(n),B(n),C(n),Ω(n)) when Y(n) → X̃. Note that rank◦(G) =

rank◦(X̃) and Proposition 1.2 imply that the number of groups of diverging CP com-
ponents does not depend on S and T.

4. Simulation results. Here, we illustrate the cases in Table 3.1 by trying to
calculate (using a CP algorithm) a best rank-R approximation of random p × q × 2
arrays, the elements of which are sampled independently from the uniform distribution
on [−1, 1]. We consider cases 3, 5, 8, and 9, in which we conjecture diverging CP
components to occur on a set of positive volume, and case 7, in which we conjecture
diverging CP components to occur on a set of zero volume. Simulation results in
Stegeman [34] show that for case 2 diverging CP components always occur, which is in
agreement with our conjecture in this case. Although different sampling distributions
will give different results on the percentages of cases of diverging CP components,
we feel that the outcomes presented below are useful to show that diverging CP
components are a serious problem indeed. As a CP algorithm, we use the multilinear
engine by Paatero [29].

The simulation results in Stegeman [34] have indicated that, for random p×p×2

arrays X, problem (2.2) has a unique optimal solution X̃. If X̃ ∈ SR, then problem
(2.1) has a unique optimal solution and diverging CP components do not occur. If

X̃ /∈ SR, then it is approximated arbitrarily close by arrays in SR. Notice that if the
component matrices A, B, and C have full k-rank (which they usually have), then

Kruskal’s condition (1.7) holds in cases 3, 5, 7, 8, and 9. Hence, if X̃ /∈ SR, then

the arrays in SR close to X̃ have a unique CP decomposition exhibiting diverging CP
components.

The reasoning above implies that it suffices to use only one run of the CP algo-
rithm for each array X (with random starting values for the component matrices).
For cases 3 and 5, we consider 100 random 4 × 4 × 2 arrays X and R = 3. The rank
of X depends on whether X2X

−1
1 has 4 real eigenvalues (rank 4) or some complex

eigenvalues (rank 5). In cases 8 and 9, we consider 100 random 5 × 3 × 2 arrays and
50 random 5 × 4 × 2 arrays, respectively, both with R = 3. For case 7, we consider
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100 random 6 × 3 × 2 arrays and R = 5. Table 4.1 gives the relative frequency of
the occurrence of diverging CP components we encountered in these cases. As can be
seen, diverging CP components occur quite often in cases 3, 5, 8, and 9, and they do
not occur at all in case 7. Hence, the results in Table 4.1 are in agreement with our
conjectures in Tabel 3.1 regarding the occurrence of diverging CP components.

Table 4.1

Results of calculating rank-R approximations to random p× q×2 arrays in cases 3, 5, 7, 8, and
9 of Table 3.1.

Case X : p× q × 2 rank(X) R Diverging CP components

3 4× 4× 2 5 3 44 out of 70 (63%)

5 4× 4× 2 4 3 6 out of 30 (20%)

7 6× 3× 2 6 5 0 out of 100

8 5× 3× 2 5 3 51 out of 100 (51%)

9 5× 4× 2 5 3 24 out of 50 (48%)

5. Discussion. We have considered low-rank approximations to generic p×q×2
arrays. For all combinations of p, q, and R, we presented conjectures on whether a
best rank-R approximation exists almost everywhere, on a set of positive volume or on
a set of zero volume. In the cases where no best rank-R approximation exists, this is
due to the fact that the optimal boundary points of SR (i.e., the optimal solutions of
problem (2.2)) do not lie in SR itself. We showed (under some regularity condition)
that if a sequence of CP updates converges to such an optimal boundary point, it
necessarily exhibits diverging CP components.

This explanation of diverging CP components confirms the statement of Kruskal,
Harshman, and Lundy [24] that these occur due to the fact that the CP objective
function does not attain its infimum, and that any sequence of CP updates of which
the objective value is approaching the infimum must fail to converge and exhibits
diverging CP components. Also, the concept of a sequence of CP updates converging
to a boundary point X̃ /∈ SR can be found in Kruskal, Harshman, and Lundy [24] for
the case p = q = R = 2. Whether diverging CP components always occur if there is
no best rank-R approximation is still an open problem.

As in Stegeman [34], the occurrence of diverging CP components in the cases
in Table 3.1 and their explanations are still valid when the Frobenius norm in the
CP objective function is replaced by any other norm (e.g., weighted least squares or
Gaussian maximum likelihood). This is because all norms on the finite-dimensional
vector space are equivalent and induce the same (i.e., the Euclidian) topology.

Note that, as in Stegeman [34], the occurrence of diverging CP components in
Table 3.1 does not depend on the algorithm used to minimize the CP objective func-
tion. Hence, modified CP algorithms designed to avoid diverging CP components are
of no use here.

The diverging CP components in case 2 of Table 3.1 occur due to the two-valued
typical rank of real-valued p×p×2 arrays and the uniqueness of their rank-p decompo-
sition; see the discussion in Stegeman [34]. Our results on diverging CP components
for p× q× 2 arrays are based upon this. The typical rank of p× p× 2 arrays over the
complex field is p. Therefore, the cases of diverging CP components described in this
paper do not occur in the complex-valued CP model. However, also for the complex
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field, a best low-rank approximation does not always exist. See the example in De
Silva and Lim [10, Proposition 4.6], which carries over to the complex field.

In cases 3, 5, 8, and 9 of Table 3.1, diverging CP components occur due to the fact
that we may transform the CP problem for p×q×2 arrays to the lower-dimensional CP
problem for R×R× 2 arrays, for which case 2 applies. This shows that a two-valued
typical rank of the target array X is not necessary for diverging CP components to
occur. However, the two-valued typical rank for R×R× 2 arrays is still necessary for
diverging CP components to occur.

Zijlstra and Kiers [43] observed that cases of two diverging CP components occur
not only in CP but also in other variants of factor analysis. They show that two-way
and three-way factor analysis models which yield diverging components necessarily
have rotationally unique components. For the cases we have examined, diverging CP
components always occur together with uniqueness of the CP solution. This raises the
question whether (partial) uniqueness of the CP solution is necessary for diverging
components to occur. Stegeman [35] has shown that this is not the case. Indeed, in
the cases of 3× 3× 5 arrays with symmetric slices and 8× 4× 3 arrays, diverging CP
components occur on a set of positive volume while the CP decompositions of the CP
updates are not unique.
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tion the algebraic complexity literature dealing with array rank and border rank.
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FAST MULTILINEAR SINGULAR VALUE DECOMPOSITION FOR
STRUCTURED TENSORS∗

ROLAND BADEAU† AND RÉMY BOYER‡

Abstract. The higher-order singular value decomposition (HOSVD) is a generalization of the
singular value decomposition (SVD) to higher-order tensors (i.e., arrays with more than two indices)
and plays an important role in various domains. Unfortunately, this decomposition is computationally
demanding. Indeed, the HOSVD of a third-order tensor involves the computation of the SVD of
three matrices, which are referred to as “modes” or “matrix unfoldings.” In this paper, we present
fast algorithms for computing the full and the rank-truncated HOSVD of third-order structured
(symmetric, Toeplitz, and Hankel) tensors. These algorithms are derived by considering two specific
ways to unfold a structured tensor, leading to structured matrix unfoldings whose SVD can be
efficiently computed.

Key words. multilinear SVD, fast algorithms, structured and unstructured tensors
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1. Introduction. The subject of multilinear decomposition is now mature [5,
19]. There are essentially two families. The first one is known under the name
of CANDECOMP/PARAFAC (CANonical DECOMPosition or PARAllel FACtors
model) and was independently proposed in [4, 8]. This decomposition is very useful
in several applications and is linked to the tensor rank [9]. The second one is related to
the multidimensional rank [6] and is known under the name of Tucker decomposition
[21]. This decomposition is a more general form which is often used. Orthogonality
constraints are not required in the general Tucker decomposition but if needed, one
can refer to the higher-order singular value decomposition (HOSVD) [6] or multilinear
SVD.

The HOSVD is a generalization of the SVD to higher-order tensors (i.e., arrays
with more than two indices). This decomposition plays an important role in various
domains, such as harmonic retrieval [17], image processing [10], telecommunications,
biomedical applications (magnetic resonance imaging and electrocardiography), web
search [20], computer facial recognition [23], handwriting analysis [18], and statistical
methods involving independent component analysis (ICA) [6].

In [14], it was shown that the HOSVD of a third-order tensor involves the com-
putation of the SVD of three matrices called modes, leading to a high computational
cost. A first approach for reducing the complexity of tensor-based methods consists of
a dimensionality reduction: only the principal components of the HOSVD are calcu-
lated, leading to the rank-truncated HOSVD. In this paper, we present a standard and
fast algorithm for calculating the full and rank-truncated HOSVD, which computes
only the left factors of the three SVD’s. Next, we focus on structured tensors, such as
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symmetric and Toeplitz tensors, which naturally arise in signal processing methods
involving higher-order statistics [11, Chapter 9], and Hankel tensors [17], introduced
in the context of the harmonic retrieval problem [15], which is at the heart of many
signal processing applications. To the best of our knowledge, there are no specific
HOSVD algorithms proposed in the literature for exploiting tensors structures. In
this paper, however, we show that such tensors can be efficiently decomposed. We
first observe that standard unfoldings [14, 12] do not present a particularly notice-
able structure even in the case of structured tensors. Consequently, we introduce two
different ways to unfold a structured tensor which clarify the link between structured
modes and structured tensors. By doing this, we can exploit fast product techniques
[7]. A second point of this work concerns Hankel and symmetric tensors. The modes
of these structured tensors are column-redundant so it is possible to reduce the com-
putational cost of the HOSVD algorithm by taking the redundant structure of each
mode into account. Finally, our fastest implementation of the rank-truncated HOSVD
(dedicated to Hankel tensors) has a quasilinear complexity with respect to the tensor
dimension.

Note that, for applications involving very large tensor dimensions, an even lower
complexity may be required. In this case, one may be interested in rank-revealing ten-
sor decompositions which can be computed faster than the rank-truncated HOSVD.
Such an approach is developed in [16], based on cross approximation techniques which
are derived from LU factorizations [22, 2]. An algorithm is proposed which provides
a Tucker-like low rank approximation of unstructured cube tensors, the complexity
of which is linear with respect to the tensor dimension in many cases [16]. This
linear complexity is nevertheless obtained via an approximated rank reduction, in
comparison with an exact Tucker decomposition such as the HOSVD.

2. Preliminaries in multilinear algebra. We present some basic definitions
in the context of third-order tensor algebra. These definitions can be extended to
order greater than three, and we refer the interested reader to [5, 6] for instance.

Tucker’s product. The Tucker’s product, also called the s-mode product, of a
third-order complex-valued tensor A ∈ C

I1×I2×I3 by a matrix B ∈ C
Js×Is for s ∈ [1 :

3] is defined according to the following:

[A×1 B]j1i2i3 =

I1−1∑
i1=0

[A]i1i2i3 [B]j1i1 ,(2.1)

[A×2 B]i1j2i3 =

I2−1∑
i2=0

[A]i1i2i3 [B]j2i2 ,(2.2)

[A×3 B]i1i2j3 =

I3−1∑
i3=0

[A]i1i2i3 [B]j3i3 ,(2.3)

where we denoted the entries of A by [A]i1i2i3 with is ∈ {0 . . . Is − 1}. We have the
following properties:

A×s B ×s′ C = (A×s B) ×s′ C = (A×s′ C) ×s B,(2.4)

(A×s B) ×s C = A×s (BC).(2.5)

Mode of a tensor. There are several ways to represent an I1 × I2 × I3 third-order
complex-valued tensor A as a collection of matrices.
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Definition 2.1. The modes (also called “matrix unfoldings”) A1, A2, A3 are
usually defined as follows:

[A1]i1,i2I3+i3 = [A]i1i2i3 ,(2.6)

[A2]i2,i3I1+i1 = [A]i1i2i3 ,(2.7)

[A3]i3,i1I2+i2 = [A]i1i2i3 .(2.8)

These matrices are of dimension (I1×I2I3), (I2×I3I1), (I3×I1I2), respectively.
The dimensions of the vector spaces generated by the columns of the modes of

A are called column rank (or 1-mode rank) R1, row rank (or 2-mode rank) R2, and
3-mode rank R3, respectively.

2.1. Multilinear SVD (HOSVD).
Theorem 2.2 (third-order SVD [6, 21]). Every I1 × I2 × I3 tensor A can be

written as the product

(2.9) A = S ×1 U
(1) ×2 U

(2) ×3 U
(3),

where ×s represents the Tucker s-mode product [6], U (s) is a unitary Is × Is matrix,
and S is an all-orthogonal and ordered I1 × I2 × I3 tensor. All-orthogonality means
that the matrices Sis=α, obtained by fixing the sth index to α, are mutually orthogonal
with respect to (w.r.t.) the standard inner product. Ordering means that ‖Sis=0‖ �
‖Sis=1‖ � · · · � ‖Sis=Is−1‖ for all possible values of s. The Frobenius-norms ‖Sis=i‖,
symbolized by σ

(s)
i , are the s-mode singular values of A and the columns of U (s) are

the s-mode singular factors.
This decomposition is a generalization of the SVD because the diagonality of the

matrix containing the singular values (in the matrix case) is a special case of all-
orthogonality. Also, the HOSVD of a second-order tensor (matrix) yields the matrix
SVD, up to trivial indeterminacies. The matrix of s-mode singular factors, U (s), can
be found as the matrix of left singular vectors of the mode As, defined in (2.6)–(2.8).
The s-mode singular values correspond to the singular values of this matrix unfolding.
Note that the s-mode singular factors of a tensor, corresponding to the nonzero s-
mode singular values, form an orthonormal basis for its s-mode vector subspace, as
in the matrix case.

The core tensor S can then be computed (if needed) by bringing the matrices of
s-mode singular factors to the left side of (2.9):

(2.10) S = A×1 U
(1)H ×2 U

(2)H ×3 U
(3)H ,

where (.)H denotes the conjugate transpose.
Mode decompositions. Expression (2.9) can be written in terms of modes as fol-

lows:

A1 = U (1)S1

(
U (3) ⊗ U (2)

)H

,

A2 = U (2)S2

(
U (3) ⊗ U (1)

)H

,

A3 = U (3)S3

(
U (1) ⊗ U (2)

)H

,

where ⊗ denotes the Kronecker product, and S1, S2, and S3 denote, respectively, the
first, second, and third modes of the core tensor S.
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2.2. HOSVD algorithm for unstructured tensors. In this section we present
an efficient implementation of the HOSVD in the general framework of unstructured
tensors, from which our fast algorithms for structured tensors will be derived in sec-
tion 4. Let I = 1

3 (I1 + I2 + I3). The computational costs of the various algorithms
presented below are related to the flop (floating point operation) count. For exam-
ple, a dot product of I-dimensional vectors involves 2I flops (I multiplications plus I
additions).

The calculation of the HOSVD of tensor A requires the computation, for all
s ∈ [1 : 3], of the left factor U (s) in the full SVD of matrix As, as defined previously.
Note that, in many applications we are interested in computing the HOSVD truncated
at ranks (M1,M2,M3), which means that we compute only the Ms first columns of
the matrix U (s) (Ms is often supposed to be much lower than Is). We will suppose
throughout this paper that this possibly truncated SVD is computed by means of the
orthogonal iteration method, although other algorithms such as the Golub–Reinsch
SVD and R-SVD [7, pp. 253–254] could also be applied. When computing only the
n × r left factor U in the rank r-truncated SVD of an n ×m matrix A with n < m,
the orthogonal iteration method consists of recursively computing the n × r matrix
Bi = A(AHUi−1), involving 2r matrix/vector products, and the QR factorization
Bi = UiRi of this n× r matrix [7, pp. 410–411]. Thus the computational cost of one
iteration is 2r c(n,m)+2r2n flops, where c(n,m) = 2nm is the cost of 1 matrix/vector
product, and 2r2n is the cost of 1 QR factorization [7, pp. 231–232]. Besides, the s-
mode As has n = Is rows and m =

∏
s′ �=s Is′ columns. Assuming that

∏
s′ �=s Is′

is much greater than Is, the dominant cost of one iteration for computing U (s) is
4MsI1I2I3 flops. Finally, the Tucker product (2.10) can be computed by folding, for
instance, its first mode given by

(2.11) S1 = U (1)HA1

(
U (3) ⊗ U (2)

)
.

A fast implementation of (2.11) was proposed in [1], whose complexity is 6MsI1I2I3
flops, where M = 1

3 (M1+M2+M3). Note that the computation of the Tucker product
is generally not needed in applications, which is why it will be omitted in the following
developments.

The computational cost of the full and rank-truncated HOSVD is summarized in
Table 2.1 (the full HOSVD is the same as the rank-truncated HOSVD with Ms = Is
for all s = 1, 2, 3). In this table and afterward, the global cost is provided as a
maximum w.r.t. I1, I2, I3, under the constraint I1 + I2 + I3 = 3I. In particular, the
maximal complexity per iteration is obtained for cube tensors (I1 = I2 = I3 = I) and
equals 12MI3.

Table 2.1

HOSVD Algorithm for unstructured tensors.

(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration
SVD of A1 4M1I1I2I3
SVD of A2 4M2I1I2I3
SVD of A3 4M3I1I2I3
Global cost 12MI3

3. Structured tensors and reordered tensor modes. In this section, we
present three tensor structures which are usual in many applications. Next, we intro-
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duce new reordered tensor modes which clarify the link between structured tensors
and structured modes.

3.1. Structured tensors.
Definition 3.1 (Toeplitz tensors). A Toeplitz tensor is a structured tensor

which satisfies the following property: for all i1 ∈ {0 . . . I1 − 1}, i2 ∈ {0 . . . I2 − 1},
i3 ∈ {0 . . . I3 − 1} for all k ∈ {0 . . .min(I1 − i1, I2 − i2, I3 − i3) − 1},

[A]i1+k,i2+k,i3+k = [A]i1i2i3 .

Below, any permutation of 3 elements will be denoted π = (π1, π2, π3), where
π1, π2, π3 ∈ {1, 2, 3}, according to the following definition:

π : (i1, i2, i3) �→ (iπ1
, iπ2

, iπ3
).

Definition 3.2 (symmetric tensors). A cube (I × I × I) tensor A, which is
unchanged by any permutation π, is called a symmetric tensor:

∀i1, i2, i3 ∈ {0, . . . , I − 1}, [A]π(i1,i2,i3) = [A]i1i2i3 .

Example 1 (fast higher-order PCA for real moment and cumulant). The HOSVD
can be viewed (cf. [13]) as a higher-order principal component analysis (PCA). This
technique is often used as a data dimensional reduction for moment and cumulant
tensors [6]. Third-order moment and cumulant tensors are defined according to

(3.1) [M]t1t2t3 = E{x(t1)x(t2)x(t3)},

(3.2)
[C]t1t2t3 = E{x(t1)x(t2)x(t3)} + 2E{x(t1)}E{x(t2)}E{x(t3)}

− E{x(t1)}E{x(t2)x(t3)} − E{x(t2)}E{x(t1)x(t3)}
− E{x(t3)}E{x(t1)x(t2)},

where t1, t2, t3 ∈ {0, . . . , I − 1}, and x(t) is a real random process.
Moment and cumulant tensors, defined in (3.1) and (3.2), are symmetric tensors

according to Definition 3.2. The proof is straightforward and can be generalized to
larger orders [5]. Moreover, if x(t) is a third-order stationary process, the moment and
cumulant tensors defined in (3.1) and (3.2) are third-order Toeplitz tensors according
to Definition 3.2. Indeed, if x(t) is a stationary process, its probability distribution is
invariant to temporal translations. This property implies [C]t+i1,t+i2,t+i3 = [C]i1i2i3 .

Definition 3.3 (Hankel tensors). A Hankel tensor is a structured tensor whose
coefficients [A]i1i2i3 depend only on i1 + i2 + i3.

Note that a cube Hankel tensor is symmetric. Hankel tensors were introduced
in [17] in the context of the harmonic retrieval problem [15]. This problem is at the
heart of many signal processing applications.

Example 2 (definition and properties of the harmonic model). We consider the
complex harmonic model defined according to

xn =

M∑
m=1

αmznm, for n ∈ [0 : N − 1],(3.3)

where N is the analysis duration and M is the known number of components, zm =
eδm+iφm is called the mth pole of xn where i =

√
−1, φm is called the mth angular-

frequency belonging to (−π, π], and δm is the mth damping factor. In what follows,
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we assume that all the poles are distinct. In addition, αm = ameiφm is the nonzero
mth complex amplitude, i.e., am 	= 0 for all m. Besides, we define the Vandermonde
matrices Z(I1), Z(I2), and Z(I3) associated to model (3.3), according to [Z(Is)]n,m =
znm, and we assume that M ≤ min(I1, I2, I3). Then the Hankel tensor [A]i1i2i3 =
x(i1+i2+i3) associated to model (3.3) is diagonalizable according to

A = D ×1 Z
(I1) ×2 Z

(I2) ×3 Z
(I3),

where ×i denotes the ith Tucker’s product and

[D]jk� =

{
αj if j = k = �,
0 otherwise

is a hyper-cubic M×M×M super-diagonal core tensor. As a consequence, the Hankel
tensor A is a rank-(M,M,M) tensor. Following standard subspace-based parametric
estimation methods, the harmonic model can then be estimated by computing the
rank M -truncated HOSVD of tensor A [17].

3.2. Modes of structured tensors. As mentioned in the introduction, stan-
dard unfoldings of structured tensors [14, 12] do not present a particularly noticeable
structure. Consequently, we introduce in this section two different ways to unfold
a structured tensor which clarify the link between structured modes and structured
tensors.

Example 3. Consider the 4 × 4 × 4 symmetric and Toeplitz tensor [A]ijk =
3 ∗ max(i, j, k) − sum(i, j, k). The classical 1-mode is formed of four symmetric sub-
matrices:

A1 =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 2 4 6
2 1 3 5
4 3 2 4
6 5 4 3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 1 3 5
1 0 2 4
3 2 1 3
5 4 3 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

4 3 2 4
3 2 1 3
2 1 0 2
4 3 2 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

6 5 4 3
5 4 3 2
4 3 2 1
3 2 1 0

⎤
⎥⎥⎦

⎤
⎥⎥⎦ .

However, by permuting its columns, we define another mode A′
1 (referred to below

as the type-1 reordered tensor mode), which is formed of four Toeplitz matrices T0,
T1, T2, and T3 (referred to below as the type-1 oblique submatrices):

A′
1 =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

6
5
4
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
T3

⎡
⎢⎢⎣

4 5
3 4
2 3
4 2

⎤
⎥⎥⎦

︸ ︷︷ ︸
T2

⎡
⎢⎢⎣

2 3 4
1 2 3
3 1 2
5 3 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
T1

⎡
⎢⎢⎣

0 1 2 3
2 0 1 2
4 2 0 1
6 4 2 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
T0

⎡
⎢⎢⎣

2 3 4
1 2 3
3 1 2
5 3 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
T1

⎡
⎢⎢⎣

4 5
3 4
2 3
4 2

⎤
⎥⎥⎦

︸ ︷︷ ︸
T2

⎡
⎢⎢⎣

6
5
4
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
T3

⎤
⎥⎥⎥⎥⎦ .

It can be noted that this reordered mode satisfies an axial blockwise symmetry
with respect to its central oblique submatrix T0. Obviously, the left singular factor
U (1) in the SVD of A1 is the same as the left singular factor in the SVD of A′

1,
since both matrices have the same columns. However, we will show that the SVD
of A′

1 can be computed efficiently, by exploiting the Toeplitz structure of the oblique
submatrices Tk.

Example 4. Consider the 4×4×4 Hankel tensor [A]ijk = i+ j+k. The standard
1-mode is formed of four Hankel submatrices:

A1 =

⎡
⎢⎢⎣

⎡
⎢⎢⎣

0 1 2 3
1 2 3 4
2 3 4 5
3 4 5 6

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3 4 5 6
4 5 6 7
5 6 7 8
6 7 8 9

⎤
⎥⎥⎦

⎤
⎥⎥⎦ .
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However, by permuting its columns, we define another mode A′′
1 (referred to below

as the type-2 reordered tensor mode), which is formed of 7 rank-1 matrices R0,. . . , R6

(referred to below as the type-2 oblique submatrices):

A′′
1 =

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎣

0
1
2
3

⎤
⎥⎥⎦

︸ ︷︷ ︸
R0

⎡
⎢⎢⎣

1 1
2 2
3 3
4 4

⎤
⎥⎥⎦

︸ ︷︷ ︸
R1

⎡
⎢⎢⎣

2 2 2
3 3 3
4 4 4
5 5 5

⎤
⎥⎥⎦

︸ ︷︷ ︸
R2

⎡
⎢⎢⎣

3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6

⎤
⎥⎥⎦

︸ ︷︷ ︸
R3

⎡
⎢⎢⎣

4 4 4
5 5 5
6 6 6
7 7 7

⎤
⎥⎥⎦

︸ ︷︷ ︸
R4

⎡
⎢⎢⎣

5 5
6 6
7 7
8 8

⎤
⎥⎥⎦

︸ ︷︷ ︸
R5

⎡
⎢⎢⎣

6
7
8
9

⎤
⎥⎥⎦

︸ ︷︷ ︸
R6

⎤
⎥⎥⎥⎥⎦ .

Again, the left singular factor in the SVD of A1 is the same as the left singular
factor in the SVD of A′′

1 , since both matrices have the same columns. However, we
will show that the SVD of A′′

1 can be computed efficiently by exploiting the rank-
1 structure of the oblique submatrices Rk and the Hankel structure of the matrix
obtained by removing the repeated columns in A′′

1 .
In the following section, the type-1 and type-2 oblique submatrices will be defined

in the general case by “slicing” a third-order tensor according to two different oblique
directions, as shown in Figure 3.1.

3.2.1. Oblique submatrices of a tensor.
Definition 3.4 (type-1 and type-2 oblique submatrices of a tensor). For any

permutation π, the oblique submatrices of a tensor A are defined as follows:

• For all k ∈ {0, . . . , Iπ3
− 1}, let J

(1)
(π2,π3)

(k) = min(Iπ2
, Iπ3

− k). The coeffi-

cients of the kth type-1 oblique Iπ1 × J
(1)
(π2,π3)

(k) submatrix of A are

(3.4) [T
(π)
k ]ij = [A]π−1(i,j,k+j),

where 0 ≤ i ≤ Iπ1
− 1 and 0 ≤ j ≤ J

(1)
(π2,π3)

(k) − 1.

• For all k ∈ {0, . . . , Iπ2 + Iπ3 − 2}, let

(3.5) J
(2)
(π2,π3)

(k) = min(Iπ2
, Iπ3

, 1 + k, Iπ2
+ Iπ3

− 1 − k).

The coefficients of the Iπ1 × J
(2)
(π2,π3)

(k) type-2 oblique submatrix of A are

(3.6) [R
(π)
k ]ij = [A]π−1(i, max(k−Iπ3+1,0)+j, min(k,Iπ3−1)−j),

where 0 ≤ i ≤ Iπ1 − 1 and 0 ≤ j ≤ J
(2)
(π2,π3)

(k) − 1.
Proposition 3.5.

1. If A is an (I × I × I) symmetric tensor, then for all k ∈ {0, . . . , I − 1}, all

type-1 oblique submatrices T
(π)
k are equal (i.e., for all k, T

(π)
k = Tk does not

depend on π).
2. If A is a Toeplitz tensor, then for all permutation π and index k ∈ {0, . . . , Iπ3

−
1}, the type-1 oblique submatrix T

(π)
k is Toeplitz.

3. If A is a Hankel tensor, all columns of the type-2 oblique submatrix R
(π)
k are

equal.
Proof.

1. If the tensor A is symmetric, then (3.4) yields [T
(π)
k ]ij = [A]i,j,k+j , which

does not depend on π.
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�
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A

�
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1

�

T
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Type-1 oblique sub-matrices

�

�

�

A

Iπ2

Iπ3

Iπ1

�R
(π)
0

R
(π)
1

�

R
(π)
Iπ3

−1
�

...

�

R
(π)
Iπ3

�

R
(π)
Iπ2

+Iπ3−2

· · ·

Type-2 oblique sub-matrices

Fig. 3.1. Type-1 and type-2 oblique submatrices of a tensor.

2. Applying (3.4) to i + 1 and j + 1 (for all 0 ≤ i < Iπ1
− 1 and 0 ≤ j <

J
(1)
(π2,π3)

(k) − 1) yields [T
(π)
k ]i+1,j+1 = [A]π−1(i+1,j+1,k+j+1). However, since

the tensor A is Toeplitz, [A]π−1(i+1,j+1,k+j+1) = [A]π−1(i,j,k+j) = [T
(π)
k ]ij .

Therefore [T
(π)
k ]i+1,j+1 = [T

(π)
k ]ij , which means that the matrix Tk is Toeplitz.

3. If [A]i1i2i3 is of the form [A]i1i2i3 = x(i1+i2+i3), then (3.6) shows that for all

permutation π and index k ∈ {0, . . . , Iπ2 + Iπ3 − 2}, [R
(π)
k ]ij = x(i+k) does

not depend on j.

3.2.2. Reordered tensor modes. In the definition below we introduce the
type-1 and type-2 reordered tensor modes, formed by concatenating the type-1 and
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type-2 oblique submatrices.

Definition 3.6. The type-1 reordered tensor modes are defined by concatenating
the type-1 oblique submatrices:

• A′
1 is the I1 × (I2I3) matrix [T

(1,3,2)
I2−1 , . . . , T

(1,3,2)
0 = T

(1,2,3)
0 , . . . , T

(1,2,3)
I3−1 ],

• A′
2 is the I2 × (I3I1) matrix [T

(2,1,3)
I3−1 , . . . , T

(2,1,3)
0 = T

(2,3,1)
0 , . . . , T

(2,3,1)
I1−1 ],

• A′
3 is the I3 × (I1I2) matrix [T

(3,2,1)
I1−1 , . . . , T

(3,2,1)
0 = T

(3,1,2)
0 , . . . , T

(3,1,2)
I2−1 ].

In the same way, the type-2 reordered tensor modes are defined by concatenating the
type-2 oblique submatrices:

• A′′
1 is the I1 × (I2I3) matrix [R

(1,2,3)
0 , . . . , R

(1,2,3)
I2+I3−2],

• A′′
2 is the I2 × (I3I1) matrix [R

(2,3,1)
0 , . . . , R

(2,3,1)
I3+I1−2],

• A′′
3 is the I3 × (I1I2) matrix [R

(3,1,2)
0 , . . . , R

(3,1,2)
I1+I2−2].

Proposition 3.7.

1. For all s = 1, 2, 3, the mode As and the reordered modes A′
s, A′′

s admit the
same singular values and left singular vectors.

2. If A is a symmetric tensor, then A′
1 = A′

2 = A′
3, and this unique mode admits

an axial blockwise symmetry w.r.t. its central oblique submatrix.

Proof.

1. For all s = 1, 2, 3, the columns of the reordered modes A′
s and A′′

s form a
permutation of the columns of the mode As defined in section 2.

2. This is a corollary of point 2 in Proposition 3.5.

4. Fast algorithms for computing the HOSVD of structured tensors. In
this section, the reordered tensor modes introduced previously are used to efficiently
compute the HOSVD of structured tensors. The first improvement consists of exploit-
ing the column-redundancy of symmetric and Hankel tensors. To further reduce the
computational cost, we then exploit the fast matrix-vector product techniques specific
to Toeplitz and Hankel matrices.

4.1. Algorithms exploiting column-redundancy. Here we suppose that the
s-mode of tensor A is redundant, e.g., some columns of the s-mode are equal (this is
the case of symmetric and Hankel tensors, for example). We aim at exploiting this
redundancy in order to efficiently implement the HOSVD of A. Toward this end, we
define the Is×Js matrix Hs as the matrix obtained by removing the repeated columns

in the s-mode (Js ≤
∏

s′ �=s Is′), and we denote d
(s)
k the number of occurrences of the

kth column of Hs in the s-mode. Then we consider the Is × Is correlation matrix of
the s-mode: C(s) = As As

H . It is clear that this matrix can be factorized as

C(s) = Hs D
2
sH

H
s ,

where

Ds = diag

(√
d
(s)
0 . . .

√
d
(s)
Js−1

)

(if the s-mode is not redundant, then we define Hs as the s-mode itself and Ds is
defined as the Js × Js identity matrix). As a consequence, the Ms highest singular
values and left singular vectors of the s-mode of dimensions Is ×

∏
s′ �=s Is′ are the

same as those of the smaller Is × Js matrix Hs Ds.
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Algorithms for symmetric tensors. In the case of (I × I × I) symmetric tensors,
we proved in point 2 of Proposition 3.7 that A′

1 = A′
2 = A′

3, and that this unique
mode admits an axial blockwise symmetry. Therefore we can define the following:

• the nonredundant matrix Hs = [T
(1,2,3)
0 , . . . , T

(1,2,3)
I−1 ], for all s ∈ {1, 2, 3}, of

dimension I × J with J = I(I + 1)/2;

• the weighting factors d
(s)
k =

{
1 if 0 ≤ k < I,
2 if I ≤ k < J.

In this way, the cost of the (rank-truncated) HOSVD is reduced to that of the
(rank-truncated) SVD of HsDs, which is 2MI3 flops per iteration. In particular, it
can be noted that the compression and weighting of the modes lead to a complexity
six times as low as that of the algorithm in Table 2.1.

Algorithms for Hankel tensors. In the case of (I1×I2×I3) Hankel tensors, [A]i1i2i3
is of the form [A]i1i2i3 = x(i1+i2+i3), and we proved in point 3 of Proposition 3.5

that for all permutation π and index k ∈ {0, . . . , Iπ2
+ Iπ3

− 2}, [R
(π)
k ]ij = x(i+k). In

particular, all columns of the type-2 oblique submatrix R
(π)
k are equal. Therefore, for

each s-mode we can define the following:
• the nonredundant Hankel matrix Hs(i, k) = x(i+k) of dimension Is × Js with

Js = (
∑

s′ �=s Is′) − 1;

• the weighting factors d
(s)
k = J

(2)
{πs′}s′ �=s

(k) = min({Is′}s′ �=s, 1+k, Js−k) (here

d
(s)
k is the number of columns of the kth oblique submatrix of the s-mode,

defined in (3.5)). It can be noted that the weighting function 1 + k �→ d
(s)
k

(plotted in Figure 4.1) is piecewise linear:
(4.1)

d
(s)
k =

⎧⎪⎪⎨
⎪⎪⎩

1 + k if 1 ≤ 1 + k < min({Is′}s′ �=s),
min({Is′}s′ �=s) if min({Is′}s′ �=s) ≤ 1 + k ≤ max({Is′}s′ �=s),

Js − k if max({Is′}s′ �=s) < 1 + k ≤ Js,
0 elsewhere.

�

�
max({I

s′ }s′ �=s
))min({I

s′ }s′ �=s
)) Js

min({I
s′ }s′ �=s

)

1

d
(s)
k

1 + k

Fig. 4.1. Weighting function d
(s)
k for Hankel tensors.

Table 4.1

Fast HOSVD algorithms for Hankel tensors.

(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration
SVD of H1 D1 4M1I1(I2 + I3)
SVD of H2 D2 4M2I2(I1 + I3)
SVD of H3 D3 4M3I3(I1 + I2)

Global cost 24MI2

The fast SVD-based algorithm for computing the full or rank-truncated HOSVD
of the Hankel tensor A is summarized in Table 4.1. The compression and weighting
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Table 4.2

Fast HOSVD algorithm for Toeplitz tensors.

(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration

SVD of A′
1 2M1(90I2 log2(I) + M1I1)

SVD of A′
2 2M2(90I2 log2(I) + M2I2)

SVD of A′
3 2M3(90I2 log2(I) + M3I3)

Global cost 6M 90I2 log2(I)

of the modes allow a reduction of the complexity of one order of magnitude w.r.t. the
algorithm in Table 2.1. If, additionally, the Hankel tensor is cube (I1 = I2 = I3 = I),
then it is symmetric and the three modes are equal. In this case, the global complexity
is reduced 8MI2 flops.

4.2. Algorithms exploiting the Toeplitz or Hankel structure. In the
above developments, we assumed that the rank-r rank-truncated SVD of an n × m
matrix with n < m was computed by means of the orthogonal iteration method [7,
pp. 410–411], which consists of recursively performing 2r matrix/vector products and
1 QR factorization of an n × r matrix (a full SVD corresponds to the case r = n).
We mentioned that the computational cost of one iteration is 2r c(n,m) + 2r2n flops,
where c(n,m) is the cost of 1 matrix/vector product, and 2r2n is the cost of 1 QR
factorization [7, pp. 231–232].

In the following, we will focus on the HOSVD of Toeplitz or Hankel tensors,
which can be computed efficiently using fast matrix/vector products. Indeed, the
computational cost of a product between a p × q Toeplitz or Hankel matrix and a
vector can be reduced from 2pq flops to 15(p + q) log2(p + q) flops by means of fast
Fourier transforms (FFTs) [7, pp. 188-191,201–202].

Algorithms for Toeplitz tensors. In the case of Toeplitz tensors, we mentioned in
point 2 of Proposition 3.5 that for all permutation π and index k ∈ {0, . . . , Iπ3 − 1},
the type-1 oblique submatrix T

(π)
k is Toeplitz. Therefore the oblique modes A′

s are
formed of Toeplitz blocks. As a consequence, the computational cost of the mul-
tiplication of A′

s by a vector of appropriate dimension can be reduced from 2I3

flops to 90I2 log2(I) flops.1 By introducing those fast products into the orthog-
onal iteration method, the cost of the (rank-truncated) SVD of A′

s is reduced to
2Ms(90I2 log2(I) + MsIs) per iteration.

The fast algorithm for computing the full or rank-truncated HOSVD of a Toeplitz
tensor is summarized in Table 4.2. If, additionally, the tensor A is symmetric, then
the three modes are equal. Moreover, as shown in section 4.1, the SVD of A′

s can

be replaced by that of HsDs, where the I × I(I+1)
2 matrix Hs is also block-Toeplitz.

Therefore the cost of the SVD of HsDs is half that of the SVD of A′
s. As a consequence,

the compression and weighting of the modes lead to a complexity six times as low as
that of the fast HOSVD algorithm in Table 4.2.

1Under the constraint I1+I2+I3 = 3I, the maximum cost is obtained for cube tensors (I1 = I2 =

I3 = I). Besides, left or right multiplying an I×k oblique submatrix T
(π)
I−k by a vector of appropriate

dimension normally involves 2Ik flops. This complexity is reduced to 15(I + k) log2(I + k) flops by
means of FFT’s. Therefore, left or right multiplying the block-Toeplitz matrix A′

s by a vector of

appropriate dimension normally involves 2
∑I−1

k=0 2Ik ∼ 2I3 flops, or 2
∑I−1

k=0 15(I + k) log2(I + k) ∼
90I2 log2(I) by means of FFT’s.
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Algorithms for Hankel tensors. In the case of Hankel tensors, we noted in sec-
tion 4.1 that the HOSVD could be obtained by computing the SVD of the matrices
HsDs, where each compressed mode Hs is a Hankel matrix (Hs(i, k) = x(i+k)). There-
fore, we can again use fast matrix-vector products to further reduce the complexity.
More precisely, the computational cost of the multiplication of the Is×((

∑
s′ �=s Is′)−1)

Hankel matrix Hs by a vector of appropriate dimension can be reduced from 4I2

flops to 45I log2(I) flops, by means of FFT’s. By introducing those fast products
into the orthogonal iteration method, the cost of the SVD of HsDs is reduced to
2Ms(45I log2(I) + MsIs) per iteration.

The ultrafast algorithm for computing the full or rank-truncated HOSVD of a
Hankel tensor is summarized in Table 4.3. Its global cost is provided as a maximum
over M1,M2,M3, under the constraint M1 +M2 +M3 = 3M . It can be noted that the
cost due to the fast matrix/vector products and the cost due to the QR factorizations
can be of the same order of magnitude if M = O(log2(I)).

Table 4.3

Ultrafast HOSVD algorithm for Hankel tensors.

(the cost corresponds to a single iteration of the orthogonal iteration method)

Operation Cost per iteration

SVD of H1D1 2M1(45I log2(I) + M1I1)
SVD of H2D2 2M2(45I log2(I) + M2I2)
SVD of H3D3 2M3(45I log2(I) + M3I3)

Global cost 6M(45I log2(I) + MI)

If, additionally, the Hankel tensor is cube (I1 = I2 = I3 = I), then it is symmetric,
and the three modes are equal. In this case, the global complexity is three times as
low as that of the ultrafast HOSVD algorithm in Table 4.3.

Table 4.4

Complexities of the HOSVD algorithms.

(the cost corresponds to a single iteration of the orthogonal iteration method)

Structure Global cost per iteration

Unstructured 12MI3

Symmetric 2MI3

Toeplitz (fast) 540MI2 log2(I)
Symmetric Toeplitz (fast) 90MI2 log2(I)

Hankel (fast) 24MI2

Cube Hankel (fast) 8MI2

Hankel (ultrafast) 270MI log2(I) + 6M2I
Cube Hankel (ultrafast) 90MI log2(I) + 2M2I

4.3. Comparison of the complexities. The overall costs of the various HOSVD
algorithms presented above are summarized in Table 4.4 (sorted in decreasing order
of complexity). Note that only the complexity upper bounds are given in this table,
and that the calculation of the tensor S is not included. Besides, it can be noted that
the FFT-based HOSVD algorithms are not always the fastest, because of the high
constants in Table 4.4. The best choice for computing the HOSVD actually depends
on I and possibly on M (the dominant cost of all algorithms is linear w.r.t. M , except
that of the ultrafast algorithms for Hankel tensors). Figure 4.2 represents the differ-
ent complexities for M = 10. From this figure we can draw general remarks, which
actually stand for any value of parameter M :
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Fig. 4.2. Flops count versus size I for M = 10.

• the best algorithm for computing the HOSVD of Toeplitz (resp., symmetric
Toeplitz) tensors is that dedicated to such tensors if I � 400, or that dedicated
to unstructured (resp., symmetric) tensors otherwise;

• the best algorithms for computing the HOSVD of symmetric, Hankel, and
cube Hankel tensors are always those dedicated to such tensors.

In other respects, the comparison between the fast and ultrafast computations of
the HOSVD for Hankel and cube Hankel tensors are sensitive to parameter M , as can
be noted in Table 4.4. Our simulations showed the following:

• for small values of M (M � I), the ultrafast algorithm is faster if I � 70;
• for moderate values of M (M  I/2), the ultrafast algorithm is faster if
I � 80;

• for large values of M (M  I), the ultrafast algorithm is faster if I � 100.

5. Conclusions. In this paper, we proposed decreasing the computational cost
of the full or rank-truncated HOSVD, which is basically O(MI3), by exploiting the
structure of symmetric, Toeplitz, and Hankel tensors. For symmetric and Hankel
tensors, our solution is based on the fact that the HOSVD can be reduced to the
SVD of three nonredundant (no columns are repeated) matrices whose columns are
multiplied by a given weighting function. In the case of Toeplitz and Hankel tensors,
we propose a new way to perform the tensor unfolding which allows fast matrix/vector
products. Finally, our fastest implementation of the HOSVD has a complexity of
O(MI log2(I)) in the case of Hankel tensors.
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Abstract. In this paper we study a generalization of Kruskal’s permutation lemma to partitioned
matrices. We define the k’-rank of partitioned matrices as a generalization of the k-rank of matrices.
We derive a lower-bound on the k’-rank of Khatri–Rao products of partitioned matrices. We prove
that Khatri–Rao products of partitioned matrices are generically full column rank.
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1. Introduction.

1.1. Organization of the paper. In a companion paper we introduce decom-
positions of a higher-order tensor in several types of block terms [3]. For the analysis
of these decompositions, we need a number of tools. Some of these are introduced in
the present paper. In section 2 we derive a generalization of Kruskal’s permutation
lemma [6], which we call the equivalence lemma for partitioned matrices. Section 2
also introduces the k’-rank of partitioned matrices as a generalization of the k-rank
of matrices [6]. In section 3 we present some results on the rank and k’-rank of
Khatri–Rao products of partitioned matrices (see (1.1)).

1.2. Notation. We use K to denote R or C when the difference is not important.
In this paper scalars are denoted by lowercase letters (a, b, . . . ), vectors are written
in boldface lowercase (a, b, . . . ), and matrices correspond to boldface capitals (A, B,
. . . ). This notation is consistently used for lower-order parts of a given structure. For
instance, the entry with row index i and column index j in a matrix A, i.e., (A)ij ,
is symbolized by aij (also (a)i = ai). If no confusion is possible, the ith column
vector of a matrix A is denoted as ai, i.e., A = [a1 a2 . . .]. Sometimes we use
the MATLAB colon notation to indicate submatrices of a given matrix or subtensors
of a given tensor. Italic capitals are also used to denote index upper bounds (e.g.,
i = 1, 2, . . . , I). The symbol ⊗ denotes the Kronecker product,

A ⊗ B =

⎛
⎜⎝

a11B a12B . . .
a21B a22B . . .

...
...

⎞
⎟⎠ .
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Let A = [A1 . . . AR] and B = [B1 . . . BR] be two partitioned matrices. Then the
Khatri–Rao product is defined as the partitionwise Kronecker product and represented
by � [7]:

(1.1) A � B = (A1 ⊗ B1 . . .AR ⊗ BR) .

In recent years, the term “Khatri–Rao product” and the symbol � have been used
mainly in cases where A and B are partitioned into vectors. For clarity, we denote
this particular, columnwise Khatri–Rao product by �c:

A �c B = (a1 ⊗ b1 . . .aR ⊗ bR) .

The column space of a matrix and its orthogonal complement will be denoted by
span(A) and null(A). The rank of a matrix A will be denoted by rank(A) or rA.
The superscripts ·T , ·H , and ·† denote the transpose, complex conjugated transpose,
and Moore–Penrose pseudoinverse, respectively. The (N × N) identity matrix is
represented by IN×N . The (I × J) zero matrix is denoted by 0I×J .

2. The equivalence lemma for partitioned matrices. Let ω(x) denote the
number of nonzero entries of a vector x. The following lemma was originally pro-
posed by Kruskal in [6]. It is known as the permutation lemma. It plays a cru-
cial role in the analysis of the uniqueness of the canonical/parallel factor (CANDE-
COMP/PARAFAC) decomposition [1, 5]. The proof was reformulated in terms of
accessible basic linear algebra in [9]. An alternative proof was given in [4]. The link
between the two proofs is also discussed in [9].

Lemma 2.1 (permutation lemma). Consider two matrices Ā,A ∈ K
I×R that

have no zero columns. If for every vector x such that ω(xT Ā) � R− rĀ + 1, we have
ω(xTA) � ω(xT Ā), then there exists a unique permutation matrix Π and a unique
nonsingular diagonal matrix Λ such that Ā = A · Π · Λ.

Below, we present a generalization of the permutation lemma for matrices that
are partitioned as in A = [A1 . . .AR]. This generalization is essential in the study of
the uniqueness of the decompositions introduced in [3].

Let us first introduce some additional prerequisites. Let ω′(x) denote the number
of parts of a partitioned vector x that are not all-zero. We call the partitioning of
a partitioned matrix A uniform when all submatrices are of the same size. We also
have the following definition.

Definition 2.2. The Kruskal rank or k-rank of a matrix A, denoted by rankk(A)
or kA, is the maximal number r such that any set of r columns of A is linearly inde-
pendent [6].

We call a property generic when it holds with probability one when the parameters
of the problem are drawn from continuous probability density functions. Let A ∈
K

I×R. Generically, we have kA = min(I,R). K-ranks appear in the formulation
of the famous Kruskal condition for CANDECOMP/PARAFAC uniqueness (see [3,
Theorem 1.14]).

We now generalize the k-rank concept to partitioned matrices.
Definition 2.3. The k’-rank of a (not necessarily uniformly) partitioned matrix

A, denoted by rankk′(A) or k′A, is the maximal number r such that any set of r
submatrices of A yields a set of linearly independent columns.

Let A ∈ K
I×LR be uniformly partitioned in R matrices Ar ∈ K

I×L. Generically,
we have k′A = min(� I

L�, R). K’-ranks will appear in the formulation of generalizations
of Kruskal’s condition to block term decompositions [3].
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The generalization of the permutation lemma to partitioned matrices is now as
follows.

Lemma 2.4 (equivalence lemma for partitioned matrices). Consider Ā,A ∈
K

I×
∑R

r=1 Lr , partitioned in the same but not necessarily uniform way into R subma-
trices that are full column rank. Suppose that for every μ � R − k′Ā + 1 there holds
that for a generic1 vector x such that ω′(xHĀ) � μ, we have ω′(xHA) � ω′(xHĀ).
Then there exists a unique block-permutation matrix Π and a unique nonsingular
block-diagonal matrix Λ, such that Ā = A · Π · Λ, where the block-transformation is
compatible with the block-structure of A and Ā.

The permutation lemma is not only about permutations. Rather it gives a con-
dition under which two matrices are equivalent up to columnwise permutation and
scaling. The lemma thus makes sure that two matrices belong to the same quotient
class of the equivalence relation defined by A ∼ B ⇔ A = B · Π · Λ, in which Π is
an arbitrary permutation matrix and Λ an arbitrary nonsingular diagonal matrix, re-
spectively. We find it therefore appropriate to call Lemma 2.4 the equivalence lemma
for partitioned matrices.

We note that the rank rĀ in the permutation lemma has been replaced by the
k’-rank k′Ā in Lemma 2.4, because the permutation lemma admits a simpler proof
when we can assume that rĀ = kĀ. It is this simpler proof, given in [4], that will
be generalized in this paper. We stay quite close to the text of [4]. We recommend
studying the proof in [4] before reading the remainder of this section.

We work as follows. First we have a closer look at the meaning of the condition
in the equivalence lemma for partitioned matrices (Lemma 2.5). Then we prove that
A and Ā are equivalent when the condition in the equivalence lemma for partitioned
matrices holds for all μ � R (Lemma 2.6). Finally we show that it is sufficient to
claim that the condition holds for μ � R− k′Ā + 1 (Lemma 2.7).

Lemma 2.5. Consider Ā,A ∈ K
I×L, partitioned in the same but not necessar-

ily uniform way into R submatrices that are full column rank. The following two
statements are equivalent:

(i) For every μ � R− k′Ā + 1 there holds that for a generic vector x such that
ω′(xHĀ) � μ, we have ω′(xHA) � ω′(xHĀ).

(ii) If a vector is orthogonal to c � k′Ā − 1 submatrices of Ā, then it must
generically be orthogonal to at least c submatrices of A.

These, in turn, imply the following:

(iii) For every set of c � k′Ā − 1 submatrices of Ā, there exists a set of at least
c submatrices of A such that span(matrix formed by these c � k′Ā − 1 submatrices of
Ā) ⊇ span(matrix formed by the c or more submatrices of A).

Proof. The equivalence of (i) and (ii) follows directly from the definition of ω′(x).

1We mean the following. Consider, for instance, a partitioned matrix Ā = [a1 a2|a3 a4] ∈ K
4×4

that is full column rank. The set S = {x|ω′(xHĀ) � 1} is the union of two subspaces, S1 and
S2, consisting of the set of vectors orthogonal to {a1,a2} and {a3,a4}, respectively. When we
say that for a generic vector x such that ω′(xHĀ) � 1, we have ω′(xHA) � ω′(xHĀ), we mean
that ω′(xHA) � ω′(xHĀ) holds with probability one for a vector x drawn from a continuous
probability density function over S1 and that ω′(xHA) � ω′(xT Ā) also holds with probability one
for a vector x drawn from a continuous probability density function over S2. In general, the set
S = {x|ω′(xHĀ) � μ} consists of a finite union of subspaces, where we count only the subspaces
that are not contained in another subspace. For each of these subspaces, the property should hold
with probability one for a vector x drawn from a continuous probability density function over that
subspace.
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We now prove in two ways that (ii) implies (iii). The first proof is a generalization
of [4, Remark 1]. This proof is by contradiction. Suppose that there is a set of
c0 � k′Ā − 1 submatrices of Ā, say, Ā1, . . . , Āc0 , and that there are only c0 − k
submatrices of A, say, A1, . . . , Ac0−k, such that

span([Ā1 . . . Āc0 ]) ⊇ span([A1 . . . Ac0−k]),

where 1 � k � c0. The column space of none of the remaining submatrices of A, i.e.,
Ac0−k+1, . . . , AR, is contained in span([Ā1 . . . Āc0 ]); otherwise, k can be reduced.
This implies that for every i = c0 − k+ 1, . . . , R, there exists a certain nonzero vector
xi ∈ null([Ā1 . . . Āc0 ]) such that

(2.1) xH
i Ai 
= [0 . . . 0].

We can assume that null([Ā1 . . . Āc0 ]) is a subspace of dimension m � 1. The
case m = 0 corresponds to span([Ā1 . . . Āc0 ]) = K

I . In this case, the span of all
submatrices of A is contained in span([Ā1 . . . Āc0 ]).

Due to the existence of xi in (2.1), we have for i = c0 − k + 1, . . . , R that
null([Ā1 . . . Āc0Ai]) is a proper subspace of null([Ā1 . . . Āc0 ]) with dimension
at most m−1. Since the union of a countable number of at most (m−1)-dimensional
subspaces of K

I cannot cover an m-dimensional subspace of K
I , there holds for a

generic vector x0 ∈ null([Ā1 . . . Āc0 ]) that

xH
0 Ai 
= [0 . . . 0], i = c0 − k + 1, . . . , R.

We have a contradiction with (ii).
The second proof is direct.2 If a vector is orthogonal to c submatrices of Ā, then

it is in the left null space of c submatrices of Ā. Denote the matrix formed by these
c submatrices by Āc. By assumption, we have that the vector is generically also in
the left null space of c̄ � c submatrices of A. Denote the matrix formed by these c̄
submatrices by Ac̄. Since

null(Āc) ⊆ null(Ac̄)

we have

span(Āc) ⊇ span(Ac̄).

This completes the proof.
We now demonstrate the equivalence of matrices under a condition that seems

stronger than the one in the equivalence lemma for partitioned matrices.
Lemma 2.6. Consider Ā,A ∈ K

I×L, partitioned in the same but not necessar-
ily uniform way into R submatrices that are full column rank. The following two
statements are equivalent:

(i) There exists a unique block-permutation matrix Π and a unique nonsingular
block-diagonal matrix Λ, such that Ā = A · Π · Λ, where the block-transformation is
compatible with the block-structure of A and Ā.

(ii) For every μ � R there holds that, for a generic vector x such that ω′(xHĀ) �
μ, we have ω′(xHA) � ω′(xHĀ).

2This proof was suggested by an anonymous reviewer.
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Proof. The implication of (ii) from (i) is trivial. The implication of (i) from (ii)
is proved by induction on the number of submatrices R.

For R = 1, the condition in the lemma means that ω′(xHA) = 0 for a generic
vector x satisfying ω′(xHĀ) = 0. This implies that null(Ā) ⊆ null(A). Since null(A)
and null(Ā) are the orthogonal complements of span(A) and span(Ā), respectively, we
have span(A) ⊆ span(Ā). Since both A and Ā are full column rank, the dimensions of
span(A) and span(Ā) are equal. Hence, we have span(A) = span(Ā) and A = Ā ·Λ,
where Λ is (L× L) nonsingular.

Now assume that the lemma holds for all R � K. We show that it then also holds
for R = K + 1. The proof is by contradiction. We assume that in the induction step
matrices A1 and Ā1 are appended to [A2 . . . AK+1] and [Ā2 . . . ĀK+1], respectively.
Both A1 and Ā1 have L1 columns. Without loss of generality, we assume that none
of the other submatrices A2, . . . , AK+1, Ā2, . . . , ĀK+1 has less than L1 columns.

Assume that span(Ā1) does not coincide with span(Aj) for any j = 1, . . . , R =
K+1. This means that for all j, span([Ā1 Aj ]) ⊃ span(Ā1). Equivalently, null(Ā1) ⊃
null([Ā1 Aj ]). Denote dim(null(Ā1)) = I − α and dim(null([Ā1 Aj ])) = I − α − βj ,
with βj � 1, j = 1, . . . , R. Since the union of a countable number of subspaces of

dimension I −α−βj cannot cover a subspace of dimension I −α,
⋃R

j=1 null([Ā1 Aj ])

does not cover null(Ā1). This implies that for a generic vector x0 in null(Ā1) we have

ω′(xH
0 Ā1) = 0, ω′(xH

0 Aj) = 1, j = 1, . . . , R.

This means that for a generic vector x0 in null(Ā1) we have

ω′(xH
0 Ā) � R− 1 � R = ω′(xH

0 A).

We have a contradiction with the condition in the lemma. Therefore, there exists a
submatrix of A, say, Aj0 , such that Ā1 = Aj0 · L, in which L is square nonsingular.

We now construct a submatrix Ā0 of Ā by removing Ā1 and a submatrix A0 of
A by removing Aj0 . Since for every vector x, ω′(xHĀ1) = ω′(xHAj0) and, on the
other hand, ω′(xHA) � ω′(xHĀ) generically, we also have ω′(xHA0) � ω′(xHĀ0)
generically. That is, A0 and Ā0 satisfy the condition in the lemma, but they consist
of only K submatrices. From the induction step we then have that Ā = A · Π · Λ.
This completes the proof.

As mentioned above, the condition in Lemma 2.6 can be relaxed to the one in the
equivalence lemma for partitioned matrices.

Lemma 2.7. Consider Ā,A ∈ K
I×L, partitioned in the same but not necessar-

ily uniform way into R submatrices that are full column rank. The following two
statements are equivalent:

(i) For every μ � R there holds that for a generic vector x such that ω′(xHĀ) �
μ, we have ω′(xHA) � ω′(xHĀ).

(ii) For every μ � R− k′Ā + 1 there holds that for a generic vector x such that
ω′(xHĀ) � μ, we have ω′(xHA) � ω′(xHĀ).

Proof. The implication of (ii) from (i) is trivial. The implication of (i) from (ii)
is proved by contradiction.

Suppose there exists a nonzero vector x0 such that ω′(xH
0 A) > ω′(xH

0 Ā) while
ω′(xH

0 Ā) > R − k′Ā + 1. Suppose that ω′(xH
0 Ā) is the smallest number bigger than

R − k′Ā + 1 for which (ii) does not hold, i.e., suppose that for every μ < ω′(xH
0 Ā)

there holds that for a generic vector x such that ω′(xHĀ) � μ, we have ω′(xHA) �
ω′(xHĀ). We can write

(2.2) ω′(xH
0 Ā) = R− k′Ā + α
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with 2 � α < k′Ā and

(2.3) ω′(xH
0 A) = R− k′Ā + α + β

with 1 � β < k′Ā − α. Associated with x0, we have k′Ā − α submatrices of Ā, say,
Ā1, . . . , Āk′

Ā−α, and k′Ā − α − β submatrices of A, say, A1, . . . , Ak′
Ā−α−β , such

that

x0 ∈ null([Ā1 . . . Āk′
Ā−α ]) ∩ null([A1 . . . Ak′

Ā−α−β ]).

A1, . . . , Ak′
Ā−α−β are the only submatrices of A of which the column space can

possibly be contained in span([Ā1 . . . Āk′
Ā−α ]). Otherwise, if there is one more

submatrix, say, AR, of which the column space is contained in span([Ā1 . . . Āk′
Ā−α]),

then xH
0 AR = 0 such that ω′(xH

0 A) = R− k′Ā + α + β − 1, which contradicts (2.3).
Recall that by definition of ω′(xH

0 Ā) for every μ � R − k′Ā + α − 1 < ω′(xH
0 Ā)

there holds that for generic x such that ω′(xHĀ) � μ, we have ω′(xHA) � ω′(xHĀ).
Similar to Lemma 2.5, we can show that this implies that for every set of c � k′Ā −
α + 1 submatrices of Ā, there exists a set of at least c submatrices of A such that
span(matrix formed by these c � k′Ā−α+1 submatrices of Ā) ⊇ span(matrix formed
by the c or more submatrices of A).

Now we consider the matrices [Ā1 . . . Āk′
Ā−α] and [Ā1 . . . Āk′

Ā−α Āi], i =
k′Ā − α + 1, . . . , R. For each of these matrices we consider the submatrices of A of
which the column space is contained in the column space of the given matrix.

First, recall that A1, . . . , Ak′
Ā−α−β are the only submatrices of A of which the

column space is contained in span([Ā1 . . . Āk′
Ā−α ]). Next, since [Ā1 . . . Āk′

Ā−α Āi]
consists of k′Ā −α+ 1 submatrices of Ā, there exist at least k′Ā −α+ 1 submatrices
Ai1 , . . . , Aik′

Ā−α+1
such that span([Ā1 . . . Āk′

Ā−α Āi]) ⊇ span([Ai1 . . . Aik′
Ā−α+1

]).

Combining these results, we conclude that at least β+1 = (k′Ā−α+1)−(k′Ā−α−β)
submatrices of [Ai1 . . . Aik′

Ā−α+1
], other than A1, . . . , Ak′

Ā−α−β , have a column

space that is in the span of [Ā1 . . . Āk′
Ā−α Āi]. Denote by φi the set of those β + 1

or more submatrices of [Ai1 . . . Aik′
Ā−α+1

].

We prove that every two φi and φj are disjoint for i 
= j. Assume that a certain
submatrix, say, Ai

j , belongs to both φi and φj ; then there exist matrices X and Y
such that

Ai
j = [Ā1 . . . Āk′

Ā−αĀi] · X = [Ā1 . . . Āk′
Ā−αĀj ] · Y.

This, in turn, implies that there exists a matrix Z such that

[Ā1 . . . Āk′
Ā−α Āi Āj ] · Z = 0.

This is in contradiction with the definition of k′Ā and the fact that α � 2.
Let us now count the number of submatrices of A in the above disjoint sets. In

{A1, . . . , Ak′
Ā−α−β}, there are k′Ā − α − β submatrices. In each set φi there are

at least β + 1 submatrices, and we have R − k′Ā + α such φi. Therefore, the total
number of submatrices of A from all disjoint sets is at least

k′Ā − α− β + (β + 1)(R− k′Ā + α) = β(R− k′Ā) + R + (α− 1)β,

which is strictly greater than R for α � 2 and β � 1. Obviously, A has only R
submatrices, so we have a contradiction.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1028 LIEVEN DE LATHAUWER

3. Rank and k’-rank of Khatri–Rao products of partitioned matrices.
In our analysis of the uniqueness of block decompositions [3], we make use of additional
lemmas, besides the equivalence lemma for partitioned matrices, that establish certain
Khatri–Rao products of partitioned matrices are full column rank. These are derived
in the present section.

We start from a lemma that gives a lower-bound on the k-rank of a columnwise
Khatri–Rao product. This lemma is proved in [8]. A shorter proof is given in [9, 10].
We give yet another proof, which is easier to generalize to Khatri–Rao products of
arbitrarily partitioned matrices.

Lemma 3.1. Consider matrices A ∈ K
I×R and B ∈ K

J×R.
(i) If kA = 0 or kB = 0, then kA�cB = 0.
(ii) If kA � 1 and kB � 1, then kA�cB � min(kA + kB − 1, R).

Proof. First, we prove (i). If kA = 0, then A has an all-zero column. Con-
sequently, A �c B also has an all-zero column and kA�cB = 0. The same holds if
kB = 0. This completes the proof of (i).

Next, we prove (ii). Suppose kA � 1 and kB � 1. Let m = min(kA + kB − 1, R).
We have to prove that any set of m columns of A �c B is linearly independent.
Without loss of generality we prove that this is the case for the first m columns of
A�c B. (Another set of m columns can first be permuted to the first positions. This
does not change the k-rank. We can then continue as below.) Let Af = [a1 . . .am],
Bf = [b1 . . .bm], Ag = [a1 . . .akA

], Bg = [bm−kB+1 . . .bm]. Suppose U = (SAf ) �c

(TBf ) = (S ⊗ T)(Af �c Bf ), where S ⊗ T is nonsingular if both S and T are
nonsingular. Premultiplying a matrix by a nonsingular matrix does not change its
rank nor its k-rank. Hence the rank of U is equal to the rank of Af �c Bf if S and T
are nonsingular. The same holds for the k-rank. We choose S and T in the following
way:

(3.1) S =

(
A†

g

A†,⊥
g

)
T =

(
B†

g

B†,⊥
g

)

in which A†,⊥
g is an (arbitrary) ((I − kA) × I) matrix such that span[(A†,⊥

g )T ] =

null(Ag), and in which B†,⊥
g is an (arbitrary) ((J − kB) × J) matrix such that

span[(B†,⊥
g )T ] = null(Bg). If we choose S and T this way, U has a very special

structure.
Let us first illustrate this with an example. Assume a matrix A ∈ K

2×4 with
kA = 2 and a matrix B ∈ K

3×4 with kB = 3. Then we have Af = A, Bf = B,
kAf

= kA and kBf
= kB. We now have

Ã = S · Af =

(
1 0 ã13 ã14

0 1 ã23 ã24

)
,

B̃ = T · Bf =

⎛
⎝ b̃11 1 0 0

b̃21 0 1 0

b̃31 0 0 1

⎞
⎠ ,

U = Ã �c B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

b̃11 0 0 0

b̃21 0 ã13 0

b̃31 0 0 ã14

0 1 0 0
0 0 ã23 0
0 0 0 ã24

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Note that neither ã23 nor ã24 can be equal to zero, otherwise kÃ < 2 = kAf
while S

is nonsingular. On the other hand, [b̃11 b̃21 b̃31] cannot be equal to [0 0 0], otherwise
kB̃ = 0 < 3 = kBf

while T is nonsingular. We conclude that U is full column rank.
Since S and T are nonsingular, Af �c Bf is also full column rank.

In general, we have

kA︷ ︸︸ ︷ m−kA︷ ︸︸ ︷
Ã = S · Af =

(
IkA×kA

Ã(1 : kA, kA + 1 : m)

0(I−kA)×kA
Ã(1 + kA : I, kA + 1 : m)

)
,

B̃ = T · Bf =

(
B̃(1 : kB, 1 : m− kB) IkB×kB

B̃(kB + 1 : J, 1 : m− kB) 0(J−kB)×kB

)
.

︸ ︷︷ ︸
m−kB

︸ ︷︷ ︸
kB

Key to understanding the structure of U = Ã�c B̃ is the specific form of the first kA

columns of Ã and the last kB columns of B̃, together with the fact that by definition
of m, m−kB < kA and m−kA < kB. This structure neatly generalizes the structure
in the example above. The first m− kB columns of U form a block-diagonal matrix,
containing the first m − kB columns of B̃ in the diagonal blocks and zeros below.
Each of the next R − 2m + kA + kB columns of U is all-zero, except for a single 1
that is also the only nonzero entry of its row. The last m− kA columns of U contain
the corresponding entries of Ã(kA : I, kA + 1 : m) in rows where they form the only
nonzero entries. The columns of Ã(kA : I, kA +1 : m) cannot be all-zero. Suppose by
contradiction that the nth column of Ã(kA : I, kA + 1 : m) is all-zero. Then the first
kA − 1 columns of Ã, together with its (kA +n)th column, form a linearly dependent
set. Hence, kÃ < kA � kAf

while S is nonsingular. We have a contradiction. On the

other hand, none of the first m − kB columns of B̃ can be all-zero either, otherwise
kB̃ = 0 < kB � kBf

while T is nonsingular. We conclude that U is full column rank.
Hence, Af �c Bf is also full column rank. This completes the proof.

Lemma 3.1 can be generalized to Khatri–Rao products of arbitrarily partitioned
matrices as follows.

Lemma 3.2. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R.

(i) If k′A = 0 or k′B = 0, then k′A�B = 0.
(ii) If k′A � 1 and k′B � 1, then k′A�B � min(k′A + k′B − 1, R).

Proof. We work in analogy with the proof of Lemma 3.1.

First, we prove (i). If k′A = 0, then A has a rank-deficient submatrix. Conse-
quently, A � B also has a rank-deficient submatrix and k′A�B = 0. The same holds
if k′B = 0. This completes the proof of (i).

Next, we prove (ii). Suppose k′A � 1 and k′B � 1. Let m = min(k′A+k′B−1, R).
We have to prove that any set of m submatrices of A�B yields a linearly independent
set of columns. Without loss of generality we prove that this is the case for the first m
submatrices of A�B. Let Af = [A1 . . .Am], Bf = [B1 . . .Bm], Ag = [A1 . . .Ak′

A
],

Bg = [Bm−k′
B+1 . . .Bm]. Suppose U = (SAf )� (TBf ) = (S⊗T)(Af �Bf ). Hence

the rank of U is equal to the rank of Af �Bf if S and T are nonsingular. The same

holds for the k’-rank. We choose S and T as in (3.1). Let Ã = S ·Af and B̃ = T ·Bf .
The structure of U allows for a similar reasoning as in Lemma 3.1.
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Let us first illustrate this with an example. Assume a matrix A ∈ K
4×6, consisting

of 3 (4 × 2) submatrices, with k′A = 2, and a matrix B ∈ K
4×6, also consisting of

three (4×2) submatrices, with k′B = 2. Then we have Af = A, Bf = B, k′Af
= k′A,

and k′Bf
= k′B. We now have

Ã = S · Af =

⎛
⎜⎜⎝

1 ã15 ã16

1 ã25 ã26

1 ã35 ã36

1 ã45 ã46

⎞
⎟⎟⎠ ,

B̃ = T · Bf =

⎛
⎜⎜⎝

b̃11 b̃12 1

b̃21 b̃21 1

b̃31 b̃31 1

b̃41 b̃41 1

⎞
⎟⎟⎠ ,

U = Ã � B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̃11 b̃12
b̃21 b̃22
b̃31 b̃32 ã15 ã16

b̃41 b̃42 ã15 ã16

b̃11 b̃12
b̃21 b̃22
b̃31 b̃32 ã25 ã26

b̃41 b̃42 ã25 ã26

1
1

ã35 ã36

ã35 ã36

1
1

ã45 ã46

ã45 ã46

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that Ã(3 : 4, 5 : 6) cannot be rank-deficient, otherwise k′Ã < 2 = k′Af
while

S is nonsingular. On the other hand, B̃(:, 1 : 2) cannot be rank-deficient, otherwise
k′B̃ = 0 < 2 = k′Bf

while T is nonsingular. We conclude that U is full column rank.

In general, the structure of U is as follows. Its leftmost m−k′B submatrices form
a block-diagonal matrix. The matrices in the diagonal blocks can be rank-deficient
only if the corresponding submatrix of B̃ is rank-deficient. This would imply that
k′B̃ = 0 < k′Bf

while T is nonsingular. Each column of the next R− 2m+ k′A + k′B
submatrices of U is all-zero except for a single 1 that is also the only nonzero entry

of its row. Consider the partitioning Ã(
∑k′

A−1
r=1 Lr + 1 : I,

∑k′
A

r=1 Lr + 1 :
∑m

r=1 Lr) =
[Āk′

A+1 . . . Ām]. The matrices Āk′
A+1, . . . , Ām can be rank-deficient only if k′Ã <

k′Af
while S is nonsingular. These matrices yield additional independent columns in

U. We conclude that U is full column rank. Hence, Af � Bf is full column rank.
This completes the proof.

Lemma 3.2 is a first tool that will be used in [3] to make sure that certain Khatri–
Rao products of partitioned matrices are full column rank. Next, we generalize Lemma
2.2 in [2], saying that a columnwise Khatri–Rao product is generically full column
rank, to Khatri–Rao products of arbitrarily partitioned matrices.
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Lemma 3.3. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R. Generically we

have that rank(A � B) = min(IJ,
∑R

r=1 LrMr).

Proof. We prove the theorem by induction on R.

For R = 1, A1 and B1 are generically nonsingular. Hence, A � B = A1 ⊗ B1 is
generically nonsingular.

Now assume that the lemma holds for R = 1, 2, . . . , R̃ − 1. Then we prove that

it also holds for R = R̃. Assume that IJ �
∑R̃

r=1 LrMr. A similar reasoning applies

when IJ >
∑R̃−1

r=1 LrMr but IJ <
∑R̃

r=1 LrMr. Let the columns of A⊥
R̃

form a

basis for null(AR̃) and let the columns of B⊥
R̃

form a basis for null(BR̃). Define

Ã = [AR̃ A⊥
R̃

] and B̃ = [BR̃ B⊥
R̃

]. Generically, AR̃ and BR̃ are full column rank.

Hence, Ã, B̃, and Ã⊗B̃ are also generically full column rank. Now replace the columns
of AR̃⊗BR̃ in Ã⊗B̃ by random vectors vj ∈ K

IJ , j = 1, . . . , LR̃MR̃. Call the resulting
matrix C and define V = [v1 . . . vLR̃MR̃

]. For C to be rank deficient, a nontrivial

linear combination of the columns of [A⊥
R̃
⊗ BR̃ AR̃ ⊗ B⊥

R̃
A⊥

R̃
⊗ B⊥

R̃
] must be in

span(V). This is a probability-zero event. Turned the other way around, if vj ∈ K
IJ ,

j = 1, . . . , LR̃MR̃ are a given linearly independent set of vectors and if we randomly
choose AR̃ ∈ K

I×LR̃ and BR̃ ∈ K
J×MR̃ , then the associated matrix C is full rank with

probability one. Now let the vectors vj be orthogonal to span(A1 ⊗ B1 . . . AR̃−1 ⊗
BR̃−1). Since the intersection of span(V) and the orthogonal complement of AR̃⊗BR̃

is generically zero, VT (AR̃ ⊗ BR̃) is generically full rank. In other words, AR̃ ⊗ BR̃

adds LR̃MR̃ independent directions to [A1 ⊗ B1 . . . AR̃−1 ⊗ BR̃−1]. Hence, [A1 ⊗
B1 . . . AR̃ ⊗ BR̃] is generically full column rank.
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DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BLOCK
TERMS—PART II: DEFINITIONS AND UNIQUENESS∗
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Abstract. In this paper we introduce a new class of tensor decompositions. Intuitively, we
decompose a given tensor block into blocks of smaller size, where the size is characterized by a
set of mode-n ranks. We study different types of such decompositions. For each type we derive
conditions under which essential uniqueness is guaranteed. The parallel factor decomposition and
Tucker’s decomposition can be considered as special cases in the new framework. The paper sheds
new light on fundamental aspects of tensor algebra.

Key words. multilinear algebra, higher-order tensor, Tucker decomposition, canonical decom-
position, parallel factors model
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1. Introduction. The two main tensor generalizations of the matrix singular
value decomposition (SVD) are, on one hand, the Tucker decomposition/higher-order
singular value decomposition (HOSVD) [59, 60, 12, 13, 15] and, on the other hand, the
canonical/parallel factor (CANDECOMP/PARAFAC) decomposition [7, 26]. These
are connected with two different tensor generalizations of the concept of matrix rank.
The Tucker decomposition/HOSVD is linked with the set of mode-n ranks, which
generalize column rank, row rank, etc. CANDECOMP/PARAFAC has to do with rank
in the meaning of the minimal number of rank-1 terms that are needed in an expansion
of the matrix/tensor. In this paper we introduce a new class of tensor SVDs, which
we call block term decompositions. These lead to a framework that unifies the Tucker
decomposition/HOSVD and CANDECOMP/PARAFAC. Block term decompositions
also provide a unifying view on tensor rank.

We study different types of block term decompositions. For each type, we derive
sufficient conditions for essential uniqueness, i.e., uniqueness up to trivial indeter-
minacies. We derive two types of uniqueness conditions. The first type follows from
a reasoning that involves invariant subspaces associated with the tensor. This type
of conditions generalizes the result on CANDECOMP/PARAFAC uniqueness that
is presented in [6, 40, 47, 48]. The second type generalizes Kruskal’s condition for
CANDECOMP/PARAFAC uniqueness, discussed in [38, 49, 54].

In the following subsection we explain our notation and introduce some basic def-
initions. In subsection 1.2 we recall the Tucker decomposition/HOSVD and also the
CANDECOMP/PARAFAC decomposition and summarize some of their properties.
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In section 2 we define block term decompositions. We subsequently introduce decompo-
sition in rank-(L,L, 1) terms (subsection 2.1), decomposition in rank-(L,M,N) terms
(subsection 2.2), and type-2 decomposition in rank-(L,M, ·) terms (subsection 2.3).
The uniqueness of these decompositions is studied in sections 4, 5, and 6, respectively.
In the analysis we use some tools that have been introduced in [19]. These will briefly
be recalled in section 3.

Several proofs of lemmas and theorems establishing Kruskal-type conditions for
essential uniqueness of the new decompositions generalize results for PARAFAC pre-
sented in [54]. We stay quite close to the text of [54]. We recommend studying the
proofs in [54] before reading this paper.

1.1. Notation and basic definitions.

1.1.1. Notation. We use K to denote R or C when the difference is not im-
portant. In this paper scalars are denoted by lowercase letters (a, b, . . . ), vectors are
written in boldface lowercase (a, b, . . . ), matrices correspond to boldface capitals
(A, B, . . . ), and tensors are written as calligraphic letters (A, B, . . . ). This notation
is consistently used for lower-order parts of a given structure. For instance, the entry
with row index i and column index j in a matrix A, i.e., (A)ij , is symbolized by
aij (also (a)i = ai and (A)ijk = aijk). If no confusion is possible, the ith column
vector of a matrix A is denoted as ai, i.e., A = [a1 a2 . . .]. Sometimes we will use
the MATLAB colon notation to indicate submatrices of a given matrix or subtensors
of a given tensor. Italic capitals are also used to denote index upper bounds (e.g.,
i = 1, 2, . . . , I). The symbol ⊗ denotes the Kronecker product,

A ⊗ B =

⎛
⎜⎝

a11B a12B . . .
a21B a22B . . .

...
...

⎞
⎟⎠ .

Let A = [A1 . . . AR] and B = [B1 . . . BR] be two partitioned matrices. Then the
Khatri–Rao product is defined as the partitionwise Kronecker product and represented
by � [46]:

(1.1) A � B = (A1 ⊗ B1 . . .AR ⊗ BR) .

In recent years, the term “Khatri–Rao product” and the symbol � have been used
mainly in the case where A and B are partitioned into vectors. For clarity, we denote
this particular, columnwise, Khatri–Rao product by �c:

A �c B = (a1 ⊗ b1 . . .aR ⊗ bR) .

The column space of a matrix and its orthogonal complement will be denoted by
span(A) and null(A). The rank of a matrix A will be denoted by rank(A) or rA.
The superscripts ·T , ·H , and ·† denote the transpose, complex conjugated transpose,
and Moore–Penrose pseudoinverse, respectively. The operator diag(·) stacks its scalar
arguments in a square diagonal matrix. Analogously, blockdiag(·) stacks its vector
or matrix arguments in a block-diagonal matrix. For vectorization of a matrix A =
[a1 a2 . . .] we stick to the following convention: vec(A) = [aT

1 aT
2 . . .]T . The symbol

δij stands for the Kronecker delta, i.e., δij = 1 if i = j and 0 otherwise. The (N ×N)
identity matrix is represented by IN×N . The (I × J) zero matrix is denoted by 0I×J .
1N is a column vector of all ones of length N . The zero tensor is denoted by O.
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1.1.2. Basic definitions.
Definition 1.1. Consider T ∈ K

I1×I2×I3 and A ∈ K
J1×I1 , B ∈ K

J2×I2 , C ∈
K

J3×I3 . Then the Tucker mode-1 product T •1A, mode-2 product T •2B, and mode-3
product T •3 C are defined by

(T •1 A)j1i2i3 =

I1∑
i1=1

ti1i2i3aj1i1 ∀j1, i2, i3,

(T •2 B)i1j2i3 =

I2∑
i2=1

ti1i2i3bj2i2 ∀i1, j2, i3,

(T •3 C)i1i2j3 =

I3∑
i3=1

ti1i2i3cj3i3 ∀i1, i2, j3,

respectively [11].
In this paper we denote the Tucker mode-n product in the same way as in [10];

in the literature the symbol ×n is sometimes used [12, 13, 15].
Definition 1.2. The Frobenius norm of a tensor T ∈ K

I×J×K is defined as

‖T ‖ =

⎛
⎝ I∑

i=1

J∑
j=1

K∑
k=1

|tijk|2
⎞
⎠

1
2

.

Definition 1.3. The outer product A ◦ B of a tensor A ∈ K
I1×I2×···×IP and a

tensor B ∈ K
J1×J2×···×JQ is the tensor defined by

(A ◦ B)i1i2...iP j1j2...jQ = ai1i2...iP bj1j2...jQ

for all values of the indices.
For instance, the outer product T of three vectors a, b, and c is defined by

tijk = aibjck for all values of the indices.
Definition 1.4. A mode-n vector of a tensor T ∈ K

I1×I2×I3 is an In-dimensional
vector obtained from T by varying the index in and keeping the other indices fixed [34].

Mode-n vectors generalize column and row vectors.
Definition 1.5. The mode-n rank of a tensor T is the dimension of the subspace

spanned by its mode-n vectors.
The mode-n rank of a higher-order tensor is the obvious generalization of the

column (row) rank of a matrix.
Definition 1.6. A third-order tensor is rank-(L,M,N) if its mode-1 rank, mode-

2 rank, and mode-3 rank are equal to L, M , and N , respectively.
A rank-(1, 1, 1) tensor is briefly called rank-1. This definition is equivalent to the

following.
Definition 1.7. A third-order tensor T has rank 1 if it equals the outer product

of 3 vectors.
The rank (as opposed to mode-n rank) is now defined as follows.
Definition 1.8. The rank of a tensor T is the minimal number of rank-1 tensors

that yield T in a linear combination [38].
The following definition has proved useful in the analysis of PARAFAC uniqueness

[38, 49, 51, 54].
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Definition 1.9. The Kruskal rank or k-rank of a matrix A, denoted by rankk(A)
or kA, is the maximal number r such that any set of r columns of A is linearly
independent [38].

We call a property generic when it holds with probability one when the parameters
of the problem are drawn from continuous probability density functions. Let A ∈
K

I×R. Generically, we have kA = min(I,R).
It will sometimes be useful to express tensor properties in terms of matrices and

vectors. We therefore define standard matrix representations of a third-order tensor.
Definition 1.10. The standard (JK × I) matrix representation (T )JK×I =

TJK×I , (KI × J) representation (T )KI×J = TKI×J , and (IJ × K) representation
(T )IJ×K = TIJ×K of a tensor T ∈ K

I×J×K are defined by

(TJK×I)(j−1)K+k,i = (T )ijk,

(TKI×J)(k−1)I+i,j = (T )ijk,

(TIJ×K)(i−1)J+j,k = (T )ijk

for all values of the indices [34].
Note that in these definitions indices to the right vary more rapidly than indices

to the left. Further, the ith (J ×K) matrix slice of T ∈ K
I×J×K will be denoted as

TJ×K,i. Similarly, the jth (K × I) slice and the kth (I × J) slice will be denoted by
TK×I,j and TI×J,k, respectively.

1.2. HOSVD and PARAFAC. We have now enough material to introduce
the Tucker/HOSVD [12, 13, 15, 59, 60] and CANDECOMP/PARAFAC [7, 26] de-
compositions.

Definition 1.11. A Tucker decomposition of a tensor T ∈ K
I×J×K is a decom-

position of T of the form

(1.2) T = D •1 A •2 B •3 C.

An HOSVD is a Tucker decomposition, normalized in a particular way. The nor-
malization was suggested in the computational strategy in [59, 60].

Definition 1.12. An HOSVD of a tensor T ∈ K
I×J×K is a decomposition of T

of the form

(1.3) T = D •1 A •2 B •3 C,

in which
• the matrices A ∈ K

I×L, B ∈ K
J×M , and C ∈ K

K×N are columnwise or-
thonormal,

• the core tensor D ∈ K
L×M×N is

− all-orthogonal,

〈DM×N,l1 ,DM×N,l2〉 = trace(DM×N,l1 · DH
M×N,l2) = σ

(1)2

l1
δl1,l2 ,

1 � l1, l2 � L,

〈DN×L,m1 ,DN×L,m2〉 = trace(DN×L,m1
· DH

N×L,m2
) = σ(2)2

m1
δm1,m2

,

1 � m1,m2 � M,

〈DI×J,n1 ,DI×J,n2〉 = trace(DL×M,n1 · DH
L×M,n2

) = σ(3)2

n1
δn1,n2 ,

1 � n1, n2 � N,
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− ordered,

σ
(1)2

1 � σ
(1)2

2 � . . . � σ
(1)2

L � 0,

σ
(2)2

1 � σ
(2)2

2 � . . . � σ
(2)2

M � 0,

σ
(3)2

1 � σ
(3)2

2 � . . . � σ
(3)2

N � 0.

The decomposition is visualized in Figure 1.1.

T D
II J

J

K
K

L

L MM

N

N

A
B

C

=

Fig. 1.1. Visualization of the HOSVD/Tucker decomposition.

Equation (1.3) can be written in terms of the standard (JK × I), (KI × J), and
(IJ ×K) matrix representations of T as follows:

TJK×I = (B ⊗ C) · DMN×L · AT ,(1.4)

TKI×J = (C ⊗ A) · DNL×M · BT ,(1.5)

TIJ×K = (A ⊗ B) · DLM×N · CT .(1.6)

The HOSVD exists for any T ∈ K
I×J×K . The values L, M , and N correspond to

the rank of TJK×I , TKI×J , and TIJ×K , i.e., they are equal to the mode-1, mode-2
and mode-3 rank of T , respectively. In [12] it has been demonstrated that the SVD
of matrices and the HOSVD of higher-order tensors have some analogous properties.

Define D̃ = D •3 C. Then

(1.7) T = D̃ •1 A •2 B

is a (normalized) Tucker-2 decomposition of T . This decomposition is visualized in
Figure 1.2.

T D̃
II J

J
KK

L

L MM

A
B

=

Fig. 1.2. Visualization of the (normalized) Tucker-2 decomposition.

Besides the HOSVD, there exist other ways to generalize the SVD of matrices.
The most well known is CANDECOMP/PARAFAC [7, 26].

Definition 1.13. A canonical or parallel factor decomposition (CANDECOMP/
PARAFAC) of a tensor T ∈ K

I×J×K is a decomposition of T as a linear combination
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of rank-1 terms:

(1.8) T =

R∑
r=1

ar ◦ br ◦ cr.

The decomposition is visualized in Figure 1.3.
In terms of the standard matrix representations of T , decomposition (1.8) can be

written as

TJK×I = (B �c C) · AT ,(1.9)

TKI×J = (C �c A) · BT ,(1.10)

TIJ×K = (A �c B) · CT .(1.11)

In terms of the (J ×K), (K × I), and (I × J) matrix slices of T , we have

TJ×K,i = B · diag(ai1, . . . , aiR) · CT , i = 1, . . . , I.(1.12)

TK×I,j = C · diag(bj1, . . . , bjR) · AT , j = 1, . . . , J.(1.13)

TI×J,k = A · diag(ck1, . . . , ckR) · BT , k = 1, . . . ,K.(1.14)

T

a1 a2 aR

b1 b2 bR

c1 c2 cR

= + . . .++

Fig. 1.3. Visualization of the CANDECOMP/PARAFAC decomposition.

The fully symmetric variant of PARAFAC, in which ar = br = cr, r = 1, . . . , R,
was studied in the nineteenth century in the context of invariant theory [9]. The un-
symmetric decomposition was introduced by F. L. Hitchcock in 1927 [27, 28]. Around
1970, the unsymmetric decomposition was independently reintroduced in psychomet-
rics [7] and phonetics [26]. Later, the decomposition was applied in chemometrics
and the food industry [1, 5, 53]. In these various disciplines PARAFAC is used for
the purpose of multiway factor analysis. The term “canonical decomposition” is stan-
dard in psychometrics, while in chemometrics the decomposition is called a parallel
factors model. PARAFAC has found important applications in signal processing and
data analysis [37]. In wireless telecommunications, it provides powerful means for the
exploitation of different types of diversity [49, 50, 18]. It also describes the basic struc-
ture of higher-order cumulants of multivariate data on which all algebraic methods
for independent component analysis (ICA) are based [8, 14, 29]. Moreover, the de-
composition is finding its way to scientific computing, where it leads to a way around
the curse of dimensionality [2, 3, 24, 25, 33].

To a large extent, the practical importance of PARAFAC stems from its unique-
ness properties. It is clear that one can arbitrarily permute the different rank-1 terms.
Also, the factors of a same rank-1 term may be arbitrarily scaled, as long as their prod-
uct remains the same. We call a PARAFAC decomposition essentially unique when it
is subject only to these trivial indeterminacies. The following theorem establishes a
condition under which essential uniqueness is guaranteed.
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Theorem 1.14. The PARAFAC decomposition (1.8) is essentially unique if

(1.15) kA + kB + kC � 2R + 2.

This theorem was first proved for real tensors in [38]. A concise proof that also
applies to complex tensors was given in [49]; in this proof, the permutation lemma
of [38] was used. The result was generalized to tensors of arbitrary order in [51]. An
alternative proof of the permutation lemma was given in [31]. The overall proof was
reformulated in terms of accessible basic linear algebra in [54]. In [17] we derived a
more relaxed uniqueness condition that applies when T is tall in one mode (meaning
that, for instance, K � R).

2. Block term decompositions.

2.1. Decomposition in rank-(L, L, 1) terms.
Definition 2.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,L, 1) terms is a decomposition of T of the form

(2.1) T =

R∑
r=1

Er ◦ cr,

in which the (I × J) matrices Er are rank-L.
We also consider the decomposition of a tensor in a sum of matrix-vector outer

products, in which the different matrices do not necessarily all have the same rank.
Definition 2.2. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(Lr, Lr, 1) terms, 1 � r � R, is a decomposition of T of the form

(2.2) T =

R∑
r=1

Er ◦ cr,

in which the (I × J) matrix Er is rank-Lr, 1 � r � R.
If we factorize Er as Ar · BT

r , in which the matrix Ar ∈ K
I×Lr and the matrix

Br ∈ K
J×Lr are rank-Lr, r = 1, . . . , R, then we can write (2.2) as

(2.3) T =

R∑
r=1

(Ar · BT
r ) ◦ cr.

Define A = [A1 . . .AR], B = [B1 . . .BR], C = [c1 . . . cR]. In terms of the standard
matrix representations of T , (2.3) can be written as

TIJ×K = [(A1 �c B1)1L1 . . . (AR �c BR)1LR
] · CT ,(2.4)

TJK×I = (B � C) · AT ,(2.5)

TKI×J = (C � A) · BT .(2.6)

In terms of the matrix slices of T , (2.3) can be written as

TJ×K,i = B · blockdiag([(A1)i1 . . . (A1)iL1
]T , . . . , [(AR)i1 . . . (AR)iLR

]T ) · CT ,

i = 1, . . . , I,(2.7)

TK×I,j = C · blockdiag([(B1)j1 . . . (B1)jL1
], . . . , [(BR)j1 . . . (BR)jLR

]) · AT ,

j = 1, . . . , J,(2.8)

TI×J,k = A · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · BT , k = 1, . . . ,K.

(2.9)
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It is clear that in (2.3) one can arbitrarily permute the different rank-(Lr, Lr, 1)
terms. Also, one can postmultiply Ar by any nonsingular (Lr × Lr) matrix Fr ∈
K

Lr×Lr , provided Br is premultiplied by the inverse of Fr. Moreover, the factors of a
same rank-(Lr, Lr, 1) term may be arbitrarily scaled, as long as their product remains
the same. We call the decomposition essentially unique when it is subject only to
these trivial indeterminacies. Two representations (A,B,C) and (Ā, B̄, C̄) that are
the same up to trivial indeterminacies are called essentially equal. We (partially)
normalize the representation of (2.2) as follows. Scale/counterscale the vectors cr and
the matrices Er such that cr are unit-norm. Further, let Er = Ar ·Dr ·BT

r denote the
SVD of Er. The diagonal matrix Dr can be interpreted as an (Lr × Lr × 1) tensor.
Then (2.2) is equivalent to

(2.10) T =

R∑
r=1

Dr •1 Ar •2 Br •3 cr.

Note that in this equation each term is represented in HOSVD form. The decompo-
sition is visualized in Figure 2.1.

T

III

J J

J

K

K K

=
L1

L1

LR

LR

D1
DR

+ . . .+

A1

B1

c1

AR

BR

cR

Fig. 2.1. Visualization of the decomposition of a tensor in a sum of rank-(Lr, Lr, 1) terms,
1 � r � R.

2.2. Decomposition in rank-(L, M, N) terms.
Definition 2.3. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,M,N) terms is a decomposition of T of the form

(2.11) T =
R∑

r=1

Dr •1 Ar •2 Br •3 Cr,

in which Dr ∈ K
L×M×N are full rank-(L,M,N) and in which Ar ∈ K

I×L (with
I � L), Br ∈ K

J×M (with J � M), and Cr ∈ K
K×N (with K � N) are full column

rank, 1 � r � R.
Remark 1. One could also consider a decomposition in rank-(Lr,Mr, Nr) terms,

where the different terms possibly have different mode-n ranks. In this paper we focus
on the decomposition in rank-(L,M,N) terms.

Define partitioned matrices A= [A1 . . .AR], B= [B1 . . .BR], and C=[C1 . . .
CR]. In terms of the standard matrix representations of T , (2.11) can be written as

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT ,(2.12)

TKI×J = (C � A) · blockdiag((D1)NL×M , . . . , (DR)NL×M ) · BT ,(2.13)

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT .(2.14)
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It is clear that in (2.11) one can arbitrarily permute the different terms. Also,
one can postmultiply Ar by a nonsingular matrix Fr ∈ K

L×L, Br by a nonsingular
matrix Gr ∈ K

M×M , and Cr by a nonsingular matrix Hr ∈ K
N×N , provided Dr is

replaced by Dr •1 F−1
r •2 G−1

r •3 H−1
r . We call the decomposition essentially unique

when it is subject only to these trivial indeterminacies. We can (partially) normalize
(2.11) by representing each term by its HOSVD. The decomposition is visualized in
Figure 2.2.

III

J J

J

K K

K

=
LL

M M
N N

T

D1 DR

+ . . .+

A1

B1

C1

AR

BR

CR

Fig. 2.2. Visualization of the decomposition of a tensor in a sum of rank-(L,M,N) terms.

Define D = blockdiag(D1, . . . ,DR). Equation (2.11) can now also be seen as the
multiplication of a block-diagonal core tensor D by means of factor matrices A, B,
and C:

(2.15) T = D •1 A •2 B •3 C.

This alternative interpretation of the decomposition is visualized in Figure 2.3. Two
representations (A,B,C,D) and (Ā, B̄, C̄, D̄) that are the same up to trivial indeter-
minacies are called essentially equal.

II

J

J

K

K

= L

M
N

T
D

. . .

...

...

. . .

A B

C

Fig. 2.3. Interpretation of decomposition (2.11) in terms of the multiplication of a block-diagonal
core tensor D by transformation matrices A, B, and C.

2.3. Type-2 decomposition in rank-(L, M, ·) terms.
Definition 2.4. A type-2 decomposition of a tensor T ∈ K

I×J×K in a sum of
rank-(L,M, ·) terms is a decomposition of T of the form

(2.16) T =
R∑

r=1

Cr •1 Ar •2 Br,
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in which Cr ∈ K
L×M×K (with mode-1 rank equal to L and mode-2 rank equal to M)

and in which Ar ∈ K
I×L (with I � L) and Br ∈ K

J×M (with J � M) are full column
rank, 1 � r � R.

Remark 2. The label “type 2” is reminiscent of the term “Tucker-2 decomposi-
tion.”

Remark 3. One could also consider a type-2 decomposition in rank-(Lr,Mr, ·)
terms, where the different terms possibly have different mode-1 and/or mode-2 rank.
In this paper we focus on the decomposition in rank-(L,M, ·) terms.

Define partitioned matrices A = [A1 . . .AR] and B = [B1 . . .BR]. In terms of
the standard matrix representations of T , (2.16) can be written as

TIJ×K = (A � B) ·

⎛
⎜⎝

(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎠ ,(2.17)

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT ,(2.18)

TKI×J = [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ] · BT .(2.19)

Define C ∈ K
LR×MR×K as an all-zero tensor, except for the entries given by

(C)(r−1)L+l,(r−1)M+m,k = (Cr)lmk ∀l,m, k, r.

Then (2.16) can also be written as

T = C •1 A •2 B.

It is clear that in (2.16) one can arbitrarily permute the different terms. Also, one
can postmultiply Ar by a nonsingular matrix Fr ∈ K

L×L and postmultiply Br by a
nonsingular matrix Gr ∈ K

M×M , provided Cr is replaced by Cr •1 (Fr)
−1 •2 (Gr)

−1.
We call the decomposition essentially unique when it is subject only to these triv-
ial indeterminacies. Two representations (A,B, C) and (Ā, B̄, C̄) that are the same
up to trivial indeterminacies are called essentially equal. We can (partially) normal-
ize (2.16) by representing each term by its normalized Tucker-2 decomposition. The
decomposition is visualized in Figure 2.4.

III

J J

J

KKK

=
LL

MM

T

C1 CR

+ . . .+

A1

B1

AR

BR

Fig. 2.4. Visualization of the type-2 decomposition of a tensor in a sum of rank-(L,M, ·) terms.

3. Basic lemmas. In this section we list a number of lemmas that we will use
in the analysis of the uniqueness of the block term decompositions.

Let ω(x) denote the number of nonzero entries of a vector x. The following lemma
was originally proposed by Kruskal in [38]. It is known as the permutation lemma.
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It plays a crucial role in the proof of (1.15). The proof was reformulated in terms of
accessible basic linear algebra in [54]. An alternative proof was given in [31]. The link
between the two proofs is also discussed in [54].

Lemma 3.1 (permutation lemma). Consider two matrices Ā, A ∈ K
I×R, that

have no zero columns. If for every vector x such that ω(xT Ā) � R− rĀ + 1, we have
ω(xTA) � ω(xT Ā), then there exists a unique permutation matrix Π and a unique
nonsingular diagonal matrix Λ such that Ā = A · Π · Λ.

In [19] we have introduced a generalization of the permutation lemma to parti-
tioned matrices. Let us first introduce some additional prerequisites. Let ω′(x) denote
the number of parts of a partitioned vector x that are not all-zero. We call the parti-
tioning of a partitioned matrix A uniform when all submatrices are of the same size.
Finally, we generalize the k-rank concept to partitioned matrices [19].

Definition 3.2. The k’-rank of a (not necessarily uniformly) partitioned matrix
A, denoted by rankk′(A) or k′A, is the maximal number r such that any set of r
submatrices of A yields a set of linearly independent columns.

Let A ∈ K
I×LR be uniformly partitioned in R matrices Ar ∈ K

I×L. Generically,
we have k′A = min(
 I

L�, R).

We are now in a position to formulate the lemma that generalizes the permutation
lemma.

Lemma 3.3 (equivalence lemma for partitioned matrices). Consider Ā, A ∈
K

I×
∑R

r=1 Lr , partitioned in the same but not necessarily uniform way into R subma-
trices that are full column rank. Suppose that for every μ � R − k′Ā + 1 there holds
that for a generic1 vector x such that ω′(xT Ā) � μ, we have ω′(xTA) � ω′(xT Ā).
Then there exists a unique block-permutation matrix Π and a unique nonsingular
block-diagonal matrix Λ, such that Ā = A · Π · Λ, where the block-transformation is
compatible with the block-structure of A and Ā.

(Compared to the presentation in [19] we have dropped the irrelevant complex
conjugation of x.)

We note that the rank rĀ in the permutation lemma has been replaced by the k’-
rank k′Ā in Lemma 3.3. The reason is that the permutation lemma admits a simpler
proof when we can assume that rĀ = kĀ. It is this simpler proof, given in [31], that
is generalized in [19].

The following lemma gives a lower-bound on the k’-rank of a Khatri–Rao product
of partitioned matrices [19].

Lemma 3.4. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R.

(i) If k′A = 0 or k′B = 0, then k′A�B = 0.
(ii) If k′A � 1 and k′B � 1, then k′A�B � min(k′A + k′B − 1, R).

Finally, we have a lemma that says that a Khatri–Rao product of partitioned
matrices is generically full column rank [19].

1We mean the following. Consider, for instance, a partitioned matrix Ā = [a1 a2|a3 a4] ∈ K
4×4

that is full column rank. The set S = {x|ω′(xT Ā) � 1} is the union of two subspaces, S1 and
S2, consisting of the set of vectors orthogonal to {a1,a2} and {a3,a4}, respectively. When we say
that for a generic vector x such that ω′(xT Ā) � 1, we have ω′(xTA) � ω′(xT Ā), we mean that
ω′(xTA) � ω′(xT Ā) holds with probability one for a vector x drawn from a continuous probability
density function over S1 and that ω′(xTA) � ω′(xT Ā) also holds with probability one for a vector x
drawn from a continuous probability density function over S2. In general, the set S = {x|ω′(xT Ā) �
μ} consists of a finite union of subspaces, where we count only the subspaces that are not contained
in an other subspace. For each of these subspaces, the property should hold with probability one for
a vector x drawn from a continuous probability density function over that subspace.
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Lemma 3.5. Consider partitioned matrices A = [A1 . . . AR] with Ar ∈ K
I×Lr ,

1 � r � R, and B = [B1 . . . BR] with Br ∈ K
J×Mr , 1 � r � R. Generically we have

that rank(A � B) = min(IJ,
∑R

r=1 LrMr).

4. The decomposition in rank-(Lr, Lr, 1) terms. In this section we derive
several conditions under which essential uniqueness of the decomposition in rank-
(L,L, 1) or rank-(Lr, Lr, 1) terms is guaranteed. We use the notation introduced in
section 2.1.

For decompositions in generic rank-(L,L, 1) terms, the results of this section can
be summarized as follows. We have essential uniqueness if

(i) Theorem 4.1:

(4.1) min(I, J) � LR and C does not have proportional columns;

(ii) Theorem 4.4:

(4.2) K � R and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

L

⌋
, R

)
� R + 2;

(iii) Theorem 4.5:

(4.3) I � LR and min

(⌊
J

L

⌋
, R

)
+ min(K,R) � R + 2

or

(4.4) J � LR and min

(⌊
I

L

⌋
, R

)
+ min(K,R) � R + 2;

(iv) Theorem 4.7:

(4.5)

⌊
IJ

L2

⌋
� R and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

L

⌋
, R

)
+ min(K,R) � 2R + 2.

First we mention a result of which the first version appeared, in a slightly different
form, in [52]. The proof describes a procedure by which, under the given conditions, the
components of the decomposition may be computed. This procedure is a generalization
of the computation of PARAFAC from the generalized eigenvectors of the pencil
(TT

I×J,1,T
T
I×J,2), as explained in [20, section 1.4].

Theorem 4.1. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose that A and B are full column rank and that C does not
have proportional columns. Then (A,B,C) is essentially unique.

Proof. Assume that c21, . . . , c2R are different from zero and that c11/c21, . . . ,
c1R/c2R are mutually different. (If this is not the case, consider linear combinations
of matrix slices in the reasoning below.) From (2.9) we have

TI×J,1 = A · blockdiag(c11IL1×L1 , . . . , c1RILR×LR
) · BT ,(4.6)

TI×J,2 = A · blockdiag(c21IL1×L1
, . . . , c2RILR×LR

) · BT .(4.7)

This means that the columns of (AT )† are generalized eigenvectors of the pencil
(TT

I×J,1,T
T
I×J,2) [4, 22]. The columns of the rth submatrix of A are associated with

the same generalized eigenvalue c1r/c2r and can therefore not be separated, 1 � r �
R. This is consistent with the indeterminacies of the decomposition. On the other
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hand, the different submatrices of A can be separated, as they correspond to different
generalized eigenvalues. After computation of a possible matrix A, the corresponding
matrix B can be computed, up to scaling of its submatrices, from (4.7):

(A† · TI×J,2)
T = B · blockdiag(c21IL1×L1

, . . . , c2RILR×LR
).

Matrix C finally follows from (2.4):

C =
{
[(A1 �c B1)1L1

. . . (AR �c BR)1LR
]† · TIJ×K

}T
.

Next, we derive generalizations of Kruskal’s condition (1.15) under which essential
uniqueness of A, or B, or C is guaranteed. Lemma 4.2 concerns essential uniqueness
of C. In its proof, we assume that the partitioning of A and B is uniform. Hence,
the lemma applies only to the decomposition in rank-(L,L, 1) terms. Lemma 4.3
concerns essential uniqueness of A and/or B. This lemma applies more generally to
the decomposition in rank-(Lr, Lr, 1) terms. Later in this section, essential uniqueness
of the decomposition of T will be inferred from essential uniqueness of one or more
of the matrices A, B, C.

Lemma 4.2. Let (A,B,C) represent a decomposition of T in R rank-(L,L, 1)
terms. Suppose the condition

(4.8) k′A + k′B + kC � 2R + 2

holds and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄).
Then there holds C̄ = C · Πc · Λc, in which Πc is a permutation matrix and Λc a
nonsingular diagonal matrix.

Proof. We work in analogy with [54]. Equality of C and C̄, up to column per-
mutation and scaling, follows from the permutation lemma if we can prove that for
any x such that ω(xT C̄) � R− rC̄ + 1, there holds ω(xTC) � ω(xT C̄). This proof is
structured as follows. First, we derive an upper-bound on ω(xT C̄). Then we derive a
lower-bound on ω(xT C̄). Combination of the two bounds yields the desired result.

(i) Derivation of an upper-bound on ω(xT C̄). From (2.9) we have that
vec(TT

I×J,k) = [(A1 �c B1)1L . . . (AR �c BR)1L] · [ck1 . . . ckR]T . Consider the linear

combination of (I × J) slices
∑K

k=1 xkTI×J,k. Since (A,B,C) and (Ā, B̄, C̄) both
represent a decomposition of T , we have

[(A1 �c B1)1L . . . (AR �c BR)1L] · CTx

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · C̄Tx.

By Lemma 3.4, the matrix A�B has full column rank. The matrix [(A1�cB1)1L . . .
(AR�c BR)1L] is equal to (A�B) · [vec(IL×L)T . . . vec(IL×L)T ]T and thus also has
full column rank. This implies that if ω(xT C̄) = 0, then also ω(xTC) = 0. Hence,
null(C̄) ⊆ null(C). Basic matrix algebra yields span(C) ⊆ span(C̄) and rC � rC̄.
This implies that if ω(xT C̄) � R− rC̄ + 1, then

(4.9) ω(xT C̄) � R− rC̄ + 1 � R− rC + 1 � R− kC + 1 � k′A + k′B − (R + 1),

where the last inequality corresponds to condition (4.8).
(ii) Derivation of a lower-bound on ω(xT C̄). By (2.9), the linear combination

of (I × J) slices
∑K

k=1 xkTI×J,k is given by

A · blockdiag(xT c1IL×L, . . . ,x
T cRIL×L) · BT

= Ā · blockdiag(xT c̄1IL×L, . . . ,x
T c̄RIL×L) · B̄T .
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We have

Lω(xT C̄) = rblockdiag(xT c̄1IL×L,...,xT c̄RIL×L)

� rĀ·blockdiag(xT c̄1IL×L,...,xT c̄RIL×L)·B̄T

= rA·blockdiag(xT c1IL×L,...,xT cRIL×L)·BT .(4.10)

Let γ = ω(xTC) and let Ã and B̃ consist of the submatrices of A and B, respectively,
corresponding to the nonzero elements of xTC. Then Ã and B̃ both have γL columns.
Let u be the (γ × 1) vector containing the nonzero elements of xTC such that

A·blockdiag(xT c1IL×L, . . . ,x
T cRIL×L)·BT = Ã·blockdiag(u1IL×L, . . . , uγIL×L)·B̃T .

Sylvester’s inequality now yields

rA·blockdiag(xT c1IL×L,...,xT cRIL×L)·BT = rÃ·blockdiag(u1IL×L,...,uγIL×L)·B̃T

� rÃ + rblockdiag(u1IL×L,...,uγIL×L)·B̃T − γL

= rÃ + rB̃ − γL,(4.11)

where the last equality is due to the fact that u has no zero elements. From the
definition of k′-rank, we have

(4.12) rÃ � Lmin(γ, k′A), rB̃ � Lmin(γ, k′B).

Combination of (4.10)–(4.12) yields the following lower-bound on ω(xT C̄):

(4.13) ω(xT C̄) � min(γ, k′A) + min(γ, k′B) − γ.

(iii) Combination of the two bounds. Combination of (4.9) and (4.13) yields

(4.14) min(γ, k′A) + min(γ, k′B) − γ � ω(xT C̄) � k′A + k′B − (R + 1).

To be able to apply the permutation lemma, we need to show that γ = ω(xTC) �
ω(xT C̄). By (4.14), it suffices to show that γ < min(k′A, k′B). We prove this by
contradiction. Suppose γ > max(k′A, k′B). Then (4.14) yields γ � R + 1, which is
impossible. Suppose next that k′A � γ � k′B. Then (4.14) yields k′B � R+ 1, which
is also impossible. Since A and B can be exchanged in the latter case, we have that
γ < min(k′A, k′B). Equation (4.14) now implies that ω(xTC) � ω(xT C̄). By the
permutation lemma, there exist a unique permutation matrix Πc and a nonsingular
diagonal matrix Λc such that C̄ = C · Πc · Λc.

In the following lemma, we prove essential uniqueness of A and B when we restrict
our attention to alternative Ā and B̄ that are, in some sense, “nonsingular.” What we
mean is that there are no linear dependencies between columns that are not imposed
by the dimensionality constraints.

Lemma 4.3. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose the condition

(4.15) k′A + k′B + kC � 2R + 2

holds and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄),
with k′Ā and k′B̄ maximal under the given dimensionality constraints. Then there
holds Ā = A · Πa · Λa, in which Πa is a block permutation matrix and Λa a square
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nonsingular block-diagonal matrix, compatible with the block structure of A. There
also holds B̄ = B · Πb · Λb, in which Πb is a block permutation matrix and Λb a
square nonsingular block-diagonal matrix, compatible with the block structure of B.

Proof. It suffices to prove the lemma for A. The result for B can be obtained
by switching modes. We work in analogy with the proof of Lemma 4.2. Essential
uniqueness of A now follows from the equivalence lemma for partitioned matrices.

(i) Derivation of an upper-bound on ω′(xT Ā). The constraint on k′Ā implies
that k′Ā � k′A. Hence, if ω′(xT Ā) � R− k′Ā + 1, then

(4.16) ω′(xT Ā) � R− k′Ā + 1 � R− k′A + 1 � k′B + kC − (R + 1),

where the last inequality corresponds to condition (4.15).
(ii) Derivation of a lower-bound on ω′(xT Ā). By (2.7), the linear combination

of (J ×K) slices
∑I

i=1 xiTJ×K,i is given by

B · blockdiag(AT
1 x, . . . ,AT

Rx) · CT = B̄ · blockdiag(ĀT
1 x, . . . , ĀT

Rx) · C̄T .

We have

ω′(xT Ā) = rblockdiag(ĀT
1 x,...,ĀT

Rx)

� rB̄·blockdiag(ĀT
1 x,...,ĀT

Rx)·C̄T

= rB·blockdiag(AT
1 x,...,AT

Rx)·CT .(4.17)

Let γ = ω′(xTA) and let B̃ and C̃ consist of the submatrices of B·blockdiag(AT
1 x, . . . ,

AT
Rx) and C, respectively, corresponding to the parts of xTA that are not all-zero.

Then B̃ and C̃ both have γ columns. Sylvester’s inequality now yields

(4.18) rB·blockdiag(AT
1 x,...,AT

Rx)·CT � rB̃ + rC̃ − γ.

The matrix B̃ consists of γ nonzero vectors, sampled in the column spaces of the
submatrices of B that correspond to the parts of xTA that are not all-zero. From the
definition of k′-rank, we have

(4.19) rB̃ � min(γ, k′B).

On the other hand, from the definition of k-rank, we have

(4.20) rC̃ � min(γ, kC).

Combination of (4.17)–(4.20) yields the following lower-bound on ω′(xT Ā):

(4.21) ω′(xT Ā) � min(γ, k′B) + min(γ, kC) − γ.

(iii) Combination of the two bounds. This is analogous to Lemma 4.2.

We now use Lemmas 4.2 and 4.3, which concern the essential uniqueness of the
individual matrices A, B, and C, to establish essential uniqueness of the overall
decomposition of T . Theorem 4.4 states that if C is full column rank and tall (meaning
that R � K), then its essential uniqueness implies essential uniqueness of the overall
tensor decomposition. Theorem 4.5 is the equivalent for A (or B). However, none of
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the factor matrices needs to be tall for the decomposition to be unique. A more general
case is dealt with in Theorem 4.7. Its proof makes use of Lemma 4.6, guaranteeing that
under a generalized Kruskal condition, A and B not only are individually essentially
unique but, moreover, are subject to the same permutation of their submatrices.

We first consider essential uniqueness of a tall full column rank matrix C.
Theorem 4.4. Let (A,B,C) represent a decomposition of T in R rank-(L,L, 1)

terms. Suppose that we have an alternative decomposition of T , represented by (Ā, B̄,
C̄). If

(4.22) kC = R and k′A + k′B � R + 2,

then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. From (2.4) we have

TIJ×K = [(A1 �c B1)1L . . . (AR �c BR)1L] · CT

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · C̄T .(4.23)

From Lemma 4.2 we have

(4.24) C̄ = C · Πc · Λc.

Since kC = R, C is full column rank. Substitution of (4.24) in (4.23) now yields

[(A1 �c B1)1L . . . (AR �c BR)1L]

= [(Ā1 �c B̄1)1L . . . (ĀR �c B̄R)1L] · ΛT
c · ΠT

c .(4.25)

Taking into account that (Ār�cB̄r)1L is a vector representation of the matrix Ār ·B̄T
r ,

1 � r � R, this implies that the matrices Ār · B̄T
r are ordered in the same way as

the vectors c̄r. Furthermore, if c̄i = λcj , then (Āi �c B̄i)1L = λ−1(Aj �c Bj)1L, or,
equivalently, Āi · B̄T

i = λ−1Aj · BT
j .

We now consider essential uniqueness of a tall full column rank matrix A or B.
Theorem 4.5. Let (A,B,C) represent a decomposition of T in rank-(Lr, Lr, 1)

terms, 1 � r � R. Suppose that we have an alternative decomposition of T , represented
by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints.
If

(4.26) k′A = R and k′B + kC � R + 2

or

(4.27) k′B = R and k′A + kC � R + 2,

then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. It suffices to prove the theorem for condition (4.26). The result for (4.27)

is obtained by switching modes.
From (2.5) we have

(4.28) TJK×I = (B � C) · AT = (B̄ � C̄) · ĀT .

From Lemma 4.3 we have

(4.29) Ā = A · Πa · Λa.
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Since k′A = R, A is full column rank. Substitution of (4.29) in (4.28) now yields

(4.30) B � C = (B̄ � C̄) · ΛT
a · ΠT

a .

This implies that the matrices B̄r ⊗ c̄r are ordered in the same way as the matrices
Ār. Furthermore, if Āi = Aj ·L, with L nonsingular, then B̄i ⊗ c̄i = (Bj ⊗ cj) ·L−T ,
or, equivalently, B̄i ◦ c̄i = (Bj · L−T ) ◦ cj .

We now prove that under a generalized Kruskal condition, the submatrices of Ā
and B̄ in an alternative decomposition of T are ordered in the same way.

Lemma 4.6. Let (A,B,C) represent a decomposition of T into rank-(Lr, Lr, 1)
terms, 1 � r � R. Suppose that we have an alternative decomposition of T , represented
by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints.
If the condition

(4.31) k′A + k′B + kC � 2R + 2

holds, then Ā = A · Π · Λa and B̄ = B · Π · Λb, in which Π is a block permutation
matrix and Λa and Λb nonsingular block-diagonal matrices, compatible with the block
structure of A and B.

Proof. From Lemma 4.3 we know that Ā = A ·Πa ·Λa and B̄ = B ·Πb ·Λb. We
show that Πa = Πb if (4.31) holds. We work in analogy with [38, pp. 129–132] and
[54].

From (2.9) we have

TI×J,k = A · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · BT

= Ā · blockdiag(c̄k1IL1×L1 , . . . , c̄kRILR×LR
) · B̄T .

For vectors v and w we have

(vTA) · blockdiag(ck1IL1×L1 , . . . , ckRILR×LR
) · (wTB)T

= (vT Ā) · blockdiag(c̄k1IL1×L1
, . . . , c̄kRILR×LR

) · (wT B̄)T

= (vTAΠa) · Λa · blockdiag(c̄k1IL1×L1
, . . . , c̄kRILR×LR

) · ΛT
b · (wTBΠb)

T .

(4.32)

We stack (4.32), for k = 1, . . . ,K, in

C · blockdiag(vTA) · blockdiag(BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠

= C̄ · blockdiag(vTAΠa) · Λa · ΛT
b · blockdiag(ΠT

b BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ .(4.33)

We define

p = blockdiag(vTA) · blockdiag(BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ =

⎛
⎜⎝

vTA1 · BT
1 w

...
vTAR · BT

Rw

⎞
⎟⎠ .
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Let the index function g(x) be given by AΠa =
(
Ag(1) Ag(2) . . . Ag(R)

)
. Let a second

index function h(x) be given by BΠb =
(
Bh(1) Bh(2) . . . Bh(R)

)
. We define

q = blockdiag(vTAΠa) · Λa · ΛT
b · blockdiag(ΠT

b BTw) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠

=

⎛
⎜⎝

vTAg(1) · Λa,1 · ΛT
b,1 · BT

h(1)w
...

vTAg(R) · Λa,R · ΛT
b,R · BT

h(R)w

⎞
⎟⎠ ,

where Λa,r and Λb,r denote the rth block of Λa and Λb, respectively.
Equation (4.33) can now be written as C · p = C̄ · q. Below we show by contra-

diction that Πa = Πb if (4.31) holds. If Πa = Πb, then we will be able to find vectors
v and w such that q = 0 and p = 0 has less than kC nonzero elements. This implies
that a set of less than kC columns of C is linearly dependent, which contradicts the
definition of kC.

Suppose that Πa = Πb. Then there exists an r such that Ar is the sth submatrix
of AΠa, Br is the tth submatrix of BΠb, and s = t. Formally, there exists an r such
that r = g(s) = h(t) and s = t. We now create two index sets S,T ⊂ {1, . . . , R} as
follows:

• Put g(t) in S and h(s) in T.
• For x ∈ {1, . . . , R}\{s, t}, add g(x) to S if card(S) < k′A−1. Otherwise, add
h(x) to T.

The sets S and T have the following properties. Since k′A−1 � R−1, S contains exactly
k′A − 1 elements. The set T contains R− card(S) = R− k′A + 1 elements. Because of
(4.31) and kC � R, this is less than or equal to k′B − 1 elements. In the xth element
of q we have either g(x) ∈ S or h(x) ∈ T, x = 1, . . . , R. The index r = g(s) = h(t)
is neither an element of S nor an element of T. Denote {i1, i2, . . . , ik′

A−1} = S and
{j1, j2, . . . , jR−k′

A+1} = T.
We choose vectors v and w such that vTAi = 0 if i ∈ S, wTBj = 0 if

j ∈ T and vTArB
T
r w = 0. This is possible for the following reasons. By the def-

inition of k′A, [Ai1 . . . Aik′
A−1

Ar] is full column rank. We have to choose v in

null([Ai1 . . . Aik′
A−1

]). The projection of this subspace on span(Ar) is of dimension

Lr. By varying v in null([Ai1 . . . Aik′
A−1

]), vTAr can be made equal to any vector

in K
1×Lr . For instance, we can choose v such that vTAr = (1 0 . . . 0). Similarly, we

can choose a vector w in null([Bj1 . . . BjR−k′
A+1

]) satisfying wTBr = (1 0 . . . 0).
For the vectors v and w above, we have q = 0. On the other hand, the rth

element of p is nonzero. Define Sc = {1, . . . , R} \ S and Tc = {1, . . . , R} \ T. The
number of nonzero entries of p is bounded from above by

card(Sc ∩ Tc) � card(Sc) � R− k′A + 1 � kC − 1,

where the last inequality is due to (4.31) and k′B � R. Hence, C · p = 0 implies
that a set of less than kC columns of C is linearly dependent, which contradicts the
definition of kC. This completes the proof.

Theorem 4.7. Let (A,B,C) represent a decomposition of T in generic rank-
(Lr, Lr, 1) terms, 1 � r � R. Suppose that we have an alternative decomposition of
T , represented by (Ā, B̄, C̄), with k′Ā and k′B̄ maximal under the given dimensionality
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constraints. If the conditions

IJ �
R∑

r=1

L2
r,(4.34)

k′A + k′B + kC � 2R + 2(4.35)

hold, then (A,B,C) and (Ā, B̄, C̄) are essentially equal.
Proof. From Lemma 4.6 we have that Ā = A · Π · Λa and B̄ = B · Π · Λb. Put

the submatrices of Ā and B̄ in the same order as the submatrices of A and B. After
reordering, we have Ā = A·Λa, with Λa = blockdiag(Λa,1, . . . ,Λa,R), and B̄ = B·Λb,
with Λb = blockdiag(Λb,1, . . . ,Λb,R). From (2.4) we have that

TIJ×K = (A �c B) · blockdiag(1L1
, . . . ,1LR

) · CT

= (A � B) · blockdiag(vec(IL1×L1), . . . , vec(ILR×LR
)) · CT

= (Ā � B̄) · blockdiag(vec(IL1×L1), . . . , vec(ILR×LR
)) · C̄T

= (A � B) · blockdiag(vec(Λa,1 · ΛT
b,1), . . . , vec(Λa,R · ΛT

b,R)) · C̄T .(4.36)

From [19, Lemma 3.3] we have that, under condition (4.34), A�B is generically full
column rank. Equation (4.36) then implies that there exist nonzero scalars αr such
that Λa,r ·ΛT

b,r = αr ILr×Lr
(i.e., Λa,r = αr Λ−T

b,r ) and cr = αrc̄r, 1 � r � R. In other

words, (A,B,C) and (Ā, B̄, C̄) are equal up to trivial indeterminacies.

5. The decomposition in rank-(L, M, N) terms. In this section we study
the uniqueness of the decomposition in rank-(L,M,N) terms. We use the notation in-
troduced in section 2.2. Section 5.1 concerns uniqueness of the general decomposition.
In section 5.2 we have a closer look at the special case of rank-(2, 2, 2) terms.

5.1. General results. In this section we follow the same structure as in section
4:

Theorem 5.1 corresponds to Theorem 4.1
Lemma 5.2 Lemma 4.3
Theorem 5.3 Theorem 4.5
Lemma 5.4 Lemma 4.6
Theorem 5.5 Theorem 4.7.

For decompositions in generic rank-(L,M,N) terms, the results of this section
can be summarized as follows. We have essential uniqueness if

(i) Theorem 5.1:

L = M and I � LR and J � MR and N � 3

and Cr is full column rank, 1 � r � R;(5.1)

(ii) Theorem 5.3:
(5.2)

I � LR and N > L + M − 2 and min

(⌊
J

M

⌋
, R

)
+ min

(⌊
K

N

⌋
, R

)
� R + 2;

or

J � MR and N > L + M − 2 and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
K

N

⌋
, R

)
� R + 2.

(5.3)
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(iii) Theorem 5.5:

N > L + M − 2 and min

(⌊
I

L

⌋
, R

)
+ min

(⌊
J

M

⌋
, R

)
(5.4)

+ min

(⌊
K

N

⌋
, R

)
� 2R + 2.

First we have a uniqueness result that stems from the fact that the column spaces
of Ar, 1 � r � R, are invariant subspaces of quotients of tensor slices.

Theorem 5.1. Let (A,B,C,D) represent a decomposition of T ∈ K
I×J×K in R

rank-(L,L,N) terms. Suppose that rank(A) = LR, rank(B) = LR, rankk′(C) � 1,
N � 3, and that D is generic. Then (A,B,C,D) is essentially unique.

Proof. From Theorem 6.1 below we have that under the conditions specified in
Theorem 5.1, a decomposition in terms of the form Dr•1Ar•2Br is essentially unique.
Consequently, a decomposition in terms of the form Dr •1 Ar •2 Br •3 C is essentially
unique if C is full column rank. A fortiori, reasoning as in the proof of Theorem 6.1,
a decomposition in terms of the form Dr •1 Ar •2 Br •3 Cr, in which the matrices
Cr are possibly different, is essentially unique if these matrices Cr are full column
rank.

Remark 4. The generalization to the decomposition in rank-(Lr, Lr, Nr) terms,
1 � r � R, is trivial.

Remark 5. In the nongeneric case, lack of uniqueness can be due to the fact that
tensors Dr can be further block-diagonalized by means of basis transformations in
their mode-1, mode-2, and mode-3 vector space. We give an example.

Example 1. Assume a tensor T ∈ K
12×12×12 that can be decomposed in three

rank-(4, 4, 4) terms as follows:

T =
3∑

r=1

Dr •1 Ar •2 Br •3 Cr

with Dr ∈ K
4×4×4, Ar,Br,Cr ∈ K

12×4, 1 � r � 3. Now assume that D1, D2, and D3

can be further decomposed as follows:

D1 = u1 ◦ v1 ◦ w1 + u2 ◦ v2 ◦ w2 + H1 •1 E1 •2 F1 •3 G1,

D2 = u3 ◦ v3 ◦ w3 + H2 •1 E2 •2 F2 •3 G2,

D3 = u4 ◦ v4 ◦ w4 + H3 •1 E3 •2 F3 •3 G3,

where us,vs,ws ∈ K
4, 1 � s � 4, E1,F1,G1 ∈ K

4×2, E2,E3,F2,F3,G2,G3 ∈ K
4×3,

H1 ∈ K
2×2×2, H2,H3 ∈ K

3×3×3. Then we have the following alternative decomposi-
tion in three rank-(4, 4, 4) terms:

T = [(A2u3) ◦ (B2v3) ◦ (C2w3) + (A3u4) ◦ (B3v4) ◦ (C3w4)

+ H1 •1 (A1E1) •2 (B1F1) •3 (C1G1)]

+ [(A1u1) ◦ (B1v1) ◦ (C1w1) + H2 •1 (A2E2) •2 (B2F2) •3 (C2G2)]

+ [(A1u2) ◦ (B1v2) ◦ (C1w2) + H3 •1 (A3E3) •2 (B3F3) •3 (C3G3)] .

We now prove essential uniqueness of A and B under a constraint on the block
dimensions and a Kruskal-type condition.
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Lemma 5.2. Let (A,B,C,D) represent a decomposition of T in R rank-(L,M,N)
terms. Suppose that the conditions

N > L + M − 2,(5.5)

k′A + k′B + k′C � 2R + 2(5.6)

hold and that we have an alternative decomposition of T , represented by (Ā, B̄, C̄, D̄),
with k′Ā and k′B̄ maximal under the given dimensionality constraints. For generic D
there holds that Ā = A ·Πa ·Λa, in which Πa is a block permutation matrix and Λa a
square nonsingular block-diagonal matrix, compatible with the structure of A. There
also holds B̄ = B ·Πb ·Λb, in which Πb is a block permutation matrix and Λb a square
nonsingular block-diagonal matrix, compatible with the structure of B.

Proof. It suffices to prove the lemma for A. The result for B can be obtained by
switching modes. We work in analogy with [54] and the proof of Lemma 4.2 and 4.3.
We use the equivalence lemma for partitioned matrices to prove essential uniqueness
of A.

(i) Derivation of an upper-bound on ω′(xT Ā). The constraint on k′Ā implies
that k′Ā � k′A. Hence, if ω′(xT Ā) � R− k′Ā + 1, then

(5.7) ω′(xT Ā) � R− k′Ā + 1 � R− k′A + 1 � k′B + kC − (R + 1),

where the last inequality corresponds to condition (5.6).
(ii) Derivation of a lower-bound on ω′(xT Ā). Consider Dr •1 (xTAr) and D̄r •1

(xT Ār), 1 � r � R, as (M × N) matrices. Then the linear combination of slices∑I
i=1 xiTJ×K,i is given by

B · blockdiag[D1 •1 (xTA1), . . . ,DR •1 (xTAR)] · CT

= B̄ · blockdiag[D̄1 •1 (xT Ā1), . . . , D̄R •1 (xT ĀR)] · C̄T .

Taking into account that N > M , we have

Mω′(xT Ā) � rblockdiag[D̄1•1(xT Ā1),...,D̄R•1(xT ĀR)]

� rB̄·blockdiag[D̄1•1(xT Ā1),...,D̄R•1(xT ĀR)]·C̄T

= rB·blockdiag[D1•1(xTA1),...,DR•1(xTAR)]·CT .(5.8)

Since the tensors Dr are generic, and because of condition (5.5), all the (M × N)
matrices Dr •1 (xTAr) are rank-M . (Rank deficiency would imply that N − M + 1
determinants are zero, while x provides only L − 1 independent parameters and an
irrelevant scaling factor.) Define (K×M) matrices Cr = Cr ·[Dr •1 (xTAr)]

T , 1 � r �
R. Let γ = ω′(xTA) and C = (C1 . . . CR). Let B̃ and C̃ consist of the submatrices
of B and C, respectively, corresponding to the parts of xTA that are not all-zero.
From (5.8) we have

(5.9) Mω′(xT Ā) � r
B̃·C̃T .

Both B̃ and C̃ have γM columns. Sylvester’s inequality now yields

(5.10) r
B̃·C̃T � rB̃ + rC̃ − γM.

From the definition of k′-rank, we have

(5.11) rB̃ � M min(γ, k′B).
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On the other hand, C̃ consists of γ (K ×M) submatrices, of which the columns are
sampled in the column space of the corresponding submatrix of C. From the definition
of k′-rank, we must have

(5.12) rC̃ � M min(γ, k′C).

Combination of (5.9)–(5.12) yields the following lower-bound on ω′(xT Ā):

(5.13) ω′(xT Ā) � min(γ, k′B) + min(γ, k′C) − γ.

(iii) Combination of the two bounds. This is analogous to Lemma 4.2.
If matrix A or B is tall and full column rank, then its essential uniqueness implies

essential uniqueness of the overall tensor decomposition.
Theorem 5.3. Let (A,B,C,D) represent a decomposition of T in R rank-

(L,M,N) terms, with N > L + M − 2. Suppose that we have an alternative de-
composition of T , represented by (Ā, B̄, C̄, D̄), with k′Ā and k′B̄ maximal under the
given dimensionality constraints. For generic D there holds that if

(5.14) k′A = R and k′B + k′C � R + 2

or

(5.15) k′B = R and k′A + k′C � R + 2,

then (A,B,C,D) and (Ā, B̄, C̄, D̄) are essentially equal.
Proof. It suffices to prove the theorem for A. The result for B is obtained by

switching modes. From (2.12) we have

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ĀT .(5.16)

From Lemma 5.2 we have

(5.17) Ā = A · Πa · Λa.

Since k′A = R, A is full column rank. Substitution of (5.17) in (5.16) now yields

(B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L)

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΛT
a · ΠT

a .(5.18)

This implies that the matrices (B̄r ⊗ C̄r) · (D̄r)MN×L are permuted in the same
way with respect to (Br ⊗ Cr) · (Dr)MN×L as the matrices Ār with respect to Ar.
Furthermore, if Āi = Aj ·F, then (B̄i⊗C̄i) · (D̄i)MN×L ·FT = (Bj⊗Cj) · (Dj)MN×L.
Equivalently, we have D̄i •2 B̄i •3 C̄i = Dj •1 F−1 •2 Bj •3 Cj .

We now prove that under conditions (5.5) and (5.6), the submatrices of Ā and B̄
in an alternative decomposition of T are ordered in the same way.

Lemma 5.4. Let (A,B,C,D) represent a decomposition of T in R rank-(L,M,N)
terms. Suppose that we have an alternative decomposition of T , represented by (Ā, B̄,
C̄, D̄), with k′Ā and k′B̄ maximal under the given dimensionality constraints. For
generic D there holds that if conditions (5.5) and (5.6) hold, then Ā = A ·Π ·Λa and
B̄ = B · Π · Λb, in which Π is a block permutation matrix and Λa and Λb square
nonsingular block-diagonal matrices, compatible with the block structure of A and B.
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Proof. From Lemma 5.2 we know that Ā = A · Πa · Λa and B̄ = B · Πb · Λb.
We show that Πa = Πb if (5.5) and (5.6) hold. We work in analogy with [38, pp.
129–132], [54], and the proof of Lemma 4.6.

Since both (A,B,C,D) and (Ā, B̄, C̄, D̄) represent a decomposition of T , we have
for vectors v and w,

T •1 vT •2 wT =

R∑
r=1

Dr •1 (vTAr) •2 (wTBr) •3 Cr

=

R∑
r=1

D̄r •1 (vT Ār) •2 (wT B̄r) •3 C̄r.(5.19)

Let the index functions g(x) and h(x) be given by AΠa =
(
Ag(1) Ag(2) . . . Ag(R)

)
and BΠb =

(
Bh(1) Bh(2) . . . Bh(R)

)
, respectively. Then (5.19) can be written as

(5.20) C · p = C̄ · q,

in which p and q are defined by

p =

⎛
⎜⎝

(D1)N×LM · [(AT
1 v) ⊗ (BT

1 w)]
...

(DR)N×LM · [(AT
Rv) ⊗ (BT

Rw)]

⎞
⎟⎠ ,

q =

⎛
⎜⎝

(D̄1)N×LM · [(ΛT
a,1Ā

T
g(1)v) ⊗ (ΛT

b,1B̄
T
h(1)w)]

...
(D̄R)N×LM · [(ΛT

a,RĀT
g(R)v) ⊗ (ΛT

b,RB̄T
h(R)w)]

⎞
⎟⎠ ,

where Λa,r and Λb,r denote the rth block of Λa and Λb, respectively.
We will now show by contradiction that Πa = Πb. If Πa = Πb, then we will be

able to find vectors v and w such that q = 0 and p = 0 has less than k′C nonzero
(N×1) subvectors. This implies that a set of less than k′C vectors, each sampled in the
column space of a different submatrix of C, is linearly dependent, which contradicts
the definition of k′C.

Suppose that Πa = Πb. Then there exists an r such that Ar is the sth submatrix
of AΠa, Br is the tth submatrix of BΠb, and s = t. Formally, there exists an r such
that r = g(s) = h(t) and s = t. We now create two index sets S,T ⊂ {1, . . . , R} in
the same way as in the proof of Lemma 4.6.

Since k′A − 1 � R − 1, S contains exactly k′A − 1 elements. The set T contains
R − card(S) = R − k′A + 1 elements. Because of (5.6) and k′C � R, this is less than
or equal to k′B − 1 elements. In the xth element of q we have either g(x) ∈ S or
h(x) ∈ T, x = 1, . . . , R. The index r = g(s) = h(t) is neither an element of S nor an
element of T. Denote {i1, i2, . . . , ik′

A−1} = S and {j1, j2, . . . , jR−k′
A+1} = T.

We choose a vector v such that vTAi = 0 if i ∈ S, and vTAr = 0. This is
always possible. The vector v has to be chosen in null([Ai1 . . . Aik′

A−1
]), which is

an (I − (k′A − 1)L)-dimensional space. If a column of Ar is orthogonal to all possible
vectors v, then it lies in span([Ai1 . . . Aik′

A−1
]). Then we would have a contradiction

with the definition of k′A. Similarly, we can choose a vector w such that wTBj = 0
if j ∈ T, and wTBr = 0.

Because of condition (5.5), the genericity of Dr, and the fact that vTAr = 0, the
(N×M) matrix Dr•1 (vTAr) is rank-M . Rank deficiency would imply that N−M+1
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determinants are zero, while vTAr provides only L− 1 parameters and an irrelevant
scaling factor. Since Dr •1 (vTAr) is full column rank, and since wTBr = 0, we have
Dr •1 (vTAr) •2 (wTBr) = 0. Equivalently, (Dr)N×LM · [(AT

r v) ⊗ (BT
r w)] = 0.

Define Sc = {1, . . . , R} \ S and Tc = {1, . . . , R} \ T. The number of nonzero
subvectors of p is bounded from above by

card(Sc ∩ Tc) � card(Sc) � R− k′A + 1 � k′C − 1,

where the last inequality is due to (5.6) and k′B � R. Hence, C · p = 0 implies
that a set of less than k′C columns, each sampled in the column space of a different
submatrix of C, is linearly dependent, which contradicts the definition of k′C. This
completes the proof.

Theorem 5.5. Let (A,B,C,D) represent a decomposition of T in R rank-
(L,M,N) terms. Suppose that we have an alternative decomposition of T , repre-
sented by (Ā, B̄, C̄, D̄), with k′Ā and k′B̄ maximal under the given dimensionality
constraints. For generic D there holds that, if conditions (5.5) and (5.6) hold, then
(A,B,C,D) and (Ā, B̄, C̄, D̄) are essentially equal.

Proof. From Lemma 5.4 we have that Ā = A · Π · Λa and B̄ = B · Π · Λb. Put
the submatrices of Ā and B̄ in the same order as the submatrices of A and B. After
reordering, we have Ā = A·Λa, with Λa = blockdiag(Λa,1, . . . ,Λa,R), and B̄ = B·Λb,
with Λb = blockdiag(Λb,1, . . . ,Λb,R). From (2.14) we have that

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT

= (Ā � B̄) · blockdiag((D̄1)LM×N , . . . , (D̄R)LM×N ) · C̄T

= (A � B) · blockdiag((Λa,1 ⊗ Λb,1) · (D̄1)LM×N , . . . ,

(Λa,R ⊗ Λb,R) · (D̄R)LM×N ) · C̄T .(5.21)

From Lemma 3.4 we have that k′A�B � min(k′A + k′B − 1, R). From (5.6) we have
that k′A + k′B − 1 � 2R + 1 − k′C � R + 1. Hence, k′A�B = R, which implies that
A � B is full column rank. Multiplying (5.21) from the left by (A � B)†, we obtain
that

(Λa,r ⊗ Λb,r) · (D̄r)LM×N · C̄T
r = (Dr)LM×N · CT

r , 1 � r � R.

This can be rewritten as

D̄r •1 Λa,r •2 Λb,r •3 C̄r = Dr •3 Cr, 1 � r � R.

This means that (A,B,C,D) and (Ā, B̄, C̄, D̄) are equal up to trivial
indeterminacies.

5.2. Rank-(2, 2, 2) blocks. In the Kruskal-type results of the previous section,
we have only considered rank-(L,M,N) terms for which N > L + M − 2. Rank-
(2, 2, 3) terms, for instance, satisfy this condition. However, it would also be interesting
to know whether the decomposition of a tensor in rank-(2, 2, 2) terms is essentially
unique. This special case is studied in this section.

A first result is that in C the decomposition of a tensor T in R � 2 rank-(2, 2, 2)
terms is not essentially unique. This is easy to understand. Assume, for instance, that
T is the sum of two rank-(2, 2, 2) terms T1 and T2. It is well known that in C the rank
of rank-(2, 2, 2) tensor is always equal to 2 [55]. Hence we have for some vectors ar,
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br, cr, 1 � r � 4,

T = T1 + T2

= (a1 ◦ b1 ◦ c1 + a2 ◦ b2 ◦ c2) + (a3 ◦ b3 ◦ c3 + a4 ◦ b4 ◦ c4)

= (a1 ◦ b1 ◦ c1 + a3 ◦ b3 ◦ c3) + (a2 ◦ b2 ◦ c2 + a4 ◦ b4 ◦ c4)

= T̃1 + T̃2.

Since T̃1 and T̃2 yield an other decomposition, the decomposition of T in 2 rank-
(2, 2, 2) terms is not essentially unique.

Theorem 5.5 does not hold in the case of rank-(2, 2, 2) terms because Lemma 5.2
does not hold. The problem is that in (5.8) the (2 × 2) matrices Dr ×1 (xTAr) are
not necessarily rank-2. Indeed, let λ be a generalized eigenvalue of the pencil formed
by the (2× 2) matrices (Dr)1,:,: and (Dr)2,:,:. Then Dr •1 (xTAr) is rank-1 if xTAr is
proportional to (1,−λ). As a result, (5.12) does not hold.

On the other hand, if we work in R, the situation is somewhat different. In R,
rank-(2, 2, 2) terms can be either rank-2 or rank-3 [30, 39, 55]. If Dr is rank-2 in R,
then the pencil ((Dr)1,:,:, (Dr)2,:,:) has two real generalized eigenvalues. Conversely, if
the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:) are complex, then Dr is rank-3. (The
tensor Dr can also be rank-3 when an eigenvalue has algebraic multiplicity two but
geometric multiplicity one. This case occurs with probability zero when the entries of
Dr are drawn from continuous probability density functions and will not further be
considered in this section.) We now have the following variant of Theorem 5.5.

Theorem 5.6. Let (A,B,C,D) represent a real decomposition of T ∈ R
I×J×K

in R rank-(2, 2, 2) terms. Suppose that the condition

k′A + k′B + k′C � 2R + 2

holds and that the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:) are complex, 1 � r �
R. Then (A,B,C,D) is essentially unique.

Proof. Under the condition on the generalized eigenvalues of ((Dr)1,:,:, (Dr)2,:,:),
the matrices Dr •1 (xTAr) in (5.8) are necessarily rank-2, and the reasoning in the
proof of Lemma 5.2 remains valid.

On the other hand, assuming that Ā = A · Πa · Λa and B̄ = B · Πb · Λb,
only a technical modification of the proof of Lemma 5.4 is required to make sure that
Πa = Πb does hold. We only have to verify whether vectors v and w can be found such
that vTAi = 0 if i ∈ S, wTBj = 0 if j ∈ T, and (Dr)N×LM · [(AT

r v) ⊗ (BT
r w)] = 0.

Reasoning as in the proof of Lemma 5.4, we see that the constraint vTAi = 0,
i ∈ S, still leaves enough freedom for vTAr to be any vector in R

2. Equivalently, the
constraint wTBj = 0, j ∈ T, leaves enough freedom for wTBr to be any vector in
R

2. We conclude that it is always possible to find the required vectors v and w if
Dr = O.

Essential uniqueness of the overall tensor decomposition now follows from Ā =
A ·Π ·Λa and B̄ = B ·Π ·Λb in the same way as in the proof of Theorem 5.5.

From Theorem 5.6 follows that a generic decomposition in real rank-3 rank-
(2, 2, 2) terms is essentially unique provided,

min

(⌊
I

2

⌋
, R

)
+ min

(⌊
J

2

⌋
, R

)
+ min

(⌊
K

2

⌋
, R

)
� 2R + 2.

Finally, we have the following variant of Theorem 5.1.
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Theorem 5.7. Let (A,B,C,D) represent a real decomposition of T ∈ R
I×J×K

in R rank-(L,M,N) terms, with L = M = N = 2. Suppose that rank(A) = 2R,
rank(B) = 2R, rankk′(C) � 1 and that all generalized eigenvalues of the pencil
((Dr)L×M,1, (Dr)L×M,2) are complex, 1 � r � R. Then (A,B,C,D) is essentially
unique.

Proof. Consider two vectors x,y ∈ R
K for which xTCr is not proportional to

yTCr, 1 � r � R. Since all matrices Cr are full column rank, this is the case for
generic vectors x,y. Define T1 =

∑K
k=1 xkTI×J,k and T2 =

∑K
k=1 ykTI×J,k. We

have

T2 · T†
1 = A · blockdiag{([D1 •3 (yTC1)] · [D1 •3 (xTC1)]

†, . . . ,

[DR •3 (yTCR)] · [DR •3 (xTCR)]†)} · A†.

From this equation it is clear that the column space of any Ar is an invariant subspace
of T2 · T†

1.
Define CT

r x = x̃r and CT
r y = ỹr. We have

Dr •3 (xTCr) = (x̃r)1(Dr)L×M,1 + (x̃r)2(Dr)L×M,2,

Dr •3 (yTCr) = (ỹr)1(Dr)L×M,1 + (ỹr)2(Dr)L×M,2.

If there exist real values α and β, with α2 +β2 = 1, such that αDr •3 (xTCr)+βDr •3

(yTCr) is rank-1, then there also exist real values γ en μ, with γ2 +μ2 = 1, such that
γ (Dr)L×M,1 + μ (Dr)L×M,2 is rank-1. The condition on the generalized eigenvalues
of the pencils ((Dr)L×M,1, (Dr)L×M,2) implies thus that the blocks [Dr •3 (yTCr)] ·
[Dr •3 (xTCr)]

† cannot be diagonalized by means of a real similarity transformation.

We conclude that the only two-dimensional invariant subspaces of T2 · T†
1 are the

column spaces of the matrices Ar. In other words, A is essentially unique.
Essential uniqueness of the overall decomposition now follows from (2.12). As-

sume that we have an alternative decomposition of T , represented by (Ā, B̄, C̄, D̄).
We have Ā = A · Πa · Λa, in which Πa is a block-permutation matrix and Λa =
blockdiag(Λa,1, . . . ,Λa,R) a square nonsingular block-diagonal matrix, compatible
with the block structure of A. From (2.12) we have

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΠT
a · ΛT

a · AT .

Right multiplication by (AT )† yields

(B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L)

= (B̄ � C̄) · blockdiag((D̄1)MN×L, . . . , (D̄R)MN×L) · ΠT
a · ΛT

a .(5.22)

Assume that the rth submatrix of A corresponds to the s-th submatrix of Ā. Then
we have from (5.22) that

(Br � Cr) · (Dr)MN×L = (B̄s � C̄s) · (D̄s)MN×L · ΛT
a,s

in which Λa,s is the sth block of Λa. Equivalently,

Dr •2 Br •3 Cr = D̄s •1 Λa,s •2 B̄s •3 C̄s.

This completes the proof.
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6. Type-2 decomposition in rank-(L, M, ·) terms. In this section we derive
several conditions under which the type-2 decomposition in rank-(L,M, ·) terms is
unique. We use the notation introduced in section 2.3.

First we have a uniqueness result that stems from the fact that the column spaces
of Ar, 1 � r � R, are invariant subspaces of quotients of tensor slices. This result is
the counterpart of Theorem 4.1 in section 4 and Theorem 5.1 in section 5.1.

Theorem 6.1. Let (A,B, C) represent a type-2 decomposition of T ∈ K
I×J×K

in R rank-(L,L, ·) terms. Suppose that rank(A) = LR, rank(B) = LR, K � 3, and
that C is generic. Then (A,B, C) is essentially unique.

Proof. We have

TI×J,2 ·T†
I×J,1 = A·blockdiag((C1)L×M,2 ·(C1)

†
L×M,1, . . . , (CR)L×M,2 ·(CR)†L×M,1)·A†,

where M = L. From this equation it is clear that the column space of any Ar is
an invariant subspace of TI×J,2 · T†

I×J,1. However, any set of eigenvectors forms an
invariant subspace. To determine which eigenvectors belong together, we use the third
slice TI×J,3. We have

(6.1)

TI×J,3 ·T†
I×J,1 = A·blockdiag((C1)L×M,3 ·(C1)

†
L×M,1, . . . , (CR)L×M,3 ·(CR)†L×M,1)·A†.

It is clear that the column space of any Ar is also an invariant subspace of TI×J,3 ·
T†

I×J,1. On the other hand, because of the genericity of C, we can interpret (Cr)L×M,3 ·
(Cr)†L×M,1 as (Cr)L×M,2·(Cr)†L×M,1+Er, in which Er ∈ K

L×L is a generic perturbation,
1 � r � R. Perturbation analysis now states that the individual eigenvectors of
TI×J,3 · T†

I×J,1 do not correspond to those of TI×J,2 · T†
I×J,1 [23, 32]. We conclude

that A is essentially unique.
Essential uniqueness of the overall decomposition follows directly from the essen-

tial uniqueness of A. Assume that we have an alternative decomposition of T , repre-
sented by (Ā, B̄, C̄). We have Ā = A · Πa · Λa, in which Πa is a block-permutation
matrix and Λa a square nonsingular block-diagonal matrix, compatible with the block
structure of A. From (2.18) we have

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT

=
[
(C̄1 •2 B̄1)JK×L . . . (C̄R •2 B̄R)JK×L

]
· ĀT .

Hence,

[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L]

=
[
(C̄1 •2 B̄1)JK×L . . . (C̄R •2 B̄R)JK×L

]
· ΛT

a · ΠT
a .

This implies that the matrices (Cr •2 Br)JK×L are ordered in the same way as the
matrices Ar. Furthermore, if Āi = Aj ·F, then (C̄i •2 B̄i)JK×L ·FT = (Cj •2 Bj)JK×L.
Equivalently, we have C̄i •2 B̄i = Cj •1 F−1 •2 Bj . This means that (A,B, C) and
(Ā, B̄, C̄) are essentially equal.

Remark 6. The generalization to the decomposition in rank-(Lr, Lr, ·) terms, 1 �
r � R, is trivial.

Remark 7. In the nongeneric case, lack of uniqueness can be due to the fact that
tensors Cr can be subdivided in smaller blocks by means of basis transformations in
their mode-1 and mode-2 vector space. We give an example.
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Example 2. Consider a tensor T ∈ K
10×10×5 that can be decomposed in two

rank-(5, 5, ·) terms as follows:

T =
2∑

r=1

Cr •1 Ar •2 Br

with Cr ∈ K
5×5×5, Ar ∈ K

10×5, and Br ∈ K
10×5, 1 � r � 2. Now assume that C1 and

C2 can be further decomposed as follows:

C1 = G11 •1 E11 •2 F11 + G12 •1 E12 •2 F12,

C2 = G21 •1 E21 •2 F21 + G22 •1 E22 •2 F22,

where G11,G21 ∈ K
2×2×5, G12,G22 ∈ K

3×3×5, E11,E21,F11,F21 ∈ K
5×2, E12,E22,

F12,F22 ∈ K
5×3. Define

Ã1 = [A1 · E11 A2 · E22], Ã2 = [A2 · E21 A1 · E12],

B̃1 = [B1 · F11 B2 · F22], B̃2 = [B2 · F21 B1 · F12],

(C̃1)1:2,1:2,: = G11, (C̃1)3:5,3:5,: = G22, (C̃1)1:2,3:5,: = O, (C̃1)3:5,1:2,: = O,

(C̃2)1:2,1:2,: = G21, (C̃2)3:5,3:5,: = G12, (C̃2)1:2,3:5,: = O, (C̃2)3:5,1:2,: = O.

Then an alternative decomposition of T in rank-(5, 5, ·) terms is given by

(6.2) T =
2∑

r=1

C̃r •1 Ãr •2 B̃r.

For the case in which Cr ∈ R
2×2×2, 1 � r � R, we have the following theorem.

Theorem 6.2. Let (A,B, C) represent a real type-2 decomposition of T ∈ R
I×J×2

in R rank-(L,M, 2) terms with L = M = 2. Suppose that rank(A) = 2R, rank(B) =
2R and that all generalized eigenvalues of the pencil ((Cr)L×M,1, (Cr)L×M,2) are com-
plex, 1 � r � R. Then (A,B, C) is essentially unique.

Proof. This theorem is a special case of Theorem 5.7. The tensors Dr in Theorem
5.7 correspond to Cr, and the matrices Cr in Theorem 5.7 are equal to I2×2.

In some cases, uniqueness of the decomposition can be demonstrated by direct
application of the equivalence lemma for partitioned matrices. This is illustrated in
the following example.

Example 3. We show that the decomposition of a tensor T ∈ K
5×6×6 in R = 3

generic rank-(2, 2, ·) terms is essentially unique. Denote I = 5, J = K = 6, and
L = M = 2. Let the decomposition be represented by (A,B, C) and let us assume the
existence of an alternative decomposition, represented by (Ā, B̄, C̄), which is “nonsin-
gular” in the sense that the columns of Ā are as linearly independent as possible.

To show that (A,B, C) and (Ā, B̄, C̄) are essentially equal, we first use the equiv-
alence lemma for partitioned matrices to show that Ā = A ·Πa ·Λa, in which Πa is a
block permutation matrix and Λa a square nonsingular block-diagonal matrix, both
consisting of (2×2) blocks. We show that for every μ � R−k′Ā+1 = 2 there holds that
for a generic vector x ∈ K

5 such that ω′(xT Ā) � μ, we have ω′(xTA) � ω′(xT Ā).
We will subsequently examine the different cases corresponding to μ = 0, 1, 2.

We first derive an inequality that will prove useful. Denote by (Cr•1(xTAr))M×K

the (M × K) matrix formed by the single slice of Cr •1 (xTAr), and denote by
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(C̄r •1 (xT Ār))M×K the (M ×K) matrix formed by the single slice of C̄r •1 (xT Ār),
1 � r � R. Then the (J ×K) matrix formed by the single slice of T •1 xT is given by

B̄ ·

⎛
⎜⎝

(C̄1 •1 (xT Ā1))M×K

...
(C̄R •1 (xT ĀR))M×K

⎞
⎟⎠ = B ·

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠ .

For the rank of this matrix, we have

Mω′(xT Ā) � rank

⎡
⎢⎣B̄ ·

⎛
⎜⎝

(C̄1 •1 (xT Ā1))M×K

...
(C̄R •1 (xT ĀR))M×K

⎞
⎟⎠
⎤
⎥⎦

= rank

⎡
⎢⎣B ·

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠
⎤
⎥⎦ .

Let B̃ and D̃(x)T consist of the submatrices of B and

⎛
⎜⎝

(C1 •1 (xTA1))M×K

...
(CR •1 (xTAR))M×K

⎞
⎟⎠ ,

respectively, corresponding to the nonzero subvectors of xTA. Then we have

Mω′(xT Ā) � rB̃·D̃(x)T .

Since B is generic, we have

(6.3) Mω′(xT Ā) � rD̃(x)T .

First, note that due to the “nonsingularity” of Ā, there does not exist a vector x
such that ω′(xT Ā) = 0. This means that the case μ = 0 does not present a difficulty.

Next, we consider the case μ = 1. Since ω′(xT Ā) � μ, we have that Mω′(xT Ā) in
(6.3) is less than or equal to 2. Since x is orthogonal to two submatrices of Ā, the set V
of vectors x satisfying ω′(xT Ā) � μ is the union of three one-dimensional subspaces in
K

5. We prove by contradiction that for a generic x ∈ V, we have ω′(xTA) � 1. Assume
first that ω′(xTA) = 2. Then D̃(x) in (6.3) is a (6×4) matrix. For this (6×4) matrix
to be rank-2, eight independent conditions on x have to be satisfied. (This value is
the total number of entries (i.e., 24) minus the number of independent parameters in
a (6 × 4) rank-2 matrix (i.e., 16). The latter value can easily be determined as the
number of independent parameters in, for instance, an SVD.) These conditions can
impossibly be satisfied in a subset of V that is not of measure zero. We conclude that
for a generic x ∈ V, ω′(xTA) = 2. Next assume that ω′(xTA) = 3. Then D̃(x) in
(6.3) is a (6 × 6) matrix. For this matrix to be rank-2, 36 − 20 = 10 independent
conditions on x have to be satisfied. We conclude that for a generic x, ω′(xTA) = 3.
This completes the case μ = 1.

Finally, we consider the case μ = 2. We now have that Mω′(xT Ā) in (6.3) is less
than or equal to 4. Since x is orthogonal to one submatrix of Ā, the set V of vectors x
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satisfying ω′(xT Ā) � μ is the union of three three-dimensional subspaces in K
5. We

prove by contradiction that for a generic x ∈ V, we have ω′(xTA) � 2. Assume that
ω′(xTA) = 3. Then D̃(x) in (6.3) is a (6 × 6) matrix. For this matrix to be rank-4,
36 − 32 = 4 independent conditions on x have to be satisfied. These conditions can
impossibly be satisfied in a subset of V that is not of measure zero. This completes
the case μ = 2.

We conclude that the condition of the equivalence lemma for partitioned matrices
is satisfied. Hence, Ā = A ·Πa ·Λa. Essential uniqueness of the decomposition follows
directly from the essential uniqueness of A; cf. the proof of Theorem 6.1.

7. Discussion and future research. In this paper we introduced the concept
of block term decompositions. A block term decomposition of a tensor T ∈ K

I×J×K

decomposes the given (I ×J ×K)-dimensional block in a number of blocks of smaller
size. The size of a block is characterized by its mode-n rank triplet. (We mean the
following. Consider a rank-(L,M,N) tensor T ∈ K

I×J×K . The observed dimensions
of T are I, J , K. However, its inner dimensions, its inherent size, are given by L, M ,
N .) The number of blocks that are needed in a decomposition depends on the size of
the blocks. On the other hand, the number of blocks that is allowed determines which
size they should minimally be.

The concept of block term decompositions unifies HOSVD/Tucker’s decompo-
sition and CANDECOMP/PARAFAC. HOSVD is a meaningful representation of a
rank-(L,M,N) tensor as a single block of size (L,M,N). PARAFAC decomposes a
rank-R tensor in R scalar blocks.

In the case of matrices, column rank and row rank are equal; moreover, they are
equal to the minimal number of rank-1 terms in which the matrix can be decomposed.
This is a consequence of the fact that matrices can be diagonalized by means of basis
transformations in their column and row space. On the other hand, tensors cannot in
general be diagonalized by means of basis transformations in their mode-1, mode-2,
and mode-3 vector space. This has led to the distinction between mode-n rank triplet
and rank. Like HOSVD and PARAFAC, these are the two extrema in a spectrum. It is
interesting to note that “the” rank of a higher-order tensor is actually a combination
of the two aspects: one should specify the number of blocks and their size. This is
not clear at the matrix level because of the lack of uniqueness of decompositions in
nonscalar blocks.

Matrices can actually be diagonalized by means of orthogonal (unitary) basis
transformations in their column and row space. On the other hand, by imposing or-
thogonality constraints on PARAFAC one obtains different (approximate) decomposi-
tions, with different properties [8, 35, 36, 42]. Generalizations to block decompositions
can easily be formulated. For instance, the generalization of [8, 42] to decomposi-
tions in rank-(L,M,N) terms is simply obtained by claiming that AH

r · As = 0L×L,
BH

r · Bs = 0M×M , and CH
r · Cs = 0N×N , 1 � r = s � R.

Interestingly enough, the generalization of different aspects of the matrix SVD
most often leads to different tensor decompositions. Although the definition of block
term decompositions is very general, tensor SVDs that do not belong to this class
do exist. For instance, a variational definition of singular values and singular vectors
was generalized in [41]. Although Tucker’s decomposition and the best rank-(L,M,N)
approximation can be obtained by means of a variational approach [13, 15, 61], the
general theory does not fit in the framework of block decompositions.

Block term decompositions have an interesting interpretation in terms of the
decomposition of homogeneous polynomials or multilinear forms. The PARAFAC de-
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composition of a fully symmetric tensor (i.e., a tensor that is invariant under arbitrary
index permutations) can be interpreted in terms of the decomposition of the associ-
ated homogeneous polynomial (quantic) in a sum of powers of linear forms [9]. For
block term decompositions we now have the following. Given the quantic, linear forms
are defined and clustered in subsets. Only within the same subset, products are ad-
missible. The block term decomposition then decomposes the quantic in a sum of
admissible products.

For instance, let P ∈ K
I×I×I be fully symmetric. Let x ∈ K

I be a vector of
unknowns. Associate the quantic p(x) = P •1 xT •2 xT •3 xT to P. Let a PARAFAC
decomposition of P be given by

P =
R∑

r=1

dr ar ◦ ar ◦ ar.

Define yr = xTar, 1 � r � R. Then the quantic can be written as

p(y) =

R∑
r=1

dr y
3
r .

On the other hand, let a decomposition of P in rank-(Lr, Lr, Lr) terms be given by

P =

R∑
r=1

Dr •1 Ar •2 Ar •3 Ar,

in which Dr ∈ K
Lr×Lr×Lr and Ar ∈ K

I×Lr , 1 � r � R. Define ylr = xT (Ar):,l,
1 � l � Lr, 1 � r � R. Then the quantic can be written as

p(y) =
R∑

r=1

Lr∑
l1,l2,l3=1

(Dr)l1l2l3 yl1ryl2ryl3r.

In this paper we have presented EVD-based and Kruskal-type conditions guar-
anteeing essential uniqueness of the decompositions. Important work that remains
to be done is the relaxation of the dimensionality constraints on the blocks in the
Kruskal-type conditions. Some results based on simultaneous matrix diagonalization
are presented in [44]. Also, we have restricted our attention to alternative decomposi-
tions that are “nonsingular.” We should now check whether, for generic block terms,
alternative decompositions in singular terms can exist.

It would be interesting to investigate, given the tensor dimensions I, J , and K,
for which block sizes and number of blocks one obtains a generic (in the sense of
existing with probability one) or a typical (in the sense of existing with probability
different from zero) decomposition. In the context of PARAFAC, generic and typical
rank have been studied in [55, 56, 57, 58].

In this paper we limited ourselves to the study of some algebraic aspects of block
term decompositions. The computation of the decompositions, by means of alternating
least squares algorithms, is addressed in [20]. Some applications are studied in [21,
43, 45].
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1. Introduction.

1.1. Organization of the paper. In the companion paper [11] we introduce
decompositions of a higher-order tensor in several types of block terms. In the present
paper we propose alternating least squares (ALS) algorithms for the computation of
these different decompositions.

In the following subsections we first explain our notation and introduce some
basic definitions. In section 1.4 we briefly recall the Tucker decomposition/higher-
order singular value decomposition (HOSVD) [40, 41, 6, 7, 8] and also the Canonical/
Parallel Factor (CANDECOMP/PARAFAC) decomposition [3, 15] and explain how
they can be computed.

In section 2 we present an ALS algorithm for the computation of the decomposi-
tion in rank-(Lr, Lr, 1) terms. In section 3 we discuss the decomposition in rank-
(L,M,N) terms. Section 4 deals with the type-2 decomposition in rank-(L,M, ·)
terms. Section 5 is a note on degeneracy.

1.2. Notation. We use K to denote R or C when the difference is not important.
In this paper scalars are denoted by lowercase letters (a, b, . . . ), vectors are written in
boldface lowercase (a, b, . . . ), matrices correspond to boldface capitals (A, B, . . . ),
and tensors are written as calligraphic letters (A, B, . . . ). This notation is consistently
used for lower-order parts of a given structure. For instance, the entry with row index
i and column index j in a matrix A, i.e., (A)ij , is symbolized by aij (also (a)i = ai
and (A)ijk = aijk). If no confusion is possible, the ith column vector of a matrix A
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is denoted as ai, i.e., A = [a1 a2 . . .]. Sometimes we will use the MATLAB colon
notation to indicate submatrices of a given matrix or subtensors of a given tensor.
Italic capitals are also used to denote index upper bounds (e.g., i = 1, 2, . . . , I). The
symbol ⊗ denotes the Kronecker product,

A ⊗ B =

⎛
⎜⎝

a11B a12B . . .
a21B a22B . . .

...
...

⎞
⎟⎠ .

Let A = [A1 . . . AR] and B = [B1 . . . BR] be two partitioned matrices. Then the
Khatri–Rao product is defined as the partitionwise Kronecker product and represented
by � [34]:

(1.1) A � B = (A1 ⊗ B1 . . .AR ⊗ BR) .

In recent years, the term “Khatri–Rao product” and the symbol � have mainly been
used in the case where A and B are partitioned into vectors. For clarity, we denote
this particular, columnwise, Khatri–Rao product by �c:

A �c B = (a1 ⊗ b1 . . .aR ⊗ bR) .

The superscripts ·T , ·H , and ·† denote the transpose, complex conjugated transpose,
and Moore–Penrose pseudoinverse, respectively. The operator diag(·) stacks its scalar
arguments in a square diagonal matrix. Analogously, blockdiag(·) stacks its vector
or matrix arguments in a block-diagonal matrix. The (N × N) identity matrix is
represented by IN×N . 1N is a column vector of all ones of length N . The zero tensor
is denoted by O.

1.3. Basic definitions.
Definition 1.1. Consider T ∈ K

I1×I2×I3 and A ∈ K
J1×I1 , B ∈ K

J2×I2 , C ∈
K

J3×I3 . Then the Tucker mode-1 product T •1A, mode-2 product T •2B, and mode-3
product T •3 C are defined by

(T •1 A)j1i2i3 =

I1∑
i1=1

ti1i2i3aj1i1 ∀j1, i2, i3,

(T •2 B)i1j2i3 =

I2∑
i2=1

ti1i2i3bj2i2 ∀i1, j2, i3,

(T •3 C)i1i2j3 =

I3∑
i3=1

ti1i2i3cj3i3 ∀i1, i2, j3,

respectively [5].
In this paper we denote the Tucker mode-n product in the same way as in [4]; in

the literature the symbol ×n is sometimes used [6, 7, 8].
Definition 1.2. The Frobenius norm of a tensor T ∈ K

I×J×K is defined as

‖T ‖ =

⎛
⎝ I∑

i=1

J∑
j=1

K∑
k=1

|tijk|2
⎞
⎠

1
2

.
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Definition 1.3. The outer product A ◦ B of a tensor A ∈ K
I1×I2×...×IP and a

tensor B ∈ K
J1×J2×...×JQ is the tensor defined by

(A ◦ B)i1i2...iP j1j2...jQ = ai1i2...iP bj1j2...jQ

for all values of the indices.
For instance, the outer product T of three vectors a, b, and c is defined by

tijk = aibjck for all values of the indices.
Definition 1.4. A mode-n vector of a tensor T ∈ K

I1×I2×I3 is an In-dimensional
vector obtained from T by varying the index in and keeping the other indices fixed [19].

Mode-n vectors generalize column and row vectors.
Definition 1.5. The mode-n rank of a tensor A is the dimension of the subspace

spanned by its mode-n vectors.
The mode-n rank of a higher-order tensor is the obvious generalization of the

column (row) rank of a matrix.
Definition 1.6. A third-order tensor is rank-(L,M,N) if its mode-1 rank, mode-

2 rank, and mode-3 rank are equal to L, M , and N , respectively.
A rank-(1, 1, 1) tensor is briefly called rank-1. The rank of a tensor is now defined

as follows.
Definition 1.7. The rank of a tensor T is the minimal number of rank-1 tensors

that yield T in a linear combination [24].
It will be useful to write tensor expressions in terms of matrices or vectors. We

therefore define standard matrix and vector representations of a third-order tensor.
Definition 1.8. The standard (JK×I) matrix representation (T )JK×I = TJK×I ,

(KI×J) representation (T )KI×J = TKI×J , and (IJ×K) representation (T )IJ×K =
TIJ×K of a tensor T ∈ K

I×J×K are defined by

(TJK×I)(j−1)K+k,i = (T )ijk,

(TKI×J)(k−1)I+i,j = (T )ijk,

(TIJ×K)(i−1)J+j,k = (T )ijk

for all values of the indices [19]. The standard (IJK×1) vector representation (T )IJK =
tIJK of T is defined by

(tIJK)(i−1)JK+(j−1)K+k = (T )ijk

for all values of the indices.
Note that in these definitions indices to the right vary more rapidly than indices

to the left. Further, the kth (I × J) matrix slice of T ∈ K
I×J×K will be denoted as

TI×J,k.

1.4. HOSVD and PARAFAC. We have now enough material to introduce
the HOSVD [6, 7, 8] and PARAFAC [15] decompositions.

Definition 1.9. A HOSVD of a tensor T ∈ K
I×J×K is a decomposition of T of

the form

(1.2) T = D •1 A •2 B •3 C

in which
• the matrices A ∈ K

I×L, B ∈ K
J×M and C ∈ K

K×N are columnwise or-
thonormal,
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• the core tensor D ∈ K
L×M×N is

− all-orthogonal,

〈DM×N,l1 ,DM×N,l2〉 = trace(DM×N,l1 · DH
M×N,l2) = σ

(1)2

l1
δl1,l2 ,

1 � l1, l2 � L,

〈DN×L,m1 ,DN×L,m2〉 = trace(DN×L,m1
· DH

N×L,m2
) = σ(2)2

m1
δm1,m2

,

1 � m1,m2 � M,

〈DI×J,n1 ,DI×J,n2〉 = trace(DL×M,n1 · DH
L×M,n2

) = σ(3)2

n1
δn1,n2

,

1 � n1, n2 � N ;

− ordered,

σ
(1)2

1 � σ
(1)2

2 � . . . � σ
(1)2

L � 0,

σ
(2)2

1 � σ
(2)2

2 � . . . � σ
(2)2

M � 0,

σ
(3)2

1 � σ
(3)2

2 � . . . � σ
(3)2

N � 0.

Equation (1.2) can be written in terms of the standard (JK × I), (KI × J), and
(IJ ×K) matrix representations of T as follows:

TJK×I = (B ⊗ C) · DMN×L · AT ,(1.3)

TKI×J = (C ⊗ A) · DNL×M · BT ,(1.4)

TIJ×K = (A ⊗ B) · DLM×N · CT .(1.5)

This decomposition is a specific instance of the Tucker decomposition, introduced
in [40, 41]; columnwise orthonormality of A, B, C and all-orthogonality and ordering
of D were suggested in the computational strategy in [40, 41]. The decomposition exists
for any T ∈ K

I×J×K . The matrices A, B, and C can be computed as the matrices of
right singular vectors associated with the nonzero singular values of TJK×I , TKI×J ,
and TIJ×K , respectively. The core tensor is then given by D = T •1 AH •2 BH •3 CH .
The values L, M , and N correspond to the rank of TJK×I , TKI×J , and TIJ×K , i.e.,
they are equal to the mode-1, mode-2, and mode-3 rank of T , respectively. Given the
way (1.2) can be computed, it comes as no surprise that the SVD of matrices and the
HOSVD of higher-order tensors have some analogous properties [6].

Define D̃ = D •3 C. Then

(1.6) T = D̃ •1 A •2 B

is a (normalized) Tucker-2 decomposition of T .
We are often interested in the best approximation of a given tensor T by a tensor

of which the mode-1 rank, mode-2 rank, and mode-3 rank are upper-bounded by
L, M , and N , respectively. Formally, we want to find (A,B,C,D) such that T̂ =
D •1 A •2 B •3 C minimizes the least-squares cost function f(T̂ ) = ‖T − T̂ ‖2. One
difference between matrices and tensors is that this optimal approximation cannot in
general be obtained by simple truncation of the HOSVD. The algorithms discussed
in [7, 8, 14, 17, 20, 21, 22, 23, 44] aim at finding the optimal approximation. These
algorithms can be initialized with the approximation obtained by truncation.

Besides the HOSVD, there exist other ways to generalize the SVD of matrices.
The most well known is CANDECOMP/PARAFAC [3, 15].
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Definition 1.10. A canonical or parallel factor decomposition (CANDE-
COMP/PARAFAC) of a tensor T ∈ K

I×J×K is a decomposition of T as a linear
combination of rank-1 terms:

(1.7) T =
R∑

r=1

ar ◦ br ◦ cr.

In terms of the standard matrix representations of T , decomposition (1.7) can be
written as

TJK×I = (B �c C) · AT ,(1.8)

TKI×J = (C �c A) · BT ,(1.9)

TIJ×K = (A �c B) · CT .(1.10)

In terms of the (IJK×1) vector representation of T , the decomposition can be written
as

(1.11) TIJK = (A �c B �c C) ·

⎛
⎜⎝

1
...
1

⎞
⎟⎠ .

PARAFAC components are usually estimated by minimization of the quadratic
cost function

(1.12) f(A,B,C) = ‖T −
R∑

r=1

ar ◦ br ◦ cr‖2.

This is most often done by means of an ALS algorithm, in which the vectors are up-
dated mode per mode [3, 37]. Since PARAFAC is trilinear in its arguments, updating
A, given B and C, is just a linear least squares problem. The same holds for updating
B, given A and C, and updating C, given A and B. The algorithm is outlined in
Table 1.1. The normalization of B and C, in steps 2 and 3, respectively, is meant to
avoid over- and underflow. Scaling factors are absorbed in the matrix A. Note that
the matrices B �c C, C �c A, and A �c B have to have at least as many rows as
columns and that they have to be full column rank.

ALS iterations are sometimes slow. In addition, it is sometimes observed that the
algorithm moves through a “swamp”: the algorithm seems to converge, but then the
convergence speed drastically decreases and remains small for several iteration steps,
after which it may suddenly increase again. Recently, it has been understood that
the multilinearity of PARAFAC allows for the determination of the optimal step size,
which improves convergence [33].

In many applications one can assume that A and B are full column rank (this
implies that R � min(I, J)) and that C does not contain collinear vectors. Assume
for convenience that the values c21, . . . , c2R are nonzero, such that TI×J,2 is rank-
R, and that the values c11/c21, . . . , c1R/c2R are mutually different. (If this is not
the case, then we can consider linear combinations of slices such that the following
reasoning applies.) Then A follows from the eigenvalue decomposition (EVD) TI×J,1 ·
T†

I×J,2 = A · diag(c11/c21, . . . , c1R/c2R) · A†. In other words, the columns of (AT )†

are generalized eigenvectors of the pencil (TT
I×J,1,T

T
I×J,2); see [1, 13] and references

therein. After having found A, matrix B may, up to a scaling of its columns, be
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Table 1.1

ALS algorithm for CANDECOMP/PARAFAC.

- Initialize B, C
- Iterate until convergence:

1. Update A:

A←
[
(B�c C)† ·TJK×I

]T

2. Update B:

B̃ =
[
(C�c A)† ·TKI×J

]T

For r = 1, . . . , R: br ← b̃r/‖b̃r‖
3. Update C:

C̃ =
[
(A�c B)† ·TIJ×K

]T

For r = 1, . . . , R: cr ← c̃r/‖c̃r‖

obtained from (A† ·TI×J,2)
T = B·diag(c21, . . . , c2R). Matrix C may then be computed

as
[
(A �c B)† · TIJ×K

]T
. The EVD solution may subsequently be used to initialize

the ALS algorithm. This approach has been proposed in [2, 26, 35, 36].
From a numerical point of view, it is preferable to take all the matrix slices

of T into account, instead of only two of them. We therefore proposed to compute
the solution by means of simultaneous matrix diagonalization in [9]. It was shown
in [10] that the solution can still be obtained by means of a simultaneous matrix
diagonalization when T is tall in its third mode (meaning that R � K) and R(R−1) �
I(I − 1)J(J − 1)/2.

In [32] a Gauss–Newton method is described, in which all the factors are up-
dated simultaneously; in addition, the inherent indeterminacy of the decomposition
has been fixed by adding a quadratic regularization constraint on the component en-
tries. Instead of the least squares error (1.12), one can also minimize the least absolute
error. To this end, an alternating linear programming algorithm as well as a weighted
median filtering iteration are derived in [42].

2. Decomposition in rank-(Lr, Lr, 1) terms.

2.1. Definition.
Definition 2.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(Lr, Lr, 1) terms, 1 � r � R, is a decomposition of T of the form

(2.1) T =

R∑
r=1

(Ar · BT
r ) ◦ cr,

in which the matrix Ar ∈ K
I×Lr and the matrix Br ∈ K

J×Lr are rank-Lr, 1 � r � R.
Define A = [A1 . . .AR], B = [B1 . . .BR], C = [c1 . . . cR]. In terms of the standard

matrix representations of T , (2.1) can be written as

TIJ×K = [(A1 �c B1)1L1 . . . (AR �c BR)1LR
] · CT ,(2.2)

TJK×I = (B � C) · AT ,(2.3)

TKI×J = (C � A) · BT .(2.4)
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Table 2.1

ALS algorithm for decomposition in rank-(Lr, Lr, 1) terms.

- Initialize B, C
- Iterate until convergence:

1. Update A:

A←
[
(B�C)† ·TJK×I

]T

2. Update B:

B̃ =
[
(C�A)† ·TKI×J

]T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C:

C̃ =
{
[(A1 �c B1)1L1

. . . (AR �c BR)1LR
]† ·TIJ×K

}T

For r = 1, . . . , R: cr ← c̃r/‖c̃r‖

2.2. Algorithm. Like PARAFAC, the decomposition in rank-(Lr, Lr, 1) terms
is trilinear in the component matrices A, B, and C. This means that updating A,
given B and C, is just a linear least squares problem. The same holds for updating B,
given A and C, and updating C, given A and B. The update rules follow directly from
(2.2)–(2.4). The algorithm is outlined in Table 2.1. The normalization in steps 2 and 3
are meant to avoid under- and overflow. Moreover, the normalization in step 2 prevents
the submatrices of B from becoming ill-conditioned. Analogous to the situation for
PARAFAC, the matrices B�c C, C�c A, and [(A1 �c B1)1L1

. . . (AR �c BR)1LR
]

have to have at least as many rows as columns and have to be full column rank.

If A and B are full column rank and C does not have collinear vectors, then this
algorithm may be initialized by means of a (generalized) EVD, as explained in the
proof of [11, Theorem 4.1].

2.3. Numerical experiments. We generate tensors T̃ ∈ C
5×6×5 in the follow-

ing way:

(2.5) T̃ =
T

‖T ‖ + σN
N
‖N‖ ,

in which T can be decomposed as in (2.1). We consider R = 3 rank-(2, 2, 1) terms, i.e.,
Ar ∈ C

5×2, Br ∈ C
6×2, Cr ∈ C

6×1, 1 � r � 3. The decomposition of T is essentially
unique by [11, Theorem 4.4]. The second term in (2.5) is a noise term. The entries
of A, B, C and N are drawn from a zero-mean unit-variance Gaussian distribution.
The parameter σN controls the noise level.

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖C − Ĉ‖/‖C‖, in

which Ĉ is the estimate of C, optimally ordered and scaled. The median results are
plotted in Figure 2.1. We plot the median instead of the mean because, in some of the
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Fig. 2.1. Median relative error obtained in the first experiment in section 2.3.

runs, the convergence became too slow for the algorithm to find a sufficiently accurate
estimate in a reasonable time.

In a second experiment, we generate tensors T̃ ∈ C
10×10×10 as in (2.5). We

consider R = 5 rank-(2, 2, 1) terms, i.e., Ar ∈ C
10×2, Br ∈ C

10×2, Cr ∈ C
10×1,

1 � r � 5. The five rank-(2, 2, 1) terms are scaled such that their Frobenius norm
equals 1, 3.25, 5.5, 7.75, and 10, respectively. The fact that there is a difference of 20
dB between the strongest and the weakest term makes this problem quite hard. The
decomposition of T is essentially unique by [11, Theorem 4.1]. In Figure 2.2 we show
the median accuracy obtained when the algorithm in Table 2.1 is initialized (i) by
means of a (generalized) EVD, as explained in the proof of [11, Theorem 4.1], and (ii)
by means of a random starting value. It is clear that the global optimum is not found
when the algorithm is initialized randomly. However, the initialization by means of
a (generalized) EVD does lead to the global solution when the signal-to-noise ratio
(SNR) is sufficiently high. As a matter of fact, the (generalized) EVD yields the exact
solution when the data are noise-free.
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Fig. 2.2. Median relative error obtained in the second experiment in section 2.3.
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3. Decomposition in rank-(L, M, N) terms.

3.1. Definition.
Definition 3.1. A decomposition of a tensor T ∈ K

I×J×K in a sum of rank-
(L,M,N) terms is a decomposition of T of the form

(3.1) T =

R∑
r=1

Dr •1 Ar •2 Br •3 Cr,

in which Dr ∈ K
L×M×N are full rank-(L,M,N) and in which Ar ∈ K

I×L (with
I � L), Br ∈ K

J×M (with J � M), and Cr ∈ K
K×N (with K � N) are full column

rank, 1 � r � R.
Define partitioned matrices A = [A1 . . .AR], B = [B1 . . .BR], and C = [C1 . . .CR].

In terms of the standard matrix representations of T , (3.1) can be written as

TJK×I = (B � C) · blockdiag((D1)MN×L, . . . , (DR)MN×L) · AT ,(3.2)

TKI×J = (C � A) · blockdiag((D1)NL×M , . . . , (DR)NL×M ) · BT ,(3.3)

TIJ×K = (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) · CT .(3.4)

In terms of the (IJK×1) vector representation of T , the decomposition can be written
as

(3.5) tIJK = (A � B � C) ·

⎛
⎜⎝

(D1)LMN

...
(DR)LMN

⎞
⎟⎠ .

3.2. Algorithm. The decomposition in rank-(L,M,N) terms is quadrilinear
in its factors A, B, C, and D. Hence, the conditional update of A, given B, C,
and D, is a linear least squares problem. The same holds for conditional updates
of B, C, and D. The update rules follow directly from (3.2)–(3.5). The algorithm is
outlined in Table 3.1. This algorithm is a generalization of the algorithm in [43] for the
computation of the best rank-(L,M,N) approximation of a given tensor. The matrices
(B�C) ·blockdiag((D1)MN×L, . . . , (DR)MN×L), (C�A) ·blockdiag((D1)NL×M , . . . ,
(DR)NL×M ), and (A � B) · blockdiag((D1)LM×N , . . . , (DR)LM×N ) have to have at
least as many rows as columns and have to be full column rank.

The order of the updates in Table 3.1 is not mandatory. We have observed in nu-
merical experiments that it is often advantageous to alternate between a few updates
of A and D, then alternate between a few updates of B and D, and so on.

3.3. Numerical experiments. We generate tensors T̃ ∈ C
5×5×7 as in (2.5).

The tensors T can now be decomposed as in (3.1). We consider R = 2 terms char-
acterized by Ar ∈ C

5×2, Br ∈ C
5×2, Cr ∈ C

7×3, and Dr ∈ C
2×2×3, 1 � r � 2. The

entries of Ar, Br, Cr, Dr, and N are drawn from a zero-mean unit-variance Gaussian
distribution. The decomposition of T is essentially unique by [11, Theorem 5.1].

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖C−Ĉ‖/‖C‖, in which

Ĉ is the estimate of C, of which the submatrices are optimally ordered and multiplied
from the right by a (3 × 3) matrix. The median results are plotted in Figure 3.1.

Next, we check what happens if the algorithm in Table 3.1 is used for the compu-
tation of the decomposition in rank-(L,L, 1) terms. In this case, the tensors Dr are of
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Table 3.1

ALS algorithm for decomposition in rank-(L,M,N) terms.

- Initialize B, C, D
- Iterate until convergence:

1. Update A:

Ã =
[
blockdiag((D1)†MN×L, . . . , (DR)†MN×L) · (B�C)† ·TJK×I

]T

For r = 1, . . . , R: QR-factorization: Ãr = QR, Ar ← Q
2. Update B:

B̃ =
[
blockdiag((D1)†NL×M , . . . , (DR)†NL×M ) · (C�A)† ·TKI×J

]T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C:

C̃ =
[
blockdiag((D1)†LM×N , . . . , (DR)†LM×N ) · (A�B)† ·TIJ×K

]T

For r = 1, . . . , R: QR-factorization: C̃r = QR, Cr ← Q
4. Update D:

⎛
⎜⎝

(D1)LMN

...
(DR)LMN

⎞
⎟⎠← (A�B�C)† · tIJK
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Fig. 3.1. Median relative error obtained in the first experiment in section 3.3.

dimension (L×L×1). The data are generated as in the first experiment in section 2.3.
We compare three algorithms: (i) the algorithm of Table 2.1, which we denote as Alg
(L,L, 1), (ii) the algorithm of Table 3.1, which we denote as Alg (L,M,N), and (iii)
a variant of the algorithm of Table 3.1 in which one alternates between a few updates
of A and D, then alternates between a few updates of B and D, and so on, as ex-
plained at the end of section 3.2. The latter algorithm is denoted as Alg (L,M,N)∗.
The inner iteration is terminated if the Frobenius norm of the difference between two
consecutive approximations of T drops below 1e−6, with a maximum of 10 inner iter-
ations. We observed that most of the time not more than two or three inner iterations
were carried out. We computed the results for one and two random initializations,
respectively.
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The median results for accuracy and computation time are plotted in Figures 3.2
and 3.3, respectively. From Figure 3.2 it is clear that Alg (L,M,N) does not find the
global optimum if it is initialized only once. One should perform inner iterations, or
initialize several times. However, both remedies increase the computational cost, as
is clear from Figure 3.3. Given that Alg (L,M,N) is by itself more expensive than
Alg (L,L, 1), we conclude that it is advantageous to compute the decomposition in
rank-(L,L, 1) terms by means of Alg (L,L, 1).
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Fig. 3.2. Median relative error obtained in the second experiment in section 3.3.
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Fig. 3.3. Median computation time in the second experiment in section 3.3.

4. Type-2 decomposition in rank-(L, M, ·) terms.

4.1. Definition.
Definition 4.1. A type-2 decomposition of a tensor T ∈ K

I×J×K in a sum of
rank-(L,M, ·) terms is a decomposition of T of the form

(4.1) T =
R∑

r=1

Cr •1 Ar •2 Br,

in which Cr ∈ K
L×M×K (with mode-1 rank equal to L and mode-2 rank equal to M),

and in which Ar ∈ K
I×L (with I � L) and Br ∈ K

J×M (with J � M) are full column
rank, 1 � r � R.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1078 LIEVEN DE LATHAUWER AND DIMITRI NION

Table 4.1

ALS algorithm for type-2 decomposition in rank-(L,M, ·) terms.

- Initialize B, C1, . . . , CR
- Iterate until convergence:

1. Update A:

Ã =
{
[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L]† ·TJK×I

}T

For r = 1, . . . , R: QR-factorization: Ãr = QR, Ar ← Q
2. Update B:

B̃ =
{
[(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M )]† ·TKI×J

}T

For r = 1, . . . , R: QR-factorization: B̃r = QR, Br ← Q
3. Update C1, . . . , CR: ⎛

⎜⎜⎝
(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎟⎠← (A�B)† ·TIJ×K

Define partitioned matrices A = [A1 . . .AR] and B = [B1 . . .BR]. In terms of
the standard matrix representations of T , (4.1) can be written as

TIJ×K = (A � B) ·

⎛
⎜⎝

(C1)(LM×K)

...
(CR)(LM×K)

⎞
⎟⎠ ,(4.2)

TJK×I = [(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L] · AT ,(4.3)

TKI×J = [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ] · BT .(4.4)

4.2. Algorithm. Since the type-2 decomposition in rank-(L,M, ·) terms is tri-
linear in A, B, and C, an ALS algorithm consists of successive linear least squares
problems. The update rules for A, B, and C follow directly from (4.3), (4.4), and
(4.2), respectively. The algorithm is outlined in Table 4.1. The matrices A � B,
[(C1 •2 B1)JK×L . . . (CR •2 BR)JK×L], and [(C1 •1 A1)KI×M . . . (CR •1 AR)KI×M ]
have to have at least as many rows as columns and have to be full column rank.

4.3. Numerical experiment. We generate tensors T̃ ∈ C
5×6×6 as in (2.5). The

tensors T can now be decomposed as in (4.1). We consider R = 3 terms characterized
by Ar ∈ C

5×2, Br ∈ C
6×2, and Cr ∈ C

2×2×6, 1 � r � 3. The entries of Ar, Br,
Cr, and N are drawn from a zero-mean unit-variance Gaussian distribution. The
decomposition of T is essentially unique by [11, Example 3].

A Monte Carlo experiment consisting of 200 runs was carried out. The algorithm
was initialized with three random starting values.

The accuracy is measured in terms of the relative error e = ‖B−B̂‖/‖B‖, in which

B̂ is the estimate of B, of which the submatrices are optimally ordered and multiplied
from the right by a (2 × 2) matrix. The median results are plotted in Figure 4.1.

5. Degeneracy. In the real field, PARAFAC algorithms sometimes show the
following behavior. The norm of individual terms in (1.12) goes to infinity, but these
terms almost completely cancel each other, such that the overall error continues to
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Fig. 4.1. Median relative error obtained in the experiment in section 4.3.

decrease. This phenomenon is known as “degeneracy” [16, 25, 27]. It is caused by the
fact that for R̃ � 2, the set

UR̃ = {T ∈ R
I×J×K |rank(T ) � R̃}

is not closed [12, 25, 38]. The set of tensors that are the sum of at most R̃ � 2
rank-(L,M,N) terms,

VR̃ = {T ∈ R
I×J×K |T decomposable as in (3.1), with R � R̃ and R̃ � 2},

is not closed either. We give an explicit example that is a straightforward generaliza-
tion of the example given for PARAFAC in [12]. Analogous results hold for the other
types of block term decompositions.

Let I1 ∈ R
4×2 and I2 ∈ R

4×2 consist of the first (resp., last) two columns of I4×4.
Consider the tensor E ∈ R

2×2×2 defined by

e111 = e221 = e122 = 1,

e121 = e211 = e112 = e212 = e222 = 0.

This tensor is rank-3 in R; see [5, pp. 21–22] and [18, section 3]. Now define T ∈ R
4×4×4

as follows:

T (1 : 2, 1 : 2, 1 : 2) = T (3 : 4, 3 : 4, 1 : 2) = T (1 : 2, 3 : 4, 3 : 4) = E ,
T (3 : 4, 1 : 2, 1 : 2) = T (3 : 4, 1 : 2, 3 : 4) = T (1 : 2, 3 : 4, 1 : 2)

= T (1 : 2, 1 : 2, 3 : 4) = T (3 : 4, 3 : 4, 3 : 4) = O2×2×2.

This tensor can be decomposed in three rank-(2, 2, 2) terms:

(5.1) T = E •1 I1 •2 I1 •3 I1 + E •1 I1 •2 I2 •3 I2 + E •1 I2 •2 I2 •3 I1.

However, it cannot be decomposed in two rank-(2, 2, 2) terms. We prove this by con-
tradiction. Assume that a decomposition in two rank-(2, 2, 2) terms does exist:

T = D1 •1 A1 •2 B1 •3 C1 + D2 •1 A2 •2 B2 •3 C2.(5.2)
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Fig. 5.1. Visualization of the degeneracy in Example 1. Left: evolution of the approximation
error. Right: evolution of the norm of the rank-(2, 2, 2) terms.

We can normalize this decomposition such that the first row of C = [C1 C2] is
equal to (1 0 1 0), and D1 •3 (1 0) = D2 •3 (1 0) = I2×2. Define A = [A1 A2] and
B = [B1 B2]. We have TI×J,1 = I4×4 = A · BT . Hence, A and B are nonsingular.
Define X = [x1 . . . x4] = A−1 and Y = [y1 . . . y4] = B−1. From (5.2) we have
that all the (I × J) slices of T̃ = T •1 X •2 Y are block-diagonal, consisting of two
(2 × 2) blocks. From the definition of T , we have that T̃I×J,4 = x1 · yT

4 . From the
block-diagonality of this rank-1 matrix follows that, without loss of generality, we can
assume that the third and fourth entries of x1 and y4 are zero. Further, we have that
T̃I×J,3 = x1 · yT

3 + x2 · yT
4 . From the block-diagonality of this rank-2 matrix and the

structure of x1 and y4 follows that the third and fourth entries of x2 and y3 are zero.
Finally, we have that T̃I×J,2 = x1 · yT

2 + x3 · yT
4 . From the block-diagonality of this

rank-2 matrix and the structure of x1 and y4 follows that the third and fourth entries
of x3 and y2 are zero. We have a contradiction with the fact that X and Y are full
rank. We conclude that T cannot be decomposed in a sum of two rank-(2, 2, 2) terms.

On the other hand, there does not exist an approximation T̂ , consisting of a
sum of two rank-(2, 2, 2) terms, that is optimal in the sense of minimizing the error
‖T − T̂ ‖. Define T̂n as follows, for increasing integer values of n:

(5.3) T̂n = E •1 I1 •2 (I1 − nI2) •3 I1 + E •1

(
I1 +

1

n
I2

)
•2 (nI2) •3

(
I1 +

1

n
I2

)
.

We have

T̂n = T +
1

n
E •1 I2 •2 I2 •3 I2.

Clearly, ‖T − T̂n‖ goes to zero as n goes to infinity. However, at the same time the
norms of the individual terms in (5.3) go to infinity. This shows that degeneracy also
exists for block term decompositions.

Example 1. Figure 5.1 shows a typical degeneracy. We constructed a tensor T as
in (5.1) with E , however, defined by

e111 = −14 e121 = −4 e211 = 6 e221 = 7,

e112 = 8 e122 = 13 e212 = 7 e222 = 7.

The eigenvalues of EI×J,1 · E−1
I×J,2 are complex, so E is rank-3 in R. The algorithm

in Table 3.1 was used to approximate T by a sum of two rank-(2, 2, 2) terms. The
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left plot shows a monotonous decrease of the approximation error. The right plot
shows the evolution of the norm of the rank-(2, 2, 2) terms (the curves for both terms
coincide).

6. Conclusion. We have derived ALS algorithms for the different block term
decompositions that were introduced in [11]. ALS is actually a very simple approach.
For PARAFAC, combining ALS with (exact) line search improves the performance
[33]. An other technique that has proved useful for PARAFAC is the Levenberg–
Marquardt type optimization [39]. When the tensor is tall in one mode, PARAFAC
may often be computed by means of a simultaneous matrix decomposition [10]. Since
the submission of this manuscript, we have been studying generalizations of such
methods to block term decompositions [28, 29, 30, 31].
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TENSOR RANK AND THE ILL-POSEDNESS OF THE BEST
LOW-RANK APPROXIMATION PROBLEM∗

VIN DE SILVA† AND LEK-HENG LIM‡

Abstract. There has been continued interest in seeking a theorem describing optimal low-rank
approximations to tensors of order 3 or higher that parallels the Eckart–Young theorem for matrices.
In this paper, we argue that the naive approach to this problem is doomed to failure because, unlike
matrices, tensors of order 3 or higher can fail to have best rank-r approximations. The phenomenon
is much more widespread than one might suspect: examples of this failure can be constructed over
a wide range of dimensions, orders, and ranks, regardless of the choice of norm (or even Brègman
divergence). Moreover, we show that in many instances these counterexamples have positive volume:
they cannot be regarded as isolated phenomena. In one extreme case, we exhibit a tensor space
in which no rank-3 tensor has an optimal rank-2 approximation. The notable exceptions to this
misbehavior are rank-1 tensors and order-2 tensors (i.e., matrices). In a more positive spirit, we
propose a natural way of overcoming the ill-posedness of the low-rank approximation problem, by
using weak solutions when true solutions do not exist. For this to work, it is necessary to characterize
the set of weak solutions, and we do this in the case of rank 2, order 3 (in arbitrary dimensions).
In our work we emphasize the importance of closely studying concrete low-dimensional examples as
a first step toward more general results. To this end, we present a detailed analysis of equivalence
classes of 2×2×2 tensors, and we develop methods for extending results upward to higher orders and
dimensions. Finally, we link our work to existing studies of tensors from an algebraic geometric point
of view. The rank of a tensor can in theory be given a semialgebraic description; in other words, it
can be determined by a system of polynomial inequalities. We study some of these polynomials in
cases of interest to us; in particular, we make extensive use of the hyperdeterminant Δ on R

2×2×2.

Key words. numerical multilinear algebra, tensors, multidimensional arrays, multiway arrays,
tensor rank, tensor decompositions, low-rank tensor approximations, hyperdeterminants, Eckart–
Young theorem, principal component analysis, parafac, candecomp, Brègman divergence of tensors
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1. Introduction. Given an order-k tensor A ∈ R
d1×···×dk , one is often required

to find a best rank-r approximation to A—in other words, determine vectors xi ∈
R

d1 ,yi ∈ R
d2 , . . . , zi ∈ R

dk , i = 1, . . . , r, which minimize

‖A− x1 ⊗ y1 ⊗ · · · ⊗ z1 − · · · − xr ⊗ yr ⊗ · · · ⊗ zr‖;

or, in short,

(approx(A, r)) argminrank⊗(B)≤r‖A−B‖.

Here ‖·‖ denotes some choice of norm on R
d1×···×dk . When k = 2, the problem is

completely resolved for unitarily invariant norms on R
m×n with the Eckart–Young
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theorem [28], which states that if

A = UΣV =
∑rank(A)

i=1
σiui ⊗ vi, σi ≥ σi+1,

is the singular value decomposition of A ∈ R
m×n, then a best rank-r approximation

is given by the first r terms in the above sum [33]. The best rank-r approximation
problem for higher order tensors is a problem of central importance in the statistical
analysis of multiway data [11, 16, 20, 21, 45, 50, 38, 56, 66, 67, 75, 76].

It is therefore not surprising that there has been continued interest in finding
a satisfactory “singular value decomposition” and an “Eckart–Young theorem”-like
result for tensors of higher order. The view expressed in the conclusion of [46] is
representative of such efforts, and we reproduce it here:

An Eckart–Young type of best rank-r approximation theorem for
tensors continues to elude our investigations but can perhaps eventu-
ally be attained by using a different norm or yet other definitions of
orthogonality and rank.

It will perhaps come as a surprise to the reader that the problem of finding an
“Eckart–Young-type theorem” is ill-founded because of a more fundamental difficulty:
the best rank-r approximation problem approx(A, r) has no solution in general! This
paper seeks to provide an answer to this and several related questions.

1.1. Summary. Since this is a long paper, we present an “executive summary”
of selected results in this section and the next. We begin with the five main objectives
of this article:

1. approx(A, r) is ill-posed for many r. We will show that, regardless of
the choice of norm, the problem of determining a best rank-r approxima-
tion for an order-k tensor in R

d1×···×dk has no solution in general for r =
2, . . . ,min{d1, . . . , dk} and k ≥ 3. In other words, the best low-rank approx-
imation problem for tensors is ill-posed for all orders (higher than 2), all
norms, and many ranks.

2. approx(A, r) is ill-posed for many A. We will show that the set of tensors
that fail to have a best low-rank approximation has positive volume. In other
words, such failures are not rare; if one randomly picks a tensor A in a suitable
tensor space, then there is a nonzero probability that A will fail to have a
best rank-r approximation for some r < rank⊗(A).

3. Weak solutions to approx(A, r). We will propose a natural way to overcome
the ill-posedness of the best rank-r approximation problem with the introduc-
tion of “weak solutions,” which we explicitly characterize in the case r = 2,
k = 3.

4. Semialgebraic description of tensor rank. From the Tarski–Seidenberg theo-
rem in model theory [72, 65] we will deduce the following: for any d1, . . . , dk,
there exists a finite number of polynomial functions, Δ1, . . . ,Δm, defined
on R

d1×···×dk such that the rank of any A ∈ R
d1×···×dk is completely deter-

mined by the signs of Δ1(A), . . . ,Δm(A). We work this out in the special
case R

2×2×2.
5. Reduction. We will give techniques for reducing certain questions about ten-

sors (orbits, invariants, limits) from high-dimensional tensor spaces to lower-
dimensional tensor spaces. For instance, if two tensors in R

c1×···×ck lie in
distinct GLc1,...,ck(R)-orbits, then they lie in distinct GLd1,...,dk

(R)-orbits in
R

d1×···×dk for any di ≥ ci.
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The first objective is formally stated and proved in Theorem 4.10. The two notable
exceptions where approx(A, r) has a solution are the cases r = 1 (approximation by
rank-1 tensors) and k = 2 (A is a matrix). The standard way to prove these assertions
is to use brute force: show that the sets where the approximators are to be found may
be defined by polynomial equations. We will provide alternative elementary proofs of
these results in Propositions 4.2 and 4.3 (see also Proposition 4.4).

The second objective is proved in Theorem 8.4, which holds true on R
d1×d2×d3 for

arbitrary d1, d2, d3 ≥ 2. Stronger results can hold in specific cases: in Theorem 8.1,
we will give an instance where every rank-r tensor fails to have a best rank-(r − 1)
approximator.

The third objective is primarily possible because of the following theorem, which
asserts that the boundary of the set of rank-2 tensors can be explicitly parameterized.
The proof, and a discussion of weak solutions, is given in section 5.

Theorem 1.1. Let d1, d2, d3 ≥ 2. Let An ∈ R
d1×d2×d3 be a sequence of tensors

with rank⊗(An) ≤ 2 and

lim
n→∞

An = A,

where the limit is taken in any norm topology. If the limiting tensor A has rank higher
than 2, then rank⊗(A) must be exactly 3, and there exist pairs of linearly independent
vectors x1,y1 ∈ R

d1 , x2,y2 ∈ R
d2 , x3,y3 ∈ R

d3 such that

(1.1) A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

Furthermore, the above result is not vacuous since

An = n

(
x1 +

1

n
y1

)
⊗
(
x2 +

1

n
y2

)
⊗
(
x3 +

1

n
y3

)
− nx1 ⊗ x2 ⊗ x3

is an example of a sequence that converges to A.
A few conclusions can immediately be drawn from Theorem 1.1: (i) the boundary

points of all order-3 rank-2 tensors can be completely parameterized by (1.1); (ii) a
sequence of order-3 rank-2 tensors cannot “jump rank” by more than 1; (iii) A in
(1.1), in particular, is an example of a tensor that has no best rank-2 approximation.

The formal statements and proofs of the fourth objective appear in section 6. The
fifth objective is exemplified by our approach throughout the paper; some specific
technical tools are discussed in sections 5.1 and 7.5.

On top of these five objectives, we pick up the following smaller results along the
way. Some of these results address frequently asked questions in tensor approximation.
They are discussed in sections 4.3–4.7, respectively.

6. Divergence of coefficients. Whenever a low-rank sequence of tensors converges
to a higher-rank tensor, some of the terms in the sequence must blow up. In
examples of minimal rank, all the terms blow up.

7. Maximum rank. For k ≥ 3, the maximum rank of an order-k tensor in
R

d1×···×dk (where di ≥ 2) always exceeds min(d1, . . . , dk). In contrast, for
matrices min(d1, d2) does bound the rank.

8. Tensor rank can leap large gaps. Conclusion (ii) above does not generalize to
rank r > 2. We will show that a sequence of fixed rank tensors can converge
to a limiting tensor of arbitrarily higher rank.

9. Brègman divergences do not help. If we replace the norm by any continuous
measure of “nearness” (including nonmetric measures like Brègman diver-
gences), it does not change the ill-foundedness of approx(A, r).
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10. Leibniz tensors. We will construct a rich family of sequences of tensors with
degenerate limits, labeled by partial derivative operators. The special case
L3(1) is in fact the principal example (1.1) in this paper.

1.2. Relation to prior work. The existence of tensors that can fail to have
a best rank-r approximation has been known to algebraic geometers as early as the
19th century, albeit in a different language—the locus of rth secant planes to a Segre
variety may not define a (closed) algebraic variety. It is also known to computa-
tional complexity theorists as the phenomenon underlying the concept of border rank
[5, 6, 12, 48, 54] and is related to (but different from) what chemometricians and
psychometricians call “candecomp/parafac degeneracy” [49, 51, 63, 68, 69]. We
do not claim to be the first to have found such an example—that honor belongs to
Bini, Capovani, Lotti, and Romani, who gave an explicit example of a sequence of
rank-5 tensors converging to a rank-6 tensor in 1979 [7]. The novelty of Theorem 1.1
is not in demonstrating that a tensor may be approximated arbitrarily well by tensors
of strictly lower rank but in characterizing all such tensors in the order-3 rank-2 case.

Having said this, we would like to point out that the ill-posedness of the best rank-
r approximation problem for high-order tensors is not at all well known, as is evident
from the paragraph quoted earlier as well as other discussions in recent publications
[44, 45, 46, 47, 80]. One likely reason is that in algebraic geometry, computational
complexity, chemometrics, and psychometrics, the problem is neither stated in the
form nor viewed in the light of obtaining a best low-rank approximation with respect
to a choice of norm (we give several equivalent formulations of approx(A, r) in Propo-
sition 4.1). As such, one goal of this paper will be to debunk, once and for all, the
question of finding best low-rank approximations for tensors of order 3 or higher. As
we stated earlier (as our first and second objectives), our contribution will be to show
that such failures (i) can and will occur for tensors of any order higher than 2, (ii)
will occur for tensors of many different ranks, (iii) will occur regardless of the choice
of norm, and (iv) will occur with nonzero probability. Formally, we have the following
two theorems (which will appear as Theorems 4.10 and 8.4 subsequently).

Theorem 1.2. Let k ≥ 3 and d1, . . . , dk ≥ 2. For any s such that 2 ≤ s ≤
min{d1, . . . , dk}, there exists A ∈ R

d1×···×dk with rank⊗(A) = s such that A has no
best rank-r approximation for some r < s. The result is independent of the choice of
norms.

Theorem 1.3. If d1, d2, d3 ≥ 2, then the set

{A ∈ R
d1×d2×d3 | A does not have a best rank-2 approximation}

has positive volume; indeed, it contains a nonempty open set.

A few features distinguish our work in this paper from existing studies in algebraic
geometry [13, 14, 54, 55, 79] and algebraic computational complexity [2, 3, 5, 6, 7, 8,
12, 70]: (i) we are interested in tensors over R as opposed to tensors over C (it is well
known that the rank of a tensor is dependent on the underlying field; cf. (7.5) and
[4]); (ii) our interest is not limited to order-3 tensors (as is often the case in algebraic
computational complexity)—we would like to prove results that hold for tensors of
any order k ≥ 3; (iii) since we are interested in questions pertaining to approximations
in the norm, the Euclidean (norm-induced) topology will be more relevant than the
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Zariski topology1 on the tensor product spaces—note in particular that the claim
that a set is not closed in the Euclidean topology is a stronger statement than the
corresponding claim in Zariski topology.

Our work in this paper in general, and in section 4.2 in particular, is related to
studies of “candecomp/parafac degeneracy” or “diverging candecomp/parafac

components” in psychometrics and chemometrics [49, 51, 63, 68, 69]. Diverging coef-
ficients are a necessary consequence of the ill-posedness of approx(A, r) (see Proposi-
tions 4.8 and 4.9). In fact, examples of “k-factor divergence” abound for arbitrary k—
see sections 4.4 and 4.7 for various constructions.

Section 5.4 discusses how the nonexistence of a best rank-r approximation poses
serious difficulties for multilinear statistical models based on such approximations.
In particular, we will see (i) why it is meaningless to ask for a “good” rank-r ap-
proximation when a best rank-r approximation does not exist; (ii) why even a small
perturbation to a rank-r tensor can result in a tensor that has no best rank-r ap-
proximation; and (iii) why the computational feasibility of finding a “good” rank-r
approximation is questionable.

1.3. Outline of the paper. Section 2 introduces the basic algebra of tensors
and k-way arrays. Section 3 defines tensor rank and gives some of its known (and
unknown) algebraic properties. Section 4 studies the topological properties of tensor
rank and the phenomenon of rank-jumping. Section 5 characterizes the problematic
tensors in R

2×2×2 and discusses the implications for approximation problems. Sec-
tion 6 gives a short exposition of the semialgebraic point of view. Section 7 classifies
tensors in R

2×2×2 by orbit type. The orbit structure of tensor spaces is studied from
several different aspects. Section 8 is devoted to the result that failure of approx(A, 2)
occurs on a set of positive volume.

2. Tensors. Even though tensors are well-studied objects in the standard grad-
uate mathematics curriculum [1, 27, 41, 52, 64] and more specifically in multilinear
algebra [9, 34, 59, 60, 62, 78], a “tensor” continues to be viewed as a mysterious object
by outsiders. We feel that we should say a few words to demystify the term.

In mathematics, the question “What is a vector?” has the simple answer “A
vector is an element of a vector space”—in other words, a vector is characterized by
the axioms that define the algebraic operations on a vector space. In physics, however,
the question “What is a vector?” often means “What kinds of physical quantities can
be represented by vectors?” The criterion has to do with the change of basis theorem:
an n-dimensional vector is an “object” that is represented by n real numbers once
a basis is chosen only if those real numbers transform themselves as expected when
one changes the basis. For exactly the same reason, the meaning of a tensor is
obscured by its more restrictive use in physics. In physics (and also engineering), a
tensor is an “object” represented by a k-way array of real numbers that transforms
according to certain rules (cf. (2.2)) under a change of basis. In mathematics, these
“transformation rules” are simply consequences of the multilinearity of the tensor
product and the change of basis theorem for vectors. Today, books written primarily
for a physics audience [32, 61] have increasingly adopted the mathematical definition,
but a handful of recently published books continue to propagate the obsolete (and
vague) definition. To add to the confusion, “tensor” is frequently used to refer to a

1Note that the Zariski topology on k
n is defined for any field k (not just algebraically closed

ones). It is the weakest topology such that all polynomial functions are continuous. In particularly,
the closed sets are precisely the zero sets of collections of polynomials.
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tensor field (e.g., metric tensor, stress tensor, Riemann curvature tensor).
For our purposes, an order-k tensor A is simply an element of a tensor product of

k real vector spaces, V1 ⊗ V2 ⊗ · · · ⊗ Vk, as defined in any standard algebra textbook
[1, 9, 27, 34, 41, 52, 59, 60, 62, 64, 78]. Up to a choice of bases on V1, . . . , Vk, such an
element may be coordinatized, i.e., represented as a k-way array A of real numbers—
much as an element of an n-dimensional vector space may be, up to a choice of basis,
represented by an n-tuple of numbers in R

n. We will let R
d1×···×dk denote the vector

space of k-way array of real numbers A = [[aj1···jk ]]d1,...,dk

j1=1,...,jk=1 with addition and scalar
multiplication defined coordinatewise:

(2.1) [[aj1···jk ]] + [[bj1···jk ]] := [[aj1···jk + bj1···jk ]] and λ[[aj1···jk ]] := [[λaj1···jk ]].

A k-way array of numbers (or k-array) is also sometimes referred to as a k-dimensional
hypermatrix [30].

It may be helpful to think of a k-array as a data structure, convenient for rep-
resenting or storing the coefficients of a tensor with respect to a set of bases. The
tensor itself carries with it an algebraic structure, by virtue of being an element of a
tensor product of vector spaces. Once bases have been chosen for these vector spaces,
we may view the order-k tensor as a k-way array equipped with the algebraic opera-
tions defined in (2.1) and (2.3). Despite this correspondence, it is not wise to regard
“tensor” as being synonymous with “array.”

Notation. We will denote elements of abstract tensor spaces in boldface upper-
case letters, whereas k-arrays will be denoted in italic uppercase letters. Thus A
is an abstract tensor, which may be represented by an array of numbers A with
respect to a basis. We will use double brackets to enclose the entries of a k-array—
A = [[aj1···jk ]]d1,...,dk

j1=1,...,jk=1—and when there is no risk of confusion, we will leave out
the range of the indices and simply write A = [[aj1···jk ]].

2.1. Multilinear matrix multiplication. Matrices can act on other matri-
ces through two independent multiplication operations: left-multiplication and right-
multiplication. Matrices act on order-3 tensors via three different multiplication op-
erations. These can be combined into a single formula. If A = [[aijk]] ∈ R

d1×d2×d3

and L = [λpi] ∈ R
c1×d1 , M = [μqj ] ∈ R

c2×d2 , N = [νrk] ∈ R
c3×d3 , then the array A

may be transformed into an array A′ = [[a′pqr]] ∈ R
c1×c2×c3 by the equation

(2.2) a′pqr =
∑d1,d2,d3

i,j,k=1
λpiμqjνrkaijk.

We call this operation the multilinear multiplication of A by matrices L,M,N , which
we write succinctly as

A′ = (L,M,N) ·A.

Informally, we are multiplying the 3-way array A on its three “sides” by the matrices
L,M,N , respectively.

Remark. This notation is standard in mathematics—the elements of a product
G1 ×G2 ×G3 are generally grouped in the form (L,M,N), and when a set with some
algebraic structure G acts on another set X, the result of g ∈ G acting on x ∈ X is
almost universally written g · x [1, 9, 27, 41, 52, 64]. Here we are just looking at the
case when G = R

c1×d1 ×R
c2×d2 ×R

c3×d3 and X = R
d1×d2×d3 . This is consistent with

notation adopted in earlier work [42], but more recent publications such as [20, 21]
have used A×1 L

	 ×2 M
	 ×3 N

	 in place of (L,M,N) ·A.
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Multilinear matrix multiplication extends in a straightforward way to arrays of

arbitrary order: if A = [[ai1···ik ]] ∈ R
d1×···×dk and L1 = [λ

(1)
ij ] ∈ R

c1×d1 , . . . , Lk =

[λ
(k)
ij ] ∈ R

ck×dk , then A′ = (L1, . . . , Lk) · A is the array A′ = [[a′i1···ik ]] ∈ R
c1×···×ck

given by

(2.3) a′i1···ik =
∑d1,...,dk

i1,...,ik=1
λi1j1 · · ·λikjkaj1···jk .

We will now see how a 3-way array representing a tensor in V1⊗V2⊗V3 transforms
under changes of bases of the vector spaces Vi. Suppose the 3-way array A = [[aijk]] ∈
R

d1×d2×d3 represents an order-3 tensor A ∈ V1 ⊗ V2 ⊗ V3 with respect to bases B1 =
{ei | i = 1, . . . , d1}, B2 = {fj | j = 1, . . . , d2}, B3 = {gk | k = 1, . . . , d3} on V1, V2, V3,
i.e.,

(2.4) A =
∑d1,d2,d3

i,j,k=1
aijkei ⊗ fj ⊗ gk.

Suppose we choose different bases B′
1 = {e′i | i = 1, . . . , d1}, B′

2 = {f ′j | j = 1, . . . , d2},
B′

3 = {g′
k | k = 1, . . . , d3} on V1, V2, V3, where

(2.5) ei =
∑d1

p=1
λipe

′
p, fj =

∑d2

q=1
μjqf

′
q, gk =

∑d3

r=1
νkrg

′
r,

and L = [λpi] ∈ R
d1×d1 , M = [μqj ] ∈ R

d2×d2 , N = [νrk] ∈ R
d3×d3 are the respective

change-of-basis matrices. Substituting the expressions for (2.5) into (2.4), we get

A =
∑d1,d2,d3

p,q,r=1
a′pqre

′
p ⊗ f ′q ⊗ g′

r,

where

(2.6) a′pqr =
∑d1,d2,d3

i,j,k=1
λpiμqjνrkaijk

or, more simply, A′ = (L,M,N) · A. Here the 3-way array A′ = [[a′pqr]] ∈ R
d1×d2×d3

represents A with respect to the new choice of bases B′
1,B′

2,B′
3.

All of this extends immediately to order-k tensors and k-way arrays. Henceforth,
when a choice of basis is implicit, we will not distinguish between an order-k tensor
and the k-way array that represents it.

The change-of-basis matrices L,M,N in the discussion above are of course in-
vertible; in other words they belong to their respective general linear groups. We
write GLd(R) for the group of nonsingular matrices in R

d×d. Thus L ∈ GLd1(R),
M ∈ GLd2(R), and N ∈ GLd3(R). In addition to general linear transformations, it is
natural to consider orthogonal transformations. We write Od(R) for the subgroup of
GLd(R) of transformations which preserve the Euclidean inner product. The following
shorthand is helpful:

GLd1,...,dk
(R) := GLd1

(R) × · · · × GLdk
(R),

Od1,...,dk
(R) := Od1(R) × · · · × Odk

(R).

Then Od1,...,dk
(R) ≤ GLd1,...,dk

(R), and both groups act on R
d1×···×dk via multilinear

multiplication.
Definition 2.1. Two tensors A,A′ ∈ R

d1×···×dk are said to be GL-equivalent
(or simply “equivalent”) if there exists (L1, . . . , Lk) ∈ GLd1,...,dk

(R) such that A′ =
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(L1, . . . , Lk) ·A. More strongly, we say that A,A′ are O-equivalent if such a transfor-
mation L can be found in Od1,...,dk

(R).
For example, if V1, . . . , Vk are vector spaces and dim(Vi) = di, then A,A′ ∈

R
d1×···×dk represent the same tensor in V1 ⊗ · · · ⊗ Vk with respect to two different

bases if and only if A,A′ are GL-equivalent.
We finish with some trivial properties of multilinear matrix multiplication: for

A,B ∈ R
d1×···×dk and α, β ∈ R,

(2.7) (L1, . . . , Lk) · (αA + βB) = α(L1, . . . , Lk) ·A + β(L1, . . . , Lk) ·B

and for Li ∈ R
ci×di , Mi ∈ R

bi×ci , i = 1, . . . , k,

(2.8) (M1, . . . ,Mk) · [(L1, . . . , Lk) ·A] = (M1L1, . . . ,MkLk) ·A.

Last, the name multilinear matrix multiplication is justified since for any Mi, Ni ∈
R

ci×di , α, β ∈ R,

(L1, . . . , αMi + βNi, . . . , Lk) ·A = α(L1, . . . ,Mi, . . . , Lk) ·A(2.9)

+ β(L1, . . . , Ni, . . . , Lk) ·A.

2.2. Outer-product rank and outer-product decomposition of a tensor.
Let R

d1 ⊗ · · · ⊗ R
dk be the tensor product of the vector spaces R

d1 , . . . ,Rdk . Note
that the Segre map

(2.10) R
d1 × · · · × R

dk → R
d1×···×dk , (x1, . . . ,xk) �→ [[x

(1)
j1

· · ·x(k)
jk

]]d1,...,dk

j1,...,jk=1

is multilinear and so by the universal property of the tensor product [1, 9, 27, 34, 41,
52, 59, 60, 62, 64, 78], we have a unique linear map ϕ such that the following diagram
commutes:

Clearly,

(2.11) ϕ(x1 ⊗ · · · ⊗ xk) = [[x
(1)
j1

· · ·x(k)
jk

]]d1,...,dk

j1,...,jk=1

and ϕ is a vector space isomorphism since dim(Rd1×···×dk) = dim(Rd1 ⊗ · · · ⊗R
dk) =

d1 · · · dk. Henceforth we will not distinguish between these two spaces. The elements
of R

d1 ⊗ · · · ⊗ R
dk ∼= R

d1×···×dk will be called a tensor and we will also drop ϕ in
(2.11) and write

(2.12) x1 ⊗ · · · ⊗ xk = [[x
(1)
j1

· · ·x(k)
jk

]]d1,...,dk

j1,...,jk=1.

Note that the symbol ⊗ in (2.11) denotes the formal tensor product and by dropping
ϕ, we are using the same symbol ⊗ to define the outer product of the vectors x1, . . . ,xk

via the formula (2.12). Hence, a tensor can be represented either as a k-dimensional
array or as a sum of formal tensor products of k vectors, where the equivalence between
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these two objects is established by taking the formal tensor product of k vectors as
defining a k-way array via (2.12).

It is clear that the map in (2.10) is not surjective—the image consists precisely
of the decomposable tensors: a tensor A ∈ R

d1×···×dk is said to be decomposable if it
can be written in the form

A = x1 ⊗ · · · ⊗ xk

with xi ∈ R
di for i = 1, . . . , k. It is easy to see that multilinear matrix multiplication

of decomposable tensors obeys the formula

(2.13) (L1, . . . , Lk) · (x1 ⊗ · · · ⊗ xk) = L1x1 ⊗ · · · ⊗ Lkxk.

Remark. The outer product can be viewed as a special case of multilinear matrix
multiplication. For example, a linear combination of outer products of vectors may
be expressed in terms of multilinear matrix multiplication:

∑r

i=1
λixi ⊗ yi ⊗ zi = (X,Y, Z) · Λ

with matrices X = [x1, . . . ,xr] ∈ R
l×r, Y = [y1, . . . ,yr] ∈ R

m×r, Z = [z1, . . . , zr] ∈
R

n×r and a “diagonal tensor” Λ = diag[λ1, . . . , λr] ∈ R
r×r×r.

We now come to the main concept of interest in this paper.
Definition 2.2. A tensor has outer-product rank r if it can be written as a sum

of r decomposable tensors, but no fewer. We will write rank⊗(A) for the outer-product
rank of A. So

rank⊗(A) := min
{
r | A =

∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ zi

}
.

Note that a nonzero decomposable tensor has outer-product rank 1.
Despite several claims of originality as well as many misplaced attributions to

these claims, the concepts of tensor rank and the decomposition of a tensor into a sum
of outer products of vectors was the product of much earlier work by Frank L. Hitch-
cock in 1927 [39, 40]. We call this the outer-product rank mainly to distinguish it
from the multilinear rank to be defined in section 2.5 (also due to Hitchcock), but we
will use the term rank or tensor rank most of the time when there is no danger of
confusion.

Lemma 2.3 (invariance of tensor rank). (1) If A ∈ R
d1×···×dk and (L1, . . . , Lk) ∈

R
c1×d1 × · · · × R

ck×dk , then

(2.14) rank⊗((L1, . . . , Lk) ·A) ≤ rank⊗(A).

(2) If A ∈ R
d1×···×dk and (L1, . . . , Lk) ∈ GLd1,...,dk

(R) := GLd1
(R) × · · · ×

GLdk
(R), then

(2.15) rank⊗((L1, . . . , Lk) ·A) = rank⊗(A).

Proof. Inequality (2.14) follows from (2.13) and (2.7). Indeed, if A =
∑r

j=1 xj
1 ⊗

· · · ⊗ xj
k, then (L1, . . . , Lk) ·A =

∑r
j=1 L1x

j
1 ⊗ · · · ⊗Lkx

j
k. Furthermore, if the Li are

invertible, then by (2.8) we get

A = (L−1
1 , . . . , L−1

k ) · [(L1, . . . , Lk) ·A],

and so rank⊗(A) ≤ rank⊗((L1, . . . , Lk) ·A), and hence (2.15).
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2.3. The outer product and direct sum operations on tensors. The outer
product of vectors defined earlier is a special case of the outer product of two tensors.
Let A ∈ R

d1×···×dk be a tensor of order k and B ∈ R
c1×···×c� be a tensor of order �;

then the outer product of A and B is the tensor C := A⊗B ∈ R
d1×···×dk×c1×···×cl of

order k + � defined by

ci1···ikj1···jl = ai1···ikbj1···jl .

The direct sum of two order-k tensors A ∈ R
d1×···×dk and B ∈ R

c1×···×ck is the
order-k tensor C := A⊕B ∈ R

(c1+d1)×···×(ck+dk) defined by

ci1,...,ik =

⎧⎪⎨
⎪⎩
ai1,...,ik if 1 ≤ iα ≤ dα, α = 1, . . . , k;

bi1−d1,...,ik−dk
if dα + 1 ≤ iα ≤ cα + dα, α = 1, . . . , k;

0 otherwise.

For matrices, the direct sum of A ∈ R
m1×n1 and B ∈ R

m2×n2 is simply the block-
diagonal matrix

A⊕B =

[
A 0
0 B

]
∈ R

(m1+m2)×(n1+n2).

The direct sum of two order-3 tensors A ∈ R
l1×m1×n1 and B ∈ R

l2×m2×n2 is a “block
tensor” with A in the (1, 1, 1)-block and B in the (2, 2, 2)-block

A⊕B =

[
A 0
0 0

∣∣∣∣ 0 0
0 B

]
∈ R

(l1+l2)×(m1+m2)×(n1+n2).

In abstract terms, if Ui, Vi,Wi are vector spaces such that Wi = Ui ⊕ Vi for
i = 1, . . . , k, then tensors A ∈ U1 ⊗ · · · ⊗ Uk and B ∈ V1 ⊗ · · · ⊗ Vk have direct sum
A⊕B ∈ W1 ⊗ · · · ⊗Wk.

2.4. Tensor subspaces. Whenever c ≤ d there is a canonical embedding R
c ⊆

R
d given by identifying the c coordinates of R

c with the first c coordinates of R
d.

Let ci ≤ di for i = 1, . . . , k. Then there is a canonical embedding R
c1×···×ck ⊂

R
d1×···×dk , defined as the tensor product of the embeddings R

ci ⊆ R
di . We say that

R
c1×···×ck is a tensor subspace of R

d1×···×dk . More generally, if Ui, Vi are vector spaces
with Ui ⊂ Vi for i = 1, . . . , k, then there is an inclusion U1 ⊗ · · · ⊗Uk ⊂ V1 ⊗ · · · ⊗ Vk

defined as the tensor product of the inclusions Ui ⊂ Vi. Again we say that U1⊗· · ·⊗Uk

is a tensor subspace of V1 ⊗ · · · ⊗ Vk.
If B ∈ R

c1×···×ck then its image under the canonical embedding into R
d1×...dk

can be written in the form B ⊕ 0, where 0 ∈ R
(d1−c1)×···×(dk−ck) is the zero tensor.

A tensor A ∈ R
d1×···×dk is said to be GL-equivalent (or simply “equivalent”) to B if

there exists (L1, . . . , Lk) ∈ GLd1,...,dk
(R) such that B ⊕ 0 = (L1, . . . , Lk) · A. More

strongly, we say that A is O-equivalent (“orthogonally equivalent”) to B if such a
transformation can be found in Od1,...,dk

(R).
We note that A is GL-equivalent to B if and only if there exist full-rank matrices

Mi ∈ R
di×ci such that A = (M1, . . . ,Mk) · B. In one direction, Mi can be obtained

as the first ci columns of L−1
i . In the other direction, L−1

i can be obtained from Mi

by adjoining extra columns. There is a similar statement for O-equivalence. Instead
of full rank, the condition is that the matrices Mi have orthogonal columns.

An important simplifying principle in tensor algebra is that questions about a
tensor—such as “What is its rank?”—can sometimes, as we shall see, be reduced to
analogous questions about an equivalent tensor in a lower-dimensional tensor sub-
space.
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2.5. Multilinear rank and multilinear decomposition of a tensor. Al-
though we focus on outer product rank in this paper, there is a simpler notion of
multilinear rank which directly generalizes the column and row ranks of a matrix to
higher order tensors.

For convenience, we will consider order-3 tensors only. Let A = [[aijk]] ∈ R
d1×d2×d3 .

For fixed values of j ∈ {1, . . . , d2} and k ∈ {1, . . . , d3}, consider the vector A•jk :=

[aijk]
d1
i=1 ∈ R

d1 . Likewise consider (column) vectors Ai•k := [aijk]
d2
j=1 ∈ R

d2 for fixed

values of i, k, and consider (row) vectors Aij• := [aijk]
d3

k=1 ∈ R
d3 for fixed values of

i, j. In analogy with row rank and column rank, define

r1(A) := dim(spanR{A•jk | 1 ≤ j ≤ d2, 1 ≤ k ≤ d3}),
r2(A) := dim(spanR{Ai•k | 1 ≤ i ≤ d1, 1 ≤ k ≤ d3}),
r3(A) := dim(spanR{Aij• | 1 ≤ i ≤ d1, 1 ≤ j ≤ d2}).

For another interpretation, note that R
d1×d2×d3 can be viewed as R

d1×d2d3 by
ignoring the multiplicative structure between the second and third factors. Then r1(A)
is simply the rank of A regarded as d1 × d2d3 matrix. There are similar definitions
for r2(A) and r3(A).

The multilinear rank of A, denoted2 rank�(A), is the 3-tuple (r1(A), r2(A), r3(A)).
Again, this concept is not new but was first explored by Hitchcock in the same pa-
pers where he introduced tensor rank [39, 40]. Hitchcock introduces a very general
multiplex rank, which includes tensor rank and the separate terms of our multilinear
rank as special cases. A point to note is that r1(A), r2(A), r3(A), and rank⊗(A) are
in general all different—a departure from the case of matrices, where the row rank,
column rank, and outer product rank are always equal. Observe that we will always
have

(2.16) ri(A) ≤ min{rank⊗(A), di}.

Let us verify this for r1: if A = x1 ⊗ y1 ⊗ z1 + · · · + xr ⊗ yr ⊗ zr, then each vector
A•jk belongs to span(x1, . . . ,xr). This implies that r1 ≤ rank⊗(A), and r1 ≤ d1 is
immediate from the definitions. A simple but useful consequence of (2.16) is that

(2.17) rank⊗(A) ≥ ‖rank�(A)‖∞ = max{ri(A) | i = 1, . . . , k}.

If A ∈ R
d1×d2×d3 and rank�(A) = (r1, r2, r3), then there exist subspaces Ui ⊂ R

di

with dim(Ui) = ri, such that A ∈ U1⊗U2⊗U3. We call these the supporting subspaces
of A. The supporting subspaces are minimal in the sense that if A ∈ V1 ⊗ V2 ⊗ V3,
then Ui ⊂ Vi for i = 1, 2, 3. This observation leads to an alternate definition:

ri(A) = min{dim(Ui) | U1 ⊂ R
d1 , U2 ⊂ R

d2 , U3 ⊂ R
d3 , A ∈ U1 ⊗ U2 ⊗ U3}.

An immediate consequence of this characterization is that rank�(A) is invari-
ant under the action of GLd1,d2,d3(R): if A′ = (L,M,N) · A, where (L,M,N) ∈
GLd1,d2,d3

(R), then rank�(A) = rank�((L,M,N) · A). Indeed, if U1, U2, U3 are the
supporting subspaces of A, then L(U1), M(U2), N(U3) are the supporting subspaces
of (L,M,N) ·A.

More generally, we have multilinear rank equivalents of (2.14) and (2.15): if
A ∈ R

d1×···×dk and (L1, . . . , Lk) ∈ R
c1×d1 × · · · × R

ck×dk , then

(2.18) rank�((L1, . . . , Lk) ·A) ≤ rank�(A),

2The symbol � is meant to evoke an impression of the rows and columns in a matrix.
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and if A ∈ R
d1×···×dk and (L1, . . . , Lk) ∈ GLd1,...,dk

(R), then

(2.19) rank�((L1, . . . , Lk) ·A) = rank�(A).

Suppose rank�(A) = (r1, r2, r3). By applying transformations Li ∈ GLdi
(R)

which carry Ui to R
ri , it follows that A is equivalent to some B ∈ R

r1×r2×r3 . Alter-
natively there exist B ∈ R

r1×r2×r3 and full-rank matrices L ∈ R
d1×r1 , M ∈ R

d2×r2 ,
N ∈ R

d3×r3 , such that

A = (L,M,N) ·B.

The matrices L,M,N may be chosen to have orthonormal columns or to be unit
lower-triangular—a fact easily deduced from applying the QR-decomposition or the
LU -decomposition to the full-rank matrices L,M,N and using (2.8).

To a large extent, the study of tensors A ∈ R
d1×d2×d3 with rank�(A) ≤ (r1, r2, r3)

reduces to the study of tensors in R
r1×r2×r3 . This is a useful reduction, but (unlike

the matrix case) it does not even come close to giving us a full classification of tensor
types.

2.6. Multilinear orthogonal projection. If U is a subspace of an inner-
product space V (for instance, V = R

n with the usual dot product), then there
is an orthogonal projection from V onto U , which we denote πU . We regard this as a
map V → V . As such, it is self-adjoint (i.e., has a symmetric matrix with respect to
any orthonormal basis) and satisfies π2

U = πU , im(πU ) = U , ker(πU ) = U⊥. We note
Pythagoras’s theorem for any v ∈ V :

‖v‖2 = ‖πUv‖2 + ‖(1 − πU )v‖2.

We now consider orthogonal projections for tensor spaces. If U1, U2, U3 are sub-
spaces of V1, V2, V3, respectively, then U1⊗U2⊗U3 is a tensor subspace of V1⊗V2⊗V3,
and the multilinear map Π = (πU1

, πU2 , πU3) is a projection onto that subspace. In
fact, Π is orthogonal with respect to the Frobenius norm. The easiest way to see this
is to identify Ui ⊂ Vi with R

ci ⊂ R
di by taking suitable orthonormal bases; then Π

acts by zeroing out all the entries of a d1×d2×d3 array outside the initial c1× c2× c3
block. In particular we have Pythagoras’s theorem for any A ∈ V1 ⊗ V2 ⊗ V3:

(2.20) ‖A‖2
F = ‖ΠA‖2

F + ‖(1 − Π)A‖2
F .

Being a multilinear map, Π is nonincreasing for rank⊗, rank�, as in (2.14), (2.18).
There is a useful orthogonal projection ΠA associated with any tensor A ∈

R
d1×d2×d3 . Let U1, U2, U3 be the supporting subspaces of A so that A ∈ U1⊗U2⊗U3,

and dim(Ui) = ri(A) for i = 1, 2, 3. Define

ΠA = (π1(A), π2(A), π3(A)) = (πU1 , πU2 , πU3).

Proposition 2.4. ΠA(A) = A.
Proof. A belongs to U1 ⊗ U2 ⊗ U3, which is fixed by ΠA.
Proposition 2.5. The function A �→ ΠA is continuous over subsets of R

d1×d2×d3

on which rank�(A) is constant.
Proof. We show, for example, that π1 = π1(A) depends continuously on A. For

any A ∈ R
d1×d2×d3 , select r = r1(A) index pairs (j, k) such that the vectors A•jk are

linearly independent. For any B near A, assemble the marked vectors as a matrix
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X = X(B) ∈ R
di×r. Then π1 = X(X	X)−1X	 =: P (B) by a well-known formula in

linear algebra. The function P (B) is defined and continuous as long as the r selected
vectors remain independent, which is true on a neighborhood of A. Finally, the
orthogonal projection defined by P (B) maps onto the span of the r selected vectors.
Thus, if r1(B) = r, then P (B) = π1(B).

It is clear that the results of this section apply to tensor spaces of all orders.

3. The algebra of tensor rank. We will state and prove a few basic results
about the outer-product rank.

Proposition 3.1. Let A ∈ R
c1×···×ck ⊂ R

d1×···×dk . The rank of A regarded as a
tensor in R

c1×···×ck is the same as the rank of A regarded as a tensor in R
d1×···×dk .

Proof. For each i the identity on R
ci factors as a pair of maps R

ci
ιi
↪→ R

di
πi� R

ci ,
where ιi is the canonical inclusion and π is the projection map given by deleting the
last di − ci coordinates. Applying (2.14) twice, we have

rank⊗(A) ≥ rank⊗((ι1, . . . , ιk) ·A) ≥ rank⊗((π1, . . . , πk) · (ι1, . . . , ιk) ·A)

= rank⊗((π1ι1, . . . , πkιk) ·A)

= rank⊗(A),

so A ∈ R
c1×···×ck and its image (ι1, . . . , ιk) · A ∈ R

d1×···×dk must have equal tensor
ranks.

Corollary 3.2. Suppose A ∈ R
d1×···×dk and rank�(A) ≤ (c1, . . . , ck). Then

rank⊗(A) = rank⊗(B) for an equivalent tensor B ∈ R
c1×···×ck .

The next corollary asserts that tensor rank is consistent under a different scenario:
when order-k tensors are regarded as order-l tensors for l > k by taking the tensor
product with a nonzero monomial term.

Corollary 3.3. Let A ∈ R
d1×···×dk be an order-k tensor and uk+1 ∈ R

dk+1 , . . . ,
uk+� ∈ R

dk+� be nonzero vectors. Then

rank⊗(A) = rank⊗(A⊗ uk+1 ⊗ · · · ⊗ uk+�).

Proof. Let ck+1 = · · · = ck+l = 1 and apply Proposition 3.1 to A ∈ R
d1×···×dk =

R
d1×···×dk×ck+1×···×ck+� ↪→ R

d1×···×dk×dk+1×···×dk+� . Note that the image of the in-

clusion is A⊗ e
(k+1)
1 ⊗ · · · ⊗ e

(k+�)
1 , where e

(i)
1 = (1, 0, . . . , 0)	 ∈ R

di . So we have

rank⊗(A⊗ e
(k+1)
1 ⊗ · · · ⊗ e

(k+�)
1 ) = rank⊗(A).

The general case for arbitrary nonzero ui ∈ R
di follows from applying to A⊗e

(k+1)
1 ⊗

· · · ⊗ e
(k+�)
1 a multilinear multiplication (Id1

, . . . , Idk
, L1, . . . , L�) ∈ GLd1,...,dk+�

(R),
where Id is the d× d identity matrix and Li is a nonsingular matrix with Liei = ui.
It then follows from Lemma 2.3 that

rank⊗(A⊗ uk+1 ⊗ · · · ⊗ uk+�)

= rank⊗[(Id1
, . . . , Idk

, L1, . . . , L�) · (A⊗ e
(k+1)
1 ⊗ · · · ⊗ e

(k+�)
1 )]

= rank⊗(A⊗ e
(k+1)
1 ⊗ · · · ⊗ e

(k+�)
1 ).

Let E = uk+1 ⊗ uk+2 ⊗ · · · ⊗ uk+� ∈ R
dk+1×···×dk+� . So rank⊗(E) = 1 and

Corollary 3.3 says that rank⊗(A ⊗ E) = rank⊗(A) rank⊗(E). Note that this last
relation does not generalize. If rank⊗(A) > 1 and rank⊗(B) > 1, then it is true that

rank⊗(A⊗B) ≤ rank⊗(A) rank⊗(B),
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since one can multiply decompositions of A,B term by term to obtain a decomposition
of A⊗B, but it can happen (cf. [12]) that

rank⊗(A⊗B) < rank⊗(A) rank⊗(B).

The corresponding statement for direct sum is still an open problem for tensors
of order 3 or higher. It has been conjectured by Strassen [70] that

(3.1) rank⊗(A⊕B)
?
= rank⊗(A) + rank⊗(B)

for all order-k tensors A and B. However JáJá and Takche [43] have shown that for
the special case when A and B are of order 3 and at least one of them is a matrix
pencil (i.e., a tensor of size p× q × 2, p× 2× q, or 2× p× q that may be regarded as
a pair of p× q matrices), then the direct sum conjecture holds.

Theorem 3.4 (JáJá–Takche [43]). Let A ∈ R
c1×c2×c3 and B ∈ R

d1×d2×d3 . If
2 ∈ {c1, c2, c3, d1, d2, d3}, then

rank⊗(A⊕B) = rank⊗(A) + rank⊗(B).

It is not hard to define tensors of arbitrarily high rank so long as we have suffi-
ciently many linearly independent vectors in every factor.

Lemma 3.5. For � = 1, . . . , k, let x
(�)
1 , . . . ,x

(�)
r ∈ R

di be linearly independent.
Then the tensor defined by

A :=

r∑
j=1

x
(1)
j ⊗ x

(2)
j ⊗ · · · ⊗ x

(k)
j ∈ R

d1×d2×···×dk

has rank⊗(A) = r.
Proof. Note that rank�(A) = (r, r, . . . , r). By (2.17), we get

rank⊗(A) ≥ max{ri(A) | i = 1, . . . , k} = r.

On the other hand, it is clear that rank⊗(A) ≤ r.
Thus, in R

d1×···×dk , it is easy to write down tensors of any rank r in the range
0 ≤ r ≤ min{d1, . . . , dk}. For matrices, this exhausts all possibilities; the rank of
A ∈ R

d1×d2 is at most min{d1, d2}. In contrast, for k ≥ 3, there will always be
tensors in R

d1×dk that have rank exceeding min{d1, . . . , dk}. We will see this in
Theorem 4.10.

4. The topology of tensor rank. Let A = [[ai1···ik ]] ∈ R
d1×···×dk . The Frobe-

nius norm of A and its associated inner product are defined by

‖A‖2
F :=

∑d1,...,dk

i1,...,ik=1
|ai1···ik |2, 〈A,B〉F :=

∑d1,...,dk

i1,...,ik=1
ai1···ikbi1···ik .

Note that for a decomposable tensor, the Frobenius norm satisfies

(4.1) ‖u ⊗ v ⊗ · · · ⊗ z‖F = ‖u‖2‖v‖2 · · · ‖z‖2,

where ‖·‖2 denotes the l2-norm of a vector, and more generally

(4.2) ‖A⊗B‖F = ‖A‖F ‖B‖F
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for arbitrary tensors A,B. Another important property which follows from (2.13) and
(4.1) is orthogonal invariance:

(4.3) ‖(L1, . . . , Lk) ·A‖F = ‖A‖F

whenever (L1, . . . , Lk) ∈ Od1,...,dk
(R). There are of course many other natural choices

of norms on tensor product spaces [25, 36]. The important thing to note is that
R

d1×···×dk being finite dimensional, all these norms will induce the same topology.

We define the following (topological) subspaces of R
d1×···×dk :

Sr(d1, . . . , dk) =
{
A ∈ R

d1×···×dk | rank⊗(A) ≤ r
}
,

Sr(d1, . . . , dk) = closure of Sr(d1, . . . , dk) ⊂ R
d1×···×dk .

Clearly the only reason to define Sr is the sad fact that Sr is not necessarily (or even
usually) closed—the theme of this paper. See section 4.2.

We occasionally refer to elements of Sr as “rank-r tensors.” This is slightly in-
accurate, since lower-rank tensors are included, but convenient. However, the direct
assertions “A has rank r” and “rank(A) = r” are always meant in the precise sense.
The same remarks apply to “border rank,” which is defined in section 5.5. We refer
to elements of Sr as “border-rank-r tensors” and describe them as being “rank-r-
approximable.”

Theorem 5.1 asserts that S2(d1, d2, d3) ⊂ S3(d1, d2, d3) for all d1, d2, d3, and that
the exceptional tensors S2(d1, d2, d3) \ S2(d1, d2, d3) are all of a particular form.

4.1. Upper semicontinuity. Discrete-valued rank functions on spaces of ma-
trices or tensors cannot usefully be continuous, because they would then be constant
and would not have any classifying power. As a sort of compromise, matrix rank is well
known to be an upper semicontinuous function; if rank(A) = r, then rank(B) ≥ r
for all matrices B in a neighborhood of A. This is not true for the outer-product
rank of tensors (as we will see in section 4.2). There are several equivalent ways of
formulating this assertion.

Proposition 4.1. Let r ≥ 2 and k ≥ 3. Given the norm-topology on R
d1×···×dk ,

the following statements are equivalent:

(a) The set Sr(d1, . . . , dk) := {A ∈ R
d1×···×dk | rank⊗(A) ≤ r} is not closed.

(b) There exists a sequence An ∈ R
d1×···×dk , rank⊗(An) ≤ r, n ∈ N, converging to

B ∈ R
d1×···×dk with rank⊗(B) > r.

(c) There exists B ∈ R
d1×···×dk , rank⊗(B) > r, that may be approximated arbitrarily

closely by tensors of strictly lower rank, i.e.,

inf{‖B −A‖ | rank⊗(A) ≤ r} = 0.

(d) There exists C ∈ R
d1×···×dk , rank⊗(C) > r, that does not have a best rank-r

approximation; i.e.,

inf{‖C −A‖ | rank⊗(A) ≤ r}

is not attained (by any A with rank⊗(A) ≤ r).

Proof. It is obvious that (a) ⇒ (b) ⇒ (c) ⇒ (d). To complete the chain, we
just need to show that (d) ⇒ (a). Suppose S := Sr(d1, . . . , dk) is closed. Since the
closed ball of radius ‖C‖ centered at C, {A ∈ R

d1×···×dk | ‖C−A‖ ≤ ‖C‖}, intersects
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S nontrivially (e.g., 0 is in both sets), their intersection T = {A ∈ R
d1×···×dk |

rank⊗(A) ≤ r, ‖C −A‖ ≤ ‖C‖} is a nonempty compact set. Now observe that

δ := inf{‖C −A‖ | A ∈ S} = inf{‖C −A‖ | A ∈ T }

since any A′ ∈ S\T must have ‖C − A′‖ > ‖C‖ while we know that δ ≤ ‖C‖. By
the compactness of T , there exists A∗ ∈ T such that ‖C − A∗‖ = δ. So the required
infimum is attained by A∗ ∈ T ⊂ S.

We caution the reader that there exist tensors of rank > r that do not have a
best rank-r approximation but cannot be approximated arbitrarily closely by rank-
r tensors, i.e., inf{‖C − A‖ | rank⊗(A) ≤ r} > 0. In other words, statement (d)
applies to a strictly larger class of tensors than statement (c) (cf. section 8). The
tensors in statement (d) are sometimes called “degenerate” in the psychometrics and
chemometrics literature (e.g., [49, 51, 63, 68, 69]), but we prefer to avoid this term
since it is inconsistent (and often at odds) with common usage in Mathematics. For
example, in Table 7.1, the tensors in the orbit classes of D2, D

′
2, D

′′
2 are all degenerate,

but statement (d) does not apply to them; on the other hand, the tensors in the orbit
class of G3 are nondegenerate, but Theorem 8.1 tells us that they are all of the form
in statement (d).

We begin by getting three well-behaved cases out of the way. The proofs shed
light on what can go wrong in all the other cases.

Proposition 4.2. For all d1, . . . , dk, we have S1(d1, . . . , dk) = S1(d1, . . . , dk).
Proof. Suppose An → A, where rank⊗(An) ≤ 1. We can write

An = λnu1,n ⊗ u2,n ⊗ · · · ⊗ uk,n,

where λn = ‖An‖ and the vectors ui,n ∈ R
di have unit norm. Certainly λn = ‖An‖ →

‖A‖ =: λ. Moreover, since the unit sphere in R
di is compact, each sequence ui,n has

a convergent subsequence, with limit ui, say. It follows that there is a subsequence
of An which converges to λu1 ⊗ · · · ⊗ uk. This must equal A, and it has rank at
most 1.

Proposition 4.3. For all r and d1, d2, we have Sr(d1, d2) = Sr(d1, d2). In other
words, matrix rank is upper-semicontinuous.

Proof. Suppose An → A, where rank(An) ≤ r, so we can write

An = λ1,nu1,n ⊗ v1,n + · · · + λr,nur,n ⊗ vr,n.

Convergence of the sequence An does not imply convergence of the individual terms
λi,n, ui,n, vi,n, even in a subsequence. However, if we take the singular value decom-
position, then the ui,n and vi,n are unit vectors and the λi,n satisfy

λ2
1,n + · · · + λ2

r,n = ‖An‖.

Since ‖An‖ → ‖A‖ this implies that the λi,n are uniformly bounded. Thus we can
find a subsequence with convergence λi,n → λi, ui,n → ui, vi,n → vi for all i. Then

A = λ1u1 ⊗ v1 + · · · + λrur ⊗ vr,

which has rank at most r.
Proposition 4.4. The multilinear rank function rank�(A) = (r1(A), . . . , rk(A))

is upper-semicontinuous.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1100 VIN DE SILVA AND LEK-HENG LIM

Proof. Each ri is the rank of a matrix obtained by rearranging the entries of A,
and is therefore upper-semicontinuous in A by Proposition 4.3.

Corollary 4.5. Every tensor has a best rank-1 approximation. Every matrix
has a best rank-r approximation. Every order-k tensor has a best approximation with
rank� ≤ (r1, . . . , rk) for any specified (r1, . . . , rk).

Proof. These statements follow from Propositions 4.2, 4.3, and 4.4, together with
the implication (d)⇒(a) from Proposition 4.1.

4.2. Tensor rank is not upper-semicontinuous. Here is the simplest exam-
ple of the failure of outer-product rank to be upper-semicontinuous. This is the first
example of a more general construction which we discuss in section 4.7. A formula
similar to (4.4) appeared as Exercise 62 in section 4.6.4 of Knuth’s The Art of Com-
puter Programming [48] (the original source is [8]). Other examples have appeared in
[7] (the earliest known to us) and [63], as well as in unpublished work of Kruskal.

Proposition 4.6. Let x1,y1 ∈ R
d1 , x2,y2 ∈ R

d2 , and x3,y3 ∈ R
d3 be vectors

such that each pair xi,yi is linearly independent. Then the tensor

(4.4) A := x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3 ∈ R
d1×d2×d3

has rank 3 but can be approximated arbitrarily closely by tensors of rank 2. In partic-
ular, A does not have a best rank-2 approximation.

Proof. For each n ∈ N, define

(4.5) An := n

(
x1 +

1

n
y1

)
⊗
(
x2 +

1

n
y2

)
⊗
(
x3 +

1

n
y3

)
− nx1 ⊗ x2 ⊗ x3.

Clearly, rank⊗(An) ≤ 2, and since, as n → ∞,

‖An −A‖F ≤ 1

n
‖y1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ y3‖F

+
1

n2
‖y1 ⊗ y2 ⊗ y3‖F → 0,

we see that A is approximated arbitrary closely by tensors An.
It remains to establish that rank⊗(A) = 3. From the three-term format of A, we

deduce only that rank⊗(A) ≤ 3. A clean proof that rank⊗(A) > 2 is included in the
proof of Theorem 7.1, but this depends on the properties of the polynomial Δ defined
in section 5.3. A more direct argument is given in the next lemma.

Lemma 4.7. Let x1,y1 ∈ R
d1 , x2,y2 ∈ R

d2 , x3,y3 ∈ R
d3 , and

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

Then rank⊗(A) = 3 if and only if xi,yi are linearly independent for i = 1, 2, 3.
Proof. Only two distinct vectors are involved in each factor of the tensor product,

so rank�(A) ≤ (2, 2, 2) and we can work in R
2×2×2 (Corollary 3.2). More strongly, if

any of the pairs {xi,yi} is linearly dependent, then A is GL-equivalent to a tensor in
R

1×2×2, R
2×1×2, or R

2×2×1. These spaces are isomorphic to R
2×2, so the maximum

possible rank of A is 2.
Conversely, suppose each pair {xi,yi} is linearly independent. We may as well

assume that

(4.6) A =

[
0 1
1 0

∣∣∣∣ 1 0
0 0

]
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since we can transform A to that form using a multilinear transformation (L1, L2, L3),
where Li(xi) = e1 and Li(yi) = e2 for i = 1, 2, 3.

Suppose, for a contradiction, that rank⊗(A) ≤ 2; then we can write

(4.7) A = u1 ⊗ u2 ⊗ u3 + v1 ⊗ v2 ⊗ v3

for some ui,vi ∈ R
di .

Claim 1. The vectors u1,v1 are independent. If they are not, then let ϕ : R
2 → R

be a nonzero linear map such that ϕ(u1) = ϕ(v1) = 0. Using the expressions in (4.7)
and (4.6), we find that

0 = (ϕ, I, I) ·A =

[
ϕ(e2) ϕ(e1)
ϕ(e1) 0

]

in R
1×2×2 ∼= R

2×2, which is a contradiction because ϕ(e1) and ϕ(e2) cannot both be
zero.

Claim 2. The vectors u1, e1 are dependent. Indeed, let ϕu : R
2 → R be a linear

map whose kernel is spanned by u1. Then

ϕu(v1)(v2 ⊗ v3) = (ϕu, I, I) ·A =

[
ϕu(e2) ϕu(e1)
ϕu(e1) 0

]

in R
1×2×2 ∼= R

2×2. The left-hand side (lhs) has rank at most 1, which implies on the
right-hand side (rhs) that ϕu(e1) = 0, and hence e1 ∈ span{u1}.

Claim 3. The vectors v1, e1 are dependent. Indeed, let ϕv : R
2 → R be a linear

map whose kernel is spanned by v1. Then

ϕv(u1)(u2 ⊗ u3) = (ϕv, I, I) ·A =

[
ϕv(e2) ϕv(e1)
ϕv(e1) 0

]

in R
1×2×2 ∼= R

2×2. The lhs has rank at most 1, which implies on the rhs that
ϕv(e1) = 0, and hence e1 ∈ span{v1}.

Taken together, the three claims are inconsistent. This is the desired contradic-
tion. Thus rank⊗(A) > 2, and therefore rank⊗(A) = 3.

Remark. Note that if we take d1 = d2 = d3 = 2, then (4.4) is an example of a
tensor whose outer-product rank exceeds min{d1, d2, d3}.

4.3. Diverging coefficients. What goes wrong in the example of Proposi-
tion 4.6? Why do the rank-2 decompositions of the An fail to converge to a rank-2
decomposition of A? We can attempt to mimic the proofs of Propositions 4.2 and 4.3
by seeking convergent subsequences for the rank-2 decompositions of the An. We fail
because we cannot simultaneously keep all the variables bounded. For example, in
the decomposition

An = n

(
x1 +

1

n
y1

)
⊗
(
x2 +

1

n
y2

)
⊗
(
x3 +

1

n
y3

)
− nx1 ⊗ x2 ⊗ x3

the vector terms converge but the coefficients λ1 = λ2 = n tend to infinity. In spite
of this, the sequence An itself remains bounded.

In fact, rank-jumping always occurs like this (see also [49]).
Proposition 4.8. Suppose An → A, where rank⊗(A) ≥ r+1 and rank⊗(An) ≤ r

for all n. If we write

An = λ1,nu1,n ⊗ v1,n ⊗ w1,n + · · · + λr,nur,n ⊗ vr,n ⊗ wr,n,
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where the vectors ui,n, vi,n, wi,n are unit vectors, then maxi{|λi,n|} → ∞ as n → ∞.
Moreover, at least two of the coefficient sequences {λi,n | n = 1, 2, . . . } are unbounded.

Proof. If the sequence maxi{|λi,n|} does not diverge to ∞, then it has a bounded
subsequence. In this subsequence, the coefficients and vectors are all bounded, so
we can pass to a further subsequence in which each of the coefficient sequences and
vector sequences is convergent:

λi,n → λi, ui,n → ui, vi,n → vi, wi,n → wi.

It follows that A = λ1u1 ⊗ v1 ⊗w1 + · · ·+ λrur ⊗ vr ⊗wr, so it has rank at most r,
which is a contradiction.

Thus maxi{|λi,n|} diverges to ∞. It follows that at least one of the coefficient se-
quences has a divergent subsequence. If there were only one such coefficient sequence,
all the others being bounded, then (on the subsequence) An would be dominated by
this term and consequently ‖An‖ would be unbounded. Since An → A, this cannot
happen. Thus there are at least two unbounded coefficient sequences.

For a minimal rank-jumping example, all the coefficients must diverge to ∞.
Proposition 4.9. Suppose An → A, where rank⊗(A) = r+s and rank⊗(An) ≤ r

for all n. If we write

An = λ1,nu1,n ⊗ v1,n ⊗ w1,n + · · · + λr,nur,n ⊗ vr,n ⊗ wr,n,

where the vectors ui,n, vi,n, wi,n are unit vectors, then there are two possibilities:
either (i) all of the sequences |λi,n| diverge to ∞ as n → ∞ or (ii) in the same tensor
space there exists Bn → B, where rank⊗(B) ≥ r′ + s and rank⊗(Bn) ≤ r′ for all n,
for some r′ < r.

Proof. Suppose one of the coefficient sequences, say, |λi,n|, fails to diverge as
n → ∞; so it has a bounded subsequence. In a further subsequence, the ith term
Rn = λi,nui,n⊗vi,n⊗wi,n converges to a tensor R of rank (at most) 1. Writing Bn =
An−Rn, we find that Bn → B = A−R on this subsequence, with rank⊗(Bn) ≤ r−1.
Moreover, r+s ≤ rank⊗(A) ≤ rank⊗(B)+rank⊗(R), so rank⊗(B) ≥ (r−1)+s.

Remark. Clearly the arguments in Propositions 4.8 and 4.9 apply to tensors of
all orders, not just order 3. We also note that the vectors (ui,n, etc.) need not be unit
vectors; they just have to be uniformly bounded.

One interpretation of Proposition 4.8 is that if one attempts to minimize

‖A− λ1u1 ⊗ v1 ⊗ w1 − · · · − λrur ⊗ vr ⊗ wr‖

for a tensor A which does not have a best rank-r approximation, then (at least some
of) the coefficients λi become unbounded. This phenomenon of diverging summands
has been observed in practical applications of multilinear models in psychometrics and
chemometrics and is commonly referred to in those circles as “candecomp/parafac

degeneracy” or “diverging candecomp/parafac components” [49, 51, 63, 68, 69].
More precisely, these are called “k-factor degeneracies” when there are k diverging
summands whose sum stays bounded. 2- and 3-factor degeneracies were exhibited
in [63] and 4- and 5-factor degeneracies were exhibited in [68]. There are uninter-
esting (see section 4.4) and interesting (see section 4.7) ways of generating k-factor
degeneracies for arbitrarily large k.

4.4. Higher orders, higher ranks, arbitrary norms. We will now show that
the rank-jumping phenomenon—that is, the failure of Sr(d1, . . . , dk) to be closed—is
independent of the choice of norms and can be extended to arbitrary order. The norm
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independence is a trivial consequence of a basic fact in functional analysis: all norms
on finite dimensional vector spaces are equivalent; in particular, any norm will induce
the same unique topology on a finite dimensional vector space.

Theorem 4.10. For k ≥ 3 and d1, . . . , dk ≥ 2, the problem of determining a best
rank-r approximation for an order-k tensor in R

d1×···×dk has no solution in general
for any r = 2, . . . ,min{d1, . . . , dk}. In particular, there exists A ∈ R

d1×···×dk with

rank⊗(A) = r + 1

that has no best rank-r approximation. The result is independent of the choice of
norms.

Proof. We begin by assuming k = 3.
Higher rank. Let 2 ≤ r ≤ min{d1, d2, d3}. By Lemma 3.5, we can construct

a tensor B ∈ R
(d1−2)×(d2−2)×(d3−2) with rank r − 2. By Proposition 4.6, we can

construct a convergent sequence of tensors Cn → C in R
2×2×2 with rank⊗(Cn) ≤ 2

and rank⊗(C) = 3. Let An = B ⊕ Cn ∈ R
d1×d2×d3 . Then An → A := B ⊕ C and

rank⊗(An) ≤ rank⊗(B) + rank⊗(Cn) ≤ r. The result of JáJá–Takche (Theorem 3.4)
implies that rank⊗(A) = rank⊗(B) + rank⊗(C) = r + 1.

Arbitrary order. Let u4 ∈ R
d4 , . . . ,uk ∈ R

dk be unit vectors and set

Ãn := An ⊗ u4 ⊗ · · · ⊗ uk, Ã := A⊗ u4 ⊗ · · · ⊗ uk.

By (4.2),

‖Ãn − Ã‖F = ‖An −A‖ = ‖B ⊕ Cn −B ⊕ C‖ = ‖Cn − C‖ → 0 as n → ∞.

Moreover, Corollary 3.3 ensures that rank⊗(Ã) = r + 1 and rank⊗(Ãn) ≤ r.
Norm independence. Whether the sequence Ãn converges to Ã is entirely depen-

dent on the norm-induced topology on R
d1×···×dk . Since it has a unique topology

induced by any of its equivalent norms as a finite dimensional vector space, the con-
vergence is independent of the choice of norms.

We note that the proof above exhibits an order-k tensor, namely, Ã, that has
rank strictly larger than min{d1, . . . , dk}.

4.5. Tensor rank can leap an arbitrarily large gap. How can we construct
a sequence of tensors of rank r that converge to a tensor of rank r+ 2? An easy trick
is to take the direct sum of two sequences of rank-2 tensors of the form shown in (4.5).
The resulting sequence converges to a limiting tensor that is the direct sum of two
rank-3 tensors, each of the form shown in (4.4). To show that the limiting tensor has
rank 6 (and does not have some miraculous lower-rank decomposition), we once again
turn to the theorem of JáJá–Takche, which contains just enough of the direct sum
conjecture (3.1) for our purposes.

Proposition 4.11. Given any s ∈ N and r ≥ 2s, there exists a sequence of order-
3 tensors Bn such that rank⊗(Bn) ≤ r and limn→∞ Bn = B with rank⊗(B) = r + s.

Proof. Let d = r − 2s. By Lemma 3.5, there exists a rank-d tensor C ∈ R
d×d×d.

Let An → A be a convergent sequence in R
2×2×2 with rank⊗(A) ≤ 2 and rank⊗(A) =

3. Define

Bn = C ⊕An ⊕ · · · ⊕An, B = C ⊕A⊕ · · · ⊕A,

where there are s terms An and A. Then Bn → B, and rank⊗(Bn) ≤ r− 2s+2s = r.
By applying the JáJá–Takche theorem sequentially s times, once for each summand A,
we deduce that rank⊗(B) = r − 2s + 3s = r + s.
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As usual the construction can be extended to order-k tensors by taking an outer
product with a suitable number of nonzero vectors in the new factors.

Corollary 4.12. Given any s ≥ 1, r ≥ 2, and k ≥ 3, with r ≥ 2s, there exists
A ∈ R

d1×···×dk such that rank⊗(A) = r + s and A has no best rank-r approximation.

Proof. This follows from Proposition 4.11 and the previous remark.

4.6. Brègman divergences and other continuous measures of proximity.
In data analytic applications, one frequently encounters low-rank approximations with
respect to “distances” that are more general than norms. Such a “distance” may not
even be a metric, an example being the Brègman divergence [10, 26] (sometimes also
known as the Brègman distance). The definition here is based on the definition given
in [26]. Recall first that if S ⊂ R

n, the relative interior of S is simply the interior of
S considered as a subset of its affine hull and is denoted by ri(S).

Definition 4.13. Let S ⊆ R
d1×···×dk be a convex set. Let ϕ : S → R be a

lower-semicontinuous, convex function that is continuously differentiable and strictly
convex in ri(S). Let ϕ have the property that for any sequence {Cn} ⊂ ri(S) that
converges to C ∈ S \ ri(S), we have

lim
n→∞

‖∇ϕ(Cn)‖ = +∞.

The Brègman divergence Dϕ : S × ri(S) → R is defined by

Dϕ(A,B) = ϕ(A) − ϕ(B) − 〈∇ϕ(B), A−B〉.

It is natural to ask if the analogous problem approx(A, r) for Brègman divergence
will always have a solution. Note that a Brègman divergence, unlike a metric, is not
necessarily symmetric in its two arguments, and thus there are two possible problems:

argminrank⊗(B)≤r Dϕ(A,B) and argminrank⊗(B)≤r Dϕ(B,A).

As the following proposition shows, the answer is no in both cases.

Proposition 4.14. Let Dϕ be a Brègman divergence. Let A and An be defined
as in (4.4) and (4.5), respectively. Then

lim
n→∞

Dϕ(A,An) = 0 = lim
n→∞

Dϕ(An, A).

Proof. The Brègman divergence is jointly continuous in both arguments with
respect to the norm topology, and An → A in the norm, so Dϕ(A,An) → Dϕ(A,A) =
0 and Dϕ(An, A) → Dϕ(A,A) = 0.

Proposition 4.14 extends trivially to any other measure of nearness that is con-
tinuous with respect to the norm topology in at least one argument.

4.7. Difference quotients. We thank Landsberg [53] for the insight that the
expression in (4.4) is best regarded as a derivative. Indeed, if

f(t) = (x + ty)⊗3 = (x + ty) ⊗ (x + ty) ⊗ (x + ty),

then

df

dt

∣∣∣∣
t=0

= y ⊗ x ⊗ x + x ⊗ y ⊗ x + x ⊗ x ⊗ y
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by the Leibniz rule. On the other hand,

df

dt

∣∣∣∣
t=0

= lim
t→0

[
(x + ty) ⊗ (x + ty) ⊗ (x + ty) − x ⊗ x ⊗ x

t

]
,

and the difference quotient on the rhs has rank 2. The expression in (4.5) can be
obtained from this by taking t = 1/N .

We can extend Landsberg’s idea to more general partial differential operators.
It will be helpful to use the degree-k Veronese map [37], which is Vk(x) = x⊗k =
x ⊗ · · · ⊗ x (a k-fold product). Then, for example, the six-term symmetric tensor

x ⊗ y ⊗ z + x ⊗ z ⊗ y + y ⊗ z ⊗ x + y ⊗ x ⊗ z + z ⊗ x ⊗ y + x ⊗ y ⊗ x

can be written as a partial derivative

∂2

∂s ∂t

∣∣∣∣
s=t=0

(x + sy + tz)⊗3,

which is a limit of a four-term difference quotient:

lim
s,t→0

[
V3(x + sy + tz) − V3(x + sy) − V3(x + tz) + V3(x)

st

]
.

This example lies naturally in R
3×3×3, taking x,y, z to be linearly independent. An-

other example, in R
2×2×2×2, is the six-term symmetric order-4 tensor

x ⊗ x ⊗ y ⊗ y + x ⊗ y ⊗ x ⊗ y + x ⊗ y ⊗ y ⊗ x

+ y ⊗ x ⊗ x ⊗ y + y ⊗ x ⊗ y ⊗ x + y ⊗ y ⊗ x ⊗ x.

This can be written as the second-order derivative

∂2

∂t2

∣∣∣∣
t=0

(x + ty)⊗4

2!
,

which is a limit of a three-term difference quotient:

lim
t→0

[
V4(x + 2ty) − 2V4(x + ty) + V4(x)

2! t2

]
.

We call these examples symmetric Leibniz tensors for the differential operators
∂2/∂s ∂t and ∂2/∂t2, of orders 3 and 4, respectively. More generally, given positive
integers k and a1, . . . , aj with a1 + · · · + aj = a ≤ k, the symmetric tensor

Lk(a1, . . . , aj) :=
∑
Sym

x⊗(k−a) ⊗ y⊗a1
1 ⊗ · · · ⊗ y

⊗aj

j

can be written as a partial derivative,

∂a

∂t1
a1 . . . ∂tj

aj

∣∣∣∣
t1= ...=tj=0

Vk(x + t1y1 + · · · + tjyj)

(a1!) · · · (aj !)
,

which is a limit of a difference quotient with (a1 + 1) · · · (aj + 1) terms. On the
other hand, the number of terms in the limit Lk(a1, . . . , aj) is given by a multinomial
coefficient, and that is usually much bigger.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1106 VIN DE SILVA AND LEK-HENG LIM

This construction gives us a ready supply of candidates for rank-jumping. How-
ever, we do not know—even for the two explicit six-term examples above — whether
the limiting tensors actually have the ranks suggested by their formulas. We can show
that rank⊗(Lk(1)) = k for all k and over any field, generalizing Lemma 4.7. Beyond
that it is not clear to us what is likely to be true. The optimistic conjecture is

(4.8) rank⊗(Lk(a1, . . . , aj))
?
=

(
k

k − a, a1, . . . , aj

)
=

k!

(k − a)! ai! · · · aj !
.

Comon et al. [18] show that the symmetric rank of Lk(1) over the complex numbers
is k, so that is another possible context in which (4.8) may be true.

5. Characterizing the limit points of order-3 rank-2 tensors. If an order-
3 tensor can be expressed as a limit of a sequence of rank-2 tensors but itself has rank
greater than 2, then we show in this section that it takes a particular form. This
kind of result may make it possible to overcome the ill-posedness of approx(A, r) by
defining weak solutions.

Theorem 5.1. Let d1, d2, d3 ≥ 2. Let An ∈ R
d1×d2×d3 be a sequence of tensors

with rank⊗(An) ≤ 2 and

lim
n→∞

An = A,

where the limit is taken in any norm topology. If the limiting tensor A has rank higher
than 2, then rank⊗(A) must be exactly 3, and there exist pairs of linearly independent
vectors x1,y1 ∈ R

d1 , x2,y2 ∈ R
d2 , x3,y3 ∈ R

d3 such that

(5.1) A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.

The proof of this theorem will occupy the next few subsections.

5.1. Reduction. Our first step is to show that we can limit our attention to the
particular tensor space R

2×2×2. Here the orthogonal group action is important. Recall
that the actions of Od1,...,dk

(R) and GLd1,...,dk
(R) on R

d1×···×dk are continuous and
carry decomposable tensors to decomposable tensors. It follows that the subspaces
Sr and Sr are preserved. The next theorem provides a general mechanism for passing
to a tensor subspace.

Theorem 5.2. Let ri = min(r, di) for all i. The restricted maps

Od1,...,dk
(R) × Sr(r1, . . . , rk) → Sr(d1, . . . , dk),

Od1,...,dk
(R) × Sr(r1, . . . , rk) → Sr(d1, . . . , dk)

given by ((L1, . . . , Lk), A) �→ (L1, . . . , Lk) ·A are both surjective.
In other words, every rank-r tensor in R

d1×···×dk is equivalent by an orthogonal
transformation to a rank-r tensor in the smaller space R

r1×···×rk . Similarly every rank-
r-approximable tensor in R

d1×···×dk is equivalent to a rank-r-approximable tensor in
R

r1×···×rk .
Proof. If A ∈ Sr(d1, . . . , dk) is any rank-r tensor then we can write A =

∑r
j=1 xj

1⊗
· · · ⊗ xj

k for vectors xj
i ∈ R

di . For each i, the vectors x1
i , . . . ,x

r
i span a subspace

Vi ⊂ R
di of rank at most ri. Choose Li ∈ Odi(R) so that Li(R

di) ⊇ Vi. Let
B = (L−1

1 , . . . , L−1
k ) · A. Then A = (L1, . . . , Lk) · B and B ∈ Sr(d1, . . . , dk). This

argument shows that the first of the maps is surjective.
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Now let A ∈ Sr(d1, . . . , dk) be any rank-r-approximable tensor. Let (A(n))∞n=1

be any sequence of rank-r tensors converging to A. For each n, by the preceding

result, we can find B(n) ∈ Sr(d1, . . . , dk) and (L
(n)
1 , . . . , L

(n)
k ) ∈ Od1,...,dk

(R) with

(L
(n)
1 , . . . , L

(n)
k ) · B(n) = A(n). Since Od1,...,dk

(R) is compact, there is a convergent

subsequence (L
(nj)
1 , . . . , L

(nj)
k ) → (L1, . . . , Lk). Let B = (L1, . . . , Lk)

−1 · A. Then

A = (L1, . . . , Lk)·B; and B(nj) = (L
(nj)
1 , . . . , L

(nj)
k )−1·A(nj) → (L1, . . . , Lk)

−1·A = B,
so B ∈ Sr(d1, . . . , dk). Thus the second map is also surjective.

Corollary 5.3. If Theorem 5.1 is true for the tensor space R
2×2×2 then it is

true in general.
Proof. The general case is V1 ⊗ V2 ⊗ V3

∼= R
d1×d2×d3 . Suppose A ∈ S2(d1, d2, d3)

and rank⊗(A) ≥ 3. By Theorem 5.2, there exists (L1, L2, L3) ∈ Od1,d2,d3
(R) and

B ∈ S2(2, 2, 2) with (L1, L2, L3) · B = A. Moreover, rank⊗(B) = rank⊗(A) ≥ 3 in
R

l×m×n and hence rank⊗(B) ≥ 3 in R
2×2×2 by Proposition 3.1. Since the theorem

is assumed true for R
2×2×2 and B satisfies the hypotheses, it can be written in the

specified form in terms of vectors x1,x2,x3 and y1,y2,y3. It follows that A takes the
same form with respect to the vectors L1x1, L2x2, L3x3 and L1y1, L2y2, L3y3.

5.2. Tensors of rank 1 and 2. We establish two simple facts for later use.
Proposition 5.4. If A ∈ R

d1×···×dk has rank 1, then we can write A =
(L1, . . . , Lk) ·B, where (L1, . . . , Lk) ∈ GLd1,...,dk

(R) and B = e1 ⊗ · · · ⊗ ek.
Proof. Write A = x1 ⊗ · · · ⊗ xk and choose the Li so that Li(ei) = xi.
Proposition 5.5. Assume di ≥ 2 for all i. If A ∈ R

d1×···×dk has rank 2, then we
can write A = (L1, . . . , Lk) ·B, where (L1, . . . , Lk) ∈ GLd1,...,dk

(R) and B ∈ R
2×···×2

is of the form B = e1 ⊗ · · · ⊗ e1 + f1 ⊗ · · · ⊗ fk. Here e1 denotes the standard basis
vector (1, 0)	; each fi is equal either to e1 or to e2 = (0, 1)	; and at least two of the fi
are equal to e2.

Proof. We can write A = x1 ⊗ · · · ⊗ xk + y1 ⊗ · · · ⊗ yk. Since rank⊗(A) = 2 all
of the xi and yi must be nonzero. We claim that yi,xi must be linearly independent
for at least two different indices i. Otherwise, suppose yi = λixi for k − 1 different
indices, say, i = 1, . . . , k − 1. It would follow that

A = x1 ⊗ · · · ⊗ xk−1 ⊗ (xk + (λ1 · · ·λk−1)yk),

contradicting rank⊗(A) = 2.
For each i choose Li : R

2 → R
di such that Lie1 = xi and such that Lie2 = yi if

yi is linearly independent of xi; otherwise Lie2 may be arbitrary. It is easy to check
that (L1, . . . , Lk)

−1 ·A = e1 ⊗ · · ·⊗ e1 +λf1 ⊗ · · ·⊗ fk, where the fi are as specified in
the theorem, and λ is the product of the λi over those indices where yi = λixi. This
is almost in the correct form. To get rid of the λ, replace Lie2 = yi with Lie2 = λyi

at one of the indices i for which xi,yi are linearly independent. This completes the
construction.

5.3. The discriminant polynomial Δ. The structure of tensors in R
2×2×2 is

largely governed by a quartic polynomial Δ which we define and discuss here. This
same polynomial was discovered by Cayley in 1845 [15]. More generally, Δ is the
2 × 2 × 2 special case of an object called the hyperdeterminant revived in its modern
form by Gelfand, Kapranov, and Zelevinsky [30, 31]. We give an elementary treatment
of the properties we need.

As in our discussion in section 2.1, we identify a tensor A ∈ R
2 ⊗ R

2 ⊗ R
2 with

the array A ∈ R
2×2×2 of its eight coefficients with respect to the standard basis
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{ei ⊗ ej ⊗ ek : i, j, k = 1, 2}. Pictorially, we can represent it as a pair of side-by-side
2 × 2 slabs:

A =

2∑
i=1

2∑
j=1

2∑
k=1

aijkei ⊗ ej ⊗ ek =

[
a111 a112

a121 a122

∣∣∣∣ a211 a212

a221 a222

]
= A.

The general strategy is to find ways of simplifying the representation of A by ap-
plying transformations in GL2,2,2(R) = GL2(R) × GL2(R) × GL2(R). This group is
generated by the following operations: decomposable row operations applied to both
slabs simultaneously; decomposable column operations applied to both slabs simulta-
neously; decomposable slab operations (for example, adding a multiple of one slab to
the other).

Slab operations on a tensor A = [A1 |A2] generate new 2 × 2 slabs of the form
S = λ1A1 + λ2A2. One can check that

(5.2) det(S) = λ2
1 det(A1) + λ1λ2

det(A1 + A2) − det(A1 −A2)

2
+ λ2

2 det(A2).

We define Δ to be the discriminant of this quadratic polynomial:

(5.3) Δ([A1 |A2]) =

[
det(A1 + A2) − det(A1 −A2)

2

]2

− 4 det(A1) det(A2).

Explicitly, if A = [[aijk]]i,j,k=1,2 ∈ R
2×2×2, then

Δ(A) = (a2
111a

2
222 + a2

112a
2
221 + a2

121a
2
212 + a2

122a
2
211)

− 2(a111a112a221a222 + a111a121a212a222 + a111a122a211a222

+ a112a121a212a221 + a112a122a221a211 + a121a122a212a211)

+ 4(a111a122a212a221 + a112a121a211a222).

Proposition 5.6. Let A ∈ R
2×2×2, let A′ be obtained from A by permuting the

three factors in the tensor product, and let (L1, L2, L3) ∈ GL2,2,2(R). Then Δ(A′) =
Δ(A) and Δ((L1, L2, L3) ·A) = det(L1)

2 det(L2)
2 det(L3)

2Δ(A).
Proof. To show that Δ is invariant under all permutations of the factors of R

2×2×2,
it is enough to check invariance in the cases of two distinct transpositions. It is
clear from (5.3) that Δ is invariant under the transposition of the second and third
factors, since this amounts to replacing A1, A2 with their transposes A	

1 , A
	
2 . To

show that Δ is invariant under transposition of the first and third factors, write
A = [u11, u12 | u21, u22], where the uij are column vectors. One can verify that

Δ(A) = det[u11,u22]
2 + det[u21,u12]

2

− 2 det[u11,u12] det[u21,u22] − 2 det[u11,u21] det[u12,u22],

which has the desired symmetry.
In view of the permutation invariance of Δ, it is enough to verify the second

claim in the case (L1, L2, L3) = (I, L2, I). Then (L1, L2, L3) · A = [L2A1 |L2A2] and
an extra factor det(L2)

2 appears in all terms of (5.3), exactly as required.
Corollary 5.7. The sign of Δ is invariant under the action of GL2,2,2(R).
Corollary 5.8. The value of Δ is invariant under the action of O2,2,2(R).
Using the properties of Δ, we can easily prove, in a slightly different way, a result

due originally to Kruskal (unpublished work) and ten Berge [73].
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Proposition 5.9. If Δ(A) > 0 then rank⊗(A) ≤ 2.
Proposition 5.10. If rank⊗(A) ≤ 2 then Δ(A) ≥ 0.
Proof of Proposition 5.9. If the discriminant Δ(A) is positive then the homoge-

neous quadratic equation (5.2) has two linearly independent root pairs (λ11, λ12) and
(λ21, λ22). It follows that we can use slab operations to transform [A1 |A2] → [B1 |B2],
where Bi = λi1A1 +λi2A2. By construction det(Bi) = 0, so we can write Bi = fi⊗gi

for some fi,gi ∈ R
2 (possibly zero). It follows that [B1 |B2] = e1⊗f1⊗g1+e2⊗f2⊗g2;

so rank⊗(A) = rank⊗([B1 |B2]) ≤ 2.
Proof of Proposition 5.10. It is easy to check that Δ(A) = 0 if rank⊗(A) ≤ 1,

since we can write A = (L1, L2, L3) · (e1 ⊗ e1 ⊗ e1) or else A = 0.
It remains to be shown that Δ(A) is not negative when rank⊗(A) = 2. Propo-

sition 5.5 implies that A can be transformed by an element of GL2,2,2(R) (and a
permutation of factors, if necessary) into one of the following tensors:

I1 =

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
or I2 =

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
.

Since Δ(I1) = 1 and Δ(I2) = 0, it follows that Δ(A) ≥ 0.
Kruskal and also ten Berge deserve complete credit for discovering the above

result. In fact, the hyperdeterminant for 2 × 2 × 2 tensor Δ is known by the name
Kruskal polynomial in the psychometrics community [73]. Our goal is not so much to
provide alternative proofs for Propositions 5.9 and 5.10 but to include them so that
our proof of Theorem 5.1 can be self-contained. We are now ready to give that proof,
thereby characterizing all limit points of order-3 rank-2 tensors.

Proof of Theorem 5.1. Note that the theorem is stated for order-3 tensors of any
size d1 × d2 × d3. We begin with the case A ∈ R

2×2×2. Suppose A ∈ S2(2, 2, 2) \
S2(2, 2, 2). Then we claim that Δ(A) = 0. Indeed, since A �∈ S2, Proposition 5.9 im-
plies that Δ(A) ≤ 0. On the other hand, since A ∈ S2, it follows from Proposition 5.10
and the continuity of Δ that Δ(A) ≥ 0.

Since Δ(A) = 0, the homogeneous quadratic equation (5.2) has a nontrivial root
pair (λ1, λ2). It follows that A can be transformed by slab operations into the form
[Ai |S], where S = λ1A1 + λ2A2 and i = 1 or 2. By construction det(S) = 0, but
S �= 0 for otherwise rank⊗(A) = rank(Ai) ≤ 2. Hence rank(S) = 1 and by a further
transformation we can reduce A to the form

B =

[
p q
r s

∣∣∣∣ 1 0
0 0

]
.

In fact we may assume p = 0 (the operation “subtract p times the second slab from
the first slab” will achieve this), and moreover s2 = Δ(B) = 0. Both q and r must be
nonzero; otherwise rank⊗(A) = rank⊗(B) ≤ 2. If we rescale the bottom rows by 1/r
and the right-hand columns by 1/q we are finally reduced to

B′ =

[
0 1
1 0

∣∣∣∣ 1 0
0 0

]
= e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2.

By reversing all the row, column, and slab operations we can obtain a transformation
(L1, L2, L3) ∈ GL2,2,2(R) such that A = (L1, L2, L3) · B′. Then A can be written in
the required form, with xi = Lie1, yi = Lie2 for i = 1, 2, 3.

This completes the proof of Theorem 5.1 in the case of the tensor space R
2×2×2.

By Corollary 5.3 this implies the theorem in general.
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5.4. Ill-posedness and ill-conditioning of the best rank-r approximation
problem. Recall that a problem is called well-posed if a solution exists, is unique,
and is stable (i.e., depends continuously on the input data). If one or more of these
three criteria are not satisfied, the problem3 is called ill-posed.

From sections 4 and 8, we see that tensors will often fail to have a best rank-
r approximation. In all applications that rely on approx(A, r) or a variant of it
as the underlying mathematical model, we should fully expect the ill-posedness of
approx(A, r) to pose a serious difficulty. Even if it is known a priori that a tensor A
has a best rank-r approximation, we should remember that in applications, the data
array Â available at our disposal is almost always one that is corrupted by noise, i.e.,
Â = A+E, where E denotes the collective contributions of various errors, limitations
in measurements, background noise, rounding off, etc. Clearly there is no guarantee
that Â will also have a best rank-r approximation.

In many situations, one needs only a “good” rank-r approximation rather than
the best rank-r approximation. It is tempting to argue, then, that the nonexistence
of the best solution does not matter—it is enough to seek an “approximate solution.”
We discourage this point of view for two main reasons. First, there is a serious con-
ceptual difficulty: if there is no solution, then what is the “approximate solution” an
approximation of? Second, even if one disregards this and ploughs ahead to compute
an “approximate solution,” we argue below that this task is ill-conditioned and the
computation is unstable.

For notational simplicity and since there is no loss of generality (cf. Theorem 4.10
and Corollary 4.12), we will use the problem of finding a best rank-2 approximation
to a rank-3 tensor to make our point. Let A ∈ R

d1×d2×d3 be an instance where

(5.4) argminxi,yi∈Rdi‖A− x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖

does not have a solution (such examples abound; cf. section 8). If we disregard the
fact that a solution does not exist and plug the problem into a computer program,4

we will still get some sort of “approximate solution” because of the finite-precision
error inherent in the computer. What really happens here [77] is that we are effec-
tively solving a problem perturbed by some small ε > 0; the “approximate solution”
x∗
i (ε),y

∗
i (ε) ∈ R

di (i = 1, 2, 3) is really a solution to the perturbed problem

(5.5) ‖A− x∗
1(ε) ⊗ x∗

2(ε) ⊗ x∗
3(ε) − y∗

1(ε) ⊗ y∗
2(ε) ⊗ y∗

3(ε)‖
= ε + infxi,yi∈Rdi‖A− x1 ⊗ x2 ⊗ x3 − y1 ⊗ y2 ⊗ y3‖.

Since we are attempting to find a solution of (5.4) that does not exist, in exact arith-
metic the algorithm will never terminate, but in reality the computer is limited by its
finite precision, and so the algorithm terminates at an “approximate solution,” which
may be viewed as a solution to a perturbed problem (5.5). This process of forcing
a solution to an ill-posed problem is almost always guaranteed to be ill-conditioned
because of the infamous rule of thumb in numerical analysis [22, 23, 24]:

A well-posed problem near an ill-posed one is ill-conditioned.

3Normally, existence is taken for granted, and an ill-posed problem often means one whose
solution lacks either uniqueness or stability. In this paper, the ill-posedness is of a more serious
kind—the existence of a solution is itself in question.

4While there is no known globally convergent algorithm for approx(A, r), we will ignore this
difficulty for a moment and assume that the ubiquitous alternating least squares algorithm would
yield the required solution.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL LOW-RANK TENSOR APPROXIMATION 1111

The root of the ill-conditioning lies in the fact that we are solving the (well-posed but
ill-conditioned) problem (5.5) that is a slight perturbation of the ill-posed problem
(5.4). The ill-conditioning manifests itself as the phenomenon described in Proposi-
tion 4.8, namely,

‖x∗
1(ε) ⊗ x∗

2(ε) ⊗ x∗
3(ε)‖ → ∞ and ‖y∗

1(ε) ⊗ y∗
2(ε) ⊗ y∗

3(ε)‖ → ∞

as ε → 0. The ill-conditioning described here was originally observed in numerical
experiments by psychometricians and chemometricians, who named the phenomenon
“diverging candecomp/parafac components” or “candecomp/parafac degener-
acy” [49, 51, 63, 68, 69].

To fix the ill-conditioning, we should first fix the ill-posedness, i.e., find a well-
posed problem. This leads us to the subject of the next section.

5.5. Weak solutions. In the study of pdes [29], there often arise systems of
pdes that have no solutions in the traditional sense. A standard way around this is
to define a so-called weak solution, which may not be a continuous function or even a
function (which is a tad odd since one would expect a solution to a pde to be at least
differentiable). Without going into the details, we will just say that weak solution
turns out to be an extremely useful concept and is indispensable in modern studies of
pdes. Under the proper context, a weak solution to an ill-posed pde may be viewed
as the limit of strong or classical solutions to a sequence of well-posed pdes that are
slightly perturbed versions of the ill-posed one in question. Motivated by the pde

analogies, we will define weak solutions to approx(A, r).
We let Sr(d1, . . . , dk) :=

{
A ∈ R

d1×···×dk | rank⊗(A) ≤ r
}

and let Sr(d1, . . . , dk)
denote its closure in the (unique) norm-topology.

Definition 5.11. An order-k tensor A ∈ R
d1×···×dk has border rank r if

A ∈ Sr(d1, . . . , dk) and A �∈ Sr−1(d1, . . . , dk).

This is denoted by rank⊗(A). Note that

Sr(d1, . . . , dk) = {A ∈ R
d1×···×dk | rank⊗(S) ≤ r}.

Remark. Clearly rank⊗(A) ≤ rank⊗(A) for any tensor A. Since S0 = S0 (triv-

ially) and S1 = S1 (by Proposition 4.2), it follows that rank⊗(A) = rank⊗(A) when-
ever rank⊗(A) ≤ 2. Moreover, rank⊗(A) ≥ 2 if rank⊗(A) ≥ 2.

Our definition differs slightly from the usual definition of border rank in the
algebraic computational complexity literature [5, 6, 12, 48, 54], which uses the Zariski
topology (and is normally defined for tensors over C).

Let A ∈ R
d1×···×dk with di ≥ 2 and k ≥ 3. Then the way to ensure that

approx(A, r), the optimal rank-r approximation problem

(5.6) argminrank⊗(B)≤r‖A−B‖,

always has a meaningful solution for any A ∈ R
d1×···×dk is to instead consider the

optimal border-rank-r approximation problem

(5.7) argminrank⊗(B)≤r‖A−B‖.

It is an obvious move to propose to fix the ill-posedness of approx(A, r) by taking
the closure. However, without a characterization of the limit points such a proposal
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will at best be academic—it is not enough to simply say that weak solutions are limits
of rank-2 tensors without giving an explicit expression (or a number of expressions)
for them that may be plugged into the objective function to be minimized.

Theorem 5.1 solves this problem in the order-3 rank-2 case—it gives a complete
description of these limit points with an explicit formula and, in turn, a constructive
solution to the border-rank approximation problem. In case this is not obvious, we
will spell out the implication of Theorem 5.1.

Corollary 5.12. Let d1, d2, d3 ≥ 2. Let A ∈ R
d1×d2×d3 with rank⊗(A) = 3. A

is the limit of a sequence An ∈ R
d1×d2×d3 with rank⊗(An) ≤ 2 if and only if

A = y1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ x3 + x1 ⊗ x2 ⊗ y3

for some xi,yi linearly independent vectors in R
di , i = 1, 2, 3.

This implies that every tensor in S2(d1, . . . , dk) can be written in one of two
forms:

(5.8) y1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ x3 + x1 ⊗ x2 ⊗ y3

or

(5.9) x1 ⊗ x2 ⊗ x3 + y1 ⊗ y2 ⊗ y3.

These expressions may then be used to define the relevant objective function(s) in the
minimization of (5.7). As in the case of pdes, every classical (strong) solution is also
a weak solution to approx(A, r).

Proposition 5.13. If B is a solution to (5.6) then B is a solution to (5.7).
Proof. If ‖A− B‖ ≤ ‖A− B′‖ for all B′ ∈ Sr, then ‖A− B‖ ≤ ‖A− B′‖ for all

B′ ∈ Sr by continuity.

6. Semialgebraic description of tensor rank. One may wonder whether the
result in Propositions 5.9 and 5.10 extends to more general hyperdeterminants. We
know from [30, 31] that a hyperdeterminant may be uniquely defined (up to a constant
scaling) in R

d1×···×dk whenever d1, . . . , dk satisfy

(6.1) di − 1 ≤
∑
j �=i

(dj − 1) for i = 1, . . . , k.

(Note that for matrices, (6.1) translates to d1 = d2, which may be viewed as one
reason why the determinant is defined only for square matrices.) Let Detd1,...,dk

:
R

d1×···×dk → R be the polynomial function defined by the hyperdeterminant whenever
(6.1) is satisfied. Propositions 5.9 and 5.10 tell us that the rank of a tensor is 2 on
the set {A | Det2,2,2(A) > 0} and 3 on the set {A | Det2,2,2(A) < 0}. One may start
by asking whether the tensor rank in R

d1×···×dk is constant-valued on the sets

{A | Detd1,...,dk
(A) < 0} and {A | Detd1,...,dk

(A) > 0}.

The answer, as Sturmfels has kindly communicated to us [71], is no with explicit
counterexamples in cases 2 × 2 × 2 × 2 and 3 × 3 × 3. We will not reproduce Sturm-
fels’s examples here (one reason is that Det2,2,2,2 already contains close to 3 million
monomial terms [35]) but instead refer our readers to his forthcoming paper.

We will prove that although there is no single polynomial Δ that will separate
R

d1×···×dk into regions of constant rank as in the case of R
2×2×2, there is always a

finite number of polynomials Δ1, . . . ,Δm that will achieve this.
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Before we state and prove the result, we will introduce a few notions and no-
tations. We will write R[X1, . . . , Xm] for the ring of polynomials in m variables
X1, . . . , Xm with real coefficients. Subsequently, we will be considering polynomial
functions on tensor spaces and will index our variables in a consistent way (for ex-
ample, when discussing polynomial functions on R

l×m×n, the polynomial ring in
question will be denoted R[X111, X112, . . . Xlmn]). Given A = [[aijk]] ∈ R

l×m×n and
p(X111, X112, . . . Xlmn) ∈ R[X111, X112, . . . Xlmn], p(A) will mean the obvious thing,
namely, p(A) = p(a111, a112, . . . , almn) ∈ R.

A polynomial map is a function F : R
n → R

m, defined for each a = [a1, . . . , an]	 ∈
R

n by F (a) = [f1(a), . . . , fm(a)]	, where fi ∈ R[X1, . . . , Xn] for all i = 1, . . . ,m.

A semialgebraic set in R
n is a union of finitely many sets of the form5

{a ∈ R
n | p(a) = 0, q1(a) > 0, . . . , q�(a) > 0},

where � ∈ N and p, q1, . . . , q� ∈ R[X1, . . . , Xn]. Note that we do not exclude the
possibility of p or any of the qi being constant (degree-0) polynomials. For example,
if p is the zero polynomial, then the first relation 0 = 0 is trivially satisfied and the
semialgebraic set will be an open set in R

n.

It is easy to see that the class of all semialgebraic sets in R
n is closed under finite

unions, finite intersections, and taking the complement. Moreover, if S ⊆ R
n+1 is a

semialgebraic set and π : R
n+1 → R

n is the projection onto the first n coordinates,
then π(S) is also a semialgebraic set; this seemingly innocuous statement is in fact
the Tarski–Seidenberg theorem [65, 72], possibly the most celebrated result about
semialgebraic sets. We will restate it in a (somewhat less common) form that better
suits our purpose.

Theorem 6.1 (Tarski–Seidenberg). If S ⊆ R
n is a semialgebraic set and F :

R
n → R

m is a polynomial map, then the image F (S) ⊆ R
m is also a semialgebraic

set.

These and other results about semialgebraic sets may be found in [19, Chapter 2],
which, in addition, is a very readable introduction to semialgebraic geometry.

Theorem 6.2. The set Rr(d1, . . . , dk) := {A ∈ R
d1×···×dk | rank⊗(A) = r} is a

semialgebraic set.

Proof. Let ψr : (Rd1 × R
d1 × · · · × R

dk)r → R
d1×d2×···×dk be defined by

ψr(u1,v1, . . . , z1; . . . ;ur,vr, . . . , zr) = u1 ⊗ v1 ⊗ · · · ⊗ z1 + · · · + ur ⊗ vr ⊗ · · · ⊗ zr.

It is clear that the image of ψr is exactly Sr(d1, . . . , dk) = {A | rank⊗(A) ≤ r}. It is
also clear that ψr is a polynomial map.

It follows from Theorem 6.1 that Sr(d1, . . . , dk) is semialgebraic. This holds
for arbitrary r. So Rr(d1, . . . , dk) = Sr(d1, . . . , dk) \ Sr−1(d1, . . . , dk) is also semi-
algebraic.

Corollary 6.3. There exist Δ0, . . . ,Δm ∈ R[X1···1, . . . , Xd1···dk
] from which the

rank of a tensor A ∈ R
d1×···×dk can be determined purely from the signs (i.e., + or −

or 0) of Δ0(A), . . . ,Δm(A).

In the next section, we will see examples of such polynomials for the tensor space
R

2×2×2. We will stop short of giving an explicit semialgebraic characterization of
rank, but it should be clear to the reader how to get one.

5Only one p is necessary, because multiple equality constraints p1(a) = 0, . . . , pk(a) = 0 can
always be amalgamated into a single equation p(a) = 0 by setting p = p2

1 + · · ·+ p2
k.
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7. Orbits of real 2× 2× 2 tensors. In this section, we study the equivalence
of tensors in R

2×2×2 under multilinear matrix multiplication. We will use the results
and techniques of this section later on in section 8 where we determine which tensors
in R

2×2×2 have an optimal rank-2 approximation.
Recall that A and B ∈ R

2×2×2 are said to be (GL2,2,2(R)-)equivalent if and only
if there exists a transformation (L,M,N) ∈ GL2,2,2(R) such that A = (L,M,N) ·B.
The question is whether there is a finite list of “canonical tensors” so that every
A ∈ R

2×2×2 is equivalent to one of them. For matrices A ∈ R
m×n, rank(A) = r if

and only if there exist M ∈ GLm(R), N ∈ GLn(R) such that

(M,N) ·A = MAN	 =

[
Ir 0
0 0

]
.

So every matrix of rank r is equivalent to one that takes the canonical form
[
Ir 0
0 0

]
.

Note that this is the same as saying that the matrix A can be transformed into[
Ir 0
0 0

]
using elementary row and column operations—adding a scalar multiple of a

row/column to another, scaling a row/column by a nonzero scalar, interchanging two
rows/columns—since every (L1, L2) ∈ GLm,n(R) is a sequence of such operations.

We will see that there is indeed a finite number of canonical forms for tensors
in R

2×2×2, although the classification is somewhat more intricate than the case of
matrices; two tensors in R

2×2×2 can have the same rank but be inequivalent (i.e.,
reduce to different canonical forms).

In fancier language, what we are doing is classifying the orbits of the group ac-
tion GL2,2,2(R) on R

2×2×2. We are doing for R
2×2×2 what Gelfand, Kapranov, and

Zelevinsky did for C
2×2×2 in the last sections of [30, 31]. Not surprisingly, the results

that we obtained are similar but not identical; there are eight distinct orbits for the
action of GL2,2,2(R) on R

2×2×2 as opposed to seven distinct orbits for the action of
GL2,2,2(C) on C

2×2×2—a further reminder of the dependence of such results on the
choice of field.

Theorem 7.1. Every tensor in R
2×2×2 is equivalent via a transformation in

GL2,2,2(R) to precisely one of the canonical forms indicated in Table 7.1, with its
invariants taking the values shown.

Proof. Write A = [A1 | A2], Ai ∈ R
2×2 for [[aijk]] ∈ R

2×2×2. If rank(A1) = 0,
then

A =

[
0 0
0 0

∣∣∣∣ × ×
× ×

]
.

Using matrix operations, A must then be equivalent to one of the forms (depending
on rank(A2))

[
0 0
0 0

∣∣∣∣ 0 0
0 0

]
,

[
0 0
0 0

∣∣∣∣ 1 0
0 0

]
,

[
0 0
0 0

∣∣∣∣ 1 0
0 1

]
,

which correspond to D0, D1, and D2, respectively (after reordering the slabs).
If rank(A1) = 1, then we may assume that

A =

[
1 0
0 0

∣∣∣∣ a b
c d

]
.
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Table 7.1

GL-orbits of R
2×2×2. The letters D,G stand for “degenerate” and “generic,” respectively.

tensor sign(Δ) rank rank⊗ rank⊗

D0 =

[
0 0
0 0

∣∣∣∣ 0 0
0 0

]
0 (0, 0, 0) 0 0

D1 =

[
1 0
0 0

∣∣∣∣ 0 0
0 0

]
0 (1, 1, 1) 1 1

D2 =

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
0 (1, 2, 2) 2 2

D′
2 =

[
1 0
0 0

∣∣∣∣ 0 1
0 0

]
0 (2, 1, 2) 2 2

D′′
2 =

[
1 0
0 0

∣∣∣∣ 0 0
1 0

]
0 (2, 2, 1) 2 2

G2 =

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
+ (2, 2, 2) 2 2

D3 =

[
1 0
0 0

∣∣∣∣ 0 1
1 0

]
0 (2, 2, 2) 3 2

G3 =

[
1 0
0 1

∣∣∣∣ 0 −1
1 0

]
− (2, 2, 2) 3 3

If d �= 0 then we may transform this to G2 as follows:

[
1 0
0 0

∣∣∣∣ a b
c d

]
�

[
1 0
0 0

∣∣∣∣ × 0
0 d

]
�

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
.

If d = 0, then

[
1 0
0 0

∣∣∣∣ a b
c 0

]
�

[
1 0
0 0

∣∣∣∣ 0 b
c 0

]
.

In this situation we can normalize b, c separately, reducing these matrices to one of
the following four cases (according to whether b, c are zero):

[
1 0
0 0

∣∣∣∣ 0 0
0 0

]
,

[
1 0
0 0

∣∣∣∣ 0 1
0 0

]
,

[
1 0
0 0

∣∣∣∣ 0 0
1 0

]
,

[
1 0
0 0

∣∣∣∣ 0 1
1 0

]
,

which are D1, D
′
2, D

′′
2 , and D3, respectively.

Finally, if rank(A1) = 2, then we may assume that

A = [A1 | A2] =

[
1 0
0 1

∣∣∣∣ × ×
× ×

]
.

By applying a transformation of the form (I, L, L−1), we can keep A1 fixed while
conjugating A2 into (real) Jordan canonical form. There are four cases.
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If A2 has repeated real eigenvalues and is diagonalizable, then we get D2:

[
1 0
0 1

∣∣∣∣ λ 0
0 λ

]
�

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
.

If A2 has repeated real eigenvalues and is not diagonalizable, then we have

[
1 0
0 1

∣∣∣∣ λ 1
0 λ

]
�

[
1 0
0 1

∣∣∣∣ 0 1
0 0

]
,

which is equivalent (after swapping columns and swapping slabs) to D3.

If A2 has distinct real eigenvalues, then A reduces to G2:

[
1 0
0 1

∣∣∣∣ λ 0
0 μ

]
�

[
1 0
0 1

∣∣∣∣ 0 0
0 μ− λ

]
�

[
1 0
0 0

∣∣∣∣ 0 0
0 1

]
.

If A2 has complex eigenvalues, then we can reduce A to G3:

[
1 0
0 1

∣∣∣∣ a −b
b a

]
�

[
1 0
0 1

∣∣∣∣ 0 −b
b 0

]
�

[
1 0
0 1

∣∣∣∣ 0 −1
1 0

]
.

Thus, every 2 × 2 × 2 tensor can be transformed into one of the canonical forms
listed in the statement of the theorem. Moreover, the invariants sign(Δ) and rank�
are easily computed for the canonical forms and suffice to distinguish them. It follows
that the listed forms are pairwise inequivalent.

We confirm the given values of rank⊗. It is clear that rank⊗(D0) = 0 and
rank⊗(D1) = 1. By Proposition 5.4, any tensor of rank 1 must be equivalent to D1.
Thus D2, D′

2, D′′
2 , and G2 are all of rank 2. By Proposition 5.5, every tensor of

rank 2 must be equivalent to one of these. In particular, D3 and G3 must have rank
at least 3. Evidently rank⊗(D3) = 3 from its definition; and the same is true for G3

by virtue of the less obvious relation

G3 = (e1 + e2) ⊗ e2 ⊗ e2 + (e1 − e2) ⊗ e1 ⊗ e1 + e2 ⊗ (e1 + e2) ⊗ (e1 − e2).

Finally, we confirm the tabulated values of rank⊗. By virtue of the remark after
Definition 5.11, it is enough to verify that rank⊗(D3) ≤ 2 and that rank⊗(G3) = 3.
The first of these assertions follows from Proposition 4.6. The set of tensors of type G3

is an open set, which implies the second assertion.

Remark. We note that D3 is equivalent to any of the tensors obtained from it by
permutations of the three factors. Indeed, all of these tensors have rank� = (2, 2, 2)
and Δ = 0. Similar remarks apply to G2, G3.

Remark. The classification of GL2,2,2(C)-orbits in C
2×2×2 differs only in the

treatment of G3, since there is no longer any distinction between real and complex
eigenvalues.

We caution the reader that the finite classification in Theorem 7.1 is, in general,
not possible for tensors of arbitrary size and order simply because the dimension or
“degrees of freedom” of R

d1×···×dk exceeds that of GLd1,...,dk
(R) as soon as d1 · · · dk >

d2
1+· · ·+d2

k (which is almost always the case). Any attempt at an explicit classification
must necessarily include continuous parameters. For the case of R

2×2×2 this argument
is not in conflict with our finite classification, since 2 · 2 · 2 < 22 + 22 + 22.
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7.1. Generic rank. We called the tensors in the orbit classes of G2 and G3

generic in the sense that the property of being in either one of these classes is an open
condition. One should note that there is often no one single generic outer-product
rank for tensors over R [50, 74]. (For tensors over C such a generic rank always exists
[18].) The “generic outer-product rank” for tensors over R should be regarded as
set-valued:

generic-rank⊗(Rd1×···×dk) = {r ∈ N | Sr(d1, . . . , dk) has nonempty interior}.

So the generic outer-product rank in R
2×2×2 is {2, 3}. Another term, preferred by

some and coined originally by ten Berge, is typical rank [74].
Given d1, . . . dk, the determination of the generic outer-product rank is an open

problem in general and a nontrivial problem even in simple cases; see [13, 14] for
results over C and [73, 74] for results over R. Fortunately, the difficulty does not
extend to multilinear rank; a single unique generic multilinear rank always exists and
depends only on d1, . . . dk (and not on the base field; cf. Proposition 7.4).

Proposition 7.2. Let A ∈ R
d1×···×dk . If rank�(A) = (r1(A), . . . , rk(A)), then

ri(A) = min

⎛
⎝di,

∏
j �=i

dj

⎞
⎠ , i = 1, . . . , k,

generically.
Proof. Let μi : R

d1×···×dk → R
di×

∏
j �=i dj be the forgetful map that “flattens” or

“unfolds” a tensor into a matrix in the ith mode. It is easy to see that

(7.1) ri(A) = rank(μi(A)),

where “rank” here denotes matrix rank. The results then follow from the fact that
the generic rank of a matrix in R

di×
∏

j �=i dj is min(di,
∏

j �=i dj).
For example, for order-3 tensors,

generic-rank�(Rl×m×n) = (min(l,mn),min(m, ln),min(n, lm)).

7.2. Semialgebraic description of orbit classes. For a general tensor A ∈
R

2×2×2, its orbit class is readily determined by computing the invariants sign(Δ(A))
and rank�(A) and comparing with the canonical forms. The ranks ri(A) which con-
stitute rank�(A) can be evaluated algebraically as follows. If A �= 0, then each ri(A)
is either 1 or 2. For example, note that r1(A) < 2 if and only if the vectors A•11,
A•12, A•21, A•22 are linearly dependent, which happens if and only if all the 2-by-2
minors of the matrix [

a111 a112 a121 a122

a211 a212 a221 a222

]

are zero. Explicitly, the following six equations must be satisfied:

a111a212 = a211a112, a111a221 = a211a121, a111a222 = a211a122,(7.2)

a112a221 = a212a121, a112a222 = a212a122, a121a222 = a221a122.

Similarly, r2(A) < 2 if and only if

a111a122 = a121a112, a111a221 = a121a211, a111a222 = a121a212,(7.3)

a112a122 = a122a211, a112a222 = a122a212, a211a222 = a221a212;
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and r3(A) < 2 if and only if

a111a122 = a112a121, a111a212 = a112a211, a111a222 = a112a221,(7.4)

a121a212 = a122a211, a121a222 = a122a221, a211a222 = a212a221.

The equations (7.2)–(7.4) lead to twelve distinct polynomials (beginning with Δ1 =
a111a212−a211a112) which, together with Δ0 := Δ, make up the collection Δ0, . . . ,Δ12

of polynomials used in the semialgebraic description of the orbit structure of R
2×2×2,

as in Corollary 6.3. Indeed, we note that in Table 7.1 the information in the fourth and
fifth columns (rank⊗(A), rank⊗(A)) is determined by the information in the second
and third columns (sign(Δ), rank�(A)).

7.3. Generic rank on Δ = 0. The notion of generic rank also makes sense on
subvarieties of R

2×2×2—for instance, on the Δ = 0 hypersurface.
Proposition 7.3. The tensors on the hypersurface D3 = {A ∈ R

2×2×2 | Δ(A) =
0} are all of the form

x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3,

and they have rank 3 generically.
Proof. From the canonical forms in Table 7.1, we see that if Δ(A) = 0, then

A = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3

for some xi,yi ∈ R
2, not necessarily linearly independent. It remains to be shown

that rank⊗(A) = 3 generically.
From Theorem 7.1 and the subsequent discussion, if Δ(A) = 0, then rank⊗(A) ≤ 2

if and only if at least one of the equation sets (7.2), (7.3), (7.4) is satisfied. Hence
D2 := {A | Δ(A) = 0, rank⊗(A) ≤ 2} is an algebraic subset of D3.

On the other hand, D3 \ D2 is dense in D3 with respect to the Euclidean, and
hence the Zariski, topology. Indeed, each of the tensors D0, D1, D2, D

′
2, D

′′
2 can be

approximated by tensors of type D3; for instance,

[
1 0
0 1

∣∣∣∣ 0 ε
0 0

]
→

[
1 0
0 1

∣∣∣∣ 0 0
0 0

]
= D2 as ε → 0.

Multiplying by an arbitrary (L,M,N) ∈ GL2,2,2(R), it follows that any tensor in D2

can be approximated by tensors of type D3.
It follows that the rank-3 tensors D3 \D2 in D3 constitute a generic subset of D3

in the Zariski sense (and hence in all the other usual senses).
Remark. In fact, it can be shown that D3 is an irreducible variety. If we accept

that, then the fact that D2 is a proper subvariety of D3 immediately implies that
the rank-3 tensors form a generic subset of D3. The denseness argument becomes
unnecessary.

7.4. Base field dependence. It is interesting to observe that the GL2,2,2(R)-
orbit classes of G2 and G3 merge into a single orbit class over C (under the action of
GL2,2,2(C)). Explicitly, if we write zk = xk + iyk and z̄k = xk − iyk, then

(7.5) x1 ⊗ x2 ⊗ x3 + x1 ⊗ y2 ⊗ y3 − y1 ⊗ x2 ⊗ y3 + y1 ⊗ y2 ⊗ x3

=
1

2
(z̄1 ⊗ z2 ⊗ z̄3 + z1 ⊗ z̄2 ⊗ z3).
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The lhs is in the GL2,2,2(R)-orbit class of G3 and has outer-product rank 3 over R.
The rhs is in the GL2,2,2(C)-orbit class of G2 and has outer-product rank 2 over C.
To see why this is unexpected, recall that an m× n matrix with real entries has the
same rank whether we regard it as an element of R

m×n or of C
m×n. Note, however,

that G2 and G3 have the same multilinear rank; this is not coincidental but is a
manifestation of the following result.

Proposition 7.4. The multilinear rank of a tensor is independent of the choice
of base field. If K is an extension field of k, the value rank�(A) is the same whether
A is regarded as an element of k

d1×···×dk or of K
d1×···×dk .

Proof. This follows immediately from (7.1) and the base field independence of
matrix rank.

In 1969, Bergman [4] considered linear subspaces of matrix spaces, and showed
that the minimum rank on a subspace can become strictly smaller upon taking a field
extension. He gave a class of examples, the simplest instance being the 2-dimensional
subspace

s

[
1 0
0 1

]
+ t

[
0 1
−1 0

]

of R
2×2. Every (nonzero) matrix in this subspace has rank 2, but the complexified

subspace contains a matrix of rank 1. Intriguingly, this example is precisely the
subspace spanned by the slabs of G3. We suspect a deeper connection.

7.5. Injectivity of orbits. The tensor rank has the property of being invariant
under the general multilinear group (cf. (2.15)). Indeed, much of its relevance comes
from this fact. Moreover, from Proposition 3.1 we know that tensor rank is preserved
when a tensor space is included in a larger tensor space. Similar assertions are true
for the multilinear rank (cf. (2.19)).

The situation is more complicated for the function Δ defined on R
2×2×2. The sign

of Δ is GL2,2,2(R)-invariant, and Δ itself is invariant under O2,2,2(R). For general
d1, d2, d3 ≥ 2, we do not have an obvious candidate function Δ defined on R

d1×d2×d3 .
However, there is a natural definition of Δ restricted to the subset of tensors A for
which rank�(A) ≤ (2, 2, 2). Such a tensor can be expressed as

A = (L,M,N) · (B ⊕ 0),

where B ∈ R
2×2×2, 0 ∈ R

(d1−2)×(d2−2)×(d3−2), and (L,M,N) ∈ Od1,d2,d3(R). We
provisionally define Δ(A) = Δ(B), subject to a check that this is independent of the
choices involved. Given an alternative expression A = (L′,M ′, N ′) ·(B′⊕0), it follows
that B ⊕ 0 and B′ ⊕ 0 are in the same Od1,d2,d3(R)-orbit. Indeed,

B ⊕ 0 = (L−1L′,M−1M ′, N−1N ′) · (B′ ⊕ 0).

If we can show, more strongly, that B,B′ belong to the same O2,2,2(R)-orbit, then
the desired equality Δ(B) = Δ(B′) follows from the orthogonal invariance of Δ.

The missing step is supplied by the next theorem, which we state in a basis-free
form for abstract vector spaces. If V is a vector space, we write GL(V ) for the group
of invertible linear maps from V → V . If, in addition, V is an inner-product space,
we write O(V ) for the group of norm-preserving linear maps V → V . In particular,
GL(Rd) ∼= GLd(R) and O(Rd) ∼= Od(R).

Theorem 7.5 (injectivity of orbits). Let k = R or C and V1, . . . , Vk be k-
vector spaces. Let U1 ≤ V1, . . . , Uk ≤ Vk. (1) Suppose B,B′ ∈ U1 ⊗ · · · ⊗ Uk are in
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distinct GL(U1)× · · ·×GL(Uk)-orbits of U1 ⊗ · · ·⊗Uk; then B and B′ are in distinct
GL(V1)× · · · ×GL(Vk)-orbits of V1 ⊗ · · · ⊗ Vk. (2) Suppose B,B′ ∈ U1 ⊗ · · · ⊗Uk are
in distinct O(U1)× · · · ×O(Uk)-orbits of U1 ⊗ · · · ⊗Uk; then B and B′ are in distinct
O(V1) × · · · × O(Vk)-orbits of V1 ⊗ · · · ⊗ Vk.

Lemma 7.6. Let W ≤ U ≤ V be vector spaces and L ∈ GL(V ). Suppose
L(W ) ≤ U . Then there exists L̃ ∈ GL(U) such that L|W = L̃|W . Moreover, if
L ∈ O(V ), then we can take L̃ ∈ O(U).

Proof. Extend L|W to U by mapping the orthogonal complement of W in U by
a norm-preserving map to the orthogonal complement of L(W ) in U . The resulting
linear map L̃ has the desired properties and is orthogonal if L is orthogonal.

Proof of Theorem 7.5. We prove the contrapositive form of the theorem. Suppose
B′ = (L1, . . . , Lk) · B, where Li ∈ GL(Vi). Let Wi ≤ Ui be minimal subspaces
such that B is in the image of W1 ⊗ · · · ⊗ Wk ↪→ U1 ⊗ · · · ⊗ Uk. It follows that
Li(Wi) ≤ Ui, for otherwise we could replace Wi by L−1

i (Li(Wi) ∩ Ui). We can now
use Lemma 7.6 to find L̃i ∈ GL(Ui) which agree with Li on Wi. By construction,
(L̃1, . . . , L̃k) · B = (L1, . . . , Lk) · B = B′. In the orthogonal case, where Li ∈ O(Vi),
we may choose L̃i ∈ O(Ui).

Corollary 7.7. Let ϕ be a GLd1,...,dk
(R)-invariant (respectively, Od1,...,dk

(R)-
invariant) function on R

d1×···×dk . Then ϕ naturally extends to a GLd1,...,dk
(R)-

invariant (respectively, Od1,...,dk
(R)-invariant) function on the subset

{A ∈ R
(d1+e1)×···×(dk+ek) | ri(A) ≤ di for i = 1, . . . , k}

of R
(d1+e1)×···×(dk+ek).
Proof. As with Δ above, write A = (L1, . . . , Lk) ·B for B ∈ R

d1×···×dk and define
ϕ(A) = ϕ(B). By Theorem 7.5 this is independent of the choices involved.

The problem of classification is closely related to finding invariant functions. We
end this section with a strengthening of Theorem 7.1.

Corollary 7.8. The eight orbits in Theorem 7.1 remain distinct under the em-
bedding R

2×2×2 ↪→ R
d1×d2×d3 for any d1, d2, d3 ≥ 2. Thus, Theorem 7.1 immediately

gives a classification of tensors A ∈ R
d1×d2×d3 with rank�(A) ≤ (2, 2, 2), into eight

classes under GLd1,d2,d3(R)-equivalence.
The corollary allows us to extend the notion of tensor type to R

d1×d2×d3 . For
instance, we will say that A ∈ R

d1×d2×d3 has type G3 if and only if A is GL-equivalent
to G3 ∈ R

2×2×2 ⊂ R
d1×d2×d3 .

Note that order-k tensors can be embedded in order-(k+1) tensors by taking the
tensor product with a 1-dimensional factor. Distinct orbits remain distinct, so the
results of this subsection extend to inclusions into tensor spaces of higher order.

8. Volume of tensors with no optimal low-rank approximation. At this
point, it is clear that there exist tensors that can fail to have optimal low-rank approx-
imations. However, it is our experience that practitioners have sometimes expressed
optimism that such failures might be rare abnormalities that are not encountered in
practice. In truth, such optimism is misplaced: the set of tensors with no optimal low-
rank approximation has positive volume. In other words, a randomly chosen tensor
will have a nonzero chance of failing to have a optimal low-rank approximation.

We begin this section with a particularly striking instance of this.
Theorem 8.1. No tensor of rank 3 in R

2×2×2 has an optimal rank-2 approx-
imation (with respect to the Frobenius norm). In particular, approx(A, 2) has no
solution for tensors of type G3, which comprise a set that is open and therefore of
positive volume.
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Lemma 8.2. Let A ∈ R
d1×···×dk with rank⊗(A) ≥ r. Suppose B ∈ Sr(d1, . . . , dk)

is an optimal rank-r approximation for A. Then rank⊗(B) = r.
Proof. Suppose rank⊗(B) ≤ r − 1. Then B �= A, and so B − A has at least

one nonzero entry in its array representation. Let E ∈ R
d1×···×dk be the rank-1

tensor which agrees with B − A at that entry and is zero everywhere else. Then
rank⊗(B + E) ≤ r but ‖A− (B + E)‖F < ‖A−B‖F , so B is not optimal.

Proof of Theorem 8.1. Let A ∈ R
2×2×2 have rank 3, and suppose that B is an

optimal rank-2 approximation to A. Propositions 5.9 and 5.10, together with the
continuity of Δ, imply that Δ(B) = 0. Lemma 8.2 implies that rank⊗(B) = 2. By
Theorem 7.1, it follows that B is of type D2, D

′
2, or D′′

2 .
We may assume without loss of generality that B is of type D2. The next step is to

put B into a helpful form by making an orthogonal change of coordinates. This gives
an equivalent approximation problem, thanks to the O-invariance of the Frobenius
norm. From Table 7.1, we know that rank�(B) = (1, 2, 2). Such a B is orthogonally
equivalent to a tensor of the following form:

(8.1)

[
λ 0
0 μ

∣∣∣∣ 0 0
0 0

]
.

Indeed, a rotation in the first tensor factor brings B entirely into the first slab, and
further rotations in the second and third factors put the resulting matrix into diagonal
form, with singular values λ, μ �= 0.

Henceforth we assume that B is equal to the tensor in (8.1). We will consider
perturbations of the form B + εH, which will be chosen so that Δ(B + εH) = 0 for
all ε ∈ R. Then B + εH ∈ S2(2, 2, 2), and we must have

‖A−B‖F ≤ ‖A− (B + εH)‖F

for all ε. In fact

‖A− (B + εH)‖2
F − ‖A−B‖2

F = −2ε〈A−B,H〉F + ε2‖H‖2
F ,

so if this is to be nonnegative for all small values of ε, it is necessary that

(8.2) 〈A−B,H〉F = 0.

Tensors H which satisfy the condition Δ(B + εH) ≡ 0 include the following:

[
× ×
× ×

∣∣∣∣ 0 0
0 0

]
,

[
0 0
0 0

∣∣∣∣ 0 1
0 0

]
,

[
0 0
0 0

∣∣∣∣ 0 0
1 0

]
,

[
0 0
0 0

∣∣∣∣ λ 0
0 μ

]

since the resulting tensors have types D2, D3, D3, and D2, respectively.
Each of these gives a constraint on A − B, by virtue of (8.2). Putting the con-

straints together, we find that

A−B =

[
0 0
0 0

∣∣∣∣ aμ 0
0 −aλ

]
or A =

[
λ 0
0 μ

∣∣∣∣ aμ 0
0 −aλ

]

for some a ∈ R. Thus A = (λe1 +aμe2)⊗e1 ⊗e1 +(μe1 −aλe2)⊗e2 ⊗e2 has rank 2,
which is a contradiction.

Corollary 8.3. Let d1, d2, d3 ≥ 2. If A ∈ R
d1×d2×d3 is of type G3, then A does

not have an optimal rank-2 approximation.
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Proof. We use the projection ΠA defined in subsection 2.6. For any B ∈
R

d1×d2×d3 , Pythagoras’s theorem (2.20) gives

‖B −A‖2
F = ‖ΠA(B −A)‖2

F + ‖(1 − ΠA)(B −A)‖2
F

= ‖ΠA(B) −A‖2
F + ‖B − ΠA(B)‖2

F .

If B is an optimal rank-2 approximation, then it follows that B = ΠA(B); for otherwise
ΠA(B) would be a better approximation. Thus B ∈ U1⊗U2⊗U3, where U1, U2, U3 are
the supporting subspaces of A. These are 2-dimensional, since rank�(A) = (2, 2, 2),
so U1 ⊗ U2 ⊗ U3

∼= R
2×2×2. The optimality of B now contradicts Theorem 8.1.

Our final result is that the set of tensors A for which approx(A, 2) has no solution
is a set of positive volume for all tensor spaces of order 3 except those isomorphic to
a matrix space—in other words, Theorem 1.3. Note that the G3-tensors comprise a
set of zero volume in all cases except R

2×2×2. Here is the precise statement.
Theorem 8.4. Let d1, d2, d3 ≥ 2. The set of tensors A ∈ R

d1×d2×d3 for which
approx(A, 2) does not have a solution (in the Frobenius norm) contains an open
neighborhood of the set of tensors of type G3. In particular, this set is nonempty and
has positive volume.

For A ∈ R
d1×d2×d3 , let B(A) denote the set of optimal border-rank-2 approxi-

mations for A. Since S2(d1, d2, d3) is nonempty and closed, it follows that B(A) is
nonempty and compact.

We can restate the theorem as follows. Let A0 be an arbitrary G3-tensor. We
must show that if A is close to A0, and B ∈ B(A), then rank⊗(B) > 2, i.e., B is a
D3-tensor. Our proof strategy is contained in the steps of the following lemma.

Lemma 8.5. Let A0 ∈ R
d1×d2×d3 be a fixed tensor of type G3. Then there exist

positive numbers ρ = ρ(A0), δ = δ(A0) such that the following statements are true for
all A ∈ R

d1×d2×d3 .
(1) If A is a G3-tensor and B ∈ B(A), then B is a D3-tensor and ΠB = ΠA.
(2) If ‖A−A0‖F < ρ and rank�(A) ≤ (2, 2, 2), then A is a G3-tensor.
(3) If ‖A−A0‖F < δ and B ∈ B(A), define A′ = ΠB(A). Then ‖A′ −A0‖F < ρ

and B ∈ B(A′).
Proof of Theorem 8.4, assuming Lemma 8.5. Fix A0 ∈ R

d1×d2×d3 and suppose
‖A − A0‖F < δ. It is not generally true that rank�(A) ≤ (2, 2, 2), so we cannot
apply (2) directly to A. Let B ∈ B(A). Then A′ = ΠB(A) is close to A0, by (3).
Since rank�(B) ≤ (2, 2, 2) and ΠB is the projection onto the subspace spanned by B,
it follows that rank�(A′) ≤ (2, 2, 2). Now (2) implies that A′ is a G3-tensor. Since
B ∈ B(A′), by (3), it follows from (1) that B is a D3-tensor.

Proof of Lemma 8.5 (1). This is essentially Corollary 8.3: B cannot have rank 2
or less, but it has border-rank 2, so B must be a D3-tensor. Since B = ΠA(B) it
follows that the supporting subspaces of B are contained in the supporting subspaces
of A. However, rank�(B) = (2, 2, 2) = rank�(A), so the two tensors must have the
same supporting subspaces, and so ΠB = ΠA.

Proof of Lemma 8.5 (2). Let S+

2 (d1, d2, d3) denote the set of nonG3 tensors in

R
d1×d2×d3 with rank� ≤ (2, 2, 2). Since A0 �∈ S+

2 (d1, d2, d3), it is enough to show

that S+

2 (d1, d2, d3) is closed, for then it would be disjoint from the ρ-ball about A0

for some ρ > 0. Note that

S+

2 (d1, d2, d3) = Od1,d2,d3
(R) · S+

2 (2, 2, 2).

Now S+

2 (2, 2, 2) = {A ∈ R
2×2×2 | Δ(A) ≥ 0} is a closed subset of R

2×2×2, and the
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action of the compact group Od1,d2,d3(R) is proper. It follows that S+

2 (d1, d2, d3) is
closed, as required.

Proof of Lemma 8.5 (3). We begin with the easier part of the statement, which is
that B ∈ B(A′). To prove this, we will show that ‖A′ −B‖F ≤ ‖A′ −B′‖F whenever
B′ ∈ B(A′), establishing the optimality of B as an approximation to A′. Accordingly,
let B′ ∈ B(A′). Since ΠB(A′) = A′, it follows from (2.20) with ΠB that

‖A′ −B′‖2
F = ‖A′ − ΠB(B′)‖2

F + ‖B′ − ΠB(B′)‖2
F ,

so, since B′ is optimal, we must have ΠB(B′) = B′. We can now apply (2.20) with
ΠB to both sides of the inequality ‖A−B‖2

F ≤ ‖A−B′‖2
F to get

‖A′ −B‖2
F + ‖A−A′‖2

F ≤ ‖A′ −B′‖2
F + ‖A−A′‖2

F ,

and hence ‖A′ −B‖F ≤ ‖A′ −B′‖F , as claimed.
We now turn to the proof that ΠB(A) is close to A0 if A is close to A0. This is

required to be uniform in A and B. In other words, there exists δ = δ(A0) > 0 such
that for all A and all B ∈ B(A) if ‖A − A0‖F < δ, then ‖ΠB(A) − A0‖ < ρ. Here
ρ = ρ(A0) is fixed from part (2) of this lemma.

We need control over the location of B. Let Bε(A0) denote the ε-neighborhood
of B(A0) in S2(d1, d2, d3).

Proposition 8.6. Given ε > 0, there exists δ > 0 such that if ‖A − A0‖F < δ
then B(A) ⊂ Bε(A0).

Proof. The set S2(d1, d2, d3) \ Bε(A0) is closed, and so it attains its minimum
distance from A0. This must exceed the absolute minimum ‖A0−B0‖F for B0 ∈ B(A0)
by a positive quantity 2δ, say. If ‖A−A0‖F < δ and B′ ∈ S2(d1, d2, d3)\Bε(A0) then

‖A−B′‖F ≥ ‖B′ −A0‖F − ‖A−A0‖F
> ‖A0 −B0‖F + 2δ − δ

= ‖A0 −B0‖F + δ

> ‖A0 −B0‖F + ‖A−A0‖F
≥ ‖A−B0‖F

using the triangle inequality in the first and last lines. Thus B′ �∈ B(A).
We claim that if ε is small enough, then rank�(B) = (2, 2, 2) for all B ∈ Bε(A0).

Indeed, this is already true on B(A0), by part (1). Since rank� is upper-semicontinuous
and does not exceed (2, 2, 2) on S2(d1, d2, d3), it must be constant on a neighborhood
of B(A0) in S2(d1, d2, d3). Since B(A0) is compact, the neighborhood can be taken to
be an ε-neighborhood.

Part (1) implies that ΠB0 = ΠA0 for all B0 ∈ B(A0). If ε is small enough that
rank�(B) = (2, 2, 2) on Bε(A0), then ΠB depends continuously on B ∈ Bε(A0), by
Proposition 2.5. Since B(A0) is compact, we can choose ε small enough so that the
operator norm of ΠB − ΠA0 is as small as we like, uniformly over Bε(A0).

We are now ready to confine ΠB(A) to the ρ-neighborhood of A0. Suppose,
initially, that ‖A−A0‖F ≤ ρ/2 and B ∈ Bε(A0). Then

‖ΠB(A) −A0‖F ≤ ‖(ΠB − ΠA0) ·A‖F + ‖ΠA0 ·A−A0‖F
≤ ‖ΠB − ΠA0

‖‖A‖F + ‖ΠA0
· (A−A0)‖F

≤ ‖ΠB − ΠA0
‖(‖A0‖F + ρ/2) + ‖A−A0‖F

≤ ‖ΠB − ΠA0
‖(‖A0‖F + ρ/2) + ρ/2.
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Now choose ε > 0 so that the operator norm ‖ΠB − ΠA0
‖ is kept small enough to

guarantee that the rhs is less than ρ. For this ε, choose δ as given by Proposition 8.6.
Ensure also that δ < ρ/2.

Then, if ‖A − A0‖F < δ and B ∈ B(A), we have B ∈ Bε(A0). By the preceding
calculation, ‖A′ −A0‖F < ρ. This completes the proof.

9. Closing remarks. We refer interested readers to [17, 18, 57, 58] for a discus-
sion of similar issues for symmetric tensors and nonnegative tensors. In particular,
the reader will find in [18] an example of a symmetric tensor of symmetric rank r (r
may be chosen to be arbitrarily large) that does not have a best symmetric-rank-2
approximation. In [57, 58], we show that such failures do not occur in the context of
nonnegative tensors; a nonnegative tensor of nonnegative-rank r will always have a
best nonnegative-rank-s approximation for any s ≤ r.

In this paper we have focused our attention on the real case; the complex case
has been studied in great detail in algebraic computational complexity theory and
algebraic geometry. For the interested reader, we note that the rank-jumping phe-
nomenon still occurs: Proposition 4.6 and its proof carry straight through to the
complex case. On the other hand, there is no distinction between G3- and G2-tensors
over the complex numbers; if Δ(A) �= 0, then A has rank 2. The results of section 8
have no direct analogue.

The major open question in tensor approximation is how to overcome the ill-
posedness of approx(A, r). In general this will conceivably require an equivalent of
Theorem 5.1 that characterizes the limit points of rank-r order-k tensors. It is our
hope that some of the tools developed in our study, such as Theorems 5.2 and 7.5
(both of which apply to general r and k), may be used in future studies. The type
of characterization in Corollary 5.12, for r = 2 and k = 3, is an example of what one
might hope to achieve.
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ENHANCED LINE SEARCH: A NOVEL METHOD TO ACCELERATE
PARAFAC∗

MYRIAM RAJIH† , PIERRE COMON† , AND RICHARD A. HARSHMAN‡

Abstract. Several modifications have been proposed to speed up the alternating least squares
(ALS) method of fitting the PARAFAC model. The most widely used is line search, which extrap-
olates from linear trends in the parameter changes over prior iterations to estimate the parameter
values that would be obtained after many additional ALS iterations. We propose some extensions of
this approach that incorporate a more sophisticated extrapolation, using information on nonlinear
trends in the parameters and changing all the parameter sets simultaneously. The new method,
called “enhanced line search (ELS),” can be implemented at different levels of complexity, depending
on how many different extrapolation parameters (for different modes) are jointly optimized dur-
ing each iteration. We report some tests of the simplest parameter version, using simulated data.
The performance of this lowest-level of ELS depends on the nature of the convergence difficulty. It
significantly outperforms standard LS when there is a “convergence bottleneck,” a situation where
some modes have almost collinear factors but others do not, but is somewhat less effective in classic
“swamp” situations where factors are highly collinear in all modes. This is illustrated by examples.
To demonstrate how ELS can be adapted to different N-way decompositions, we also apply it to a
four-way array to perform a blind identification of an under-determined mixture (UDM). Since anal-
ysis of this dataset happens to involve a serious convergence “bottleneck” (collinear factors in two of
the four modes), it provides another example of a situation in which ELS dramatically outperforms
standard line search.

Key words. PARAFAC, alternating least squares (ALS), line search, enhanced line search
(ELS), acceleration, swamps, bottlenecks, collinear factors, degeneracy
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1. Introduction. PARAFAC can be seen as a generalization of two-way factor
analysis to multiway data. It was first introduced by Harshman in 1970 [9] based on
the principle of parallel proportional profiles (PP) proposed by Cattell in 1944 [4].
The PP principle states that if two (or more) different two-way models are described
by the same set of loading vectors but their relative proportions or weights change
from one model to the other, then those loading vectors lead to a new model which is
unambiguous with respect to (w.r.t.) rotation [4, 5, 2]. In other words, suppose that
the matrix X1 can be modeled:

X1 = a1b
T
1 c11 + a2b

T
2 c12 + · · · + aFbT

F c1F + E1,

where af and bf (1 ≤ f ≤ F ) are the columns of matrices A and B, respectively,
and E1 is a matrix of random disturbances (and/or other unmodeled variation). And
suppose that another matrix X2 can be modeled using the same set of loading vectors
only in different proportions (i.e., c11

c21
�= c12

c22
�= · · · c1F

c2F
):

X2 = a1b
T
1 c21 + a2b

T
2 c22 + · · · + aFbT

F c2F + E2.
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Then, we can build a combined model:

Xk = ACkB
T + Ek, k = 1, 2,(1)

where Ck is a diagonal matrix with the elements of vector ck in its diagonal, where ck
denotes the kth row of the slice weighting or “occasion weights” matrix C [13]. The
trilinear decomposition used in the model is also known as CANDECOMP for CANon-
ical DECOMPosition; it was introduced by Caroll and Chang in 1970 [3] to provide
a basis for fitting INDSCAL, an important generalization of multidimensional scaling
that provides unique dimensions and allows the estimation of dimension weights for
individual subjects. Alternatively, the model can be written in scalar form as

Xijk =
∑
f

AifBjfCkf + Eijk.

Matrices A, B, and C are called loading matrices.
The three-way PARAFAC model, along with its extension to higher orders [9, 3],

has most often been applied in psychometrics and chemometrics [26, 27], and in the
signal processing area [18, 6, 7]. While the two-way factor model suffers a rotational
indeterminacy that yields an infinite set of solutions, the PARAFAC model enjoys a
uniqueness property under conditions that often can be met in real data situations.
Uniqueness properties have been studied by multiple authors, with some of the most
important general results found in [10] and its recent generalization [15], the Kruskal
theorems in, e.g., [16], and the extensions in [26], and elsewhere. Progress in this
area is ongoing—for example, in the case of “tall” arrays, a significantly more relaxed
condition has been derived in [19]. A relatively complete list of relevant articles up
to 2006-07 can be found in [15].

A variety of algorithms have been used to fit the PARAFAC model (for a detailed
summary and discussion; see, e.g., [28]. The most widely used is the alternating least
squares (ALS) algorithm. The convergence of ALS was found to be very slow in some
cases, typically when two factors are almost collinear. Line search [2, 24] is one of
the most important solutions proposed to cope with the problem of slow convergence.
We focus in this paper on the line search solution and present a generalization of
this method for speeding up ALS; we discuss its simplest version and demonstrate
that it can exhibit very good performance in some circumstances, yet perform less
successfully in others—opening interesting directions for further exploration. We call
this method enhanced line search (ELS).

A regularized (ridge) regression was proposed by Rayens and Mitchell in [23]
to speed up the ALS algorithm in case of ill-posed problems. While the estimates
produced by ridge regression are biased, they suggested ways of dealing with this,
including a switch back to regular ALS estimation at the end of the fitting procedure,
when the approximate solution has been reached. They designed their method to
avoid difficulties which they called convergence “swamps,” characterized by high factor
collinearity in all three modes. We will see that ELS (at least the simple version tested
here) is most successful with a different kind of convergence difficulty.

In [22], Paatero proposed the multilinear engine (ME) program to accelerate the
fit of the PARAFAC model. ME changes all of the sets of parameters at once, whereas
ELS is based on ALS, and updates alternatively each of the loading factors.

In [8], Franc proposed an acceleration to the convergence of PARAFAC based on
a gradient method. In fact, the loading matrices A, B, and C are updated using the
gradient descent.

A closed-form solution to fit the PARAFAC model was proposed by Sanchez
and Kowalski in [25]. It reduces the problem to a rectangular eigenvalue-eigenvector
equation, but it needs at least two of the loading matrices to be linearly independent.
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Another closed-form solution for three-way arrays, and based on a single matrix eigen-
value decomposition (EVD) was presented in [21] by Leurgans, Ross, and Abel. It also
requires that two of the loading matrices are linearly independent and that every pair
of columns of the last loading matrix is linearly independent. Previous approaches
are made more robust in [20] by taking all matrix slices into account, which leads to
a simultaneous matrix decomposition. All of these methods require that the array
rank (as defined in [17], for instance), F , is less than or equal to two of the array
dimensions. In [19] De Lathauwer generalizes the approach presented in [20] to the
case where F is less than or equal to one of the array’s dimensions, and subject to a
condition involving the product of the remaining array dimensions. One advantage of
ELS is that it can be applied even if the previous conditions are not met.

2. Model and notation. We consider the three-way PARAFAC model of ex-
pression (1). This model can be written in a compact form using the Khatri–Rao
product � (columnwise Kronecker product) as, possibly up to an error term,

X(I×JK) ≈ A(C � B)T ,

where matrices A, B, and C are matrices of size I×F , J×F , and K×F , and X(I×JK)

is the matrix of size I×JK obtained by unfolding the array X of size I×J×K in the
first mode. There exist several algorithms that fit the PARAFAC model. We focus
on the most widely used among all: the ALS algorithm. ALS consists of estimating
one of the three matrices at each step by minimizing in the least squares sense the
error

Υ =‖ X(I×JK) − A(C � B)T ‖2
F ,

where ‖ • ‖F denotes the Frobenius norm. With matrices B and C fixed to initial
values, the estimate of A in the least square sense is given by

Â = X(I×JK)(Z+
a )T ,(2)

where Za = C�B and (+) is the Moore–Penrose pseudoinverse. We estimate matrices
B and C in an equivalent way, with Zb = A�C and Zc = B�A, and repeat the same
steps until a convergence criterion is reached—typically when the error Υ exhibits,
between two iterations, a change smaller than a predefined threshold, which varies
depending on the data. For simple data it can be set to 10−6, for example, but it
should be smaller for difficult data, 10−10, for example. Note that, in order to avoid
a threshold that is scale dependent, a relative error can be used instead, or array X
can be prenormalized by its Frobenius norm.

We summarize the steps of the ALS algorithm in Figure 1.
It sometimes happens that the convergence needs a very large number of itera-

tions. Choosing good starting values will, in some cases, help to reach the global
minimum very quickly. Sometimes, however, it is impossible to reach a global mini-
mum quickly by ALS from any starting point because the solution is embedded in a
deep swamp, or is in fact unreachable at the solution rank, and can only be approached
through an infinite series of diverging better fitting sets of loadings, as described by
Kruskal.

3. Line search. Bro (in [2, p. 95–96]) and Harshman (in [9, p. 32–33]) have
pointed out the important fact that, when the convergence is slow, there exist cycles
of convergence defined by a unique direction. Within a given cycle, the loading factors
evolve in the same direction to the final solution of that cycle. The following cycles
exhibit the same scenario. The convergence within the cycle can take several itera-
tions. To limit the number of iterations of a given cycle, Harshman and Bro propose
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Step 2c :

Step 2b : Estimate B(it) using A(it) and C(it−1)

Estimate C(it) using A(it) and B(it)

Estimate A(it) from expression (2) using B(it−1) and C(it−1)

A(it−1)
Step 1 : Initial Values

B(it−1) C(it−1)

Step 3 :

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with A(it), B(it),

and C(it) as initial values

Compute the new error Υ(it) = ||T(I×JK) − A(it)(C(it) � B(it))T ||2F :

Step 2a :

Fig. 1. Steps of the ALS algorithm.

to extrapolate, or more precisely, they propose to predict the value of the loading
factors a certain number of iterations ahead by computing a sort of linear regression:

A(new) = A(it−2) + RLS(A(it−1) − A(it−2))(3)

A(it−1) is the estimate of matrix A obtained in the ALS iteration (it−1), and A(new) is
the matrix that will be used in the itth iteration instead of A(it−1). (A(it−1)−A(it−2))
defines the direction of the cycle. Matrices B(new) and C(new) are obtained in an
equivalent way using the same relaxation factor RLS . Of course, extrapolation should
be very simple and does not make sense if it requires more time than the corresponding
iterations. The simplest case is, of course, when RLS is given a fixed value (between
1.2 and 1.3) [9], or is set to it1/3 [2].

At every iteration it, the “new” loading factors are used to compute the error

Υ(new) =‖ X(I×JK) − A(new)(C(new) � B(new))T ‖2
F .(4)

If Υ(new) ≥ Υ(it−1), then this means that we went too far in the extrapolation
because RLS is too large; RLS is decreased, and we take the loading factors of iteration
(it− 1) instead of the “new” ones. However, if Υ(new) < Υ(it−1) then acceleration is
accomplished and we gain some iterations.

The steps of the ALS algorithm with line search, as proposed by Andersson and
Bro in [1], are summarized in Figure 2. The dashed area corresponds to the line search
part.

Line search is executed after a few iterations of the ALS algorithm in order to wait
for the system to stabilize. In [1] “few” is set to 6 but it could be higher depending on
the data. The relaxation factor RLS is defined for iteration (it) by : RLS = it1/n, with
n fixed to 3 at the beginning of the simulation. When the acceleration fails several
times (5 times in [1]), RLS is decreased to it1/(n+1) and A(it−1), B(it−1), and C(it−1)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1132 MYRIAM RAJIH, PIERRE COMON, AND RICHARD A. HARSHMAN

Step 2 :

Step 3 :

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

Υ(new) < Υ(it−1)

?

Initial ValuesStep 1 :
B(it−2), B(it−1)A(it−2), A(it−1) C(it−2), C(it−1)

A(new) = A(it−2) + RLS(A(it−1) − A(it−2))

C(new) = C(it−2) + RLS(C(it−1) − C(it−2))

B(new) = B(it−2) + RLS(B(it−1) − B(it−2))

Compute the error Υ(new) and compare it with Υ(it−1)

Go to step 4 with : A0 = A(new) Go to step 4 with : A0 = A(it−1)

B0 = B(new)

C0 = C(new)
B0 = B(it−1)

C0 = C(it−1)

YES

YES NO

NO

Compute A(new), B(new), and C(new) using the linear regression of expression (3)
Line Search Steps

A(it) = X(I×JK)(Z+
a )T with Za = C0 � B0

B(it) = X(J×IK)(Z+
b )T with Zb = A(it) � C0

C(it) = X(K×IJ)(Z+
c )T with Zc = B(it) � A(it)

Estimate A(it), B(it), and C(it) using expression (2) and A0, B0, and C0 :

Compute the new error Υ(it) = ||X(I×JK) − A(it)(C(it) � B(it))T ||2F :

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with : it ← it + 1

Step 5 :

Update A(it−1) = A0

B(it−1) = B0

C(it−1) = C0

Step 4 :

Fig. 2. Steps of the ALS algorithm with LS.

are used to update the loading factors of the current iteration (it) as described by
the graph in Figure 2 at the end of the third step. However, when Υ(new) < Υ(it−1),
matrices A0, B0, and C0 are set to A(new), B(new), and C(new), respectively. After
estimating the loading factors at step 4, we update the loading matrices of iteration
(it − 1) to A0, B0, and C0, and use them with those of iteration (it) for the next
iteration (unless the algorithm has converged).

The fact that RLS has a small value would suggest that the acceleration is not
very efficient. This is not true since the effect of RLS is compounded from one iteration
to the next, leading eventually to a noticeable reduction of the number of iterations,
as shown in Figure 10.

This linear extrapolation was applied to our synthetic data in section 5.6, as a
basis for comparison with our ELS method. We will see that it can produce a clear
improvement, for example reducing iterations in one example from about 10,000 to
5,000. However, since the number required is still high, it is still of interest to look
for a novel method to reduce the number of iterations even further.

4. Enhanced line search (ELS). The idea of the enhanced line search (ELS)
consists of seeking the optimal relaxation factor RLS that leads to the final solution of

a given cycle in only one step. For iteration (it), define G
(it)
a = A(it−1)−A(it−2) as the
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direction of the cycle for loading matrix A. G
(it)
b and G

(it)
c are defined equivalently.

Instead of fixing a single value RLS for the three modes as in expression (3), we may
look for the optimal triplet (Ra, Rb, Rc) that minimizes

ΥELS =‖ X(I×JK) − (A(it−2) + RaG
(it)
a )(

(C(it−2) + RcG
(it)
c ) � (B(it−2) + RbG

(it)
b )

)T

‖2
F .(5)

ELS is performed at the beginning of the ALS algorithm as shown in Figure 3, where
step 1′ corresponds to the ELS part. Relaxation factors applied to the loadings are
no longer fixed as for the line search method in Figure 2, but they are computed
at step 1′ of Figure 3 as the optimal values that provide the smallest error ΥELS .
At step 3, after estimating the loading matrices of iteration (it), we update those of
iteration (it− 1) to A(new), B(new), and C(new). Loading matrices of both iterations
(it−1) and (it) will then be used in the next iteration if the algorithm does not reach
convergence.

The optimal solution is obtained when we jointly minimize ΥELS w.r.t. the three
different factors Ra, Rb, and Rc. In this case the problem consists of solving a system
of three polynomials in three unknowns, which leads to a high numerical complexity.
Solutions with a smaller complexity are obtained by taking only two unknowns, or the
same factor for all the modes R = Ra = Rb = Rc. Some of the possible optimizations
are listed below:

• (Ra, Rb, Rc) which gives the optimal solution and involves a polynomial in
three unknowns of degree 6.

• (R,R,Rc) where we use the same factor for A and B and we minimize ΥELS

w.r.t. two variables R and Rc. This involves a polynomial in two unknowns
of degree 6.

• (R,R,R) where we use the same factor for all matrices and involves a poly-
nomial in a single unknown of degree 6.

• R(Rb, Rc) where we use the relaxation factor of line search R = it1/3 for
matrix A, and minimize (5) w.r.t. Rb and Rc. This involves a polynomial in
two unknowns of degree 4.

• R(R,R) which is the same as R(Rb, Rc) with Rb = Rc, and involves a poly-
nomial in a single unknown of degree 4.

• R,R(R) where we optimize only w.r.t. to Rc.

In this article, the exploration of alternative ELS models is initiated by imple-
menting (R,R,R), which is the simplest one that is “fully ELS.” In this case, the error
ΥELS is a polynomial of degree 6 in R (we omit the iteration index (it) to simplify
the notation):

ΥELS(R) =
∑
ijk

⎛
⎝Xijk −

F∑
f=1

(Aif + RGa,if )(Bjf + RGb,jf )(Ckf + RGc,kf )

⎞
⎠

2

=

6∑
d=0

pdR
d,(6)

where pd, d = 0, . . . , 6 are functions of observed values stored array X and coefficients
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of loading matrices of iterations (it − 1) and (it − 2); the expression of pd are given
in section A.2. To find the optimal R it suffices to determine the roots of polyno-
mial Υ′

ELS(R), which provides five possible values of R. We feed those values into
expression (6) and keep the one that gives the smallest error ΥELS .

Step 2 :

Update

• if |Υ(it) − Υ(it−1)| ≤ threshold, stop

Find optimal (Ra,Rb, Rc) that minimizes :

ΥELS = ||X(I×JK) − (A(it−2) + RaG
(it)
a )

(
(C(it−2) + RcG

(it)
c ) � (B(it−2) + RbG

(it)
b )

)T

||2F

Estimate A(it), B(it), and C(it) using expression (2) and A(new), B(new), and C(new) :

A(it) = X(I×JK)(Z+
a )T with Za = C(new) � B(new)

B(it) = X(J×IK)(Z+
b )T with Zb = A(it) � C(new)

C(it) = X(K×IJ)(Z+
c )T with Zc = B(it) � A(it)

Compute A(new), B(new), and C(new) using the linear regression of expression (3)

Line Search Steps

Enhanced Line Seach

Step 1 : Initial Values
A(it−2), G

(it)
a B(it−2), G

(it)
b C(it−2), G

(it)
c

Step 1’ :

Step 3 :

A(new) = A(it−2) + RaG
(it)
a

B(new) = B(it−2) + RbG
(it)
b

C(new) = C(it−2) + RcG
(it)
c

Compute the new error Υ(it) = ||X(I×JK) − A(it)(C(it) � B(it))T ||2F :

• if |Υ(it) − Υ(it−1)| > threshold, go back to step 1 with : it ← it + 1

B(it−1) = B(new)

C(it−1) = C(new)

Step 4 :

A(it−1) = A(new)

Fig. 3. Steps of the ALS algorithm with ELS.

To obtain some insight into whether the extrapolation is likely to be advantageous
in the short-range sense (cf. question (i) posed at the end of this section), we can
estimate the relative computation required by a single ELS iteration compared to LS.
To do this, we compute the complexity of ALS and compare it with the complexity
of optimization (R,R,R), for example. At each ALS iteration the following steps are
performed:

1. Compute the optimal relaxation factor R by minimizing expression (5). To
do so, take the derivative of (5) w.r.t. R, and root the obtained polynomial
of degree 5 in one unknown.

2. Compute the new loading factors as in (3) and compute the corresponding
error Υnew given by expression (4).

3. Use A(new), B(new), and C(new) as starting values for the PARAFAC itera-
tion instead of A(it−1), B(it−1), and C(it−1), and estimate the first loading

factor Â as shown in (2).
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4. Perform step 3. To estimate each of the remaining loading factors B̂ and Ĉ,

by using matrices Â and C(new) to estimate B̂, and matrices Â and B̂ to

estimate Ĉ.

According to the details given in section A.1, one (ALS+ELS) iteration corre-
sponds to about (F + 7F 2)(IJ + JK + IK) + 3IJKF + 11F 3 + 2F 2(I + J + K) +
(8F + 10)IJK multiplications. For instance, this equals 2601 multiplications, when
I = 2, J = 3, K = 3, and F = 3. Without ELS, ALS requires (F + 7F 2)(IJ + JK +
IK) + 3IJKF + 11F 3 + 2F 2(I + J + K), which means 1989 multiplications in the
same conditions. On the other hand, ELS makes the number of iterations decrease
from 7100 to 250 iterations, hence allowing a decrease of the overall complexity from
14121900 to 650250 multiplications.

It is worth noting that Υ(new) is always smaller than Υ(it−1) when we use optimal
values for Ra, Rb, and Rc as is the case for the first three optimizations. However,
when we use a fixed relaxation factor as in LS, Υ(new) can exceed Υ(it−1), which
means that the acceleration may fail.

This can explain the fact that, in theory, a single iteration of ELS should always
improve fit as much as and almost always more than LS at any given point in the
solution space. The questions then become: (i) Does the fit improvement turn out to
be more beneficial than the cost of added computation is detrimental? (ii) Does the
method find a significantly better path to the solution? Question (ii) is particularly
important in cases where progress becomes very slow because of local characteristics
of the hypersurface along which the fitting procedure is moving. Question (ii) is much
subtler than (i). For example, one can easily imagine that a good long-range method
might trade off some locally slower steps for a much better path a bit further along
(a shortcut just over the horizon). This sort of question can only be answered well
through application of a method to simulated and/or real data.

5. Computer results. To compare the performance of ELS to LS, a standard
PARAFAC program was minimally modified to change the line search to ELS and to
record time and fit information on each iteration. The test datasets were three-way
and four-way synthetic data arrays, constructed according to the PARAFAC model to
have specific kinds of factor structure and levels of random error. Then, in each test,
the two algorithms were given identical problems; that is, they were given the same
synthetic datasets, with the same analysis options, and started from the same random
starting positions. This allowed us to compare the progress of the two methods step-
by-step as they proceeded from a given starting point toward the best least-squares
solution.

To obtain a general picture of the relative performance of ELS and LS, we con-
sidered a wide range of datasets1. A fully systematic exploration has not yet been
completed, and even the partial results obtained so far require much more space than
is available for this article, so we present here summary conclusions for each of our
main test conditions, and give a few illustrative examples.

In most experimental conditions (i.e., most of the data structure types tested),
the iteration count for ELS was substantially lower than that for LS, and in no con-
dition was it (reliably) higher. This is consistent with the theoretical expectations
described earlier. On the other hand, ELS execution times were longer than LS by

1We took as our “standard” the PARAFAC function contained in Andersson and Bro’s
[1] N-way Toolbox for MATLAB (which may be found at http://www.models.kvl.dk/source/
nwaytoolbox/index.asp). The same MATLAB code was used except that the ELS extrapolation
code replaced the LS extrapolation code in the function. In both versions of the PARAFAC func-
tion, a few lines were inserted that obtained time information on each iteration and saved it along
with the current value of fit computed by the program at that iteration. Release 7 of MATLAB was
used in all experiments.
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more than we expected—generally the ratio of ELS to LS execution time per iteration
was always the same for any given problem, but was larger than we would predict
from our approximate estimates of complexity computation; despite streamlining and
vectorization of the code, the ELS to LS ratio was still somewhat larger than our com-
plexity estimates by roughly a factor of three. This might be due to inefficiencies in
our ELS algorithm, or perhaps some particularly efficient features in the LS code, or
as yet unanticipated considerations. Since reduction in the execution time is the goal
of the proposed method, we feel that it is important to communicate both the time
and iteration reductions we have observed, even though we are not yet sure of how to
interpret the time information (or even whether or not it is somehow artifactual). We
will describe a theoretical adjustment that brings times in line with computational
complexity, and this provides one way of dealing with the current uncertainty in our
timing results.

Complexity differences. In applications where the rank F is small in the sense of
inequality (7) given in the appendix, the (R,R,R) version of ELS will significantly
increase the complexity per iteration, and hence the CPU time required per iteration
over that of LS. Whether or not ELS is attractive thus depends in part on the problem
size and dimensionality.

Datasets sizes and numbers of factors to be extracted from them vary from one
discipline to the next. In chemometrics and signal processing, typical problems might
involve data arrays of the order of 60×60×20 and perhaps three or four factors to be
extracted. In such cases, the computational complexity of ELS is approximately three
times that of LS, at least as estimated by the formulae in the appendix. For these
problems, use of ELS would be attractive only for classes of problems in which it is
clearly superior to LS in ability to traverse the curvature of the solution space. To
provide a benefit beyond the use of LS, the ELS method needs to reduce the number
of iterations required by LS.

It turns out that a single “bottleneck”—one of the most common and simple
kinds of convergence slowdown—appears to have the required properties. We have
also found other classes, such as triple bottleneck, where ELS will actually increase
substantially the time needed to find the solution.

The data variation that turned out to have the most important impact on the
relative performance of the two methods was the factor correlation structure both
within and across modes. When no modes had collinear factors and all factors were of
roughly equal size, there was no convergence difficulty for either method. For example,
midsized datasets (e.g., 45×40×35) often satisfied the convergence criterion—usually
a change in root mean square error (RMS) of 10−8 between successive iterations—in
15–75 iterations. ELS usually took fewer iterations to converge, but the iterations
were slower. In other words, with our MATLAB implementation, ELS often took on
the order of 15%-25% more time than LS to reach the convergence criterion, even if
figures given by computational complexity calculations are more optimistic.

5.1. Dealing with bottlenecks. We have considered several different situa-
tions where convergence of ALS PARAFAC algorithms become slow, but have focused
mainly on the one that is the simplest and (outside of the social sciences) the most
common: simple factor collinearity. This has several different versions; some or all
factors can be collinear in one or several factor loading matrices that define the vari-
ation structure of an array. We only briefly look at the other important case—the
more complicated kind of convergence difficulties caused by “degenerate PARAFAC
solutions.”

When one of the factor matrices in the optimal solution has two or more collinear
columns, resolving them can seriously slow down the overall progress of ALS estima-
tion of the factors, even though the solution may eventually be well defined. Harshman
terms this situation a “bottleneck” [12]. When such collinearity is present in two or
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three modes of the array (i.e., two or three of the “latent” factor loading matrices),
then one has a structure with a “double” or “triple” bottleneck. We created synthetic
data involving single, double, and triple bottleneck structure to test the performance
of ELS vs. LS in these conditions. The (R,R,R) version of ELS that we used for
these tests behaved quite differently in single vs. multiple bottleneck situations—at
least for three-way arrays.

5.2. Single bottleneck situations: When factors in one mode are collin-
ear. In our tests, ELS always outperformed LS when only one mode had factor
loading vectors that were almost collinear, providing the analysis reached a global
optimum in which all factors were approximately recovered. The time and iteration
values observed in one such run are shown in Figure 4.
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Fig. 4. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 12 × 11 × 10
array of rank 5, in the presence of a single bottleneck (3 factors out of 5 are almost collinear in one
of the 3 modes).

The example shown is for an array with 5 factors and the lowest level of random
noise used in the tests (0.1%). Three of the factors were almost collinear (separated by
10 degrees in the Mode C factor space) while the other two were roughly orthogonal to
the other factors. The shape of the curves is quite similar. This suggests that the two
algorithms are following “similar” or somewhat parallel paths through the solution
space, and are encountering a similar sequence of more and less difficult regions in
the solution space, but they are progressing at different rates because ELS tends to
make bigger improvements in fit. As shown here, ELS often reduced the total number
of iterations by approximately an order of magnitude, but because its iterations took
somewhat longer (at least with our MATLAB implementation), the time reduction
was between half and two-thirds of the size of the reduction in iterations. The fit and
time curves in Figure 4 are based on a relatively small dataset (12× 11× 10 with five
factors). In that case, index (7) is 1.37, which shows that an ELS iteration is more
complex than LS.
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Fig. 5. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 80 × 60 × 20
array of rank 5, in the presence of a single bottleneck.

With the larger dataset considered next, index (7) is even smaller, and the relative
computational complexity of ELS is at least three times that of LS per iteration. Our
MATLAB implementation takes closer to 9 times as much time, for reasons that we
are not yet able to fully explain. ELS is, however, still attractive in this low-rank
large-dimension case, despite the relatively high complexity per iteration.

Note the clear two-step pattern in Figure 5, both in the fit drop and in the
associated time needed at each successive iteration (i.e., two-iteration values are close
to one another, and then there is a larger interval, and two are close to one another
again). The pattern is present in both curves, but is much more obvious in the ELS
curve because of the rapid drop in fit at every other step. This “paired-step”pattern is
due to the way LS is currently implemented in the PARAFAC function for the N -way
toolbox. The program collects two sets of loadings, from two successive iterations,
and then extrapolates based on those two, and collects two more, etc. Thus the
extrapolation occurs on every other iteration. Because ELS was incorporated into the
exact same loops that governed LS, it too is applied on every other iteration.

Our tests indicate that LS is considerably more effective when the extrapolation
is performed on every iteration, as in the original extrapolation used in Harshman
1970 [9]. However, we concentrate in this article on a direct comparison of paired-
step LS with paired-step ELS (we have also begun some comparisons between the
two methods when both are performed at every iteration, and our preliminary results
suggest that in this case the performance difference between them is smaller).

For this dataset, as with all other “single bottleneck” cases we have tested, paired-
step ELS clearly outperforms paired-step LS—so long as they find the global optimum.
However, when the path taken by an analysis traps it in a local optimum, or when
some of the highly collinear factors are too poorly resolved due to error in the data,
the behavior of LS and/or ELS changes and the time advantage offered by ELS is
reduced or eliminated. ELS continues to require fewer iterations, but the difference
between the counts becomes small enough that ELS does not reduce the overall time
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(at least with our MATLAB implementation).

5.3. Multiple bottlenecks and degenerate solutions. Multiple bottlenecks
and degenerate solutions appear when experimental requirements or practical limi-
tations in data collection make collinearity of some factors unavoidable; this most
commonly applies to only one mode of the data array. The previous results are for
single-mode bottlenecks which leads us to the tentative conclusion that for such cases
ELS would seem an attractive estimation method. There are situations, though, in
which some subset of the factors will be collinear in two modes, or even in all three
modes of a three-way array. Our experiments therefore simulated these (less common)
kinds of data as well. We found that the advantage of ELS does not generally extend
to these situations. The curvature of the path to the optimum gets more compli-
cated and apparently makes ELS “shortcut” methods less successful. This is another
demonstration of the subtlety of the considerations involved in nonlinear extrapolation
of PARAFAC solutions.

Neither double- nor triple-bottleneck situations benefited much from the simplest
(R,R,R) version ELS. In general, the time required by our MATLAB implementation
to reach the converged solution was increased. However, our test cases often were hard
to fit, so we had to take care to distinguish global optimum cases from local optimum
ones. To obtain global optima with adequate frequency in the double-bottleneck case,
the angle between factors had to be increased to moderate values (25 degrees in the
case of Figure 6), making the collinearity in individual factor spaces less extreme
but the combined effects of the collinearity in the two or three modes was still fairly
severe. Unfortunately, even in clear cases of having reached the global optimum,
where recovery of all factors was close to perfect (when the noise level was set at
0.001), the ELS method usually took longer (in CPU time) to converge than simple
LS. Figure 6 shows the results of one such triple-bottleneck case.
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Fig. 6. Performance of ALS with both LS or (R,R,R)-ELS accelerations, on a 80 × 60 × 20
array of rank 4, in the presence of a triple bottleneck.
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5.4. Degenerate and quasi-degenerate solutions. There is another impor-
tant situation in which serious convergence difficulties arise. This happens when the
factors are not particularly collinear on average, but the angle between them varies
greatly across levels of the array (i.e., differs across values of the third array index).
This kind of variation in factor structure is not consistent with the PARAFAC model.
However, PARAFAC can fit part of the “axis wobble” or “Tucker Variation” [14] by
reweighting axes after the space has been sheared [11]. Thus, when too much axis
“wobble” is present, the A, B, and C factor spaces become inversely sheared to better
fit it, creating a “degenerate solution,” which involves strong collinearities and seri-
ously impedes convergence. Degenerate solutions are usually dealt with by imposing
constraints. However, speedup methods like ELS could be useful if they accelerated
progress through “swamps” or deep into a swamp to find a final solution. In our initial
tests of the (R,R,R) method, ELS has not been helpful in dealing with swamps, but
it is not unreasonable to conjecture that versions more sophisticated than (R,R,R),
as suggested in section 4, might do better in these situations.

5.5. A four-way example with two collinear and two noncollinear modes.
From the experiments reported so far, it is unclear whether the relative lack of ELS
success when applied to factor structures with double and triple bottlenecks is because
of too many bottlenecks or too little “wiggle room.” That is, we cannot distinguish
the cases that have multiple modes with bottlenecks from those that do not have mul-
tiple modes without bottlenecks. In the present section, we report some earlier studies
on the impact of ELS on ALS in four-way arrays. In these arrays, two modes have
almost collinear factors and two do not. If multiple bottlenecks is what creates the
convergence problem, then ELS should also encounter difficulties in these datasets. If
lack of “wiggle room” is what creates the convergence problem, then ELS should be
better at dealing with double bottlenecks.

The experiments we are about to describe are simpler in two important ways:
(a) the tests did not measure or record execution time information; (b) the datasets
were constructed as error-free arrays, that is, without adding any random noise. The
first limitation makes the interpretation difficult, but the dramatic reduction in itera-
tion counts does appear impressive when compared to the relatively modest differences
in iterations in, for example, Figure 6. The second limitation can be minimized by
qualifying our interpretation. The difference is nontrivial because when collineari-
ties are combined with error, it can complicate the algorithm’s task of resolving the
highly similar factor profiles. However, the results are still informative if considered
as demonstrating certain theoretical/mathematical properties of four-way (R,R,R)-
ELS. They might also be interpreted as simulations of real world cases where the
error is sufficiently small to make the behavior of the algorithms roughly equivalent
to those found in these error-free cases.

We consider the four-way PARAFAC model:

Xijkl =

F∑
f=1

AifBjfCkfDlf ,

where

A =

(
1 cos(θ) 0 sin(θ)
0 sin(θ) 1 cos(θ)

)
,

B =

⎛
⎝ 3 cos(θ) 0 sin(θ)

0 sin(θ) 1 cos(θ)
0 sin(θ) 0 sin(θ)

⎞
⎠ ,
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and C and D are randomly generated matrices of size 3 × 4. The collinearity is
controlled through variable θ. We take θ = π/60 in Figures 7 and 8. The first and
second columns of each of the matrices A and B are almost collinear as θ is very close
to zero (θ 	 0.052). The same thing holds for the third and fourth columns of A and
B.

This example demonstrates one of the cases where results of [25] and [21] cannot
be applied, since there are more columns than rows in the loading matrices and so
they do not have full column rank.

We notice from Figure 7 that ELS reduces the number of iterations needed to meet
the criterion for approximate convergence from more than 10000 to about 2000! We
report in Figure 8 the median of the loss function for one dataset, over 100 independent
trials (with 100 different random initial values). We notice that even though ALS + LS
reaches the error 10−4 very quickly, it is then trapped for many iterations (“trapped
in the bottleneck”). In contrast, ALS + ELS escapes comparatively quickly from the
bottleneck (after 1000 iterations) and converges to smaller values of the error 10−12,
while ALS and ALS+LS remain in the plateaux 10−4 and 10−5, respectively.
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Fig. 7. Loss function Υ as a function of the number of iterations for ALS with LS, and ELS
with optimization (R,R,R,R) for θ = π/60.

Figure 9 appears to confirm this hypothesis by showing more frequent changes in
parameter sets. It gives the variation of the coefficients of matrix Â as a function of
the number of iterations. During progress through a bottleneck, the variation of Â
coefficients is very small and this increases when we get out of the bottleneck. The
same thing is evident in matrices B̂ and Ĉ.

5.6. ELS applied to blind channel identification of an UDM. This second
four-way example demonstrates an application of ELS to blind identification of an
under-determined mixture (UDM). Specifically, we use ELS to accelerate ALESCAF,
the algorithm proposed in [7] for blind channel identification based on the character-
istic function in an UDM.

Using the notation defined in [7], ALESCAF leads to a four-way PARAFAC
model:

T(P×KP 2) = A(D � A � A)T .
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Fig. 8. Loss function Υ as a function of the number of iterations for ALS with LS, and ELS
with optimization (R,R,R,R) for θ = π/60, median value over 100 independent trials.

The array T contains the third derivatives of the joint characteristic function of
the observations computed at K points of the grid Ω. Matrix D is obtained from the
independence property of the sources and its entries are defined as

Dkn = ψ(3)
n

(∑
q

Aqnuq[k]

)
,

where 1 ≤ k ≤ K and 1 ≤ n ≤ N . A is the channel matrix of size 2 × 3 to be
identified.

As in our earlier tests, we use the MATLAB ALS implementation of PARAFAC
made available by Andersson and Bro (http://www.models.kvl.dk) and described in
[1]. Also as before, we create our ELS version by replacing their LS procedure by our
ELS procedure, this time the (R,R,R,R) version. The three sources are BPSK, and
we generate an “infinite block” of data by taking all of the 23 possible combinations of
{−1, 1}, and we take 10000 as the maximum number of iterations. As in the previous
four-way example, noise is not taken into account.

In Figure 10 we report the gap between estimated and actual mixing matrix using
ELS and compare it with ALS with LS and nonaccelerated ALS. Figure 11 gives the
error as a function of the number of iterations. The figure shows that ELS is very
useful for reducing the number of iterations needed in three-bottleneck versions of
four-way arrays. The number of iterations decreases from 5000 when using ALS with
LS, to 500 when using optimization (R,R,R,R) of ELS. On the one hand, these results
seem to be too dramatic to be “canceled out” by increases in iteration time, but on
the other hand, the LS and ELS parameter changes (Figure 11) make us somewhat
more cautious, since these seem more similar.

Overall, these four-way results encourage us to hope that when there is at least
one mode that is free of collinearities, this type of ELS might be generally helpful.

A few cautionary points should be noted: When making comparisons of the me-
thods, it might be wise to underemphasize the dramatic ELS drops of the error (or
objective function) when the value falls below something like 10−3 or 10−4, since
these would be impossible with most real data containing measurement error or other
disturbances of the data values. It is also not known how the behavior in the graphs
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Fig. 9. Â coefficients as a function of the number of iterations.
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Fig. 10. Gap between estimated and original channel matrix as a function of the number of
iterations using ALS, ALS with LS, and ALS with ELS.

associated with our four-way examples might be modified even at higher levels by the
presence of random error; the three-way experiments suggest that some differences
can be expected.

6. Concluding remarks. ELS is a novel technique aiming at accelerating con-
vergence of the ALS algorithm when used to fit the PARAFAC model. Our simulations
indicated that ELS could be a very attractive way to deal with “single bottleneck”
situations—three-way arrays that have factor collinearities in one of the modes. As
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Fig. 11. Loss function Υ as a function of the number of iterations using ALS, ALS with LS,
and ALS with ELS.

shown in Figures 4 and 5, ELS often decreased the number of iterations by an order
of magnitude and the time to convergence by at least half to two-thirds of an order of
magnitude (except when trapped in a local optimum). This was more than enough to
counterbalance the longer iteration times due to the higher computational complexity.

On the other hand, in double- and triple-bottleneck three-way factor structures
(i.e., where at most only one mode is free of collinearities), the (R,R,R) version of
ELS that was tested here did not offer an advantage, but instead appeared to lengthen
the overall time to convergence. However, we remain open to the possibility that our
MATLAB time information is somehow unrepresentative or at least does not reflect
what might be possible.

Two applications involving four-way arrays (with high rank) lacked information
on execution time but some comparison based on computational complexity ratios
could be a basis for tentative predictions. The encouraging reductions in iterations
seen here open up the possibility that even when an array has three modes with
collinearities, this is not necessarily a problem for ELS—if there is also one mode
without factor collinearities. This possibility should be explored further.

This article presents some initial exploration of a nonlinear approach to ALS ex-
trapolation, but the investigation is obviously a work in progress. Our theoretical
understanding of multistep properties of ELS is still quite incomplete. We have iden-
tified some classes of problems where it works better than LS and others in which it
may not. The dramatic improvements that can be obtained by ELS in “single bot-
tleneck” situations is well demonstrated. And even if the (R,R,R) implementation
of ELS reaches its limits and does not perform significantly better than LS in the
absence of two noncollinear modes, or in the presence of convergence swamps arising
from “degenerate PARAFAC solutions,” there may be other implementations of ELS,
such as that called R(R,R) in section 4, which could be more successful in these
circumstances. These issues remain to be studied.

Appendix A.

A.1. ELS steps and complexity. During one iteration of the ALS algorithm,
the following operations are performed (we list the operations for the estimation of
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Â, but similar operations are required for the two other loading factors):

1. Compute the Khatri–Rao product to obtain matrix Za. This costs FJK
multiplications.

2. Compute Z+
a by reduced SVD of Za, which requires 7JKF 2 + 11

3 F 3 multi-
plications.

3. Estimate the factor loading Â as shown in expression (2), which requires
IJKF + IF 2 + IF multiplications (if we assume F ≤ JK).

As a consequence, the whole ALS iteration for the 3 modes requires an order of
(F + 7F 2)(IJ + JK + IK) + 3IJKF + 11F 3 + 2F 2(I + J + K)multiplications.

Now let us evaluate the additional computational complexity involved by ELS. In
order to do this, note that the ELS criterion can be rewritten as

ΥELS =
∑
ijk

[
Yijk + RDijk −R2 Eijk + R3 Fijk

]2
.

The explicit calculation of arrays Y, D, E, and F requires an order of 8IJKF mul-
tiplications. Next, the calculation of the coefficients of the degree-6 polynomial in R
requires 10IJK multiplications. The computation of stationary points and the selec-
tion of the absolute minimum yield a negligible complexity since of order O(53). As a
conclusion, the additional complexity generated by ELS is thus of order (8F +10)IJK
multiplications when we choose the optimization with respect to a single factor R,
that is, (R,R,R) for a three-way PARAFAC model. This is not negligible and can be
considered to be small only for large enough F and small enough dimensions. More
precisely, if

F

(
1

I
+

1

J
+

1

K

)

 1,(7)

then the additional complexity required by ELS may be considered to be negligible
over that of LS. For instance, this is the case of generic arrays of size (I, J,K) =
(10, 10, 10), which have a rank F = 36.

More generally, it is interesting to evaluate the computational complexity for N -
way arrays of size I1 × I2 × . . .× IN , when all of the dimensions are of the same order
O(I). For ALS we get 11

3 NF 3 + 2F 2NI + NINF + 7F 2NIN−1 + FNIN−1. On the

other hand, it can be shown that ELS requires [2N F + O(N2)]IN + O((2N − 1)3)
additional multiplications.

A.2. Expression of pd. We define qf,d for d = 0, . . . , 6 as

qf,0 = AifBjfCkf ,
qf,1 = AifBjfGc,kf + AifGb,jfCkf + Ga,ifBjfCkf ,
qf,2 = AifGb,jfGc,kf + Ga,ifBjfGc,kf + Ga,ifGb,jfCkf ,
qf,3 = Ga,ifGb,jfGc,kf .
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qf,d depends on i, j, k but we omit the indices for simplicity. Then polynomial coeffi-
cients pd are given by

p0 =
∑

ijk

(
Xijk −

∑
f qf,0

)2
,

p1 = −2
∑

ijk

(
Xijk −

∑
f qf,0

)(∑
f qf,1

)
,

p2 =
∑

ijk

(∑
f qf,1

)2 − 2
(
Xijk −

∑
f qf,0

)(∑
f qf,2

)
,

p3 = 2
∑

ijk

(∑
f qf,1

)(∑
f qf,2

)
−
(
Xijk −

∑
f qf,0

)(∑
f qf,3

)
,

p4 =
∑

ijk

(∑
f qf,2

)2
+ 2

(∑
f qf,1

)(∑
f qf,3

)
,

p5 = 2
∑

ijk

(∑
f qf,2

)(∑
f qf,3

)
,

p6 =
∑

ijk

(∑
f qf,3

)2
.
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SENSITIVITY ANALYSIS FOR THE PROBLEM OF MATRIX JOINT
DIAGONALIZATION∗

BIJAN AFSARI†

Abstract. We investigate the sensitivity of the problem of nonorthogonal (matrix) joint di-
agonalization (NOJD). First, we consider the uniqueness conditions for the problem of exact joint
diagonalization (EJD), which is closely related to the issue of uniqueness in tensor decompositions.
As a byproduct, we derive the well-known identifiability conditions for independent component anal-
ysis (ICA) based on an EJD formulation of ICA. We next introduce some known cost functions for
NOJD and derive flows based on these cost functions for NOJD. Then we define and investigate the
noise sensitivity of the stationary points of these flows. We show that the condition number of the
joint diagonalizer and uniqueness of the joint diagonalizer as measured by modulus of uniqueness (as
defined in this paper) affect the sensitivity. We also investigate the effect of the number of matrices
on the sensitivity. Our numerical experiments confirm the theoretical results.1

Key words. joint diagonalization, independent component analysis (ICA), simultaneous diago-
nalization, sensitivity analysis, perturbation analysis, CANDECOMP/PARAFAC, tensor decompo-
sitions
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1. Introduction and a case study. Many interesting recent problems and
paradigms in blind signal processing can be formulated as the problem of matrix joint
diagonalization (JD). This problem in its simplest form can be phrased as follows:
given a set of N symmetric matrices {Ci}Ni=1 of dimension n × n, find a nonsingular
matrix B such that all BCiB

T ’s are “as diagonal as possible,” where BT denotes the
transpose of matrix B. Note that here diagonalization is meant in the sense of con-
gruence. The matrix joint diagonalization problem is also referred to as simultaneous
matrix diagonalization. In practice, i.e., when Ci’s are constructed from empirical
data, we do not expect a B to exist such that all BCiB

T ’s are diagonal. Therefore,
maybe a more exact name for this problem can be approximate joint diagonaliza-
tion. Nevertheless, we choose to call this problem as joint diagonalization, where
approximation is implicitly assumed, and we refer to the problem when exact joint
diagonalization is possible as exact joint diagonalization (EJD).

Historically, the problem of matrix joint diagonalization in the signal processing
community was first considered in the restricted form of orthogonal joint diagonal-
ization (OJD) in [9], where an efficient algorithm for it was proposed. In the OJD
problem the joint diagonalizer is assumed to be orthogonal. This situation can hap-
pen, for example, when one tries to blindly separate non-Gaussian sources that are
spatially whitened [9]. The orthogonality assumption on B is not justified in many
occasions, and one expects that by allowing more freedom in the search space “more
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diagonalization” would be possible. We refer to the problem of joint diagonalization,
when B is only assumed to be nonsingular, as the problem of nonorthogonal joint
diagonalization (NOJD). The focus of this paper is the NOJD problem.

Nonorthogonal joint diagonalization arises in a variety of problems. As a case
study, we will see how the problem of independent component analysis (ICA) can
be considered as an NOJD problem. In the problem of blind separation of nonsta-
tionary mixtures [21], one can perform NOJD on a set of correlation matrices to find
the unmixing matrix. Blind separation of instantaneous mixtures using only second
order statistics also results in NOJD of a set of covariance matrices [7]. Moreover, the
NOJD problem is closely related to the problem of tensor decomposition and CAN-
DECOMP/PARAFAC modeling [14, 11]. Since applications or algorithms are not the
focus of this work, we will not cite numerous applications where the NOJD problem
is useful. Instead, we consider the ICA problem, as a case study, to give the reader a
feeling of the recurring situation, where the NOJD problem shows itself in numerous
applications.

1.1. A case study: Independent component analysis (ICA). ICA [10] is
one of the major paradigms in which joint diagonalization and tensorial methods have
proven useful. We refer the reader to [13] for further discussion on this issue. The
basic model in ICA is

(1) �xn×1 = An×n�sn×1,

where �sn×1 is a random vector of dimension n with independent components of zero
mean, and A is an n × n nonsingular matrix. We can think of �sn×1 to represent a
source with independent components whose signals are mixed by the mixing matrix
A and �xn×1 to represent the observed mixture. The problem is to find the matrix A
or its inverse, assuming that only realizations or the moments of the random mixture
�xn×1 are available . Obviously, we can only hope to find A up to column permutation
and column scaling. The key assumption of independence of the elements of �s imposes
some specific structure on certain matrices that can be formed from the cumulants
of the observation �x. The main theme here is that independence implies diagonality.
We investigate this further. First, note that Rxx, the covariance matrix of �x, satisfies

(2) Rxx = AΛssA
T ,

where Λss is the (diagonal) covariance matrix of �s. We can trace this structure in
higher cumulants of �x as well. The kth order cumulant of a random vector �zn×1 is a
tensor Ck

z of order k and dimension n× · · · × n. The cumulants are closely related to
the moments, and they give information about the shape of the probability density
function of �zn×1. In fact, the second order cumulant tensor is the covariance matrix.
Each element of Ck

z can be indexed by k indices i1, . . . , ik, where 1 ≤ i1, . . . , ik ≤ n.
If we fix all but two indices and vary the remaining two indices we obtain a matrix
slice of the tensor. The notation Ck

z (i1, i2, . . . , ik−2, :, :) represents such a matrix that
is found by fixing all but the last two indices. An important fact is that, if �zn×1 is of
independent components, then its cumulant tensors of any order are diagonal. Since
�sn×1 is of independent components, its cumulant tensors are diagonal, i.e., only the
elements Ck

s (i, . . . , i) can be nonzero. Based on the multilinear property of cumulants
we can show that for k ≥ 3:

(3) Ck
x(i1, i2, . . . , ik−2, :, :) = AΛi1i2...ik−2

AT ,
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where Λi1i2...ik−2
is a diagonal matrix that depends on elements of A and Ck

s (i, . . . , i)’s,
the auto-cumulants of �s, as

(4) [Λi1i2...ik−2
]ii = ai1iai2i . . . aik−2iCk

s (i, . . . , i), 1 ≤ i ≤ n.

Note that (2) is also of this form except that the diagonal matrix Λss does not depend
on A. There is a profound difference between cumulant matrix slices of order higher
than two and the covariance matrix of �xn×1, in that the latter is always positive defi-
nite whereas the former need not be of any definite sign, and their signs depend both
on the signs of the Ck

s (i, . . . , i)’s as well as the elements of A. From (2) and (3) one
can see how NOJD and ICA are related: in order to find A−1, search for a nonsingular
matrix B that jointly diagonalizes all the cumulant matrix slices, including the covari-
ance matrix. In section 2.2 we show that under certain conditions, which are basically
the uniqueness conditions for the EJD problem, A can be found (up to the inherent
indeterminacies) from the NOJD of the cumulant slices. The interesting point here is
that restoration of diagonality can be equivalent to restoration of independence, and
in this process we do not need to know much about the source �sn×1 or its statistical
distribution.

1.2. Scope and organization of the paper. In [29, 3, 6, 28, 25, 1, 20] and
many other works, different algorithms have been proposed to find the nonorthogonal
joint diagonalizer of a given set of matrices. Although one might think of other ideas,
the NOJD problem has been considered as a minimization problem whose solution
gives the joint diagonalizer. There are not so many cost functions known that can be
used for this purpose. Given a set of matrices

(5) Ci ≈ AΛiA
T , 1 ≤ i ≤ N,

where Λi’s are diagonal, the hope of NOJD is that if a B if found such that all BCiB
T ’s

are “as diagonal as possible,” then B is close to A−1 up to permutation and diagonal
scaling. Therefore, the accuracy or usefulness of a NOJD algorithm depends on the
actual algorithm and on the cost function used, in the sense that how its minimizers
differ from A−1 when we have (5) instead of an equality. The focus of this work is on
what factors affect the sensitivity of the NOJD cost functions. Using a perturbation
analysis for the stationary points of certain minimization flows, we will show that this
sensitivity is closely related to the uniqueness properties of the corresponding exact
joint diagonalization problem. Also, not unexpectedly, we show that if norm of A−1 is
large, then again the NOJD will be sensitive. Note that this can happen if the norm
of A is small or if A is ill-conditioned. One of our main motivations in considering the
sensitivity issue is to investigate the effect of the number of matrices included in the
NOJD process. Inclusion of more matrices cannot only help to reduce the harm of
noise by an averaging effect but also by reducing the sensitivity through improvement
of measures of uniqueness defined in section 2.

The organization of this paper is as follows: in section 2 we investigate the unique-
ness conditions for the problem of exact joint diagonalization. We also use this result
to derive the well-known identifiability conditions for the ICA problem [10]. In section
3 we introduce some of the known cost functions for NOJD and derive the correspond-
ing flows whose stationary points characterize the joint diagonalizers. In section 4 we
perform a perturbation analysis on the stationary points of the introduced flows in
order to find the sensitivity properties. We also elaborate on the effect of the number
of matrices in the NOJD process. Numerical simulations in section 5 confirm the
derived results.
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1.3. Notations. Throughout the paper all variables are real valued unless oth-
erwise stated. Boldface small letters denote random variables. A and B both are
n× n nonsingular matrices unless otherwise stated. If X is a matrix, then xij or Xij

or [X]ij denotes its entry at position (i, j). ‖X‖F and ‖X‖2 denote the Frobenius
norm and the 2-norm of the matrix X, respectively. XT denotes the transpose of
X, and X−T denotes the transpose of the inverse of X. tr(X) is the trace of the
square matrix X. cond(A) is the 2-norm based condition number of the matrix A.
For a square matrix, diag(X) is the diagonal part of X, i.e., a diagonal matrix whose
diagonal is equal to the diagonal of X. I or In×n denotes the n× n identity matrix.
Unless otherwise stated, letters D and Π denote a nonsingular diagonal matrix and
a permutation matrix, respectively. For a vector x, diag(x) is a diagonal matrix with
diagonal x. Λi is a diagonal matrix and we denote the kth diagonal element of Λi by
λik. ‖x‖ is the 2-norm of the vector x. We also define X◦ = X − diag(X). GL(n)
and SO(n) denote the Lie groups of nonsingular n×n matrices and orthogonal n×n
matrices with +1 determinant, respectively. TpM denotes the tangent space of the
manifold M at point p on the manifold. Notation X ← Y means that “the new value
of X is Y .”

2. Uniqueness conditions for exact joint diagonalization (EJD). Con-
sider matrices

(6) Ci = AΛiA
T , 1 ≤ i ≤ N,

where Λi’s are diagonal matrices, i.e., Λi = diag([λi1, . . . , λin]). One interesting prob-
lem is that given only {Ci}Ni=1, find A. We call this problem the exact joint diagonal-
ization (EJD) problem. Note that with only the information that Λi’s are diagonal, A
can be determined only up to permutation and diagonal scaling, i.e., if A is a solution
then ADΠ is also a solution, for any D and Π. We say that the EJD has a unique2

solution if the permutation and diagonal scaling are the only ambiguities in finding A.
If the EJD has a unique solution, then finding A is equivalent to finding a B ∈ GL(n)
such that all BCiB

T ’s are diagonal, hence the name “joint diagonalization.”
The issue of uniqueness in the EJD problem can be considered as a special case

of uniqueness in the CANDECOMP/PARAFAC model, which has been addressed in
[16]. In order to quantify the uniqueness property, which as will be seen in section 4 is
closely related to the sensitivity issue of the NOJD problem, we rephrase the necessary
and sufficient conditions for uniqueness differently from the related literature.

Definition 1. For the set of diagonal matrices {Λi}Ni=1, let

(7) ρkl =

N∑
i=1

λikλil

(
N∑
i=1

λ2
il

) 1
2
(

N∑
i=1

λ2
ik

) 1
2

, 1 ≤ k �= l ≤ N,

with the convention that ρkl = 1 if λik = 0 for some k and all i. Let ρ be equal to
one of the ρkl’s that have the maximum absolute value among all. The modulus of
uniqueness for this set is defined as |ρ|.

Note that |ρ| ≤ 1 and |ρ| = 1 if and only if at least two columns of the matrix
[Λ]ij = λij are collinear, i.e., if there is a real number K and integers p and q such that

2In some works this is referred to as “essential uniqueness.”
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λip = Kλiq, for 1 ≤ i ≤ N . |ρ| measures the maximum degree of collinearity between
any two columns of the matrix [Λ]ij = λij . This measure to quantify collinearity may
seem to be chosen arbitrarily, but as will be seen later it shows itself naturally in the
analysis of certain cost functions for NOJD. Another measure, which also naturally
appears in the analysis of the log-likelihood based cost (see section 3.2.3) function is
given in the following definition.

Definition 2. For the set of positive definite diagonal matrices {Λi}Ni=1, let

(8) μkl =
1

N2

(
N∑
i=1

λik

λil

)(
N∑
i=1

λil

λik

)
, 1 ≤ k �= l ≤ N.

Let μ be the minimum value of μkl’s. The modulus of uniqueness of second type for
this set is defined as μ.

Note that μ ≥ 1 with equality if and only if |ρ| = 1. μ also measures the
maximum collinearity between the columns of Λ, with the assumption that Λi’s are
positive definite.

If N = 1, then |ρ| = 1 and the diagonalizer is not unique. For N > 1, the modulus
of uniqueness also captures the uniqueness property in an exact sense.

Theorem 1. Let Ci’s satisfy (6). The necessary and sufficient condition to have
unique nonorthogonal joint diagonalizer is that |ρ| < 1.

Proof. First we consider the case n = 2. If |ρ| = 1, then either (a) there is a real
number K such that λi2 = Kλi1 for all 1 ≤ i ≤ N , or (b) λi1 = 0 for all 1 ≤ i ≤ N
and λi2 �= 0 for some i, or (c) λi1 = λi2 = 0 for all i, which is a trivial situation. In
case of (a) we have:

(9) Ci = λi1A

[
1 0

0
√
|K|

]
︸ ︷︷ ︸

DK

[
1 0
0 ρ

] [
1 0

0
√

|K|

]
AT .

We have denoted the diagonal matrix that includes
√
|K| as DK . Let us first assume

that K �= 0. Now, if ρ = +1, then let B = Q+1D
−1
K A−1, where

(10) Q+1 =

[
cos θ − sin θ
sin θ cos θ

]
.

This B diagonalizes every Ci for all θ. If ρ = −1, then let B = Q−1D
−1
K A−1, where

(11) Q−1 =

[
cosh θ sinh θ
sinh θ cosh θ

]
.

This B diagonalizes every Ci for all θ. If K = 0 (and hence ρ = 1), then let B =
Q1A

−1, where

(12) Q1 =

[
1 θ
0 1

]
.

This B diagonalizes every Ci for all θ. Also, in case of (b), B = QT
1 A

−1 diagonalizes
every Ci for all θ. Therefore, for |ρ| = 1 the nonorthogonal joint diagonalizer is not
unique. For n > 2, |ρ| = 1 means that the situation described for n = 2 happens
between two diagonal elements, in the same positions within Λi’s; and we can apply
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the previous argument to those elements. Hence, for n > 2 also |ρ| = 1 implies
nonuniqueness of the joint diagonalizer. To see the necessary part, first note that
existence of more than one exact joint diagonalizer means that there exists a C which
differs from a permuted diagonal matrix such that the matrices Di = CΛiC

T are
diagonal. For the moment, assume that one of the Λi’s, say Λ1, is nonsingular. Then
DiD

−1
1 = CΛiΛ

−1
1 C−1 for 1 < i ≤ N . These are the eigendecompositions of diagonal

matrices ΛiΛ
−1
1 ’s, for 1 < i ≤ N . Nonuniqueness of C happens only when there are

two integers 1 ≤ k �= l ≤ n, such that λik

λ1k
= λil

λ1l
, 1 < i ≤ N . This means that |ρ| = 1.

If C is not unique and all Λi’s are singular, then two cases can happen. In the first
case, all Λi’s have one zero diagonal element at a common position, i.e., there exists
an integer 1 ≤ k ≤ n such that for all 1 ≤ i ≤ N we have λik = 0, which implies
that ρ = 1. If the first case is not true, then there exists a linear combination of Λi’s
like Λ0, which is nonsingular, and D0 = CΛ0C

T is diagonal; then we are back to the
nonsingular case. This completes the proof.

This result and more general ones have been referred to in [23] using the concept
of Kruskal’s rank.

2.1. On the minimum number of matrices needed for EJD. Let A be an
orthogonal matrix. Then the equations in (6) are the eigendecompositions of Ci’s. If
C1 or, equivalently, Λ1 has distinct eigenvalues, then A can be found from eigende-
composition of C1, uniquely up to permutations. If Λ1 has only two equal diagonal
elements at positions k and l, and if we can find another Λi with distinct values at
those positions, then A can again be found uniquely from eigendecompositions of C1

and Ci. Therefore, if for each pair of k and l we can find an i for which λil �= λik,
then A can be determined uniquely. As a result, in the generic case orthogonal joint
diagonalization is in fact a one-matrix problem and the inclusion of more matrices
can be justified by the presence of noise. The uniqueness properties of OJD as well
as its sensitivity analysis have been addressed in [8].

There is a huge difference between the uniqueness properties of the orthogonal
and nonorthogonal joint diagonalization problems. From the proof of Theorem 1 it
should be evident that N = 1 matrix is not enough to find a unique nonorthogonal
(joint) diagonalizer. NOJD allows more degrees of freedom in finding the diagonalizer.
Let us count the degrees of freedom in both sides of the equations in (6). Recall that

a symmetric n×n matrix has n(n+1)
2 degrees of freedom, and A has n2 −n degrees of

freedom (as far as the NOJD problem is concerned). Hence, the left-hand side of (6)

has total N n(n+1)
2 degrees of freedom, and its right-hand side has n2−n+Nn degrees

of freedom. Equating the degrees of freedom from both sides and solving for N gives
N = 2. Therefore, the minimum number of matrices to give enough equations to find
a unique nonorthogonal joint diagonalizer is N = 2; and hence, the NOJD problem,
in the generic case, is a two-matrix problem. For two arbitrary and generic matrices
{C1, C2}, whether the equations in (6) yield a real valued solution for {A,Λ1,Λ2}
depends on the matrices.3 It is well known that if one of the two matrices is positive
definite, then they admit a (real) exact jointly diagonalizer [15, pp. 461–462]. As
we will show in section 4.4.1, for only two matrices, if their dimension is moderately
large (n > 20, for example), then the modulus of uniqueness is close to unity. This in
turn, as will be shown in section 4, means that the NOJD of the two matrices is an

3Assuming C1 is invertible (which is true for a generic matrix), in order for (6) to hold, we
should have that C2C

−1
1 = AΛ2Λ−1

1 A−1, which is an eigendecomposition. Again in a generic case,
this would give a unique and (in general) complex valued {A,Λ1,Λ2}.
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ill-conditioned problem; and hence, it is better to include more matrices in the NOJD
process.

2.2. Identifiability of the ICA problem. Now we would like to apply the
previous theorem to the case of the ICA problem. It is obvious that if we can find
two cumulant matrix slices of �xn×1 for which |ρ| is not unity, then the matrix A
in (1) can be found uniquely. From (3) and (4), one can show that for the set
{Ck

x(i1, i2, . . . , ik−2, :, :)}1≤i1,...,ik−2≤n with k > 2 we have |ρ| �= 1, if and only if none
of Ck

s (i, . . . , i)’s are zero. To see this, first note that if Ck
s (i, . . . , i) = 0 for some i, then

|ρ| = 1. Now assume that none of Ck
s (i, . . . , i)’s are zero, and |ρ| = 1. Since |ρ| = 1,

there are two columns of A like j and l and a real number K such that

(13) ai1jai2j . . . aik−2jCk
s (j, . . . , j) = Kai1lai2l . . . aik−2lCk

s (l, . . . , l)

for all 1 ≤ i1, ..., ik−2 ≤ n. Because none of the Ck
s (i, ..., i)’s are zero, and since

there is at least one nonzero element like apj in the jth column of A, by setting
i2 = · · · = ik−2 = p we have that there is another real number K ′ such that

(14) ai1j = K ′ai1l

for all 1 ≤ i1 ≤ n. This contradicts the invertibility of A. Hence, with an invertible
A, |ρ| cannot be unity unless at least one of Ck

s (i, . . . , i)’s is zero.

Now assume that the covariance matrix of �sn×1 is nonsingular, i.e., there is
no source component with zero variance. Then by inclusion of the covariance ma-
trix of �xn×1 in the above set we can weaken the uniqueness condition, i.e., for
{Rxx, Ck

x(i1, i2, . . . , ik−2, :, :)}1≤i1,...,ik−2≤n with k > 2, we have |ρ| �= 1 if and only
if at most one of Ck

s (i, . . . , i)’s is zero. Therefore, if we start with the covariance ma-
trix of �xn×1 and then include its third order cumulant slices, and if at most one of
the skewness’ C3

s (i, . . . , i) is zero, then A can be determined uniquely. If at least two
C3
s (i, . . . , i)’s are zero, then we can go to the cumulants of higher orders and check

the same condition. Note that this process fails if and only if there are at least two
source elements sp and sq for which Ck

s (p, . . . , p) = Ck
s (q, . . . , q) = 0 for all k ≥ 3. It is

well known that such random variables have Gaussian distribution. As a result, exact
nonorthogonal joint diagonalization of the set of all cumulant matrix slices of �xn×1

gives A uniquely, unless �sn×1 has at least two Gaussian components. To summarize
we state this theorem (cf. Corollary 13 in [10]).

Theorem 2 (identifiability of ICA:EJD formulation). Consider the model (1).
About �sn×1, assume that its covariance matrix is nonsingular, its kth order cumulants
(for some k > 2) exist, and at most one of them is zero. Then exact joint diagonal-
ization of the set {Rxx, Ck

x(i1, i2, . . . , ik−2, :, :)}1≤i1,...,ik−2≤n results in finding A up
to column permutation and scaling. For a source vector with finite cumulants of all
orders, this process fails to identify A if only if the source vector has more than one
Gaussian component.

This result suggests that EJD can be used as a basis to define a contrast function
[10] for ICA. Note that this identifiability condition is derived solely based on the
algebraic structure of the ICA model and that we have not used the Skitovich–Darmois
theorem [10, 18]. OJD or NOJD of cumulant matrix slices of order three, four, or
even higher have been suggested in many works, e.g., [9, 28, 29, 19, 13, 2]. The
OJD scenario arises when one assumes that the mixture is already uncorrelated or
whitened.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SENSITIVITY ANALYSIS FOR MATRIX JOINT DIAGONALIZATION 1155

3. Cost functions for joint diagonalization. The joint diagonalization prob-
lem has been posed, in the literature, mostly as an optimization problem [9, 28, 25, 20].
We mention that in [28, 25] the joint diagonalization problem has been addressed with
a different formulation than ours. As mentioned before, generically, in the OJD prob-
lem one matrix (N = 1), and in the NOJD problem two matrices (N = 2) are enough
to find a unique joint diagonalizer. However, it is believed that inclusion of more
matrices is useful in making the solution less vulnerable to noise. Therefore, the pro-
posed cost functions for joint diagonalization are designed to mitigate the effect of
noise via averaging.

3.1. A cost function for orthogonal joint diagonalization. The OJD prob-
lem was introduced earlier than the NOJD problem. In [9] a natural cost func-
tion together with an efficient algorithm for OJD was introduced. The cost function
J1 : SO(n) → R for OJD, introduced in [9], is

(15) J1(Θ) =

n∑
i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T )
∥∥2

F
,

where {Ci}Ni=1 is the set of symmetric matrices to be diagonalized. If Θ minimizes J1,
then we call Θ an orthogonal joint diagonalizer of {Ci}Ni=1. Note that, since SO(n)
is a compact manifold, a priori we know that a minimizer exists for J1. Whether,
generically, this cost function has only global minimum on SO(n), and whether the
minimizers are unique up to permutation are not known.

3.2. Cost functions for nonorthogonal joint diagonalization. Introducing
a cost function for NOJD has been a challenge. First, note that a simple extension of
J1 from SO(n) to GL(n) is not effective. We remind that the NOJD problem in the
exact case is a scale-invariant problem, i.e., if B ∈ GL(n) is an exact joint diagonalizer
for a set of matrices, then DB also should be a joint diagonalizer for any nonsingular
diagonal D. We expect or require this to be true for the case of NOJD as well, i.e., if
B is a nonorthogonal joint diagonalizer for a set of matrices, we expect DB also to be
a nonorthogonal joint diagonalizer for that set. However, in general J1(DB) �= J1(B).
In fact, we can reduce J1(B) just by reducing the norm of B, and J1(B) has a global
infimum at B = 0.

3.2.1. A nonholonomic flow for NOJD based on J1. For the derivations
in this subsection we refer the reader to [2]. We also refer the reader to [17] for more
comprehensive treatment of gradient flows for optimization on manifolds. On the Lie
group of nonsingular matrices, we can define a right-invariant Riemannian metric4

that matches the group structure as

(16)
〈., .〉B : TBGL(n) × TBGL(n) → R

〈ξ1, ξ2〉B = tr((ξ1B
−1)T ξ2B

−1),

where TBGL(n) is the tangent space to GL(n) at B. In general, a tangent vector ξ at
a point B on GL(n) (and any Lie group) can be written as ξ = ζB where ζ belongs to

4The significance of the right-invariant metric is that it matches the invariance property of the
NOJD problem, which as mentioned is that the joint diagonalizer does not change by left multipli-
cation by nonsingular diagonal matrices. A discretization of a right-invariant flow such as dB

ds
= ΩB

has the form Bk+1 = (I + Ωk)Bk.
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−∇J1(B)⊥

GL(n)

TBOB

TBGL(n)

B

OB

−∇J1(B)

Fig. 1. The group of nonsingular diagonal matrices acts on the manifold GL(n) at B via left
multiplication. OB is the orbit of this action. The linearization of this orbit (i.e., the tangent space
to it) at B is TBOB ⊂ TBGL(n). This figure shows how −∇J1(B) should be projected onto the
orthogonal complement of TBOB in order to have a flow for NOJD based on J1 which is not a
scale-invariant cost function for NOJD.

the tangent space at the identity. Also, the tangent spaces at B and the identity are
isometric in the previous metric. Let s �→ B̃(s) be any smooth curve with B̃(0) = B.
With respect to the Riemannian metric in (16), the gradient of J1 : GL(n) → R is
defined as a vector field ∇J1 that satisfies

(17) J̇1 = 〈∇J1, Ḃ〉B ,

where J̇1 = dJ1(B̃(s))
ds

∣∣
s=0

and Ḃ = dB̃(s)
ds

∣∣
s=0

. From this, it is easy to verify that up
to a scalar factor

(18) ∇J1(B) = Ω1B,

where

(19) Ω1 =

N∑
i=1

(BCiB
T )◦BCiB

T .

We can show that the stationary points of J1, i.e., values of B for which ∇J1(B) =
0 and hence Ω1 = 0, satisfy BCiB

T = diag(BCiB
T ). Therefore, if Ci’s do not have an

exact joint diagonalizer, then J1 will have no stationary points on GL(n). A gradient
flow for minimization of J1 has the form dB

ds = −∇J1(B) = −Ω1B. As we mentioned
before, the problem with minimizing J1 as a cost function for NOJD is that it can
be reduced by diagonal matrices. At each point B ∈ GL(n), we can project the
gradient of J1 (or more accurately the negative of the gradient) to directions that do
not correspond to diagonal scaling. The group of nonsingular diagonal matrices of
dimension n can act on the group GL(n) via left multiplication. At B the orbit of
this action is simply OB = {DB|D = nonsigngular and diagonal} and it is in fact a
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submanifold which we would like our NOJD flow to avoid. The linearization or the
tangent space to the orbit at B is TBOB = {DB|D = diagonal}, which is a linear
subspace of TBGL(n). The orthogonal complement of TBOB in the tangent space
TBGL(n), with respect to the defined Riemannian metric, is (TBOB)⊥ = {ΞB|Ξ ∈
R

n×n, diag(Ξ) = 0}. Therefore, the projection of ∇J1 onto (TBOB)⊥ is ∇J⊥
1 = Ω◦

1B.
Figure 1 shows the process of constraining the negative of the gradient to directions
along (TBOB)⊥, at each point B. The corresponding nonholonomic5 flow for NOJD
is

(20)
dB

ds
= −∇J⊥

1 = −Ω◦
1B.

The stationary points or equilibria of this flow are defined by Ω◦
1 = 0, or

(21)
N∑
i=1

(
(BCiB

T )◦BCiB
T
)◦

= 0.

Hence, if a nonorthogonal joint diagonalizer of {Ci}Ni=1 based on the above nonholo-
nomic flow exists, then it should satisfy (21). In [3, 29] and many other works,
minimization schemes for J1 are proposed, which try to find the stationary points in
(21).

3.2.2. A Frobenius norm scale-invariant cost function. Note that J1 :
SO(n) → R in (15) can also be written as

(22) J1(Θ) =

n∑
i=1

∥∥Ci − Θ−1diag(ΘCiΘ
T )Θ−T

∥∥2

F
.

Let J2 : GL(n) → R be the extension of this form of J1 to GL(n) defined by

(23) J2(B) =

n∑
i=1

∥∥Ci −B−1diag(BCiB
T )B−T

∥∥2

F
.

Then it is easy to check that J2(ΠDB) = J2(B) for any nonsingular diagonal D and
permutation Π. Therefore, J2 is a scale and permutation invariant cost function for
NOJD. Note that J1 and J2 are scaled versions of each other in the sense that

(24)
J1(B)

n2‖B‖4
2

≤ J2(B) ≤ n2‖B−1‖4
2J1(B).

Also, note that we can reduce J2 without changing the norm of B. This means that
reducing J2, if the norm of B is not changed, can result in reduction of the upper
bound of J1. This cost function has been introduced in [5, 3].

3.2.3. Log-likelihood function for NOJD. In [20], another cost function for
NOJD of a set of positive definite matrices {Ci}Ni=1 has been introduced. This cost
function has the form

(25) J3(B) =

N∑
i=1

log

(
det diag(BCiB

T )

detBCiBT

)
.

5A nonholonomic flow is a flow whose velocity vector field is constrained by nonintegrable con-
straints.
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A matrix B ∈ GL(n) that minimizes J3 is the joint diagonalizer of {Ci}Ni=1. It can be
shown that J3(B) ≥ 0, and the equality holds if and only if all BCiB

T ’s are diagonal.
It is easy to check that J3 is scale and permutation invariant, i.e., J3(ΠDB) = J3(B),
for any Π and D. The specific form of this cost function is imposed by the log-
likelihood function of correlation matrices of Gaussian nonstationary sources [20].
Let us consider the same right-invariant Riemannian metric as in section 3.2.1. Using
the well-known identity ∂

∂B log detB = (BT )−1 we can show (see (17) also) that

(26) J̇3 = 2

N∑
i=1

tr

(
(ḂB−1)T

(
(diag(BCiB

T ))−1BCiB
T − I

))
.

As a result, with respect to the above Riemannian metric, the gradient vector field of
J3 up to a scalar factor is

(27) ∇J3(B) =
1

N

N∑
i=1

(
diag((BCiB

T ))−1BCiB
T − I

)
B := Ω3B.

It is interesting to note that diag(Ω3) = 0 (cf. (19) and (20)). A gradient flow for
NOJD based on minimization of J3 is dB

ds = −Ω3B. The stationary points for this
flow are characterized by Ω3 = 0; and if B is a joint diagonalizer, then it should satisfy

(28)
1

N

N∑
i=1

BCiB
T
(
diag(BCiB

T )
)−1

= I.

4. Sensitivity analysis. An interesting question to ask is: “which set of ma-
trices are hard to be jointly diagonalized?” In other words, which factors affect the
condition or sensitivity of the joint diagonalization problem? Consider the matrices
Ci = AΛiA

T , 1 ≤ i ≤ N , where Λi’s are diagonal. Obviously, {Ci}Ni=1 have a joint
diagonalizer B = A−1. Note that, here equality is understood up to permutation and
diagonal scaling. Now, we add noise to the matrices as

(29) Ci = AΛiA
T + tNi, t ∈ [−δ, δ], δ > 0,

where {Ni}Ni=1 are symmetric error or noise matrices, and t shows the noise gain or
contribution. The joint diagonalizer of this noisy set will deviate from A−1 as t devi-
ates from zero. If the sensitivity is high, then the deviation from A−1 will be large. In
this case, we say that the NOJD problem is very sensitive or ill-conditioned. Note that
the true goal of NOJD is to find A and not just diagonalizing the matrices {Ci}Ni=1.
It is in this context that the sensitivity of the problem is defined. If the modulus of
uniqueness for {Λi}Ni=1 is unity, then {Ci}Ni=1 has already infinite sensitivity; since the
joint diagonalizer can change even in absence of noise. Hence, one should expect the
sensitivity for joint diagonalization to be closely related to the issue of uniqueness. To
quantify this relation, we will perform a perturbation analysis of the stationary points
of the NOJD cost functions or flows defined in section 3. The results for different cost
functions are very much similar.

4.1. Sensitivity analysis for NOJD based on J1. The J1-based nonorthogo-
nal joint diagonalizer of {Ci}Ni=1, B is defined by (21). As t deviates from zero in (29),
B(t), the joint diagonalizer, varies smoothly. For small enough δ, from the implicit
function theorem and basic properties of Lie groups, we have

(30) B(t) = (I + tΔ)A−1 + o(t), t ∈ [−δ, δ],
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where Δ ∈ R
n×n with diag(Δ) = 0 and ‖o(t)‖

t → 0 as t → 0. The restriction
diag(Δ) = 0 matches the structure of the nonholonomic flow for NOJD derived in
section 3.2.1. Note that the norm of Δ measures the sensitivity of the NOJD problem
to noise. Our goal is to calculate Δ. Using B(0) = A−1 and dB

dt (0) = ΔA−1, and
after plugging (29) into (21), and then differentiating with respect to t, we can easily
verify that

(31)

N∑
i=1

(
ΔΛi + ΛiΔ

T
)
Λi = −

N∑
i=1

(
A−1Ni(A

−1)T
)◦

Λi.

The right-hand side of the above equation manifests the possible noise amplification
that can happen due to large ‖A−1‖, i.e., when A is small in norm or more importantly
when A is ill-conditioned. Equation (31) is a linear equation in terms of Δ. Let us
define

(32) T =
N∑
i=1

(A−1Ni(A
−1)T )◦Λi.

Now, it is easy to check that the two entries Δkl and Δlk decouple from the rest of
the entries of Δ and we have

(33)

⎡
⎢⎢⎢⎢⎣

N∑
i=1

λ2
il

N∑
i=1

λikλil

N∑
i=1

λikλil

N∑
i=1

λ2
ik

⎤
⎥⎥⎥⎥⎦
[

Δkl

Δlk

]
= −

[
Tkl
Tlk

]
, 1 ≤ k < l ≤ n.

Recall the definition of ρkl (Definition 1). Also, let

(34) γkl =

(
N∑
i=1

λ2
ik

) 1
2
(

N∑
i=1

λ2
il

) 1
2

, ηkl =

(
N∑
i=1

λ2
ik

) 1
2

(
N∑
i=1

λ2
il

) 1
2

.

We denote the coefficients matrix in (33) by Mkl,

(35) Mkl = γkl

[
η−1
kl ρkl
ρkl ηkl

]
, 1 ≤ k < l ≤ n.

Then (33) is equivalent to
(36)[

Δkl

Δlk

]
= −M−1

kl

[
Tkl
Tlk

]
=

−1

γkl(1 − ρ2
kl)

[
ηkl −ρkl
−ρkl η−1

kl

] [
Tkl
Tlk

]
, 1 ≤ k < l ≤ n.

Note that the eigenvalues of M−1
kl are

(37) λmax, λmin =
ηkl + η−1

kl ±
√

(ηkl + η−1
kl )2 − 4(1 − ρ2

kl)

2γkl(1 − ρ2
kl)

.
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Also, it is easy to check that

(38)
ηkl + η−1

kl − 1

γkl(1 − ρ2
kl)

≤ λmax <
ηkl + η−1

kl

γkl(1 − ρ2
kl)

,

and

(39)
1

γkl(ηkl + η−1
kl )

≤ λmin ≤ 1

γkl
.

Therefore, we can also establish the bounds

(40)
1

γkl(ηkl + η−1
kl )

∥∥∥∥
[

Δkl

Δlk

]∥∥∥∥ ≤
∥∥∥∥
[

Δkl

Δlk

]∥∥∥∥ < ηkl + η−1
kl

γkl(1 − ρ2
kl)

∥∥∥∥
[

Tkl
Tlk

]∥∥∥∥ .
Because γkl is not scale-invariant, γkl ≈ 0 by itself does not imply a high sensitivity.
The definitions of the parameters reveal that γkl plays more of a scaling role, whereas
ρkl plays a structural role. Hence, as far as sensitivity to noise is concerned, the
interesting situation (approximate singularity) happens when |ρkl| ≈ 1. Note that
as |ρkl| → 1, λmax and λmin approach their upper and lower bounds, respectively.
Moreover, in that case λmax grows unboundedly and λmin remains bounded. Since
T depends on random noise, there always will be a component of

[ Tkl

Tlk

]
along the

direction of the eigenvector of M−1
kl corresponding to λmax. Therefore, when |ρkl|

approaches unity, ‖
[

Δkl

Δlk

]
‖ tends towards the upper bound in (40). Hence, the upper

bound is the more interesting one and it is not a loose bound in the sense that it can
be achieved very closely when |ρkl| ≈ 1.6 One can easily check that

(41) ‖Δ‖F <
α

(1 − ρ2)
‖T ‖F ≤ nα‖A−1‖2

2

(1 − ρ2)

N∑
i=1

‖Ni‖2‖Λi‖2,

where α = maxk 	=l

ηkl+
1

ηkl

γkl
, and |ρ| is the modulus of uniqueness for the set {Λi}Ni=1

as defined before. Since an approximate nonuniqueness of the joint diagonalizer can
happen when only one of |ρkl|’s is close to unity, the above bound might seem exag-
gerative. Again one can imagine a worse case scenario in which all |ρkl|’s are close
to unity, and the bound would not be very loose. In summary, we have the following
theorem.

Theorem 3. Let Ci = AΛiA
T + tNi, 1 ≤ i ≤ N (t ∈ [−δ, δ]). Let us define B(t)

the nonorthogonal joint diagonalizer for {Ci}Ni=1 as the minimizer of J1 under the
nonholonomic flow with equilibria defined in (21). Then for small enough δ, the joint
diagonalizer can be written as: B(t) = (I+tΔ)A−1+o(t), where Δ (with diag(Δ) = 0)
satisfies (36) as well as (41).

The bound in (41) confirms the intuition that if the joint diagonalizer is close to
nonuniqueness, as measured by the modulus of uniqueness, or if it is ill-conditioned,
then the sensitivity of the NOJD problem will be high. Note that our derivations
suggest that there is another scenario that can result in high sensitivity, which is
when A and Λi (i.e., γkl’s) are small in norm. Of course, this is not an interesting
scenario. We could have avoided this by imposing a constraint on the norm of the
noise in (29). For example, we could assume that ‖Ni‖2 ≤ ‖A‖2

2‖Λi‖2. This choice

6It is common in matrix perturbation theory to have bounds that only handle the worse cases
well. For a discussion on this issue, see [22, p. 124].
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makes the bound (41) such that it is unchanged if A or Λi’s all are scaled by a scalar.

Hence, one might be tempted to define cond(A)2

1−ρ2 as the condition number for the NOJD
problem based on J1.

4.2. Sensitivity analysis for NOJD based on J2. We can follow the same
path as in the previous subsection and perform a perturbation analysis for the sta-
tionary points of J2 in presence of noise. In [5], it is shown that the stationary points
of J2 satisfy

(42)

{ ∑N
i=1

(
Ψidiag

(
BCiB

T
)
− diag

(
Ψi

)
BCiB

T
)

= 0,

Ψi = (BBT )−1
(
BCiB

T − diag(BCiB
T )
)
(BBT )−1,

B(t), the minimizer of J2 with Ci’s defined in (29), can be written as (30). Our goal
is to find Δ, when B(t) satisfies (42). Similar to the previous subsection, we can show
that Δ satisfies

(43)

N∑
i=1

(
ATA(ΔΛi + ΛiΔ

T )ATAΛi

)◦
= −

N∑
i=1

(
ATA

(
A−1Ni(A

−1)T
)◦
ATAΛi

)◦
.

Presence of the terms ATA in (43) makes the decoupling that we saw in (31) not
possible here. Note that in (31) the effect of A and Λi are separated very much, but
in (43) this is not the case. This is because J2 is not congruence preserving, i.e., it
is not expressed in terms of only the BCiB

T ’s. Note that if A is close to a diagonal
multiple of an orthogonal matrix, i.e., if A ≈ QD, where D is a nonsingular diagonal
matrix and Q is orthogonal, then ATA ≈ DTD; and as a result, we have that (43)
reduces to

(44)

N∑
i=1

(
ΔΛi + ΛiΔ

T
)
Λi ≈ −

N∑
i=1

(
A−1Ni(A

−1)T
)◦

Λi,

which is the approximated version of (31). This case is of practical interest. Many
algorithms for NOJD try to iteratively reduce the data matrices Ci’s, by congruence
transforms, to diagonal matrices, i.e., Ci ← BkCiB

T
k , where Bk is the local joint

diagonalizer found at step k. After a number of iterations, and when the matri-
ces under transformation become close to diagonal, we have Ci = BAΛi(BA)T +
tBNiB

T , where B is the product of the local joint diagonalizers. In this case,
the new A (A ← BA) is close to diagonal, so is ATA. Also, in another case if
one of the Ci’s, say C1, is positive definite, then we can apply the transformation

Ci ← C
− 1

2
1 Ci(C

− 1
2

1 )T = C
− 1

2
1 AΛi(C

− 1
2

1 A)T + tC
− 1

2
1 Ni(C

− 1
2

1 )T , where C
1
2
1 is a square

root of C1, i.e., C
1
2
1 (C

1
2
1 )T = C1. Again, we can show that if the noise is not too strong,

for the new A (A ← C
−1/2
1 A), we have A ≈ QD, for some orthogonal Q and nonsingu-

lar diagonal D. This case can, for example, correspond to the so-called prewhitening
step in the ICA problem, where C1 is a covariance matrix. We can maintain that the
sensitivity properties of NOJD based on J2 are very similar to those of NOJD based
on J1.

4.3. Sensitivity analysis for NOJD based on J3. A stationary point B(t) of
J3, when Ci’s are of the form (29) and Λi’s are positive definite, satisfies (28). Similar
to previous derivations, by differentiating (28) with respect to t and considering (29)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1162 BIJAN AFSARI

and (30), we have that Δ, with diag(Δ) = 0, satisfies

(45)

N∑
i=1

Δ + ΛiΔ
TΛ−1

i = −
N∑
i=1

(
A−1Ni(A

−1)T
)◦

Λ−1
i .

We have used the fact d
dtX

−1 = −X−1( d
dtX)X−1, where X is a nonsingular differen-

tiable matrix function of t. Let us define

(46) τkl =
1

N

N∑
i=1

λik

λil
, μkl = τklτlk =

1

N2

(
N∑
i=1

λik

λil

)(
N∑
i=1

λil

λik

)
.

Also let:

(47) S =
∑N

i=1

(
A−1Ni(A

−1)T
)◦

Λ−1
i , Hkl = N

[
1 τkl
τlk 1

]
.

Here S is very similar to T and represents possible noise amplification due to small
norm or ill-conditioning of A. The structure of S also shows that if Λi’s are close
to singularity, then noise amplification can happen. Note that the cost function J3

requires Λi’s to be positive definite, and as this condition is close to violation (by one
of Λi’s being almost singular), then J3 becomes very sensitive to noise. Equation (45)
decouples as

(48) Hkl

[
Δkl

Δlk

]
= −

[
Skl

Slk

]
, 1 ≤ k < l ≤ n,

or, equivalently,

(49)

[
Δkl

Δlk

]
=

1

N(μkl − 1)

[
1 −τkl
−τlk 1

] [
Skl

Slk

]
, 1 ≤ k < l ≤ n.

It is easy to see that ‖H−1
kl ‖2

F =
2+τ2

kl+τ2
lk

(N(μkl−1))2 , and hence σmax, the larger singular value

of H−1
kl , satisfies

(50)
1√
2

√
τ2
kl + τ2

lk + 2

N(μkl − 1)
≤ σmax <

√
τ2
kl + τ2

lk + 2

N(μkl − 1)
.

From (49) and the previous bound we have

(51)

∥∥∥∥
[

Δkl

Δlk

]∥∥∥∥ ≤ σmax

∥∥∥∥
[

Skl

Slk

]∥∥∥∥ <
√
τ2
kl + τ2

lk + 2

N(μkl − 1)

∥∥∥∥
[

Skl

Slk

]∥∥∥∥ .
It is also easy to establish the following bound:

(52) ‖Δ‖F <
β

N(μ− 1)
‖S‖F ≤ nβ‖A−1‖2

2

N(μ− 1)

N∑
i=1

‖Ni‖2‖Λ−1
i ‖2,

where β = maxk 	=l

√
τ2
kl + τ2

lk + 2 and μ = mink 	=l μkl. In summary we have the
following theorem.

Theorem 4. Let Ci = AΛiA
T + tNi, 1 ≤ i ≤ N (t ∈ [−δ, δ]) with Λi’s positive

definite. Let us define B(t), the nonorthogonal joint diagonalizer for {Ci}Ni=1, as the
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minimizer of J3. Then for small enough δ the joint diagonalizer can be written as
B(t) = (I + tΔ)A−1 + o(t), where Δ (with diag(Δ) = 0) satisfies (48) as well as (52).

Note that here, similar to the case of NOJD based on J1, the modulus of unique-
ness (μ) and the condition number of A affect the sensitivity. If one of the Λi’s
is close to singularity, i.e., if ‖Λ−1

i ‖ is large, then the NOJD problem can be ill-
conditioned. Therefore, almost similar to section 4.1, we might impose the constraint
‖Ni‖2 ≤ ‖A‖2

2‖Λ−1
i ‖−1

2 and define the condition number for the NOJD problem based

on J3 as cond(A)2

μ−1 . The imposed condition simply means that if ‖Λ−1
i ‖2 is large, then

‖Ni‖2 must be small or ‖A‖2 should be large.

4.4. Effect of the number of matrices. One of our motivations in performing
sensitivity analysis for the problem of NOJD has been to consider the effect of the
number of matrices on the accuracy of the solution. N = 2 matrices are enough
to find a unique nonorthogonal joint diagonalizer if |ρ| < 1. However, to combat
noise, we may want to include more matrices. Inclusion of more matrices can have
two effects: first on how T in (41) or S in (52) changes, second on how ρ, γ and
α in (41), or on how μ and α in (52) may change. The first effect is related to
noise cancellation through averaging; and the second one is related to improvement of
uniqueness measures. Both, of course, depend on how Ni’s and Λi’s are statistically
distributed. Let us consider a J1-based-NOJD problem. Assume that the elements
of Ni’s are i.i.d. with zero mean, and that the elements of Λi’s are i.i.d. with mean
m and variance σ2. Also, assume that the matrices are independent from each other.

Then, by the strong law of large numbers, we have that ‖ T
N ‖ → 0, ρ → m2

σ2+m2 , and

Nα → 2
σ2+m2 < ∞ as N → ∞ with probability one. Hence, ‖Δ‖F → 0 as N → ∞

with probability one. Note that this might not happen if Ni’s and Λi’s are of nonzero
mean. For small values of N such as N = 2, 3, or 4, and, especially when n is large,
|ρ| can be very close to unity (for N = 1, |ρ| = 1). Moreover, the cancellation or
averaging effect that we expect to happen in T for large values of N is not likely to
happen for small N . Hence, for small N the NOJD problem can be very sensitive.

4.4.1. More on the number of matrices and modulus of uniqueness.
Our claim that for small N the modulus of uniqueness |ρ| can be close to unity
deserves more elaboration. From Definition 1, we can interpret ρkl as the cosine of
the angle between two N dimensional vectors (λ1k, . . . , λNk)

T and (λ1l, . . . , λNl)
T .

Without loss of generality, we can assume that the vectors are of unit length, i.e.,
they represent points on the unit sphere in R

N . Now |ρ| is the maximum of the
absolute value of the cosine of the angles between n points on the unit sphere in R

N .
Since |ρ| is independent of the direction of the vectors, we can assume that all the
points lie on the same hemisphere on the unit sphere in R

N . The fact that |ρ| can be
large when n is much larger than N is related to the fact that among n points on the
unit hemisphere in R

N at least two of them cannot be very far apart from each other.
In other words, there are at least two of the points which are closer to each other
than a deterministic distance, which depends on n and N . As n increases and the
points become denser this deterministic distance decreases and |ρ| approaches unity.
Note that |ρ| can become large if there is a large obtuse angle (an angle with negative
cosine) between two of the points as well. However, we can only argue that as the
number of points increases, they should become denser at some region, and hence, the
upper bound on the minimum angular distance between them should decrease. We
cannot account for a lower bound on the maximum obtuse angles between the points
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unless we know a specific distribution for the points.7

Unfortunately, finding the mentioned deterministic bound is difficult for arbitrary
N . However, for N = 2 it is surprisingly easy to find. Assume that we have n ≥ 3
points on the unit semicircle. Then we can divide the circumference of the semicircle
into n − 1 arcs each of length π

n−1 . Then by putting n points on the unit semicircle
at least two of them will lie on the same arc. Hence, for N = 2 we should have
|ρ| ≥ cos π

n−1 , for n ≥ 3. This implies that for two 20 × 20 matrices, |ρ| > 0.98.
Of course, for typical matrices this can be worse, since the bound we found is a
lower bound. Again, note that this bound is solely based on an upper bound on the
minimum of angular distances between the points. In fact, the configuration that
achieves the bound π

n−1 has two antipodal points for which ρ = −1. Therefore, the
bound is conservative. With more information about the points, we can find better
lower bounds. For example, if the matrices are positive definite (i.e., λik > 0 and
hence ρ > 0), then we can consider points on a quarter of a circle and hence have
a lower bound of cos π

2(n−1) on ρ. As a result, for two positive definite matrices of

dimension only n = 10 we have that ρ > 0.98. Maybe the most interesting finding of
this paper is that the NOJD of two matrices, if their dimension is fairly large, is ill-
conditioned. This is true despite the fact that, as explained before, we might be able
to find an exact nonorthogonal joint diagonalizer for the two matrices. Therefore, in
general it is better to use more matrices not only to combat noise but also to improve
the sensitivity.

The problem of finding an upper bound for the minimum distance between n
points on the unit sphere in R

N is an old problem in the set of problems known as
sphere packing problems. Tight bounds for these problems are in general very difficult
to find. This specific problem is known as Tammes’ problem or “dictators on a planet
problem” [12]. One well-known result about it is a bound for N = 3. According to this
result [24], for n ≥ 3 points on the unit sphere in R

3, there are at least two points whose

spherical (angular) distance is smaller than dn = cos−1 cot2 ωn−1
2 , where ωn = n

n−2
π
6 .

Unfortunately, the proof for this result does not allow an extension to a parallel result
for points on the hemisphere. However, we might argue, via homogeneity, that an
approximate bound for n points on the hemisphere can be obtained by setting 2n

points on the sphere and using d2n. Hence, we have cot2 ω2n−1
2 as an approximate

lower bound for |ρ| with N = 3. If we ignore the effect of the edge of the hemisphere,
this scaling argument sounds quite plausible. Note that the scaling argument becomes
more plausible for dense points. We expect the lower bound on |ρ| to be smaller for
N = 3 than that for N = 2, with equal n; and this is exactly what we observe. In
Figure 2 we have plotted four curves. The lower two curves show the deterministic
lower bounds on |ρ| for N = 2 and N = 3 in terms of n. As can be seen, the bound for
N = 2 is higher than the one for N = 3. The upper two curves show the average |ρ| in
terms of n, this time, for the uniform distribution of points on the circle and sphere.
By uniform distribution on the sphere we mean that if 0 ≤ φ < 2π and 0 ≤ θ ≤ π are
the spherical coordinates of a point on the sphere, then these two random variables
are uniformly distributed on their domains. Therefore, we generate n points (on the

7A more natural framework is to equip the unit sphere with a quotient topology and to identify
its antipodal points, which results in the real projective plane in R

N . This way we automatically
take into account both the small acute and the large obtuse angles. While this paper was at the
final stages of publication, the author realized that a more general version of the problem described
previously, rather recently, has been addressed in the literature under the name of “Grassmannian
packing problem.” Nevertheless, the simplistic analysis presented here seems to be adequate for our
main purposes.
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Fig. 2. This graph shows two forms of variation of |ρ| in terms of n for N = 2 and N = 3. The
higher two curves show the average |ρ| for points that are uniformly distributed on the circle and
sphere. Here uniform means that the angular coordinates of the points in the spherical coordinate
are uniformly distributed over the appropriate ranges. The lower two curves are the deterministic
lower bounds described in the text. The deterministic bound for N = 2 is higher than the one for
N = 3, as expected.

circle or the sphere), find the |ρ| for them, repeat this experiment 10, 000 times, and
find the average |ρ|. As can be seen, these values of |ρ| are much higher than the
bounds.

How about for other values of N? Let us pretend that we could extend the simple
argument for the circle to higher dimensions. This helps us unveil the main dynamics
between n and N in affecting |ρ|. Denote the surface area of the unit sphere in R

N

by SN . Assume we could divide the surface of the hemisphere into n − 1 congruent
hyper-spherical regular polygons. This, of course, is a very difficult assumption to
make. Let the angular diameter of each polygon be θ. If n is large, then we can
approximate the area of the polygon by VN−1(

θ
2 )N−1, where VN−1 is the volume of

the unit hyper-sphere in R
N−1. Hence, we have (n − 1) × VN−1(

θ
2 )N−1 ≈ SN

2 , or

θ ≈ 2( 1
n−1 )

1
N−1 ( SN

2VN−1
)

1
N−1 . One can see (for example, from the explicit formula for

the surface and volume of the hyper-sphere in [27] and the formula related to the

Gamma function in [26]) that ( SN

2VN−1
)

1
N−1 is of order O(1) for large N ; and in fact,

it converges to 1. Here O(.) is the big O notation. Now, θ ≈ 2( 1
n )

1
N for large n and
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N , which in turn implies

(53) |ρ| ≥ cos(θ) ≈ 1 − 2

(
1

n

) 2
N

.

This is in agreement, at least in its form, with a much more rigorous bound given
in [12, Equation (66), p. 28]. To be accurate, the result in [12] states that if n is
the maximum number of spherical caps of angular diameter 0 < θ < 63◦ that can be
placed on the surface of the unit sphere in R

N without overlapping, then for large N

(54) cos θ � 1 −
(

1

4

)0.099(
1

n

) 2
N

≈ 1 − 0.87

(
1

n

) 2
N

.

We can replace n with 2n to have a similar (approximate) result for the hyper-
hemisphere, which essentially does not change the asymptotic bound. Either bounds
suggests that in order to control |ρ|, as n increases, it suffices to have N = O(log n),
which is encouraging! As a result, we do not need to have too many matrices in
order to avoid the ill-conditioning that happens due to a small number of matrices
being used. Note that if there is a structural cause of ill-conditioning within Λi’s,
then this recipe is irrelevant. Also, note that in (54) for fixed n as N increases |ρ|
does not decrease indefinitely; and there is an asymptotic nonzero lower bound of
0.13. Unfortunately, our approximate bound in (53) does not give an interesting
answer in this case. The mentioned behavior is observed in our simulations. Figure
3 shows the experimental and fitted behavior of ρ in terms of N for n = 20. The
experimental ρ comes from generating λik’s independently from uniform distribution
on [0, 1]. Each value of ρ is an average over 1000 runs. The graph also shows the

curve ρ̃ = 1 − 0.20( 1
n )

5.59
N (with n = 20), which is fitted to the experimental data.

These two curves obviously demonstrate the predicted dynamics between n and N
in determining ρ. The mentioned asymptotic lower bound for ρ as N → ∞ in this
case is 0.8. The interesting point is that, for small N improvement of ρ is dramatic
as N increases, whereas for larger N and better ρ increasing N does not improve the
sensitivity significantly. Recall that the important quantity in the sensitivity is 1

1−ρ2

which drops rapidly at the first few N ’s. In fact for the experimental data it drops
from 104 at N = 2 to 8.6 at N = 10. In this case the NOJD of only ten 20 × 20
matrices is well-conditioned or safe. Of course, use of more matrices improves the
answer via averaging out the noise.

The preceding discussion concerned the behavior of |ρ| in terms of N and n.
Unfortunately, a similar framework and analysis for μ does not seem obvious. Never-
theless, simulations show that, expectedly, whenever ρ ≈ 1, μ is also close to unity.
Therefore, our conclusion that “for small N and large n, the NOJD problem is ill-
conditioned” stays valid when J3 is used, as well.

5. Numerical experiments. In this section we perform some experiments to
examine the derived results. The first example is just a toy example and the second
one is more realistic in the context of blind source separation (BSS).

5.1. Example 1. We investigate the effect of ρ, N , and the condition number of
A, cond(A), on the sensitivity of NOJD for matrices generated as in (29). We generate
{Λi}Ni=1 with elements that are i.i.d. exponential random variables with mean 1. We
choose n = 10. We also generate An×n randomly. Note that with probability one the
joint diagonalizer for {Ci}Ni=1 is unique. The noise matrices are with standard normal
elements.
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Fig. 3. A typical behavior of |ρ| in terms of N for fixed n. Here n = 20 and the λik’s are
generated from a uniform distribution on [0, 1]. The dashed curve shows the experimental ρ. Each

point is an average over 1000 runs. The solid curve shows the curve ρ̃ = 1 − 0.20( 1
n

)
5.59
N (with

n = 20), which is fitted to the data.

We consider the quality of joint diagonalization in terms of noise level t, ρ, and
the condition number of A. We only consider J1 and J2 based methods. We use the
QRJ2D algorithm,8 introduced in [3], to find B and measure the error by

(55) Index(P ) =

n∑
i=1

⎛
⎝ n∑

j=1

|pij |
maxk |pik|

− 1

⎞
⎠+

n∑
j=1

(
n∑

i=1

|pij |
maxk |pkj |

− 1

)

with P = BA. Index(BA) ≥ 0 and the equality happens only when BA = ΠD (and
hence B = ΠDA−1) for some Π and D. The smaller the index is, the better joint
diagonalization is, in the sense that B is closer to A−1. We try different values of
N (and hence ρ). We also investigate the effect of cond(A), by keeping the Λi’s the
same, and increasing cond(A) while ‖A‖F is constant. Table 5.1 gives the results.
The left subtable shows the index for different values of N (hence ρ) for two different
noise levels t = 0 and t = 0.01. By increasing the number of matrices and hence
improving the modulus of uniqueness, the sensitivity improves. Note that for N = 2,
sensitivity is so high that the QRJ2D algorithm does not give a good answer even at
zero noise. The right subtable also shows the sensitivity degradation that happens
because of increasing cond(A). In this experiment ‖A‖F = 1, N = 100, t = 0, and
0.0001. Sensitivity increases as conditioning of A degrades. Although the actual error
values depend on the specific algorithm used, the trend of the error values as the
parameters change gives an insight as to what factors affect the sensitivity.

5.2. Example 2: Separation of nonstationary sources. Now we consider a
more realistic situation, which is the separation of nonstationary sources using NOJD

8The MATLAB code for this algorithm is available online at http://www.isr.umd.edu/Labs
/ISL/ICA2006/.
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Table 5.1

Left: Sensitivity of Index(BA) with respect to noise level t as N , and, hence ρ changes in
Example 1. cond(A) = 25.11. Right: Sensitivity of Index(BA) with respect to noise level t as
cond(A) increases and ‖A‖F = 1 (ρ = .68).

Index(BA) t = 0 t = 0.01
N = 2, ρ = 0.9999 3.9 17.0
N = 4, ρ = 0.9959 0.00 3.46
N = 10, ρ = 0.9662 0.00 1.46
N = 100, ρ = 0.6903 0.00 0.29
N = 200, ρ = 0.60 0.00 0.19

Index(BA) t=0 t=0.0001
(N = 100, ρ = .68)
cond(A) = 1 0.00 0.01
cond(A) = 2 0.00 0.01
cond(A) = 10 0.00 0.12
cond(A) = 50 0.00 3.02
cond(A) = 100 0.00 28.51

of correlation matrices. This example also allows us to compare NOJD based on J1

and J3. The idea of using nonstationarity to separate sources has been described in
[21]. Consider model (1) where the source vector is a Gaussian vector of independent
components. Also, assume that the sources are nonstationary with varying variances.
Rxx(ti) the correlation matrix of the mixture at time ti is

(56) Rxx(ti) = AΛs(ti)A
T ,

where Λs(ti) is the (diagonal) correlation matrix of the source at time ti. Suppose
that we gather the correlation matrices at times t1, ..., tN , and form the set {R(ti)}Ni=1.
If Λs(ti) changes enough such that the modulus of uniqueness for this set is smaller
than one, then NOJD of this set yields an estimation for A−1; and hence, it can result
in the separation of the mixture.

We have n = 10 sources. First we generate a random matrix An×n. The condi-
tion number for this matrix is 75.11. Then we generate the sources as follows. We
assume that the sources are stationary on short periods of T = 100 samples, and that
they change their variances randomly at the end of each period. We consider N = 20
periods. During the ith stationary period, the jth source has Gaussian distribution
with zero mean and a random variance λij . We draw each random standard deviation√
λij from a uniform distribution on [0, 1]. Also, during the stationary periods each

source generates independent samples. The sources are mixed through A. In each
stationary period, we use the observed 100 samples of the mixture to estimate the
correlation matrix for the mixture in that period. After the first stationary period, at
the end of each stationary period, we perform an NOJD of the estimated correlation
matrices gathered up to that time, in order to estimate A−1. Also, as time passes, we
compute ρ and μ for the set of true correlation matrices based on λij ’s. We use three
different methods for NOJD of the estimated correlation matrices: (i) Pham’s algo-
rithm [20] which uses J3 and requires positive definite matrices, (ii) QRJ2D algorithm,
which is based on J2, and (iii) FFDIAG [29] which is based on J1. As we mentioned
before, J1 and J2 based NOJD have similar sensitivity properties. We use QRJ2D
and FFDIAG, since we want to have more evidence for comparing J1-based-NOJD
and J3-based-NOJD. The output of each of these algorithms is an unmixing matrix B.
In order to measure the performance we use two measures. One is Index(BA), which
we introduced before. The other one is the mean-squared interference to signal ratio
(ISR), which measures how much other sources are present at each restored source.
Note that from (30) for the recovered source vector �y we have

(57) �y = B(t) �x = B(t) �s ≈ �s + tΔ�s.

Here again, we have ignored the possible scaling and permutation ambiguity in the
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Fig. 4. This figure shows the performance of source separation for nonstationary sources based
on NOJD of correlation matrices at different times. As time passes, more correlation matrices are
used. Three different methods for NOJD are employed: Pham’a algorithm, which is based on J3,
QRJ2D algorithm, which uses J2, and FFDIAG, which uses J1. Top: Index(BA) in terms of the
number of correlation matrices used. Middle: ISR in terms of the number of correlation matrices
used. Bottom: 1

1−ρ2 and 1
μ−1

in terms of the number of correlation matrices used. The jump seen

at i = 20 in the graphs for J3-based-NOJD is because in the last period some of the sources become
extremely weak and the correlation matrix for that period becomes almost singular.

restored vector. In practice, of course, we compute Δ from P = BA, after reordering
and normalizing the rows of P . As the above equation suggests, ‖Δ‖F also measures
the mean-squared ISR,9 i.e., how much interference from other sources is present in
each recovered source. We use

(58) ISR = 10 log
‖Δ‖2

F

n

as a measure of the interference. Note that in this example we have no noise and
the source of error is the estimation error due to a finite number of data samples.
Another point that we want to examine is the sensitivity of NOJD based on J3, in
the case when one of the matrices becomes almost singular. For that purpose, in the
last (i = 20) interval we set the standard deviation of six of the sources to 10−10.

Figure 4 shows the results of the experiment. The top graph shows the Index(BA)
in terms of i (which is the number of correlation matrices used) for different methods.
The middle graph gives the ISR in terms of i. Note that the ISR measures for QRJ2D
and FFDIAG are very close; however, the index measure for these two methods differ.
The bottom graph shows 1

1−ρ2 and 1
μ−1 in terms of i for the correlation matrices

9The author is thankful to one of the anonymous reviewers for a reminder of this observation.
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involved. As explained before, these two numbers, in fact, can be considered as
condition numbers for NOJD based on J1 and J3, respectively (we have omitted the
effect of A, i.e., cond(A)2, which is common in both condition numbers; see the last
paragraphs of sections 4.1 and 4.3). For i = 2, 3 the numbers are very high for both
of the cases. One can see that after the first few i, the condition numbers do not
improve much. Note that the condition number for the J1-based-NOJD is higher
than that of the J3-based-NOJD; and at the same time the J3-based-NOJD yields
better separation except for i = 2 and i = 20. From our theoretical results this is
certainly what we expect. However, we cannot relate these two facts immediately,
since the actual numbers depend on many factors. Note that NOJD for i = 2, 3 is
not so effective, since the ISR measure is really poor (around or above −7dB). As a
comparison, the best ISR that Pham’s method achieves is −32dB, and the best one
that QRJ2D or FFDIAG achieve is about −23dB. The jumps at i = 20 in Index(BA)
and in ISR for Pham’s method are due to the fact that the last correlation matrix is
almost nonsingular. As we can see, the NOJD based on J1 gives better separation
in this case. Recall that J1 does not require nonsingular matrices, and the condition
number we assigned for J3-based-NOJD was based on the assumption that ‖Λ−1

i ‖2’s
are not too large. At i = 20 this condition is violated and that is why despite the fact
that 1

μ−1 < 1
1−ρ2 , the J1-based-NOJD performs better. For the curious reader, we

mention that despite some evidence in this example, for a given {Λi}Ni=1 the conjecture
that 1

μkl−1 ≤ 1
1−ρ2

kl
or 1

μ−1 ≤ 1
1−ρ2 is not true. However, note that for 1

μ−1 ≤ 1
1−ρ2 to

hold it is sufficient to have μ ≥ 2, which can be achieved since the range for μ is the
long half-line [1,+∞). This may explain why in most simulations and in this example

1
μ−1 < 1

1−ρ2 .

6. Conclusions. We introduced the NOJD problem and the related EJD prob-
lem. We derived the uniqueness conditions for the EJD problem. We gave a joint
diagonalization based formulation of ICA. Factors that affect the sensitivity of the
NOJD problem were investigated. Modulus of uniqueness captures the uniqueness
of the exact joint diagonalization problem and it affects the sensitivity of the NOJD
problem that arises from adding noise to clean matrices. Also we showed that if the
sought joint diagonalizer is ill-conditioned, then sensitivity will be high. We tried to
quantitatively show how dimension of the matrices and the number of matrices can
affect the modulus of uniqueness. In particular, we showed that the NOJD problem
can be very ill-conditioned if the number of matrices is small and they are fairly
large. Sensitivity of the NOJD problem depends on the cost function used; and in
one example we gave a comparison of the behaviors of two different cost functions for
NOJD.
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LOWER-RANK TENSOR APPROXIMATION AND MULTIWAY
FILTERING∗

DAMIEN MUTI† , SALAH BOURENNANE† , AND JULIEN MAROT†

Abstract. This paper presents some recent filtering methods based on the lower-rank tensor
approximation approach for denoising tensor signals. In this approach, multicomponent data are
represented by tensors, that is, multiway arrays, and the presented tensor filtering methods rely on
multilinear algebra. First, the classical channel-by-channel SVD-based filtering method is overviewed.
Then, an extension of the classical matrix filtering method is presented. It is based on the lower rank-
(K1, . . . ,KN ) truncation of the higher order SVD which performs a multimode principal component
analysis (PCA) and is implicitly developed for an additive white Gaussian noise. Two tensor filtering
methods recently developed by the authors are also overviewed. The first method consists of an
improvement of the multimode PCA-based tensor filtering in the case of an additive correlated
Gaussian noise. This improvement is specially done thanks to the fourth order cumulant slice matrix.
The second method consists of an extension of Wiener filtering for data tensors. The performances
and comparative results between all these tensor filtering methods are presented for the cases of noise
reduction in color images, multispectral images, and multicomponent seismic data.

Key words. multilinear algebra, tensor decomposition, multiway arrays, lower-rank approxi-
mation, filtering
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1. Introduction. Tensor data modeling and tensor analysis have been improved
and used in several application fields, such as quantum physics, economy, chemomet-
rics, psychology, and data analysis. Nevertheless, only recent studies focus their
interest on tensor methods in signal processing applications. Tensor formulation in
signal processing has received great attention since the recent development of multi-
component sensors, especially in imagery (color or multispectral images, video, etc.)
and seismic fields (antenna of sensors recording waves with polarization properties).
Indeed, the digital data obtained from these sensors are fundamentally higher order
tensor objects, that is, multiway arrays whose elements are accessed via more than
two indexes. Each index is associated with a dimension of the tensor generally called
“nth-mode” [13, 14, 28, 29].

In recent decades, the classical algebraic processing methods have been specif-
ically developed for vector and matrix representations. They are usually based on
the covariance matrix, the cross-spectral matrix, or, more recently, the higher order
statistics. Their overall aim is classically to determine a subspace associated with the
signal or the parameters to estimate. They mainly rely on three algebraic tools.

(1) The singular value decomposition (SVD) [18], which is used in principal com-
ponent analysis (PCA);

(2) Penrose–Moore matrix inversion [18]; and
(3) The matrix lower rank approximation, which, according to the Eckart–Young

theorem [15], can be achieved thanks to a simple SVD truncation.
These methods have proved to be very efficient in several applications.
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When dealing with multicomponent data represented as tensors, the classical
processing techniques consist in rearranging or splitting the data set into matrices or
vectors in order for the previously quoted classical algebraic processing methods to
be applicable. The original data structure is then built anew, after processing.

In order to keep the data tensor as a whole entity, new signal processing methods
have been proposed [35, 36, 37]. Hence, instead of adapting the data tensor to the
classical matrix-based algebraic techniques (by rearrangement or splitting), these new
methods propose to adapt their processing to the tensor structure of the multicom-
ponent data. This new approach implicitly implies the use of multilinear algebra and
mathematical tools that extend the SVD to tensors.

Two main tensor decomposition methods that generalize the matrix SVD have
been initially developed to achieve a multimode PCA and recently used in tensor
signal processing. They rely on two models, the TUCKER3 model and the PARAFAC
model.

The TUCKER3 model [29, 48] was adopted in higher order SVD (HOSVD)
[2, 13] and in lower rank-(K1, . . . ,KN ) tensor approximation [11, 14, 47]. We de-
note by HOSVD-(K1, . . . ,KN ) the truncation of HOSVD, performed with ranks
(K1, . . . ,KN ), in modes 1, . . . , N , respectively. This model recently has been used
as multimode PCA, in seismics for wave separation based on a subspace method, in
image processing for face recognition and expression analysis [49, 52], and in noise
filtering of color images [36].

The PARAFAC model and the CANDECOMP model were developed in [20] and
[10], respectively. In [30] the link was set between CANDECOMP and PARAFAC
models. The CANDECOMP/PARAFAC model, referred to as the CP model [25],
has recently been applied to the food industry [9], array processing [45], and telecom-
munications [46].

These two decomposition methods differ in the tensor rank definition on which
they are based. The HOSVD-(K1, . . . ,KN ) and the rank-(K1, . . . ,KN ) approxima-
tion rely on the nth-mode rank definition, that is, the rank of the tensor nth-mode
flattening matrix [13, 14]. The rank-(K1, . . . ,KN ) approximation [14] relies on an
optimization algorithm which is initialized by the HOSVD-(K1, . . . ,KN ) [13]. The
rank-(K1, . . . ,KN ) approximation improves the approximation obtained with the
HOSVD-(K1, . . . ,KN ). It relies on the determination of the signal subspace in ev-
ery nth-mode of the data tensor and copes with additive white Gaussian noise. The
rank-(K1, . . . ,KN ) approximation provides the best approximation in the sense of
least Frobenius norm of the difference between estimated and expected tensors. Nev-
ertheless it assumes a noncorrelated Gaussian noise. To face the case of correlated
Gaussian noise, a variant of rank-(K1, . . . ,KN ) approximation, based on fourth or-
der cumulants, was proposed [39]. Indeed, as it is proved in [33], the fourth order
cumulants of a Gaussian variable are null.

A tensor framework was employed by [12] to express the solution to the linear
independent component analysis (ICA) problem which employs fourth order cumu-
lants. The multilinear ICA (N-mode ICA) model [50, 51], which was developed for face
recognition, encodes the fourth order cumulants for each of the nth-mode flattening
matrices of the tensor.

The CP model relies on a canonical decomposition of a tensor into a summation
of rank-one tensors and on the extension of the classical matrix rank. Details on the
tensor ranks and orthogonal tensor decomposition can be found in [22, 27].

When the TUCKER3 model and the PARAFAC model are associated with an
ALS loop, they are known respectively as the TUCKALS3 algorithm [29, 28] and
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the PARAFAC ALS algorithm [30, 20]. Many recent studies have been conducted to
improve the convergence of these algorithms [14, 26, 56, 44].

The goal of this paper is to present an overview of the principal results concerning
this new approach of data tensor filtering. More details on the algorithms presented
in this survey can be found in [35, 36, 38, 39]. These algorithms are analogous to
multilinear ICA but were developed independently for image filtering. The presented
algorithms are based on a signal subspace approach, so they are efficient when the
noise components are uncorrelated, when the signal and the additive noise are uncor-
related, and when some rows or columns of the image are redundant. In this case it
is possible to distinguish between a signal subspace and a noise subspace, as for the
traditional SVD-based filtering and Wiener filtering algorithms. Wiener filtering re-
quires prior knowledge on the expected noisefree signal or image. However, multiway
filtering methods provide the following advantage over traditional filtering methods:
by apprehending a multiway data set as a whole entity, they take into account the
dependence between modes thanks to ALS algorithms. The goal of the paper is also
to present some simulations and comparative results concerning color images and
multicomponent seismic signal filtering.

The paper is organized as follows. Section 2 presents the tensor data and a short
overview of its main properties. Section 3 introduces the tensor formulation of the
classical noise-removal problem as well as some new tensor filtering notations. First,
we explain how the channel-by-channel SVD-based method processes successively each
component of the data tensor. Second, we consider two methods that take into ac-
count the relationships between each component of the considered tensor. These two
methods are based on the nth-mode signal subspace. The first method for signal
tensor estimation is based on multimode PCA achieved by rank-(K1, . . . ,KN ) ap-
proximation. The second method is a new tensor version of Wiener filtering. Section
4 presents some comparative results where the overviewed multiway filtering methods
are applied to noise reduction in color images, denoising of multispectral images, and
denoising of multicomponent seismic waves. Section 5 concludes the paper.

The following notation is used in the rest of the paper. Scalars are denoted by
italic lowercase roman (a); vectors by boldface lowercase roman (a); matrices by bold-
face uppercase roman (A); and tensors by uppercase calligraphic (A). We distinguish
a random vector, like a, from one of its realizations by using a supplementary index,
like ai.

2. Tensor representation and properties. We define a tensor of order N
as a multidimensional array whose entries are accessed via N indexes. A tensor is
denoted by A ∈ R

I1×···×IN , where each element is denoted by ai1···iN , and R is the
real manifold. Each dimension of a tensor is called nth-mode, where n refers to the
nth index. Figure 2.1 shows how a color image can be represented by a third order
tensor A ∈ R

I1×I2×I3 , where I1 is the number of rows, I2 is the number of columns,
and I3 is the number of color channels. In the case of a color image, we have I3 = 3.
Let us define E(n) as the nth-mode vector space of dimension In, associated with
the nth-mode of tensor A. By definition, E(n) is generated by the column vectors
of the nth-mode flattening matrix. The nth-mode flattening matrix An of tensor
A ∈ R

I1×···×IN is defined as a matrix from R
In×Mn , where

(2.1) Mn = In+1In+2 · · · INI1I2 · · · In−1.

For example, when we consider a third order tensor, the definition of the matrix
flattening involves the dimensions I1, I2, I3 in a backward cyclic way [5, 13, 25].
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Fig. 2.1. Lena standard color image and its tensor representation.

Fig. 2.2. 2nd-mode flattening of tensor A: A2.

When dealing with a 1st-mode flattening of dimensionality I1 × (I2I3), we formally
assume that the index i2 varies more slowly than i3. For all n = 1 to 3, An columns
are the In-dimensional vectors obtained from A by varying the index in from 1 to In
and keeping the other indexes fixed. These vectors are called the nth-mode vectors
of tensor A. An illustration of the 2nd-mode flattening of a color image is presented
in Figure 2.2.

In the following, we use the operator ×n as the nth-mode product, which general-
izes the matrix product to tensors. Given A ∈ R

I1×···×IN and a matrix U ∈ R
Jn×In ,

the nth-mode product between tensor A and matrix U leads to the tensor B = A×nU,
which is a tensor of R

I1×···In−1×Jn×In+1×···×IN , whose entries are given by

(2.2) bi1···in−1jnin+1···iN =

In∑
in=1

ai1···in−1inin+1···iNujnin .

The next section presents the recent filtering methods for tensor data.

3. Tensor filtering problem formulation. The tensor data extend the clas-
sical vector data. The measurement of a multidimensional and multiway signal X by
multicomponent sensors with additive noise N results in a data tensor R such that

(3.1) R = X + N .
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R, X , and N are tensors of order N from R
I1×···×IN . Tensors N and X represent noise

and signal parts of the data, respectively. The goal of this study is to estimate the
expected signal X thanks to a multidimensional filtering of the data [35, 36, 38, 39]:

(3.2) X̂ = R×1 H(1) ×2 H(2) ×3 · · · ×N H(N),

From a signal processing point of view, the nth-mode product is a nth-mode filtering
of data tensor R by nth-mode filter H(n). Consequently, for all n = 1 to N , H(n) is
the nth-mode filter applied to the nth-mode of the data tensor R.

In this paper we assume that the noise N is independent from the signal X and
that the nth-mode rank Kn is smaller than the nth-mode dimension In (Kn < In,
for all n = 1 to N). Then it is possible to extend the classical subspace approach to
tensors by assuming that, whatever the nth-mode, the vector space E(n) is the direct

sum of two orthogonal subspaces, namely, E
(n)
1 and E

(n)
2 , which are defined as follows:

• E
(n)
1 is the subspace of dimension Kn, spanned by the Kn singular vectors

associated with the Kn largest singular values of matrix Xn; E
(n)
1 is called

the signal subspace [1, 33, 55, 54].

• E
(n)
2 is the subspace of dimension In −Kn, spanned by the In −Kn singular

vectors associated with the In − Kn smallest singular values of matrix Xn;

E
(n)
2 is called the noise subspace [1, 33, 55, 54].

The dimensions K1,K2, . . . ,KN can be estimated by means of the well-known
Akaike information criterion (AIC) or Minimum description length (MDL) crite-
ria [53], which are entropy-based information criteria. Hence, one way to estimate

signal tensor X from noisy data tensor R is to estimate E
(n)
1 in every nth-mode of R.

The following section presents three tensor filtering methods based on nth-mode signal
subspaces. The first method is an extension of classical matrix filtering algorithms.
It consists of a channel-by-channel SVD-based filtering.

The second filtering method is based on multimode PCA achieved by rank-
(K1, . . . ,KN ) approximation. Two algorithms are presented for this case. The first
algorithm is implicitly developed for an additive white and Gaussian noise assump-
tion, whereas the second algorithm represents an improvement of the first one in the
case of a correlated Gaussian noise. This improvement is achieved thanks to higher
order statistics.

The third method, the multiway Wiener filtering (Wmm-(K1, . . . ,KN )), is an
algorithm that extends the classical two-dimensional Wiener filtering to tensor data.

3.1. Channel-by-channel SVD-based filtering. The classical algebraical
methods operate on two-dimensional data matrices and are based on the SVD [1, 3, 4]
and on the Eckart–Young theorem concerning the best lower rank approximation of
a matrix [15] in the least-squares sense.

In the first method, a preprocessing is applied to the multidimensional and mul-
tiway data. It consists in splitting data tensor R, representing the noisy multicompo-
nent image into two-dimensional “slice matrices” of data, each representing a specific
channel. According to the classical signal subspace methods [8], the left and right
signal subspaces, corresponding to, respectively, the column and the row vectors of
each slice matrix, are simultaneously determined by processing the SVD of the ma-
trix associated with the data of the slice matrix. Let us consider the slice matrix
R(:, :, i3, . . . , ij , . . . , iN ) of data tensor R. Projectors P on the left signal subspace and
Q on the right signal subspace are built from, respectively, the left and the right sin-
gular vectors associated with the K largest singular values of R(:, :, i3, . . . , ij , . . . , iN ).
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The parameter K simultaneously defines the dimensions of the left and right signal
subspaces. Applying the projectors P and Q on the slice R(:, :, i3, . . . , ij , . . . , iN )
amounts to computing its best lower rank-K matrix approximation [15] in the least-
squares sense.

The filtering of each slice matrix of data tensor R separately is called in the
following “channel-by-channel” SVD-based filtering of R. It consists of a first way to
estimate the signal tensor X and can be summarized by the following steps:

1. input: data tensor R, left and right signal subspace dimension K.
for iN = 1 to IN :
for iN−1 = 1 to IN−1:
...
for i4 = 1 to I4:
for i3 = 1 to I3:

(a) calculate matrix R(:, :, i3, . . . , ij , . . . , iN ) SVD:

R(:, :, i3, . . . , ij , . . . , iN ) = U · Σ · VT ,

where Σ is the core matrix regrouping the singular values of the ma-
trix R(:, :, i3, . . . , ij , . . . , iN ), and U = [u1 . . .uI1 ] and V = [v1 . . .vI2 ]
are the matrices containing the left and right singular vectors defined
respectively by ui1 and vi2 .

(b) construct matrices UK = [u1 . . .uK ] and VK = [v1 . . .vK ] containing
the K largest left and right eigenvectors of R(:, :, i3, . . . , ij , . . . , iN );

(c) compute the projector P = UKUT
K on the column signal subspace, and

projector Q = VKVT
K on the row signal subspace.

(d) compute the two-dimensional slice matrices of the estimated expected

signal X̂ :

X̂ (:, :, i3, . . . , ij , . . . , iN ) = PR(:, :, i3, . . . , ij , . . . , iN )Q

2. output: estimated expected signal: X̂ .
Channel-by-channel SVD-based filtering is based on a common efficient method but
exhibits a major drawback: it does not take into account the relationships between
the components of the processed tensor. Moreover, channel-by-channel SVD-based
filtering is appropriate only on some conditions. For example, applying SVD-based
filtering to an image is generally appropriate when the rows or columns of an image
are redundant, that is, linearly dependent. In this case, the rank K of the image is
equal to the number of linearly independent rows or columns. It is only in this case
that it would be safe to throw out eigenvectors from K+1 on. It is only in this special
case that the noise subspace is orthogonal to the signal subspace. Otherwise, the noise
simply increases the variance of the signal subspace and underestimating the signal
subspace dimension would result in throwing out both signal and noise information.
Thus, one would lose spatial resolution.

The next subsection presents a multiway filtering method that processes jointly,
and not successively, each component of the data tensor.

3.2. Tensor filtering based on multimode PCA.

3.2.1. White decorrelated Gaussian noise and second-order-statistics-
based method. Assuming that the dimension Kn of the signal subspace is known
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for all n = 1 to N , one way to estimate the expected signal tensor X from the noisy
data tensor R = X +N is to orthogonally project, for every nth-mode, the vectors of

tensor R on the nth-mode signal subspace E
(n)
1 for all n = 1 to N . This statement is

equivalent to replacing in (3.2) the filters H(n) by the projectors P(n) on the nth-mode
signal subspace:

(3.3) X̂ = R×1 P(1) ×2 · · · ×N P(N).

In this last formulation, projectors P(n) are estimated thanks to a multimode
PCA applied to data tensor R. This multimode PCA-based filtering generalizes the
classical matrix filtering methods [16, 17, 21, 23, 24, 32] and implicitly supposes that
the additive noise is white and Gaussian.

In the vector or matrix formulation, the definition of the projector on the signal
subspace is based on the eigenvectors associated with the largest eigenvalues of the
covariance matrix of the set of observation vectors. Hence, the determination of the
signal subspace amounts to determine the best approximation (in the least-squares
sense) of the observation matrix or the covariance matrix.

As an extension to the vector and matrix cases, in the tensor formulation, the
projectors on the nth-mode vector spaces are determined by computing the rank-
(K1, . . . ,KN ) approximation of R in the least-squares sense. From a mathematical
point of view, the rank-(K1, . . . ,KN ) approximation of R is represented by tensor
RK1,...,KN which minimizes the quadratic tensor Frobenius norm ‖R − B‖2 subject
to the condition that B ∈ R

I1×...×IN is a rank-(K1, . . . ,KN ) tensor. The description
of the TUCKALS3 algorithm used in rank-(K1, . . . ,KN ) approximation is provided
in the following.

Rank-(K1, . . . ,KN) approximation - TUCKALS3 algorithm.
1. Input: data tensor R, and dimensions K1, . . . ,KN of all nth-mode signal

subspaces.

2. Initialization k = 0: For n = 1 to N , calculate the projectors P
(n)
0 given by

HOSVD-(K1, . . . ,KN ):
(a) nth-mode flatten R into matrix Rn;
(b) Compute the SVD of Rn;

(c) Compute matrix U
(n)
0 formed by the Kn eigenvectors associated with

the Kn largest singular values of Rn. U
(n)
0 is the initial matrix of the

nth-mode signal subspace orthogonal basis vectors;

(d) Form the initial orthogonal projector P
(n)
0 = U

(n)
0 U

(n)T

0 on the nth-
mode signal subspace;

(e) Compute the HOSVD-(K1, . . . ,KN ) of tensor R given by

B0 = R×1 P
(1)
0 ×2 · · · ×N P

(N)
0 ;

3. ALS loop:
Repeat until convergence, that is, for example, while ‖Bk+1 − Bk‖2

> ε, ε > 0
being a prior fixed threshold,
(a) For n = 1 to N :

i. Form B(n),k:
B(n),k = R×1P

(1)
k+1×2 · · ·×n−1P

(n−1)
k+1 ×n+1P

(n+1)
k ×n+2 · · ·×NP

(N)
k ;

ii. nth-mode flatten tensor B(n),k into matrix B
(n),k
n ;

iii. Compute matrix C(n),k = B
(n),k
n RT

n ;

iv. Compute matrix U
(n)
k+1 composed of the Kn eigenvectors associated
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with the Kn largest eigenvalues of C(n),k. U
(n)
k is the matrix of

the nth-mode signal subspace orthogonal basis vectors at the kth

iteration;

v. Compute P
(n)
k+1 = U

(n)
k+1U

(n)T

k+1 ;

(b) Compute Bk+1 = R×1 P
(1)
k+1 ×2 · · · ×N P

(N)
k+1;

(c) Increment k.

4. Output: the estimated signal tensor is obtained through X̂ = R×1P
(1)
kstop

×2

· · ·×N P
(N)
kstop

. X̂ is the rank-(K1, . . . ,KN ) approximation of R, where kstop is
the index of the last iteration after the convergence of TUCKALS3 algorithm.

In this algorithm, the second order statistics come from the SVD of matrix Rn at step
2(b), which is equivalent, up to 1

Mn
multiplicative factor, to the estimation of tensor

R nth-mode vectors [39]. The definition of Mn is given in (2.1). In the same way,
at step 3(a)iii, matrix C(n),k is, up to 1

Mn
multiplicative factor, the estimation of the

covariance matrix between tensor R and tensor B(n),k nth-mode vectors. According
to step 3(a)ii, B(n),k represents data tensor R filtered in every mth-mode but the

nth-mode, by projection-filters P
(m)
l , with m �= n, l = k if m > n and l = k + 1 if

m < n. TUCKALS3 algorithm has recently been used to process a multimode PCA
in order to perform white noise removal in color images [36].

A good approximation of the rank-(K1, . . . ,KN ) approximation can simply be
achieved by computing the HOSVD-(K1, . . . ,KN ) of tensor R [14, 34]. Indeed, the
HOSVD-(K1, . . . ,KN ) of R consists of the initialization step of TUCKALS3 algorithm
and hence can be considered as a suboptimal solution for the rank-(K1, . . . ,KN )
approximation of tensor R [14]. This HOSVD-based technique has recently been
used in [39] for denoising and source separation of multicomponent seismic waves.

3.2.2. Correlated Gaussian noise and higher-order-statistics-based
method. In practice, the condition of noise whiteness is not always fulfilled. Hence,
in the case of an additive correlated Gaussian noise, the TUCKALS3 algorithm is the-
oretically incapable of providing a good estimation of the nth-mode signal subspaces
since it is based on second order moments. A classical means to remove the Gaussian
(noise) components is to use the higher order statistics, and especially the higher
order cumulants. The tensor framework has been used to compute the fourth order
cumulants as a means of solving the ICA problem [12]. Vasilescu and Terzopoulos
introduced a multilinear ICA (N-mode ICA) for face recognition, which encodes the
higher order statistics associated with each mode of the tensor [50, 51]. The related
methods are based on the well-known cumulant property stating that the higher order
cumulants of a Gaussian variable are null [31, 33].

As a consequence, in the case of an additive correlated Gaussian noise, a recent
study [39] has proposed to improve the multimode PCA-based filtering by incorporat-
ing into the TUCKALS3 algorithm the fourth order cumulants instead of the second
order moments.

From a practical point of view, second order matrices C(n),0 and C(n),k at steps
2(b) and 3(a)iii of the TUCKALS3 algorithm are replaced with the corresponding
fourth order cumulants. In the following, we present only the details of the procedure
for matrix C(n),k. Obtaining the details concerning C(n),0 is straightforward.

We assume that {r(n)
p , p = 1, . . . ,Mn} and {b(n),k

p , p = 1, . . . ,Mn} are the Mn

realizations of two random vectors r(n) and b(n),k. In practice, we take as the realiza-
tions of these two random vectors the nth-mode vectors of data tensors R and B(n),k.
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Matrix C(n),k reads

(3.4) C(n),k =

Mn∑
p=1

b(n),k
p r(n)T

p .

The fourth order cumulants associated with vectors r(n) and b(n),k are denoted by

(3.5) C(n),k = Cum(b(n),k,b(n),kT

, r(n), r(n)T ),

where Cum(·) denotes the cumulant operator. C(n),k is a fourth order super-symmetric
tensor from R

In×In×In×In , whose generic term for indexes (i1, i2, j1, j2), for centered
variables, is given by [19, 31]

(3.6)
(C(n),k)i1,i2,j1,j2 = E[b

(n),k
i1

b
(n),k
i2

r
(n)
j1

r
(n)
j2

]

−E[b
(n),k
i1

r
(n)
j1

]E[b
(n),k
i2

r
(n)
j2

],−E[b
(n),k
i1

r
(n)
j2

]E[b
(n),k
i2

r
(n)
j1

]

where b
(n),k
i and r

(n)
j are the ith and jth components of random vectors b(n),k and

r(n), and E[·] is the expectation operator. The practical estimation of (C(n),k)i1,i2,j1,j2
is given by

(3.7)

(C(n),k)i1,i2,j1,j2 =
1

Mn

(
Mn∑
p=1

(
b
(n),k
i1p

b
(n),k
i2p

r
(n)
j1p

r
(n)
j2p

))

− 1

Mn
2

(
Mn∑
p=1

(
b
(n),k
i1p

r
(n)
j1p

))(
Mn∑
p=1

(
b
(n),k
i2p

r
(n)
j2p

))

− 1

Mn
2

(
Mn∑
p=1

(
b
(n),k
i1p

r
(n)
j2p

))(
Mn∑
p=1

(
b
(n),k
i2p

r
(n)
j1p

))
.

Here, b
(n),k
ip and r

(n)
ip are the elements at position (i, j) of tensors B(n),k and R nth-

mode flattening matrices B
(n),k
n and Rn.

In the classical TUCKALS3 algorithm, the Kn nth-mode signal subspace basis
vectors, given by matrix U(n),k, are estimated by computing, at step 3a, the eigen-
vectors associated with the Kn largest eigenvalues of matrix C(n),k. This amounts
to computing the best lower rank-Kn approximation of C(n),k. In [41] fourth order
cumulants are used instead of the covariance matrix because of their ability to remove
Gaussian noise. Indeed, the fourth order cumulants of Gaussian variables are null.
Therefore, when dealing with an additive correlated Gaussian noise, we also use fourth
order cumulants [39].

The main drawback of fourth order cumulants is the high computational load to
build every fourth order cumulant tensor associated with the nth-mode of the data
tensor. This computational load depends on the size of the data tensor R, that is,
the values of In, for all n = 1 to N . One way to reduce the computational load has
been proposed in [39] and consists in using the fourth order cumulant slice matrix.
The cumulant slice matrix has initially been introduced in array processing for source
localization or directions-of-arrival (DOA) estimation [7, 55, 54]. In [19, 55, 54], it
is proved that the signal subspace spanned by the eigenvectors associated with the
largest eigenvalues of a cumulant slice matrix is the same as signal subspace obtained
from the whole cumulant tensor defined in (3.5) [55, 54]. Therefore, we use only the
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eigenvectors of one cumulant slice matrix in our algorithm (see step 2(a)iii because the
other cumulant slice matrices provide redundant information. The use of the fourth
order cumulant slice matrix provides a much faster algorithm [54]. In our application,

the fourth order cumulant slice matrix C
(n),k
q can be defined, from (3.6), by fixing the

qth component of vector b(n),k as follows:

(3.8)
(
C(n),k

q

)
ij

= E
[
(b(n),k

q )2r
(n)
i r

(n)
j

]
− 2E

[
b(n),k
q r

(n)
i

]
E
[
b(n),k
q r

(n)
j

]
.

The practical estimation of (C
(n),k
q )ij can be given by

(3.9)(
C(n),k

q

)
ij

=
1

Mn

(
Mn∑
p=1

(
b(n),k
qp

)2

r
(n)
ip r

(n)
jp

)
− 2

M2
n

(
Mn∑
p=1

b(n),k
qp r

(n)
ip

)(
Mn∑
p=1

b(n),k
qp r

(n)
jp

)
,

where b
(n),k
ij and r

(n)
ij are, respectively, the elements at position (i, j) in the nth-mode

flattening matrices B
(n),k
n and Rn of tensors B(n),k and R.

As a consequence, in the case of an additive correlated Gaussian noise, the Kn

nth-mode signal subspace basis vectors can now be estimated by computing matrix

C
(n),k
q lower rank-Kn approximation. Then, the fourth order cumulant slice matrix-

based multimode PCA-based filtering can be summarized as follows:
1. Initialization k = 0:

For all n = 1 to N , P
(n)
0 = U

(n)
0 U

(n)T

0 . U
(n)
0 is the matrix of the Kn eigen-

vectors associated with the Kn largest eigenvalues of fourth order cumulant

slice matrix C
(n),0
q of tensor R nth-mode vectors.

2. ALS loop:
The steps (b) and (c) of the ALS loop are the same as in the algorithm “rank-
(K1, . . . ,KN) approximation - TUCKALS3 algorithm” described pre-
viously, and step (a) is replaced by
(a) For n = 1 to N :

i. B(n),k = R×1P
(1)
k+1×2 · · ·×n−1P

(n−1)
k+1 ×n+1P

(n+1)
k ×n+2 · · ·×NP

(N)
k ;

ii. Compute cumulant slice matrix C
(n),k
q associated with the fourth

order cumulants of tensors R and B(n),k nth-mode vectors. Every

element of C
(n),k
q is given in (3.9);

iii. Process matrix C
(n),k
q eigenvalue decomposition (EVD) and put the

Kn eigenvectors associated with the Kn largest eigenvalues into

U
(n)
k+1;

iv. Compute projector P
(n)
k+1 = U

(n)
k+1U

(n)T

k+1 ;

3. Output: X̂ = R×1 P
(1)
kstop

×2 · · ·×N P
(N)
kstop

, with kstop being the index of the
last iteration after convergence of the algorithm.

It was experimentally shown in [39] that when the parameter q involved in C
(n),k
q

is chosen properly, multimode PCA filtering based on fourth order cumulants (de-
noted by rank−C(K1, . . . ,KN )) and on fourth order cumulant slice matrix (denoted
by rank−C1(K1, . . . ,KN )) give sensibly the same performances in regard to noise
reduction in color images and multicomponent seismic waves.

3.3. Multiway Wiener filtering. Let Rn, Xn, and Nn be the nth-mode flat-
tening matrices of tensors R, X , and N , respectively.

In the previous subsection, the estimation of signal tensor X has been performed
by projecting noisy data tensor R on each nth-mode signal subspace. The nth-mode
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projectors have been estimated thanks to the use of multimode PCA achieved by
rank-(K1, . . . ,KN ) approximation. Despite the good results given by this method,
it is possible to improve the tensor filtering quality by determining nth-mode filters
H(n), n = 1 to N , in (3.2), which optimize an estimation criterion. The most classical
method is to minimize the mean squared error between the expected signal tensor X
and the estimated signal tensor X̂ given in (3.2):

(3.10) e(H(1), . . . ,H(N)) = E[‖X −R×1 H(1) ×2 · · · ×N H(N)‖2].

Due to the criterion which is minimized, filters H(n), n = 1 to N , can be called
“nth-mode Wiener filters” [38].

According to the calculations presented in Appendix A, especially from (A.1) to
(A.15), the minimization of (3.10) with respect to filter H(n), for fixed H(m), m �= n,
leads to the following expression of nth-mode Wiener filter:

(3.11) H(n) = γ
(n)
XRΓ

(n)
RR

−1
,

where

(3.12) γ
(n)
XR = E

[
XnT

(n)RT
n

]

is the T(n)-weighted covariance matrix between the random column vectors of signal
Xn and data Rn, with

(3.13) T(n) = H(1) ⊗ · · · ⊗ H(n−1) ⊗ H(n+1) ⊗ · · · ⊗ H(N),

where ⊗ stands for Kronecker product, and

(3.14) Γ
(n)
RR = E

[
RnQ

(n)RT
n

]

is the Q(n)-weighted covariance matrix of the data Rn, with

(3.15) Q(n) = T(n)TT(n).

In order to obtain H(n) through (3.11), we suppose that the filters {H(m),m =
1 to N,m �= n} are known. Data tensor R is available, but signal tensor X is un-

known. So, only the term Γ
(n)
RR can be derived, and not the term γ

(n)
XR. Hence, some

more assumptions on X have to be made in order to overcome the indetermination

over γ
(n)
XR [35, 38]. In the one-dimensional case, a classical assumption is to consider

that a signal vector is a weighted combination of the signal subspace basis vectors.
In extension to the tensor case, [35, 38] have proposed considering that the nth-mode
flattening matrix Xn can be expressed as a weighted combination of Kn vectors from

the nth-mode signal subspace E
(n)
1 :

(3.16) Xn = V(n)
s O(n)

with Xn ∈ R
In×Mn , and V

(n)
s ∈ R

In×Kn being the matrix containing the Kn or-

thonormal basis vectors of nth-mode signal subspace E
(n)
1 . Matrix O(n) ∈ R

Kn×Mn is
a weight matrix and contains the whole information on expected signal tensor X . This
model implies that signal nth-mode flattening matrix Xn is orthogonal to nth-mode
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noise flattening matrix Nn, since signal subspace E
(n)
1 and noise subspace E

(n)
2 are

supposed mutually orthogonal.
Supposing that noise N in (3.1) is white, Gaussian, and independent from signal

X , and introducing the signal model (3.16) in (3.11) leads to a computable expression
of nth-mode Wiener filter H(n) (see Appendix B),

(3.17) H(n) = V(n)
s γ

(n)
OOΛ

(n)−1

Γs V(n)T

s ,

where γ
(n)
OOΛ

(n)−1

Γs is a diagonal weight matrix given by

(3.18) γ
(n)
OOΛ

(n)−1

Γs = diag

[
β1

λΓ
1

, · · · , βKn

λΓ
Kn

]
,

where λΓ
1 , . . . , λ

Γ
Kn

are the Kn largest eigenvalues of Q(n)-weighted covariance matrix

Γ
(n)
RR (see (3.14)). Parameters β1, . . . , βKn depend on λγ

1 , . . . , λ
γ
Kn

, which are the Kn

largest eigenvalues of T(n)-weighted covariance matrix

γ
(n)
RR = E[RnT

(n)RT
n ], according to the following relation:

(3.19) βkn = λγ
kn

− σ
(n)2

Γ ∀ kn = 1, . . . ,Kn.

Superscript γ refers to the T(n)-weighted covariance and subscript Γ to the Q(n)-

weighted covariance. σ
(n)2

Γ is the degenerated eigenvalue of noise T(n)-weighted co-

variance matrix γ
(n)
NN = E

[
NnT

(n)NT
n

]
. Thanks to the additive noise and the signal

independence assumptions, the In−Kn smallest eigenvalues of γ
(n)
RR are equal to σ

(n)2

Γ

and thus can be estimated by the following relation:

(3.20) σ̂
(n)2

Γ =
1

In −Kn

In∑
kn=Kn+1

λγ
kn
.

In order to determine the nth-mode Wiener filters H(n) that minimize the mean
squared error (3.10), the alternating least squares (ALS) algorithm has been proposed
in [35, 38]. It can be summarized in the following steps:

1. Initialization k = 0: R0 = R ⇔ H
(n)
0 = IIn, Identity matrix, ∀ n = 1 . . . N .

2. ALS loop:

Repeat until convergence, that is,
∥∥Rk+1 −Rk

∥∥2
< ε, with ε > 0 prior fixed

threshold,
(a) for n = 1 to N :

i. Form R(n),k: R(n),k = R ×1 H
(1)
k+1 ×2 · · · ×n−1 H

(n−1)
k+1 ×n+1

H
(n+1)
k ×n+2 . . .×N H

(N)
k ;

ii. Determine H
(n)
k+1 = arg min

Z(n)

∥∥X −R(n),k ×n Z(n)
∥∥2

subject to Z(n) ∈ R
In×In thanks to the following procedure:

A. nth-mode flatten R(n),k into R
(n),k
n = Rn(H

(1)
k+1⊗· · ·⊗H

(n−1)
k+1 ⊗

H
(n+1)
k ⊗ · · · ⊗ H

(N)
k )T , and R into Rn;

B. Compute γ
(n)
RR = E[RnR

(n),k
n

T
],

C. Determine λγ
1 , . . . , λ

γ
Kn

, the Kn largest eigenvalues of γ
(n)
RR;
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D. For kn = 1 to In, estimate σ
(n)
Γ

2
thanks to (3.20) and for kn = 1

to Kn, estimate βkn thanks to (3.19);

E. Compute Γ
(n)
RR = E[R

(n),k
n R

(n),k
n

T
];

F. Determine λΓ
1 , . . . , λ

Γ
Kn

, the Kn largest eigenvalues of Γ
(n)
RR;

G. Determine V
(n)
s , the matrix of the Kn eigenvectors associated

with the Kn largest eigenvalues of Γ
(n)
RR;

H. Compute the weight matrix γ
(n)
OOΛ

(n)−1

Γs given in (3.18);

I. Compute H
(n)
k+1, the nth-mode Wiener filter at the (k + 1)th

iteration, using (3.17);

(b) Form Rk+1 = R×1 H
(1)
k+1 ×2 · · · ×N H

(N)
k+1;

(c) Increment k;

3. output: X̂ = R×1H
(1)
kstop

×2 · · ·×N H
(N)
kstop

, with kstop being the last iteration
after convergence of the algorithm.

In subsection 3.2, we presented the adaptation of multimode PCA to the case of
a noncorrelated Gaussian noise, by using higher order statistics. In the same way,
it is possible to use higher order statistics for multiway Wiener filtering. For this,
one should replace step 2(a)iiB by step 2(a)ii of the ALS loop in subsection 3.2, and

replace step 2(a)iiE by the computation of the cumulant slice C
(n),k
q associated with

the fourth order cumulants of matrix R
(n),k
n and matrix (R

(n),k
n )T . Elements of C

(n),k
q

are given in (3.9).

4. Simulation results. In the following simulations, the channel-by-channel
SVD-based filtering defined in subsection 3.1 and the rank-(K1, . . . ,KN ) approximation-
based multiway and multidimensional filtering are applied to the denoising of color
images and multispectral images and to the denoising of seismic signals. Color images,
multispectral images, and seismic signals can be represented by a third order tensor
from R

I1×I2×I3 , where I1, I2, and I3 take different values. In all these applications,
the efficiency of denoising is tested in the presence of an additive Gaussian noise,
either correlated or not.

A multidimensional and multiway white Gaussian noise N which is added to
signal tensor X can be expressed as

(4.1) N = α · G,

where every element of G ∈ R
I1×I2×I3 is an independent realization of a normalized

centered Gaussian law and where α is a coefficient that permits to set the signal-to-
noise ratio (SNR) in noisy data tensor R.

When we process images impaired by correlated Gaussian noise, the noise which
is added is a third order tensor defined by

(4.2) N c = N ×1 W(1) ×2 W(2) ×3 W(3),

where every element of N represents an independent realization of a white Gaussian
noise and W(n) is a weight matrix in the nth-mode, n = 1, 2, 3.

In order to evaluate the performances of the overviewed tensor signal processing
methods, a particular performance criterion is employed as proposed in [38, 39].

4.1. Performance criterion. Following the representation of (3.1), the multi-
way noisy data tensor is expressed as R = X + N , where X is the expected signal
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tensor and N is the additive noise tensor. Let us define the SNR, in dB, in the noisy
data tensor by

(4.3) SNR = 10 log

(
‖X‖2

‖N‖2

)
.

In order to a posteriori verify the quality of the estimated signal tensor, we use
the normalized quadratic error criterion (NQE) defined as follows:

(4.4) NQE(X̂ ) =
‖X̂ − X‖2

‖X‖2
.

The NQE criterion permits a quantitative comparison of the channel-by-channel SVD-
based filtering and the rank-(K1,K2,K3) approximation multiway and multidimen-
sional filtering. Considering this criterion, we expect the rank-(K1,K2,K3) approxi-
mation to give better results than the channel-by-channel SVD-based filtering method.

4.2. Denoising of color images. Denoising of color images has been studied in
several works [6, 40, 43]. Some solutions have been brought from the field of wavelet
processing, exhibiting good results in terms of output SNR. These studies concern
only bidimensional data, whereas the methods that we compare are adapted to the
processing of third order tensors as a whole, and in particular to three-channel im-
ages. We focus on subspace-based methods. We first consider the channel-by-channel
SVD-based filtering, the rank-(K1,K2,K3) approximation and multiway Wiener fil-
tering (Wmm-(K1,K2,K3)), applied to images impaired by an additive white Gaus-
sian noise.

Then we present the results obtained with rank-(K1,K2,K3) based on second
order and higher order statistics, applied to images impaired by an additive corre-
lated Gaussian noise. We compare the performances of the methods applied in this
subsection in terms of denoising efficiency and computational load.

4.2.1. Denoising of a color image impaired by additive Gaussian noise.
Let us consider the “sailboat” standard color image of Figure 4.1(a) represented as a
third order tensor X ∈ R

256×256×3. The ranks of the signal subspace for each mode
are 30 for the 1st-mode, 30 for the 2nd-mode, and 2 for the 3rd-mode. This is fixed
thanks to the following process. For Figure 4.1(a), we took the standard nonnoisy
sailboat image and artificially reduced the ranks of the nonnoisy image, that is, we
set the parameters (K1,K2,K3) to (30, 30, 2), thanks to the truncation of HOSVD.
This ensures that, for each mode, the rank of the signal subspace is lower than the
corresponding dimension. This also permits us to evaluate the performances of the
filtering methods applied, independently from the accuracy of the estimation of the
values of the ranks by MDL or AIC criterion.

Figure 4.1(b) shows the noisy image resulting from the impairment of Figure
4.1(a) and represented as R = X + N . Third-order noise tensor N is defined by
relation (4.1) by choosing α such that, considering previous definition of (4.3), the
SNR in the noisy image of Figure 4.1(b) is 8.1 dB. In these simulations, the value of the
parameter K of channel-by-channel SVD-based filtering, the values of the dimensions
of the row and column signal subspace are supposed to be known and fixed to 30. In
the same way, parameters (K1,K2,K3) of rank-(K1,K2,K3) approximation are fixed
to (30, 30, 2).

The channel-by-channel SVD-based filtering of noisy image R (see Figure 4.1(b))
yields the image of Figure 4.1(c), and rank-(30, 30, 2) approximation of noisy data ten-
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(a) (b)

(c) (d) (e)

Fig. 4.1. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR = 8.1 dB. (c) Channel-by-channel SVD-based filtering of parameter K = 30.
(d) rank-(30, 30, 2) approximation. (e) Wmm-(30, 30, 2) filtering.
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Fig. 4.2. NQE evolution with respect to SNR (dB): channel-by-channel SVD-based filtering of
parameter 30 (-◦-), rank-(30, 30, 2) approximation (-�-), Wmm-(30, 30, 2) filtering (-�-).

sor R yields the image of Figure 4.1(d). The NQE, defined in (4.4), permits a qualita-
tive comparison between channel-by-channel SVD-based filtering and rank-(30, 30, 2)
approximation. Figure 4.2, which presents the evolution of the NQE with respect to
SNR varying from 3 dB to 18 dB, shows the NQE obtained with Wmm-(30, 30, 2) is
lower than the NQE obtained with the filtering with rank-(30, 30, 2) approximation.
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For this simulation, the rank-(K1,K2,K3) approximation gives better results than
channel-by-channel SVD-based filtering according to the NQE criterion. From the
resulting image, presented on Figure 4.1(d), we note that dimension reduction leads
to a loss of spatial resolution. However, the choice of a set of values K1,K2,K3 which
are small enough is the condition for an efficient noise reduction effect.

Therefore, a trade-off should be considered between noise reduction and detail
preservation. This trade-off was discussed in [42]. We were interested in using the
minimum description length (MDL) criterion [53], applied to the left singular values of
the flattening matrices computed over the successive nth-modes. As a rule of thumb,
the MDL criterion overestimates the value of parameters K1, K2, and K3. This
results in the preservation of the details in the processed image, at the expense of an
efficient denoising.

Concerning the qualitative results obtained with this color image, we note that
the intraclass variance of the pixel values of each component (or color mode) of the
resulting image is lower for the image obtained with Wmm-(30, 30, 2) than for those
images obtained with other methods applied in this subsection. This allows, for exam-
ple, appling after denoising a high level classification method with a higher efficiency
than when classification is applied after channel-by-channel SVD-based filtering or
HOSVD-(30, 30, 2).

For the 256×256×3 sailboat image of Figure 4.1, the computational times needed
when Matlab programs are used on a 3 Ghz Pentium 4 processor running Windows are
as follows. HOSVD-(30, 30, 2) lasts 1.61 seconds, the channel-by-channel SVD-based
filtering lasts 1.94 seconds, the rank-(30, 30, 2) approximation run with 25 iterations
lasts 54.1 seconds, and Wmm-(30, 30, 2) run with 25 iterations lasts 40.0 seconds.

The results presented in Figure 4.1 show that Wmm-(K1,K2,K3) allows one to
obtain better results in terms of NQE with a computational load which is lower than
that of the rank-(K1,K2,K3) approximation. In the next two examples we study the
influence of the values of the nth-mode ranks. In the example of Figure 4.3 we set, in
the same way as in the previous example, the ranks of the truncated image to (30, 30, 3)
(see Figure 4.3(a)). Note that K3 = I3 = 3. Thus the assumption K3 < I3 is not
fulfilled. We aim at studying the behavior of the proposed tensor filtering algorithms
when the color mode rank is equal to the color mode dimension (K3 = I3). The
truncated image is impaired by a noncorrelated Gaussian noise such that SNR = 8.1
dB (see Figure 4.3(b)). The results obtained show that channel-by-channel Wiener-
based filtering of parameter K = 30 (see Figure 4.3(c)) is outperformed by rank-
(30, 30, 3) approximation (see Figure 4.3(d)) and Wmm-(30, 30, 3) (see Figure 4.3(e)).
Indeed, the proposed tensor filtering algorithms rely on an ALS loop which permits us
to take into account the relationships between the filters of each mode when multiway
filters are used. In particular, concerning multiway Wiener filtering, it can be adapted

to the case where it is applied with K3 = I3. For this, the weight matrix γ
(3)
OOΛ

(3)−1

Γs

of step 2aiiH of the multiway Wiener filtering algorithm presented in subsection 3.3
is set to identity. That is, H(3) is replaced by P(3). We adapted the algorithm in
order to take into account the channel mode information for the computation of the
two spatial filters thanks to the ALS loop.

This proves the interest of multiway filtering even in the case where the rank of
the signal subspace along the third mode is equal to the number of channels.

In the example of Figure 4.4 we study the case where the ranks of the signal sub-
spaces are underestimated for the spatial modes. Let us consider the “Mondriaan”
standard color image of Figure 4.4 represented as a third order tensor X ∈ R

256×256×3.
We set the ranks of the truncated image to (150, 150, 3). The ranks along the spa-
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(a) (b) (c)

(d) (e)

Fig. 4.3. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR = 8.1 dB. (c) Channel-by-channel Wiener-based filtering of parameter K = 30.
(d) rank-(30, 30, 3) approximation. (e) Wmm-(30, 30, 3) filtering.

(a) (b) (c)

(d) (e)

Fig. 4.4. (a) Nonnoisy image. (b) Image to be processed, impaired by an additive white Gaus-
sian noise, with SNR= 8.0 dB. (c) Channel-by-channel SVD-based filtering of parameter K = 19.
(d) rank-(19, 19, 3) approximation. (e) Wmm-(19, 19, 3) filtering.
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tial modes will be fixed intentionally to a value which is smaller than 150 when
the reviewed methods are applied. Figure 4.4(a) gives the nonnoisy image, Figure
4.4(b) shows the noisy image resulting from the impairment, with SNR= 8.0 dB, of
the image of Figure 4.4(a). Figure 4.4(c) gives the result obtained with channel-by-
channel SVD-based filtering of parameter K = 19. Figure 4.4(d) gives the result
obtained with rank-(19, 19, 3) approximation, and Figure 4.4(e) gives the result ob-
tained with Wmm-(19, 19, 3) filtering. Note that choosing (K1,K2,K3)=(19, 19, 3)
results in throwing out both signal and noise information along the spatial modes,
as the ranks of the noisy image are (150, 150, 3). Underestimating the ranks along
the spatial modes induces some blurry effect in the result images: part of the spatial
resolution is lost. The presented subspace-based algorithms perform well if there is a
high level of redundancy in the column or row space or if the image exhibits many
soft or blurry edges, and the nth-mode ranks are not underestimated.

4.2.2. HOSVD-(K1, K2, K3), rank-(K1, K2, K3) approximation based
on second order and higher order statistics, applied to an image impaired
by an additive correlated Gaussian noise. The purpose here is to compare meth-
ods based on second order statistics with methods based on higher order statistics
when an image is impaired by a correlated Gaussian noise. Figure 4.5 shows the
results obtained with the HOSVD-(K1,K2,K3), and the rank-(K1,K2,K3) approx-
imation based on second order and higher order statistics, used for the denoising
of an image impaired by an additive correlated Gaussian noise. We consider the
nonnoisy image of Figure 4.5(a) whose ranks are fixed to (30, 30, 2): we artificially
reduced the ranks of the nonnoisy image, that is, we set the parameters (K1,K2,K3)
to (30,30,2), thanks to the truncation of HOSVD. This image is impaired by a corre-
lated Gaussian noise (see (4.2)). Figure 4.5(b) shows the noisy image. The result of
HOSVD-(K1,K2,K3) is given in Figure 4.5(c), and the result of rank-(K1,K2,K3)
approximation based on second order statistics is given in Figure 4.5(d), the result of

(a) (b)

(c) (d) (e)

Fig. 4.5. (a) Initial nonnoisy image. (b) Initial image with an additive correlated Gaussian
noise, SNR = 2.48 dB. (c) HOSVD-(30, 30, 2). (d) rank-C(30, 30, 2) approximation. (e) rank-
C1(30, 30, 2) approximation.
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Fig. 4.6. Evolution of the NQE with respect to the SNR(dB) for each tensor filtering method:
◦: HOSVD-(30, 30, 2); �: rank-C(30, 30, 2); �: rank-C1(30, 30, 2).

rank−C(K1,K2,K3) approximation based on higher order statistics is given in Fig-
ure 4.5(e). The evolution of the NQE with respect to the SNR for HOSVD-(30, 30, 2),
rank-C(30, 30, 2) approximation based on fourth order cumulants, rank-C1(30, 30, 2)
approximation based on one slice of the fourth order cumulants is represented in
Figure 4.6.

The main conclusion from Figure 4.5 is that the methods based on fourth or-
der cumulants give similar visual results and better results than HOSVD-(30, 30, 2).
Whatever the SNR, the methods based on fourth order cumulants give a lower NQE
value than the methods based on second order statistics. The method based on fourth
order cumulant slice matrix gives sensibly the same NQE values as the method based
on fourth order cumulants.

For the 256×256×3 baboon image of Figure 4.5, the computational times needed
in the same conditions of processor and software as in previous subsection are the
following: HOSVD-(30, 30, 2) lasts 1.61 seconds, rank-C(30, 30, 2) based filtering lasts
2h. 11 min. 40 seconds, rank-C1(30, 30, 2) lasts 3 min. 50 seconds.

4.3. Denoising of multispectral images. The results obtained from the pro-
cessing of a multispectral image composed of 72 rows, 160 columns and 100 spectral
channels representing a truck are considered. This set of spectral images can be rep-
resented as a tensor X ∈ R

72×160×100. Images shown on Figures 4.7(a) to 4.7(e)
represent channels 30 to 34 of the multispectral image. To evaluate the performances
of the reviewed methods, some signal-independent white Gaussian noise N is added
to X and results in noisy tensor R = X +N . Channels 30 to 34 of noisy multispectral
image represented as R are shown in Figures 4.7(f) to 4.7(j), and correspond to a
noise impairment level SNR = −1 dB. Figures 4.7(k) to 4.7(o) represent channels
30 to 34 of the multispectral image obtained by applying channel-by-channel-based
SVD-filtering to noisy image R. Finally, Figures 4.7(p) to 4.7(t) represent channels
30 to 34 of the multispectral image obtained after applying rank-(30,30,30) approxi-
mation to noisy image R. This last simulation clearly shows that the rank-(30,30,30)
approximation-based filtering gives better results than channel-by-channel SVD-based
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 4.7. Channels 30 to 34 of the processed multispectral images are presented: (a)–(e)
Nonnoisy multispectral image. (f)–(j) Impaired multispectral image. (k)–(o) Results obtained with
channel-by-channel SVD filtering. (p)–(t) Results obtained with rank-(30, 30, 30) approximation.

Fig. 4.8. NQE evolution with respect to SNR (from -1 to 15 dB): channel-by-channel SVD-based
filtering of parameter 30 (-◦-), and rank-(30, 30, 30) approximation (-�-).

filtering in regard to denoising. Moreover, the evolution of the NQE with respect to
the SNR varying from −1 dB to 15 dB, represented in Figure 4.8, shows that the NQE
obtained with Wmm-(K1,K2,K3) is lower than the NQE obtained with a previously
existing method.
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For this simulation the estimation quality, respect to the NQE criterion, is bet-
ter for rank-(K1,K2,K3) approximation, compared to channel-by-channel SVD-based
filtering. Superiority of rank-(K1,K2,K3) approximation compared to channel-by-
channel SVD-based filtering is confirmed.

According to the simulations performed on a color image and on a multispectral
image, it is possible to conclude that the more channels the image is composed of,
the better the denoising. This can be explained by a better estimation of projectors
on 1st-mode and 2nd-mode signal subspaces in the case of the multispectral image.
Indeed, the number of spectral channels in a multispectral image is much larger than
in a color image. Equivalently, I3 is much larger than 3, so M1 and M2 are much larger
than for a color image, and the estimation of matrices C(1),k and C(2),k presented in
(3.4) are computed with more realization vectors.

4.4. Statistical performances. The goal of the following simulation is to test
the robustness to noise of channel-by-channel SVD-based filtering of parameter K
and of rank-(K1,K2,K3) approximation, with respect to the NQE criterion. We
process the Sailboat standard color image, impaired by an additive Gaussian noise,
with SNR values varying from −0.7 dB to 15 dB; 100 trials are performed. For
each trial one realization of additive Gaussian noise is simulated and added to the
nonnoisy image. The mean and standard deviation are computed over the NQE
values obtained each time the channel-by-channel SVD-based filtering and the rank-
(K1,K2,K3) approximation are run. The evolution of the mean NQE

(4.5) mNQE =
1

100

100∑
i=1

NQEi,

where index i refers to the ith noise realization, is represented in Figure 4.9(a) with
respect to SNR. The evolution of the standard deviation of the NQE,

(4.6) stdNQE =

√√√√ 1

100

100∑
i=1

(NQEi −mNQE)2,

is represented in Figure 4.9(b), with respect to the SNR. Figure 4.9 shows that the
mean and standard deviation values of the NQE obtained with rank-(K1,K2,K3) ap-
proximation and computed over 100 noise realizations are both lower than the mean
and the standard deviation values obtained with channel-by-channel SVD-based fil-
tering. Thus, for these simulations, the rank-(K1,K2,K3) approximation gives better
results than channel-by-channel SVD-based filtering in regard to the robustness of
tensor estimation and considering the NQE criterion.

4.5. Filtering of a multicomponent seismic type signal.

4.5.1. Filtering of a multicomponent seismic type signal impaired by an
additive white Gaussian noise. In this simulation, a multicomponent seismic wave
is received on a linear antenna composed of 10 sensors. The direction of propagation of
the wave is assumed to be contained in a plane which is orthogonal to the antenna. The
three components of the wave, represented as signal tensor X , are called Component
1, Component 2, and Component 3 and are represented in Figures 4.10(a)–(c). In each
seismic slice, the x-axis corresponds to the time sampling (200 or 100 time samples)
and the y-axis corresponds to the spatial sensors (10 sensors). Each consecutive
component presents a π

2 radian phase shift. The three components of noisy data tensor
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(a)

(b)

Fig. 4.9. (◦): results obtained with channel-by-channel SVD-based filtering of parameter 30;
(�): results obtained with rank-(30, 30, 2) approximation. (a) Evolution of the mean NQE with
respect to SNR (dB). (b) Evolution of the standard deviation of NQE with respect to SNR (dB).

R are represented in Figures 4.10(d)–(f), where the additive noise is considered as
white and Gaussian and for which the SNR = −10 dB. The classical Wiener filtering
of parameter K (Wcc-K) of each component, with a signal subspace dimension fixed
to K = 8, permits us to obtain the results presented in Figures 4.10(g)–(i). The
multimode PCA-based filtering achieved by applying HOSVD-(8,8,3) to noisy data
tensor permits to obtain the results presented in Figures 4.10(j)–(l). Finally, the
results obtained with multiway Wiener filtering applied to the noisy data tensor are
presented in Figures 4.10(m)–(o). The evolution of the NQE with respect to the SNR
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4.10. Nonnoisy, impaired, and processed seismic wave: the three polarization compo-
nents. (a)–(c) Components 1, 2, and 3 of the nonnoisy seismic wave. (d)–(f) Components 1, 2,
and 3 of the seismic wave, impaired by an additive white Gaussian noise (SNR = −10 dB).
(g)–(i) Wiener filtering applied component by component (Wcc-K), with rank K = 8. (j)–(l)
HOSVD-(K1,K2,K3), with (K1,K2,K3) = (8, 8, 3). (m)–(o) multiway Wiener filtering (Wmm-
(K1,K2,K3)), with (K1,K2,K3) = (8, 8, 3).
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 NQE

  BSNR (dB)

(a)

Fig. 4.11. Evolution of the NQE with respect to the SNR (dB) for each tensor filtering method.
(�): Wiener filtering applied component by component (Wcc-K), with rank K = 8; (◦): HOSVD-
(K1,K2,K3), with (K1,K2,K3) = (8, 8, 3); (•): multiway Wiener filtering (Wmm-(K1,K2,K3))
with (K1,K2,K3) = (8, 8, 3).
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Fig. 4.12. Multicomponent seismic signal. (a)–(c) Components 1 to 34 of the nonnoisy seismic
wave.

(dB) is given in Figure 4.11. As well as in the case of color image filtering, in this
simulation, the best quality, in terms of noise reduction, is given by multiway Wiener
filtering since, for all considered SNR values, the NQE values given by this method
are lower than the values given by both HOSVD-(8, 8, 3) and Wcc-8.

4.5.2. Filtering of a multicomponent seismic type signal impaired by
an additive correlated Gaussian noise. In this simulation, we consider a mul-
ticomponent seismic wave, impaired by a correlated Gaussian noise. The purpose
here is to compare the perfomances of multiway filtering algorithms based on either
second order moments or fourth order cumulants. Figures 4.12 and 4.13 show the
efficiency, in terms of noise reduction, of rank-C(K1,K2,K3) based filtering and rank-
C1(K1,K2,K3) based filtering compared to rank-(K1,K2,K3) approximation based
on second order statistics, when seismic signals impaired by a correlated Gaussian
noise are considered.
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Fig. 4.13. Denoising of a multicomponent seismic wave impaired by an additive correlated
Gaussian noise (SNR= −2 dB), using multiway filtering based on fourth order cumulants: compar-
ison of rank−C(8, 8, 3), and rank−C1(8, 8, 3). (a)–(c) Noised signal; components 1 to 3 impaired
by a correlated Gaussian noise (SNR= −2 dB). (d)–(f) rank-C(8, 8, 3) based filtering. (g)–(i) rank-
C1(8, 8, 3) based filtering. (j) Evolution of NQE with respect to SNR (dB) for rank-(8, 8, 3) approxi-
mation (�), rank-C1(8, 8, 3) using fourth order cumulant slice matrix (◦), and rank-C(8, 8, 3) using
fourth order cumulants (+).
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5. Conclusion. In this paper, an overview on new mathematical methods dedi-
cated to multicomponent data is presented. Multicomponent data are represented as
tensors, that is, multiway arrays, and the tensor filtering methods that are presented
rely on multilinear algebra. First we present how to perform channel-by-channel SVD-
based filtering. Then we review three methods that take into account the relationships
between each component of a processed tensor. The first method consists of an ex-
tension of the classical SVD-based filtering method. In the case of an additive white
Gaussian noise, the signal tensor is estimated thanks to a multimode PCA achieved
by applying a lower rank-(K1, . . . ,KN ) approximation to the noisy data tensor, or a
lower rank-(K1, . . . ,KN ) truncation of its HOSVD. This method is implicitly based
on second order statistics and relies on the orthogonality between nth-mode noise
and signal subspaces. The second presented method consists of an improvement of
the multimode PCA-based tensor filtering in the case of an additive correlated Gaus-
sian noise. In this case, the covariance matrix involved in TUCKALS3 algorithm is
replaced with the fourth order cumulant matrix of the related vectors. We reviewed
a low computational load procedure involving the fourth order cumulant slice matrix
instead of fourth order cumulants. This improved multimode PCA provides good
performances compared to the multimode PCA method based on second order statis-
tics, as was shown in the case of noise reduction in color images and multicomponent
seismic waves.

Finally, the third reviewed method is a multiway version of the classical Wiener
filtering. In extension to the one-dimensional case, the nth-mode Wiener filters are
estimated by minimizing the mean squared error between the expected signal tensor
and the estimated signal tensor obtained by applying the nth-mode Wiener filters to
the noisy data tensor thanks to the nth-mode product operator. An alternating least
squares algorithm has been presented to determine the optimal nth-mode Wiener
filters. The performances of this multiway Wiener filtering and comparative results
with multimode PCA have been presented in the case of additive white noise reduction
in a color image and in a multicomponent seismic wave.

Appendix A. nth-mode Wiener filter analytical expression. The follow-
ing computations are related to section 3.3. They rely on the definitions and properties
of tensors and multilinear algebra that can be found in [11, 13, 14].

The mean squared error involved in multiway Wiener filtering is given by relation

(A.1)
e(H(1), . . . ,H(N)) = E

[
‖X‖2

]
− 2E

[〈
X ,R×1 H(1) ×2 · · · ×N H(N)

〉]
+ E

[∥∥R×1 H(1) ×2 · · · ×N H(N)
∥∥2

]
.

The Frobenius norm of a tensor is also equal to the norm of any of its nth-mode
flattening matrices. In order to determine the expression of filter H(n) associated
with fixed filters H(m), for all m �= n, the nth-mode flattening of (A.1) is processed.

Let us define matrix F
(n)
XR as

(A.2) F
(n)
XR = XnT

(n)RT
n

with

(A.3) T(n) = H(1) ⊗ · · · ⊗ H(n−1) ⊗ H(n+1) ⊗ · · · ⊗ H(N).

Hence, for all n = 1 to N ,

(A.4)
〈
X ,R×1 H(1) ×2 · · · ×N H(N)

〉
= tr

(
F

(n)
XRH(n)T

)
.
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Let us define matrix G
(n)
RR as

(A.5) G
(n)
RR = RnQ

(n)Rn
T

with

Q(n) = T(n)TT(n)

(A.6) Q(n) = H(1)TH(1)⊗· · ·⊗H(n−1)TH(n−1)⊗H(n+1)TH(n+1)⊗· · ·⊗H(N)TH(N).

Hence for all n = 1 to N ,

(A.7)
∥∥∥R×1 H(1) ×2 · · · ×N H(N)

∥∥∥2

= tr
(
H(n)G

(n)
RRH(n)T

)
.

Minimization of mean squared error e(H(1), . . . , H(N)). The expression
of the nth-mode flattened mean squared error e(H(1), . . . ,H(N)) is the following:

(A.8)
e(H(1), . . . ,H(N)) = E

[
‖Xn‖2

]
− 2E

[
tr
(
F

(n)
XRH(n)T

)]
+ E

[
tr
(
H(n)G

(n)
RRH(n)T

)]
.

Assuming that m-mode filters H(m) are fixed for all m �= n, mean squared error
e(H(1), . . . ,H(N)) is minimal when its gradient with respect to nth-mode filter H(n)

is null,

(A.9) grad(e) =

[
∂e

∂H(1)
, . . . ,

∂e

∂H(N)

]T
,

that is, when ∂e
∂H(n) are conjointly null for all n = 1 to N . Let us study ∂e

∂H(n)

for a given nth-mode. The nth-mode filters H(m) are supposed to be fixed for all
m ∈ {1, . . . , N} − {n}. Then ∂e

∂H(n) = 0 implies that

(A.10) E

[
∂

∂H(n)
tr
(
H(n)G

(n)
RRH(n)T

)]
= 2E

[
∂

∂H(n)
tr
(
F

(n)
XRH(n)T

)]
,

We compute then the derivatives on both sides in (A.10), taking into account the fact

that G
(n)
RR and F

(n)
XR are independent from H(n):

(A.11)
∂

∂H(n)
tr
(
F

(n)
XRH(n)T

)
= F

(n)
XR,

(A.12)
∂

∂H(n)
tr
(
H(n)G

(n)
RRH(n)T

)
= 2H(n)G

(n)
RR.

Expression of H(n), nth-mode Wiener filter. Replacing (A.11) and (A.12)
into expression (A.10) leads to the expression of H(n) nth-mode Wiener filter associ-
ated with fixed H(m) m-mode filters, m �= n:

(A.13) H(n) = γ
(n)
XRΓ

(n)−1

RR ,

where

(A.14) γ
(n)
XR = E

[
F

(n)
XR

]



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOWER-RANK TENSOR APPROXIMATION AND MULTIWAY FILTERING 1199

is the T(n)-weighted covariance matrix between the signal Xn and the data Rn and

(A.15) Γ
(n)
RR = E

[
G

(n)
RR

]

is the Q(n)-weighted correlation matrix of the data.

Appendix B. Assumptions and related expression of the nth-mode
Wiener filter. The following computations are related to section 3.3. Let us con-
sider matrices T(n) and Q(n) defined in (A.3) and (A.6). Their generic (i, j)-terms

are denoted respectively by T
(n)
ij and by Q

(n)
ij .

Weight matrix term independence. The terms of weight matrix O(n) ∈
R

Kn×Mn are supposed mutually independent,

(B.1) E [oklomn] = αklδkmδln,

whatever k and m ∈ {1, . . . ,Kn}, l and n ∈ {1, . . . ,Mn} and where αkl is not null.

White and Gaussian noise condition. White and Gaussian noise condition
applied to the nth-mode flattening Nn can be expressed by

(B.2) E [nklnpq] = σ2
nδkpδlq,

where (k, p) ∈ {1, . . . ,Kn}2, (l, q) ∈ {1, . . . ,Mn}2 and σ2
n is the nth-mode noise power.

Noise and signal independence. The condition on noise and signal indepen-
dence can be expressed by

(B.3) E [xklnpq] = 0

for all (k, p) ∈ {1, . . . ,Kn}2 and (l, q) ∈ {1, . . . ,Mn}2. Hence, T(n) and Q(n)-weighted
(X,N)-covariance matrices are null:

(B.4)
γ

(n)
XN = γ

(n)
NX = 0,

Γ
(n)
XN = Γ

(n)
NX = 0.

Indeed, their (i, j)-term is

(B.5)

(
γ

(n)
XN

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E [xiknjl] ,

(
Γ

(n)
XN

)
ij

=

Mn∑
k=1

Mn∑
l=1

Q
(n)
kl E [xiknjl] .

Expressions of weighted covariance matrices.

Covariance matrix γ
(n)
RR. As Rn = Xn + Nn, the expression of γ

(n)
RR reads

(B.6) γ
(n)
RR = γ

(n)
XX + γ

(n)
XN + γ

(n)
NX + γ

(n)
NN.

So according to (B.4), γ
(n)
RR weighted covariance matrix can be expressed by

(B.7) γ
(n)
RR = γ

(n)
XX + γ

(n)
NN.

Moreover,

(B.8) γ
(n)
XR = γ

(n)
XX + γ

(n)
XN = γ

(n)
XX.
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Covariance matrix Γ
(n)
RR. Relations (B.6), (B.7), and (B.8) hold as well for

Γ
(n)
RR:

Γ
(n)
RR = Γ

(n)
XX + Γ

(n)
XN + Γ

(n)
NX + Γ

(n)
NN

and

(B.9) Γ
(n)
RR = Γ

(n)
XX + Γ

(n)
NN.

Moreover,

(B.10) Γ
(n)
XR = Γ

(n)
XX + Γ

(n)
XN = Γ

(n)
XX.

Expressions of Γ
(n)
NN and γ

(n)
NN. According to (B.2), the (i, j)-term of Γ

(n)
NN is

the following:

(B.11)
(
Γ

(n)
NN

)
ij

=

Mn∑
k=1

Mn∑
l=1

Q
(n)
kl E[niknjl] = σ

(n)2

Γ δij

with

(B.12) σ
(n)2

Γ = tr(Q(n))σ2
n.

Hence

(B.13) Γ
(n)
NN = σ

(n)2

Γ IIn .

The (i, j)-term of γ
(n)
NN can also be expressed by

(
γ

(n)
NN

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E[niknjl] = σ(n)2

γ δij

with

σ(n)2

γ = tr(T(n))σ2
n.

Hence

(B.14) γ
(n)
NN = σ(n)2

γ IIn .

Expressions of Γ
(n)
XX and γ

(n)
XX. Considering the signal model (3.16),

(B.15) γ
(n)
XX = V(n)

s γ
(n)
OOV(n)T

s ,

where

(B.16) γ
(n)
OO = E

[
O(n)T(n)O(n)T

]
.

According to (B.1), the generic term of γ
(n)
OO is

(B.17)
(
γ

(n)
OO

)
ij

=

Mn∑
k=1

Mn∑
l=1

T
(n)
kl E [niknjl] = βiδij ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOWER-RANK TENSOR APPROXIMATION AND MULTIWAY FILTERING 1201

where, for all i = 1 to Kn,

(B.18) βi =

Mn∑
k=1

T
(n)
kk αik,

and where αik is defined in (B.1). So, γ
(n)
OO is a diagonal matrix:

(B.19) γ
(n)
OO =

⎡
⎢⎣

β1 0
. . .

0 βKn

⎤
⎥⎦ .

The matrix Γ
(n)
XX is also expressed as

(B.20) Γ
(n)
XX = V(n)

s Γ
(n)
OOV(n)T

s ,

where Γ
(n)
OO is the diagonal matrix

(B.21) Γ
(n)
OO =

⎡
⎢⎣

ε1 0
. . .

0 εKn

⎤
⎥⎦ ,

and

(B.22) εi =

Mn∑
k=1

Q
(n)
kk αik,

where αik is defined in (B.1).

Final expression of H(n), nth-mode Wiener filter. According to (B.8) and
(B.15),

(B.23) γ
(n)
XR = V(n)

s γ
(n)
OOV(n)T

s .

According to (B.9), (B.13), and (B.20),

Γ
(n)
RR = V(n)

s Γ
(n)
OOV(n)T

s + σ
(n)2

Γ IIn ,

which can be expressed as

(B.24) Γ
(n)
RR =

[
V(n)

s V
(n)
b

] [ Γ
(n)
OO + σ

(n)2

Γ IKn
0

0 σ
(n)2

Γ IIn−Kn

][
V

(n)T

s

V
(n)T

b

]

with V
(n)
b ∈ St(In, In −Kn) the columnwise orthogonal matrix containing the noise

subspace basis vectors. The assumption of noise and signal independence implies that
the noise and signal subspaces are orthogonal:

(B.25) V(n)T

s V
(n)
b = 0.

Let us call

(B.26) Λ(n)
s = Γ

(n)
OO + σ

(n)2

Γ IKn
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and

(B.27) Λ
(n)
b = σ

(n)2

Γ IIn−Kn
.

Inserting the last expressions of γ
(n)
XR and Γ

(n)
RR (see (B.23) and (B.24)) into Wiener

nth-mode filter expression (A.13) leads to

(B.28) H(n) = V(n)
s γ

(n)
OOV(n)T

s

[
V(n)

s V
(n)
b

] [
Λ

(n)−1

s 0

0 Λ
(n)−1

b

][
V

(n)T

s

V
(n)T

b

]
,

which can be expressed as
(B.29)

H(n) =
[
(V(n)

s γ
(n)
OOV(n)T

s V(n)
s ) (V(n)

s γ
(n)
OOV(n)T

s V
(n)
b )

] [
Λ

(n)−1

s V
(n)T

s 0

0 Λ
(n)−1

b V
(n)T

b

]

Considering noise and signal orthogonality condition (B.25) and the fact that V
(n)
n V

(n)T

n =
IKn , the final Wiener nth-mode filter expression becomes

(B.30) H(n) = V(n)
s γ

(n)
OOΛ

(n)−1

Γs V(n)T

s .
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Abstract. In this paper we present a Newton method to jointly approximately diagonalize a
set of positive definite Hermitian matrices. To this end, we derive the local gradient and Hessian of
the underlying cost function in closed form. The algorithm is derived for the complex case and can
also update a nonsquare diagonalization matrix. We analyze the cost function at the critical points
and show its relation to a different cost function that is commonly studied.
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1. Problem formulation and cost function. The mathematical problem of
jointly approximately diagonalizing a set of P covariance matrices, {Rp}Pp=1, is of
interest in statistical methods such as common principal component analysis [7].
Recently the joint diagonalization problem has received more attention also in the
community of independent component analysis and blind signal separation, as some
problems that occur in those fields can be formulated as a joint diagonalization opti-
mization problem. As an example, we can describe one class of blind signal separation
problems as follows:

Let s(t) be an M -dimensional vector containing the time series of M mutually
independent source signals that are mixed by a mixing matrix AN×M , such that
x(t) = As(t) is an N -dimensional vector containing the time series of N sensor sig-
nals. In the blind signal separation problem the assumption is made that s(t) and
A are unknown; only the signals at the sensors, x(t), are known. Furthermore, the
assumption is made that the source signals are nonstationary and mutually indepen-
dent. Hence, Rss(t) � E{s(t)sH(t)} depends on t and has a diagonal structure. If we
further assume that the source signals are nonstationary, then Rss(t) is time-varying
but always has a diagonal structure. The correlation matrix of the sensor signals
Rxx(t) � E{x(t)xH(t)} = AE{s(t)sH(t)}AH = ARss(t)A

H becomes also time-
varying but has no diagonal structure in general. In order to recover the unknown
source signals, we aim at finding a separation matrix W such that u(t) = Wx(t)
becomes an estimate of the original source signals s(t), aside from a possible scaling
and permutation of the elements in u(t). In order for u(t) to become an estimate of
s(t), the correlation matrix

(1) Ruu(t) � E{u(t)uH(t)} = WRxx(t)WH

has to be diagonal for all t. Assuming that W is time-invariant, W has to be of the
following structure:

(2) W = DPA−1
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or, if AN×M is a tall matrix (N > M),

(3) W = DPA#,

where D is an arbitrary diagonal matrix, P is an arbitrary permutation matrix, and
A# denotes the pseudoinverse of A. If we take P snapshots of Rxx(t), Rp � Rxx(tp),
where tp is the time instance of the pth snapshot, then we can formulate the task of
finding a proper W as the following joint diagonalization problem:

Given a set of P positive definite Hermitian matrices Rp, find a single matrix
W that approximately joint diagonalizes the whole set {Rp} such that WRpW

H is
diagonal for all p.

Perfect diagonalization is typically not possible for a set of random positive defi-
nite Hermitian matrices {Rp}, unless {Rp} is a set of commuting matrices [9]. How-
ever, the set {WRpW

H} can still be approximately jointly diagonalized subject to a
given cost function J (W; {Rp}Pp=1) that measures the degree of joint diagonalization.

Several cost functions for the joint diagonalization problem have been published in
the last decade. In [5] Cardoso and Souloumiac have proposed a joint diagonalization
cost function and have given a very effective Jacobi-type algorithm that minimizes
their cost function under the constraint that the diagonalization matrix W is unitary.
The core idea of their algorithm has been used in JADE [4] and SOBI [1], both very
popular blind signal separation algorithms.

In [17] Yeredor published an algorithm, AC-DC, that uses a different cost function
and is based on a subspace-fitting formulation. One advantage is that no orthogonality
constraints are imposed on the diagonalization matrix W. However, W needs to be
square and real. In [19] Yeredor, Ziehe, and Müller also derived an algorithm based on
the natural gradient that works even with nonpositive definite matrices Rp; however,
W needs to be real and square. Yeredor has also described in [18] how to compute a
good initial value W0 for any iterative algorithm.

Another joint diagonalization algorithm, FFDIAG, that seems to have a very fast
convergence rate, was presented by Ziehe, Laskov, and Müller in [20]. FFDIAG also
requires that Rp and W be real square matrices. An extension of FFDIAG where W
can be nonsquare or complex has not been published so far.

Recently, Vollgraf and Obermayer [16] published an algorithm for the real case,
QDIAG, that also works for a nonsquare W. Their algorithm sequentially solves a
quadratic subproblem, which avoids the appearance of any higher-order terms in their
cost function. QDIAG seems to have a similar convergence performance as FFDIAG
and is very appealing from a computational point of view for joint-diagonalizing large
sets of matrices.

In [14], Pham presented an efficient joint diagonalization algorithm that imposes
no optimization constraints on W, except that W must be square (N = M). This
algorithm is also a Jacobi-type algorithm. In contrast to most other joint diagonaliza-
tion algorithms, which minimize a constraint optimization problem, Pham’s algorithm
is formulated to minimize an unconstrained optimization problem. The underlying
cost function of this algorithm is based on some preliminary work by Flury [7] and
Flury and Gautschi [8], namely,

(4) J (W) �
P∑

p=1

βp

[
log

(
det

(
diag

(
WRp WH

)))
− log

(
det

(
WRp WH

))]
,

where the matrices Rp ∈ C
N×N are Hermitian and need to be positive definite. The

weights βp are positive scalars. Consequently, the matrix products WRp WH ∈
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C
M×M are also Hermitian and positive definite, assuming W has full rank. The cost

function (4) is motivated by the Hadamard inequality

(5) det(Q ) ≤ det( diag(Q ) )

with equality if and only if Q is diagonal [9].
In the following, we will also use the cost function (4) as the basis of a Newton-type

algorithm that we will derive. There are a few fundamental differences between the
derived Newton algorithm and Pham’s Jacobi-type algorithm. In Pham’s algorithm,
every iteration consists of a pairwise update of two rows at a time. One sweep of the
algorithm consists of iterating once through all possible combinations of pairing two
rows. Pham has shown that near a minimum, an iteration of his algorithm behaves
similarly to a quasi-Newton–Raphson iteration.

In contrast to Pham’s algorithm, we will use a pure Newton algorithm that up-
dates all coefficients in W in every iteration. The main difficulty in deriving a pure
Newton algorithm, as opposed to a quasi -Newton algorithm, is that the Hessian needs
to be known in closed form in every iteration. One major difference to Pham’s algo-
rithm will be that we drop the constraint that W needs to be square, and we allow
W ∈ C

M×N to be rectangular with M ≤ N . Translated to the blind signal separation
problem, our algorithm is also capable of working in cases where more sensor signals
than source signals are present. This is particularly useful when the number of source
signals is not known beforehand.

In the following sections, we will derive the gradient and Hessian of the cost
function (4) in close form. To this end, we will use the matrix-form representation of
the second-order Taylor series expansion as described by Manton in [13]. This form
allows us to represent the gradient and the Hessian in a very compact form with the
help of Kronecker products. As we will see, just as products of matrices reveal more
structure than nested sums, the use of Kronecker products reveals the structure of the
Hessian on an even higher level than by using matrices inside nested sums. Thorough
treatments of Kronecker products and their properties are given in [3, 12].

1.1. Notation. The notation used throughout this paper is the following: Vec-
tors are written in lowercase, matrices in uppercase. Matrix and vector transpose,
complex conjugation, and Hermitian transpose are denoted by (.)T , (.)∗, and (.)H ,
respectively. The M ×M identity matrix is denoted by IM×M . The Frobenius norm
and the trace of a matrix are denoted by ‖ . ‖F and tr (.), respectively. The spectral
radius of a matrix Q is the nonnegative real number ρ(Q) = max{|λmax(Q)|}; see [9].
Matrix dimensions are given in superscript, e.g., WM×N . The operator vec(W )
forms a column vector by stacking the columns of W, and WM×N = matM×N (w)
is the inverse operation of w = vec(WM×N ). The Kronecker product [3] is denoted
by ⊗. The MN ×MN -dimensional permutation matrix PM×N , where the subscript
M ×N is the argument of PM×N , is uniquely defined with

(6) vec(WT ) ≡ PM×N vec(WM×N )

as vec(W ) and vec(WT ) contain the same elements, just arranged in a different
order. With Q̄ = diag(q ) we get a square diagonal matrix that contains the elements
of the vector q in its diagonal. The matrix Q̄ = diag(Q ) is a diagonal matrix where
its diagonal elements are the same as the diagonal elements of Q, and

(7) off(Q ) � Q − diag(Q )
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keeps all off-diagonal elements of Q and sets all diagonal elements of Q to zero.
Furthermore, we define the two M2 ×M2 diagonal projection matrices

Pdiag � diag( vec( IM×M ) ),(8)

Poff � IM2×M2 − Pdiag,(9)

which appear in the following two relations:

vec( diag(Z ) ) = Pdiag vec(Z ),(10)

vec( off(Z ) ) = Poff vec(Z ).(11)

2. Second-order Taylor series of the cost function J (W).

2.1. Matrix form of second-order Taylor approximation. In the following
we will derive the gradient and Hessian of the cost function (4) with respect to the
free parameters, i.e., the elements of W. First we need to define how the gradient
and Hessian are represented. Since the free parameters in the cost function (4) are
arranged in the matrix W, we decide to use the matrix form of the second-order
Taylor series as given by Manton in [13]:

Let J : C
M×N → R be a cost function. Then we can describe the Taylor series

expansion of J at W as

J (W + δZ) = J (W) + δRe
{
tr
(
ZHDW

)}

+
δ2

2
vec(Z )HHW vec(Z )

+
δ2

2
Re{vec(Z )TCW vec(Z )} + O(δ3),(12)

where W,Z ∈ C
M×N , DW ∈ C

M×N is the gradient of J evaluated at W, and
HW,CW ∈ C

MN×MN are the Hessian of J evaluated at W. The scalar δ is a small
real number. Uniqueness can be achieved by requiring HH

W = HW and CT
W = CW.

In contrast to the commonly known vector form of the Taylor series expansion

(13) J (w + δz) = J (w) + δ zTd +
δ2

2
zTHz + O(δ3),

where the coefficients of W are rearranged in the real vector

(14) w �
(

wre

wim

)
�

(
Re{vec(W)}
Im{vec(W)}

)
,

the matrix form often reveals the structure of the gradient and the Hessian in a much
more transparent form via matrix and Kronecker products. The gradients and the
Hessians of the two Taylor expansion forms (12) and (13) can be transformed into
each other, as described in [10].

2.2. Derivation of the gradient and Hessian. In order to simplify the deriva-
tion of the gradient and Hessian of J (.), we rewrite the cost function (4) as

(15) J (W ; {βp}, {Rp}) �
P∑

p=1

βp J̃ (W;Rp)
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with

J̃ (W;Rp) � J (1) (W;Rp) − J (2) (W;Rp) ,(16)

J (1) (W;R) � log
(
det

(
diag

(
WRWH

)))
,(17)

J (2) (W;R) � log
(
det

(
WRWH

))
.(18)

2.3. Gradient and Hessian of J (1) (.). In order to derive the gradient and
Hessian of J (1), defined in (17), we do the following expansion:

J (1) (W + δZ) � log
(
det

(
diag

(
(W + δZ)R (W + δZ)

H
)))

(19)

= log
(
det

(
diag

((
WRWH + δ

(
WRZH + ZRWH

)
+ δ2ZRZH

))))
.(20)

By substituting

(21) Q̄ � diag
(
WRWH

)
we can formulate (20) as

J (1) (W + δZ) = log
(
det

(
Q̄

(
I + δ Q̄−1 diag

(
WRZH + ZRWH

)
+ δ2 Q̄−1 diag

(
ZRZH

))))
(22)

= J (1) (W) + log
(
det

(
I + δ Q̄−1 diag

(
WRZH + ZRWH

)
+ δ2 Q̄−1 diag

(
ZRZH

)))
(23)

= J (1) (W) + log
(
det

(
I + δA + δ2B

))
(24)

with

A � Q̄−1 diag
(
WRZH + ZRWH

)
,(25)

B � Q̄−1 diag
(
ZRZH

)
.(26)

Here we made use of detXY = detX detY, which is valid for square matrices X,Y.
Before we continue to simplify (24), we introduce the following proposition.

Proposition 2.1. Let A,B ∈ C
N×N . Then, for δ → 0,

(27) log
(
det

(
I + δA + δ2B

))
= δ trA + δ2 trB − 1

2
δ2 trA2 + O(δ3).

Proof. Let S ∈ C
N×N with spectral radius ρ(S) < 1. We know that for any

nonsingular G ∈ C
N×N we have log (det (G)) = tr (log (G)). We also know that

log (I + G) =
∑

k
(−1)k+1

k Gk for any G ∈ C
N×N with ρ(G) < 1. Note that the

assumption ρ(S) < 1 implies that I + S is nonsingular. Hence, combining the above
results we have

(28) log(det(I + S)) =
∑
k

(−1)k+1

k
Sk .

Now, if we insert S = δA + δ2 B into (28) and let δ → 0, we obtain (27).
Note that the logarithm for complex arguments is not uniquely defined. However,

we will only apply (28) for Hermitian matrices S with ρ(S) < 1. Consequently all
eigenvalues of I + S, and also det(I + S), will be real and positive.
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If we apply (27) in (24), we obtain

(29) J (1) (W + δZ) = J (1) (W) + δ trA + δ2 trB − 1

2
δ2 trA2 + O(δ3),

where A and B are defined in (25) and (26), respectively. We now analyze each of
the three δ terms in (29) separately. We start with

trA = tr
(
Q̄−1 WRZH + Q̄−1 ZRWH

)
(30)

= tr
(
ZH Q̄−1 WR + RWH Q̄−1 Z

)
(31)

= 2 Re
{

tr
(
ZH Q̄−1 WR

)}
.(32)

Here we made use of tr (diag(X ) diag(Y )) = tr (X diag(Y )) = tr (diag(X )Y). The
third term in (29), where A is defined in (25), can be modified as

trA2 = tr
(
Q̄−1

(
WRZH + ZRWH

)
Q̄−1 diag

(
WRZH + ZRWH

))
(33)

= tr
(
Q̄−1WRZHQ̄−1 diag

(
WRZH

))
+ tr

(
Q̄−1WRZHQ̄−1 diag

(
ZRWH

))
+ tr

(
Q̄−1ZRWHQ̄−1 diag

(
WRZH

))
+ tr

(
Q̄−1ZRWHQ̄−1 diag

(
ZRWH

))
(34)

= 2 tr
(
ZH Q̄−1 diag

(
ZRWH

)
Q̄−1WR

)
+ tr

(
ZRWH Q̄−1 diag

(
ZRWH

)
Q̄−1

)
+ tr

(
ZH Q̄−1 diag

(
WRZH

)
Q̄−1WR

)
,(35)

where we used tr (XY ) = tr (Y X ) and some elementary properties of tr (.) with
diagonal matrices. With the help of (94) and (95) we obtain

trA2 = 2 vec(Z )H
[(

Q̄−1 WR
)T ⊗ Q̄−1

]
vec

(
diag

(
ZRWH

) )
+ vec(Z )T PT

M×N

[
Q̄−T ⊗ RWH Q̄−1

]
vec

(
diag

(
ZRWH

) )
+ vec(Z )H

[(
Q̄−1 WR

)T ⊗ Q̄−1
]
vec

(
diag

(
WRZH

) )
.(36)

Next we make use of (10). With further help of (93) and (84) we get

trA2 = 2 vec(Z )H
[(

Q̄−1 WR
)T ⊗ Q̄−1

]
Pdiag

[(
RWH

)T ⊗ IM

]
vec(Z )

+ vec(Z )T PT
M×N

[
Q̄−T ⊗ RWH Q̄−1

]
Pdiag

[(
RWH

)T ⊗ IM

]
vec(Z )

+ vec(Z )H
[(

Q̄−1 WR
)T ⊗ Q̄−1

]
Pdiag [ IM ⊗ WR ]PM×N vec(Z )∗.(37)

In this case Pdiag is an M2×M2-dimensional matrix. By making use of (92) we obtain

trA2 = 2 vec(Z )H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z )

+ vec(Z )T
[
RWH Q̄−1 ⊗ Q̄−T

]
PM×M Pdiag

[
W∗RT ⊗ IM

]
vec(Z )

+ vec(Z )H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag PM×M [WR ⊗ IM ] vec(Z )∗.(38)
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Since PN×M = P−1
M×N = PT

M×N and PM×M Pdiag = Pdiag PM×M , we get

trA2 = 2 vec(Z )H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z )

+ vec(Z )T
[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z )

+ vec(Z )H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag PM×M [WR ⊗ IM ] vec(Z )∗(39)

= 2 vec(Z )H
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

]
vec(Z )

+ 2 Re
{
vec(Z )T

[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z )

}
.(40)

In the last step we used the fact that R∗ = RT and Q̄∗ = Q̄T , as R and Q̄ are both
Hermitian. Finally, the second term in (29) can be modified with (95) as

trB = tr
(
Q̄−1 diag

(
ZRZH

))
= tr

(
Q̄−1 ZRZH

)
(41)

= tr
(
ZHQ̄−1 ZR

)
(42)

= vec(Z )H
[
RT ⊗ Q̄−1

]
vec(Z ).(43)

Inserting (32), (40), and (43) into (29) yields

J (1) (W + δZ)

= J (1) (W) + 2 δRe
{

tr
(
ZH Q̄−1 WR

)}
+ δ2 vec(Z )H ·

·
([

RT ⊗ Q̄−1
]
−
[
RT WT Q̄−T ⊗ Q̄−1

]
Pdiag

[
W∗ RT ⊗ IM

])
vec(Z )

− δ2
Re

{
vec(Z )T

[
RWH Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M

[
W∗RT ⊗ IM

]
vec(Z )

}
+ O(δ3).(44)

By coefficient comparison between (44) and the matrix form of the second-order Taylor
series (12), and using RT = R∗ and (91), we finally obtain

D
(1)
W = 2 Q̄−1 WR,(45)

H
(1)
W = 2

[
RT ⊗ Q̄−1

]
− 2

[
RT WT ⊗ IM

] [
Q̄−T ⊗ Q̄−1

]
Pdiag [W∗ R∗ ⊗ IM ] ,(46)

C
(1)
W = −2

[
RWH ⊗ IM

] [
Q̄−1 ⊗ Q̄−T

]
Pdiag PM×M [W∗R∗ ⊗ IM ] ,(47)

where Q̄ is defined in (21).

2.4. Gradient and Hessian of J (2) (.). Deriving the gradient and Hessian of
J (2) (W) � log

(
det

(
WRWH

))
, as defined in (18), can be done in a similar way to

how it was done for J (1) in the previous section. To this end, we expand J (2) as

J (2) (W + δZ) = log
(
det

(
(W + δZ)R (W + δZ)

H
))(48)

= log
(
det

(
WRWH + δ

(
WRZH + ZRWH

)
+ δ2ZRZH

))
.(49)

By substituting

(50) Q � WRWH

we can rewrite (49) as

J (2) (W + δZ)

= log
(
det

(
Q

(
I + δQ−1

(
WRZH + ZRWH

)
+ δ2 Q−1ZRZH

)))
(51)

= J (2) (W) + log
(
det

(
I + δQ−1

(
WRZH + ZRWH

)
+ δ2 Q−1ZRZH

))
.(52)
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By inspection, we see that (52) has the same structure as (23) and therefore can also
be written in the form

(53) J (2) (W + δZ) = J (2) (W) + log
(
det

(
I + δA + δ2B

))
,

this time with

A � Q−1
(
WRZH + ZRWH

)
,(54)

B � Q−1ZRZH .(55)

One difference, though, is that the matrices Q, A, and B are this time no longer
diagonal, in general. However, since in the previous calculations we only made the
assumption that these matrices needed to be Hermitian and not diagonal, we can
use (27) again and carry out the further steps in exactly the same manner as it was
done for J (1). By going through the same derivation steps, we finally obtain

D
(2)
W = 2Q−1 WR,(56)

H
(2)
W = 2

[
RT ⊗ Q−1

]
− 2

[
RT WT ⊗ IM

] [
Q−T ⊗ Q−1

]
[W∗ R∗ ⊗ IM ] ,(57)

C
(2)
W = −2

[
RWH ⊗ IM

] [
Q−1 ⊗ Q−T

]
PM×M [W∗R∗ ⊗ IM ] .(58)

By comparing (56)–(58) with (45)–(47), respectively, basically Q̄ is replaced by its
nondiagonal version Q, and Pdiag is replaced by IM .

2.5. Gradient and Hessian of J (.). Because of the definitions (16), (17),

and (18) we can write the gradient and the Hessian of J̃ (.) as

D̃W (W;Rp) = D
(1)
W (W;Rp) − D

(2)
W (W;Rp) ,(59)

H̃W (W;Rp) = H
(1)
W (W;Rp) − H

(2)
W (W;Rp) ,(60)

C̃W (W;Rp) = C
(1)
W (W;Rp) − C

(2)
W (W;Rp) ,(61)

where D
(1)
W , H

(1)
W , and C

(1)
W are defined in (45), (46), and (47), respectively, and D

(2)
W ,

H
(2)
W , and C

(2)
W are defined in (56), (57), and (58), respectively. By inserting these

terms into (59), (60), and (61), after some rearranging we finally obtain, for all p,

D̃W (W;R) = 2 ( Q̄−1 − Q−1 )WR,(62)

H̃W (W;R) = 2
[
RT ⊗ ( Q̄−1 − Q−1 )

]
+ 2

[
RT WT ⊗ IM

] ([
Q−T ⊗ Q−1

]
−
[
Q̄−T ⊗ Q̄−1

]
Pdiag

)

· [W∗ R∗ ⊗ IM ] ,(63)

C̃W (W;R) = 2
[
RWH ⊗ IM

] ([
Q−1 ⊗ Q−T

]
−
[
Q̄−1 ⊗ Q̄−T

]
Pdiag

)

· PM×M [W∗R∗ ⊗ IM ] .(64)

Finally, because of (15), we can write the gradient and the Hessian of the cost function
J as

DW =

P∑
p=1

βp D̃W (W;Rp) ,(65)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON METHOD FOR JOINT APPROXIMATE DIAGONALIZATION 1213

HW =

P∑
p=1

βp H̃W (W;Rp) ,(66)

CW =

P∑
p=1

βp C̃W (W;Rp) .(67)

Equations (62) to (67) are the gradient and the Hessian of the cost function (4).

2.6. Comparison between gradient and Hessian of J and Joff. A well-
known cost function used for the joint diagonalization problem is [5]

(68) Joff (W ; {βp}, {Rp}) �
P∑

p=1

βp

∥∥ off(WRp WH )
∥∥2

F

subject to a constraint that prevents W from becoming zero. We now like to make
a comparison between the gradient and Hessian of J and Joff. The gradient and
Hessian of the term Ĵ � ‖off(WRp WH )‖2

F , which appears in (68), are [10]

D̂W (W;R) = 4 off(Q )WR,(69)

ĤW (W;R) = 4
[
RT ⊗ off(Q )

]
+ 4

[
RT WT ⊗ IM

]
Poff [W∗ R∗ ⊗ IM ] ,(70)

ĈW (W;R) = 4
[
RWH ⊗ IM

]
Poff PM×M [W∗R∗ ⊗ IM ] .(71)

We wish to bring the gradient and Hessian of J into a similar form. To this end, we
reformulate the term Q̄−1 − Q−1 as

(72) Q̄−1 − Q−1 = Q̄−1 (Q − Q̄ )Q−1 = Q̄−1 off(Q )Q−1,

where off( . ) is defined in (7) and Q̄ � diag(Q ); see (21) and (50). Furthermore,
since Pdiag + Poff = I we have

[
Q−T ⊗ Q−1

]
−
[
Q̄−T ⊗ Q̄−1

]
Pdiag

=
([

Q−T ⊗ Q−1
]
−
[
Q̄−T ⊗ Q̄−1

])
Pdiag +

[
Q−T ⊗ Q−1

]
Poff.(73)

By inserting (72) into (62) and (63), and (73) into (63) and (64) we can write the
gradient and Hessian of J as

D̃W (W;R) = 2 Q̄−1 off(Q )Q−1 WR,

(74)

H̃W (W;R) = 2
[
RT ⊗ Q̄−1 off(Q )Q−1

]
+ 2

[
RT WT ⊗ IM

] ([
Q−T ⊗ Q−1

]
−
[
Q̄−T ⊗ Q̄−1

])
Pdiag [W∗ R∗ ⊗ IM ]

+ 2
[
RT WT ⊗ IM

] [
Q−T ⊗ Q−1

]
Poff [W∗ R∗ ⊗ IM ] ,(75)

C̃W (W;R)

= 2
[
RWH ⊗ IM

] ([
Q−1 ⊗ Q−T

]
−
[
Q̄−1 ⊗ Q̄−T

])
Pdiag PM×M [W∗ R∗ ⊗ IM ]

+ 2
[
RWH ⊗ IM

] [
Q−1 ⊗ Q−T

]
Poff PM×M [W∗ R∗ ⊗ IM ] .(76)

This form allows us to see clear similarities between the gradient and Hessian terms
of the two cost functions Joff and J when comparing (69)–(71) with (74)–(76), re-
spectively: In the gradient and the first term of the Hessian, off(Q ) is replaced by
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Q̄−1 off(Q )Q−1. Note that Q and Q̄ are both positive definite matrices. The last
terms of the Hessian terms also show a very similar structure. The only difference is
the additional term Q−T ⊗ Q−1 in the Hessian of J , which is also positive definite.

The second term of H̃W and the first term of C̃W have no corresponding terms in
ĤW and ĈW.

2.7. Discussion of critical points. The critical points are defined where the
gradient of J becomes zero. From (74) we see that D̃W becomes zero if off(Q ) ≡ 0
and consequently Q ≡ Q̄. Since we can reformulate, similar to (72),
(77)[

Q−T ⊗ Q−1
]
−
[
Q̄−T ⊗ Q̄−1

]
= −

[
Q−T ⊗ Q−1

]
off( QT ⊗ Q )

[
Q̄−T ⊗ Q̄−1

]

and the Kronecker product of two diagonal matrices is a diagonal matrix, the term
off( Q̄T ⊗ Q̄ ) becomes zero. Hence, the Hessian terms of J at the critical points are

H̃W (W;R) = 2
[
RT WT ⊗ IM

] [
Q̄−T ⊗ Q̄−1

]
Poff [W∗ R∗ ⊗ IM ] ,(78)

C̃W (W;R) = 2
[
RWH ⊗ IM

] [
Q̄−1 ⊗ Q̄−T

]
Poff PM×M [W∗ R∗ ⊗ IM ] .(79)

When comparing (78) and (79) with (70) and (71), respectively, we make the inter-
esting discovery that, besides the diagonal matrix Q̄−T ⊗ Q̄−1 and a scaling factor,
the Hessian of J and Joff at the critical points have an identical structure.

3. The Newton algorithm. Once we have derived the gradient and Hessian of
our cost function, we can now formulate the Newton algorithm. The Newton update
at iteration k can be written as

(80) Wk+1 = Wk + μkSk,

where Sk is the search direction and μk is the step size of the kth update. The
individual steps of the Newton algorithm are given in Figure 1. Since our cost function
is nonquadratic, we use a modified Newton step that incorporates an Armijo line
search. In the vicinity of the minimum the update will approach the pure Newton
step.

The described Newton algorithm is built upon a vector-form Newton algorithm,
where the complex coefficients of Wk are arranged in a length 2MN real vector wk

as defined in (14). Hence, the vector dk and the matrix Hk are the gradient and
Hessian of the vector form of the Taylor series expansion of J (wk); see (13).

Since our cost function is not quadratic, the Hessian Hk can have negative eigen-
values. By choosing σk such that Hk + σkI becomes positive definite, the inverse
[Hk + σkI ]−1 will be positive definite as well. This will ensure that sk and Sk will
point to a descent direction, just like the negative gradient −dk does. Hence, σk must
be chosen larger than −λmin(Hk) if Hk has nonpositive eigenvalues, where λmin is
the smallest eigenvalue of Hk. In the vicinity of a local minimum, σk will become zero
and the update will approach the pure Newton update for μk = 1. On the other hand,
if σk is chosen very large, the search direction sk will become close to the direction of
the negative gradient. For efficiency reasons, Hk is often regularized via a modified
Cholesky factorization method [2, sec. 1.4]. Therefore the described modified Newton
algorithm should be understood more as a prototype algorithm. The step size μk is
obtained from a line-search step, e.g., an Armijo line-search method [2, 6, 11, 15],
which guarantees that J (Wk+1) ≤ J (Wk) and μk is chosen not too small. The
reason to include a variable step size μk into the Newton update is motivated by the
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Modified Newton algorithm

Initialization (k = 0): W0 ∈ C
M×N .

For k = 1, 2, . . . until convergence,
1. Compute gradient DWk with (65) and (62).
2. Compute Hessian {HWk,CWk} with (66), (63), (67), and (64).
3. Compute the real vector

dk �
(

dre

dim

)
:=

(
Re{vec(DW)}
Im{vec(DW)}

)
.

4. Compute the real matrix

Hk :=

[
Re{HW + CW} −Im{HW + CW}
Im{HW − CW} Re{HW − CW}

]
.

5. Compute the real vector

sk := − [Hk + σkI]
−1

dk,

where σk ≥ 0 is chosen such that Hk + σkI becomes positive definite.
6. Compute the complex matrix Sk := matM×N (sre

k + jsim
k ) which corre-

sponds to the inverse operation of

sk �
(

sre

sim

)
=

(
Re{vec(Sk)}
Im{vec(Sk)}

)
.

7. Perform update Wk+1 := Wk + μkSk, where the step size μk is found
via a line-search algorithm, e.g., an Armijo line search (see Appendix B).

Fig. 1. Modified Newton algorithm.

fact that in our case J is a nonquadratic cost function. In this case the Newton
step, μk = 1, often overshoots the local minimum, even if the Hessian Hk is positive
definite. Close to a minimum, where the cost function can be approximated by a
quadratic curvature, the Armijo line-search method will often set μk automatically to
one.

4. Simulation example. We give now a simulation example where the perfor-
mance between the Newton algorithm and a steepest-descent algorithm are compared.
This simulation is set up such that a perfect joint diagonalization is possible. The
chosen parameters are M = 3 and N = 5. For each simulation trial we generate
a random complex matrix A ∈ C

5×3, such that AHA = I3. Then we generate for
each trial a set of P = 15 correlation matrices {Rp}15

p=1 = {AΛp AH}15
p=1 where each

Λp ∈ R
3×3 is a diagonal matrix whose elements are randomly chosen from a uniform

distribution between 0.1 and 1. Hence, each Λp is positive definite, and each Rp is
positive semidefinite and has rank 3. Figure 2 compares the performance between the
Newton algorithm, using Armijo line searches, and a gradient-type update. The top
curve shows the performance of the cost function J , defined in (4); the bottom curve
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Fig. 2. Learning curves of J (Wk) (top) and Joff(Wk) (bottom) for five independent simula-
tions using (a) the modified Newton method and (b) the steepest-descent algorithm.

shows how the cost function Joff, given in (68), behaves. For this simulation we pre-
multiply Wk after every iteration with a diagonal matrix, such that the rows of Wk

have unit norm, i.e., diag(Wk WH
k ) = I3. This normalization step does not affect the

value of the cost function J , as J is scale-invariant to such an operation; however,
it is important for a meaningful interpretation of Joff. Without this normalization
a small value of Joff could also be caused by ‖Wk ‖F 	 1, which would result in a
misleading performance interpretation. From the simulation curves it is clearly seen
that once the Newton algorithm approaches the vicinity of a minimum, it reveals a
superlinear convergence and attains the minimum within a few steps.

5. Conclusion. The problem of joint approximate diagonalization of a set of
positive definite matrices has become of great interest in blind signal separation ap-
plications. Most algorithms known for the joint diagonalization task impose some
constraints on the diagonalization matrix W, namely, that W needs to be (i) real,
(ii) unitary, or (iii) square. We have derived a Newton algorithm for this problem
which has none of these restrictions. We allow the diagonalization matrix W to be
complex, nonunitary, and even rectangular.

The most general case where the diagonalization matrix W can be rectangular,
instead of being square, is of particular interest in blind signal separation. This
scenario occurs when access to more sensor signals than source signals is available.
In this case the correlation matrices Rp are no longer positive definite; they only will
be positive semidefinite. Algorithms that use the same cost function as given in (4),
but constrain W to being square, require that Rp be positive definite; otherwise
det

(
WRp WH

)
becomes zero. Since our algorithm can also update a rectangular

M ×N matrix W, where M ≤ N , we impose a much weaker constraint, namely, that
the product WRp WH needs to be positive definite and not Rp. For a given set of
{Rp} we can simply achieve this by reducing M , the number of rows of W, until
{WRp WH} has full rank for all p.

A major contribution of this paper is the derivation of the Hessian in closed
form for every W and not only at the critical points. It turned out that the matrix
form of the Taylor series expansion (12), as given by Manton in [13], has provided
the foundation of this derivation. This form preserves the matrix structure of the
underlying problem which allows a compact-form representation of the gradient and
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Hessian through matrix and Kronecker products. Finally, we have shown that there
exists a close similarity between the gradient and Hessian of two commonly used cost
functions for the joint diagonalization problem.

Appendix A. Useful relations for deriving the gradient and Hessian of
a matrix-valued cost function. The following equalities were very useful for the
derivation of the gradient and Hessian. Some basic relations are

‖A ‖2
F = tr (AAH) ,(81)

tr (AB) = tr (BA) ,(82)

tr
(
AH

)
= tr (A∗) = (tr (A))

∗
.(83)

Furthermore, we have some useful equalities with the vec( . ) operation and Kronecker
product [3] with Z ∈ C

M×N :

vec(ZT ) = PM×N vec(Z ),(84)

tr(ZHA) = vec(Z )H vec(A ),(85)

tr (ZA) = vec(ZT )T vec(A )(86)

= vec(Z )T PT
M×N vec(A ),(87)

(A ⊗ B)T = AT ⊗ BT ,(88)

(A ⊗ B)H = AH ⊗ BH ,(89)

(A ⊗ B)−1 = A−1 ⊗ B−1,(90)

(AB ⊗ CD ) = (A ⊗ C )(B ⊗ D ),(91)

AP×Q ⊗ BR×S = PP×R (B ⊗ A )PS×Q,(92)

vec(AZB ) = (BT ⊗ A ) vec(Z ),(93)

where the permutation matrix PM×N is uniquely defined with (84). Sometimes
PM×N is called the commutation matrix [12]. Since PM×N is a permutation matrix,
PM×N = PT

N×M = P−1
N×M . For the special case where M = N , the commutation

matrix is involutory, P2
M×M = I, as PT

M×M = PM×M is symmetric. See [3, 12] for a
thorough list of properties of Kronecker products.

The following relations, where Z1,Z2 ∈ C
M×N and the argument of tr (.) is a

square matrix, have been proven to be very useful in the derivation of the Hessian:

tr (Z1 AZ2 B) = vec(Z1 )T PT
M×N (BT ⊗ A ) vec(Z2 ),(94)

tr
(
ZH

1 AZ2 B
)

= vec(Z1 )H (BT ⊗ A ) vec(Z2 ),(95)

tr
(
ZH

1 AZH
2 B

)
= vec(Z1 )H (BT ⊗ A )PM×N vec(Z2 )∗.(96)

Equation (95) can be derived with (85) and (93). Equations (94) and (96) can be
derived with (85), (93), (87), and (83).

Appendix B. Armijo rule for matrix form. The Armijo rule for choosing
a step size μk at the kth iteration is defined as μk = μ0 γ

m, where m is the first
nonnegative integer that fulfills

(97) J (Wk) − J (Wk + μ0 γ
m Sk) ≥ −η μ0 γ

m
Re{〈Sk,DWk〉}.

The search direction and the gradient of J at Wk are denoted as Sk and DWk,
respectively, and 〈Sk,DWk〉 � tr

(
SH
k DWk

)
defines an inner product between Sk and

DWk.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1218 MARCEL JOHO

Acknowledgments. The author would like to thank Pascal Vontobel for helpful
discussions and the anonymous reviewers for insightful comments and suggestions.
They all helped to improve this paper.

REFERENCES

[1] A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, A blind source sepa-
ration technique using second-order statistics, IEEE Trans. Signal Process., 45 (1997), pp.
434–444.

[2] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, MA, 1999.
[3] J. W. Brewer, Kronecker products and matrix calculus in system theory, IEEE Trans. Circuits

and Systems, 25 (1978), pp. 772–781.
[4] J.-F. Cardoso and A. Souloumiac, Blind beamforming for non Gaussian signals, IEE

Proceedings-F, 140 (1993), pp. 362–370.
[5] J.-F. Cardoso and A. Souloumiac, Jacobi angles for simultaneous diagonalization, SIAM J.

Matrix Anal. Appl., 17 (1996), pp. 161–164.
[6] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley & Sons, New York,

1987.
[7] B. Flury, Common principal components in k groups, J. Amer. Statist. Assoc., 79 (1984), pp.

892–897.
[8] B. N. Flury and W. Gautschi, An algorithm for simultaneous orthogonal transformation of

several positive definite symmetric matrices to nearly diagonal form, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 169–184.

[9] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
UK, 1990.

[10] M. Joho and K. Rahbar, Joint diagonalization of correlation matrices by using Newton
methods with application to blind signal separation, in IEEE Sensor Array and Multichannel
Signal Processing Workshop, Rosslyn, VA, 2002, pp. 403–407.

[11] D. G. Luenberger, Linear and Nonlinear Programming, 2nd ed., Addison-Wesley, Reading,
MA, 1989.

[12] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics
and Econometrics, 2nd ed., John Wiley & Sons, New York, 1999.

[13] J. H. Manton, Optimisation algorithms exploiting unitary constraints, IEEE Trans. Signal
Process., 50 (2002), pp. 635–650.

[14] D. T. Pham, Joint approximate diagonalization of positive definite Hermitian matrices, SIAM
J. Matrix Anal. Appl., 22 (2001), pp. 1136–1152.

[15] E. Polak, Optimization: Algorithms and Consistent Approximations, Springer-Verlag, Berlin,
1997.

[16] R. Vollgraf and K. Obermayer, Quadratic optimization for simultaneous matrix diagonal-
ization, IEEE Trans. Signal Process., 54 (2006), pp. 3270–3278.

[17] A. Yeredor, Non-orthogonal joint diagonalization in the least-squares sense with application
in blind source separation, IEEE Trans. Signal Process., 50 (2002), pp. 1545–1553.

[18] A. Yeredor, On using exact joint diagonalization for noniterative approximate joint diago-
nalization, IEEE Signal Process. Lett., 12 (2005), pp. 645–648.

[19] A. Yeredor, A. Ziehe, and K. R. Müller, Approximate joint diagonalization using a natural-
gradient approach, in Proceedings of the International Conference on Independent Com-
ponent Analysis and Blind Signal Separation (ICA), Granada, Spain, 2004, pp. 89–96.

[20] A. Ziehe, P. Laskov, and K.-R. Müller, A fast algorithm for joint diagonalization with
non-orthogonal transformations and its application to blind source separation, J. Mach.
Learn. Res., (2004), pp. 777–800.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2008 Society for Industrial and Applied Mathematics
Vol. 30, No. 3, pp. 1219–1232

A JACOBI-TYPE METHOD FOR COMPUTING ORTHOGONAL
TENSOR DECOMPOSITIONS∗

CARLA D. MORAVITZ MARTIN† AND CHARLES F. VAN LOAN‡

Abstract. Suppose A = (aijk) ∈ R
n×n×n is a three-way array or third-order tensor. Many

of the powerful tools of linear algebra such as the singular value decomposition (SVD) do not,
unfortunately, extend in a straightforward way to tensors of order three or higher. In the two-
dimensional case, the SVD is particularly illuminating, since it reduces a matrix to diagonal form.
Although it is not possible in general to diagonalize a tensor (i.e., aijk = 0 unless i = j = k), our goal
is to “condense” a tensor in fewer nonzero entries using orthogonal transformations. We propose an
algorithm for tensors of the form A ∈ R

n×n×n that is an extension of the Jacobi SVD algorithm for
matrices. The resulting tensor decomposition reduces A to a form such that the quantity

∑n
i=1 a

2
iii

or
∑n

i=1 aiii is maximized.

Key words. multilinear algebra, tensor decomposition, singular value decomposition, multidi-
mensional arrays

AMS subject classifications. 15A69, 65F30

DOI. 10.1137/060655924

1. Introduction. The SVD of a matrix gives us important information about
a matrix such as its rank, an orthonormal basis for the column or row space, and
reduction to diagonal form. In applications, especially those involving multiway data
analysis, information about the rank and reduction of tensors to have fewer nonzero
entries are useful concepts to try to extend to higher dimensions.

Suppose A = (aijk) ∈ R
n×n×n is a three-way array or third-order tensor. This

paper is about computing a tensor decomposition of A such that A is written as a
linear combination of rank-1 tensors of the form

w ⊗ v ⊗ u,(1.1)

where u, v, w ∈ R
n and “⊗” denotes the Kronecker product. The rank-1 tensor in

(1.1) can also be denoted using the tensor outer product notation. In particular, (1.1)
is equivalent to a vectorization of u ◦ v ◦ w.

The contribution of this paper is a higher-order generalization of the Jacobi SVD
algorithm for matrices [14, p. 457] that works by solving small subproblems where
n = 2. In the higher-order generalization, we find a tensor decomposition of the form

a =
n∑

i=1

n∑
j=1

n∑
k=1

σijk(wk ⊗ vj ⊗ ui),(1.2)

where ui, vj , and wk are the ith, jth, and kth columns of orthogonal matrices
U, V,W ∈ R

n×n, respectively, and σijk is the (i, j, k)th element of a tensor Σ ∈
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R
n×n×n. The orthogonal matrices U, V,W are chosen to maximize either the sums of

squares of the diagonals (
∑n

i=1 σ
2
iii) or the “trace” (

∑n
i=1 σiii).

Several Jacobi-like procedures have been implemented in the area of tensor de-
compositions already. In the case of symmetric tensors, there exist Jacobi algorithms
to compute tensor decompositions of real or complex tensors [6, 7, 8, 12]. In par-
ticular, [12] shows that the solution to the Jacobi subproblem for symmetric tensors
has an SVD solution of a particular symmetric matrix. We use a similar method
when we show how to maximize the trace of a tensor. A Jacobi-type algorithm in
[24] is used to simultaneously diagonalize positive definite Hermitian matrices using
nonorthogonal transformations. This is relevant to tensors since [13] shows that a
nonorthogonal tensor decomposition can be rewritten in terms of a simultaneous di-
agonalization problem for matrices. Furthermore, [13] proposes a Jacobi approach
to simultaneous diagonalization (see also [4]) and shows that maximizing the sums
of squares of the diagonals of a 2 × 2 × 2 tensor using orthogonal transformations is
equivalent to finding the roots of a polynomial of degree eight [13].

Tensor decompositions are used in many applications to help explain interactions
among multiway data. These applications include chemometrics [3, 27], psychometrics
[22], computer image and human motion recognition [29, 30], signal processing [25,
26], and many other areas using multiway data analyses [9]. Sometimes the tensor
decompositions have a minimal number of terms in the linear combination, therefore
“condensing” A into fewer nonzero entries so that interactions can be better explained.

A large amount of work has already been devoted to creating algorithms to com-
pute orthogonal tensor decompositions. The most widely used algorithm is TUCKER3
originally proposed by Tucker [28]. Many improvements have been made to the algo-
rithm since its original introduction, and the current version has been implemented
in a Matlab toolbox [1, 2]. A greedy algorithm to compute an orthogonal tensor
decomposition has been proposed by [21], and [10] uses TUCKER3 to describe a
higher-order generalization of the SVD for tensors. Several methods have also been
developed to compute a “compressed” third-order orthogonal tensor decomposition,
i.e., maximum variance of squares [16], maximum sums of squares of the diagonals
of each face of a tensor [22], and maximum sums of squares of the diagonals of a
third-order tensor [18].

A special case of TUCKER3 is the CANDECOMP-PARAFAC algorithm simul-
taneously proposed by [5] and [15]. Algorithms have also been developed to compute
the nearest rank-1 tensor to a given tensor A (see [11, 20, 21, 32]). Furthermore,
since the CANDECOMP-PARAFAC representation is equivalent to simultaneously
diagonalizing a set of matrices, there are a number of recent algorithms related to
simultaneous diagonalization (see [13] and the references therein).

Our presentation is organized as follows. First, we describe some matrix tools
necessary to describe tensors and tensor decompositions in section 2. In section 3 we
describe different ways to represent tensors. In sections 4 and 5 we describe the higher-
order generalization of the Jacobi SVD algorithm—first for tensors A ∈ R

2×2×2 and
then for general tensors A ∈ R

n×n×n. We examine the algorithm cost in section 6,
and describe a block version and an �×m×n version in sections 7 and 8, respectively.
Extending the algorithm to order-p tensors is discussed briefly in section 9. Finally,
in section 10 we examine the performance of the algorithm.

2. Some properties of the Kronecker product. We review a few essential
facts about the Kronecker product which are found in [31]. Computations that involve
the Kronecker product require an understanding of the vec and reshape operators.
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If B ∈ R
m×n, then vec(B) ∈ R

mn is the vector formed by “stacking” the columns of
B.

The vec operator can be used to convert between matrix-vector and matrix-
matrix products. For example, let F ∈ R

m×m, G ∈ R
n×n, X ∈ R

n×m. Then

Y = GXFT ⇐⇒ vec(Y ) = (F ⊗G)vec(X).(2.1)

Another important property of vec involves outer products. For x ∈ R
m, y ∈ R

n,
vec(xyT ) = y ⊗ x.

The vec operator can be used in combination with the outer product to write
certain matrix factorizations as vectors. For example, if A ∈ R

m×n and A = UBV T ,
where U ∈ R

m×m and V ∈ R
n×n, then

A =
m∑
i=1

n∑
j=1

bijuiv
T
j ⇐⇒ vec(A) =

m∑
i=1

n∑
j=1

bij(vj ⊗ ui),(2.2)

where ui, vj are the ith and jth columns of U and V , respectively.
We can also write vec(A) as a matrix-vector product. If a = vec(A) and b =

vec(B), then by (2.1)

a = (V ⊗ U) · b.(2.3)

The reshape operator is a more general way of rearranging the entries in a matrix
(it is also a Matlab function). If b ∈ R

mn, then reshape(b,m, n) creates an m × n
matrix from b. This operator is useful when converting between B ⊗ C and C ⊗ B.
If the vec permutation matrix Πn,mn ∈ R

mn×mn is defined by

Πn,mn =

⎡
⎢⎢⎢⎣

Imn(1 : m : mn, :)
Imn(2 : m : mn, :)

...
Imn(m : m : mn, :)

⎤
⎥⎥⎥⎦ ,

then it can be shown that (see [31])

ΠT
n,mn(B ⊗ C)Πn,mn = C ⊗B.

3. Tensor decompositions. We use the accepted notation where a third-order
tensor is indexed by three indices and can be represented as a “cube” of data [19].
While the cube orientation is not unique, here we say that the kth index indicates the
face of the cube. See Figure 1 for an illustration when n = 2.

An n×n×n tensor A is also a three-way array where the kth face is represented
using Matlab notation as A(:, :, k). The entries vec(A) can also be rearranged to
correspond to viewing the cube in different ways (see Figure 2 for an illustration
when n = 2). Viewing the tensor cube in different orientations corresponds to a
rearrangement of the elements of A. This can be better described by a permutation
of the elements of vec(A) by a reshape operation. For example, if A ∈ R

n×n×n and
a = vec(A), then the different cuts can be represented in vector form as

a1 = vec(reshape(ΠT
n,n3 · a, n, n2)) (top-bottom),

a2 = vec(reshape(ΠT
n2,n3 · a, n, n2)) (left-right),

a3 = vec(reshape(a, n, n2)) (front-back),

(3.1)
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� � �

Fig. 1. Illustration of a third-order tensor as a cube of data when n = 2.

�� ���������	 


�� ��������� 


�� ���������� 


Fig. 2. Three ways to cut a cube of data for a third-order tensor.

where a3 = vec(A). Viewing the different faces of the cube side by side as matrices
also corresponds to unfolding matrices [10] or matricizations [19].

The vec operator is used in the same way on tensors as on matrices. If A ∈
R

n×n×n, then vec(A) ∈ R
n3

is the vector formed by stacking the column vectors
vec(A(:, :, i)) for i = 1, . . . , n.

Hence, given A ∈ R
n×n×n, the basic goal of this work is to find orthogonal

matrices U, V,W ∈ R
n×n such that

a ≡ vec(A) =

n∑
i=1

n∑
j=1

n∑
k=1

σijk(wk ⊗ vj ⊗ ui),(3.2)

and either of the two quantities
∑n

i=1 σ
2
iii or

∑n
i=1 σiii are maximized. In (3.2), ui,

vj , and wk are the ith, jth, and kth columns of U , V , and W , respectively.
By (2.2) and (2.3), (3.2) can also be written as the matrix-vector product

a = (W ⊗ V ⊗ U) · σ,(3.3)

where σ = vec(Σ) and Σ = (σijk) ∈ R
n×n×n. The representation in (3.3) will be used

to describe our algorithm in the sections that follow.
One may ask whether it would be better to choose U , V , and W in (3.2) such that

the tensor Σ = (σijk) is “diagonal” (i.e., σijk = 0 unless i = j = k). In this scenario,
(3.2) reduces exactly to the matrix SVD in two dimensions. However, diagonality
from orthogonal transformations is possible only for tensors of order three or higher
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in special cases. In general it is not possible to find orthogonal matrices U, V,W such
that the tensor Σ is diagonal [10].

4. Jacobi-Compress algorithm for n × n × n tensors. We now describe
Jacobi-Compress, the higher-order generalization of the Jacobi SVD algorithm in
[14, p. 457]. The overall idea is to compute tensor decompositions of the form (3.2)
of 2 × 2 × 2 subtensors. Here, we explain the general procedure when A ∈ R

n×n×n.
The next section details how to solve the 2 × 2 × 2 subproblem.

In the spirit of the Jacobi SVD algorithm, the first step is to choose a (p, q) pair
and form the corresponding 2 × 2 × 2 subtensor Ã given by

Ã(:, :, 1) =

[
appp apqp
aqpp aqqp

]
, Ã(:, :, 2) =

[
appq apqq
aqpq aqqq

]
.

Using the representation in (3.3), suppose we have orthogonal matrices Ũ , Ṽ , W̃ ∈
R

2×2 such that ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σppp

σqpp

σpqp

σqqp

σppq

σqpq

σpqq

σqqq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (W̃T ⊗ Ṽ T ⊗ ŨT )

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

appp
aqpp
apqp
aqqp
appq
aqpq
apqq
aqqq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(4.1)

and either (σ2
ppp + σ2

qqq) or (σppp + σqqq) is maximized. To update a = vec(A) ∈ R
n3

,

set U to be the n× n identity matrix, except that I(p : q, p : q) = Ũ and analogously
for V and W . Then perform the update

σ ← (WT ⊗ V T ⊗ UT ) · a,(4.2)

where a = [vec(Ã(:, :, 1)); vec(Ã(:, :, 2))]. In practice, significant savings are achieved
by observing that the only elements of a that change are those with a p or q in the
index; i.e., the pth and qth front-back faces, the pth and qth side faces, and the pth
and qth top-bottom faces. This avoids the actual computation of the above Kronecker
product.

Rather than just repeating sweeps through all the possible (p, q) pairs as in the
Jacobi SVD algorithm, we alternate the view or orientation of the cube (Figure 2)
at each sweep. Therefore, one iteration of Jacobi-Compress includes three sweeps:
one sweep for each orientation. Changing the orientation simply involves a reshape

operation defined in (3.1). Jacobi-Compress is complete when an iteration does
not significantly change (within some specified tolerance) the sums of squares of the
diagonals or the trace of the tensor.

5. The 2 × 2 × 2 subproblem. Suppose A ∈ R
2×2×2 and a = vec(A). We

now show how to solve (4.1). That is, the goal is to find 2 × 2 orthogonal matrices
Ũ , Ṽ , and W̃ such that

σ = (W̃T ⊗ Ṽ T ⊗ ŨT )a

has maximum (σ2
111 + σ2

222) or (σ111 + σ222).
The idea behind solving the subproblem is an iterative approach that differs based

on whether we are maximizing the trace or sums of squares. However, both approaches
involve taking an SVD of a specific 2 × 2 matrix.
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5.1. Maximizing the trace. Maximizing the trace involves holding one vari-
able constant while varying the others. For example, suppose we have performed the
following three steps:

σ1 ← (I ⊗ Ṽ T
1 ⊗ ŨT

1 )a,

σ2 ← (W̃T
1 ⊗ I ⊗ ŨT

2 )σ1,

σ3 ← (W̃T
2 ⊗ Ṽ T

2 ⊗ I)σ2.

(5.1)

Then a tensor decomposition of a has been computed since

σ3 = (W̃T
2 ⊗ Ṽ T

2 ⊗ I)(W̃T
1 ⊗ I ⊗ ŨT

2 )(I ⊗ Ṽ T
1 ⊗ ŨT

1 )a

= (W̃T
2 W̃T

1 ⊗ Ṽ T
2 Ṽ T

1 ⊗ ŨT
2 ŨT

1 )a

= (W̃T ⊗ Ṽ T ⊗ ˜̃U
T

)a,

where Ũ = Ũ1Ũ2, Ṽ = Ṽ1Ṽ2, and W̃ = W̃1W̃2.
The steps in (5.1) illustrate the central idea behind our algorithm. After each

step, the trace of σ is maximized. The updates (5.1) are all algorithmically equivalent
since

ΠT
4,8(W̃

T ⊗ I ⊗ ŨT )Π4,8 = (I ⊗ ŨT ⊗ W̃T ),

ΠT
2,8(W̃

T ⊗ Ṽ T ⊗ I)Π2,8 = (I ⊗ W̃T ⊗ Ṽ T ).

Therefore it suffices to describe how to find Ũ , Ṽ such that

σ = (I ⊗ Ṽ T ⊗ ŨT )a.(5.2)

A remark about (5.2) is necessary. Equation (5.2) can be rewritten in terms of matrices
as [

σ111 σ121

σ211 σ221

]
= ŨT

[
a111 a121

a211 a221

]
Ṽ ,

[
σ112 σ122

σ212 σ222

]
= ŨT

[
a112 a122

a212 a222

]
Ṽ .

(5.3)

However, we emphasize that solving (5.3) is not a joint SVD problem. The joint SVD
problem [17, 23] uses a least squares approach to find matrices Ũ , Ṽ that diagonalize
the left two matrices above. A Jacobi-like algorithm was proposed in [23] that reduces
the problem to finding joint SVDs of 2×2 matrices by maximizing the sums of squares
of the diagonals. In [23] it is shown that the joint SVD problem with 2 × 2 matrices
has an explicit solution, namely, that maximizing the sums of squares is equivalent to
maximizing the trace. In our case, we are maximizing the sums of squares or trace of
the tensor diagonals. The two problems are not equivalent in our case.

The solution depends on whether Ũ and Ṽ are both rotation or reflection matrices
or whether one is a rotation matrix and one is a reflection matrix.

First, suppose Ũ1 and Ṽ1 are the rotation matrices

Ũ1 =

[
c1 s1

−s1 c1

]
, Ṽ1 =

[
c2 s2

−s2 c2

]
.(5.4)
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Then

tr(σ) = c1c2(a111 + a222) + s1c2(−a211 + a122)(5.5)

+ c1s2(−a121 + a212) + s1s2(a221 + a112).

If

B1 =

[
a111 + a222 a121 − a212

a211 − a122 a221 + a112

]
,(5.6)

then the (1, 1)-entry of ŨT
1 B1Ṽ1 is exactly (5.5). Therefore, maximizing (5.5) is equiva-

lent to finding the SVD of B1, since the largest singular value is the largest (1, 1)-entry
possible. The same result can be derived if Ũ1 and Ṽ1 are both reflection matrices. In
this scenario, we must ensure that the SVD consists of either both rotation matrices
or both reflection matrices. Using an SVD solution to the trace problem is similar to
a method used in [23] to compute the joint SVD.

Now, suppose that Ũ2 is a rotation matrix and Ṽ2 is a reflection matrix:

Ũ2 =

[
c1 s1

−s1 c1

]
, Ṽ2 =

[
c2 s2

s2 −c2

]
.(5.7)

Then

tr(σ) = c1c2(a111 − a222) + s1c2(a211 + a122)(5.8)

+ c1s2(−a121 − a212) + s1s2(a112 − a221).

If

B2 =

[
a111 − a222 a121 + a212

a211 + a122 a221 − a112

]
,(5.9)

then the (1, 1)-entry of ŨT
2 BT

2 Ṽ2 is exactly (5.8), and therefore maximizing (5.8) is
equivalent to taking the SVD of B2. The same result holds if Ũ2 is a reflection matrix
and Ṽ2 is a rotation matrix.

Comparing the (1,1)-entries of B1 and B2 determines how Ũ and Ṽ are chosen.
For example, if

a111 + a222 > a111 − a222,

then we use B1 and the SVD should involve either both rotation matrices or both
reflection matrices. On the other hand, if

a111 + a222 < a111 − a222,

then we compute the SVD of B2 and the result should involve one rotation matrix
and one reflection matrix.

5.2. Maximizing the sums of squares. Setting up the problem to maximiz-
ing the sums of squares in a similar way to section 5.1 involves solving a nonlinear
optimization problem that does not have a straightforward explicit solution. Here, we
instead hold two variables constant and vary the third, which results in an explicit
solution involving the SVD. The basic problem requires solving

σ1 ← (I ⊗ I ⊗ ŨT )a,

σ2 ← (I ⊗ Ṽ T ⊗ I)σ1,

σ3 ← (W̃T ⊗ I ⊗ I)σ2.

(5.10)
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Similar to section 5.1, each of the steps above are equivalent since they involve per-
muting the tensor elements at each step. We therefore describe how to find Ũ such
that

σ = (I ⊗ I ⊗ Ũ) a =

⎡
⎢⎢⎣

Ũ

Ũ

Ũ

Ũ

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a111

a211

a121

a221

a112

a212

a122

a222

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(5.11)

From (5.11), it suffices to find orthogonal Ũ that maximizes the sums of squares of
the diagonals of the matrix ŨA, where

A =

[
a111 a122

a211 a222

]
.(5.12)

Suppose the SVD of A is given by

A = U

[
σ1 0
0 σ2

] [
c s

−s c

]
,

where (c, s) is a cosine/sine pair. Indeed, if we have a 2× 2 orthogonal matrix Z such
that the sums of squares of the diagonals of

Z

[
σ1 0
0 σ2

] [
c s

−s c

]
(5.13)

are maximized, then we set Ũ = ZUT . We now explain how to obtain Z.
Without loss of generality, assume that Z is the rotation matrix

Z =

[
c̃ s̃

−s̃ c̃

]
.

From (5.13) we are trying to find the pair (c̃, s̃) that maximizes

(σ1c̃c− σ2s̃s)
2 + (−σ1s̃s + σ2c̃c)

2.(5.14)

After some simplification, (5.14) is equivalent to

(σ2
1 + σ2

2) −
∥∥∥∥M

[
c̃
s̃

]∥∥∥∥
2

2

,(5.15)

where

M =

[
σ2s σ1c
σ1s σ2c

]
.(5.16)

Since

σ2
1 + σ2

2 = ‖M‖2
F = σmax(M)2 + σmin(M)2,(5.17)

where σmax(M) and σmin(M) are the largest and smallest singular values of M ,
respectively, we choose [c̃, s̃]T to be the right singular vector of M associated to the
smallest singular value. This also means that the maximum sums of squares of the
diagonals of A are equal to σmax(M)2. The same result is obtained if Z is chosen to
be a reflection matrix.
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[Ũ , Ṽ , W̃ , σ] = Solve2-by-2-by-2(A)

a0 = vec(A)
for j = 1, 2, 3 (each dimension) do

% Solves σj = (I ⊗ Y T
j ⊗XT

j )σj−1

B ← reshape(σj−1, 2, 4)
Σ1 ← B(1 : 2, 1 : 2)
Σ2 ← B(1 : 2, 3 : 4)

if sums of squares are maximized then

A ← [Σ1(:, 1) Σ2(:, 2)]

[U, S, V ] = svd(A)

M ←
[

σ2s σ1c
σ1s σ2c

]
(See (5.16))

[Ū , S̄, V̄ ] = svd(M)

Z ←
[

v̄12 v̄22

−v̄22 v̄12

]

Xj ← ZUT ; Yj ←
[

1 0
0 1

]
;

σj ← vec([XjΣ1 | XjΣ2])

else if trace is maximized then
if a111 + a222 ≥ a111 − a222 then

B ←
[

a111 + a222 a121 − a212

a211 − a122 a221 + a112

]

else

B ←
[

a111 − a222 a121 + a212

a211 + a122 a221 − a112

]

end if

[Xj , S, Yj ] = svd(B)

σj ← vec
(
[ XT

j Σ1Yj | XjΣ2Yj ]
)

end if

end for
σ ← σ3; W̃ ← X2Y3; Ṽ ← Y1X3; Ũ ← X1Y2;

Fig. 3. Algorithm to solve the 2× 2× 2 subproblem.

6. Algorithm cost. Figures 3 and 4 contain Jacobi-Compress and its corre-
sponding 2 × 2 × 2 subproblem in pseudo-Matlab. Actual Matlab code can be
found at [33].

To assess the amount of work, note that each iteration of Jacobi-Compress

includes three sweeps through the cube, and each sweep involves n(n − 1)/2 (p, q)-
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[U, V,W, σ] = Jacobi-Compress(A)

σ ← vec(A)
U ← In; V ← In; W ← In;
X ← In; Y ← In; Z ← In;
repeat
σ0 ← σ
for s = 1, 2, 3 (each view of tensor cube) do

% One sweep of the cube
for p = 1 : n− 1 do

for q = p + 1 : n do

Set Σ ∈ R
2×2×2 to be the (p, q)-subtensor of σs−1

[Ũ , Ṽ , W̃ , σ̃] ← Solve2-by-2-by-2(Σ)

% update other entries
W ← In; V ← In; U ← In

Update (p, q)-entries of σs−1 with σ̃

W (p : q, p : q) ← W
V (p : q, p : q) ← V
U(p : q, p : q) ← U
σs ← (WT ⊗ V T ⊗ UT )σs−1

X(:, [p q]) ← X(:, [p q]) · U
Y (:, [p q]) ← Y (:, [p q]) · V ;
Z(:, [p q]) ← Z(:, [p q]) ·W ;

end for
end for
Us ← X; Vs ← Y ; Ws ← Z;

end for
σ ← σ̂3

U ← U ·X1Z2Y3

V ← V · Y1X2Z3

W ← W · Z1Y2X3

until convergence

Fig. 4. Jacobi-Compress for n× n× n tensors.

pairs. Solving the 2×2×2 subproblem is constant work in both the case of maximizing
the sums of squares and the trace. It is important to note that the update (4.2) can be
computed in linear time by only updating those elements that are affected. Therefore,
one iteration of Jacobi-Compress is O(n3).

7. Block version. Jacobi-Compress can be converted to a block algorithm by
representing an n×n×n tensor as an N×N×N block tensor with block size r×r×r,
where n = Nr. For example, a 6×6×6 tensor A can be regarded as a 3×3×3 block
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tensor with 2 × 2 × 2 entries. The block version chooses a (p, q) pair, a 2r × 2r × 2r
tensor, to be solved by Jacobi-Compress. Therefore, the only difference between the
block version and standard Jacobi-Compress is the order in which the subproblems
are solved.

8. Extension to �×m×n tensors. Thus far, we have considered only three-
way tensors for which each dimension is equal. Many applications involve data with
unequal dimensions. By padding the data with zeros, Jacobi-Compress can be used
for �×m× n tensors.

Specifically, if p̃ = max(�,m, n), then we pad the tensor with zeros that results
in a p̃ × p̃ × p̃ tensor. Similar to the Jacobi SVD algorithm, unwanted fill does not
occur. Note that computational shortcuts are taken so as to not actually store and
perform calculations with zeros. In particular, if, say, � >> m,n, then many of the
subproblems will contain all zeros. Therefore a sweep may contain considerably fewer
subproblems than p̃(p̃− 1)/2.

9. Extension to order-p tensors. Jacobi-Compress can be extended to p-
way tensors, but the results are not very practicable as p gets large. Maximizing the
sums of squares of the diagonals is a direct extension of the p = 3 case in section
5.2; i.e., it involves taking SVDs of p 2 × 2 matrices. Unfortunately, extending the
trace solution of section 5.1 does not involve an explicit solution to the subproblem
but instead requires the help of a nonlinear solver to solve the optimization problem.
More work is needed in this area.

10. Algorithm performance. In this section we describe the performance and
numerical convergence typically seen in practice. In randomly generated examples,
Jacobi-Compress typically converges in three iterations or less, i.e., the sums of
squares of the diagonals or trace do not improve (up to a specified tolerance) after three
iterations of the algorithm. We also note that in cases where a tensor is orthogonally
diagonalizable, our algorithm finds that optimal form. The next example shows the
compression of the algorithm.

Example 10.1. Let A ∈ R
3×3×3 be given by (in order of first face, second face,

third face)

A =

⎡
⎣ 8 8 3

10 5 7
10 5 4

10 8 10
8 3 7
5 5 3

9 3 4
7 7 6
2 7 5

⎤
⎦ .

Then Jacobi-Compress produces

Σ =

⎡
⎣ .15 −1.1 1.4

3.2 .01 .63
−2.2 4.8 .04

2.7 .01 −1.8
0 33.4 .03

−.17 .30 −.83

−1.8 −1.5 .05
−.66 .16 −1.6
−.03 −.17 −6.2

⎤
⎦ .

One way to measure the compression of the algorithm is to look at the the “percent
of norm” of the elements in the diagonals. For example, for an n× n× n tensor, we
can compute

γ =

∑n
i=1 σ

2
iii∑n

i,j,k=1 σ
2
ijk

,

which measures “how much” of the norm is contained in the diagonals of the tensor.
The closer γ is to one, the better the compression. If the tensor is diagonalizable with
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Fig. 5. Percent of total norm obtained in the diagonal entries for randomly generated starting
vectors using different metrics for compression for n× n× n tensors.

orthogonal transformations, γ should be equal to one. Figure 5 shows the average
value of γ for different n after running Jacobi-Compress for p = 3 and the direct
extension when p = 4. For comparison, γ tends to zero as n increases for random
vectors. The clear trend from Figure 5 is that compression decreases as n increases.
The inverse relationship between the amount of compression and n is expected since
we have relatively fewer elements with which to explain n3 or n4 entries of the tensor.
More importantly, however, is that the compression is quite high and tends to be
around 75 percent compared to before running Jacobi-Compress, which is the result
we focus attention to in Figure 5.

11. Conclusion. In this paper an algorithm based on the Jacobi SVD algorithm
for matrices is given to compute an orthogonal tensor decomposition. The resulting
tensor decomposition maximizes the sums of the squares of the “diagonals” or the
trace of the tensor. The idea of the algorithm is to compute tensor decompositions
of 2× 2× 2 subtensors using an alternating least squares approach. In each case, the
subproblem has an explicit solution involving the SVD. The general p-way case is still
being explored.
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TENSOR-PRODUCT APPROXIMATION TO MULTIDIMENSIONAL
INTEGRAL OPERATORS AND GREEN’S FUNCTIONS∗
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Abstract. The Kronecker tensor-product approximation combined with the H-matrix tech-
niques provides an efficient tool to represent integral operators as well as a discrete elliptic operator
inverse A−1 ∈ R

N×N in R
d (the discrete Green’s function) with a high spatial dimension d. In the

present paper we give a survey on modern methods of the structured tensor-product approximation
to multidimensional integral operators and Green’s functions and present some new results on the
existence of low tensor-rank decompositions to a class of function-related operators. The memory
space of the considered data-sparse representations is estimated by O(dn logq n) with q independent
of d, retaining the approximation accuracy of order O(n−δ), where n = N1/d is the dimension of the
discrete problem in one space direction. In particular, we apply the results to the Newton, Yukawa,

and Helmholtz kernels 1
|x−y| ,

e−λ|x−y|
|x−y| , and cos(λ|x−y|)

|x−y| , respectively, with x, y ∈ R
d.

Key words. hierarchical matrices, Kronecker tensor-product, Sinc approximation, integral
operators, high dimensions

AMS subject classifications. 65F50, 65F30, 46B28, 47A80

DOI. 10.1137/060657017

1. Introduction. In a wide range of applications one deals with quantities de-
scribed by higher-order tensors, which are the higher-order analogues of vectors and
matrices. Examples are multidimensional integral equations, elliptic, parabolic, and
hyperbolic boundary value problems posed in R

d, d ≥ 2, Lyapunov and Riccati matrix
equations, computation of spectral projection operators associated with the density
matrix ansatz for solving the Hartree–Fock equation, as well as collision integrals of
the deterministic Boltzmann equation. A naive numerical implementation of the cor-
responding multilinear algebra in the dimension N = nd with large d suffers from
the so-called curse of dimensionality because of the exponential scaling in d. This
phenomenon can be relaxed by invoking various data-sparse tensor-product formats
to represent the fully populated higher-order tensors.

As a result of developments over more than three decades, we now have several
well-established concepts of structured representation to higher-order tensors, which
are based either on the so-called Tucker model [27] or on the CANDECOMP/PARAFAC

(CP) decomposition [3, 21] (see section 2.1 for definitions). There are numerous suc-
cessful applications of the Tucker and CP models in higher-order statistics, indepen-
dent component analysis, chemometrics, telecommunications, signal processing, data
mining, mathematical biology, complexity theory, and many other fields.

In the present paper we give a survey on modern methods of the structured tensor-
product approximation to multidimensional integral operators and Green’s functions
and present some new results on the existence of low tensor-rank decompositions to
a class of function-related operators. In particular, we focus on the construction of
exponentially convergent in the tensor-rank decompositions. The asymptotic com-
plexity of considered data-sparse representations is estimated by O(dn logq n) with q
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independent of d, where n = N1/d is the dimension of the discrete problem in one
space direction. In particular, we apply the results to the Newton, the Yukawa, and

the Helmholtz potentials 1
|x−y| ,

e−λ|x−y|

|x−y| , and cos(λ|x−y|)
|x−y| , respectively, with x, y ∈ R

d.

The class of hierarchical (H) matrices allows an approximate matrix arithmetic
with almost linear complexity [14, 15, 16, 12]. An H-matrix approximation of the
class of operator-valued functions of elliptic operators was developed in [8, 9, 10, 13].
For multidimensional problems, even approximations with linear complexity O(nd)
are not satisfactory. To avoid an exponential scaling in d, one can try to represent the
corresponding data (matrices and vectors) in a tensor-product form (cf. [1, 19, 28])
to reach the complexity O(dn logq n) with q ≥ 1 independent of d (see section 2.2).
For this purpose the H-matrix approach can be combined with the tensor-product
approximations.

The hierarchical Kronecker tensor-product (HKT) representation of an integral
operator G : L2(Ω) → L2(Ω),

(Gu) (x) :=

∫
Ω

g(x, y)u(y)dy, x, y ∈ Ω := [0, 1]d ∈ R
d,

is based on a separable approximation to the explicitly given kernel function g(x, y)
accomplished with an H-matrix representation of the canonical factors (cf. [19, 17,
18]).

In [11, 18], the H-matrix techniques combined with the Kronecker tensor-product
approximation (cf. [19, 28]) were applied to represent the inverse of a discrete elliptic

operator L
−1 : H−1(Ω) → H1

0 (Ω) in a hypercube Ω := (0, 1)
d ∈ R

d,

L = −
d∑

j=1

∂

∂xj
aj(xj)

∂

∂xj
+

d∑
j=1

[
bj(xj)

∂

∂xj
+ cj(xj)

]
, x = (x1, . . . , xd) ∈ Ω.

The approach is based on the efficient quadrature approximation to a certain integral
representation of L

−1 (see section 4).
The rest of the paper is organized as follows. Section 2 presents a sketch on

multilinear algebra including the description of the canonical and Tucker models. In
section 3 we consider approximation of function-related tensors. Section 4 discusses
the tensor-product decomposition of multidimensional integral operators. In section 5
we consider data-sparse structured approximation of negative powers of elliptic oper-
ators. The appendix collects auxiliary results about the Sinc-approximation method.

2. Structured tensor-product decompositions.

2.1. Canonical and Tucker models. A dth order tensor A = [ai1...id ] ∈ C
I is

given, defined on the product index set I = I1 × · · · × Id. The canonical CP model is
defined by

(2.1) A(r) =

r∑
k=1

bk ×1 V
(1)
k ×2 · · · ×d V

(d)
k ≡

r∑
k=1

bk

d⊗
�=1

V
(�)
k ≈ A, bk ∈ C,

where the Kronecker factors V
(�)
k ∈ C

I� are unit-norm vectors. Here and in the
following we use the notation ×� to represent the canonical tensor

U ≡ {ui}i∈I = b×1 U
(1) ×2 · · · ×d U

(d) ∈ C
I ,
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defined by ui1...id = b · u(1)
i1

· · · u(d)
id

with U (�) ≡ {u(�)
i�

}i�∈I� ∈ C
I� . We make use of the

multi-index notation i := (i1, . . . , id) ∈ I.
The minimal number r in the representation (2.1) is called the Kronecker rank of

a given tensor A(r). We denote by Cr the set of componentwise normalized tensors
parametrized by (2.1) and by Cr,⊥ ⊂ Cr the corresponding subset of orthogonally

decomposable tensors (i.e., the columns of matrices V(�) = [V
(�)
1 V

(�)
2 . . . V

(�)
r ] (� =

1, . . . , d) are orthogonal).
The Tucker model deals with the approximation

(2.2) A(r) =

r1∑
k1=1

. . .

rd∑
kd=1

bk1...kd
×1 V

(1)
k1

×2 · · · ×d V
(d)
kd

≡
r∑

k=1

bk

d⊗
�=1

V
(�)
k�

≈ A,

where the Kronecker factors V
(�)
k�

∈ C
I� (k� = 1, . . . , r�, � = 1, . . . , d) are complex

vectors of the respective size n� = |I�|, r = (r1, . . . , rd) (the Tucker rank) and bk1...kd
∈

C.
Without loss of generality, we assume that the vectors {V (�)

k�
} are orthonormal,

i.e.,

〈
V

(�)
k�

, V (�)
m�

〉
= δk�,m�

, k�,m� = 1, . . . , r�; � = 1, . . . , d,

where δk�,m�
is Kronecker’s delta. In the following, we denote by T r the set of

tensors parametrized by (2.2) (i.e., V(�) = [V
(�)
1 V

(�)
2 . . . V

(�)
r� ] is an orthogonal matrix

for � = 1, . . . , d). We use the short notation

(2.3) A(r) = B ×1 V(1) ×2 V(2) · · · ×d V(d),

with tensors V(�) ∈ R
I�×r� and B = {bk} ∈ R

r1×···×rd , where the latter is called the
core tensor. Notice that the representation of elements A ∈ T r is still not unique due
to the rotational uncertainty in the core tensor B.

The decomposition (2.1) can be viewed as a special case of the Tucker model
(2.2), where r = r1 = · · · = rd and bk1···kd

= 0 unless k1 = k2 = · · · = kd, i.e., only
the superdiagonal of B = {bk} is nonzero. If we let r = r�, n = n� (� = 1, . . . , d), then
both the CP and Tucker models require only drn numbers to represent the canonical
components plus r (resp., rd) memory units for the core tensor.

The main computational problem is the approximation of a given higher-order
tensor A0 in a certain set of low-rank structured tensors S. In particular, S may
be one of the classes T r, Cr, or Cr,⊥ mentioned above. There are algebraic, an-
alytically based, and combined strategies for computing a Kronecker tensor-product
decomposition of a higher-order tensor.

Algebraic methods are the most general ones. The common approach is to derive
the components of A(r) (resp., A(r) ) by straightforward minimization of the quadratic
cost functional f(A) := ‖A −A0‖2,

(2.4) A(r) = argmin ‖A −A0‖2,

over all rank-r (resp., rank-r) tensors A ∈ S. Here and in the following we make
use of the Frobenius (energy) norm ‖A‖ :=

√
〈A,A〉 induced by the inner prod-

uct 〈A,B〉 :=
∑

(i1,...,id)∈I ai1...idbi1...id (the maximum-norm is defined by ‖A‖∞ :=

maxi∈I |ai|). The difficulties in the rigorous analysis and efficient implementation
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of the minimization process are due to (a) multiple local minima of the cost func-
tional, (b) degeneracy of a minimizing sequence (in the case of the CP model), and
(c) high-dimensional nonlinear optimization.

Analytically based representation methods are efficient for a special class of func-
tion-related operators/tensors. Combined methods are designed to take advantage of
both algebraic and analytic approaches and, at the same time, to relax their limita-
tions (cf. [24]).

In the case of the canonical decomposition one can find local minima of (2.4)
via Newton-type algorithms applied to the Lagrange equation corresponding to the
unconstrained minimization problem: Find A ∈ Cr and the Lagrange multipliers
λ(k,�) ∈ R such that

(2.5) 〈A −A0,A−A0〉 +

r∑
k=1

d∑
�=1

λ(k,�)
(
‖V (�)

k ‖2 − 1
)
→ min.

The complexity of one Newton step may be estimated at least by O(dr2n + rd).
As a second common approach, one can resort to an alternating least-squares

(ALS) algorithm which is as follows: let B = diag{b1, . . . , bd} in (2.1) and assume
that all matrices V(�), � �= m, are fixed. Then (2.4) is a quadratic expression in
the components of the matrix V(m) · B; hence we obtain a classical least-squares
problem. To drive the solution toward local minima, an ALS iteration repeats this
procedure for each component m = 1, . . . , d until convergence (or termination). The
components of B = diag{b1, . . . , bd} are obtained by normalization of the columns

V
(m)
k (k = 1, . . . , r). An alternative method to compute the canonical decomposition

was introduced in [5].
In general, the convergence analysis of both Newton’s and ALS schemes is still an

open question. In some cases, the lack of robust convergence of such nonlinear itera-
tions is due to the already mentioned effect of degeneracy of a minimizing sequence
(if d > 2, the corresponding set Cr of structured tensors is no longer closed).

Notice that in the case of orthogonally decomposable tensors in Cr,⊥ the incre-
mental rank-1 approximation algorithm correctly computes its CP representation (cf.
[25, 30]).

We refer to [4] concerning orthogonal rank-(r1, . . . , rd) Tucker decomposition.
Analytically based and combined methods will be the focus of the present paper.

2.2. Canonical HKT matrix decomposition. We consider the representa-
tion problem for a class of real-valued square matrices related to discrete multidi-
mensional operators posed in R

d, such that A ∈ R
N×N , N = nd. In general, such

matrices can be interpreted as high-order fully populated tensors, which makes the
standard matrix arithmetic almost nonfeasible. To overcome this difficulty, one needs
numerically tractable data-sparse representations of high-dimensional tensors.

The HKT format as proposed in [19, 17] reads

(2.6) A =
r∑

k=1

bkV
(1)
k ⊗ · · · ⊗ V

(d)
k , bk ∈ R,

where the Kronecker factors V
(�)
k ∈ R

n×n are H-matrices (see [12, 13, 14, 15, 16] for
the definition, approximation properties, and applications of H-matrices). We recall
that the Kronecker product of matrices A ⊗ B is defined as a block matrix [aijB],
provided that A = [aij ]. The operation “⊗” can be applied to arbitrary rectangular
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matrices (in particular, to row or column vectors) and in the multifactor version as
in (2.6).

We write A ∈ HKT(r,s) if A is of the form (2.6) and if the matrices V
(�)
k have a

hierarchical block partitioning (independent of k) with blocks of rank at most s. The
minimal number of Kronecker-product terms r involved is referred to as the Kronecker
rank.

Approximations of function-related matrices by matrices of the form (2.6) were
first studied in [19, 28]. The main result of these papers are estimates of the form r =
O(log2 ε) and r = O(| log ε| log n), where ε is the prescribed approximation accuracy.
However, if there is no structure in the Kronecker factors, then the storage is O(drn2),
while the matrix-times-matrix complexity is O(dr2n3), which may be far from being
satisfactory. A possible remedy is the hierarchical (H-matrix) approximation to the
Kronecker factors (HKT approximations) with the advantage of rigorously proved
existence theorems [19] with estimates of the form r = O(log2 ε), s = O(log ε−1)
(under certain assumptions on the origin of the matrices).

If A ∈ HKT(r,s), then only the V
(�)
k needs to be stored. Since, by definition,

they have the H-format, we arrive at the following complexity bounds (the linear
complexity would be O(nd)):

• the storage for A is O(drsn log n), indicating the sublinear complexity ;

• multiplication of A by a rank-r1 vector x =
∑r1

k=1 bkx
(1)
k ⊗ · · · ⊗ x

(d)
k requires

O(drr1sn log n) operations;
• the complexity of the matrix-matrix multiplication is O(dr2s2n logq n).

In this paper we discuss existence results for the low Kronecker rank approxima-
tion to a class of discrete integral operators.

2.3. General rank-(r1, . . . , rd) matrix decomposition. Let A ∈ R
I×I be a

real-valued matrix defined on the index set I := I1 ×· · ·× Id with I� = {1, . . . , n�}. A
matrix A can be multiplied by a vector X ∈ R

I , so that AX ∈ R
I . The generalization

to the case A ∈ R
I×J , X ∈ R

J , is straightforward.
A matrix A (resp., a vector X) can also be regarded as a dth order tensor A ∈

R
I2
1×···×I2

d (resp., X ∈ R
I1×···×Id).

Definition 2.1. We introduce the following rank-(r1, . . . , rd) tensor-product ma-
trix format:

(2.7) A =

r1∑
k1=1

. . .

rd∑
kd=1

bk1...kd
V

(1)
k1

⊗ · · · ⊗ V
(d)
kd

∈ R
I2
1×···×I2

d ,

where the Kronecker factors V
(�)
k�

∈ R
I�×I� , k� = 1, . . . , r�, � = 1, . . . , d, are matrices of

a certain structure (say, H-matrix, wavelet based format, Toeplitz/circulant, low-rank,
etc.). Here r = (r1, . . . , rd) is again called the Kronecker rank.

The matrix representation by the format (2.7) is a model reduction, which is a
generalization of the low-rank approximation of matrices, corresponding to the case
d = 2.

Remark 2.2. The matrix representation (2.7) is reminiscent of the Tucker decom-
position of multidimensional tensors (cf. (2.2)), while (2.6) comply with the CP model
(cf. (2.1)). With the help of the so-called n-mode tensor-matrix product (cf. [4]), we
introduce the short notation

(2.8) A = B ×1 V(1) ×2 V(2) · · · ×d V(d) ≡ B ×r {V},
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with tensors V(�) ∈ R
I�×I�×r� and B = {bk} ∈ R

r1×···×rd , where the latter is the core
tensor. We denote matrices by uppercase letters, e.g., A, and tensors by calligraphic
letters, e.g., B. In addition, we set A = [A1A2 . . . ], where Ai is the ith column

matrix/vector of A, e.g., V(�) = [V
(�)
1 V

(�)
2 . . . V

(�)
r� ].

Similarly to the class of tensors T r in the Tucker model, i.e., if the components

V
(�)
k�

∈ R
I� in (2.2) are mutually orthogonal vectors of an arbitrary structure, we

introduce the notation A ∈ T H,r for the tensor-product matrix format (2.8) with the
canonical components having hierarchical structure.

Clearly, we have

Cr = T r if r = 1; C⊥
r ⊂ T r if r = (r, . . . , r).

In general, the CP decomposition (2.1) cannot be retrieved by rotation and “diagonal
truncation” of the Tucker model. However, it is possible for orthogonally decompos-
able tensors in C⊥

r .
We simplify the complexity analysis and set r� = r, n� = n (� = 1, . . . , d);

the general case can be treated completely similarly. A dth order tensor is called
supersymmetric if it is invariant under arbitrary permutations of indices in {1, . . . , d}.

Lemma 2.3 (see [24]). The storage cost for A ∈ T H,r is estimated by O(drsn log n)
+ rd, while for the supersymmetric tensor we arrive at the memory consumption

O(rsn log n) + rd

d .
Multiplication by a rank-r0 vector requires O(drr0sn log n) operations. Let A1, A2

∈ T H,r. Then both A1A2 and the Hadamard matrix product A1A2 can be computed
and stored in O(dr2s2n log n) + r2d operations.

Proof. The storage requirement for A is trivial. Let X = ×1x1 ×2 · · · ×d xd with
x� ∈ R

I� . Then

AX ≡ B ×1 V(1) ×2 V(2) · · · ×d V(d)X = B ×1 V(1)x1 ×2 V(2)x2 · · · ×d V(d)xd

implies the second assertion. Now we set

A1 = B ×1 V(1) ×2 V(2) · · · ×d V(d), A2 = C ×1 U(1) ×2 U(2) · · · ×d U(d)

to obtain the representation

A1A2 =

(
r∑

k=1

bk

d⊗
�=1

V
(�)
k�

)(
r∑

m=1

cm

d⊗
�=1

U (�)
m�

)
=

r∑
k=1

r∑
m=1

bkcm

d⊗
�=1

V
(�)
k�

U (�)
m�

,

which includes dr2 canonical components, and where the core tensor {bkcm} has
(r2)d = r2d entries. Analogously, for the Hadamard product we have

A1 A2 =

(
r∑

k=1

bk

d⊗
�=1

V
(�)
k�

)

(

r∑
m=1

cm

d⊗
�=1

U (�)
m�

)
=

r∑
k=1

r∑
m=1

bkcm

d⊗
�=1

V
(�)
k�

 U (�)
m�

and take into account that the Hadamard product of two H-matrices has linear-
logarithmic cost (cf. [22]). This completes our proof.

In the case of the CP decomposition (2.6) we introduce the notation A ∈ CI×I,r
or more specifically A ∈ CH,r if the canonical components are matrices of the general
or H-matrix structure, respectively (in particular, we can now identify HKT(r,s) ≡
CH,r).
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3. Approximation of function generated tensors. In this section we discuss
the low Kronecker rank approximation of a special class of higher-order tensors related
to certain “discretizations” of multivariate functions, which will be called function-
generated tensors (FGTs). They directly arise from

(a) Nyström/collocation/Galerkin discretizations of integral operators;
(b) the approximation to some analytic matrix-valued functions.

3.1. Basic definitions. In the following we define FGTs corresponding to the
Nyström/collocation and Galerkin discretizations.

In the case of an interpolation method, we let I� = I�,1×· · ·× I�,p be the product
index set, where we use multi-indices i� = (i�,1, . . . , i�,p) ∈ I� (� = 1, . . . , d) with
the components i�,m ∈ {1, . . . , n} (m = 1, . . . , p). Furthermore, let ω� be a uniform

rectangular grid on Π := [a0, b0]
p, a0, b0 > 0, indexed by I�, and let {ζ(1)

i1
, . . . , ζ

(d)
id

}
with i� ∈ I� (� = 1, . . . , d) be a set of collocation points living on the tensor-product
lattice ωd := ω1 × · · · × ωd in a hypercube Ω := Πd ⊂ R

d with d = dp so that
(i1, . . . , id) ∈ I(d) := I1 × · · · × Id. We also define |i�| = maxm≤p |i�,m| and similarly
for |i|, i = (i1, . . . , id). In our applications we have d ≥ 2 with some fixed p = 1, 2, 3.

Definition 3.1 (collocation case, FGT(C)). Given a multivariate function g :
Ω → R, we introduce the collocation-type FGT of order d by

(3.1) A ≡ A(g) := [ai1...id ] ∈ R
I1×···×Id with ai1...id := g(ζ

(1)
i1

, . . . , ζ
(d)
id

).

In the case of Galerkin schemes we make use of tensor-product test functions
(3.2)

φi(x1, . . . , xd) =

d∏
�=1

φi�
� (x�), i = (i1, . . . , id) ∈ R

I1×···×Id , i� ∈ In := {1, . . . , n},

and ψj with j = (j1, . . . , jd) ∈ R
J1×···×Jd , j� ∈ In, of similar product form.

Definition 3.2 (Galerkin case, FGT(G)). Given a multivariate function g : Ω×
Ω → R with Ω ⊂ R

d, and a tensor-product basis set (3.2), we let p = 2, ζ(�) = (x�, y�),
m� = (i�, j�) ∈ M� := I�,1 × I�,2 and introduce the Galerkin-type dth order FGT by
A ≡ A(g) := [am1...md

] ∈ R
M1×...×Md with

(3.3) am1...md
:=

∫
Ω×Ω

g(ζ(1), . . . , ζ(d))φi(x1, . . . , xd)ψ
j(y1, . . . , yd)dxdy.

In the numerical calculations involving integral operators (e.g., arising from the
Hartree–Fock or Boltzmann equations), n may vary from several hundreds to several
thousands, and therefore, for d ≥ 3, a naive “entrywise” representation to the tensor
A in (3.1) amounts to substantial computer resources (at least of the order O(ndp)).

3.2. Kronecker rank in CP decomposition. We recall that CP-type decom-
positions like (2.1) (or (2.6) in the matrix case) can be derived by using a correspond-
ing separable expansion of the generating function g (see [17, 19] for more details).

Assume that we are given a set of functions {Φ(�)
k : R

p → R} (� = 1, . . . , d) with the
following property.

Proposition 3.3. Suppose that a multivariate function g : Ω → R can be
approximated by a separable expansion

(3.4) gr(ζ) :=

r∑
k=1

μkΦ
(1)
k (ζ(1)) · · ·Φ(d)

k (ζ(d)) ≈ g(ζ), ζ(�) ∈ R
p, � = 1, . . . , d,
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where μk ∈ R and Φ
(�)
k : Π → R. Then the FGT(C) defined by the CP decomposition

(2.1) via A(r) := A(gr) as in Definition 3.1 with

(3.5) V
(�)
k = {Φ(�)

k (ζ
(�)
i�

)}i�∈I�
∈ R

I� , bk = μk,

and the FGT(G), corresponding to the choice
(3.6)

V
(�)
k =

∫
Φ

(�)
k (ζ

(�)
i�

)φi�
� (x�)ψ

j�
� (y�)dx�dy� ∈ R

I�×J� , � = 1, . . . , d, k = 1, . . . , r,

both provide the error estimate ‖A(g) −A(r)(gr)‖∞ ≤ C‖g − gr‖L∞(Ω), where C = 1
in the FGT(C) case.

Proof. The analysis for FGT(C) is presented in [17]. In the Galerkin case we
readily obtain

|am1...md
− a(r)

m1...md
| =

∣∣∣∣
∫

Ω×Ω

(g(x, y) − gr(x, y))φ
i(x)ψj(y)dxdy

∣∣∣∣
≤ ‖g − gr‖L∞(Ω)

∫
Ω×Ω

∣∣φi(x)ψj(y)
∣∣ dxdy;

then the result follows.
In computationally efficient algorithms the separation rank r is supposed to be

as small as possible, while the set of functions {Φ(�)
k : R

p → R} can be fixed a priori
or chosen adaptively to the problem.

Though in general the construction of a decomposition (3.4) with small separa-
tion rank r is a complicated numerical task, in many interesting applications effi-
cient approximation methods are available. In particular, for a class of multivariate
functions (say, certain shift-invariant Green’s kernels in R

d) it is possible to obtain
a dimensionally independent Kronecker rank estimate r = O(log n| log ε|) based on
sinc-quadrature methods or an approximation by exponential sums (cf. case study
examples in [2, 17, 23]).

In the rest of this section we discuss the constructive CP decomposition of FGTs
applied to a general class of generating functions characterized in terms of their
Laplace transform. The construction is based on sinc-approximation methods.

We consider a class of multivariate functions g : R
d → R parametrized by g(ζ) =

G(ρ) with ρ = ρ1(ζ1) + · · ·+ ρd(ζd) > 0, ρ� : R
p → R+ (with small p ∈ N≥1), where a

univariate function G : R+ → R can be represented via the Laplace transform

G(ρ) =

∫
R+

G(τ)e−ρτdτ.

Now the FGT(G) approximation corresponds to p = 2, ζ� = (x�, y�). Without loss
of generality, we suppose that φi�

� (·) = φ(· + (i� − 1)h) (� = 1, . . . , d) with a single

scaling function φ, where h > 0 is the mesh parameter, and the same for ψj�
� (·).

We also simplify and set ρ� = ρ0(x�, y�) (� = 1, . . . , d) and, moreover, ρ0 : [a, b]2 →
[a1, b1] ⊂ R>0, while ρ ∈ [ad, bd] ⊂ R>0. The more general multilevel setting (say,
corresponding to a wavelet basis) can be analyzed completely similarly. For each
i, j ∈ In, we introduce the parameter-dependent function

Ψi,j(τ) :=

∫
R2

e−τρ0(x,y)φ(x + (i− 1)h)ψ(y + (j − 1)h)dxdy, τ ≥ 0,
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as well as an auxiliary function fI(τ) := G(τ)e−ρτ .
Theorem 3.4 (FGT(C) approximation). Assume that
(a) G(τ) has an analytic extension G(w), w ∈ ΩG, into a certain domain ΩG ⊂ C

which can be mapped conformally onto the strip Dδ (see the appendix), such that
w = φ(z), z ∈ Dδ, and φ−1 : ΩG → Dδ;

(b) for each ρ ∈ [ad, bd] with ad > 0, the function f(z) := φ′(z)fI(φ(z)) belongs
to the Hardy space H1(Dδ) with N(f,Dδ) < ∞ uniformly in ρ;

(c) f(t), t ∈ R, has (c1) exponential or (c2) hyperexponential decay as t → ±∞.
Then, for each M ∈ N+, the FGT (C), A(g), defined on [a, b]d allows an exponen-

tially convergent supersymmetric CP decomposition A(r) ∈ Cr with V
(�)
k as in (3.5),

where Φ
(�)
k (ζ(�)) = e−akζ

(�)

(� = 1, . . . , d), and where μk, ak are given by applying the
sinc-quadrature (6.2) with f(t) = φ′(t)fI(φ(t)), such that we have

(3.7) ‖A(g) −A(r)‖∞ ≤ Ce−αMν

with r = 2M + 1,

where ν = 1
2 , α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b) in the case

(c2).
(FGT(G) approximation) Assume that (a) holds and for each ρ ∈ [ad, bd] and

(i, j) ∈ I × J :

(b′) The transformed integrand f(z) := φ′(z)G(φ(z))
∏d

�=1 Ψi�j�(φ(z)) belongs to
the Hardy space H1(Dδ) with N(f,Dδ) < ∞ uniformly in ρ; item (c) holds.

Then, for each M ∈ N, the FGT (G), A(g), defined on [a, b]d allows a supersym-

metric CP decomposition A(r) ∈ Cr with V
(�)
k as in (3.6) that yields the error estimate

(3.7).
Proof. In the FGT(C) case, we directly apply the sinc-quadrature theory to the

transformed integrand f(z) to obtain TM (f, h) := h
∑M

k=−M f(kh) ≈ G(ρ) (cf. the
appendix) with

|G(ρ) − TM (ρ)| ≤ Ce−αMν

, ρ ∈ [ad, bd],

and with the respective α, ν. Combining this estimate with Proposition 3.3 and taking
into account the separability property of the exponential proves the first assertion.

To prove the FGT(G) case, we notice that by definition

aij =

∫
R+

G(τ)

d∏
�=1

Ψi�j�(τ)dτ for (i, j) ∈ I × J .

We again apply the sinc-quadrature to the transformed integrand f(z) and obtain the
exponential convergence as in the case of FGT(C) approximation. Notice that our
quadrature does not depend on the index (i, j), which completes the proof.

Theorem 3.4 proves the existence of a CP decomposition to the FGT A(g) with
the Kronecker rank r = O(| log ε| log n) (in the case (c2)) or r = O(log2 ε) (in the case
(c1)).

3.3. Rank estimates for rank-(r1, . . . , rd) Tucker model. For the class
of applications based on separation via tensor-product interpolation, the CP model
typically leads to the Kronecker rank estimate rCP = rd with r = O(log n| log ε|),
where the dimensional parameter d gets into the exponent. In such cases one can
apply the rank-(r1, . . . , rd) Tucker decomposition instead of the rank-rCP canonical
model.
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The next lemma shows that the error of the Tucker decomposition is directly
related to the error of the separable approximation of the generating function.

Lemma 3.5 (see [24]). Let g : Ω → R be approximated by a separable expansion
(3.8)

gr(ζ) :=

r1∑
k1=1

. . .

rd∑
kd=1

bk1...kd
Φ

(1)
k1

(ζ(1)) · · ·Φ(d)
kd

(ζ(d)) ≈ g, ζ(�) ∈ R
p, 1 ≤ � ≤ d,

where bk1...kd
∈ R. Then both the FGT (C) of the form A(r) := A(gr) ∈ T r generated

by gr with

(3.9) V
(�)
k�

= {Φ(�)
k�

(ζ
(�)
i�

)}i�∈I�
∈ R

I�

and the FGT (G), corresponding to the choice
(3.10)

V
(�)
k�

=

∫
Φ

(�)
k�

(ζ
(�)
i�

)φi�
� (x�)ψ

j�
� (y�)dx�dy� ∈ R

I�×J� , � = 1, . . . , d, k� = 1, . . . , r�,

provide the error estimate ‖A(g)−A(r)(gr)‖∞ ≤ C‖g− gr‖L∞(Ω), where C = 1 in the
FGT (C) case.

Proof. In the FGT(C) case, by the construction of A(r) we have

‖A −A(r)‖∞ = max
(i1,...,id)∈Id

{∣∣∣∣∣g(ζ(1)
i1

, . . . , ζ
(d)
id

) −
r1∑

k1=1

. . .

rd∑
kd=1

bk1...kd
Φ

(1)
k1

(ζ
(1)
i1

) · · ·Φ(d)
kd

(ζ
(d)
id

)

∣∣∣∣∣
}
,

which proves the first assertion. The Galerkin-type approximation can be analyzed
as in Proposition 3.3.

For a class of analytic functions with point singularities the expansion (3.8) can be
derived via tensor-product Sinc-interpolation, which is motivated by various favorable
features of the Sinc-basis in L2(R) (cf. [22]).

Corollary 3.6. Assume that g(ζ) satisfies the requirements for the tensor-
product sinc-interpolation (cf. the appendix). Then the FGT (C), A(g), allows an

exponentially convergent rank-(r, . . . , r) decomposition A(r) ∈ T r with V
(�)
k�

as in (3.9),

where Φ
(�)
k�

(ζ(�)) = sinc(−ak�
ζ(�)) (� = 1, . . . , d), and where bk are represented via the

sinc-interpolation (6.3) applied to the function g, such that

(3.11) ‖A(g) −A(r)‖∞ ≤ C(1 + logM)de−αMν

with r = 2M + 1,

with ν = 1
2 , α =

√
2πδb in the case (c1) and with ν = 1, α = 2πδb

log(2πaM/b) in the case

(c2) as in Theorem 3.4. A similar result holds in the FGT(G) case.

Proof. We apply Lemma 3.5, yielding an exponential error bound for the tensor-
product sinc-interpolation (cf. the appendix), which proves the first assertion. The
FGT(G) case can be analyzed similarly.

The error estimate (3.11) yields max� r� = O(| log ε|δ−1). In some cases we get
the estimate δ−1 = O(log n) (cf. [17]).
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4. Structured approximation of integral operators.

4.1. Canonical-HKT decomposition in R
d. The principal ingredient in the

HKT representation of integral operators in many spatial dimensions is a separable
approximation of the multivariate function representing the kernel of the operator.
Given the integral operator G : L2(Ω) → L2(Ω) in Ω := [0, 1]d ⊂ R

d, d ≥ 2,

(Gu) (x) :=

∫
Ω

g(x, y)u(y)dy, x, y ∈ Ω,

with some shift-invariant kernel function g(x, y) = g(|x−y|), which, therefore, can be
represented in the form

g(x, y) = G(ζ1, . . . , ζd) ≡ g

(√
ζ2
1 + · · · + ζ2

d

)
,

where ζ� = |x� − y�| ∈ [0, 1], � = 1, . . . , d.
In the case of a continuous kernel function one can apply the so-called Nyström

approximation with respect to the tensor-product grid ωh × ωh ∈ Πd × Πd,

(Gu) ≈
∑

yj∈ωh

g(xi, yj)u(yj), xi ∈ ωh.

Hence the previous analysis for the FGT(C) approximation directly applies to the
arising stiffness matrix A = {g(xi, yj)}.

In the presence of diagonal singularities, a separable approximation may be easier
for the following modified kernels. With some fixed 0 ≤ α0 < 1, we introduce the
auxiliary function

(4.1) F (ζ1, . . . , ζd) := (ζ1 · · · ζd−1)
α0G(ζ1, . . . , ζd).

In this section we suppose that the multivariate function F : R
d → R can be approx-

imated by a separable expansion

(4.2) Fr(ζ1, . . . , ζd) :=

r∑
k=1

Φ
(1)
k (ζ1) · · ·Φ(d)

k (ζd) ≈ F,

where the set of functions {Φ(�)
k : � = 1, . . . , d, k = 1, . . . , r} with Φ

(�)
k : [0, 1] → R

may be fixed or can be chosen adaptively. Various methods for constructing approx-
imations which are exponentially convergent in r are discussed in [17].

We consider a Galerkin scheme with tensor-product test functions

φi(x1, . . . , xd) = φi1
1 (x1) · . . . · φid

d (xd),

i = (i1, . . . , id), i� ∈ In := {1, . . . , n}, � = 1, . . . , d.

Now we approximate the Galerkin stiffness matrix

A = {(Gφi, φj)L2}i,j∈Id
n
∈ R

N×N , N = nd,

by a matrix A(r) of the form (2.6), where the V
(�)
k are n× n matrices given by

(4.3)

V
(�)
k =

{∫ 1

0

|x� − y�|−α� Φ�
k(|x� − y�|)φi�

� (x�)φ
j�
� (y�)dx�dy�

}n

i�,j�=1

, � = 1, . . . , d,
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with α� = α0, � = 1, . . . , d− 1, and αd = 0 (see (4.1)).
In the following we apply the approximation properties of asymptotically smooth

functions. We recall that a function g(x, y), x, y ∈ R
d, is called asymptotically smooth

if there exists γ ≥ 1, and p ∈ R such that for all x, y ∈ R
d, x �= y, and all multi-indices

α, β such that |α| + |β| > 0 with |α| = α1 + · · · + αd, there holds

|∂α
x ∂

β
y g(x, y)| ≤ Cα!β!γ|α|+|β||x− y|−p−|α|−|β|.

The next lemma shows that the error ‖A−A(r)‖∞ is directly related to the error
‖F − Fr‖∞ of the separable approximation (4.2) of F (see the discussion in [19]).
It also specifies sufficient conditions for H-matrix approximability to the Kronecker

factors V
(�)
k .

Lemma 4.1 (see [18]). Let (4.2) be valid; then for any i, j ∈ Idn , we have the
estimate

|ai,j − ari,j| ≤ ‖F − Fr‖∞
d∏

�=1

∥∥∥|x� − y�|−α� φi�
� (x�)φ

j�
� (y�)

∥∥∥
L1([0,1]×[0,1])

for the components of A−A(r). We assume that the function

g�,k(u, v) := |u− v|−α�Φ
(�)
k (|u− v|), (u, v) ∈ [0, 1]2,

is asymptotically smooth for � = 1, . . . , d, k = 1, . . . , r. Then, for low-order piecewise

polynomial basis functions, V
(�)
k can be approximated by a rank-m H-matrix Ṽ

(�)
k with

an error

‖V (�)
k − Ṽ

(�)
k ‖ ≤ Cηm for some η < 1.

Proof. By construction we obtain

|ai,j − ari,j| =

∣∣∣∣∣
∫

Ω×Ω

(F − Fr)

(
d∏

�=1

|x� − y�|−α�

)
φi(x)φj(y)dxdy

∣∣∣∣∣
≤ ‖F − Fr‖∞

∥∥∥∥∥
(

d∏
�=1

|x� − y�|−α�

)
φi(x)φj(y)

∥∥∥∥∥
L1(Ω×Ω)

= ‖F − Fr‖∞
d∏

�=1

∥∥∥|x� − y�|−α� φi�
� (x�)φ

j�
� (y�)

∥∥∥
L1([0,1]×[0,1])

,

where the last equation follows by inserting the tensor-product basis and by separating
the 2d-dimensional integral.

To prove the second statement, we note that V
(�)
k given by (4.3) appears to be

the exact Galerkin stiffness matrix for an integral operator with the kernel function
g�,k(u, v) defined on [0, 1] × [0, 1]. Since g�,k(u, v) is supposed to be asymptotically
smooth, the result follows by the conventional theory of the H-matrix approximation
(cf. [12, 14, 15, 16]).

Note that due to Lemma 4.1, ‖A − A(r)‖ can be easily estimated in, say, the
Frobenius, l2, or l∞ matrix norms. In particular, we have

‖A−A(r)‖∞ ≤ nd‖F − Fr‖∞
d∏

�=1

∥∥∥|x� − y�|−α�φi�
� (x�)φ

j�
� (y�)

∥∥∥
L1([0,1]×[0,1])

.
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Several methods of separable approximations to multivariate functions are presented
in [17]. In the general case, the approximability property (4.2) can be validated by

using the tensor-product Sinc-interpolation. In this case the function Φ
(�)
k (|u−v|) can

be proved to be asymptotically smooth. For the class of kernel functions approximated

by the quadrature method or by exponential sums, the factor Φ
(�)
k (|u−v|) even appears

to be globally smooth (indeed, it is the entire function).
Lemma 4.2 (see [18]). For both, the tensor-product Sinc-interpolation and quadra-

ture approximation methods, the function g�,k(u, v) from Lemma 4.1 is asymptotically
smooth.

Proof. In the first case we have

g�,k(u, v) = |u− v|−α�S(k, h)(φ−1(|u− v|)), u, v ∈ [0, 1],

where S(k, h) refers for the kth Sinc-function with step-size h, and (cf. [17, section 2])

φ−1(x) = arsinh

(
arcosh

(
1

x

))
.

Since the Sinc-function S(k, h)(x), x ∈ R, is holomorphic in x, and since the factor
|u−v|−α� is asymptotically smooth, we conclude that g�,k(u, v) is also asymptotically
smooth. In the case of a quadrature method, we obtain the entire function

Φ
(�)
k (|u− v|) = exp(−tk|u− v|2), tk > 0.

Then the previous argument completes the proof.
Applying Lemmas 4.1 and 4.2 proves the existence of a low Kronecker rank HKT

approximation to the class of multidimensional integral operators. In general, given
a tolerance ε > 0, we have the bound

r = O
([

log
(
h−1

)
log

(
ε−1

)
log

(
log ε−1

)]d−1
)
,

where h is the mesh parameter of the finite element discretization. However, for the
class of translation-invariant kernels (see [17] and the examples below), we obtain a
dimensionally independent bound

r = O
(
log

(
h−1

)
log

(
ε−1

)
log

(
log ε−1

))
.

4.2. Tucker-HKT approximation. Following Definition 3.2, we introduce the
dth order FGT(G) that represents the integral operator G,

A ≡ A(g) := [am1...md
] ∈ R

M1×···×Md

with

(4.4) am1...md
:=

∫
Ω×Ω

g(ζ(1), . . . , ζ(d))φi(x)φj(y)dxdy,

where

ζ(�) = (x�, y�), m� = (i�, j�) ∈ M� ≡ I� × I�, � = 1, . . . , d.

Assume that the kernel function g(x, y) ≡ g(ζ(1), . . . , ζ(d)) allows a separable approx-
imation (3.8) via the Sinc-interpolation that converges exponentially in r = max� r�
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(see Corollary 3.6). Then the associated rank-(r1, . . . , rd) Tucker decomposition in
T r (cf. Definition 2.1),

(4.5) A(r) =

r1∑
k1=1

. . .

rd∑
kd=1

bk1...kd
V

(1)
k1

⊗ · · · ⊗ V
(d)
kd

∈ R
M1×···×Md ,

is specified by the Kronecker factors V
(�)
k�

∈ R
M� , explicitly defined by

(4.6)

V
(�)
k�

=

∫
Φ

(�)
k�

(ζ
(�)
i�

)φi�
� (x�)φ

j�
� (y�)dx�dy� ∈ R

M� , � = 1, . . . , d, k� = 1, . . . , r�.

Let r = (r, . . . , r). Corollary 3.6 now yields the error estimate

(4.7) ‖A(g) −A(r)‖∞ ≤ Ce−αMν

with r = 2M + 1,

and with constants α, ν from (3.11).
As was already mentioned, (4.7) yields max� r� = O(| log ε|δ−1). In turn, for a

class of shift-invariant kernels we get the estimate δ−1 = O(log n). The numerical
complexity of the Tucker decomposition (4.5) is estimated by drn2 + rd. Applying

Lemma 4.2 we conclude that the functions Φ
(�)
k�

are asymptotically smooth; hence the

canonical components V
(�)
k�

can be approximated by a rank-m H-matrix Ṽ
(�)
k�

with an
error

‖V (�)
k�

− Ṽ
(�)
k�

‖ ≤ Cηm for some η < 1.

The storage cost for the corresponding Tucker-HKT approximation in T H,r has the
complexity drnm logq n + rd, while the complexity of further matrix operations is
estimated in Lemma 2.3. Notice that the Tucker-HKT approximation can be applied
to more general kernel functions compared with the canonical-HKT representation
(the latter is restricted to the class of translation-invariant kernels).

4.3. Examples: Newton, Yukawa, and Helmholtz potentials. Let x, y ∈
R

d, p = 2, and define ρ = |x− y|2 = ζ2
1 + · · ·+ ζ2

d with ζ� = x� − y� : R
2 → R, ζ ∈ R

d.
The family of functions

g(x, y) ≡ g(ζ) := 1/ρλ with λ ∈ R>0

arises in potential theory, in quantum chemistry, and in computational gas dynamics
(cf. [23]). The choice λ = 1/2 corresponds to the classical Newton potential, while
λ = −1/2 refers to the distance function.

Low separation rank decomposition to the multivariate functions 1/ρ, 1/
√
ρ and

to the related Galerkin approximations were discussed in [2, 17, 18, 19, 24], while the
kernel function ρμ, μ ∈ R, was considered in [23].

Let us take a closer look at the FGT(G) for the Newton potential 1/
√
ρ in the

hypercube [−R,R]d ∈ R
d. As a basic example, we consider piecewise linear finite

elements defined by scaling functions φ(x) = ψ(x) associated with a tensor-product
grid with step-size h > 0.

Lemma 4.3 (see [24]). The FGT (G) for the Newton potential 1/
√
ρ in the hy-

percube [−R,R]d ⊂ R
d allows a CP approximation with exponential convergence rate

(independent of d) as in (3.11) with ν = 1/2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TENSOR-PRODUCT APPROXIMATION 1247

Proof. We apply the FGT(G)-version of Theorem 3.4. In our case we have
ρ0(x, y) = (x− y)2 (x, y ∈ R); hence, making use of the Gaussian transform

1
√
ρ

=
2√
π

∫
R+

e−ρτ2

dτ,

we obtain Ψi,j(τ) = Ψ|i−j|(τ) :=
∫

R2 e
−τ2(x−y)2φ(x)ψ(y+ |i−j|h)dxdy, τ ≥ 0. Follow-

ing [26], we choose the analyticity domain as a sector ΩG := {w ∈ C : | arg(w)| < δ}
with apex angle 0 < 2δ < π/2 (here G = 1), and then apply the conformal map
ϕ−1 : ΩG → Dδ with w = ϕ(z) = ez, ϕ−1(w) = log(w) (cf. Theorem 3.4(a)).

To check condition (b′) of Theorem 3.4, first we notice that the transformed
integrand

f(z) := exp(z)
d∏

�=1

Ψi�j�(φ(z))

belongs to the Hardy space H1(Dδ). Let H = (H1, . . . , Hd) ∈ R
d with H� = |i�− j�|h

≤ R and let

(f ∗ g) (u) =

∫
R

f(x)g(u− x)dx

be the convolution product in R
d, provided that q(x) = |f | ∗ |g| is locally integrable.

Now, using the shift property of convolution, f(·+C)∗g(·) = f ∗g(·+C) and applying
the Fubini theorem in the form

(f ∗ g, μ)L2 =

∫
Rd×Rd

f(x)g(y)μ(x + y)dxdy, μ ∈ D(Rd),

we obtain (see [24] for more details)∫
Rd×Rd

e−w2|x−y|2φ(x)ψ(y −H)dxdy =

∫
Rd

e−w2|v−H|2(φ ∗ ψ)(v)dv,

taking into account that the functions φ and ψ have compact support [−h, h]d.
Notice that supp(φ ∗ψ) = [−2h, 2h]d. Now we estimate the constant N(f,Dδ) by

N(f,Dδ) =

∫
∂ΩG

|f(w)| |dw|

=

∫
∂ΩG

∫
Rd×Rd

∣∣∣e−w2|x−y|2φ(x)ψ(y −H)dxdy
∣∣∣ |dw|

= 2

∫
R+

∫
Rd

∣∣∣e−ζ2 exp(2iδ)|u−H|2(φ ∗ ψ)(u)du
∣∣∣ dζ

≤ 2

∫
Rd

∫
R+

∣∣∣e−ζ2 exp(2iδ)|u−H|2
∣∣∣ dζ |φ ∗ ψ|(u)du

= 2

∫
Rd

∫
R+

e−ζ2cos(2δ)|u−H|2dζ |φ ∗ ψ|(u)du

≤ Cmeas(supp(φ ∗ ψ))

diam(supp(φ ∗ ψ))
√
cos(2δ)

.

Finally, we check that condition (c1) is also valid, which completes the proof.
A similar result holds for the Yukawa potential (cf. [24]). Moreover, the above

arguments can be also applied to the analysis for the Helmholtz potential in the
domain [−R,R]d for a fixed and not too large R.
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4.4. Numerical tests. Numerical tests for the analytic CP approximation to
the FGT(C) representation of the Newton and some other potentials are given in [17].
In the following, we present the convergence history for the algebraically optimal rank-
(r, r, r) Tucker decomposition to the FGT(C) representations of the target integral
operators. We make use of the cell-centred collocation on the 30 × 30 × 30 tensor-
product grid on [0, R]d, where R = 10 for the first two kernel-functions and with
R = 2π for the Helmholtz kernel.
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Newton potential
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er
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Helmholtz potential

Fig. 4.1. Rank-(r, . . . , r) Tucker approximation to the Newton (top left), the Yukawa (top
right), and the Helmholtz (bottom) potentials for r = 1, . . . , 9, and with d = 3.

We compute the best rank-(r, r, r) Tucker approximation by the ALS algorithm
(implemented in MATLAB) applied to the Lagrange equation for the minimization
problem (2.4) with A ∈ T r (cf. [4]). Figure 4.1 indicates the exponential convergence
of the best rank-(r, r, r) approximation in r with r ∈ [1, 9] for each of the three
potentials considered.

5. Elliptic operator inverse.

5.1. General framework. We consider the elliptic operator L : H1
0 (Ω) →

H−1(Ω) given in the form

L = −
d∑

j=1

∂

∂xj
aj(xj)

∂

∂xj
+

d∑
j=1

[
bj(xj)

∂

∂xj
+ cj(xj)

]
, x = (x1, . . . , xd) ∈ Ω.

To derive the tensor-product representation, we employ a finite difference dis-
cretization A of L (e.g., a three-point stencil in each variable) using a uniform tensor-
product grid in R

d with n grid points in each spatial direction. The discretization
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matrix has the form A =
∑d

j=1 Aj with A,Aj ∈ R
N×N , N = nd, where the matrices

Aj are mutually commutable.
Let A be positive definite. The negative fractional power A−σ can be represented

by

(5.1) A−σ =
1

Γ(σ)

∫ ∞

0

tσ−1e−tAdt (σ > 0)

(cf. [11]), provided that the integral exists.
We apply an exponentially convergent quadrature rule (cf. [11, 23]) to represent

the integral (5.1) by a sum involving only factorized expressions,

A−σ ≈
M∑

k=−M

ckt
σ−1
k

d∏
j=1

exp(−tkAj) (tk, ck ∈ R quadrature points and weights),

which leads to the desired HKT representation (2.6). The complexity of the HKT
approximation can be estimated by O(dn logq n), where q is some fixed constant in-
dependent of d.

Note that with the choice A = −Δ, the representation (2.6) is of particular inter-
est in the cases σ = 1/2 (preconditioner of the Laplace–Beltrami operator (−Δ)1/2,
and for hypersingular integral operators, e.g., in BEM applications), σ = 1 (inverse
Laplacian), and σ = 2 (preconditioner for the biharmonic operator).

5.2. Laplace operator inverse. The finite difference “d-dimensional Lapla-
cian” on the uniform n×· · ·×n tensor-product grid (subject to homogeneous Dirichlet
boundary conditions) takes the form

A := V 1 ⊗ I ⊗ · · · × I + I ⊗ V 2 ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ V d ∈ R
nd×nd

with V j , I ∈ R
n×n, where I is the identity matrix and V j = tridiag{−1, 2,−1},

j = 1, . . . , d. We construct the CP approximation in the form

A(r) =

M∑
k=−M

ck

d⊗
�=1

exp(−tkV
j) ≈ A−1 (tk, ck ∈ R),

providing exponential convergence in r = 2M + 1. The choice of coefficients tk, ck
corresponds to the sinc-quadrature rule applied to the integral representation

1

ρ
=

∫
R+

e−ρτdτ ≡
∫

R

ete−ρetdt.

Figure 5.1 indicates the exponential convergence of the CP approximation A(r) in r in
the case of two different quadratures. We calculate (in MATLAB) the Laplace oper-
ator inverse on the domain (0, 1)d with n = 128 grid points in each spatial direction.
We recall that the memory requirements for our algorithm are estimated by O(drn)
(compare with the linear complexity N = nd).

Direct application of Theorem 6.1 in the case of exponential decay (6.4) with
b = 1 leads to the choice

tk = ekh, ck = htk, h = π/
√
M,
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Fig. 5.1. Rank-r CP approximation to the Laplace operator inverse with d = 3, 6, 9, 12.

providing the convergence rate

∥∥A−1 −A(r)

∥∥ ≤ Ce−π
√
M .

This case corresponds to the left part in Figure 5.1. Using a special substitution of
variables (see [17] for more details) we obtain an integral with hyperexponential decay
as in (6.5),

(5.2)
1

ρ
=

∫
R

f2(w)dw with f2(w) =
cosh(w)

1 + e− sinh(w)
e−ρ log(1+esinh(w)).

Substitution of h = C0 logM/M into (6.2) leads to the approximation error estimate

∥∥A−1 −A(r)

∥∥ ≤ Ce−sM/ log(M).

This case corresponds to the right-hand part in Figure 5.1.

6. Appendix: Sinc-approximation. Following the standard tools in the sinc
methods (cf. [26]), we introduce the Hardy space H1(Dδ) as the set of all complex-
valued functions f , which are analytic in the strip

Dδ := {z ∈ C : |�m z| < δ},

such that

N(f,Dδ) :=

∫
∂Dδ

|f(z)| |dz| =

∫
R

(|f(x + iδ)| + |f(x− iδ)|) dx < ∞.

Let

S(k, h)(x) =
sin [π(x− kh)/h]

π(x− kh)/h
≡ sinc

(
x

h
− k

)
(k ∈ Z, h > 0, x ∈ R)

be the kth Sinc-function with step-size h, evaluated at x, where the Sinc-function is
defined by

(6.1) sinc(z) =
sin(πz)

πz
, z ∈ C.
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Given f ∈ H1(Dδ), h > 0, and M ∈ N0, the corresponding sinc-quadrature read as

(6.2) TM (f, h) := h

M∑
k=−M

f(kh) ≈
∫

R

f(ξ)dξ.

The classical Sinc interpolant (cardinal series representation) reads as

(6.3) CM (f, h) =

M∑
ν=−M

S(ν, h)f(νh) ≈ f.

Theorem 6.1. Let f ∈ H1(Dδ), h > 0, and M ∈ N0 be given. If

(6.4) |f(ξ)| ≤ C exp(−b|ξ|) for all ξ ∈ R with b, C > 0,

then the quadrature error satisfies∣∣∣∣
∫

R

f(ξ)dξ − TM (f, h)

∣∣∣∣ ≤ Ce−
√

2πδbM with h =
√

2πδ/bM,

and with a positive constant C depending only on f, δ, b (cf. [26]). If f possesses the
hyperexponential decay

(6.5) |f(ξ)| ≤ C exp(−bea|ξ|) for all ξ ∈ R with a, b, C > 0,

then the choice h = log( 2πaM
b )/ (aM) leads to (cf. [10])∣∣∣∣

∫
R

f(ξ)dξ − TM (f, h)

∣∣∣∣ ≤ C N(f,Dδ) e−2πδaM/ log(2πaM/b).

If (6.4) holds, then the interpolation error satisfies (cf. [26])

‖f − CM (f, h)‖∞ ≤ CM1/2e−
√
πδbM with h =

√
πδ/bM.

Assuming the hyperexponential decay of f , we obtain (cf. [10])

‖f − CM (f, h)‖∞ ≤ C
N(f,Dδ)

2πδ
e−πδaM/ log(πaM/b) with h = log

(
πaM

b

)
/ (aM) .

Note that 2M + 1 is the number of quadrature/interpolation points. If f is an
even function, the number of quadrature/interpolation points reduces to M + 1.

The Sinc-interpolation method can be extended to the multidimensional case. Let
g�(·) : I� → R be a univariate parameter-dependent function, which is the restriction
of a multivariate function g onto I� with fixed remaining variables. Suppose that
g�(·) satisfies all the regularity and decay conditions above, uniformly in � = 1, . . . , d.
It is shown in [17] that the tensor-product Sinc-interpolation CM with respect to d
variables,

CMg := C
(1)
M . . . C

(d)
M g,

provides the exponential error estimate

|g(ζ) − CM (g, h)(ζ)| ≤ CΛd
M

2πδ
max

�=1,...,d
N(g�(·), Dδ) e

−πδM
log M

with the Lebesgue constant ΛM = O(logM), and where C
(�)
M g = C

(�)
M (g, h) denotes

the univariate Sinc-interpolation from (6.3) applied to the variable ζ� ∈ I�.
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SYMMETRIC TENSORS AND SYMMETRIC TENSOR RANK∗

PIERRE COMON† , GENE GOLUB‡ , LEK-HENG LIM‡ , AND BERNARD MOURRAIN§

Abstract. A symmetric tensor is a higher order generalization of a symmetric matrix. In this pa-
per, we study various properties of symmetric tensors in relation to a decomposition into a symmetric
sum of outer product of vectors. A rank-1 order-k tensor is the outer product of k nonzero vectors.
Any symmetric tensor can be decomposed into a linear combination of rank-1 tensors, each of which
is symmetric or not. The rank of a symmetric tensor is the minimal number of rank-1 tensors that
is necessary to reconstruct it. The symmetric rank is obtained when the constituting rank-1 tensors
are imposed to be themselves symmetric. It is shown that rank and symmetric rank are equal in a
number of cases and that they always exist in an algebraically closed field. We will discuss the notion
of the generic symmetric rank, which, due to the work of Alexander and Hirschowitz [J. Algebraic
Geom., 4 (1995), pp. 201–222], is now known for any values of dimension and order. We will also
show that the set of symmetric tensors of symmetric rank at most r is not closed unless r = 1.

Key words. tensors, multiway arrays, outer product decomposition, symmetric outer product
decomposition, candecomp, parafac, tensor rank, symmetric rank, symmetric tensor rank, generic
symmetric rank, maximal symmetric rank, quantics
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1. Introduction. We will be interested in the decomposition of a symmetric
tensor into a minimal linear combination of symmetric outer products of vectors (i.e.,
of the form v ⊗ v ⊗ · · · ⊗ v). We will see that a decomposition of the form

(1.1) A =
∑r

i=1
λivi ⊗ vi ⊗ · · · ⊗ vi

always exists for any symmetric tensor A (over any field). One may regard this as a
generalization of the eigenvalue decomposition for symmetric matrices to higher order
symmetric tensors. In particular, this will allow us to define a notion of symmetric
tensor rank (as the minimal r over all such decompositions) that reduces to the matrix
rank for order-2 symmetric tensors.

We will call (1.1) the symmetric outer product decomposition of the symmetric
tensor A and we will establish its existence in Proposition 4.2. This is often abbrevi-
ated as CanD in signal processing. The decomposition of a tensor into an (asymmet-
ric) outer product of vectors and the corresponding notion of tensor rank was first
introduced and studied by Frank L. Hitchcock in 1927 [29, 30]. This same decompo-
sition was rediscovered in the 1970s by psychometricians in their attempts to define
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data analytic models that generalize factor analysis to multiway data [60]. The name
candecomp, for canonical decompositions, was used by Carroll and Chang [11] and
the name parafac, for parallel factor analysis, was used by Harshman [28] for their
respective models.

The symmetric outer product decomposition is particularly important in the pro-
cess of blind identification of underdetermined mixtures (UDM), i.e., linear mixtures
with more inputs than observable outputs. See [14, 17, 20, 50, 51] and references
therein for a list of other application areas, including speech, mobile communications,
machine learning, factor analysis of k-way arrays, biomedical engineering, psychomet-
rics, and chemometrics.

Despite a growing interest in the symmetric decomposition of symmetric tensors,
this topic has not been adequately addressed in the general literature, and even less so
in the engineering literature. For several years, the alternating least squares algorithm
has been used to fit data arrays to a multilinear model [36, 51]. Yet the minimization
of this matching error is an ill-posed problem in general, since the set of symmetric
tensors of symmetric rank not more than r is not closed, unless r = 1 (see sections
6 and 8)—a fact that parallels the ill-posedness discussed in [21]. The focus of this
paper is mainly on symmetric tensors. The asymmetric case will be addressed in a
companion paper, and will use similar tools borrowed from algebraic geometry.

Symmetric tensors form a singularly important class of tensors. Examples where
these arise are higher order derivatives of smooth functions [40] and moments and
cumulants of random vectors [44]. The decomposition of such symmetric tensors into
simpler ones, as in the symmetric outer product decomposition, plays an important
role in independent component analysis [14] and constitutes a problem of interest
in its own right. On the other hand, the asymmetric version of the outer product
decomposition defined in (4.1) is central to multiway factor analysis [51].

In sections 2 and 3, we discuss some classical results in multilinear algebra [5, 26,
39, 42, 45, 64] and algebraic geometry [27, 65]. While these background materials are
well known to many pure mathematicians, we found that practitioners and applied
mathematicians (in signal processing, neuroimaging, numerical analysis, optimization,
etc.)—for whom this paper is intended—are often unaware of these classical results.
For instance, some do not realize that the classical definition of a symmetric tensor
given in Definition 3.2 is equivalent to the requirement that the coordinate array
representing the tensor be invariant under all permutations of indices, as in Definition
3.1. Many authors have persistently mislabeled the latter a “supersymmetric tensor”
(cf. [10, 34, 46]). In fact, we have found that even the classical definition of a symmetric
tensor is not as well known as it should be. We see this as an indication of the need to
inform our target readership. It is our hope that the background materials presented
in sections 2 and 3 will serve such a purpose.

Our contributions begin in section 4, where the notions of maximal and generic
rank are analyzed. The concepts of symmetry and genericity are recalled in sections
3 and 4, respectively. The distinction between symmetric rank and rank is made in
section 4, and it is shown in section 5 that they must be equal in specific cases. It is
also pointed out in section 6 that the generic rank always exists in an algebraically
closed field and that it is not maximal except in the binary case. More precisely,
the sequence of sets of symmetric tensors of symmetric rank r increases with r (in
the sense of inclusion) up to the generic symmetric rank and decreases thereafter. In
addition, the set of symmetric tensors of symmetric rank at most r and order d > 2 is
closed only for r = 1 and r = RS, the maximal symmetric rank. Values of the generic
symmetric rank and the uniqueness of the symmetric outer product decomposition
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are addressed in section 7. In section 8, we give several examples of sequences of
symmetric tensors converging to limits having strictly higher symmetric ranks. We
also give an explicit example of a symmetric tensor whose values of symmetric rank
over R and over C are different.

In this paper, we restrict our attention mostly to decompositions over the complex
field. A corresponding study over the real field will require techniques rather different
from those introduced here, as we will elaborate in section 8.2.

2. Arrays and tensors. A k-way array of complex numbers will be written
in the form A = [[aj1···jk ]]n1,...,nk

j1,...,jk=1, where aj1···jk ∈ C is the (j1, . . . , jk)-entry of
the array. This is sometimes also called a k-dimensional hypermatrix. We denote the
set of all such arrays by C

n1×···×nk , which is evidently a complex vector space of
dimension n1 · · ·nk with respect to entrywise addition and scalar multiplication. When
there is no confusion, we will leave out the range of the indices and simply write
A = [[aj1···jk ]] ∈ C

n1×···×nk .
Unless noted otherwise, arrays with at least two indices will be denoted in up-

percase; vectors are one-way arrays and will be denoted in bold lowercase. For our
purpose, only a few notations related to arrays [14, 20] are necessary.

The outer product (or Segre outer product) of k vectors u ∈ C
n1 ,v ∈ C

n2 , . . . , z ∈
C

nk is defined as

u ⊗ v ⊗ · · · ⊗ z := [[uj1vj2 · · · zjk ]]n1,n2,...,nk

j1,j2,...,jk=1.

More generally, the outer product of two arrays A and B, respectively, of orders k
and � is an array of order k + �, C = A⊗B with entries

ci1···ikj1···j� := ai1···ikbj1···j� .

For example, the outer product of two vectors, u⊗ v, is a matrix. The outer product
of three vectors, or of a matrix with a vector, is a 3-way array.

How is an array related to a tensor? Recall that a tensor is simply an element in
the tensor product of vector spaces [5, 26, 39, 42, 45, 64]. One may easily check that
the so-called Segre map

ϕ : C
n1 × · · · × C

nk → C
n1×···×nk ,

(u, . . . , z) �→ u ⊗ · · · ⊗ z

is multilinear. By the universal property of the tensor product [5, 26, 39, 42, 45, 64],
there exists a linear map θ

Since dim(Cn1⊗· · ·⊗C
nk) = dim(Cn1×···×nk), θ is an isomorphism of the vector spaces

C
n1 ⊗ · · · ⊗ C

nk and C
n1×···×nk . Consider the canonical basis of C

n1 ⊗ · · · ⊗ C
nk ,

{e(1)
j1

⊗ · · · ⊗ e
(k)
jk

| 1 ≤ j1 ≤ n1, . . . , 1 ≤ jk ≤ nk},
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where {e(�)
1 , . . . , e

(�)
n� } denotes the canonical basis in C

n� , � = 1, . . . , k. Then θ may be
described by

θ
(∑n1,...,nk

j1,...,jk=1
aj1,...,jke

(1)
j1

⊗ · · · ⊗ e
(k)
jk

)
= [[aj1···jk ]]n1,...,nk

j1,...,jk=1.

So an order-k tensor in C
n1⊗· · ·⊗C

nk and a k-way array in C
n1×···×nk that represents

the tensor with respect to a basis may be regarded as synonymous (up to, of course,
the choice of basis). We will illustrate how the k-array representation of an order-k
tensor is affected by a change-of-basis. Let A = [[aijk]] ∈ C

n1×n2×n3 and let L, M ,
and N be three matrices of size r1 × n1, r2 × n2, and r3 × n3, respectively. Then
the tensor A may be transformed by the multilinear map (L,M,N) into a tensor
A′ = [[a′pqr]] ∈ C

r1×r2×r3 defined by

(2.1) a′pqr =
∑

i,j,k
lpimqjnrkaijk.

When ri = ni and L,M,N are nonsingular matrices, the above multilinear map may
be thought of as a change-of-bases (refer to [21] for further discussions). We will call
this map a multilinear transform of A.

In addition to the outer product, we also have an inner product or contraction
product of two arrays. The mode-p inner product between two arrays A,B having the
same pth dimension is denoted A•pB and is obtained by summing over the pth index.
More precisely, if A and B are of orders k and �, respectively, this yields for p = 1 the
array C = A•1B of order k + �− 2:

ci
2
···ikj2 ···j� =

∑
α
aαi

2
···ikbαj2 ···j� .

Note that some authors [20, 24, 60] denoted this contraction product as A ×p B or
〈A,B〉p. By convention, when the contraction is between a tensor and a matrix, it
is convenient to assume that the summation is always done on the second matrix
index. For instance, the multilinear transform in (2.1) may be expressed as A′ =
A•1L•2M•3N . An alternative notation for (2.1) from the theory of group actions is
A′ = (L,M,N) · A, which may be viewed as multiplying A on “three sides” by the
matrices L, M , and N [21, 32].

3. Symmetric arrays and symmetric tensors. We shall say that a k-way
array is cubical if all its k dimensions are identical, i.e., n1 = · · · = nk = n. A cubical
array will be called symmetric if its entries do not change under any permutation of its
k indices. Formally, if Sk denotes the symmetric group of permutations on {1, . . . , k},
then we have the following definition.

Definition 3.1. A k-way array [[aj1···jk ]] ∈ C
n×···×n is called symmetric if

aiσ(1)···iσ(k)
= ai1···ik , i1, . . . , ik ∈ {1, . . . , n},

for all permutations σ ∈ Sk.
For example, a 3-way array [[aijk]] ∈ C

n×n×n is symmetric if

aijk = aikj = ajik = ajki = akij = akji

for all i, j, k ∈ {1, . . . , n}.
Such arrays have been improperly labeled “supersymmetric” tensors (cf. [10, 34,

46] among others); this terminology should be avoided since it refers to an entirely
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different class of tensors [7]. The word “supersymmetric” has always been used in
both mathematics and physics [25, 61, 63] to describe objects with a Z2-grading, and
so using it in the sense of [10, 34, 46] is both inconsistent and confusing. (The correct
usage will be one in the sense of [7].) In fact, we will show in Proposition 3.7 that
there is no difference between Definition 3.1 and the usual definition of a symmetric
tensor in mathematics [5, 26, 39, 42, 45, 64]. In other words, the prefix “super” in
“supersymmetric tensor,” when used in the sense of [10, 34, 46], is superfluous.

We will write Tk(Cn) := C
n⊗· · ·⊗C

n (k copies), the set of all order-k dimension-
n cubical tensors. We define a group action Sk on Tk(Cn) as follows. For any σ ∈ Sk

and xi1 ⊗ · · · ⊗ xik ∈ Tk(Cn), we let

σ(xi1 ⊗ · · · ⊗ xik) := xiσ(1)
⊗ · · · ⊗ xiσ(k)

and extend this linearly to all of Tk(Cn). Thus each σ ∈ Sk defines a linear operator
σ : Tk(Cn) → Tk(Cn). The standard definition of a symmetric tensor in mathematics
[5, 26, 39, 42, 45, 64] looks somewhat different from Definition 3.1 and is given as
follows.

Definition 3.2. An order-k tensor A ∈ Tk(Cn) is symmetric if

(3.1) σ(A) = A

for all permutations σ ∈ Sk. The set of symmetric tensors in Tk(Cn) will be denoted
by Sk(Cn).

Let S : Tk(Cn) → Tk(Cn) be the linear operator defined by

S :=
1

k!

∑
σ∈Sk

σ.

Note that given any σ ∈ Sk,

σ ◦ S = S ◦ σ = S.

Here ◦ denotes the composition of the linear operators σ and S.
Proposition 3.3. An order-k tensor A ∈ Tk(Cn) is symmetric if and only if

S(A) :=
1

k!

∑
σ∈Sk

σ(A) = A.

Proof. Clearly, if A is symmetric, then

S(A) =
1

k!

∑
σ∈Sk

σ(A) =
1

k!

∑
σ∈Sk

A = A.

Conversely, if S(A) = A, then

σ(A) = σ(S(A)) = σ ◦ S(A) = S(A) = A

for all σ ∈ Sk; and so A is symmetric.
In other words, a symmetric tensor is an eigenvector of the linear operator S with

eigenvalue 1. Sk(Cn) is the 1-eigenspace of S : Tk(Cn) → Tk(Cn). Proposition 3.3
implies that Sk(Cn) = S(Tk(Cn)) and it is also easy to see that S is a projection of
Tk(Cn) onto the subspace Sk(Cn), i.e., S2 = S.
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3.1. Equivalence with homogeneous polynomials. We adopt the following
standard shorthand. For any ei1 , . . . , eik ∈ C

n with i1, . . . , ik ∈ {1, . . . , n}, we write

(3.2) ei1 · · · eik := S(ei1 ⊗ · · · ⊗ eik) =
1

k!

∑
σ∈Sk

eiσ(1)
⊗ · · · ⊗ eiσ(k)

.

Then since Sσ = S, the term ei1 · · · eik depends only on the number of times each ei
enters this product and we may write

(3.3) ei1 · · · eik = ep1

1 · · · epn
n ,

where pi is the multiplicity (which may be 0) of occurrence of ei in ei1 · · · eik . Note
that p1, . . . , pn are nonnegative integers satisfying p1 + · · · + pn = k.

Proposition 3.4. Let {e1, . . . , en} be a basis of C
n. Then

{S(ei1 ⊗ · · · ⊗ eik) | 1 ≤ i1 ≤ · · · ≤ ik ≤ n}

or, explicitly,

{ 1

k!

∑
σ∈Sk

eiσ(1)
⊗ · · · ⊗ eiσ(k)

∣∣∣ 1 ≤ i1 ≤ · · · ≤ ik ≤ n
}

is a basis of Sk(Cn). Furthermore,

dimC Sk(Cn) =

(
n + k − 1

k

)
.

Proof. Since B = {ei1 ⊗ · · · ⊗ eik | 1 ≤ i1 ≤ n, . . . , 1 ≤ ik ≤ n} is a basis for
Tk(Cn) and since S maps Tk(Cn) onto Sk(Cn), the set

S(B) = {ei1 · · · eik | 1 ≤ i1 ≤ · · · ≤ ik ≤ n} = {ep1

1 · · · epn
n | p1 + · · · + pn = k}

spans Sk(Cn). Vectors in S(B) are linearly independent: if (p1, . . . , pn) 
= (q1, . . . , qn),
then the tensors ep1

1 · · · epn
n and eq11 · · · eqnn are, respectively, linear combinations of

two nonintersecting subsets of basis elements of Tk(Cn). The cardinality of S(B) is
precisely the number of partitions of k into a sum of n nonnegative integers, i.e.,(
n+k−1

k

)
.

If we regard ej in (3.3) as variables (i.e., indeterminates), then every symmetric
tensor of order k and dimension n may be uniquely associated with a homogeneous
polynomial of degree k in n variables. Recall that these are just polynomials in n
variables whose constituting monomials all have the same total degree k. Homogeneous
polynomials are also called quantics and those of degrees 1, 2, and 3 are often called
linear forms, quadratic forms, and cubic forms (or just cubics), respectively. From
now on, we will use more standard notation for the variables—xj instead of ej . So the
monomial on the right-hand side of (3.3) now becomes xp1

1 · · ·xpn
n . To further simplify

this notation, we will adopt the following standard multi-index notation:

xp :=
∏n

k=1
xpk

k and |p| :=
∑n

k=1
pk,

where p denotes a k-vector of nonnegative integers. We will also write C[x1, . . . , xn]k
for the set of homogeneous polynomials of degree k in n variables (again a standard
notation). Then any symmetric tensor [[aj1···jk ]] = [[aj ]] ∈ Sk(Cn) can be associated
with a unique homogeneous polynomial F ∈ C[x1, . . . , xn]k via the expression

(3.4) F (x) =
∑

j
ajx

p(j),
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where for every j = (j1, . . . , jk), one associates bijectively the nonnegative integer
vector p(j) = (p1(j), . . . , pn(j)) with pj(j) counting the number of times index j
appears in j [16, 14]. We have in particular |p(j)| = k. The converse is true as well,
and the correspondence between symmetric tensors and homogeneous polynomials is
obviously bijective. Thus

(3.5) Sk(Cn) ∼= C[x1, . . . , xn]k.

This justifies the use of the Zariski topology, where the elementary closed subsets
are the common zeros of a finite number of homogeneous polynomials [49]. Note that
for asymmetric tensors, the same association is not possible (although they can still
be associated with polynomials via another bijection). As will be subsequently seen,
this identification of symmetric tensors with homogeneous polynomials will allow us
to prove some interesting facts about symmetric tensor rank.

We will now proceed to define a useful “inner product” on C[x1, . . . , xn]k. For any
F,G ∈ C[x1, . . . , xn]k written as

F (x) =
∑

|p|=k

(
k

p1, . . . , pn

)
apx

p, G(x) =
∑

|p|=k

(
k

p1, . . . , pn

)
bpx

p,

we let

〈F,G〉 :=
∑

|p|=k

(
k

p1, . . . , pn

)
apbp =

∑
p1+···+pn=k

k!

p1! · · · pn!
ap1···pnbp1···pn .

Note that 〈·, ·〉 cannot be an inner product in the usual sense since 〈F, F 〉 is in general
complex valued (recall that for an inner product, we will need 〈F, F 〉 ≥ 0 for all F ).
However, we will show that it is a nondegenerate symmetric bilinear form.

Lemma 3.5. The bilinear form 〈·, ·〉 : C[x1, . . . , xn]k×C[x1, . . . , xn]k → C defined
above is symmetric and nondegenerate. In other words, 〈F,G〉 = 〈G,F 〉 for every
F,G ∈ C[x1, . . . , xn]k, and if 〈F,G〉 = 0 for all G ∈ C[x1, . . . , xn]k, then F ≡ 0.

Proof. The bilinearity and symmetry is immediate from definition. Suppose 〈F,G〉 =
0 for all G ∈ C[x1, . . . , xn]k. Choose G to be the monomials

Gp(x) =

(
k

p1, . . . , pn

)
xp,

where |p| = k, and we see immediately that

ap = 〈F,Gp〉 = 0.

Thus F ≡ 0.
In the special case where G is the kth power of a linear form, we have the fol-

lowing lemma. The main interest in introducing this inner product lies precisely in
establishing this lemma.

Lemma 3.6. Let G = (β1x1 + · · ·+ βnxn)k. Then for any F ∈ C[x1, . . . , xn]k, we
have

〈F,G〉 = F (β1, . . . , βn),

i.e., F evaluated at (β1, . . . , βn) ∈ C
n.
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Proof. Let bp = βp1

1 · · ·βpn
n for all p = (p1, . . . , pn) such that |p| = k. The multi-

nomial expansion then yields

(β1x1 + · · · + βnxn)k =
∑

|p|=k

(
k

p1, . . . , pn

)
bpx

p.

For any F (x) =
∑

|p|=k

(
k

p1,...,pn

)
apx

p,

F (β1, . . . , βn) =
∑

|p|=k

(
k

p1, . . . , pn

)
apbp = 〈F,G〉

as required.

3.2. Equivalence with usual definition. As mentioned earlier, we will show
that a tensor is symmetric in the sense of Definition 3.2 if and only if its corresponding
array is symmetric in the sense of Definition 3.1.

Proposition 3.7. Let A ∈ Tk(Cn) and [[aj1···jk ]] ∈ C
n×···×n be its corresponding

k-array. Then

σ(A) = A

for all permutations σ ∈ Sk if and only if

aiσ(1)···iσ(k)
= ai1···ik , i1, . . . , ik ∈ {1, . . . , n},

for all permutations σ ∈ Sk.
Proof. Suppose [[ai1···ik ]] ∈ C

n×···×n is symmetric in the sense of Definition 3.1.
Then the corresponding tensor

A =
∑n

i1,...,ik=1
ai1···ikei1 ⊗ · · · ⊗ eik ,

where {e1, . . . , en} denotes the canonical basis in C
n, satisfies the following:

S(A) =
∑n

i1,...,ik=1
ai1···ikS(ei1 ⊗ · · · ⊗ eik) (S linear)

=
1

k!

∑n

i1,...,ik=1
ai1···ik

[∑
σ∈Sk

eiσ(1)
⊗ · · · ⊗ eiσ(k)

]

=
1

k!

∑n

i1,...,ik=1

[∑
σ∈Sk

aiσ(1)···iσ(k)

]
ei1 ⊗ · · · ⊗ eik

=
1

k!

∑n

i1,...,ik=1
k!ai1···ikei1 ⊗ · · · ⊗ eik ([[ai1···ik ]] symmetric)

= A.

Hence A is a symmetric tensor in the sense of Definition 3.2.
Conversely, let A ∈ Tk(Cn) be symmetric in the sense of Definition 3.2 and

A =
∑n

i1,...,ik=1
ai1···ikei1 ⊗ · · · ⊗ eik

be the expression of A with respect to {ei1⊗· · ·⊗eik | 1 ≤ i1, . . . ik ≤ n}, the canonical
basis of Tk(Cn). Then

S(A) = A
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implies

∑n

i1,...,ik=1

[
1

k!

∑
σ∈Sk

aiσ(1)···iσ(k)

]
ei1 ⊗· · ·⊗eik =

∑n

i1,...,ik=1
ai1···ikei1 ⊗· · ·⊗eik .

Since {ei1 ⊗ · · · ⊗ eik | 1 ≤ i1, . . . ik ≤ n} is a linearly independent set, we must have

(3.6)
1

k!

∑
σ∈Sk

aiσ(1)···iσ(k)
= ai1···ik for all i1, . . . , ik ∈ {1, . . . , n}.

For any given τ ∈ Sk, we have

aiτ(1)···iτ(k)
=

1

k!

∑
σ∈Sk

aiσ(τ(1))···iσ(τ(k))
(by (3.6))

=
1

k!

∑
σ∈τSk

aiσ(1)···iσ(k)

=
1

k!

∑
σ∈Sk

aiσ(1)···iσ(k)
(τSk = Sk as Sk is a group)

= ai1···ik (by (3.6)).

Since this holds for arbitrary τ ∈ Sk, the array [[ai1···ik ]] is symmetric in the sense of
Definition 3.1.

4. Notions of rank for symmetric tensors. We will discuss two notions of
rank for symmetric tensors—the outer product rank (defined for all tensors) and the
symmetric outer product rank (defined only for symmetric tensors). We will show
that under certain conditions, they are one and the same. However, it is not known if
they are equal on all symmetric tensors in general.

4.1. Outer product decomposition and rank. Any tensor can always be
decomposed (possibly nonuniquely) as

(4.1) A =
∑r

i=1
ui ⊗ vi ⊗ · · · ⊗ wi.

The tensor rank, rank(A), is defined as the smallest integer r such that this decom-
position holds exactly [29, 30]. Among other properties, note that this outer product
decomposition remains valid in a ring and that an outer product decomposition of
a multilinear transform of A equals the multilinear transform of an outer product
decomposition of A. In other words, if (4.1) is an outer product decomposition of A,
then

A•1L•2M•3 · · · •kN =
∑r

i=1
Lui ⊗Mvi ⊗ · · · ⊗Nwi

is an outer product decomposition of A•1L•2M•3 · · · •kN , which may also be writ-
ten as (L,M, . . . , N) · A. The outer product decomposition has often been regarded
synonymously as the data analytic models candecomp [11] and parafac [28], where
the decomposition is used to analyze multiway psychometric data.

Definition 4.1. The rank of A = [[aj1···jk ]] ∈ C
d1×···×dk is defined as

rank(A) := min{r | A =
∑r

i=1ui ⊗ vi ⊗ · · · ⊗ wi}.

If A = [[aj1···jk ]] ∈ Sk(Cn), then we may also define the notion of symmetric rank via

rankS(A) := min{s | A =
∑s

i=1yi ⊗ · · · ⊗ yi}.
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Note that over C, the coefficients λi appearing in decomposition (1.1) may be set
to 1; this is legitimate since any complex number admits a kth root in C. Henceforth,
we will adopt the following notation:

(4.2) y⊗k :=

k copies︷ ︸︸ ︷
y ⊗ · · · ⊗ y .

If in (4.1) we have ui = vi = · · · = wi for every i, then we may call it a sym-
metric outer product decomposition, yielding a symmetric rank, rankS(A). Constraints
other than full symmetry may be relevant in some application areas, such as partial
symmetry as in indscal [11, 58], or positivity/nonnegativity [41, 51, 55].

The definition of symmetric rank is not vacuous because of the following result.
Lemma 4.2. Let A ∈ Sk(Cn). Then there exist y1, . . . ,ys ∈ C

n such that

A =
∑s

i=1
y⊗k
i .

Proof. What we have to prove is that the vector space generated by the kth powers
of linear forms L(x)k (for all L ∈ C

n) is not included in a hyperplane of Sk(Cn). This
is indeed true, because otherwise there would exist a nonzero element of Sk(Cn) which
is orthogonal, under the bilinear form 〈·, ·〉, to all L(x)k for L ∈ C

n. Equivalently, by
Lemma 3.6, there exists a nonzero polynomial q(x) of degree k such that q(L) = 0
for all L ∈ C

n. But this is impossible, since a nonzero polynomial does not vanish
identically on C

n.
Lemma 4.2 may be viewed as a particular case of a basic result in algebraic

geometry, stating that the linear space generated by points of an algebraic variety
that is not included in a hyperplane, i.e., a subspace of codimension 1, is the whole
space [27, 18, 49]. For completeness, a proof of our special case is given above. Note
that it follows from the proof that

rankS(A) ≤
(
n + k − 1

k

)

for all A ∈ Sk(Cn).
On the other hand, given a symmetric tensor A, one can compute its outer product

decomposition either in Sk(Cn) or in Tk(Cn). Since the outer product decomposition
in Sk(Cn) is constrained, it follows that for all A ∈ Sk(Cn),

(4.3) rank(A) ≤ rankS(A).

We will show that equality holds generically when rankS(A) ≤ n and when k is
sufficiently large with respect to n and always holds when rankS(A) = 1, 2. While we
do not know if the equality holds in general, we suspect that this is the case as we are
unaware of any counterexample.

4.2. Secant varieties of the Veronese variety. Let us recall here the corre-
spondence between symmetric outer product decompositions and secant varieties of
the Veronese variety. By the bijective correspondence between symmetric tensors and
homogeneous polynomials established in (3.5), we may discuss this in the context of
homogeneous polynomials. The set of homogeneous polynomials that may be written
as a kth power of a linear form, β(x)k = (β1x1+· · ·+βnxn)k for β = (β1, . . . , βn) ∈ C

n,
is a closed algebraic set. We may consider this construction as a map from C

n to the
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space of symmetric tensors given by

νn,k : C
n → C[x1, . . . , xn]k ∼= Sk(Cn),

β �→ β(x)k.

The image νn,k(C
n) is called the Veronese variety and is denoted Vn,k [27, 65]. Fol-

lowing this point of view, a symmetric tensor is of symmetric rank 1 if it corresponds
to a point on the Veronese variety. A symmetric tensor is of symmetric rank r if it
is a linear combination of r symmetric tensors of symmetric rank 1 but not a linear
combination of r − 1 or fewer such tensors. In other words, a symmetric tensor is of
symmetric rank not more than r if it is in the linear space spanned by r points of the
Veronese variety. The closure of the union of all linear spaces spanned by r points of
the Veronese variety Vn,k is called1 the (r − 1)th-secant variety of Vn,k. See [27, 65]
for examples and general properties of these algebraic sets. In the asymmetric case, a
corresponding notion is obtained by considering the Segre variety, i.e., the image of
the Segre map defined in section 2.

4.3. Why rank can exceed dimension. We are now in a position to state
and prove the following proposition, which is related to a classical result in algebraic
geometry stating that r points in C

n form the solution set of polynomial equations
of degree ≤ r [27, p. 6]. This implies that we can find a polynomial of degree ≤ r− 1
that vanishes at r − 1 of the points Li but not at the last one, and hence the inde-
pendence of polynomials Lr−1

1 , . . . , Lr−1
r follows. Since this proposition is important

to our discussion in section 5 (via its corollary), we give a direct and simple proof.
Proposition 4.3. Let L1, . . . , Lr ∈ C[x1, . . . , xn]1, i.e., linear forms in n vari-

ables. If for all i 
= j, Li is not a scalar multiple of Lj, then for any k ≥ r − 1, the
polynomials Lk

1 , . . . , L
k
r are linearly independent in C[x1, . . . , xn].

Proof. Let k ≥ r − 1. Suppose that for some λ1, . . . , λr,
∑r

i=1 λiL
k
i = 0. Hence,

by the duality property of Lemma 3.6,∑r

i=1
λi〈F,Lk

i 〉 =
∑r

i=1
λiF (Li) = 0

for all F ∈ C[x1, . . . , xn]k. Let us prove that we can find a homogeneous polynomial
F of degree k that vanishes at L1, . . . , Lr−1 and not at Lr.

Consider a homogeneous polynomial F of degree k ≥ r − 1 that is a multiple of
the product of r−1 linear forms Hi vanishing at Li but not at Lr. We have F (Lr) 
= 0
but F (Lj) = 0, 1 ≤ j ≤ r − 1. As a consequence, we must have λr = 0. By a similar
argument, we may show that λi = 0 for all i = 1, . . . , r. It follows that the polynomials
Lk

1 , . . . , L
k
r are linearly independent.

Notice that the bound r− 1 on the degree can be reduced by d if a d-dimensional
linear space containing any d + 1 of these points does not contain one of the other
points [27, p. 6]. In this case, we can replace the product of d + 1 linear forms Hi

vanishing at d + 1 points by just 1 linear form vanishing at these d + 1 points.
Corollary 4.4. Let v1, . . . ,vr ∈ C

n be r pairwise linearly independent vectors.
For any integer k ≥ r − 1, the rank-1 symmetric tensors

v⊗k
1 , . . . ,v⊗k

r ∈ Sk(Cn)

are linearly independent.

1This seemingly odd choice, i.e., r − 1 instead of r, is standard [27, 65] because one wants to be
consistent with the usual meaning of a secant, i.e., 1-secant, as a line intersecting two points in the
variety.
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This corollary extends results of [19, Lemma 2.2] and [33, Appendix]. Note that
vectors v1, . . . ,vr need not be linearly independent.

Example 4.5. Vectors v1 = (1, 0), v2 = (0, 1), and v3 = (1, 1) are pairwise
noncollinear but linearly dependent. According to Corollary 4.4, the symmetric tensors
v⊗k

1 ,v⊗k
2 ,v⊗k

3 are linearly independent for any k ≥ 2. Evidently, we see that this holds
true for k = 2 since the matrix below has rank 3:

⎡
⎣1 0 0 0

0 0 0 1
1 1 1 1

⎤
⎦ .

4.4. Genericity. Roughly speaking, a property is referred to as typical if it
holds true on a non-zero-volume set and generic if is true almost everywhere. Proper
definitions will follow later in section 6. It is important to distinguish between typical
and generic properties; for instance, as will be subsequently seen, there can be several
typical ranks but by definition only a single generic rank. We will see that there can
be only one typical rank over C, and it is thus generic.

Through the bijection (3.4), the symmetric outer product decomposition (4.1) of
symmetric tensors can be carried over to quantics, as pointed out in [16]. The bijection
allows one to talk indifferently about the symmetric outer product decomposition of
order-k symmetric tensors and the decomposition of degree-k quantics into a sum of
linear forms raised to the kth power.

For a long time, it was believed that there was no explicit expression for the
generic rank. As Reznick pointed out in [48], Clebsh proved that even when the
numbers of free parameters are the same on both sides of the symmetric outer product
decomposition, the generic rank may not be equal to 1

n

(
n+k−1

k

)
. For example, in the

case (k, n) = (4, 3), there are
(
6
4

)
= 15 degrees of freedom but the generic symmetric

rank RS(4, 3) = 6 
= 5 = 1
3

(
6
4

)
. In fact, this holds true over both R [48] and C [22]. In

section 7, we will see that the generic rank in Sk(Cn) is now known for any order and
dimension due to the ground breaking work of Alexander and Hirschowitz.

The special case of cubics (k = 3) is much better known—a complete classifica-
tion has been known since 1964, although a constructive algorithm to compute the
symmetric outer product decomposition was proposed only recently [35]. The sim-
plest case of binary quantics (n = 2) has also been known for more than two decades
[62, 16, 38]—a result that is used in real-world engineering problems [15].

5. Rank and symmetric rank. Let RS(k, n) be the generic symmetric rank
and RS(k, n) be the maximally attainable symmetric rank in the space of symmetric
tensors Sk(Cn). Similarly, let R(k, n) be the generic rank and R(k, n) be the maximally
attainable rank in the space of order-k dimension-n cubical tensors Tk(Cn). Since
Sk(Cn) is a subspace of Tk(Cn), generic and maximal ranks (when they exist) are
related for every fixed order k and dimension n as follows:

(5.1) R(k, n) ≥ RS(k, n) and R(k, n) ≥ RS(k, n).

It may seem odd that the inequalities in (5.1) and (4.3) are reversed, but there is no
contradiction since the spaces are not the same.

It is then legitimate to ask whether the symmetric rank and the rank are always
equal. We show that this holds generically when rankS(A) ≤ n (Proposition 5.3) or
when the order k is sufficiently large relative to the dimension n (Proposition 5.4).
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This always holds (not just generically) when rankS(A) = 1, 2 (Proposition 5.5). We
will need some preliminary results in proving these assertions.

Lemma 5.1. Let y1, . . . ,ys ∈ C
n be linearly independent. Then the symmetric

tensor defined by

A :=
∑s

i=1
y⊗k
i

has rankS(A) = s.
Proof. Suppose rankS(A) = r. Then there exist z1, . . . , zr ∈ C

n such that

(5.2)
∑s

i=1
y⊗k
i = A =

∑r

j=1
z⊗k
j .

By the linear independence of y1, . . . ,ys, there exist covectors ϕ1, . . . , ϕs ∈ (Cn)∗

that are dual to y1, . . . ,ys, i.e.,

ϕi(yj) =

{
1 if i = j,

0 if i 
= j.

Contracting both sides of (5.2) in the first k − 1 modes with ϕ
⊗(k−1)
i ∈ Sk−1((Cn)∗),

we get

yi =
∑r

j=1
αjzj ,

where αj = ϕi(zj)
k−1. In other words, yi ∈ span{z1, . . . , zr}. Since this holds for each

i = 1, . . . , s, it implies that the s linearly independent vectors y1, . . . ,ys are contained
in span{z1, . . . , zr}. Hence we must have r ≥ s. On the other hand, it is clear that
r ≤ s. Thus we must have equality.

Lemma 5.2. Let s ≤ n. Let A ∈ Sk(Cn) with rankS(A) = s and

A =
∑s

i=1
y⊗k
i

be a symmetric outer product decomposition of A. Then vectors of the set {y1, . . . ,ys}
are generically linearly independent.

Proof. We will write

Ys := {A ∈ Sk(Cn) | rankS(A) ≤ s} and Zs := {A ∈ Sk(Cn) | rankS(A) = s}.

Define the map from the space of n× s matrices to order-k symmetric tensors,

f : C
n×s → Sk(Cn),

[y1, . . . ,ys] �→
∑s

i=1
y⊗k
i .

It is clear that f takes C
n×s onto Ys (i.e., f(Cn×s) = Ys). We let E0 and E1 be the

subsets of rank-deficient and full-rank matrices in C
n×s, respectively. Thus we have

the disjoint union

E0 ∪ E1 = C
n×s, E0 ∩ E1 = ∅.

Recall that the full-rank matrices are generic in C
n×s. Recall also that E0 is an

algebraic set in C
n×s defined by the vanishing of all s × s principal minors. By the

previous lemma, f(E1) ⊆ Zs. The set of symmetric tensors
∑s

i=1
y⊗k
i
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in Zs for which {y1, . . . ,ys} is linearly dependent, i.e., [y1, . . . ,ys] is rank deficient,
is simply

Zs ∩ f(E0).

Since f is a polynomial map and E0 is a nontrivial algebraic set, we conclude that
f(E1) is generic in Zs.

Proposition 5.3. Let A ∈ Sk(Cn). If rankS(A) ≤ n, then rank(A) = rankS(A)
generically.

Proof. Let r = rank(A) and s = rankS(A). There exist decompositions

(5.3)
∑r

j=1
x

(1)
j ⊗ · · · ⊗ x

(k)
j = A =

∑s

i=1
y⊗k
i .

By Lemma 5.2, we may assume that for a generic A ∈ Zs, the vectors y1, . . . ,ys are
linearly independent. As in the proof of Lemma 5.1, we may find a set of covectors
ϕ1, . . . , ϕs ∈ (Cn)∗ that are dual to y1, . . . ,ys, i.e.,

ϕi(yj) =

{
1 if i = j,

0 if i 
= j.

Contracting both sides of (5.3) in the first k − 1 modes with ϕ
⊗(k−1)
i ∈ Sk−1((Cn)∗),

we get

∑r

j=1
αijx

(k)
j = yi,

where αij = ϕi(x
(1)
j ) · · ·ϕi(x

(k−1)
j ), j = 1, . . . , r. Since this holds for each i =

1, . . . , s, it implies that the s linearly independent vectors y1, . . . ,ys are contained

in span{x(k)
1 , . . . ,x

(k)
r }. Hence we must have r ≥ s. On the other hand, it is clear that

r ≤ s. Thus we must have equality.
We will see below that we could have rank(A) = rankS(A) even when the con-

stituting vectors y1, . . . ,ys are not linearly independent. The authors would like to
thank David Gross for his help in correcting an error in the original proof.

Proposition 5.4. Let y1, . . . ,ys ∈ C
n be pariwise linearly independent. If k is

sufficiently large, then the symmetric tensor defined by

A :=
∑s

i=1
y⊗k
i

satisfies rank(A) = rankS(A) generically.
Proof. Let r = rank(A) and s = rankS(A). So there exist decompositions

(5.4)
∑r

j=1
x

(1)
j ⊗ · · · ⊗ x

(k)
j = A =

∑s

i=1
y⊗k
i .

Note that the left-hand side may be written
∑s

i=1 y
⊗k/2
i ⊗ y

⊗k/2
i , where we have

assumed, without loss of generality, that k is even. By Proposition 4.3, when k is

sufficiently large, the order-(k/2) tensors y
⊗k/2
1 , . . . ,y

⊗k/2
s are generically linearly in-

dependent. Hence we may find functionals Φ1, . . . ,Φs ∈ Sk/2(Cn)∗ that are dual to

y
⊗k/2
1 , . . . ,y

⊗k/2
s ∈ Sk/2(Cn), i.e.,

Φi(y
⊗k/2
j ) =

{
1 if i = j,

0 if i 
= j.
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Contracting both sides of (5.4) in the first k/2 modes with Φi, we get

∑r

j=1
αijx

(k/2+1)
j ⊗ · · · ⊗ x

(k)
j = y

⊗k/2
i ,

where αij = Φi(x
(1)
j ⊗ · · · ⊗ x

(k/2)
j ), j = 1, . . . , r. Since this holds for each i =

1, . . . , s, it implies that the s linearly independent vectors y1, . . . ,ys are contained

in span{x(k/2+1)
1 ⊗· · ·⊗x

(k)
1 , . . .x

(k/2+1)
r ⊗· · ·⊗x

(k)
r }. Hence we must have r ≥ s. On

the other hand, it is clear that r ≤ s. Thus we must have equality.
Proposition 5.5. Let A ∈ Sk(Cn). If rankS(A) = 1 or 2, then rank(A) =

rankS(A).
Proof. If rankS(A) = 1, then rank(A) = 1 clearly. If rankS(A) = 2, then

A = y⊗k
1 + y⊗k

2

for some y1,y2 ∈ C
n. It is clear that y1 and y2 must be linearly independent or

otherwise y2 = αy1 implies that

A = (βy1)
⊗k

for any β = (1 + αk)1/k, contradicting rankS(A) = 2. It follows from the argument in
the proof of Proposition 5.3 with s = 2 that rank(A) = 2.

The following result will be useful later.
Proposition 5.6. Let v1 and v2 be two linearly independent vectors in C

n. Then
for any k > 1, the order-k symmetric tensor

(5.5) v1 ⊗ v2 ⊗ v2 ⊗ · · · ⊗ v2 + v2 ⊗ v1 ⊗ v2 ⊗ · · · ⊗ v2

+ v2 ⊗ v2 ⊗ v1 ⊗ · · · ⊗ v2 + · · · + v2 ⊗ v2 ⊗ v2 ⊗ · · · ⊗ v1

is of symmetric rank k.
Proof. It is not hard to check that the symmetric tensor in (5.5) is associated with

the quantic p(z1, z2) = z1z
k−1
2 up to a constant multiplicative factor (where z1, z2 are

the first two coordinate variables in (z1, . . . , zn)).
To prove that this quantic is of symmetric rank k, we are going to show that

p(z1, z2) can be decomposed into a sum of powers of linear forms as

(5.6) p(z1, z2) =
∑k

i=1
λi(αiz1 + βiz2)

k.

There are infinitely many possibilities of choosing coefficients (αi, βi) but we need to
provide just one solution. Take α1 = · · · = αr = 1 and β1, . . . , βk distinct such that

(5.7)
∑k

i=1
βi = 0.

First we express all quantics in terms of the canonical basis scaled by the binomial
coefficients:

{zk1 , kzk−1
1 z2, . . . , kz1z

k−1
2 , zk2}.

In this basis, the monomial kz1z
k−1
2 can be represented by a (k+1)-dimensional vector

containing only one nonzero entry. The quantic (zi +βiz2)
k is then represented by the

vector

[1, βi, β
2
i , . . . , β

k
i ] ∈ C

k+1.
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The existence of coefficients λ1, . . . , λk such that we have the decomposition (5.6) is
equivalent to the vanishing of the (k + 1) × (k + 1) determinant

(5.8)

∣∣∣∣∣∣∣∣∣

0 0 · · · 1 0

1 β1 · · · βk−1
1 βk

1
...

...
...

...

1 βk · · · βk−1
k βk

k

∣∣∣∣∣∣∣∣∣
.

An explicit computation shows that this determinant is ±(
∑k

i=1 βi)Vk(β1, . . . , βk),
where Vk(β1, . . . , βk) is the Vandermonde determinant of degree k − 1 of β1, . . . , βk.
Thus by (5.7), the determinant in (5.8) vanishes.

This proves that the symmetric rank of z1z
k
2 is ≤ k. Note that the symmetric

rank cannot be smaller than k because removing any row of the matrix of (5.8) still
yields a matrix of rank k if the βi are distinct (see also Proposition 4.3).

This proof is constructive and gives an algorithm to compute a symmetric outer
product decomposition of any binary symmetric tensor of the form (5.5). For example,
the reader can check out that the decompositions below may be obtained this way.

Example 5.7. The quantics 48z3
1z2 and 60z4

1z2 are associated with the symmetric
tensors of maximal rank A31 and A41, respectively. Their symmetric outer product
decompositions are given by

A31 = 8(v1 + v2)
⊗4 − 8(v1 − v2)

⊗4 − (v1 + 2v2)
⊗4 + (v1 − 2v2)

⊗4,

A41 = 8(v1 + v2)
⊗5 − 8(v1 − v2)

⊗5 − (v1 + 2v2)
⊗5 + (v1 − 2v2)

⊗5 + 48v⊗5
1 .

The maximal symmetric rank achievable by symmetric tensors of order k and
dimension n = 2 is k, i.e., RS(k, 2) = k. One can say that such symmetric tensors
lie on a tangent line to the Veronese variety of symmetric rank-1 tensors. In [13], an
algorithm was proposed to decompose binary forms when their rank is not larger than
k/2; however, this algorithm would not have found the decompositions above since
the symmetric ranks of A31 and A41 exceed 4/2 and 5/2, respectively.

6. Generic symmetric rank and typical symmetric ranks. For given order
and dimension, define the following subsets of symmetric tensors Yr := {A ∈ Sk(Cn) |
rankS(A) ≤ r} and Zr := {A ∈ Sk(Cn) | rankS(A) = r}. Also, denote the correspond-
ing Zariski closures by Yr and Zr, respectively. Recall that the Zariski closure [18] of
a set S is simply the smallest variety containing S. For every r ∈ N, we clearly have

Yr−1 ∪ Zr = Yr and Y1 + · · · + Y1︸ ︷︷ ︸
r copies

= Yr.

The quantities RS(k, n) and RS(k, n) may now be formally defined by

RS(k, n) := min{r | Yr = Sk(Cn)} and RS(k, n) := min{r | Yr = Sk(Cn)}.

By definition, we have RS(k, n) ≤ RS(k, n). We shall prove in this section that a
generic symmetric rank always exists in Sk(Cn), i.e., there is an r such that Zr =
Sk(Cn), and that it is equal to RS(k, n), thus justifying our naming RS(k, n) the
generic symmetric rank in section 5.

An integer r is not a typical rank if Zr has zero volume, which means that Zr is
contained in a nontrivial closed set. This definition is somewhat unsatisfactory since
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any mention of “volume” necessarily involves a choice of measure, which is really
irrelevant here. A better definition is as follows.

Definition 6.1. An integer r is a typical rank if Zr is dense with the Zariski
topology, i.e., if Zr = Sk(Cn). When a typical rank is unique, it may be called generic.

We used the wording “typical” in agreement with previous terminologies [9, 56,
58]. Since two dense algebraic sets always intersect over C, there can be only one
typical rank over C, and hence it is generic. In the remainder of this section, we will
write RS = RS(k, n) and RS = RS(k, n). We can then prove the following.

Proposition 6.2. The varieties Zr can be ordered by inclusion as follows. If

r1 < r2 < RS < r3 ≤ RS,

then

Zr1 � Zr2 � ZRS
� Zr3 .

Before proving this proposition, we state two preliminary results. Recall that an
algebraic variety is irreducible if it cannot be decomposed as the union of proper
subvarieties (cf. [27, pp. 51] and [49, pp. 34]). In algebraic geometry, it is known that
the secant varieties of any irreducible variety are irreducible. Nevertheless, we will
give a short proof of the following lemma for the sake of completeness.

Lemma 6.3. The sets Yr, r ≥ 1, are irreducible algebraic varieties.
Proof. For r ≥ 1, the variety Yr is the closure of the image Yr of the map

ϕr : C
n×r → Sk(Cn),

[u1, . . . ,ur] �→
∑r

i=1
u⊗k
i .

Consider now two polynomials f, g such that fg ≡ 0 on Yr. As Yr is the Zariski
closure of Yr, this is equivalent to fg ≡ 0 on Yr or

(fg) ◦ ϕr = (f ◦ ϕr)(g ◦ ϕr) ≡ 0.

Thus either f ≡ 0 or g ≡ 0 on Yr or equivalently on Yr, which proves that Yr is an
irreducible variety. For more details on properties of parameterized varieties, see [18].
See also the proof of [52, 9] for third order tensors.

Lemma 6.4. We have RS = min{r | Yr = Yr+1}.
Proof. Suppose that there exists r < RS such that Yr = Yr+1. Then since Yr ⊆

Yr + Y1 ⊆ Yr+1 = Yr, we have

Yr = Yr + Y1 = Yr + Y1 + Y1 = · · · = Yr + Y1 + · · · + Y1.

As the sum of RS copies of Y1 is Sk(Cn), we deduce that Yr = Sk(Cn) and thus
r ≥ RS, which contradicts our hypothesis. By definition, YRS

= YRS+1 = Sk(Cn),
which proves the lemma. See also the proof of [52] for the asymmetric case.

We are now in a position to prove Proposition 6.2.
Proof of Proposition 6.2. By Lemma 6.4, we deduce that for r < RS,

Yr 
= Yr+1.

As Yr is an irreducible variety, we have dim(Yr) < dim(Yr+1). As Yr ∪Zr+1 = Yr+1,
we deduce that

Yr ∪ Zr+1 = Yr+1,
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which implies by the irreducibility of Yr+1, that Zr+1 = Yr+1. Consequently, for
r1 < r2 < RS, we have

Zr1 = Yr1 � Zr2 = Yr2 � ZRS
= YRS

= Sk(Cn).

Let us prove now that if RS < r3, we have Zr3 � Sk(Cn). Suppose that Zr3 = Sk(Cn),
then Zr3 is dense in Sk(Cn) as well as ZRS

in the Zariski topology. This implies that
Zr3 ∩ ZRS


= ∅, which is false because a tensor cannot have two different ranks.

Consequently, we have Zr3 � Sk(Cn).
Proposition 6.5. If 1 ≤ r ≤ RS, then Zr 
= Zr.
Proof. Let r > 1 and A ∈ Zr. Then by definition of Yr, there exists A0 ∈ Yr−1

and A1 ∈ Y1 such that A = A0 + A1. As A0 
∈ Yr−2 (otherwise A ∈ Yr−1) we
have A0 ∈ Zr−1. For ε 
= 0, define Aε = A0 + εA1. We have that Aε ∈ Zr for all
ε 
= 0 and limε→0 Aε = A0. This shows that A0 ∈ Zr − Zr and consequently that
Zr 
= Zr.

The above proposition is about the set of symmetric tensors of symmetric rank
exactly r. But what about those of symmetric rank at most r? While Y1 is closed as
a determinantal variety, we will see from Examples 6.6 and 6.7 as well as Proposition
6.8 that Yr is generally not closed for r > 1. This is another major difference from
matrices, for which all Yr are closed sets.

Example 6.6. In dimension n ≥ 2, and for any order k > 2, Y2 is not closed. In
fact, take two independent vectors xi and xj and define the sequence of symmetric
tensors

(6.1) Aε(i, j) :=
1

ε

[
(xi + εxj)

⊗k − x⊗k
i

]
.

For any ε 
= 0, Aε(i, j) is of symmetric rank 2, but converges in the limit as ε → 0
to a symmetric tensor of symmetric rank k. In fact, the limiting symmetric tensor is
easily seen to be a sum of k rank-1 tensors,

xi ⊗ xj ⊗ · · · ⊗ xj + xj ⊗ xi ⊗ · · · ⊗ xj + · · · + xj ⊗ xj ⊗ · · · ⊗ xi,

which has symmetric rank k by Proposition 5.6.
Example 6.7. Let n = 3 and k = 3. Then Y5 ⊂ Y3, whereas 3 < RS. In fact,

take the symmetric tensor associated with the ternary cubic p(x, y, z) = x2y − xz2.
According to [16, 47], this tensor has rank 5. On the other hand, it is the limit of the
sequence pε(x, y, z) = x2y−xz2 +εz3 as ε tends to zero. According to a result in [16],
the latter polynomial is associated with a rank-3 tensor since the determinant of its
Hessian is equal to 8x2(x− 3εz) and hence contains two distinct linear forms as long
as ε 
= 0.

It is easy to show that this lack of closeness extends in general to r > RS or for
r ≤ n, as stated in the two propositions below.

Proposition 6.8. If RS < r, then for all k > 2, Yr 
= Yr.
Proof. If RS < r, then YRS

� Yr. By the definition of generic symmetric rank,

YRS
= Sk(Cn) = Yr. Hence Yr � Yr = Sk(Cn).

Proposition 6.9. If 1 < r ≤ n, then for any k > 2, Yr 
= Yr.
Proof. Take n linearly independent vectors x1, . . . ,xn. Then the symmetric tensors

x⊗k
1 , . . . ,x⊗k

n are linearly independent as well, and
∑r

i=1 x⊗k
i is of symmetric rank r

for every r ≤ n by Lemma 5.1. Now for r > 2 and any ε 
= 0, define the symmetric
tensor

Aε =
1

ε

[
(x1 + εx2)

⊗k − x⊗k
1

]
+
∑r

i=3
x⊗k.
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Aε is again of symmetric rank r for every ε 
= 0, but tends to a symmetric rank r + 1
tensor (see also section 8.1). For r = 2, the same reasoning applies with

Aε =
1

ε

[
(x1 + εx2)

⊗k − x⊗k
1

]
.

This shows that Yr is not closed.
Based on these two propositions, we conjecture the stronger statement that for

order k > 2, the set of symmetric tensors of symmetric rank at most r is never closed,
even for r = n + 1, . . . , RS − 1.

Conjecture 6.10. Assume k > 2 and n ≥ 2. Then Yr 
= Yr for any r such that
1 < r < RS.

Up to this point, our study has been based on the Zariski topology [49, 18].
However it is useful from a practical point of view to be able to apply these results to
other topologies, for example, the Euclidean topology. Since the Yr are parameterized
and are thus algebraic constructible sets [49], and since the closure of an algebraic
constructible set for the Euclidean topology and the Zariski topology are the same,
the results in this paper holds true for many other topologies. We have in particular
the following result.

Corollary 6.11. Let μ be a measure on Borel subsets of Sk(Cn) with respect to
the Euclidean topology on Sk(Cn). Let RS be the generic symmetric rank in Sk(Cn).
If μ is absolutely continuous with respect to the Lebesgue measure on Sk(Cn), then

μ({A ∈ Sk(Cn) | rankS(A) 
= RS}) = 0.

In particular, this corollary tells us that ZRS
is also dense in Sk(Cn) with respect

to the Euclidean topology. It also tells us that the rank of a tensor whose entries are
drawn randomly according to an absolutely continuous distribution (e.g., Gaussian) is
RS with probability 1. This is useful in signal processing, for instance, where cumulant
tensors are estimated from actual data and are asymptotically Gaussian distributed
[6, 44].

These statements extend previous results [3] and prove that there can be only
one subset Zr of nonempty interior and that the latter is dense in Sk(Cn); this result,
however, requires that we work over an algebraically closed field such as C.

The results of this section are indeed not generally valid over R. We refer the
reader to section 8 for further discussions concerning the real field.

7. Values of the generic symmetric rank. In practice, it would be useful to
be able to compute the symmetric rank of any given symmetric tensor, or at least
to know the maximal values of the symmetric rank, given its order and dimensions.
Unfortunately, these problems are far from resolved.

The corresponding problem for the generic values of the symmetric rank, however,
has seen enormous progress due to the work of Alexander and Hirschowitz described in
section 7.1. In fact, even before their breakthrough, bounds on the generic symmetric
rank have been known for decades [3, 47, 48]:

⌈
1

n

(
n + k − 1

k

)⌉
≤ RS(k, n) ≤

(
n + k − 2

k − 1

)
.

It is known that the lower bound is often accurate but the upper bound is not tight
[16]. Furthermore, exact results are known in the case of binary quantics (n = 2) and
ternary cubics (k = 3) [22, 16, 48, 35].
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7.1. Alexander–Hirschowitz theorem. It was not until the work [1] of Alexan-
der and Hirschowitz in 1995 that the generic symmetric rank problem was completely
settled. Nevertheless, the relevance of their result has remained largely unknown in
the applied and computational mathematics communities. One reason is that the con-
nection between our problem and the interpolating polynomials discussed in [1] is not
at all well known in the aforementioned circles. So for the convenience of our readers,
we will state the result of Alexander and Hirschowitz in the context of the symmetric
outer product decomposition below.

Theorem 7.1 (Alexander–Hirschowitz). For k > 2, the generic symmetric rank
of an order-k symmetric tensor of dimension n over C is always equal to the lower
bound

(7.1) RS(k, n) =

⌈
1

n

(
n + k − 1

k

)⌉

except for the following cases: (k, n) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, where it should be
increased by 1.

This theorem is extremely complicated to prove, and the interested reader should
refer to the two papers by Alexander and Hirschowitz [1, 2]. Simplifications to this
proof have also been recently proposed in [12]. It is worth noting that these results
have been proved in terms of multivariate polynomials and interpolation theory, not
in terms of symmetric tensors. The exception (k, n) = (4, 3) has been known since
1860; in fact, Sylvester referred to it as the Clebsch theorem in his work [53]. It is not
hard to guess the formula in (7.1) by a degrees-of-freedom argument. The difficulty of
proving Theorem 7.1 lies in establishing the fact that the four given exceptions to the
expected formula (7.1) are the only ones. Table 7.1 lists a few values of the generic
symmetric rank.

Table 7.1

Values of the generic symmetric rank RS(k, n) for various orders k and dimensions n. Values
appearing in bold are the exceptions outlined by the Alexander–Hirschowitz theorem.

k
n 2 3 4 5 6 7 8 9 10

3 2 4 5 8 10 12 15 19 22
4 3 6 10 15 21 30 42 55 72
5 3 7 14 26 42 66 99 143 201
6 4 10 21 42 77 132 215 334 501

7.2. Uniqueness. Besides the exceptions pointed out in Theorem 7.1, the num-
ber of solutions for the symmetric outer product decomposition has to be finite if the
rank r is smaller than or equal to 1

n

(
n+k−1

k

)
. This occurs, for instance, for all cases of

degree k = 5 in Table 7.1, except for n = 5 and n = 10. Hence we may deduce the
following.

Corollary 7.2. Suppose (k, n) 
∈ {(3, 5), (4, 3), (4, 4), (4, 5)}. Let A ∈ Sk(Cn) be
a generic element and let the symmetric outer product decomposition of A be

(7.2) A =
∑RS

i=1
v⊗k
i .

Then (7.2) has a finite number of solutions if and only if

1

n

(
n + k − 1

k

)
∈ N.
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Table 7.2

Generic dimension F (k, n) of the fiber of solutions.

k
n 2 3 4 5 6 7 8 9 10

3 0 2 0 5 4 0 0 6 0
4 1 3 5 5 0 0 6 0 5
5 0 0 0 4 0 0 0 0 8
6 1 2 0 0 0 0 4 3 5

Actually, one may easily check the generic dimension of the fiber of solutions by
computing the number of remaining free parameters [16]:

F (k, n) = nRS(k, n) −
(
n + k − 1

k

)
.

This is summarized in Table 7.2. When the dimension of the fiber is nonzero, there
are infinitely many symmetric outer product decompositions.

Our technique is different from the reduction to simplicity proposed by ten Berge
[56, 59] but also relies on the calculation of dimensionality.

8. Examples. We will present a few examples to illustrate our discussions in
the previous sections.

8.1. Lack of closeness. It has been shown [16, 35] that symmetric tensors
of order 3 and dimension 3 have a generic rank RS(3, 3) = 4 and a maximal rank
RS(3, 3) = 5. From the results of section 6, this means that only Z4 is dense in
Y4 = Y5 and that Z3 and Z5 are not closed by Proposition 6.5. On the other hand,
Z1 is closed.

To make this statement even more explicit, let us now define a sequence of sym-
metric tensors, each of symmetric rank 2, that converges to a symmetric tensor of
symmetric rank 3. This will be a simple demonstration of the lack of closure of Yr for
r > 1 and k > 2, already stated in Proposition 6.8. For this purpose, let x,y be two
noncollinear vectors. Then the order-3 symmetric tensor

(8.1) Aε = ε2(x + ε−1y)⊗3 + ε2(x − ε−1y)⊗3

is of symmetric rank 2 for any scalar ε 
= 0, and it converges, as ε → 0, to the following
symmetric tensor:

A0 = 2 (x ⊗ y ⊗ y + y ⊗ x ⊗ y + y ⊗ y ⊗ x) .

This limiting symmetric tensor is of symmetric rank 3. In fact, one may show [14]
that it admits the following symmetric outer product decomposition:

A0 = (x + y)⊗3 − (x − y)⊗3 − 2y⊗3.

Now let xi,yi be linearly independent vectors.
By adding two terms of the form (8.1), a similar example can be given in dimension

n = 4, where we get a sequence of symmetric tensors of symmetric rank 4 converging
to a limit of symmetric rank 6.

We will give two more illustrations of Conjecture 6.10.
Example 8.1. If the dimension is n = 3, we can take three linearly independent

vectors, say, x, y, and z. Then the sequence of symmetric tensors Aε + z⊗3 is of
symmetric rank 3 and converges toward a symmetric rank-4 tensor.
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In dimension 3, it is somewhat more tricky to build a sequence converging toward
a symmetric tensor of symmetric rank 5. Note that 5 is the maximal rank for k = 3
and n = 3.

Example 8.2. Consider the sequence below as ε tends to zero:

(8.2)
1

ε

[
(x + εy)⊗3 − x⊗3 + (z + εx)⊗3 − z⊗3

]
.

It converges to the following symmetric tensor, which we expressed as a sum of six
(asymmetric) rank-1 terms:

x ⊗ x ⊗ y + x ⊗ y ⊗ x + y ⊗ x ⊗ x + z ⊗ z ⊗ x + z ⊗ x ⊗ z + x ⊗ z ⊗ z.

This has symmetric rank 5 since it can be associated with quantic x2y + xz2, which
is the sum of (at least) five cubes.

In terms of algebraic geometry, this example admits a simple geometric interpre-
tation. The limiting tensor is the sum of a point in the tangent space to Y1 at x⊗3

and a point in the tangent space to Y1 at z⊗3.
Note that the same kind of example can be constructed in the asymmetric case:

x1 ⊗ x2 ⊗ (x3 − ε−1y3) + (x1 + εy1) ⊗ (x2 + εy2) ⊗ ε−1y3.

Further discussions of the lack of closeness of Yr and the ill-posedness of the best
rank-r approximation problem in the asymmetric case can be found in [21].

8.2. Symmetric outer product decomposition over the real field. We
now turn our attention to real symmetric tensors. We are interested in the symmetric
outer product decomposition of A ∈ Sk(Rn) over R, i.e.,

(8.3) A =
∑r

i=1
λivi ⊗ vi ⊗ · · · ⊗ vi,

where λi ∈ R and vi ∈ R
n for all i = 1, . . . , r. First note that unlike the decomposition

over C in Lemma 4.2, we can no longer drop the coefficients λ1, . . . , λr in (8.3) since
the kth roots of λi may not exist in R.

Since Sk(Rn) ⊂ Sk(Cn), we may regard A as an element of Sk(Cn) and seek its
symmetric outer product decomposition over C. It is easy to see that we will generally
need more terms in (8.3) to decompose A over R than over C and so

(8.4) rankS,C(A) ≤ rankS,R(A).

This inequality also holds true for the outer product rank of asymmetric tensors. For
k = 2, i.e., matrices, we always have equality in (8.4), but we will see in the examples
below that strict inequality can occur when k > 2.

Example 8.3. Let A ∈ S3(R2) be defined by

A =

[
−1 0

0 1

∣∣∣∣ 0 1
1 0

]
.

It is of symmetric rank 3 over R,

A =
1

2

[
1
1

]⊗3

+
1

2

[
1
−1

]⊗3

− 2

[
1
0

]⊗3

,

whereas it is of symmetric rank 2 over C,

A =
j

2

[
−j
1

]⊗3

− j

2

[
j
1

]⊗3

, where j :=
√
−1.

Hence we see that rankS,C(A) 
= rankS,R(A).
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These decompositions may be obtained using the algorithm described in [16], for
instance. Alternatively, this tensor is associated with the homogeneous polynomial in
two variables p(x, y) = 3xy2 − x3, which can be decomposed over R into

p(x, y) =
1

2
(x + y)3 +

1

2
(x− y)3 − 2x3.

In the case of 2 × 2 × 2 symmetric tensors, or equivalently in the case of binary
cubics, the symmetric outer product decomposition can always be computed [16].
Hence, the symmetric rank of any symmetric tensor can be calculated, even over R.
In this case, it can be shown that the generic symmetric rank over C is 2, whereas
there are two typical symmetric ranks over R, which are 2 and 3.

In fact, in the 2×2×2 case, there are two 2×2 matrix slices, which we can call A1

and A2. Since the generic symmetric rank over C is 2, the outer product decomposition
may be obtained via the eigenvalue decomposition of the matrix pencil (A1, A2), which
generically exists and whose eigenvalues are those of A1A

−1
2 . By generating (four)

independent real Gaussian entries with zero mean and unit variance, it can be easily
checked out with a simple computer simulation that one gets real eigenvalues in 52%
of the cases. This means that the real rank is 3 in 48% of the remaining cases. This
is the simplest example demonstrating that a generic rank can be lacking over R. So
the concept of typical rank is essential to studying symmetric tensors over R.

For asymmetric tensors, the same kind of computer simulation would yield (by
generating eight independent real Gaussian entries) typical ranks of 2 and 3, 78%
and 22% of the time, respectively, leading to the same qualitative conclusions. This
procedure is not new [54, pp. 13] and was proposed in the past to illustrate the
existence of several typical ranks for asymmetric tensors [37, 56]. An interesting result
obtained by ten Berge [57] is that p×p×2 real asymmetric tensors have typical ranks
{p, p + 1}.

The problems pertaining to rank and decompositions of real symmetric tensors
have not received as much attention as their complex counterparts. However, a mod-
erate amount of work has been done [37, 48, 56, 59, 58], and we refer the reader to
these for further information.

8.3. Open questions. Most of the results that we have presented so far are
limited to symmetric tensors over the complex field. The case of general asymmetric
tensors is currently being addressed with the same kind of approach. As pointed
out earlier, decompositions over the real field are more complicated to handle with
algebraic geometric tools. In addition, while the problem of determining the generic
symmetric rank has been resolved thanks to the Alexander–Hirschowitz theorem, the
maximal symmetric rank is known only for particular values of order and dimensions
(e.g., dimension 2); only very rough upper bounds are known for general values.
Lastly, the computation of an explicit symmetric outer product decomposition for a
symmetric tensor is computationally expensive, and the conditions (dimension, order)
under which this can be executed within a polynomial time are not yet clearly known.
These are problems that we hope will be addressed in future work, either by ourselves
or by interested readers.
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Abstract. Given an approximate solution to a data least squares (DLS) problem, we would
like to know its minimal backward error. Here we derive formulas for what we call an “extended”
minimal backward error, which is at worst a lower bound on the minimal backward error. When the
given approximate solution is a good enough approximation to the exact solution of the DLS problem
(which is the aim in practice), the extended minimal backward error is the actual minimal backward
error, and this is also true in other easily assessed and common cases. Since it is computationally
expensive to compute the extended minimal backward error directly, we derive a lower bound on
it and an asymptotic estimate for it, both of which can be evaluated less expensively. Simulation
results show that for reasonable approximate solutions, the lower bound has the same order as the
extended minimal backward error, and the asymptotic estimate is an excellent approximation to the
extended minimal backward error.

Key words. data least squares, backward errors, numerical stability, perturbation analysis,
asymptotic estimate, iterative methods, stopping criteria
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1. Introduction. Given an approximate solution to a problem, the aim of back-
ward perturbation analysis is to find a minimum size perturbation in the data such
that the approximate solution is an exact solution of the perturbed problem. In the
analysis one tries to find a formula for, or good bounds on, the size of the minimal
perturbation (to be referred to as the minimal backward error) and design an efficient
algorithm to evaluate or estimate the formula or the bounds. If the relative minimal
backward error (i.e., the size of the minimal perturbation divided by an acceptable
measure of the size of the data) is of the order of the unit roundoff, then we say that
the approximate solution is a (normwise) backward stable solution. Backward pertur-
bation analyses are useful in practice. Sometimes we may not know if an algorithm
for solving a problem is numerically stable, e.g., the backward numerical stability of
some fast algorithms for structured matrix problems is unknown. But if we know
that a computed solution of a specific problem is a backward stable solution, we are
satisfied with this computed solution. Also when we solve a large-scale problem by
an iterative algorithm, the results of a backward perturbation analysis can often be
used to design effective stopping criteria; see, for example, [1], [20], and [25].

There has been a lot of work on the backward perturbation analysis of linear
systems, especially in recent years. For example, for consistent linear systems, see
[14], [25], [30], [31], [32], [34], [36]; for unconstrained least squares problems, see [9],
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[12], [17], [18], [19], [26], [27], [28], [29], [30], [35]; and for constrained least squares
problems, see [4], [18], and [19].

The main purpose of this paper is to give a normwise backward perturbation
analysis for the general linear data least squares (DLS) problem. As a result, the
structure of the matrix and magnitudes of individual elements of the matrix in the
DLS problem will not be considered. We derive formulas for an “extended” minimal
backward error in section 2. This extended minimal backward error is at worst a
lower bound on the minimal backward error. But we show that when the given
approximate solution is a good enough approximation to the exact solution of the
DLS problem (which is the aim in practice), the extended minimal backward error
is the actual minimal backward error. Section 2.1 deals with perturbations in both
A and b, while section 2.2 considers perturbations in A alone and shows how these
are limiting cases of those in section 2.1. Since computing the extended minimal
backward error directly is time consuming, in section 3 we derive a lower bound on,
and in section 4 an asymptotic estimate for, this extended minimal backward error.
We give numerical examples in section 5. Finally a summary is given in section 6.

We use I =[e1, . . . , en] to denote the unit matrix. For any matrix B ∈ R
m×n, its

column range is denoted by R(B), its Moore–Penrose generalized inverse is denoted
by B†, its smallest singular value (the pth largest singular value, with p = min{m, n})
by σmin(B), and its condition number in the 2-norm is denoted by κ2(B). For any
matrix B = [b1, . . . , bn]vec(B) = [bT

1 , . . . , bT
n ]T . For any symmetric B ∈ R

n×n, its
eigenvalues are labeled in nondecreasing order: λmin = λ1 ≤ λ2 ≤ · · · ≤ λn, but
when only λmin is of interest we will write λ = λmin. For any vector v ∈ R

n, its
Moore–Penrose generalized inverse is

v† ≡
{

0 if v = 0,
vT /‖v‖2

2 if v �= 0,
‖v‖2 ≡ (vT v)

1
2 .

Note that vv† is the orthogonal projector onto R(v), and I − vv† is the orthogonal
projector onto the orthogonal complement of R(v).

2. Backward perturbation analysis. Given A ∈ R
m×n and b ∈ R

m, the DLS
problem defined by DeGroat and Dowling [5] is

(2.1) σD ≡ min
E,x

‖E‖F subject to (A + E)x = b, ‖E‖F ≡
[
trace

(
ET E

)] 1
2 .

See also, for example, [21], [22]. The purpose of the DLS problem is to find the
optimal x. For applications of the DLS method to some signal processing problems,
see [5]. Let Umin(A) be the left singular vector subspace of A corresponding to its
minimum singular value σmin(A). In [21] it was explained that a satisfactory condition
for building the theory for the DLS problem (2.1) is the condition that we will now
assume holds:

(2.2) A has full column rank, and b �⊥ Umin(A).

With this condition, the solution to (2.1) must exist and be unique. From (A+E)x = b
we have Ex = b − Ax. Thus the minimal E must satisfy

(2.3) E = (b − Ax)x†.

But (2.2) implies that b �= 0, so the solution x must be nonzero, and this allows us to
eliminate E and reformulate the DLS problem (2.1) as

(2.4) σD ≡ min
x

‖(b − Ax)x†‖F = min
x

‖b − Ax‖2

‖x‖2
.
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From [21, equations (5.14)–(5.17)], x̂ solves the DLS problem (2.1) if and only if

AT (b − Ax̂) = −x̂
‖b − Ax̂‖2

2

‖x̂‖2
2

,(2.5)

‖b − Ax̂‖2

‖x̂‖2
< σmin(A).(2.6)

Differentiating the objective function in (2.4) and setting the result to zero gives (2.5),
corresponding to a stationary point. The global minimum also satisfies (2.6).

The DLS formulation is designed for problems where the right-hand side b is
accurately known, but the matrix A is only known approximately. Given a nonzero
approximate solution y ∈ R

n to Ax ≈ b, two questions are of particular interest here:
Q1: Is y a feasible (not necessarily DLS) solution, given the accuracy of the data?
Q2: Is y a backward stable solution to the DLS problem for the given data A, b?

Q1 will often be easy to check: for example, if it is known that the given data matrix
A approximates an unknown ideal matrix Â to within ‖A− Â‖{F or 2} ≤ α while b is
accurately known, then from (2.3) we need only check that ‖b−Ay‖/‖y‖ ≤ α. If the
answer to Q1 is positive and we are not interested in the DLS solution, we might accept
y. But then in practice there will be an infinite set of y satisfying Q1, and we will
often seek some additional criterion, for example, “Does y make sense physically?”—a
difficult question we might ask of an ill-posed problem. Here we consider the more
generally approachable question Q2, since if we can answer this affirmatively, we will
know that y is a desirable computational solution to (2.1). Even if the answer to Q1
is “no,” we might still check Q2, since it is possible for y to satisfy Q2 but not Q1 in
that y can be a DLS solution for A + ΔA, b + Δb for very small ΔA and Δb, but the
minimal norm E in (A + ΔA + E)y = b + Δb can be too large for Q1. This would
indicate that there are difficulties with the data.

To answer Q2 we would like to solve the minimal backward error problem:

(2.7) min
ΔA,Δb

‖[ΔA, Δb θ]‖F subject to y = arg min
x

‖b + Δb − (A + ΔA)x‖2

‖x‖2
;

see (2.4), where the chosen scalar θ ≥ 0 allows a different emphasis on each data error.
From (2.5) and (2.6) we see that [ΔA, Δb] is a backward perturbation for the DLS

problem with the given solution y if and only if it is in the set CA,b, where

C+
A,b ≡

{
[ΔA, Δb] : (A+ΔA)T [b+Δb− (A+ΔA)y] = −y

‖b+Δb− (A+ΔA)y‖2
2

‖y‖2
2

}
,

(2.8)

CA,b ≡
{

[ΔA, Δb] : [ΔA, Δb] ∈ C+
A,b &

‖b+Δb− (A+ΔA)y‖2

‖y‖2
< σmin(A+ΔA)

}
.

(2.9)

The inequality in (2.9) makes it difficult to derive a general expression for [ΔA, Δb] ∈
CA,b, so we initially ignore it and consider the larger set C+

A,b, which we will show is also
useful. The following result from Theorem 5.1 of [3] characterizes [ΔA, Δb] ∈ C+

A,b.
Lemma 2.1. If A ∈ R

m×n, b ∈ R
m, and y ∈ R

n is nonzero, then [ΔA, Δb] ∈ C+
A,b

in (2.8) if and only if there exist w ∈ R
n and Z ∈ R

m×n such that

A + ΔA = (b + Δb − w)y† +
(
I − ww†)Z

(
I − yy†) , (b + Δb)T w = 0.(2.10)
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2.1. Allowing backward perturbations in A and b. Based on Lemma 2.1
we will first find a computable expression for μF (y, θ) in the following “extended”
minimal backward error problem:

(2.11) μF (y, θ) ≡ min
[ΔA,Δb]∈C+

A,b

‖[ΔA, Δb θ]‖F for C+
A,b in (2.8).

We call μF (y, θ) the extended minimal backward error because we minimize over the
extended set C+

A,b, giving at worst a lower bound on the minimal backward error.
If b = 0, the DLS problem (2.1) has the solution x̂ = 0; if y = 0, then it cannot be

the DLS solution of any problem with b �= 0. We do not need to consider these cases
further. For the remainder of this paper we will assume the conditions and notation
of the following theorem.

The following will simplify the presentation:

(2.12) ρ ≡ 1/
(
1 + θ2‖y‖2

2

)
so that ρθ2‖y‖2

2 = 1 − ρ and 0 ≤ ρ ≤ 1.

Theorem 2.2. Suppose that we are given A ∈ R
m×n, b ∈ R

m, nonzero y ∈ R
n,

and θ ≥ 0; and suppose that (2.2) holds. Let r ≡ b − Ay, ρ ≡ 1/(1 + θ2‖y‖2
2), and

N ≡ N(θ) ≡
[
A
(
I − yy†) , ρ

1
2 θ‖r‖2

(
I − rr†

)
, b θ
]
,(2.13)

M ≡ M(θ) ≡ A
(
I − yy†)AT − rρθ2rT + b θ2bT = NNT − ρθ2‖r‖2

2I.(2.14)

Then M(θ) has at most one negative eigenvalue, and the DLS extended minimal
backward error μF (y, θ) in (2.11) satisfies

μ2
F (y, θ) =

{
ρθ2‖r‖2

2 if λmin(M(θ)) ≥ 0,
ρθ2‖r‖2

2 + λmin(M(θ)) = σ2
min(N(θ)) if λmin(M(θ)) < 0.

(2.15)

Furthermore, μF (y, θ) is given by the backward perturbations Δ̂A and Δ̂b in

A+Δ̂A =

{
A+r(1−ρ)y† if λmin(M(θ)) ≥ 0,(
I−wθw

†
θ

)
[A+r(1−ρ)y†]+wθw

†
θAyy† if λmin(M(θ)) < 0,

(2.16)

b + Δ̂b =

{
b − rρ if λmin(M(θ)) ≥ 0,(
I − wθw

†
θ

)
(b − rρ) if λmin(M(θ)) < 0,

(2.17)

where wθ is the (unique when λmin(M(θ)) < 0) eigenvector of M(θ) corresponding to
λmin(M(θ)), also the left singular vector of N(θ) corresponding to σmin(N(θ)).

Proof. A(I−yy†)AT+b θ2bT is nonnegative definite, so from [15, Theorem 4.3.4(b)]
with k=1, M(θ) has at most one negative eigenvalue.

Now we want to determine the optimal w, Z, ΔA, and Δb in (2.10) to minimize
‖ΔA, Δb θ‖F . In the following we discuss two cases separately.

Case 1: The optimal w = 0. Let Y = [y/‖y‖2, Y2] ∈ R
n×n be an orthogonal

matrix. From (2.10) we have (b + Δb)T w = 0 automatically, and

ΔAY = (b + Δb)y†[y/‖y‖2, Y2] + Z
(
I − yy†) [y/‖y‖2, Y2] − A[y/‖y‖2, Y2]

= [(b + Δb)/‖y‖2, 0] + [0, ZY2] − [Ay/‖y‖2, AY2]
= [(r + Δb)/‖y‖2, (Z − A)Y2].
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It follows that

‖[ΔA, Δb θ]‖2
F = ‖ΔAY ‖2

F + θ2‖Δb‖2
2 =

1
‖y‖2

2

∥∥∥∥[ I
θ‖y‖I

]
Δb +

[
r
0

]∥∥∥∥2

2

+ ‖(Z −A)Y2‖2
F .

Thus ‖[ΔA, Δb θ]‖F is minimized when

(2.18) Δb = Δ̂b ≡ −
[

I
θ‖y‖I

]† [
r
0

]
= −rρ, Z = Ẑ ≡ A,

and from (2.10) we see that the optimal ΔA must satisfy

ΔA = Δ̂A ≡ (b − rρ)y† + A
(
I − yy†)− A = r(1 − ρ)y†,(2.19)

‖[Δ̂A, Δ̂b θ]‖2
F = (1 − ρ)2‖ry†‖2

2 + ρ2θ2‖r‖2
2 = ρθ2‖r‖2

2.(2.20)

In Case 2 we will show that if λmin(M) ≥ 0, then w = 0 is optimal.
Case 2: The optimal w �= 0. Let Y be as in Case 1, and W = [w/‖w‖2, W2] ∈

R
m×m be an orthogonal matrix. Since wT (b + Δb) = 0, we can write

(2.21) b + Δb = W2s for some s ∈ R
m−1.

From (2.10) we have

WT ΔAY =
[
wT /‖w‖2

WT
2

] [
(b + Δb − w)y† +

(
I − ww†)Z

(
I − yy†)− A

]
[y/‖y‖2, Y2]

=
[

−‖w‖2/‖y‖2 − wT Ay/(‖w‖2‖y‖2) −wT AY2/‖w‖2

s/‖y‖2 − WT
2 Ay/‖y‖2 WT

2 ZY2 − WT
2 AY2

]
.

Thus the objective function can be written as five additive nonnegative terms:

‖[ΔA, Δb θ]‖2
F =

[
‖w‖2/‖y‖2 + wT Ay/(‖w‖2‖y‖2)

]2
+ ‖wT AY2‖2

2/‖w‖2
2

+ ‖s − WT
2 Ay‖2

2/‖y‖2
2 + ‖WT

2 (Z − A)Y2‖2
F + θ2‖W2s − b‖2

2.
(2.22)

To minimize this we take Z = Ẑ ≡ A and note the sum of terms involving s is

φ(s) ≡ ‖s − WT
2 Ay‖2

2/‖y‖2
2 + θ2‖W2s − b‖2

2(2.23)

=
[∥∥WT (W2s − Ay)

∥∥2

2
−
(
wT Ay

)2
/‖w‖2

2 + θ2‖y‖2
2‖W2s − b‖2

2

]
/‖y‖2

2

=
1

‖y‖2
2

∥∥∥∥[ I
θ‖y‖2I

]
W2s −

[
Ay

b θ‖y‖2

]∥∥∥∥2

2

−
(

wT Ay

‖w‖2‖y‖2

)2

.

The normal equations for ŝ, the optimal s, give (1 + θ2‖y‖2
2)ŝ = WT

2 (Ay + b θ2‖y‖2
2).

Therefore

(2.24) ŝ = WT
2 [Ayρ + b(1 − ρ)] = WT

2 (b − rρ).

Substituting this in the first line of (2.23) gives with W2W
T
2 = I − ww†

φ(ŝ) =
∥∥WT

2 r(1 − ρ)
∥∥2

2
/‖y‖2

2 + θ2
∥∥ww†b + W2W

T
2 rρ

∥∥2

2

= ρθ2
∥∥(I − ww†) r

∥∥2

2
+ θ2

∥∥ww†b
∥∥2

2
.
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Then from (2.22), we obtain

min
[ΔA,Δb]∈C+

A,b

‖[ΔA, Δb θ]‖2
F = min

w
[ψ1(w) + ψ2(w)],(2.25)

ψ1(w) ≡
[
‖w‖2/‖y‖2 + wT Ay/(‖w‖2‖y‖2)

]2
,(2.26)

ψ2(w) ≡
∥∥wT AY2

∥∥2

2
/‖w‖2

2 + ρθ2
∥∥(I − ww†)r

∥∥2

2
+ θ2

∥∥ww†b
∥∥2

2
.(2.27)

We will minimize ψ2(w), which is a function of w/‖w‖2 alone, and then show that we
can set ψ1(w) to zero by scaling w, leading to the optimal w. Since Y2Y

T
2 = I − yy†,

ψ2(w) =
wTA

(
I−yy†)AT w

wT w
+ ρθ2‖r‖2

2

wT
(
I − rr†

)
w

wT w
+ θ2 wT bbT w

wT w
(2.28)

=
wT NNT w

wT w
= ρθ2‖r‖2

2 +
wT Mw

wT w
,

whose minimum is ρθ2‖r‖2
2 + λmin(M) given by w = wθα for any nonzero α ∈ R and

wθ satisfying Mwθ = wθλmin(M), ‖wθ‖2 = 1, since we assumed w �= 0.
If λmin(M) ≥ 0, the above with (2.20) in Case 1 show that w = 0 is optimal for

minimizing ‖[ΔA, Δb θ]‖2
F , giving the minimum value ρθ2‖r‖2

2. So from (2.18), (2.19),
and (2.20) we see that the top equalities in each of (2.15), (2.16), and (2.17) hold.
Only when λmin(M) < 0 do we need to consider the possibility that w �= 0.

Assume that λmin(M) < 0. It is easy to verify that ψ1(ŵ) = 0 if

(2.29) ŵ ≡ −wθ

(
wT

θ Ay
)
�= 0.

Suppose wT
θ Ay = 0, then from wT

θ Mwθ = λmin(M) < 0 and (2.14),

0 > λmin(M) = wT
θ AAT wθ −

(
wT

θ r
)2

ρθ2 +
(
wT

θ b
)2

θ2 = wT
θ AAT wθ +

(
wT

θ b
)2

(1−ρ)θ2,

which is impossible since the right-hand side is nonnegative; see (2.12), proving that
the inequality in (2.29) holds. Therefore from (2.25) we see that when λmin(M) < 0,
the extended minimal backward error μF (y, θ) satisfies the two bottom equalities in
(2.15). The bottom equality in (2.17) follows immediately from (2.21) and (2.24), and
substituting this with Z = A and (2.29) in (2.10) gives

A + ΔA =
[(

I−wθw
†
θ

)
(b−rρ) + wθ

(
wT

θ Ay
)]

y† +
(
I−wθw

†
θ

)
A
(
I−yy†)

=
(
I−wθw

†
θ

) [
A + (b−rρ−Ay)y†]+ wθ

(
wT

θ Ay
)
y†

=
(
I−wθw

†
θ

) [
A + r(1−ρ)y†]+ wθ

(
wT

θ Ay
)
y†

to prove the bottom equation in (2.16).
Remark 2.1. The criterion λmin(M(θ)) ≥ 0 appears in (2.15)–(2.17). But if, as

is usual, m > n+1, then M(θ) has at least m−n−1 zero eigenvalues corresponding to
eigenvectors spanning R([A, b])⊥. The eigenvalues of a parameterized matrix that are
zero independent of the parameter (here θ) will be called “trivial zero eigenvalues.”
Because they remain zero, their limiting behavior is trivial.

2.2. Allowing a backward perturbation in A alone. In DLS problems only
the matrix A is assumed to have uncertainty, so it is also important to consider the
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case where there is a backward perturbation in A alone. Then the corresponding
minimal backward error problem becomes

min
ΔA∈CA

‖ΔA‖F , where

C+
A ≡

{
ΔA : (A + ΔA)T [b − (A + ΔA)y] = −y

‖b − (A + ΔA)y‖2
2

‖y‖2
2

}
,(2.30)

CA ≡
{

ΔA : ΔA ∈ C+
A &

‖b − (A + ΔA)y‖2

‖y‖2
< σmin(A + ΔA)

}
,(2.31)

and these two sets are just C+
A,b and CA,b in (2.8) and (2.9) with Δb = 0, so that

ΔA ∈ C+
A ⇒ [ΔA, 0] ∈ C+

A,b. We can force Δb = 0 by taking the limit as θ → ∞ in
(2.11), giving for the extended minimal backward error in this more limited case

(2.32) μF (y) ≡ min
ΔA∈C+

A

‖ΔA‖F = lim
θ→∞

μF (y, θ).

Here we have abused the notation a little by using both μF (·) and μF (·, ·). The proof
using θ→∞ (we use ε ≡ θ−2 ↘ 0) is made possible by a beautiful classical result.

Lemma 2.3 (Rellich [24, pp. 29–37]; see also Kato [16, pp. 121–122]). For ε ∈ R

suppose H(ε) = H(ε)T ∈ R
n×n is analytic about ε = 0, then its eigenvalues and an

orthonormal set of eigenvectors can be chosen analytic about ε=0.
We need some more results to prepare for Theorem 2.6.
Lemma 2.4. If M = SWST with S ∈ R

m×n, W = WT ∈ R
n×n, m ≥ n, then

(a) M has no more positive (negative) eigenvalues than W .
(b) If W = I − yαy†, then M has at most one negative eigenvalue.
Proof. Part (a) was proven in [15, section 4.5.11] for the case m = n. For m > n

writing M = [S, 0] diag(W, 0)[S, 0]T with square [S, 0] proves that (a) still holds. Since
I − yαy† has eigenvalues 1 when y = 0, and 1 − α, 1, . . . , 1 when y �= 0, (b) follows
from (a).

To make later analysis easier, we use ε to replace θ−2. From (2.12)

(2.33) ρ = ε/
(
ε+‖y‖2

2

)
, ε+ρ‖y‖2

2 = ε(2−ρ), ε ≡ θ−2.

In our limits we consider only ε ≥ 0, so ε → 0 will always mean ε ↘ 0.
Theorem 2.5. With (2.33) if A ∈ R

m×n, 0 �= y ∈ R
n, 0 �= b ∈ R

m, r ≡ b−Ay,

(2.34) H(ε) ≡ εA(I−yy†)AT− rρrT+ bbT , ε ∈ R, H(ε)w(ε) = w(ε)λ(ε), w(ε) ∈ R
m,

m ≥ 2, and λ(0) ≡ λmin(H(0)), then, for small enough ε ≥ 0, the minimum eigenvalue
λ(ε) and its normalized eigenvector w(ε) can be chosen analytic with the forms

λ(ε) = λ1ε+λ2ε
2+· · · , w(ε)=w0+w1ε+w2ε

2+· · · , bT w0 =0, ‖w(ε)‖2 =1.(2.35)

If T (ε) ≡ ε−1P⊥
b H(ε)P⊥

b , then T (0) ≡ lim
ε→0

T (ε) = P⊥
b A
(
I−y2y†)ATP⊥

b .(2.36)

Let λ∗(0) ≡ λmin(T (0)), then, for small enough ε ≥ 0, the minimum eigenvalue λ∗(ε)
and its normalized eigenvector w∗(ε) can be chosen analytic in

T (ε)w∗(ε) = w∗(ε)λ∗(ε), w∗(ε) ∈ R
m, ‖w∗(ε)‖2 = 1.(2.37)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1288 X.-W. CHANG, G. H. GOLUB, AND C. C. PAIGE

Finally limε→0 ε−1λ(ε) exists (see (2.35)), and for λ∗(0) and w∗(0) in (2.37),

lim
ε→0

bT w(ε) = 0, lim
ε→0

ε−
1
2 bT w(ε) = 0, lim

ε→0
ε−1bT w(ε) = bT w1;(2.38)

lim
ε→0

ε−1λ(ε)<0 ⇒ λ∗(0)<0 ⇒ lim
ε→0

ε−1λ(ε)=λ∗(0) & w(0)=±w∗(0);(2.39)

lim
ε→0

ε−1λ(ε)≥0 ⇔ λ∗(0) = 0;(2.40)

lim
ε→0

ε−1λ(ε)=0 ⇒ λ∗(0)=0 &
{
{∃x such that b=Ax & ∠(x, y)=±π/4},
or
{
ε−1λ(ε)=0 in a neighborhood of ε=0

}
.

(2.41)

Proof. The expression for T (0) in (2.36) follows from (2.34) and (2.33), and then

(2.42) T (ε)=T (0)+P⊥
b Ayρy†ATP⊥

b = P⊥
b A
[
I−y(2−ρ)y†]ATP⊥

b .

Clearly H(ε) and T (ε) are analytic about ε=0, so w(ε), λ(ε), w∗(ε), and λ∗(ε) can
be chosen to be analytic, with ‖w(ε)‖2 = ‖w∗(ε)‖2 = 1; see Lemma 2.3. Also H(ε)
can have at most one negative eigenvalue, see the start of the proof of Theorem 2.2,
so from Lemma 2.4 T (ε) can have at most one negative eigenvalue. Since m ≥ 2,
H(0)= bbT has minimum eigenvalue λ(0) = 0, proving the first part of (2.35). Since
bbT w(0)=w(0)λ(0)=0, we must have bT w(0)= bT w0 =0, proving the rest of (2.35).
Next (2.35) proves (2.38), and we have

lim
ε→0

ε−1λ(ε) = lim
ε→0

ε−1w(ε)TH(ε)w(ε) = lim
ε→0

ε−
1
2 w(ε)TP⊥

b H(ε)P⊥
b w(ε)ε−

1
2(2.43)

= lim
ε→0

w(ε)T T (ε)w(ε) = w(0)T T (0)w(0) ≥ λ∗(0) = λmin(T (0)),

so limε→0 ε−1λ(ε)<0 ⇒ λ∗(0)<0. When λ∗(0)<0, it is a singleton; see Lemma 2.4,
so for small enough ε, λ∗(ε)<0; then bT w∗(ε) = 0 from (2.37) and (2.36), giving

λ∗(ε) = ε−1w∗(ε)T P⊥
b H(ε)P⊥

b w∗(ε) = ε−1w∗(ε)T H(ε)w∗(ε).(2.44)

Taking the limit as ε→0 and using (2.43), with ‖w(ε)‖2 =‖w∗(ε)‖2 =1 gives

λ∗(0) = lim
ε→0

ε−1w∗(ε)T H(ε)w∗(ε) ≥ lim
ε→0

ε−1λ(ε) = w(0)T T (0)w(0)

≥ λ∗(0) = w∗(0)T T (0)w∗(0),

proving equality throughout, so that limε→0 ε−1λ(ε) = λ∗(0) when λ∗(0) < 0. Also
w(0)T T (0)w(0) = w∗(0)T T (0)w∗(0) is a minimum of wT T (0)w over wT w = 1 with
unique minimizer (up to sign) when λ∗(0) is a singleton, completing the proof of
(2.39). Since T (ε)b = 0, we see that λ∗(0) ≤ 0, and (2.40) follows using (2.39).

Now assume that limε→0 ε−1λ(ε)=0, (λ1 =0 in (2.35)). Then λ∗(0)=0 in (2.41)
follows from (2.40). If [A, b] has rank s, then ε−1H(ε) has m−s trivial zero eigenvalues.
If in the limit as ε → 0 there are only trivial zero eigenvalues, then by continuity,
ε−1λ(ε) = 0 in some neighborhood of ε = 0. Next assume that there is a nontrivial
zero eigenvalue, that is, an eigenpair of the form (2.35), with λ1 = 0 and AT w0 �= 0.
But λ∗(0) = 0 shows that T (0) is positive semidefinite, and 0 = limε→0 ε−1λ(ε) =
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limε→0 wT
0 ε−1H(ε)w0 = limε→0 wT

0 T (ε)w0; see (2.36), so 0 = wT
0 T (0)w0 = wT

0 A(I−
y2y†)AT w0. Here I − y2y† is a Householder reflection. Thus

(2.45)
∥∥AT w0

∥∥2

2
= 2

(
wT

0 Ay
)2

/‖y‖2
2, 0 = T (0)w0 = P⊥

b A
(
I−y2y†)AT w0,

and A(I−y2y†)AT w0 = bb†A(I−y2y†)AT w0 �= 0; see (2.2). Then Axν = bν, where

xν =
(
I − y2y†)AT w0, ν ≡ bT A

(
I − y2y†)AT w0/bT b �= 0.

From this yT xν = −yT AT w0, and with (2.45) xT xν2 =‖AT w0‖2
2 = 2(wT

0 Ay)2/‖y‖2
2 =

2(yT x)2ν2/‖y‖2
2. This gives 2(yT x)2 = yT y · xT x, so ∠(x, y) = ±π/4, proving

(2.41).
Remark 2.2. In (2.41) the case b = Ax & ∠(x, y) = ±π/4 is extremely unlikely

(it has “probability zero”), requiring b ∈ R(A) (a highly unlikely situation when we
are solving DLS problems) and y to be a terrible approximation to the unique x for
which b = Ax, giving exactly ∠(x, y) = ±π/4.

We can now obtain the equivalent of Theorem 2.2 for a backward perturbation
restricted to A alone.

Theorem 2.6. Suppose that we are given A ∈ R
m×n, m ≥ 2, with nonzero

b ∈ R
m and y ∈ R

n; suppose also that (2.2) holds. Let r ≡ b − Ay and

N∞ ≡
[(

I−bb†
)
A
(
I−yy†) ,

‖r‖2

‖y‖2

(
I−bb†

) (
I−rr†

)
,

b

‖b‖2

‖r‖2

‖y‖2

]
,(2.46)

M∞ = M∞(y) ≡
(
I−bb†

)
A
(
I−y2y†)AT

(
I−bb†

)
= N∞NT

∞ − ‖r‖2
2/‖y‖2

2 I.(2.47)

Then λmin(M∞) ≤ 0 and M∞ has at most one negative eigenvalue. Also the DLS
extended minimal backward error μF (y) in (2.32) satisfies

μ2
F (y) =

‖r‖2
2

‖y‖2
2

+ λmin(M∞) = σ2
min(N∞).(2.48)

Furthermore, μF (y) is given by the backward perturbation:

(2.49) Δ̂A =
{

ry† if λmin(M∞) = 0,

ry† − w∗w
†
∗A(I − y2y†) if λmin(M∞) < 0,

where w∗ is the eigenvector of M∞ corresponding to λmin(M∞)<0, or, equivalently,
the left singular vector of N∞ corresponding to σmin(N∞). If λmin(M∞)<0 in (2.47),
then λmin(M∞) = limθ→∞ λmin(M(θ)) in (2.14). In general, (2.48)–(2.49) are the cor-
responding limiting values of (2.15)–(2.16) as θ→∞, except possibly in the probability
zero case mentioned in Remark 2.2 that could occur only if limθ→∞ λmin(M(θ))=0 is
a nontrivial zero eigenvalue; see Remark 2.1.

Proof. Since (2.47) follows from (2.46), the results on N∞ follow trivially from
those on M∞. Since M∞b = 0, λmin(M∞) ≤ 0. From Lemma 2.4 M∞ has at most
one negative eigenvalue. In fact M∞ in (2.47) is identical to T (0) in (2.36), so with
w∗≡w∗(0), λ∗≡λmin(M∞)≡λ∗(0) in (2.37), M∞w∗=w∗λ∗. From (2.14) and (2.34)

(2.50) M(θ) ≡ A
(
I−yy†)AT −rρθ2rT +b θ2bT = ε−1H(ε), with ε ≡ θ−2.

Since M(θ) can have at most one negative eigenvalue, when limθ→∞ λmin(M(θ))<0,
λmin(M(θ)) is the unique minimum eigenvalue for large enough θ, and wθ in (2.16)
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can be taken as w(ε) in Theorem 2.5. This, and noting that λ(θ2H(θ−2)) is equal to
λmin(M(θ)) for large enough θ, gives from (2.38)–(2.41)

lim
θ→∞

λmin(M(θ))<0 ⇒
{

λmin(M∞)=limθ→∞λmin(M(θ)),
& w∗=±limθ→∞wθ & limθ→∞ θwT

θ b=0;

lim
θ→∞

λmin(M(θ))≥0 ⇔ λ∗ ≡ λmin(M∞) = 0;

lim
θ→∞

λmin(M(θ))=0 ⇒ λmin(M∞) = 0 &
{
{∃x : b=Ax & ∠(x, y)=±π/4},
or {∃θ1 : λmin(M(θ))=0 ∀θ>θ1}.

But from (2.12) limθ→∞ ρ=0 and limθ→∞ ρθ2 =‖y‖−2
2 , so that (2.48) is the limiting

value of both cases of (2.15) as θ → ∞. If limθ→∞ λmin(M(θ)) �= 0, it can also be
seen that in the limit the two criteria in (2.16) become the respective criteria in
(2.49), where if limθ→∞ λmin(M(θ))<0, bT w∗=limθ→∞bT wθ =0, so that in the limit
the two expressions for Δ̂A in (2.16) become the respective expressions in (2.49).
If limθ→∞ λmin(M(θ)) = 0 and this corresponds to trivial zero eigenvalues only, the
top row of (2.49) is clearly once again the correct limit. Only the probability zero
case of limθ→∞ λmin(M(θ)) = 0 with b = Ax, ∠(x, y) = ±π/4, allows the possibility
that λmin(M(θ)) < 0 for arbitrarily large θ, and since in this case λmin(M∞)=0, this
suggests that (2.16) could fail to give the correct limiting perturbation in (2.49). That
is, although (2.49) is correct, until proven otherwise there remains the possibility that
taking the limit in (2.16) could lead to Δ̂A = ry†−w∗w

†
∗A(I−y2y†) rather than ry†

in this one strange case; see (2.49).
Deriving μF (y) directly as we did for μF (y, θ) also leads to the results down to

the sentence including (2.49). But Theorem 2.5 describes the limiting behavior as
well.

To parallel the remark given in [13, section 20.7] for some formulas for the min-
imal backward error of ordinary least squares problems, computing and adding the
eigenvalue in (2.15) or (2.48) is not wise computationally. Catastrophic cancellation
may occur when it is negative. Furthermore, the computed value may have very poor
accuracy even using well-known software such as MATLAB 7.4, e.g., in (2.48) the
computed value of λmin(M∞) may be smaller than −‖r‖2

2/‖y‖2
2. The singular value is

much more reliable for computation. If we computed that using the Golub–Reinsch
singular value decomposition algorithm, it would need about 8/3m3+4mn2 flops, but
one point of this paper is that we can use cheaper lower bounds or estimates instead.

In Theorem 2.2 we have either λmin(M(θ)) < 0 or λmin(M(θ)) ≥ 0, while in
Theorem 2.6 we have either λmin(M∞) < 0 or λmin(M∞) = 0. By substituting the
resulting perturbations in the relevant inequalities, it is straightforward to see that the
inequality in (2.9) is satisfied when λmin(M(θ)) ≥ 0 and rank(A+r(1−ρ)y†) = n, and
the inequality in (2.31) is satisfied when λmin(M∞) = 0 and rank(A+ry†) = n. It fol-
lows that, in these two special cases, the extended minimal backward error is actually
the true minimal backward error and that nothing was lost by using the “supersets”
C+

A,b and C+
A . We will supply further justification for the use of these supersets later.

The following result indicates that the extended minimal backward error μF (y)
is continuous at y = x̂, where x̂ is the DLS solution in (2.5)–(2.6), where of course
μF (x̂) = 0. In order to save space, here and in the rest of the paper we will only
consider the case where A is perturbed, but all of the results could be extended to
the more general case where both A and b are perturbed.

Corollary 2.7. With the notation and conditions of Theorem 2.6 and the DLS
solution x̂ in (2.5)–(2.6) define M̂∞ ≡ M∞(x̂) (see (2.47)) and r̂ ≡ b − Ax̂. Then
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with (2.15),

lim
y→x̂

μF (y) = μF (x̂) =
(
‖r̂‖2

2

‖x̂‖2
2

+ λmin

(
M̂∞

))1/2

= 0.

Proof. First we see that (2.5) just says

AT r̂ = AT (b − Ax̂) = −x̂‖b − Ax̂‖2
2/‖x̂‖2

2 = −x̂‖r̂‖2
2/‖x̂‖2

2,

and multiplying this on the left by x̂T shows that

(2.51) 0 = (b − Ax̂)T (b − Ax̂) + (Ax̂)T (b − Ax̂) = bT (b − Ax̂) = bT r̂

so that (I − bb†)r̂ = r̂. Since M̂∞ = M∞(x̂) = (I − bb†)A(I − 2x̂x̂†)AT (I − bb†), the
above give

M̂∞r̂ =
(
I − bb†

)
A
(
I − 2x̂x̂†)AT r̂ = −

(
I − bb†

)
A
(
I − 2x̂x̂†) x̂‖r̂‖2

2/‖x̂‖2
2

=
(
I − bb†

)
Ax̂‖r̂‖2

2/‖x̂‖2
2 =

(
I − bb†

)
(Ax̂ − b)‖r̂‖2

2/‖x̂‖2
2

= −r̂‖r̂‖2
2/‖x̂‖2

2.

Thus by Lemma 2.4, −‖r̂‖2
2/‖x̂‖2

2 is the only negative eigenvalue of M̂∞, and μF (x̂) =
0. Clearly when y → x̂, we have r = b − Ay → r̂, M∞ → M̂∞, and by the conti-
nuity of the eigenvalues of M∞ in (2.47), λmin(M∞) → λmin(M̂∞), completing the
proof.

Since in (2.32) CA ⊆ C+
A ,

μF (y) ≡ min
ΔA∈C+

A

‖ΔA‖F ≤ min
ΔA∈CA

‖ΔA‖F ,

i.e., μF (y) is a lower bound on the minimal backward error. However we have found
computationally, see section 5, that when y is a reasonable approximation to the exact
solution of the DLS problem (2.1), the minimal perturbation Δ̂A usually satisfies the
inequality in (2.31). Therefore in such cases μ(y) is actually the minimal backward
error. The following result partially justifies this finding.

Theorem 2.8. For given A ∈ R
m×n and b ∈ R

m, suppose that (2.2) holds. Let
x̂ be the DLS solution to (2.1). Then there exists an ε > 0 such that if ‖y − x̂‖2 < ε,
then μF (y) above is the true minimal backward error.

Proof. For any given y, Theorem 2.6 shows that Δ̂A satisfying (2.49) is the
minimizer of (2.32). Notice that when y → x̂, we have from Corollary 2.7 that
Δ̂A → 0. Thus

lim
y→x̂

(∥∥b − (A + Δ̂A
)
y
∥∥

2

‖y‖2
− σmin

(
A + Δ̂A

))
=

‖b − Ax̂‖2

‖x̂‖2
− σmin(A).

Since ‖b−Ax̂‖2
‖x̂‖2

− σmin(A) < 0, there must exist ε > 0 such that when ‖y − x̂‖2 < ε,∥∥b − (A + Δ̂A
)
y
∥∥

2

‖y‖2
− σmin

(
A + Δ̂A

)
< 0.

Therefore Δ̂A ∈ CA and μF (y) = minΔA∈CA ‖ΔA‖F , i.e., when ‖y − x̂‖2 < ε, μF (y)
is the true minimal backward error.
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3. A lower bound on min
ΔA∈C+

A
‖ΔA‖2. Since computing μF (y) directly

is expensive, in this section we suggest a good lower bound which can be estimated
easily.

First we give the following result, which is analogous to Theorem 3.1 in [35] for
ordinary least squares problems.

Theorem 3.1. With the notation and conditions of Theorem 2.6 and with C+
A in

(2.30), let μ2(y) ≡ minΔA∈C+
A
‖ΔA‖2. Then, for μF (y) in (2.32),

(3.1)
1√
2
μF (y) ≤ μ2(y) ≤ μF (y).

Proof. For any ΔA ∈ C+
A , we see from Lemma 2.1 that there exist w satisfying

bT w = 0 and Z ∈ R
m×n such that

ΔA = (b − w)y† +
(
I − ww†)Z

(
I − yy†)− A

=
[(

I − ww†) b − w
]
y† +

(
I − ww†)Z

(
I − yy†)

−
(
I − ww†)Ayy† − ww†Ayy† −

(
I − ww†)A

(
I − yy†)− ww†A

(
I − yy†)

=
[(

I − ww†) (b − Ay) − w − ww†Ay
]
y† − ww†A

(
I − yy†)

+
(
I − ww†) (Z − A)

(
I − yy†) .

Denote ΔA1 = [(I − ww†)(b − Ay) − w − ww†Ay]y†, ΔA2 = −ww†A(I − yy†),
and ΔA3 = (I − ww†)(Z − A)(I − yy†). Since ΔA1ΔAT

2 = 0, ΔA1ΔAT
3 = 0 and

ΔAT
2 ΔA3 = 0 and ΔA1 and ΔA2 are rank 1 matrices,

‖ΔA‖2
2 = ‖ΔA1 + ΔA2 + ΔA3‖2

2 = ‖(ΔA1 + ΔA2 + ΔA3)(ΔA1 + ΔA2 + ΔA3)T ‖2

=
∥∥ΔA1ΔAT

1 + (ΔA2 + ΔA3)(ΔA2 + ΔA3)T
∥∥

2

≥ max
{∥∥ΔA1ΔAT

1

∥∥
2
, ‖(ΔA2 + ΔA3)(ΔA2 + ΔA3)T ‖2

}
≥ 1

2
(
‖ΔA1‖2

2 + ‖ΔA2 + ΔA3‖2
2

)
=

1
2
(
‖ΔA1‖2

2 + ‖(ΔA2 + ΔA3)T (ΔA2 + ΔA3)‖2

)
=

1
2
(
‖ΔA1‖2

2 +
∥∥ΔAT

2 ΔA2 + ΔAT
3 ΔA3

∥∥
2

)
≥ 1

2
(
‖ΔA1‖2

2 + ‖ΔA2‖2
2

)
=

1
2
(
‖ΔA1‖2

F + ‖ΔA2‖2
F

)
=

1
2
‖ΔA1 + ΔA2‖2

F ≥ 1
2

min
ΔA∈C+

A

‖ΔA‖2
F ,

where the last inequality is due to the fact that ΔA1 + ΔA2 ∈ C+
A (take Z = A).

Therefore

min
ΔA∈C+

A

‖ΔA‖2
2 ≥ 1

2
min

ΔA∈C+
A

‖ΔA‖2
F ,

leading to the first inequality in (3.1). The second inequality in (3.1) is easy to prove.
In fact, if Δ̂A is a minimal solution to (2.32), then

μF (y) =
∥∥Δ̂A

∥∥
F
≥
∥∥Δ̂A

∥∥
2
≥ μ2(y).

Now we give a lower bound on μ2(y) ≡ minΔA∈C+
A
‖ΔA‖2.
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Theorem 3.2. With the notation and conditions of Theorem 2.6 and with
μ2(y) ≡ minΔA∈C+

A
‖ΔA‖2 for C+

A in (2.30),

(3.2) μ2(y) ≥ μlb
2 (y) ≡ 2β0

β1 +
√

β2
1 + 4β0

,

where

(3.3) β0 ≡
∥∥(AT r‖y‖2

2 + y‖r‖2
2)
∥∥

2

2‖y‖3
2

, β1 ≡ ‖y‖3
2‖A‖2 + 3‖y‖2

2‖r‖2

2‖y‖3
2

.

Proof. For any ΔA ∈ C+
A , from (2.30) we obtain

(A + ΔA)T (r − ΔAy)‖y‖2
2 + y‖r − ΔAy‖2

2 = 0.

Thus we have

AT r‖y‖2
2 + y‖r‖2

2 = AT ΔAy‖y‖2
2 − ΔAT r‖y‖2

2 + y2
(
rT ΔAy

)
+ ΔAT ΔAy‖y‖2

2 − y‖ΔAy‖2
2.

Then taking the 2-norm on both sides of this equation, we obtain the inequality∥∥(AT r‖y‖2
2 + y‖r‖2

2

)∥∥
2
≤
(
‖y‖3

2‖A‖2 + 3‖y‖2
2‖r‖2

)
‖ΔA‖2 + 2‖y‖3

2‖ΔA‖2
2,

that is, with (3.3), the quadratic inequality in terms of ξ ≡ ‖ΔA‖2:

β0 ≤ β1ξ + ξ2.

Since ξ and β1 are nonnegative, ξ ≥ ξ+, where ξ+ is the positive root of β0 = β1ξ+ξ2,
so

ξ ≥ ξ+ =
(√

β2
1 + 4β0 − β1

)
/2 = 2β0/

(√
β2

1 + 4β0 + β1

)
,

giving (3.2).
The lower bound in (3.2) can usually be evaluated in O(mn) flops, since ‖A‖2

can usually be estimated by a standard norm estimator in O(mn) flops; see [13,
section 15.2]. In fact a good estimate of ‖A‖2 might already be available from whatever
method is used for obtaining y, and the cost will essentially be the 4mn flops for
computing AT (b − Ay).

Also μlb
2 (x̂) = μ2(x̂) = μF (x̂) = 0 as desired; see (2.5), Corollary 2.7, and (3.1).

4. An asymptotic estimate for µF (y). Computing μF (y) directly is expen-
sive, and the lower bound (3.2) may not be very tight. In this section we would like
to give an asymptotic estimate by following the general approach given in [9].

Let f(A, y) ≡ (b − Ay)T (b − Ay)y + (yT y)AT (b − Ay) = ‖r‖2
2y + ‖y‖2

2A
T r. Note

that f(A, x̂) = 0 (see (2.5)). The extended minimal backward perturbation ΔA is the
matrix satisfying f(A+ ΔA, y) = 0 and μF (y) = ‖ΔA‖F . But by Taylor’s expansion,
for small enough E ∈ R

m×n,

f(A + E, y) ≈ f(A, y) + JAf(A, y)vec(E),
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where JAf(A, y) ∈ R
n×mn is the Jacobian matrix of f with respect to vec(A). Thus

an approximation to ΔA is that E giving the minimum 2-norm solution to

(4.1) f(A, y) + JAf(A, y)vec(E) = 0,

that is, E such that

vec(E) = −[JAf(A, y)]†f(A, y), μ̃F (y) ≡ ‖E‖F = ‖[JAf(A, y)]†f(A, y)‖2.(4.2)

Theorem 4.1. With the notation and conditions of Theorem 2.6, μ̃F (y) in (4.2)
is an asymptotic estimate of μF (y) in (2.32), i.e., for x̂ solving (2.1),

lim
y→x̂

μ̃F (y)
μF (y)

= 1.

Proof. By Taylor’s expansion,

(4.3) 0 = f(A + ΔA, y) = f(A, y) + JAf(A, y)vec(ΔA) + O
(
‖ΔA‖2

F

)
.

Thus from (4.2),

vec(E) = −[JAf(A, y)]†f(A, y) = [JAf(A, y)]†JAf(A, y)vec(ΔA) + O
(
‖ΔA‖2

F

)
.

Taking the 2-norm and noticing [JAf(A, y)]†JAf(A, y) is an orthogonal projection
matrix, we obtain

μ̃F (y) ≤ μF (y) + O
(
‖ΔA‖2

F

)
,

which, with Corollary 2.7, leads to limy→x̂ μ̃F (y)/μF (y) ≤ 1.
On the other hand, from (4.1) and (4.3) we can obtain

JAf(A, y)vec(ΔA) = JAf(A, y)
[
vec(E) + O

(
‖ΔA‖2

F

)]
.

Since ΔA is a matrix satisfying the above equality with minimum F-norm, we must
have

‖vec(ΔA)‖2 ≤
∥∥vec(E) + O

(
‖ΔA‖2

F

)∥∥
2
≤ ‖vec(E)‖2 + O

(
‖ΔA‖2

F

)
,

which, with Corollary 2.7, leads to limy→x̂ μ̃F (y)/μF (y) ≥ 1, completing the
proof.

Theorem 4.1 is similar to [9, Corollary 3.4], where a general minimal backward
error problem was considered, and applying the corollary to our case will result in the
asymptotic estimate ‖[JAf(A, x̂)]†f(A, y)‖2. We thank the referee who pointed out
that a general version of Theorem 4.1 was given in [10] (with no formal proof).

In the following we will consider computing or estimating μ̃F (y). First we would
like to obtain an explicit expression for it. If f = (fi) and g = (gi) are column vectors,
then we define the matrix ∂f/∂gT ≡ (∂fi/∂gj). Write m × n A = [a1, . . . , an], yT =
(η1, . . . , ηn), then ∂r/∂aT

j = ∂(b − Ay)/∂aT
j = −ηjI, ∂(rT r)/∂aT

j = 2rT ∂r/∂aT
j =

−2ηjr
T and if i �= j, ∂(aT

i r)/∂aT
j = −ηja

T
i , while ∂(aT

j r)/∂aT
j = rT − ηja

T
j , from
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which we see that

JAf(A, y) ≡ ∂f(A, y)/∂vec(A)T =
[
∂f(A, y)/∂aT

1 , . . . , ∂f(A, y)/∂aT
n

]
,

∂f(A, y)/∂aT
j = ∂

(
rT ry + yT yAT r

)
/∂aT

j = −2ηjyrT + yT yejr
T − ηjy

T yAT ,

JAf(A, y)·[JAf(A, y)]T =
n∑

j=1

[
∂f(A, y)/∂aT

j

]
·
[
∂f(A, y)/∂aT

j

]T
=

n∑
j=1

(
−2ηjyrT + yT yejr

T − ηjy
T yAT

) (
−2ηjyrT + yT yejr

T − ηjy
T yAT

)T
= ‖y‖6

2

[
AT A + AT ry† +

(
y†)T rT A +

(
‖r‖2

2/‖y‖2
2

)
I
]

= ‖y‖6
2

[
A + ry†

(‖r‖2/‖y‖2)
(
I − yy†)]T [

A + ry†

(‖r‖2/‖y‖2)
(
I − yy†)] .(4.4)

Here the matrix
[

A+ry†

(‖r‖2/‖y‖2)(I−yy†)

]
has full column rank. In fact, if it does not, then

there exists nonzero x ∈ R
n such that(
A + ry†)x = 0,

(
I − yy†)x = 0,

and it follows that Ay+r = 0, so b = 0, contradicting our assumption (2.2). Therefore
JAf(A, y) has full row rank. Then from (4.2),

μ̃F (y) =
∥∥∥[JAf(A, y)]T

{
JAf(A, y)·[JAf(A, y)]T

}−1
f(A, y)

∥∥∥
2

=
∥∥∥{JAf(A, y)·[JAf(A, y)]T

}−1/2
f(A, y)

∥∥∥
2
,(4.5)

where the second equality can easily be proved by using the SVD of JAf(A, y).
Define

(4.6) B ≡
[

A + ry†

(‖r‖2/‖y‖2)
(
I − yy†)] , c ≡

[
r
0

]
∈ R

m+n.

Note that

(4.7) f(A, y) = ‖y‖2
2

(
AT r + ‖r‖2

2

(
y†)T) = ‖y‖2

2B
T c.

Then from (4.5) with (4.4) and (4.7), it follows that

μ̃F (y) =
‖
(
BT B

)−1/2
BT c‖2

‖y‖2
=

[cT B
(
BT B

)−1
BT c]1/2

‖y‖2
=

‖B
(
BT B

)−1
BT c‖2

‖y‖2
.

(4.8)

Note that B(BT B)−1BT is an orthogonal projector onto R(B).
The asymptotic estimate μ̃F (y) is analogous to an estimate for the minimal back-

ward error for ordinary least squares problems whose various forms have been studied
in [9], [11], [12], and [17]. One method for computing μ̃F (y) is to use the QR factoriza-
tion. If B = QR where Q ∈ R

(m+n)×n satisfies QT Q = In and R is upper triangular,
then we see that

(4.9) μ̃F (y) =
∥∥QT c

∥∥
2
/‖y‖2.

If we use Householder QR factorization, this method will cost 2(m + 2/3n2)n2 flops.
The other method is to use the moment method (see, e.g., [6]) by following [27, Part
I]. For brevity, we will not give details here.
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5. Numerical tests. In section 2 we gave an extended minimal backward error
μF (y), which is a lower bound on the minimal backward error. But if the inequality in
(2.31) holds for the extended minimal backward perturbation Δ̂A given in (2.49), then
μF (y) is in fact the minimal backward error. Our numerical tests indicate that if the
given vector y is a reasonable approximation to the true DLS solution, the inequality
in (2.31) holds, where ΔA is the minimal Δ̂A given in (2.16). We will give some
examples in this section to illustrate this. In section 3 we gave a lower bound μlb

2 (y)
on μ2(y), which is also a lower bound on μF (y) (since μ2(y) ≤ μF (y)). In section 4 we
presented an asymptotic estimate μ̃F (y) of μF (y). We will give numerical examples
to show how good μlb

2 (y) and μ̃F (y) are as approximations to μF (y). We carried out
computations using MATLAB 7.4 on a MacBook running Mac OS X 10.4.11.

In our numerical tests the data was constructed as follows (randn and rand are
two MATLAB built-in functions for generating random matrices with normal and
uniform distributions, respectively):

• We use two types of test matrix for A:
Type 1: A = Ã/‖Ã‖F , Ã = randn(100, 40). Typically κ2(A) ≤ 10.
Type 2: A = Ã/‖Ã‖F , Ã = UΣV T , 40 × 40 Σ = diag(σi), σi = 10−4(i−1)/39,
U ∈ R

100×40 and V ∈ R
40×40 are the Q-factors of the QR factorizations of

two random matrices randn(100, 40) and randn(40, 40), respectively. Note
that κ2(A) = 104.

• b = (A + E)x, x = [1, . . . , 1]T ∈ R
40, E = δA√

100×40
rand(100, 40) (note

that ‖E‖F ≤ δA), δA = 10−7, 10−6, . . . , 10−1 for Type 1 matrices A, δA =
10−7, 10−6, 10−5, 10−4 for Type 2 matrices A. The DLS estimate usually has
no accurate digits compared with x if δA is taken to be larger.

• y = x̂+ 1√
40

δx̂‖x̂‖2 rand(40, 1), x̂ is the computed solution to the DLS problem
(2.1), and δx̂ = 0, 10−7, 10−6, . . . , 10−1 .

• For each pair of δA and δx̂ and each type of matrix, we generated 1000 sample
problems.

The solution x̂ to the DLS problem satisfies (see [5])

(5.1) x̂ =
bT b

bT AvD

vD,

where vD is the right singular vector corresponding to the smallest singular value of
(I−bb†)A. The equality (5.1) can also be obtained from [21, section 9], which suggests
a way to compute x̂. In our numerical tests we used the MATLAB built-in function
svd to find vD and then computed x̂. To compute the asymptotic estimate μ̃F (y),
we first computed the QR factorization of B (see (4.6)) to find the Q-factor and then
used (4.9).

In our numerical tests single precision was used to generate the data A, b, and
y and to compute the DLS solution x̂; both single precision and double precision
were used to compute both sides of the inequality in (2.31) (where ΔA gives the
minimum). The number of failures to satisfy the inequality for each case by single (S)
and double (D) precision is reported in Table 5.1 for Type 1 matrices, and in Table
5.2 for Type 2 matrices. When δA is small or δx̂ is large, we see that the computed
version of the inequality by single precision sometimes fails. In particular, for ill-
conditioned Type 2 matrices, when δA = 10−7 or δx̂ = 10−1, the failure percentage
is very large. However, the computed version of the inequality by double precision
always holds for these test cases. This shows that these failures were due to rounding
errors in the single precision computed version of the inequality, and for these test
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Table 5.1

Number of failures to satisfy the inequality (2.31) out of 1000 samples for Type 1.

δx̂
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

δA

10−7
S 9 2 4 2 1 1 2 1
D 0 0 0 0 0 0 0 0

10−6
S 4 2 1 2 4 1 4 1
D 0 0 0 0 0 0 0 0

10−5
S 0 0 0 0 0 4 3 0
D 0 0 0 0 0 0 0 0

10−4
S 0 0 0 0 0 0 2 1
D 0 0 0 0 0 0 0 0

10−3
S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

10−2
S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

10−1
S 0 0 0 0 0 0 0 0
D 0 0 0 0 0 0 0 0

Table 5.2

Number of failures to satisfy the inequality (2.31) out of 1000 samples for Type 2.

δx̂
0 10−7 10−6 10−5 10−4 10−3 10−2 10−1

δA

10−7
S 718 725 726 749 965 997 1000 997
D 0 0 0 0 0 0 0 0

10−6
S 2 0 1 0 107 970 1000 997
D 0 0 0 0 0 0 0 0

10−5
S 0 0 0 0 0 120 945 995
D 0 0 0 0 0 0 0 0

10−4
S 0 0 0 0 0 0 123 888
D 0 0 0 0 0 0 0 0

cases the extended minimal backward error is actually the true minimal backward
error. The reason that single precision rounding errors caused some tests to fail
is almost certainly the following: in each failed case the gap between the smallest
and the second smallest singular values of N∞ was small, making the computation
of the singular vector w∗ (see (2.49)) inaccurate (see, e.g., [2, Theorem 1.2.8] or [8,
Theorem 8.6.5] for perturbation results concerning the singular vectors). Indeed we
noticed that, for the failed cases, w∗ computed by single precision was very inaccurate
compared with the one computed by double precision, leading to a large computational
error in Δ̂A, where this is needed for checking the inequality in (2.31).

In Figures 5.1 to 5.8 we give the plots corresponding to eight extreme cases in Ta-
bles 5.1 and 5.2 which exhibit μF (y) (as abscissa) versus μlb

2 (y) in (3.2), and μF (y) (as
abscissa) versus μ̃F (y) in (4.2) and (4.9), represented by the points · (blue) for μlb

2 (y),
and ∗ (green) for μ̃F (y). The diagonal (red) is plotted for reference. In these figures
the above quantities were computed by double precision. But we can see no difference
between these figures and the corresponding ones obtained by single precision.

From Figures 5.1, 5.2, 5.5, and 5.6, where each y is the computed DLS solution
x̂, we see that the minimal backward error μF (x̂) ≈ 10−7, which is close to the unit
roundoff for single precision so that each computed x̂ is a backward stable solution.
It is interesting to see from Figures 5.3, 5.4, 5.7, and 5.8 that μF (y) is about one or
two orders of magnitude smaller than δx̂. This phenomenon also holds for other test
cases.
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Fig. 5.1. Type 1 A, δA = 10−7, δx̂ = 0.
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Fig. 5.2. Type 1 A, δA = 10−1, δx̂ = 0.
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Fig. 5.3. Type 1 A, δA = 10−7, δx̂ = 10−1.
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Fig. 5.4. Type 1 A, δA = 10−1, δx̂ = 10−1.
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Fig. 5.5. Type 2 A, δA = 10−7, δx̂ = 0.
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Fig. 5.6. Type 2 A, δA = 10−4, δx̂ = 0.

All of these figures and the figures we did not display here indicate that the lower
bound μlb

2 (y) is a reasonable approximation to the minimal backward error μF (y) in
the sense that these two always had the same order of magnitude, although the case
for Type 1 matrices is worse than the case for Type 2 matrices. We also see that the
asymptotic estimate μ̃F (y) is an excellent approximation to μF (y), even when y is
not close to the DLS solution x̂; see Figures 5.3, 5.4, 5.7, and 5.8, where δx̂ = 10−1.
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Fig. 5.7. Type 2 A, δA = 10−7, δx̂ = 10−1.
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Fig. 5.8. Type 2 A, δA = 10−4, δx̂ = 10−1.

6. Summary and future work. For a given approximate solution y to the
DLS problem (2.1), we first presented formulas (2.15) in Theorem 2.2 for an extended
minimal backward error μF (y, θ) for the case where backward perturbations in both
A and b are allowed. Then by taking θ → ∞, we obtained the corresponding formulas
(2.48) in Theorem 2.6 for an extended minimal backward error μF (y) for the case
where only backward perturbations in A are allowed—this is the case we considered
later in the paper. In theory μF (y) is a lower bound on the minimal backward error,
but if the inequality in (2.31) is satisfied for the optimal perturbation Δ̂A given in
(2.49), it is, in fact, the the minimal backward error. Our simulations showed that if
y is a reasonable approximation to the exact DLS solution (that is, having a relative
error in y of less than 10−1 for our test cases), then apparently the inequality in
(2.31) holds in the absence of rounding errors in checking the inequality. Thus we
believe in practice that μF (y) can usually be used as the minimal backward error.
Since the formula (2.48) for μF (y) involves the minimum singular value of a matrix,
it is expensive to compute directly. In order to overcome this problem, we derived a
lower bound μlb

2 (y) (see (3.2)) and an asymptotic estimate μ̃F (y) (see (4.6), (4.8), and
(4.9)). These can be computed or estimated more efficiently. For our numerical test
cases, μlb

2 (y) always had the same order of magnitude as μF (y), and μ̃F (y) was an
excellent approximation to μF (y). Since the computation of μlb

2 (y) is so inexpensive,
it would seem to give a simple and effective indicator.

Several problems need to be investigated in the future. To check if the extended
minimal backward error is the actual minimal backward error, we need an efficient
and reliable way to test the inequality in (2.31) (or the inequality in (2.9) when
perturbations in both A and b are allowed). The relationships between μF (y) and
μ̃F (y) needs to be studied further. We would also like to incorporate the results
obtained in this paper to design effective stopping criteria for iterative algorithms for
solving the DLS problem and extend the results here to total least squares problems
(see [7] and [33]) and scaled total least squares problems (see [23] and [21]).
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OUT-OF-CORE IMPLEMENTATIONS OF CHOLESKY
FACTORIZATION: LOOP-BASED VERSUS RECURSIVE
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Abstract. We compare, in the same framework, out-of-core implementations of the Cholesky
factorization algorithm. The candidate implementations are the classical blocked left-looking variant
and a more recent recursive formulation. Both have been implemented for real positive definite
matrices: the former in the parallel out-of-core linear algebra package (POOCLAPACK) library and
the latter in the scalable out-of-core linear algebra computations (SOLAR) library. We perform a
theoretical analysis of the amount of input/output (I/O) operations required by each variant. We
consider alternatives for the left-looking algorithm: the one-tile and two-tiles approaches. We show
that when main memory is restricted, the one-tile approach yields less I/O volume. We then show
that the left-looking implementation requires less I/O volume than the recursive variant. We have
implemented all for complex matrices, and we report on numerical experiments.
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1. Introduction. Large, dense, and complex valued linear systems occur in in-
dustrial applications of the boundary element method (BEM). Using the disk through
an out-of-core solver is an effective way to overcome memory limitations. The aim of
this paper is to compare recursive and loop-based implementations of an out-of-core
Cholesky solver.

1.1. Motivation. The BEM, which is widely used in electromagnetic or acous-
tic scattering, consists of transforming the original scattering problem set in an un-
bounded domain into an integral equation set on the boundary of the scatterer [19]. In
many situations, a symmetric formulation of the integral equation is preferred (such
as the electric field integral equation in electromagnetism [6, 9]). The discretization
of such an integral equation, e.g., by finite element methods leads to a linear system
of equations:

(1.1) AX = B,

where the coefficient matrix A of order N is dense, complex valued, symmetric but
non-Hermitian, and the right-hand side B is a given complex valued matrix of size N×
M . It is observed that, for complex symmetric matrices issued from the discretization
of boundary integral equations (BIE), pivoting is not required: thus, a Cholesky
factorization can be used [7, 5]. Note that this special property is strongly linked to
the underlying BIE problem. For general complex symmetric matrices, the Cholesky
algorithm is unstable and may even breakdown.

For very large problems (e.g., N ≥ 100000), direct solvers are too costly, and pre-
conditioned iterative algorithms are preferred [8, 10]. For intermediate size problems
where the matrix is too large to fit in-core, an out-of-core solver is very effective.
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1.2. State of the art. The limited size of the memory is a major bottleneck
for solving large industrial problems, e.g., in electromagnetics. Therefore, out-of-core
implementation, which performs linear algebra operations on matrices stored on the
disk, is still an active resarch field. We refer to [24] for an extensive survey of trends
in out-of-core algorithms and to [1] for recent developments related to sparse out-of-
core parallel solvers. The Cholesky factorization is one of the classical linear algebra
operations supported, for example, by linear algebra package (LAPACK) library [4].

The parallel extension of LAPACK, scalable linear algebra package (ScaLAPACK)
provides a parallel out-of-core implementation of Cholesky factorization [11]: the ma-
trix is partitioned into column panels and a left-looking variant of Cholesky factor-
ization is chosen.

The parallel linear algebra package (PLAPACK) is a library infrastructure for
coding linear algebra algorithms at a high level of abstraction [25]. Its parallel out-
of-core linear algebra package extension (POOCLAPACK) provides a parallel out-
of-core implementation of Cholesky factorization: the matrix is partitioned into tiles
and is factorized by a left-looking variant [15]. The tile approach is more scalable
than the panel approach used in ScaLAPACK. Two slightly different tile variants
have been proposed in POOCLAPACK: the one-tile variant [26] and the two-tiles
variant [21], depending on the number of full tiles allowed to reside in the memory
simultaneously.

The scalable out-of-core linear algebra computations (SOLAR) library [22] is
based on recursive formulations of linear algebra algorithms. It is designed to be
portable across various architectures (personal, shared-memory, distributed memory
computers) thanks to a portability layer, the matrix input output subroutines, which
manages the data transfers to and from the disk. Matrices are partitioned into pri-
mary blocks. A primary block is the basic unit of the matrix, stored contiguously
on the disk. In SOLAR’s Cholesky factorization routine, the matrix is recursively
split. At each level, the solution of a large system with a triangular matrix is com-
puted, and a large symmetric rank-k update (SYRK) is performed through calls to
the out-of-core basic linear algebra subroutines (BLAS). At the leaf level, the matrix
is factorized by an in-core Cholesky routine (from LAPACK or ScaLAPACK). The
recursion is stopped when the matrix size is equal to a predefined blocksize (for in-
stance, when the matrix consists of 2× 2 or 4× 4 primary blocks). Experiments with
the recursive Cholesky algorithm show that a significant amount of I/O operations
is hidden by the computations. The recursive formulation of LU decomposition with
partial pivoting drastically outperforms the left- and right-looking formulations.

Recursion is mainly thought to improve the locality of reference: in-core im-
plementations perform fewer cache misses, and out-of-core implementations incur a
smaller I/O volume. This feature is demonstrated for LU decomposition in [23]. Re-
cursive data structures have also been developed in [3, 2]. Recently, a sparse Cholesky
solver based on a recursive formulation of the Cholesky algorithm, at the sparse and
at the dense level, combined with a recursive layout of the data has been proposed
in [17]. This solver is part of the library of sparse linear solvers TAUCS. We refer to
[13] for a complete survey on recursion as a key for designing high-performance linear
algebra libraries.

1.3. Aim. We seek to compute the Cholesky decomposition of large dense ma-
trices, stored on disk, on a computer with a limited amount of available memory. We
focus on sequential algorithms. We survey several variants and memory layouts for
computing this decomposition. Then, we propose a theoretical comparison of the re-
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sulting implementations, substantiated by experiments, to find out the most effective
implementation.

The paper is organized as follows. Section 2 describes two variants of the Cholesky
algorithm: the left-looking variant and the recursive variant. Then, out-of-core imple-
mentations of these variants are detailed in section 3. We describe, in particular, the
one-tile and the two-tiles approaches, which correspond to different memory layout.
These out-of-core implementations rely on out-of-core BLAS, which are described in
section 4. A theoretical analysis of the data volume from the disk to the memory is
performed in section 5 for the left-looking variant and in section 6 for the recursive
variant. Experiments are conducted in section 7. Our conclusions are presented in
section 8.

2. The Cholesky factorization. We recall the definition of the Cholesky de-
composition of a symmetric matrix A, along with assumptions and notations used
throughout the paper. Then, two algorithms for the computation of the Cholesky fac-
tor L are reviewed: a loop-based algorithm (the left-looking Cholesky algorithm) and
a recursive algorithm. A loop-based algorithm is based on nested do-loops, whereas
a recursive algorithm is based on a recursive splitting of the matrix.

2.1. Definitions and notations.

2.1.1. Definition. Let A be a symmetric matrix, admitting the decomposition:

(2.1) A = L LT ,

where L is a lower triangular matrix. This decomposition exists and may be computed
in a stable way by the so-called Cholesky algorithm when A is a real definite positive
matrix, or when A is a complex symmetric matrix encountered by the BEM [5, 7].

In the following, choldenotes a generic routine for the computation of the lower
triangular Cholesky factor. Depending on the context, chol stands for a variant of the
algorithm or for an optimized computational kernel.

2.1.2. Partitioned algorithms. All variants of the Cholesky algorithm consid-
ered in this paper are partitioned algorithms. The matrices A and L are partitioned
into tiles. Basic operations are matrix-matrix operations on these tiles, such as mul-
tiply, add. . . . These operations are provided by the level 3 BLAS and are known to
enjoy a high level of data-reuse [12]. Therefore, partitioned algorithms built on calls
to level 3 BLAS benefit from this high level of data-reuse, which is critical for an
efficient out-of-core implementation [24].

2.1.3. Notations. The matrix A is a real or complex symmetric matrix of size
n × n, partitioned into p × p tiles of size t × t each. The dimension p, in tiles, is
approximately equal to n/t. The dimension of A, in tiles, is sometimes denoted by
p(A), to avoid an ambiguity.

2.2. A loop-based algorithm: The left-looking variant. We follow the
formalism embraced in [20] to recap the left-looking variant of the Cholesky algorithm.
Let A and L be partitioned into quadrants with square diagonal blocks:

A =
(

ATL �
ABL ABR

)
, L =

(
LTL 0
LBL LBR

)
.

Here, ATL and LTL are square, and the diagonal blocks of L, LTL, and LBL are lower
triangular. The � indicates that the corresponding part of the matrix is not referenced
(due to symmetry).
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Algorithm: [A] := llt(A)

Partition A→
(

ATL �

ABL ABR

)

where ATL is 0× 0

until ABR is 0× 0 do
Repartition(

ATL �

ABL ABR

)
→

⎛
⎝ A00 � �

A10 A11 �
A20 A21 A22

⎞
⎠

where A11 is b× b

1 A11 := A11 −A10 AT
10

2 A11 := L11 = chol (A11)
3 A21 := A21 −A20 AT

10

4 A21 := A21 L
−T
11

Continue with(
ATL ATR

ABL ABR

)
←

⎛
⎝ A00 � �

A10 A11 A12

A20 A21 A22

⎞
⎠

enddo

Fig. 2.1. Loop-based, partitioned, left-looking variant of the Cholesky algorithm.

Using the partitionings in (2.1), we obtain

(2.2)
(

ATL �
ABL ABR

)
=

(
LTL LT

TL �

LBL LT
TL LBL LT

BL + LBR LT
BR

)
.

This equality must hold when the factorization is completed. A possible choice for
the content of A at an intermediate step of the factorization is

(2.3) A :=

(
LTL �

ABL L−T
TL ABR

)
.

The bottom-right part of the matrix ABR is not changed. The loop-invariant (2.3)
yields the so-called left-looking variant, described in Figure 2.1.

2.3. A recursive algorithm. Observe that

chol (A) :=
(

LTL �
LBL LBR

)
,

where

LTL = chol (ATL),
LBL = ABL LTL,

LBR = chol (ABR − LBL LT
BL).

The diagonal blocks are computed by recursive calls to the choldecomposition, yield-
ing a natural recursive description of Cholesky decomposition [13], based on a recursive
splitting of A, until the subblocks consist of a single tile. The main steps of this vari-
ant are described in Figure 2.2. In [23], Toledo shows that a recursive formulation of
LU decomposition improves the locality of reference. The recursive algorithm is thus
not only more concise but also more efficient than the classical right-looking variant of
LAPACK. Recursive blocked algorithms have been introduced for several dense and
sparse linear algebra operations, e.g., Cholesky decomposition [2, 16, 3, 17, 22].
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Algorithm: [A] := rllt(A)

if p(A) > 1 do

Partition A→
(

ATL �

ABL ABR

)

where p(ATL) = p(A)/2

1 ATL := LTL = rllt (ATL)

2 ABL := ABL L
−T
TL

3 ABR := ABR − ABLA
T
BL

4 ABR := LBR = rllt (ABR)

else
A := L = chol(A)

endif

Fig. 2.2. A recursive variant of the Cholesky algorithm. The dimension of matrix A, in tiles,
is denoted by p(A).

3. Out-of-core implementations. From now on, the matrix is assumed to
reside on disk. We describe the data layout and then detail the implementation
of a left-looking variant and of a recursive variant of the Cholesky algorithm. Two
implementations of a Cholesky left-looking variant are sketched: a two-tiles and a one-
tile, depending on the number of tiles (respectively two and one) allowed to reside in
memory simultaneously.

3.1. Data layout. We follow the tile approach already implemented in
POOCLAPACK [15, 26].

3.1.1. Matrix tiling. We use two types of partitioning of the matrix:
• a recursive partitioning: the interval [1, n] is recursively halved until the size

of the subintervals is less than or equal to t.
• an arithmetic partitioning: the interval [1, n] is partitioned into subintervals

of size t, except possibly for the first subinterval.
Examples of partitioning are shown in Figure 3.1. In the arithmetic partitioning,
the larger subintervals are the last ones: the tiles updated by more computation lay

7

4

4

7 4 41 7 7

7

1

7

Fig. 3.1. A matrix of size 15× 15 is partitioned using an arithmetic partitioning (on the left)
and using a recursive partitioning (on the right). In both cases, the tile size t is equal to 7: it
represents the default block size in the arithmetic partitioning and the maximum size of the leaves
in the recursion tree for the recursive partitioning.
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Fig. 3.2. An example of a matrix out-of-core storage. The matrix of size 9 × 9 is recursively
partitioned into tiles of size t× t, with t = 5. The matrix is stored on the disk by block-rows. Hence,
two direct-access files are needed: one contains the tile A11, and the other the tiles A21 and A22.
Each tile is stored as a collection of records, where each record corresponds to a block of size t × b
(b = 3), stored in column-major order.

indeed at the bottom-right part of the matrix, and it is better to have them as large
as possible to increase the operations-to-I/O ratio.

The recursive variants of Cholesky algorithms are based on a recursive parti-
tioning of the matrix. The left-looking variants are usually based on an arithmetic
partitioning.

The size of the main memory constrains the size of the tile, but p can be very large
(it is only constrained by the size of the disk). Hence, this approach is well-adapted
to large out-of-core matrices.

Another choice is made in the out-of-core parallel implementation of Cholesky fac-
torization in ScaLAPACK: the matrix is partitioned into slabs of columns (possibly of
variable width), instead of tiles. But this approach is known to lack scalability [24, 18].

3.1.2. Storage details. The partitioned matrix is decomposed in block-rows of
height t. Each row is stored tile by tile. We will assume that each tile itself is stored
in column-major order.

In practical, each block-row is stored as a collection of records in a direct-access
file. In this file, each record corresponds to a primary block, stored contiguously on
disk. The storage is illustrated by Figure 3.2. We distinguish between a block and
a tile. A block corresponds to a physical record in the direct-access file storing a
block-row of the matrix: it is the smallest unit in which the matrix is stored. A tile
corresponds to an element of the logical partitioning of the matrix. A tile is split on
disk into several blocks of size t × b, with b ≤ t. In the following, blocks are called
narrow blocks, since they generally have fewer columns than rows. Note that if b = t,
a tile is identical to a block.

3.2. I/O scheme. The I/O scheme is a simple synchronous scheme, based on
the standard read/write subroutines. Narrow blocks are stored as records in direct-
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access files. These records are explicitly read from (and written back to) the disk
when needed. No prefetching (overlapping of I/O with computation) is employed.

3.3. Implementations of the left-looking variant. We describe two imple-
mentations of the left-looking variant for the computation of the Cholesky factor of
matrix A:

• In the two-tiles approach, two tiles are allowed to reside in-core simultane-
ously [15].

• In the one-tile approach, there is only one tile in-core [26]. Therefore, this tile
may be larger, and the implementation benefits from a better ratio between
computations and I/O operations.

In both approaches, two extra buffers are needed for the in-core storage of two narrow
blocks.

3.3.1. Two-tiles approach. We strictly follow the sequential implementation
stated in [15]. Two tiles simultaneously reside in the main memory. One contains the
diagonal tile A11, and the other contains the current tile of column A21. We recap
the main steps and refer to [15] and [21] for further details:

• Step 1: Tile A11 is read from disk and updated as A11 := A11−A10A
T
10 by a se-

quence of narrow out-of-core symmetric rank-k updates (routine
ooc tile syrk ).

• Step 2: Tile A11 is factored by an in-core factorization routine. Then, tile
A11 is written back on disk, but the corresponding in-core buffer is kept in
memory.

• Steps 3 and 4: The update of block-column A21, A21 := (A21 −A20 AT
10)L

−T
11

is performed tile by tile. Each tile of A21 is brought in turn into mem-
ory, updated by a sequence of narrow out-of-core multiply and adds (routine
ooc tile gemm ), and next, by solving (in-core) a multiple right-hand side
triangular system of matrix AT

11. Then, the current tile of A21 is written back
on disk, the buffer containing A11 is flushed, and the next tile is read.

To optimize data transfers, tile A11 remains in-core for Steps 1 to 4. Therefore, we
define mixed BLAS ooc tile syrk and ooc tile gemm , whose arguments are an
in-core tile and out-of-core tiles:

• ooc tile syrk overwrites the (in-core) tile C of size t × t with C − AAT ,
where the tile A is stored on disk.

• ooc tile gemm overwrites the (in-core) tile C of size t × t with C + ABT ,
where A and B are out-of-core tiles.

These operations can be implemented as sequences of operations on narrow matrices,
as advocated in [15]. The narrow block technique analyzed in section 5.5 allows us to
increase the ratio of computation over I/O operations.

3.3.2. One-tile approach. The motivation of the one-tile approach introduced
in [26] is to increase the size of the current tile, which is read and written. We briefly
state the differences with the two-tiles implementation, for each step of the algorithm:

• Steps 1 and 2 are not changed.
• Tile A11 no longer remains in-core after Step 2. It is replaced in-core by the

current tile of A21. Then the routine ooc tile gemm is used to update A21.
• For Step 4, a new mixed BLAS is needed for the solution of the triangular

system with matrix A11: ooc tile trsm. This routine overwrites the (in-
core) tile A21 with the solution X of X AT

11 = A21, where the triangular tile
A11 is stored on disk. Tile A11 is read narrow block by narrow block in one
of the two extra buffers provided.
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This implementation uses a larger current tile and benefits from a better flops-to-I/O-
operations ratio for the mixed BLAS, as we will see. Nevertheless, tile A11 has to be
read twice.

3.4. Implementations of the recursive variant. Let us now consider the
out-of-core implementation of the recursive factorization sketched in Algorithm 2.2.
A similar implementation is reported in [22], in the framework of the SOLAR project.

3.4.1. Basic implementation. The main features of the factorization are the
following:

• Recursive partitioning of the matrix until the matrix consists of a single tile.
• Step 1: At the leaf level, tile A11 is brought into memory, factored by an

in-core Cholesky routine, and written back to the disk. At another level, the
factorization is called recursively.

• Step 2 consists in solving a triangular linear system with matrix LTL. At the
leaf level, this operation is performed by an in-core routine (for instance, the
BLAS routine trsm ), after reading the tile LTL. If the matrices are larger,
an out-of-core routine ooc trsm is called.

• Step 3 is a symmetric update operation. It is performed either by calling
an in-core routine (for instance, the BLAS routine syrk ) or an out-of-core
routine ooc syrk .

The recursive implementation calls two out-of-core BLAS, whose arguments are all
out-of-core matrices:

• ooc syrk overwrites the out-of-core matrix C of size n × n with C − AAT ,
where A is an out-of-core matrix of size n× k. If n = t, A and C are brought
into memory, and an in-core routine is called.

• ooc trsm overwrites the out-of-core matrix B of size m × n by the solution
X of X AT = B, where A is a triangular out-of-core matrix of size n × n.
When m = n = t, both arguments are brought into memory, and an in-core
routine is called.

So, out-of-core routines switch to in-core routine as soon as the arguments are matrices
consisting of a single tile.

3.4.2. Optimization: A (two-tiles) hybrid variant. Observe the factoriza-
tion of a matrix of 2 × 2 tiles:

A =
(

A11 �
A21 A22

)
.

The recursive procedure starts by splitting the matrix. Then the computation with
a two-tiles implementation requires reading 5 tiles and writing 3 tiles. The following
(also two-tiles) schedule avoids reading a tile immediately after it has been written:

• read, factorize A11;
• read, update A21;
• write A11 on disk and read A22,
• update A22, write A21, factorize and write A22.

It involves only reading and writing 3 tiles. So it is proposed to stop the recursion
when the matrix has 2× 2 tiles and to switch to this schedule. The total gain in I/O
volume is evaluated in section 6.5.

4. Out-of-core BLAS. The recursive schedule of Cholesky factorization stated
in section 3.4 calls out-of-core BLAS, for the out-of-core computation of the following:
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Algorithm: [C] := syrk(C, A)

Partition C →
(

CTL �

CBL CBR

)
, A→

(
AT

AB

)

where CTL is 0× 0 and AT has 0 rows

until CBR is 0× 0 do
Repartition(

CTL �

CBL CBR

)
→

⎛
⎝ C00 � �

C10 C11 �
C20 C21 C22

⎞
⎠ ,

(
AT

AB

)
→

⎛
⎝ A0

A1

A2

⎞
⎠

where C11 is t× t, and A1 has t rows

1 C11 := C11 − A1AT
1

2 C10 := C10 − A1AT
0

Continue with(
CTL �

CBL CBR

)
←

⎛
⎝ C00 � �

C10 C11 �

C20 C21 C22

⎞
⎠,

(
AT

AB

)
←

⎛
⎝ A0

A1

A2

⎞
⎠

enddo

Fig. 4.1. Blocked, loop-based algorithm for the computation of the SYRK, C := C −AAT .

• A symmetric rank-k update, ooc syrk , C−AAT , where A is a n×k matrix
and C is a k × k matrix (see Figure 4.1).

• The solution X of X AT = B, ooc trsm , where A is a triangular matrix of
size n × n and X overwrites B (of size m × n); see Figure 4.2.

Out-of-core BLAS may be based on recursive algorithms or on loop-based algorithms.
Some tests were conducted with recursive implementations but the performance was
quite disappointing. So, we do not take the recursive option here and restrict (as in
[22]) to loop-based algorithms. One-tile and two-tiles implementations of the out-of-
core BLAS are needed as building blocks for the one-tile and two-tiles implementations
of the recursive Cholesky algorithm. We briefly recall these implementations for
ooc syrk and ooc trsm (see Chapter 8 and Chapter 16 of [14]).

4.1. Out-of-core SYRK. We recap the (one-tile) block down-right moving
variant of the symmetric rank-k update syrk :

• Tile C11 is brought into the main memory.
• Step 1 is performed by applying a sequence of narrow rank-k updates through

a call to ooc tile syrk . Then, C11 is written back on the disk.
• Step 2 is performed tile by tile. Each tile of C10 is read, updated by a call to

ooc tile gemm , and written back on disk.

4.2. Out-of-core TRSM. The solution of X LT = B is computed by the
blocked right-moving variant of the triangular solver trsm . The main steps of the
out-of-core two-tiles implementation are

• Tile L11 is brought into memory.
• Column B1 is replaced tile by tile by the corresponding column of tiles of

the solution. The current tile of B1 is read, updated by calling the routine
ooc tile gemm . Then, the linear system with matrix LT

11 is solved in-core,
and the current tile of B1 is written back to the disk.

In the one-tile implementation, the tile L11 does not stay in-core. For every tile of
B1, the mixed BLAS ooc tile trsm is called instead of the in-core trsm .
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Algorithm: [B] := trsm(L, B)

Partition L→
(

LTL �

LBL LBR

)
, B →

(
BL BR

)
where LTL is 0× 0 and BL has 0 columns

until LBR is 0× 0 do
Repartition(

LTL �

LBL LBR

)
→

⎛
⎝ L00 � �

L10 L11 �
L20 L21 L22

⎞
⎠ ,

(
BT BB

)
→

(
B0 B1 B2

)

where L11 is t× t, and B1 has t columns

B1 := (B1 − B0LT
10)L−T

11

Continue with(
LTL �

LBL LBR

)
←

⎛
⎝ L00 � �

L10 L11 �

L20 L21 L22

⎞
⎠ ,

(
BL BR

)
←

(
B0 B1 B2

)

enddo

Fig. 4.2. Blocked, loop-based algorithm for the computation of the solution of the linear system
X LT = B, with a lower triangular matrix L, where X overwrites B.

5. Analysis of the I/O costs of the left-looking variant. This section
presents a theoretical analysis of data transfers between the disk and the main memory
in left-looking Cholesky algorithms.

We compare the number of tiles read and written by the two-tiles and one-tile im-
plementations of the left-looking Cholesky variant. Assuming that the main memory
is limited, we obtain a simple criterion for choosing one or the other approach, when
one wishes to minimize the I/O volume during the factorization. We then investigate
the impact of using narrow blocks in terms of I/Os.

5.1. Notations. We follow a systematic naming scheme. The number of tiles
read (respectively written) during the factorization of the matrix A is denoted by
Tr (respectively, Tw). The number of matrix elements read (respectively written)
is similarly denoted by Nr (respectively, Nw). A subscript characterizes the variant
(LLT for the left-looking variant), and a superscript characterizes the implementation
((1T) for the one-tile implementation and (2T) for the two-tiles implementation).
Their dependence with respect to (p, n, t, b) is made explicit when necessary.

For the sake of simplicity, we assume that n is a multiple of t, and thus p =
p(n, t) = n/t.

The main memory is limited to M words. A narrow block is a subtile of size t×b.

5.2. Two-tiles approach. We analyze the data transfers performed by the
schedule described in section 3.3.1. Suppose that k − 1 columns of the tiles of A
have already been factored. Matrix A is partitioned as

(5.1)

⎛
⎝ A00 � �

A10 A11 �
A20 A21 A22

⎞
⎠ ,

where A11 is a tile and A22 is a matrix of (p − k) × (p − k) tiles.
During the kth iteration, the following I/O operations are performed:

• Read A11, A10 (k tiles).
• Write A11 (1 tile).
• Read A21 tile by tile (p − k tiles).
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• For each tile of A21, read A10 and k − 1 tiles of A20 (2 × (k − 1) tiles).
• Write A21 (p − k tiles).

Hence, the total number of tiles read Tr (2T)
LLT (p) is

Tr (2T)
LLT (p) =

p∑
k=1

p + 2 (k − 1) (p − k) =
p

3
(
p2 + 2

)
.

The total number of tiles written Tw (2T)
LLT is

Tw (2T)
LLT (p) =

p∑
k=1

k =
p

2
(p + 1) .

5.3. One-tile approach. We examine the number of tiles read and written
during the kth iteration of the one-tile approach described in section 3.3.2. Matrix A
is partitioned as in (5.1).

The tile A11 does not stay in memory for the whole iteration: it has to be read
for each tile of A21, which results in p− k extra tiles to read. In the end, the number
of tiles read Tr (1T)

LLT (p) is

Tr (1T)
LLT (p) = Tr (2T)

LLT (p) +
p∑

k=1

(p − k) =
p

6
(
2p2 + 3p + 1

)
,

and the number of tiles written Tw (1T)
LLT (p) is

Tw (1T)
LLT (p) = Tw (2T)

LLT (p) =
p

2
(p + 1) .

5.4. One-tile versus two-tiles implementation. We compare the two-tiles
and one-tile implementations from the point of view of I/O volume.

The number of matrix elements read by the two-tiles and one-tile implementa-
tions, respectively, are given by,

Nr (2T)
LLT (n, t) = Tr (2T)

LLT

(
p =

n

t

)
× t2 =

n

3 t

((n

t

)2

+ 2
)

,(5.2)

Nr (1T)
LLT (n, t) = Tr (1T)

LLT

(
p =

n

t

)
× t2 =

n

6 t

(
2
(n

t

)2

+ 3
(n

t

)
+ 1

)
.(5.3)

The available main memory is partitioned into two-tiles of size t =
√

M/2 or one tile
of size t =

√
M , respectively. Here, we neglect the two extra buffers needed for the

storage in-core of two narrow blocks. The number of terms read with the two-tiles
and the one-tile approach are equal to

Nr (2T)
LLT

(
n, t =

√
M/2

)
=

n
√

M

3

√
2
(

n2

M
+ 1

)
,

Nr (1T)
LLT

(
n, t =

√
M

)
=

n
√

M

3

(
n2

M
+

3
2

n√
M

+ 1
)

.
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For large values of n, the one-tile implementation requires less I/O operations than
the two-tiles.

5.5. Narrow blocks. Some basic linear algebra operations, e.g., syrk and ma-
trix multiply and add (gemm ) can be implemented using the narrow block technique.
The matrix operands that are left unchanged on exit of these operations are parti-
tioned into narrow blocks. Hence, a gemm

C ← C − ABT

is implemented as a sequence of narrow multiply and adds: C −
∑

i Ai BT
i , where Ai

and Bi are narrow subblocks of A and B of width b.
This scheduling does not change the I/O volume for a fixed tile size. It improves

the I/O volume when the memory size is limited. A two-tiles implementation actually
uses two tiles and two narrow blocks in-core, that is, 2 tb + 2 t2 words. If b is small,
t can increase up to the asymptotic value

√
M/2. On the opposite, if b = t, the

maximum tile size is t =
√

M/4. The ratio of the number of matrix elements read in
both situations is

(5.4)
Nr (2T)

LLT

(
n, t =

√
M/2

)

Nr (2T)
LLT

(
n, t =

√
M/4

) � 1√
2
,

which is a quantitative estimate of the potential gain when using narrow blocks. The
numerical experiments reported in section 7.1 confirm these asymptotic I/O savings.

A similar analysis is conducted for the one-tile variant. One tile and two narrow
blocks reside in memory, consisting of t2 + 2tb words of memory. If b is small, the tile
size goes to

√
M/2, whereas if b = t, t equals

√
M/3. The ratio of the number of

elements read is asymptotically

(5.5)
Nr (1T)

LLT

(
n, t =

√
M/2

)

Nr (1T)
LLT

(
n, t =

√
M/3

) �
√

3
2
√

2
.

6. Analysis of the I/O costs of the recursive variant. In this section, we
analyze the memory behavior of the two-tiles implementation of the recursive variant
of the Cholesky factorization. We first estimate the number of I/Os for the out-of-core
BLAS ooc trsm and ooc syrk . Then, in section 6.3, we combine these estimates
to obtain the number of tiles read and written by the recursive variant of Cholesky
factorization, when the number of tiles of the matrix A is a power of two.

6.1. Notations. Notations are similar to the notations introduced in section 5.1.
The subscripts rllt, hllt, syrk , and trsm , respectively, refer to the recursive

variant of the Cholesky algorithm, the hybrid variant proposed in section 3.4.2, and
the out-of-core BLAS ooc syrk and ooc trsm . Unless stated, implementations are
two-tiles, and superscript (2T) is omitted.
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6.2. Analysis of the out-of-core BLAS. We analyze the data transfer per-
formed by an out-of-core (two-tiles) implementation of ooc syrk and ooc trsm .
The operands of these routines are out-of-core matrices partitioned into tiles of size
t × t.

6.2.1. Out-of-core SYRK. Let A be a symmetric matrix of p × k tiles, and
let C be a matrix of p × p tiles. The number of tiles read during the computation of
C − AAT (see Figure 4.1) is

(6.1) Tr SYRK(p, k) =
p∑

j=1

1 + k + (j − 1)(2k + 1) = k p2 +
p

2
(p + 1) .

The number of tiles written Tw SYRK(p, k) is

(6.2) Tw SYRK(p, k) =
p

2
(p + 1).

6.2.2. Out-of-core TRSM. Let A be a lower triangular matrix of p × p tiles,
and let B be a matrix of m×p tiles. The number of tiles read during the computation
of the solution of X AT = B (see Figure 4.2) is

(6.3) Tr TRSM(m, p) =
p∑

k=1

1 + m (1 + 2(k − 1)) = m p2 + p.

The number of tiles written Tw TRSM(m, p) is

(6.4) Tw TRSM(m, p) =
p∑

k=1

m = mp.

6.3. Analysis of the recursive variant. This subsection presents an analysis
of the data transfers associated to the recursive variant of Cholesky factorization (see
Figure 2.2). We assume that p = 2l for some integer l.

Let us compute Tr RLLT(2l) and Tw RLLT(2l) by induction.
If k = 0, the matrix A is reduced to a single tile, and the factorization is computed

by the in-core Cholesky factorization routine. Hence,

Tr RLLT(1) = 1, Tw RLLT(1) = 1.

Let k ≥ 1. The number of tiles read at level k satisfies the following recurrence:

(6.5) Tr RLLT

(
2k
)

= 2 Tr RLLT

(
2k−1

)
+Tr TRSM

(
2k−1, 2k−1

)
+Tr SYRK

(
2k−1, 2k−1

)
.

Hence, we have, for the factorization of a matrix of 2l tiles,

Tr RLLT

(
2l
)

= 2l Tr RLLT(1) +
l∑

k=1

2k−1 Tr TRSM

(
2l−k, 2l−k

)

+
l∑

k=1

2k−1 Tr SYRK

(
2l−k, 2l−k

)
.

(6.6)
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Hence, using (6.1) and (6.3) in (6.6), we obtain the number of tiles read:

(6.7) Tr RLLT(2l) =
23l

3
+

22l

4
+ 2l

(
3l

4
+

5
12

)
.

The number of tiles written also satisfies relation (6.5). Using (6.2) and (6.4), we
obtain

(6.8) Tw RLLT(2l) =
3
4

22l + 2l

(
l + 1

4

)
.

If p is not a power of two, we obtain an approximate value of Tr RLLT(p) and Tw RLLT(p)
by replacing 2l with p and l with log2 (p):

Tr RLLT(p) ≈ p3

3
+

p2

4
+ p

(
3
4

log2 (p) +
5
12

)
,

Tw RLLT(p) ≈ 3p2

4
+

p

4
(log2 (p) + 1) .

6.4. A one-tile implementation. A one-tile implementation of the recursive
variant of Cholesky factorization is easily obtained by calling a one-tile implementation
of ooc trsm instead of the two-tiles implementation analyzed in section 6.2.2. The
number of tiles read by ooc trsm is slightly increased:

Tr (1T )
TRSM(m, p) = m p2 + m p,

whereas the number of tiles written is not modified. Finally, the number of tiles read
by a one-tile recursive factorization of a matrix with 2l tiles is

Tr (1T )
RLLT

(
2l
)

=
23l

3
+

3
4

22l + 2l

(
l

4
− 1

12

)
.

6.5. The hybrid recursive/left-looking approach. We investigate the hy-
brid implementation proposed in section 3.4.2. Assume that p = 2l. This hybrid
variant is very close to the fully recursive variant analyzed in section 6.3.

The recursive partitioning of the matrix is stopped at level l − 1 (instead of l)
when the matrix has 2 × 2 tiles.

The read operations corresponding to the level l are avoided. This results in 3×2l

tiles less to read. At level l−1, 3×2l−1 additional tiles are read (for the factorization
of the 2l−1 blocks of 2 × 2 tiles). Finally,

Tr HLLT(p) = Tr RLLT(p) − 3 × 2l + 3 × 2l−1 =
23l

3
+

22l

4
+ 2l

(
3l

4
− 13

12

)
.

This variant avoids to write 2l−1 tiles. Hence,

Tw HLLT(p) = Tw RLLT(p) − 2l−1 =
3
4

22l + 2l

(
l − 1

4

)
.

The hybrid variant slightly improves the number of tiles read and written. Neverthe-
less, it does not affect the dominant terms.
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Table 6.1

The number of tiles read and written during the factorization of an out-of-core matrix A parti-
tioned into p× p tiles for the left-looking and the recursive variants of the Cholesky algorithm. For
each variant, the one-tile and two-tiles implementation are considered.

Left-looking algorithm
Implementation One-tile Two-tiles

Tiles read
p3

3
+
p2

2
+
p

6

p3

6
+

2 p

3

Tiles written
p

2
(p+ 1)

Recursive algorithm
Implementation One-tile Two-tiles

Tiles read
p3

3
+

3

4
p2 + p

(
log2 (p)

4
− 1

12

)
p3

3
+
p2

4
+ p

(
3

4
log2 (p) +

5

12

)

Tiles written
3 p2

4
+
p

4
(log2 (p) + 1)

6.6. Conclusion of the analysis. The number of tiles read from and written
to the disk during the factorization of an out-of-core matrix A partitioned into p × p
tiles is gathered in Table 6.1 for the left-looking and the recursive variants of the
Cholesky algorithm. For each variant, the one-tile and two-tiles implementations are
considered. The conclusion of this analysis is that the recursive variant reads and
writes more tiles. Therefore, when one tries to minimize the number of tiles read and
written, the left-looking variant is more appropriate.

7. Performance experiments. We present experiments for the different vari-
ants of the out-of-core Cholesky factorization. All variants were implemented in For-
tran 90, compiled with Intel’s Fortran compiler ifort with -fast optimization, and
run on a Pentium 4 XEON based biprocessor running RedHat Linux 3.2.2-5. The
2 CPUs have a clock cycle of 3.05 GHz, 2GB of Ram, and a cache size of 512 KB.
We use a small computer system interface (SCSI) disk for the out-of-core storage of
matrices. We use Intel’s optimized implementation of BLAS, the math kernel library.
Experiments are performed in simple precision complex arithmetic with matrices gen-
erated by the discretization of boundary element formulation of the electromagnetic
scattering by an object.

7.1. Narrow blocks. We present a preliminary study which aims at optimizing
the width of narrow blocks.

We first verify the estimate (5.4) (estimate (5.5) is similarly verified). We consider
the factorization of a matrix A of size n = 12000, arithmetically partitioned into tiles
of size t × t, by the two-tiles implementation of the Cholesky factorization. The
memory is limited to 106 words. We compare the ratio of the number of terms read
with two extreme choices:

• b minimum (b = 1), t maximum (t = 707): Nr (2T)
LLT (b = 1),

• b maximum, equal to t (b = t = 500): Nr (2T)
LLT (b = t = 500),

to the predicted value 1/
√

2 and obtain a good agreement:

Nr (2T)
LLT (b = 500)

Nr (2T)
LLT (b = 1)

√
2 =

824 106 ×
√

2
1156 106

= 1.0080.

But, when b = 1, the factorization takes 1858 seconds, against 398 seconds, when
b = t = 500. When b = 1, the bulk of the computation is, namely, in level 2 BLAS,
which explains this poor performance.
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Table 7.1

I/O time (in seconds) for the factorization of a matrix of size N = 48000, partitioned into
tiles of size t × t, for different values of t. An “empty” factorization (with read/write operations
but without computation) is performed. The elapsed time for the “empty” factorization roughly
corresponds to the I/O time for the real factorization.

Left-looking Recursive Hybrid
algorithm algorithm algorithm

t One-tile Two-tiles One-tile Two-tiles One-tile Two-tiles
750 4704 4951 5039 5125 5052 5122
1500 2727 2512 2900 2756 2841 2778
3000 1499 1543 1695 1713 1672 1625

We then follow [15] and choose b such that it optimizes an out-of-core SYRK. We
compute C −AAT , where matrices C and A consist of a single tile. We perform two
sets of experiments: one with t = 2535, and the other with t = 5880. For each set,
several values of b are tested (from b = 128 to b = t/2). The value b = 256 is a good
compromise between speed and memory. This value is fixed throughout the following
experiments.

7.2. Performance characteristics of the different variants. In this para-
graph, we compare the performance characteristics of the left-looking, the recursive,
and the hybrid variant of the Cholesky algorithm. The test case is a matrix of size
n = 48000, partitioned in tiles of size 750, 1500, and 3000. For these tile sizes, arith-
metic and recursive partitioning of the matrix are identical. One-tile and two-tiles
implementations are experienced for each variant.

7.2.1. Evaluation of the time taken by the I/Os. The time taken by the
I/Os is shown on Table 7.1. It is evaluated for each variant and each tile size by run-
ning an “empty” factorization of the matrix: the tiles are read and written according
to the algorithmic schedule but no computation is made (all of the BLAS calls are
turned off). The elapsed time gives an estimate of the time taken by the I/Os.

Remark 1. As mentioned in subsection 3.2, I/O operations are performed through
standard read/write. But the operating system (OS) may cache pages in memory.
Therefore, I/O timings may not be reliable. In this work, the specifier BUFFERED=‘NO’
is used in the OPEN statements: this specifier is available in the Intel Fortran compiler,
and it should ensure that records are not accumulated in a buffer instead of being
read or written on disk. Nevertheless, the experimental timings presented here may
be inaccurate, due to OS caching.

7.2.2. Performances of the different variants. Table 7.2 shows the perfor-
mances of all of the variants. The elapsed time for completing the factorization is
presented, along with the flops rate attained. The number of tiles read and written
is measured, and this measure confirms the previous analysis of the I/O costs. The
main result of these experiments is that the loop-based algorithm outperforms the
others: it reads and writes less tiles, and it achieves the factorization faster than the
other candidates. The recursive variant, although promising, does not seem to be well
suited for an out-of-core decomposition. The I/O cost is higher than for the loop-
based variant, and the better data locality provided by the recursive schedule does
not compensate this drawback. The hybrid algorithm performs fewer I/O operations
than the fully recursive one, but it does not perform better: the total time taken by
the factorization is the same.

For a fixed given tile size, the two-tiles implementation is always faster than the
one-tile implementation (for the three variants considered here). This is not a surprise:
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Table 7.2

Factorization of a matrix of size N = 48000, partitioned into tiles of size t × t, for different
values of t. We compare one-tile and two-tiles implementations of the left-looking, recursive, and
hybrid Cholesky factorization. For the hybrid algorithm, the recursive splitting of the matrix is
stopped when the matrix has 2× 2 tiles. Then, the algorithm switches in one case to the optimized
(two-tiles) left-looking algorithm presented in section 3.4.2 and in the other case to the standard one-
tile left-looking algorithm. We measure the number of tiles read and written during the factorization
and the total time elapsed. Times are reported in seconds.

Left-looking algorithm
One-tile implementation Two-tiles implementation

t Tiles Tiles Gflops Total Tiles Tiles Gflops Total
read written rate time read written rate time

(Gflops/s) (s) (Gflops/s) (s)

750 89440 2080 1.56 23590 87424 2080 1.55 23800
1500 11440 528 1.84 20025 10944 528 1.87 19723
3000 1496 136 1.99 18496 1376 136 2.08 17753

Recursive algorithm
One-tile implementation Two-tiles implementation

t Tiles Tiles Gflops Total Tiles Tiles Gflops Total
read written rate time read written rate time

(Gflops/s) (s) (Gflops/s) (s)

750 90544 3184 1.54 23960 88720 3184 1.54 23991
1500 11728 816 1.83 20173 11312 816 1.85 19904
3000 1572 212 1.97 18679 1484 212 2.04 18070

Hybrid algorithm
One-tile implementation Two-tiles implementation

t Tiles Tiles Gflops Total Tiles Tiles Gflops Total
read written rate time read written rate time

(Gflops/s) (s) (Gflops/s) (s)

750 90512 3152 1.54 23958 88624 3152 1.54 23900
1500 11712 800 1.82 20207 11264 800 1.85 19901
3000 1564 204 1.97 18650 1460 204 2.06 17929

a one-tile implementation performs better than a two-tiles implementation when the
memory size (and not the tile size) is fixed.

8. Conclusion and perspectives. This paper analyses and compares out-of-
core implementations of the partitioned Cholesky factorization algorithm. The same
partitioning of the matrix to factorize is used for all variants, to allow a fair compari-
son. Our theoretical analysis shows that the amount of I/O operations is lower when a
left-looking algorithm is used. Our numerical experiments confirm this result. More-
over, in our tests, the two-tiles implementation of the left-looking algorithm is the
fastest variant, when tile size is fixed. It is the equivalent in complex arithmetic of
the (sequential) POOCLAPACK routine for the Cholesky decomposition of real posi-
tive definite matrices [15]. Some improvements could still be added to this solver, such
as prefetching the tiles, to overlap I/O operations and computation, as is performed
in [22].

Acknowledgments. The author thanks the anonymous referees for their helpful
comments and suggestions.
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Abstract. Scaling is a commonly used technique for standard eigenvalue problems to improve
the sensitivity of the eigenvalues. In this paper we investigate scaling for generalized and polynomial
eigenvalue problems (PEPs) of arbitrary degree. It is shown that an optimal diagonal scaling of a
PEP with respect to an eigenvalue can be described by the ratio of its normwise and componentwise
condition number. Furthermore, the effect of linearization on optimally scaled polynomials is investi-
gated. We introduce a generalization of the diagonal scaling by Lemonnier and Van Dooren to PEPs
that is especially effective if some information about the magnitude of the wanted eigenvalues is
available and also discuss variable transformations of the type λ = αμ for PEPs of arbitrary degree.
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1. Introduction. Scaling of standard eigenvalue problems Ax = λx is a well-
established technique that is implemented in the LAPACK routine xGEBAL. It goes
back to work by Osborne [14] and Parlett and Reinsch [15]. The idea is to find a
diagonal matrix D that scales the rows and columns of A ∈ C

n×n in a given norm
such that

‖D−1ADei‖ = ‖e∗i D−1AD‖, i = 1, . . . , n,

where ei is the ith unit vector. This is known as balancing. LAPACK uses the 1-
norm. Balancing matrix rows and columns can often reduce the effect of rounding
errors on the computed eigenvalues. However, as Watkins demonstrated [19], there
are also cases in which balancing can lead to a catastrophic increase of the errors in
the computed eigenvalues.

For generalized eigenvalue problems (GEPs) Ax = λBx, a scaling technique pro-
posed by Ward [18] is implemented in the LAPACK routine xGGBAL. Its aim is to
find diagonal matrices D1 and D2 such that the elements of D1AD2 and D1BD2 are
scaled as equal in magnitude as possible.

A different approach for the scaling of GEPs is proposed by Lemonnier and Van
Dooren [11]. In section 5 we will come back to this. It is interesting to note that
the default behavior of LAPACK (and also of MATLAB) is to scale nonsymmetric
standard eigenvalue problems but not to scale GEPs.

In this paper we discuss the scaling of polynomial eigenvalue problems (PEPs) of
the form

(1.1) P (λ)x := (λ�A� + · · · + λA1 + A0)x = 0, Ak ∈ C
n×n, A� �= 0, � ≥ 1.

Every λ ∈ C for which there exists a solution x ∈ C
n\{0} of P (λ)x = 0 is called an
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eigenvalue of P with associated right eigenvector x. We will also need left eigenvectors
y ∈ C

n\{0} defined by y∗P (λ) = 0.
In section 2 we review the definition of condition numbers and backward errors

for the PEP (1.1). Then in section 3 we investigate diagonal scalings of (1.1) of the
form D1P (λ)D2, where D1 and D2 are diagonal matrices in the set

Dn := {D : D ∈ C
n×n is diagonal and det(D) �= 0}.

We show that the minimal achievable normwise condition number of an eigenvalue by
diagonal scaling of P (λ) can be bounded by its componentwise condition number. This
gives easily computable conditions on whether the condition number of eigenvalues
can be improved by scaling. The results of that section can be applied to generalized
linear and higher degree polynomial problems.

The most widely used technique to solve PEPs of degree � ≥ 2 is to convert
the associated matrix polynomial into a linear pencil, the process of linearization,
and then solve the corresponding GEP. In section 4 we investigate the difference
between scaling before or after linearizing the matrix polynomial. Then in section 5 we
introduce a heuristic scaling strategy for PEPs that generalizes the idea of Lemonnier
and Van Dooren. It is applicable to arbitrary polynomials of degree � ≥ 1 and includes
a weighting factor that, given some information about the magnitude of the wanted
eigenvalues, can crucially improve the normwise condition numbers of eigenvalues
after scaling.

Fan, Lin and Van Dooren [3] propose a transformation of variables of the form
λ = αμ for some parameter α for quadratic polynomials whose aim is to improve the
backward stability of numerical methods for quadratic eigenvalue problems (QEPs)
that are based on linearization. In section 6 we extend this variable transformation
to matrix polynomials of arbitrary degree � ≥ 2.

Numerical examples illustrating our scaling algorithms are presented in section 7.
We conclude with practical remarks on how to put the results of this paper into
practice.

Scaling routines for standard and generalized eigenvalue problems often include
a preprocessing step that attempts to remove isolated eigenvalues by permutation of
the matrices. This is, for example, implemented in the LAPACK routines xGBAL and
xGGBAL. Since the permutation algorithm described in [18] can be easily adapted for
matrix polynomials, we will not discuss this further in this paper. But nevertheless,
it is advisable to use this preprocessing step also for PEPs to reduce the problem
dimension if possible.

All notation is standard. For a matrix A, we denote by |A| the matrix of absolute
values of the entries of A. Similarly, |x| for a vector x denotes the absolute values of
the entries of x. The vector of all ones is denoted by e; that is, e =

[
1, 1, . . . , 1

]T ∈ R
n.

2. Normwise and componentwise error bounds. An important tool to mea-
sure the quality of an approximate eigenpair (x̃, λ̃) of the PEP P (λ)x = 0 is its
normwise backward error. With ΔP (λ) =

∑�
k=0 λkΔAk it is defined for the 2-norm

by

ηP

(
x̃, λ̃

)
:= min

{
ε :

(
P
(
λ̃
)

+ ΔP
(
λ̃
))

x̃ = 0, ‖ΔAk‖2 ≤ ε‖Ak‖2, k = 0 : �
}

.

Tisseur [17] shows that

ηP

(
x̃, λ̃

)
=

‖r‖2

α̃‖x̃‖2
,
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where r = P (λ̃)x̃ and α̃ =
∑�

k=0 |λ̃|k‖Ak‖2. The normwise backward error η(λ̃) of a
computed eigenvalue λ̃ is defined as

ηP

(
λ̃
)

= min
x∈C

n

x �=0

ηP

(
x, λ̃

)
.

It follows immediately [17, Lemma 3] that ηP (λ̃) = (α̃‖P (λ̃)−1‖2)−1.
The sensitivity of an eigenvalue is measured by the condition number. It relates

the forward error, that is, the error in the computed eigenvalue λ̃, and the backward
error ηP (λ̃). To first order (meaning up to higher terms in the backward error) one
has

(2.1) forward error ≤ backward error × condition number.

The condition number of a simple, finite, nonzero eigenvalue λ �= 0 is defined by

κP (λ) := lim
ε→0

sup

{
|Δλ|
ε|λ| :

(
P (λ + Δλ) + ΔP (λ + Δλ)

)
(x + Δx) = 0,

‖ΔAk‖2 ≤ ε‖Ak‖2, k = 0 : �

}
.

Let x be a right eigenvector and y be a left eigenvector associated with the eigenvalue
λ of P . Then κP (λ) is given by [17, Theorem 5]

(2.2) κP (λ) =
‖y‖2‖x‖2α

|y∗P ′(λ)x||λ| , α =
�∑

k=0

|λ|k‖Ak‖2.

Backward error and condition number can also be defined in a componentwise
sense. The componentwise backward error of an eigenpair (x̃, λ̃) is

(2.3) ωP

(
x̃, λ̃

)
:= min

{
ε :

(
P
(
λ̃
)

+ ΔP
(
λ̃
))

x̃ = 0; |ΔAk| ≤ ε|Ak|, k = 0 : �
}

.

The componentwise condition number of a simple, finite, nonzero eigenvalue λ is
defined as

condP (λ) := lim
ε→0

sup

{
|Δλ|
ε|λ| :

(
P (λ + Δλ) + ΔP (λ + Δλ)

)
(x + Δx) = 0,

|ΔAk| ≤ ε|Ak|, k = 0 : �

}
.(2.4)

The following theorem gives explicit expressions for these quantitites.
Theorem 2.1. The componentwise backward error of an approximate eigenpair

(x̃, λ̃) is given by

(2.5) ωP (x̃, λ̃) = max
i

|ri|(
Ã|x̃|

)
i

, Ã :=
�∑

k=0

|λ̃|k|Ak|,
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where ri denotes the ith component of the vector P (λ̃)x̃. The componentwise condi-
tion number of a simple, finite, nonzero eigenvalue λ with associated left and right
eigenvectors y and x is given by

(2.6) condP (λ) =
|y|∗A|x|

|λ||y∗P ′(λ)x| , A :=
�∑

k=0

|λ|k|Ak|.

Proof. The proof is a slight modification of the proofs of [5, Theorems 3.1 and
3.2] along the lines of the proof of [17, Theorem 1].

Surveys of componentwise error analysis are contained in [8, 9]. The compo-
nentwise backward error and componentwise condition number are invariant under
multiplication of P (λ) from the left and the right with nonsingular diagonal matri-
ces. In the next section we will use this property to characterize optimally scaled
eigenvalue problems.

3. Optimal scalings. In this section we introduce the notion of an optimal
scaling with respect to a certain eigenvalue and give characterizations of it.

Ultimately, we are interested in computing eigenvalues to as many digits as pos-
sible. Hence, we would like to find a scaling that leads to small forward errors. If
we assume that we use a backward stable algorithm, that is, the backward error is
only a small multiple of the machine precision, then it follows from (2.1) that we can
hope to compute an eigenvalue to many digits of accuracy by finding a scaling that
minimizes the condition number.

In the following we define what we mean by a scaling of a matrix polynomial
P (λ).

Definition 3.1. Let P (λ) ∈ C
n×n be a matrix polynomial. A scaling of P (λ) is

the matrix polynomial D1P (λ)D2, where D1, D2 ∈ Dn.
It is immediately clear that the eigenvalues of a matrix polynomial P (λ) are

invariant under scaling. Furthermore, if (y, x, λ) is an eigentriplet of P (λ) with eigen-
value λ and left and right eigenvector y and x, respectively, then an eigentriplet of
the scaling D1P (λ)D2 is (D−∗

1 y, D−1
2 x, λ).

The following definition defines an optimal scaling of P (λ) with respect to a given
eigenvalue λ in terms of minimizing the condition number of λ.

Definition 3.2. Let λ be a simple, finite, nonzero eigenvalue of the matrix
polynomial P (λ). We call P (λ) optimally scaled with respect to λ if

κP (λ) = inf
D1,D2∈Dn

κD1PD2
(λ).

This definition of optimal scaling depends on the eigenvalue λ. We cannot expect
that an optimal scaling for one eigenvalue also gives an optimal scaling for another
eigenvalue. The following theorem states that a PEP is almost optimally scaled with
respect to an eigenvalue λ, if the componentwise and normwise condition numbers
of λ are close to each other. Furthermore, it gives explicit expressions for scaling
matrices D1, D2 ∈ Dn that achieve an almost optimal scaling.

Theorem 3.3. Let λ be a simple, finite, nonzero eigenvalue of an n × n matrix
polynomial P (λ) with associated left and right eigenvectors y and x, respectively. Then

(3.1)
1√
n

condP (λ) ≤ inf
D1,D2∈Dn

κD1PD2
(λ) ≤ n condP (λ).

Moreover, if all the entries of y and x are nonzero, then for

D1 = diag(|y|), D2 = diag(|x|),
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we have

(3.2) κD1PD2
(λ) ≤ n condP (λ).

Proof. Let A :=
∑�

k=0 |λ|k|Ak| and α :=
∑�

k=0 |λ|k‖Ak‖2. Using ‖|B|‖2 ≤√
n‖B‖2 [9, Lemma 6.6] for any matrix B ∈ C

n×n, the lower bound follows from

condP (λ) =
|y|∗A|x|

|λ||y∗P ′(λ)x| ≤
‖y‖2‖x‖2‖A‖2

|λ||y∗P ′(λ)x| ≤
√

nα‖y‖2‖x‖2

|λ||y∗P ′(λ)x| =
√

nκP (λ),

and the fact that the componentwise condition number is invariant under diagonal
scaling. For ε > 0 define the vectors ỹ and x̃ by

ỹi =
{

yi, yi �= 0
ε, yi = 0 x̃i =

{
xi, xi �= 0
ε, xi = 0

and consider the diagonal matrices

D1 = diag(|ỹ|), D2 = diag(|x̃|).

Using ‖B‖2 ≤ e∗|B|e for any matrix B ∈ C
n×n [9, Table 6.2], we have

κD1PD2(λ) =
‖D−1

1 y‖2‖D−1
2 x‖2

(∑�
k=0 |λ|k‖D1AkD2‖2

)
|λ||y∗P ′(λ)x| ≤

n
(∑�

k=0 |λ|ke∗|D1AkD2|e
)

|λ||y∗P ′(λ)x|

=
n
(∑�

k=0 |λ|k · |ỹ|∗ · |Ak| · |x̃|
)

|λ||y∗P ′(λ)x| −→ n condP (λ) as ε → 0.(3.3)

The upper bounds in (3.1) and (3.2) follow immediately.
Theorem 3.3 is restricted to finite and nonzero eigenvalues. Assume that λ = 0

is an eigenvalue. Then we have to replace relative componentwise and normwise
condition numbers by the absolute condition numbers

κ
(a)
P (λ) =

‖y‖2‖x‖2α

|y∗P ′(λ)x| , cond(a)
P (λ) =

|y|∗A|x|
|y∗P ′(λ)x| .

With these condition numbers Theorem 3.3 is also valid for zero eigenvalues. If P (λ)
has an infinite eigenvalue, the reversal rev P (λ) := λ�P (1/λ) has a zero eigenvalue,
and we can apply Theorem 3.3 using absolute condition numbers to rev P (λ).

While Theorem 3.3 applies to generalized linear and polynomial problems, it
does not immediately apply to standard problems of the form Ax = λx. The crucial
difference is that for standard eigenvalue problems we assume the right-hand side
identity matrix to be fixed and only allow scalings of the form D−1AD that leave the
identity unchanged. However, if λ is an eigenvalue of A with associated left and right
eigenvectors y and x that have nonzero entries, we can still define D1 = diag(|y|) and
D2 = diag(|x|) to obtain the generalized eigenvalue problem

(3.4) D1AD2v = λD1D2v,

where x = D2v. Since D1D2 has positive diagonal entries there exists D̂ such that
D̂2 = D1D2. We then obtain from (3.4) the standard eigenvalue problem

(3.5) D̂−1D1AD2D̂
−1x̃ = λx̃,
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where x̃ = D̂D−1
2 x and |x̃| =

[√
|y1||x1|, . . . ,

√
|yn||xn|

]T
. For the scaled left eigen-

vector ỹ we have ỹ = D̂D−1
1 y and |ỹ| = |x̃|. If we define the normwise condition

number kA(λ) and the componentwise condition number cA(λ) for the eigenvalue λ
of a standard eigenvalue problem by1

kA(λ) =
‖y‖2‖x‖2

|λ||yT x| , cA(λ) =
|y|T |x|
|λ||yT x| ,

it follows for the scaling D−1AD, where D = D2D̂
−1 = D−1

1 D̂ that

cA(λ) = kD−1AD(λ).

But this scaling is not always useful as ‖D−1AD‖2 can become large if x or y contain
tiny entries.

There is a special case in which the scaling (3.5) also minimizes ‖D−1AD‖2. If λ
is the Perron root of an irreducible and nonnegative matrix A, the corresponding left
and right eigenvectors y and x can be chosen to have positive entries. After scaling
by D as described above, we have kD−1AD(λ) = 1 and ‖D−1AD‖2 = λ. This was
investigated by Chen and Demmel in [2] who proposed a weighted balancing which is
identical to the scaling described above for nonnegative and irreducible A.

Theorem 3.3 gives us an easy way to check whether a matrix polynomial P is
nearly optimally scaled with respect to an eigenvalue λ. We only need to compute
the ratio

(3.6)
κP (λ)

condP (λ)
=

‖y‖2‖x‖2

∑�
k=0 |λ|k‖Ak‖2

|y|∗
(∑�

k=0 |λ|k|Ak|
)
|x|

after computing the eigenvalues and eigenvectors. If an eigensolver already returns
normwise condition numbers, this is only a little extra effort. If κP (λ)

condP (λ) 	 n the
eigensolver can give a warning to the user that the problem is badly scaled and
that the error in the computed eigenvalue λ is likely to become smaller by rescaling
P . Furthermore, from Theorem 3.3 it follows that a polynomial is nearly optimally
scaled if the entries of the left and right eigenvectors have equal magnitude. This
motivates a heuristic scaling algorithm, which is discussed in section 5.

At the end we would like to emphasize that a diagonal scaling which improves
the condition numbers of the eigenvalues needs not necessarily be a good scaling for
eigenvectors. An example is the generalized linear eigenvalue problem L(λ)x = 0,
where

L(λ) = λ

⎡⎣1 0 0
0 2 0
0 0 2

⎤⎦+

⎡⎣0 1 + 2 · 10−8 2
2 10−8 1
1 1 + 10−8 −1

⎤⎦ .

One eigenvalue is λ = 1 with associated right eigenvector x =
[
1 −1 10−8

]T and
left eigenvector y =

[
1
3

1
3 −1

]T . The condition number2 of the eigenvector x before
scaling is approximately 33.1. After scaling with D1 = diag(|y|) and D2 = diag(|x|),
it increases to 1.70 ·109. For the corresponding eigenvalue λ = 1 we have κL(1) ≈ 21.8
and after scaling κD1LD2(1) ≈ 19.6. However, in most of our experiments we could
not observe an increase of the eigenvector condition number after scaling.

1Choose E = I, F = 0, and B = I in Theorems 2.5 and 3.2 of [5].
2The condition number of the eigenvector was computed using Theorem 2.7 from [5] with the

normalization vector g =
[
1 0 0

]T
.
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4. Scalings and linearizations. The standard way to solve the PEP (1.1) of
degree � ≥ 2 is to convert P (λ) into a linear pencil

L(λ) = λX + Y

having the same spectrum as P (λ) and then solve the eigenproblem for L. Formally,
L(λ) is a linearization if

E(λ)L(λ)F (λ) =
[
P (λ) 0

0 I(�−1)n

]
for some unimodular E(λ) and F (λ) [4, section 7.2]. For example,

(4.1) C1(λ) = λ

⎡⎢⎢⎢⎢⎣
A� 0 · · · 0

0 In
. . .

...
...

. . . . . . 0
0 · · · 0 In

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
A�−1 A�−2 · · · A0

−In 0 · · · 0
...

. . . . . .
...

0 · · · −In 0

⎤⎥⎥⎥⎦
is a linearization of P (λ), called the first companion form. In [12] Mackey, Mackey,
Mehl, and Mehrmann identified two vector spaces of pencils that are potential lin-
earizations of P (λ). Let Λ := [λ�−1, λ�−2, . . . , 1]T . Then these spaces are defined
by

L1(P ) =
{
L(λ) : L(λ)(Λ ⊗ In) = v ⊗ P (λ), v ∈ C

�
}

,

L2(P ) =
{
L(λ) : (ΛT ⊗ In)L(λ) = ṽT ⊗ P (λ), ṽ ∈ C

�
}

.

The first companion linearization belongs to L1(P ) with v = e1. Furthermore, the
pencils in L1(P ) and L2(P ) that are not linearizations form a closed nowhere dense
subset of measure zero in these spaces [12, Theorem 4.7].

Another important space of potential linearizations is given by

DL(P ) := L1(P ) ∩ L2(P ).

In [12, Theorem 5.3] it is shown that each pencil L(λ) ∈ DL(P ) is uniquely defined
by a vector v ∈ C

� such that

L(λ)(Λ ⊗ In) = v ⊗ P (λ),
(
ΛT ⊗ In

)
L(λ) = vT ⊗ P (λ).

There is a well-defined relationship between the eigenvectors of linearizations L(λ) ∈
DL(P ) and eigenvectors of P (λ); namely, for finite eigenvalues λ x is a right eigenvec-
tor of P (λ) if and only if Λ⊗x is a right eigenvector of L(λ) and y is a left eigenvector
of P (λ) if and only if Λ ⊗ y is a left eigenvector of L(λ) [12, Theorems 3.8 and 3.14].

A simple observation is that scaling P (λ) leads to a scaling of L(λ) within the
same space of potential linearizations.

Lemma 4.1. Let L(λ) ∈ S(P ) with vector v, where S(P ) = L1(P ), L2(P ), or
DL(P ). Then (In ⊗D1)L(λ)(In ⊗D2) is in S(D1PD2) with the same vector v, where
D1, D2 ∈ C

n×n are nonsingular matrices.
Proof. The statements follow immediately from the identities

(I ⊗ D1)L(λ)(I ⊗ D2)(Λ ⊗ In) = v ⊗ D1P (λ)D2
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and (
ΛT ⊗ In

)
(I ⊗ D1)L(λ)(I ⊗ D2) = ṽT ⊗ D1P (λ)D2

for matrices D1, D2 ∈ C
n×n.

Hence, if we solve a PEP by a linearization in L1(P ), L2(P ), or DL(P ), scaling of
the original polynomial P (λ) with matrices D1 and D2 is just a special scaling of the
linearization L(λ) with scaling matrices (I⊗D1) and (I⊗D2). If preserving structure
of the linearization is not an issue, we can scale the linearization L(λ) directly with
diagonal scaling matrices D̃1 and D̃2 that have 2�n free parameters compared to the
2n free parameters in D1 and D2. The following theorem gives a worst case bound
on the ratio between the optimal condition numbers with the two different scaling
strategies (i.e., scaling and then linearizing or linearizing and then scaling).

Theorem 4.2. Let λ be a simple finite eigenvalue of P and let L(λ) ∈ DL(P )
with vector v. Then

inf
D1,D2∈Dn

κL̃(λ; v; D1PD2) ≤

⎧⎪⎨⎪⎩
�1/2n3/2

(
|λ|2�−1
|λ|2−1

)
inf

D̃1,D̃2∈D�n

κD̃1LD̃2
(λ) for |λ| ≥ 1,

�1/2n3/2

|λ|2(�−1)

(
|λ|2�−1
|λ|2−1

)
inf

D̃1,D̃2∈D�n

κD̃1LD̃2
(λ) for |λ| < 1,

where κL̃(λ; v; D1PD2) is the condition number of λ for the linearization L̃(λ) ∈
DL(D1PD2) with vector v.

Proof. Let y and x be left and right eigenvectors of P (λ) associated with the
eigenvalue λ. Since L(λ) = λX+Y ∈ DL(P ), its left and right eigenvectors associated
with λ are Λ ⊗ y and Λ ⊗ x. Assume that y and x have no zero entries. The case
of zero entries follows by a limit process similar to that in the proof of Theorem 3.3.
Define D1 = diag(|y|) and D2 = diag(|x|). Since ‖Λ⊗ (D−1

1 y)‖2 = ‖Λ‖2‖D−1
1 y‖2 and

‖Λ ⊗ (D−1
2 x)‖2 = ‖Λ‖2‖D−1

2 x‖2, we have

κL̃(λ; v; D1PD2)

=
‖Λ‖2

2‖D−1
1 y‖2‖D−1

2 x‖2(|λ|‖(I ⊗ D1)X(I ⊗ D2)‖2 + ‖(I ⊗ D1)Y (I ⊗ D2)‖2)

|λ||
(
Λ ⊗ y

)∗
X(Λ ⊗ x)|

,

and therefore by using ‖B‖2 ≤ e∗|B|e for any B ∈ C
n×n

κL̃(λ; v; D1PD2) ≤
‖Λ‖2

2nê∗(|λ||(I ⊗ D1)X(I ⊗ D2)| + |(I ⊗ D1)Y (I ⊗ D2)|)ê
|λ||

(
Λ ⊗ y

)∗
X(Λ ⊗ x)|

for ê =
[
1 . . . 1

]T ∈ R
�n. Assume that |λ| ≥ 1. Since componentwise ê ≤ |Λ|⊗e =

|Λ| ⊗ e and (
|Λ| ⊗ e

)∗
(I ⊗ D1) = |Λ ⊗ y|∗, (I ⊗ D2)(|Λ| ⊗ e) = |Λ ⊗ x|,

we obtain

(4.2) κL̃(λ; v; D1PD2) ≤ n
‖Λ‖2

2|Λ ⊗ y|∗(|λ||X | + |Y |)|Λ ⊗ x|
|λ||

(
Λ ⊗ y

)∗
X(Λ ⊗ x)|

= n‖Λ‖2
2condL(λ).

It holds that

(4.3) ‖Λ‖2
2 =

(
|λ|2� − 1
|λ|2 − 1

)
.
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Furthermore, from Theorem 3.3 we know that

(4.4)
1√
�n

condL(λ) ≤ inf
D̃1,D̃2∈D�n

κD̃1LD̃2
(λ).

Combining (4.2), (4.3), and (4.4), the proof for the case |λ| ≥ 1 follows. The proof
for |λ| < 1 is similar. The only essential difference is that now componentwise ê ≤
|Λ|

|λ|�−1 ⊗ e.
Theorem 4.2 suggests that for eigenvalues that are large or small in magnitude

first linearizing and then scaling can in the worst case be significantly better than first
scaling and then linearizing. However, if we first linearize and then scale, the special
structure of the linearization is lost.

How sharp are these bounds? In the following we discuss the case |λ| ≥ 1.
For the case |λ| < 1 analogous arguments can be used. Consider the QEP Q(λ) =
λ2A + λB + C, where

(4.5) A =
[
−0.6 −0.1

2 0.1

]
, B =

[
1 −0.1

0.6 −0.8

]
, C =

[
3 · 107 7 · 107

−1 · 108 1.6 · 108

]
,

and its linearization in DL(Q)

L(λ) = λX + Y := λ

[
A 0
0 −C

]
+
[
B C
C 0

]
,

which corresponds to the vector v =
[
1 0

]T . One eigenvalue of this pencil is λ ≈
4.105·104. If we first scale Q using the left and right eigenvectors associated with λ and
then linearize, this eigenvalue has the condition number 1.2 · 109 for the linearization.
If we first linearize the QEP and then scale the pencil L(λ) using the left and right
eigenvectors of λ for the linearization, this eigenvalue has the condition number 5.2.
The ratio between the condition numbers is in magnitude what we would expect from
applying Theorem 4.2.

However, Theorem 4.2 can be a large overestimate. Assume that P (λ) is already
almost optimally scaled in the sense of Theorem 3.3, that is, |y| = |x| = e for the left
and right eigenvectors y and x associated with the simple finite eigenvalue λ of P .
Let L(λ) = λX + Y be a linearization of P and let D1 and D2 be scaling matrices
for L such that |D−∗

1 ỹ| = |D−1
2 x̃| = e for the left and right eigenvectors ỹ and x̃ of L

associated with the eigenvalue λ. The ratio of the condition numbers of the eigenvalue
λ for the two pencils L and D1LD2 is given by

(4.6)
κL(λ)

κD1LD2(λ)
=

‖x̃‖2‖ỹ‖2

‖D−∗
1 ỹ‖2‖D−1

2 x̃‖2

|λ|‖X‖2 + ‖Y ‖2

|λ|‖D1XD2‖2 + ‖D1Y D2‖2
.

If L(λ) ∈ DL(P ) (4.6) simplifies to

κL(λ)
κD1LD2(λ)

=
1
�

(
|λ|2� − 1
|λ|2 − 1

)
|λ|‖X‖2 + ‖Y ‖2

|λ|‖D1XD2‖2 + ‖D1Y D2‖2

since |x̃| = |ỹ| = |Λ⊗ e|. This shows that for |λ| > 1 the upper bound in Theorem 4.2
can be attained only if

(4.7)
|λ|‖X‖2 + ‖Y ‖2

|λ|‖D1XD2‖2 + ‖D1Y D2‖2
=: τ(λ)
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Fig. 4.1. The function τ(λ) for a large range of values in the case of a random 2× 2 QEP and
the QEP from (4.5).

is approximately constant in the range of the eigenvalues in which we are interested.
For L(λ) ∈ DL(P ) the matrices D1 and D2 are given as

D1 = D2 =

⎡⎢⎣|λ|
�−1I

. . .
I

⎤⎥⎦ = diag(|Λ|) ⊗ I.

It follows that for |λ| large enough

(4.8) τ(λ) ∼ γ|λ|2−2�

for some constant γ > 0 and therefore

κL(λ)
κD1LD2(λ)

∼ γ

�

in that case.
In particular, if the upper left n × n block of X is in norm comparable or larger

than the other n×n subblocks of X , we expect a good agreement of the asymptotic in
(4.8) for all |λ| > 1, where γ is not much larger than 1. Only if the n×n subblocks of
X and Y are of widely varying norm it is possible that τ(λ) is approximately constant
for a large range of values of λ, leading to the worst case bound in (4.2) being attained.

The situation is demonstrated in Figure 4.1. For a random 2×2 QEP τ(λ) decays
like γ|λ|−2, where γ ≈ 1. For the QEP from (4.5) the function τ(λ) is almost constant
for a long time, leading to the worst case bound of Theorem 4.2 being attained in
these range of values. Then at about 104 it starts decaying like γ|λ|−2, where this
time γ is in the order of 108.

One of the most frequently used linearizations for unstructured problems is the
companion form (4.1). Unfortunately, we cannot immediately apply the previous
results to it since the companion form is not in DL(P ) but only in L1(P ). However,
we can still compare the ratio in (4.6). Consider the QEP Q(λ) = λ2A + λB + C.
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The companion linearization takes the form

C1(λ) = λ

[
A

I

]
+
[

B C
−I 0

]
.

We assume that for the left and right eigenvectors y and x associated with the eigen-
value λ of Q we have |y| = |x| = e. Furthermore, let D1 and D2 again be chosen
such that |D−∗

1 ỹ| = |D−1
2 x̃| = e, where ỹ and x̃ are the corresponding left and right

eigenvectors for the eigenvalue λ of the companion linearization C1(λ) = λX + Y .
The relationship between the eigenvectors of C1 and the eigenvectors of P associated
with a finite nonzero eigenvalue λ is given by

x̃ = Λ ⊗ x, ỹ =
[

y
− 1

λ
C∗y

]
.

The formula for the left eigenvector is a consequence of [6, Theorem 3.2]. It follows
that

κC1(λ)
κD̃1C1D̃2

(λ)
=

1
2n1/2

(
|λ|4 − 1
|λ|2 − 1

)1/2(
n +

1
|λ|2 ‖C

∗y‖2
2

)1/2

τ(λ).

If |λ| 	 1 this simplifies to

κC1(λ)
κD̃1C1D̃2

(λ)
≈ 1

2
|λ|τ(λ),

which differs by a factor of |λ| from the corresponding case using a DL(P ) linearization.
Asymptotically, we have

τ(λ) ∼ γ|λ|−1, |λ| 	 1

for some factor γ and therefore κC1 (λ)

κD̃1C1D̃2
(λ) ∼ γ

2 , where again we expect this asymptotic

to hold approximately for all |λ| > 1 with a value of γ that is not much larger than 1
if the n × n subblocks of X and Y do not differ too widely in norm.

5. A heuristic scaling strategy. For standard eigenvalue problems the motiva-
tion of scaling algorithms is based on the observation that in floating point arithmetic
computed eigenvalues of a matrix A can be expected to be at least perturbed by an
amount of the order of εmach‖A‖. Hence, by reducing ‖A‖ one hopes to reduce the
inaccuracies in the computed eigenvalues.

One way of minimizing ‖A‖ is to find a nonsingular diagonal matrix D such that
the rows and columns of A are balanced in the sense that

(5.1) ‖D−1ADei‖ = ‖e∗i D−1AD‖, i = 1, . . . , n.

Osborne [14] shows that if A is irreducible and ‖ · ‖ is the 2-norm in (5.1), then for
this D it holds that ∥∥D−1AD

∥∥
F

= inf
D̂∈Dn

∥∥∥D̂−1AD̂
∥∥∥

F
.

A routine that attempts to find a matrix D that balances the row and column norms of
A is built into LAPACK under the name xGEBAL. It uses the 1-norm in the balancing
condition (5.1). A description of the underlying algorithm is contained in [15].
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For generalized eigenvalue problems Ax = λBx, Ward [18] proposes to find non-
singular diagonal scaling matrices D1 and D2 such that the elements of the scaled
matrices D1AD2 and D1BD2 would have absolute values close to unity. Then the
relative perturbations in the matrix elements caused by computational errors would
be of similar magnitude. To achieve this Ward proposes to minimize the function

n∑
i,j=1

(ri + cj + log |Aij |)2 + (ri + cj + log |Bij |)2,

where the ri and cj are the logarithms of the absolute values of the diagonal entries
of D1 and D2. The scaling by Ward can fail if the matrices A and B contain tiny
entries that are not due to bad scaling [10, Example 2.16].

A different strategy for generalized eigenvalue problems is proposed by Lemonnier
and Van Dooren [11]. By introducing the notion of generalized normal pencils they
motivate a scaling strategy that aims to find nonsingular diagonal matrices D1 and
D2 such that

(5.2)
‖D1AD2ej‖2

2 + ‖D1BD2ej‖2
2 = ‖e∗i D1AD2‖2

2 + ‖e∗i D1BD2‖2
2 = 1, i, j = 1, . . . , n.

The scaling condition (5.2) can be generalized in a straightforward way to matrix
polynomials of higher degree by

(5.3)
�∑

k=0

ω2k‖D1AkD2ei‖2
2 = 1,

�∑
k=0

ω2k‖e∗jD1AkD2‖2
2 = 1, i, j = 1, . . . , n

for some ω > 0 that is chosen in magnitude close to the wanted eigenvalues. The
intuitive idea behind (5.3) is to balance rows and columns of the coefficient matrices
Ak while taking into account the weighting of the coefficient matrices induced by the
eigenvalue parameter; that is, for very large eigenvalues the rows and columns of A�

dominate and for very small eigenvalues the rows and columns of A0 dominate. This
also reflects the result of Theorem 3.3 that the optimal scaling matrices are dependent
on the wanted eigenvalue. In section 7 we show that including the estimate ω can
greatly improve the results of scaling.

In [11] Lemonnier and Van Dooren introduced a linearly convergent iteration to
obtain matrices D1 and D2 consisting of powers of 2 that approximately satisfy (5.2).
The idea in their code is to alternatively update D1 and D2 by first normalizing all
rows of

[
A B

]
and then all columns of

[
A
B

]
. The algorithm repeats this operation

until (5.2) is approximately satisfied. This iteration can easily be extended to weighted
scaling of matrix polynomials. This is done in Algorithm 1. The main difference to
the MATLAB code in [11] is the definition of the variable M in line 6 that now
accommodates matrix polynomials and the weighting parameter ω.

If we do not have any estimate for the magnitude of the wanted eigenvalues, a
possible choice is to set ω = 1 in (5.3). In that case all coefficient matrices have the
same weight in that condition.

6. Transformations of the eigenvalue parameter. In the previous sections
we investigated how diagonal scaling of P (λ) by multiplication of P (λ) with left
and right scaling matrices D1, D2 ∈ Dn can improve the condition number of the
eigenvalues. In this section we consider scaling a PEP by transforming the eigenvalue
parameter λ. This was proposed by Fan, Lin, and Van Dooren for quadratics in
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Algorithm 1 Diagonal scaling of P (λ) = λ�A� + · · · + λA1 + A0.
Require: A0, . . . , A� ∈ C

n×n, ω > 0.
1: M ←

∑�
k=0 |λ|2k|Ak|.2, D1 ← I, D2 ← I (|Ak|.2 is entry-wise square)

2: maxiter ← 5
3: for iter = 1 to maxiter do
4: emax ← 0, emin ← 0
5: for i = 1 to n do
6: d ←

∑n
j=0 M(i, j), e ← −round(1

2 log2 d)
7: M(i, :) ← 22e · M(i, :), D1(i, i) ← 2e · D1(i, i)
8: emax ← max(emax, e), emin ← min(emin, e)
9: end for

10: for i = 1 to n do
11: d ←

∑n
j=0 M(j, i), e ← −round(1

2 log2 d)
12: M(:, i) ← 22e · M(:, i), D2(i, i) ← 2e · D2(i, i)
13: emax ← max(emax, e), emin ← min(emin, e)
14: end for
15: if emax ≤ emin + 2 then
16: BREAK
17: end if
18: end for
19: return D1, D2

[3] (see also [6]). Let Q(λ) := λ2A2 + λA1 + A0. Define the quadratic polynomial
Q̃(μ) = μ2Ã2 + μÃ1 + Ã0 as

Q̃(μ) := βQ(αμ) = βμ2α2A2 + βμαA1 + βA0.

The parameters β > 0 and α > 0 are chosen such that the 2-norms of the new
coefficient matrices Ã2 := βα2A2, Ã1 := βαA1, and Ã0 := βA0 are as close to 1 as
possible; that is, we need to solve

(6.1) min
α>0,β>0

max
{
|βα2‖A2‖2 − 1|, |βα‖A1‖2 − 1|, |β‖A0‖2 − 1|

}
.

It is shown in [3] that the unique solution of (6.1) is given by

α =
(
‖A0‖2

‖A2‖2

) 1
2

, β =
2

‖A0‖2 + ‖A1‖2α
.

Hence, after scaling we have ‖Ã0‖2 = ‖Ã2‖2. The motivation behind this scaling
is that solving a QEP by applying a backward stable algorithm to solve (4.1) is
backward stable if ‖A0‖2 = ‖A1‖2 = ‖A2‖2 [17, Theorem 7]. For matrix polynomials
of arbitrary degree � it is shown in [7] that with

ρ :=
maxi ‖Ai‖2

min(‖A0‖2, ‖A�‖2)
≥ 1

one has

2
√

�

� + 1
1
ρ
≤ infv κL(λ; v; P )

κP (λ)
≤ �2ρ,
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where κL(λ; v; P ) is the condition number of the eigenvalue λ for the linearization
L(λ) ∈ DL(P ) with vector v. Hence, if ρ ≈ 1 then there is L(λ) ∈ DL(P ) such
that κL(λ; v; P ) ≈ κP (λ). For backward errors analogous results were shown in [6].
The aim is therefore to find a transformation of λ such that ρ is minimized. For the
transformation λ = αμ the solution is given in the following theorem.

Theorem 6.1. Let P (λ) be a matrix polynomial of degree � and define

ρ(α) :=
max0≤i≤� αi‖Ai‖2

min(‖A0‖2, α�‖A�‖2)

for α > 0. The unique minimizer of ρ(α) is αopt = (‖A0‖2/‖A�‖2)
1
� .

Proof. The function ρ(α) is continuous. Furthermore, for α → 0 and α → ∞ we
have ρ(α) → ∞. Hence, there must be at least one minimium in (0,∞). Let α̃ be a
local minimizer. Now assume that ‖A0‖2 < α̃�‖A�‖2. Then

ρ(α) =
1

‖A0‖2
max(α‖A1‖2, . . . , α

�‖A�‖2)

in a neighborhood of α̃. But this function is strictly increasing in this neighborhood.
Hence, α̃ cannot be a minimizer. Similarly, the assumption ‖A0‖2 > α̃�‖A�‖2 at the
minimum leads to

ρ(α) =
1

α�‖A�‖2
max

(
‖A0‖2, . . . , α

�−1‖A�−1‖2

)
,

in a neighborhood of this minimum, which is strictly decreasing. A necessary condition
for a minimizer is therefore given as ‖A0‖2 = α�‖A�‖2, which has the unique solution
αopt = (‖A0‖2/‖A�‖2)

1
� in (0,∞). Since there must be at least one minimum of ρ(α)

in (0,∞), it follows that αopt is the unique minimizer there.
We emphasize that the variable transformation λ = αμ does not change condition

numbers or backward errors of the original polynomial problem. It affects only these
quantities for the linearization L(λ).

For the special case � = 2, this leads to the same scaling as proposed by Fan, Lin,
and Van Dooren [3]. If ‖A0‖2 = ‖A�‖2, then αopt = 1 and we cannot improve ρ with
the transformation λ = αμ. In that case one might consider more general Möbius
transformations of the type

P̃ (μ) := (cμ + d)�P

(
aμ + b

cμ + d

)
, a, b, c, d ∈ C.

However, it is still unclear how to choose the parameters a, b, c, d in order to improve
ρ for a specific matrix polynomial.

7. Numerical examples. We first present numerical experiments on sets of ran-
domly generated PEPs. The test problems are created by defining Ak := F

(k)
1 ÃkF

(k)
2 ,

where the entries of Ãk are N(0, 1) distributed random numbers and the entries of
F

(k)
1 and F

(k)
2 are jth powers of N(0, 1) distributed random numbers obtained from

the randn function in MATLAB. As j increases these matrices become more badly
scaled and ill-conditioned. This is a similar strategy to create test matrices as was
used in [11]. In our experiments we choose the parameter j = 6.

In Figure 7.1(a) we show the ratio of the normwise and componentwise eigen-
value condition numbers of the eigenvalues for 100 quadratic eigenvalue problems of
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Fig. 7.1. (a) The ratio of the normwise and componentwise condition numbers for the eigen-
values of 100 randomly created quadratic test problems of dimension n = 20 before scaling. (b) The
same test set but now after scaling with ω = 1. (c) Eigenvalue dependent scaling with ω = |λ|.

dimension n = 20. The eigenvalues range in magnitude from 10−8 to 108 and are
sorted in ascending magnitude. According to Theorem 3.3 the ratio of normwise
and componentwise condition number is smaller than n (shown by the dotted line)
if the problem is almost optimally scaled for the corresponding eigenvalue. But only
a few eigenvalues satisfy this condition. Hence, we expect that scaling will improve
the normwise condition numbers of the eigenvalues in these test problems. In Figure
7.1(b) the test problems are scaled using Alg. 1 with the fixed parameter ω = 1.
Apart from the extreme ones, all eigenvalues are now almost optimally scaled. In Fig-
ure 7.1(c) an eigenvalue dependent scaling is used; that is, ω = |λ| for each eigenvalue
λ. Now all eigenvalues are almost optimally scaled. This demonstrates that having
some information about the magnitude of the wanted eigenvalues can greatly improve
the results of scaling.

The source of badly scaled eigenvalue problems often lies in a nonoptimal choice
of units in the modelling process, which can lead to all coefficient matrices Ak being
badly scaled in a similar way. In that case it is not necessary to provide any kind of
weighting. This is demonstrated by the example in Figure 7.2. The left plot in that
figure shows the ratio of the normwise and componentwise condition numbers of the
eigenvalues of another set of eigenvalue problems. Again, we choose n = 20 and � = 2.
However, this time the matrices F

(k)
1 and F

(k)
2 in the definition Ak := F

(k)
1 ÃkF

(k)
2 are

kept constant for all k = 0, . . . , �. They vary only between different eigenvalue test
problems. The right plot in Figure 7.2 shows the ratio of normwise and componentwise
condition number after scaling using ω = 1. Now all eigenvalue condition numbers
are almost optimal.

Let us now consider the example of a 4th order PEP (λ4A4 + λ3A3 + λ2A2 +
λA1 + A0)x = 0 derived from the Orr–Sommerfeld equation [16]. The matrices are
created with the NLEVP benchmark collection [1]. To improve the scaling factor ρ,
we substitute λ = μαopt, where αopt ≈ 8.42 · 10−4. This reduces ρ from 1.99 · 1012 to
4.86. The ratio κP (μ)/condP(μ) for the unscaled problem is shown in Figure 7.3(a).
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Fig. 7.2. In this test all coefficient matrices of an eigenvalue problem are badly scaled in a
similar way. (a) Ratio of normwise and componentwise condition condition numbers before scaling.
(b) The same ratio after scaling with ω = 1.
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(c) Scaling, ω=103

Fig. 7.3. Scaling of a 4th order PEP. (a) κ(μ)/cond(μ) for the unscaled PEP. (b) The same
ratio after scaling with ω = 1. (c) Scaling with ω = 103. The horizontal lines denote the dimension
n = 64 of the PEP.

The x-axis denotes the absolute value |μ| of an eigenvalue μ. The horizontal line shows
the dimension n = 64 of the problem. The large eigenvalues in this problem are far
away from being optimally scaled. In Figure 7.3(b) we use Alg. 1 with the weighting
parameter ω = 1. This has almost no effect on the normwise condition numbers
of the eigenvalues. In Figure 7.3(c) we use ω = 103. Now the larger eigenvalues
are almost optimally scaled while the normwise condition numbers of some of the
smaller eigenvalues have become worse. Hence, in this example the right choice of
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(c) Scaling, ω=107

Fig. 7.4. Scaling of the GEP Kx = λMx, where K and M are the matrices BCSSTK03 and
BCSSTM03 from Matrix Market [13]. The best overall results are obtained with ω = 107 (see right
graph). The horizontal lines denote the dimension n = 112 of the GEP.

the weighting parameter ω is crucial. If we want to improve the scaling of the large
eigenvalue, we need to choose ω as approximately the magnitude of these values
to obtain good results. By diagonal scaling with D1 and D2 the scaling factor ρ
might increase again. In this example, after diagonal scaling using the weight ω =
103, ρ increases to 1.8 · 105. However, we can reduce this again by another variable
transformation of the form μ = α̃optμ̃. From Theorem 6.1 it follows that α̃opt ≈
13.9, and after this variable transformation ρ reduces to 67.6. Hence, at the end the
condition numbers of the largest eigenvalues have decreased by a factor of about 105,
while the scaling factor ρ has increased only by a factor of about 10.

Not only for polynomial problems can a weighted scaling significantly improve the
condition numbers compared to unweighted scaling. In Figure 7.4 we show the results
of scaling for the GEP Kx = λMx, where K and M are the matrices BCSSTK03
and BCSSTM03 from Matrix Market [13]. The dimension of the GEP is 112. While
unweighted scaling improves the condition number of the smaller eigenvalues, the
best result is obtained by using the weighting parameter ω = 107. Then the condition
number of all eigenvalues is improved considerably.

8. Some remarks about scaling in practice. In this concluding section we
want to give some suggestions for practical scaling algorithms based on the results of
this paper.

1. Compute κ(λ) and cond(λ) for each eigenvalue. At the moment eigensolvers
often return a normwise condition number if desired by the user. It is only a little more
effort to additionally compute the ratio κ(λ)/cond(λ). From Theorem 3.3 it follows
that a polynomial is almost optimally scaled for a certain eigenvalue if κ(λ)/cond(λ) ≤
n. If this condition is violated, the user may decide to rescale the eigenvalue problem
and then to recompute the eigenvalues in order to improve their accuracy.

2. Use a weighted scaling. The numerical examples in section 7 show that the
results of scaling can be greatly improved if ω is chosen to be of the magnitude of
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the wanted eigenvalues. In many applications this information is available from other
considerations. If no information about the eigenvalues is available, a reasonable
choice is to set ω = 1.

3. First linearize and then scale if no special structure of the linearization is
used. The results in section 4 show that one can obtain a smaller condition number if
one scales after linearizing the polynomial P (λ). If the eigenvalues of the linearization
L(λ) are computed without taking any special structure of L(λ) into account, this is
therefore the preferable way. However, if the eigensolver uses the special structure of
the linearization L(λ), then one should scale the original polynomial P (λ) and then
linearize in order not to destroy this structure.

4. Use a variable substitution of the type λ = αμ to reduce the scaling factor ρ.
This technique, which was introduced by Fan, Lin, and Van Dooren [3] for quadratics
and generalized in Theorem 6.1, often reduces the ratio of the condition number of
an eigenvalue λ between the linearization and the original polynomial. In practice we
would compute α using the Frobenius or another cheaply computable norm.

The first two suggestions also apply to generalized linear eigenvalue problems and
can be easily implemented to current standard solvers for them. Further research is
needed for the effect of scaling on the backward error. Bounds on the backward error
after scaling are difficult to obtain since the computed eigenvalues change after scaling
and this change depends on the eigensolver.
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Abstract. We derive formulas for the minimal positive solution of a particular nonsymmetric
Riccati equation arising in transport theory. The formulas are based on the eigenvalues of an asso-
ciated matrix. We use the formulas to explore some new properties of the minimal positive solution
and to derive fast and highly accurate numerical methods. Some numerical tests demonstrate the
properties of the new methods.
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1. Introduction. We consider nonsymmetric matrix Riccati equations of the
special form

(1.1) XA + DX − XBX − C = 0,

with

A = Γ − peT , D = Δ − epT , B = ppT , C = eeT ,

where

Γ := diag(γ1, . . . , γn), Δ := diag(δ1, . . . , δn),

p = [p1, . . . , pn]T , e = [1, . . . , 1]T ,

and γn > · · · > γ1 > 0, δn > · · · , δ1 > 0, and p1, . . . , pn > 0.
Such Riccati equations arise in Markov models [28] and in nuclear physics [8,

18, 22]. In the latter application, to study the transport of particles, one introduces
integral equations of the form

(1.2)
[

1
x + α

+
1

y − α

]
T (x, y) = β

[
1 +

1
2

∫ 1

−α

T (t, y)
t + α

dt

] [
1 +

1
2

∫ 1

α

T (x, t)
t − α

dt

]
,

where the unknown function T (x, y) : [−α, 1] × [α, 1] �→ R
+ is called the scattering

function, α ∈ [0, 1) is an angular shift, and β ∈ [0, 1] is the average of the total
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number of particles emerging from a collision. (Here R
+ denotes the set of positive

real numbers.)
To solve this integral equation numerically, one approximates the integrals via

classical quadrature formulas [29]. For this the function T (x, y) is approximated via
a matrix X = [xij ], where xij is an approximation of T (μi, νj) with μi, νj being the
ith and jth nodes of the quadrature formula on [−α, 1] and [α, 1], respectively; see,
e.g., [18].

In this discretization the matrix X has to satisfy the matrix Riccati equation (1.1)
with coefficient matrices

(1.3) γj =
1

β(1 − α)ωj
, δj =

1
β(1 + α)ωj

, pj =
cj

2ωj
,

for j = 1, 2, . . . , n, where {cj}n
j=1, {wj}n

j=1 are the sets of weights and nodes of the
specific quadrature rule that is used on the interval [0, 1]. These typically satisfy

(1.4) c1, . . . , cn > 0,
n∑

j=1

cj = 1; 1 > ω1 > · · · > ωn > 0.

In [20] it is shown that the Riccati equation (1.1) has two entrywise positive solutions
X = [xij ], Y = [yij ] ∈ R

n,n, which satisfy X ≤ Y , where we use the notation that
X ≤ Y if xij ≤ yij for all i, j = 1, . . . , n.

In the applications from transport theory, only X , the smaller of the two positive
solutions, is of interest. Therefore, in this paper we consider only the computation of
the minimal positive solution X . The computation of this minimal solution has been
investigated in several publications. Various direct and iterative methods [1, 2, 12,
13, 14, 15, 16, 17, 18, 19, 25] have been proposed by either directly solving the Riccati
equation or by computing specific invariant subspaces of the 2n × 2n matrix

(1.5) H =

[
A −B

C −D

]

that is formed from the coefficient matrices.
In [20] even an explicit solution formula has been derived that is based on the

eigenvalues H . Motivated by this result, we derive different explicit formulas, one of
which is mathematically equivalent to the one in [20], but of a much simpler form. We
will use these formulas to derive both entrywise and normwise bounds for the solution
matrix and show that the entries of the solution have a graded entry property. We
will also use the formulas to develop fast and highly accurate numerical algorithms
for the minimal positive solution of (1.1).

This paper is organized as follows. In section 2, we will reformulate the associated
eigenvalue problem via an appropriate balancing strategy. We use the associated
secular function to derive some properties of the eigenvalues of H . In section 3, we
then derive four formulas for the minimal positive solution based on the eigenvalues.
Entrywise and normwise bounds for the minimal positive solution are provided in
section 4. Numerical algorithms and an error analysis are presented in section 5 and
some numerical examples are shown in section 6. A conclusion is given in section 7.

Throughout this paper, λ(A) denotes the spectrum of a square matrix A, and In

(or simply I) is the n×n identity matrix. The norm used in this paper is the spectral
norm.
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2. Spectral properties of the matrix H. In this section we analyze the
spectral properties of the matrix H in (1.5) defined by the coefficient matrices of (1.1).

In order for all of the eigenvalues of H to be real, we assume that the condition

(2.1) 1 −
n∑

j=1

pj

(
1
γj

+
1
δj

)
≥ 0

holds. The transport problem with the coefficients defined in (1.3) and (1.4) is a
special case where this assumption is satisfied.

The first step in our analysis is a balancing of the coefficient matrices. Since the
entries of the vector p are positive, we may define

Φ := diag(
√

p1, . . . ,
√

pn), φ := [
√

p1, . . . ,
√

pn]T .

Using Φ to scale the Riccati equation (1.1) via

X̃ = ΦXΦ,

Ã = Φ−1AΦ = Γ − φφT ,

D̃ = ΦDΦ−1 = Δ − φφT ,

B̃ = Φ−1BΦ−1 = φφT ,

C̃ = ΦCΦ = φφT = B̃,

we obtain the equivalent Riccati equation

(2.2) X̃Ã + D̃X̃ − X̃B̃X̃ − B̃ = 0,

and obviously, X is a solution to (1.1) if and only if X̃ = ΦXΦ is a solution to (2.2).
For the associated matrix formed from the coefficients we then have

H̃ =

[
Φ−1 0
0 Φ

]
H

[
Φ 0
0 Φ−1

]

=

[
Ã −B̃

B̃ −D̃

]
=

[
Γ 0
0 −Δ

]
−
[

φ

−φ

] [
φ

φ

]T

,(2.3)

and we see that H̃ is similar to H and is a rank-one modification of a diagonal matrix,
which is analogous to the real symmetric rank-one updating problem discussed in [9].
It follows that the eigenvalues of H̃ can be obtained cheaply and accurately via the
solution of secular equations by using a method similar to the one discussed in [10,
section 8.5].

Furthermore, it is well known (see, e.g., [23]) that X̃ is a solution to (2.2) if and
only if X̃ satisfies the invariant subspace equation

H̃

[
I

X̃

]
=
[

I

X̃

]
(Ã − B̃X̃).

In [20] it was shown (for the original solution X) that X̃ is the minimal positive
solution if and only if all of the eigenvalues of Ã − B̃X̃ are nonnegative.
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In order to analyze the properties of the matrix H̃ and thus also of the similar
matrix H , we first derive some properties of the eigenvalues of H̃ .

Consider the rational function

(2.4) χ(λ) = 1 +
n∑

j=1

pj

λ − γj
−

n∑
j=1

pj

λ + δj
.

Then, since

(2.5) det(λI − H̃) = χ(λ)

⎛⎝ n∏
j=1

(λ − γj)(λ + δj)

⎞⎠ ,

it follows that the eigenvalues of H̃ are just the roots of the secular equation χ(λ) = 0,
and thus the computation of the spectrum of H̃ can be carried out very efficiently
by solving the secular equation; see [11, 27]. Furthermore, we have the following
interlacing properties.

Lemma 2.1. Consider the matrix H̃ defined via the coefficients of the Riccati
equation (2.2), and suppose that (2.1) holds. Then H̃ has 2n real eigenvalues, −νn <
· · · < −ν1 ≤ 0, 0 ≤ λ1 < · · · < λn, that satisfy the inequalities

0 ≤ ν1 < δ1 < ν2 < δ2 < · · · < νn−1 < δn−1 < νn < δn

and

0 ≤ λ1 < γ1 < λ2 < γ2 < · · · < λn−1 < γn−1 < λn < γn.

Moreover, the following cases can be considered:

1. ν1 = 0 and λ1 > 0 if and only if χ(0) = 0 and χ′(0) > 0.
2. ν1 > 0 and λ1 = 0 if and only if χ(0) = 0 and χ′(0) < 0.
3. ν1 = λ1 = 0 if and only if χ(0) = χ′(0) = 0. In this case, H̃ has a 2 × 2

Jordan block associated with the eigenvalue 0.

Proof. The proof is basically given already in [20] based on the properties of the
secular function χ(λ). Note that assumption (2.1) implies that χ(0) ≥ 0.

The second part of the third case has already been shown in [12] in a more general
setting.

Remark 2.2. Suppose the quadrature formula that is used to discretize the inte-
gral equation (1.2) is of order greater than or equal to 3; i.e.,

n∑
j=1

cjw
k
j =

1
k + 1

, k = 0, 1, 2, 3.
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With (1.3) it is easily verified that

χ(0) = 1 −
n∑

j=1

(
pj

γj
+

pj

δj

)
= 1 − β

n∑
j=1

cj = 1 − β,

χ′(0) =
n∑

j=1

(
− pj

γ2
j

+
pj

δ2
j

)
= 2αβ2

n∑
j=1

cjwj = αβ2,

χ′′(0) = −2
n∑

j=1

(
pj

γ3
j

+
pj

δ3
j

)
= −2(1 + 3α2)β3

n∑
j=1

cjw
2
j = −2

3
(1 + 3α2)β3,

χ′′′(0) = 6
n∑

j=1

(
− pj

γ4
j

+
pj

δ4
j

)
= 24α(1 + α2)β4

n∑
j=1

cjw
3
j = 6α(1 + α2)β4.

Since χ′(0) ≥ 0, we have that case 1 in Lemma 2.1 happens when β = 1 and α > 0
and case 3 happens when β = 1 and α = 0. Case 2 will never happen.

3. Formulas for the minimal positive solution. In this section we will derive
explicit formulas for the minimal positive solution of (1.1) in terms of the eigenvalues
−ν1, . . . ,−νn, λ1, . . . , λn of H (or H̃). For this we need the following lemma.

Lemma 3.1. Suppose in the following that X̃ ∈ R
n,n. The following statements

are equivalent.
(a) X̃ is the minimal positive solution of (2.2).
(b) X̃ satisfies

H̃

[
In

X̃

]
=

[
In

X̃

]
R̃1,

where R̃1 = Ã − B̃X̃ and σ(R̃1) = {λ1, . . . , λn}.
(c) X̃T is the minimal positive solution to the dual Riccati equation

(3.1) Ỹ D̃ + ÃỸ − Ỹ B̃Ỹ − B̃ = 0.

(d) X̃ satisfies

(3.2) H̃

[
X̃T

In

]
=

[
X̃T

In

]
R̃2,

where R̃2 = −(D̃ − B̃X̃T ) and σ(R̃2) = {−ν1, . . . ,−νn}.
Proof. The equivalence of (a) and (b) is given in [20]. The equivalence between

(a) and (c) is obvious by taking the transpose on both sides of (2.2) or (3.1). The
equivalence between (c) and (d) is shown in [12].

With formulas for R̃1, R̃2 as in Lemma 3.1 and the formulas for Ã, D̃ and B̃, it
follows that the minimal positive solution X̃ of (2.2) satisfies the following relations:

Γ − φξ̃T = R̃1, σ(R̃1) = {λ1, . . . , λn},(3.3)

Δ − φη̃T = −R̃2, σ(−R̃2) = {ν1, . . . , νn},(3.4)

X̃Γ + ΔX̃ = η̃ξ̃T ,(3.5)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1344 VOLKER MEHRMANN AND HONGGUO XU

where

ξ̃ = (I + X̃T )φ, η̃ = (I + X̃)φ.

The last equation is a reformulation of (2.2). It thus follows that if the vectors ξ̃ and
η̃ can be determined, then X̃ can be easily formulated based on the simple Sylvester
equation (3.5).

The following result shows that ξ̃ and η̃ can be determined based on the relations
(3.3) and (3.4).

Proposition 3.2 (see [26]). Suppose that matrices A, B are given such that
A = diag(a1, . . . , an) with distinct diagonal entries a1, . . . , an ∈ R, and B ∈ R

n,n with
λ(B) = {b1, . . . , bn} for distinct b1, . . . , bn ∈ R.

Let q1, q2, . . . , qn ∈ R \ {0} and define

q = [q1, q2, . . . , qn]T , Q = diag(q1, q2, . . . , qn)

as well as

f =

⎡⎢⎢⎢⎢⎣
n∏

j=1

(a1 − bj)∏
j �=1

(a1 − aj)
, . . . ,

n∏
j=1

(ak − bj)∏
j �=k

(ak − aj)
, . . . ,

n∏
j=1

(an − bj)∏
j �=n

(an − aj)

⎤⎥⎥⎥⎥⎦
T

.

If a vector z ∈ R
n satisfies A − qzT = B, then

(3.6) z = Q−1f =
[
f1

q1
, . . . ,

fn

qn

]T

.

Using (3.6), (3.3), (3.4), and (3.5), we obtain the following explicit formulas for
X .

Theorem 3.3. Consider the Riccati equation (1.1). Introduce for k = 1, . . . , n
the scalar quantities

ξk =

n∏
j=1

(γk − λj)∏
j �=k

(γk − γj)
, ηk =

n∏
j=1

(δk − νj)∏
j �=k

(δk − δj)
, κk =

n∏
j=1

(γk + δj)

n∏
j=1

(γk + νj)

, εk =

n∏
j=1

(δk + γj)

n∏
j=1

(δk + λj)

,

the associated vectors and matrices

ξ = [ξ1, . . . , ξn]T , Ξ = diag(ξ1, . . . , ξn),

η = [η1, . . . , ηn]T , E = diag(η1, . . . , ηn),

κ = [κ1, . . . , κn]T , K = diag(κ1, . . . , κn),(3.7)

ε = [ε1, . . . , εn]T , E = diag(ε1, . . . , εn),

and the Cauchy matrix

Θ =
[

1
δi + γj

]
.
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Let

P = diag(p1, . . . , pn),

with the pi defined in (1.1). Then we have the following solution formulas for (1.1):

X = P−1EΘΞP−1,(3.8)

X = P−1EΘK,(3.9)

X = EΘΞP−1,(3.10)

X = EΘK.(3.11)

Proof. To prove the formulas, we apply Proposition 3.2 to (3.3) and obtain

ξ̃ = Φ−1ξ,

where ξ is defined in (3.7). Similarly, from (3.4) we obtain

η̃ = Φ−1η,

where η is defined in (3.7). By solving the Sylvester equation (3.4) we obtain

X̃ = Φ−1EΘΞΦ−1,

with E, Ξ as in (3.7). Then, (3.8) follows by using X = Φ−1X̃Φ−1 and P = Φ2.
In order to get the other formulas we need only show that Ξ = PK and E = PE .
Since −ν1, . . . ,−νn, λ1, . . . , λn are the eigenvalues of H̃, it follows from (2.5) that

n∏
j=1

(λ − λj)
n∏

j=1

(λ + νj) =
n∑

m=1

pm

∏
j �=m

(λ − γj)
n∏

j=1

(λ + δj)

−
n∑

m=1

pm

n∏
j=1

(λ − γj)
∏
j �=m

(λ + δj) +
n∏

j=1

(λ − γj)
n∏

j=1

(λ + δj).(3.12)

By inserting λ = γk, we obtain

n∏
j=1

(γk − λj)
n∏

j=1

(γk + νj) = pk

∏
j �=k

(γk − γj)
n∏

j=1

(γk + δj),

which implies that

ξk = pkκk, k = 1, 2, . . . , n.

We then have Ξ = PK.
Similarly, by inserting λ = −δk in (3.12) we get

ηk = pkεk, k = 1, . . . , n,

and thus E = PE . Then the other formulas follow.
Note that formula (3.9) needs only the eigenvalues −ν1, . . . ,−νn, while formula

(3.10) needs only the eigenvalues λ1, . . . , λn. Numerically, these two formulas provide
very cheap procedures to compute the minimal solution X of (1.1).
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Remark 3.4. In [20] an explicit formula for the minimal solution of (1.1) was
already given that is equivalent to (3.10). However, there a different expression for εk

was introduced as

εk = 1 +
n∑

m=1

1
δk + λm

n∏
j=1

(γj − λm)∏
j �=m

(λj − λm)
.

This expression is less compact and its evaluation has a higher complexity than the
expression in Theorem 3.3.

In this section we have derived new explicit formulas for the minimal solution X
of (1.1) and we will use them in the next section to derive some further properties of
X .

4. Properties and bounds for the minimal positive solution. The simple
expressions of the quantities ξk, κk, ηk, εk in the explicit formulas (3.8)–(3.11) and the
eigenvalue interlacing property for the eigenvalues of H̃ allow one to derive further
properties of the minimal positive solution of (1.1). For this we first prove the following
lemma.

Lemma 4.1. The coefficients γk, δk in (1.1), the eigenvalues −νk, λk of H̃ in (2.3),
and the quantities ξk, ηk, κk, εk, k = 1, . . . , n in (3.7) satisfy the following inequalities.

1.

0 < ak < ηk < δk − ν1 ≤ δk, 0 < bk < ξk < γk − λ1 ≤ γk,

1 < εk <
δk + γn

δk + λ1
≤ δk + γn

δk
, 1 < κk <

γk + δn

γk + ν1
≤ γk + δn

γk
,

where

ak =

{
(δk−νk)(νk+1−δk)

δn−δk
, 1 ≤ k < n,

δn − νn, k = n,

bk =

{
(γk−λk)(λk+1−γk)

γn−γk
, 1 ≤ k < n,

γn − λn, k = n.

2.

1 < εn < εn−1 < · · · < ε1, 1 < κn < κn−1 < · · · < κ1.
Proof. To prove the first part, we use the interlacing property in Lemma 2.1 and

obtain

0 <
δk − νj

δk − δj−1
< 1, 1 < j ≤ k;

δk − νj

δk − δj
> 1, 1 ≤ j < k,

and

0 <
δk − νj

δk − δj
< 1, k < j ≤ n;

δk − νj+1

δk − δj
> 1, k < j < n.

For 1 ≤ k < n

ηk =
(δk − νk)(δk − νk+1)

δk − δn

k−1∏
j=1

δk − νj

δk − δj

n−1∏
j=k+1

δk − νj+1

δk − δj
> ak,
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and

ηk = (δk − ν1)
k−1∏
j=1

δk − νj+1

δk − δj

n∏
j=k+1

δk − νj

δk − δj
< δk − ν1 ≤ δk.

Finally, for k = n we obtain

ηn = (δn − νn)
n−1∏
j=1

δn − νj

δn − δj
> δn − νn =: an

and

ηn = (δn − ν1)
n−1∏
j=1

δn − νj+1

δn − δj
< δn − ν1 ≤ δn.

This proves the inequalities for the ηk, and clearly we have ak > 0 for k = 1, . . . , n.
The inequalities for the ξk can be derived in the same way by using the interlacing

property for the eigenvalues λ1, . . . , λn. This interlacing property also gives

εk =
n∏

j=1

δk + γj

δk + λj
> 1

and

εk =
δk + γn

δk + λ1

n−1∏
j=1

δk + γj

δk + λj+1
<

δk + γn

δk + λ1
≤ δk + γn

δk
.

Similarly, one can prove the inequalities for κk.
To prove part 2 we consider the function

ψ(t) =
n∏

j=1

t + γj

t + λj
=

n∏
j=1

(
1 +

γj − λj

t + λj

)
.

Since γj − λj ≥ 0 for j = 1, . . . , n, it follows that ψ(t) is decreasing as t increases.
Since ψ(δk) = εk for k = 1, . . . , n, and δ1 < · · · < δn, we thus have

ε1 > ε2 > · · · > εn.

Obviously ψ(t) > 1 for any t > 0, and hence εn = ψ(δn) > 1.
The monotonicity κ1 > · · · > κn > 1 follows in the same way.
With the help of Lemma 4.1 we can now prove the following entrywise mono-

tonicity property of the minimal positive solution X of (1.1).
Theorem 4.2. Let X = [xij ] ∈ R

n,n be the minimal positive solution of (1.1).
Then for any i ≥ k and j ≥ l with (i, j) �= (k, l), the entries of X satisfy

xij > xkl.

Proof. Since

0 < γ1 < · · · < γn, 0 < δ1 < · · · < δn,
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and by Lemma 4.1,

1 < εn < · · · < ε1, 1 < κn < · · · < κ1,

with (3.11), for 1 ≤ i, j ≤ n, if i < n, it follows that

xij =
εiκj

δi + γj
>

εi+1κj

δi+1 + γj
= xi+1,j .

If j < n, then

xij =
εiκj

δi + γj
>

εiκj+1

δi + γj+1
= xi,j+1.

The quantities in Lemma 4.1 also provide upper and lower bounds for the entries
of the minimal positive solution X of (1.1).

Theorem 4.3. Let X = [xij ] ∈ R
n,n be the minimal positive solution of (1.1).

Then

wij

δi + γj
< xij <

Wij

δi + γj
,

where

wij = max
{

aibj

pipj
,

ai

pi
,

bj

pj
, 1
}

,

Wij = min
{

δiγj

pipj
,

δi(γj + δn)
piγj

,
(δi + γn)γj

δipj
,

(δi + γn)(γj + δn)
δiγj

}
.

Proof. The bounds follow from the formulas (3.8)–(3.11) and the inequalities
given in the first part of Lemma 4.1.

Corollary 4.4. Let X = [xij ] ∈ R
n,n be the minimal positive solution of (1.1),

and let wij , Wij be as in Theorem 4.3. Then

wnn

δn + γn
< xnn ≤ xij ≤ x11 <

W11

δ1 + γ1

for i, j = 1, . . . , n.
Proof. The inequalities follow from Theorems 4.2 and 4.3.
By taking advantage of the scaled equation (2.2), we also obtain a bound for the

spectral norm of the minimal positive solution X of (1.1).
Theorem 4.5. Let X̃ ∈ R

n,n be the minimal positive solution of (2.2). Then

||X̃ || ≤ 1,

and ||X̃ || = 1 if and only if χ(0) = 0 and χ′(0) = 0.
Moreover, the minimal positive solution X of (1.1) satisfies

||X || ≤ 1
minj pj

.

Proof. Let X̃+ ≥ X̃ be another positive solution of (2.2) [20]. Since both X̃ and
X̃+ are positive, it is easily verified that

||X̃ ||2 = ρ(X̃T X̃) ≤ ρ(X̃T X̃+),
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where ρ(Z) is the spectral radius of Z. Lemma 3.1 shows that X̃T is the minimal
positive solution of the dual equation (3.1). By Lemma 12 of [7], ρ(X̃T X̃+) ≤ 1.
Hence ||X̃ || ≤ 1, and ||X̃ || = 1 if and only if X̃+ = X̃. The last equality holds if and
only if 0 is a double eigenvalue of H̃ , which is equivalent to the conditions χ(0) = 0
and χ′(0) = 0, by Lemma 2.1.

The upper bound for ||X || follows from the relation X = Φ−1X̃Φ−1.
Various lower bounds for ||X || can also be derived by using the inequalities for the

entries of X , but we will not pursue this topic here.
At the end of this section we also provide a formula for the inverse of X .
Theorem 4.6. The minimal positive solution X = [xij ] of (1.1) is invertible and

with P, Θ as in Theorem 3.3, its inverse is given by

X−1 = PQΘT GP,

where

Q = diag(q1, . . . , qn), G = diag(g1, . . . , gn),

with

qk =
n∏

j=1

γk + δj

γk − λj
, gk =

n∏
j=1

δk + γj

δk − νj
,

for k = 1, . . . , n.
Proof. Since γn > · · · > γ1 > 0 and δn > · · · > δ1 > 0, it follows (see, e.g., [6])

that the Cauchy matrix Θ is invertible and

Θ−1 = Q̂ΘT Ĝ,

where

Q̂ = diag(q̂1, . . . , q̂n), Ĝ = diag(ĝ1, . . . , ĝn),

with

q̂k =

n∏
j=1

(γk + δj)∏
j �=k

(γk − γj)
, ĝk =

n∏
j=1

(δk + γj)∏
j �=k

(δk − δj)
,

for k = 1, . . . , n. Since all of the diagonal matrices in (3.8) are invertible, it follows
that X is also invertible and the formula for X−1 follows from (3.8) using Θ−1.

5. Numerical algorithms. The formulas given in section 3 can be used to de-
velop the following numerical algorithms for computing the minimal positive solution
of (1.1).

Algorithm 5.1. For the Riccati equation (1.1) this algorithm computes the
minimal positive solution.

1. Compute the eigenvalues −ν1, . . . ,−νn, λ1, . . . , λn of H̃ in (2.3) by applying
a root finding solver to the secular equation χ(λ) = 0 given by (2.4).

2. Use either of the formulas (3.8) or (3.11) to compute the minimal positive
solution X of (1.1).
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We can also use either of the formulas (3.9) or (3.10).
Algorithm 5.2. For the Riccati equation (1.1) this algorithm computes the

minimal positive solution.
1. Compute the eigenvalues −ν1, . . . ,−νn of H̃ in (2.3) by applying a root finding

solver to the secular equation χ(λ) = 0 given by (2.4).
2. Use formula (3.9) to compute the minimal positive solution X of (1.1).

Algorithm 5.3. For the Riccati equation (1.1) this algorithm computes the
minimal positive solution.

1. Compute the eigenvalues λ1, . . . , λn of H̃ in (2.3) by applying a secular equa-
tion solver to χ(λ) = 0.

2. Use formula (3.10) to compute the minimal positive solution X of (1.1).
Note that Algorithms 5.2 and 5.3 need only compute half of the eigenvalues.
The success of these three algorithms depends on how fast and accurately the

eigenvalues can be computed and how sensitive the evaluation of the formulas (3.8)–
(3.11) is. This requires an efficient and reliable secular equation solver. The osculatory
interpolation methods of [3, 24] that were developed in the context of the divide-and-
conquer eigenvalue methods ([10, section 8.5], [4, 5, 9]) may not be applicable directly,
since the secular function χ(λ) has quite different properties than the secular equation
derived in the symmetric divide-and-conquer method. For this reason we propose the
following hybrid method for the computation of roots of the secular function. We
consider only the case for computing the eigenvalues λk as the method for computing
the eigenvalues νk is analogous. Our approach treats λ1 differently from the other
eigenvalues λ2, . . . , λn, because of the different properties that λ1 has.

5.1. Computation of λk with k > 1.
1. Initial guess. To compute an initial guess, we basically follow the procedure sug-

gested in [24]. We first evaluate χ(mk), where mk is the midpoint of the
interval (γk−1, γk). Because χ(λ) has only one root in (γk−1, γk), and since
limλ→γ+

k−1
χ(λ) = ∞, and limλ→γ−

k
χ(λ) = −∞, based on the sign of χ(mk),

we can easily determine in which half of the interval λk is located. Simple
geometry shows that if χ(mk) > 0, then λk is closer to γk, and if χ(mk) < 0,
then λk is closer to γk−1. We then consider the equation

pk−1

λ − γk−1
+

pk

λ − γk
+ rk = 0,

with rk = χ(mk)− pk−1/(mk − γk−1)− pk/(mk − γk), which can be obtained
during the evaluation of χ(mk) without any extra cost. We then take the
root of this equation in (γk−1, γk) as our initial guess z0

k. It is easily verified
that z0

k and λk are in the same half interval. We also choose an initial interval
so that the χ values on endpoints have opposite signs (which guarantees that
λk is in this interval). If χ(mk)χ(z0

k) < 0, then we use mk, z0
k for the interval.

Otherwise, we use the asymptotic properties of χ to find another λ value to
replace mk. Let us denote the resulting interval by [u0, v0].

2. Iteration step. For a current approximation zj
k, we first evaluate χ′(zj

k) and use
one step of Newton’s method to determine the next approximate zj+1

k . If
zj+1

k is inside the current interval [uj, vj ], then we evaluate χ(zj+1
k ). We then

replace one of uj, vj and its corresponding χ value with zj+1
k and χ(zj+1

k )
based on the sign of χ(zj+1

k ) and move on to the next iteration. If zj+1
k is

outside [uj , vj ] (maybe even outside of (γk−1, γk)), then we apply one step of
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the secant method with uj , vj and their corresponding χ values to get zj+1
k .

We then evaluate χ(zj+1
k ), update [uj, vj ], and continue. If this zj+1

k is still
outside of [uj , vj ], then we use one step of the bisection method with uj , vj

to get zj+1
k .

When the iterates zj
k get close to the root λj , then, due to rounding errors,

it becomes more difficult to compute a reliable value of χ(zj
k). (This happens

typically for small roots.) This may cause the sign of χ to alternate between
positive and negative values in the Newton iteration and the secant iteration,
which may have the effect that the sequence {zj

k} does not converge. If we
observe such a behavior and the function values for χ are also small in absolute
value, then we run a step of the bisection method. This procedure has turned
out to be very successful during our numerical tests.

3. Stopping criterion. In order to compute the root λk accurately, we actually use
the shift s = λ − γk−1 or s = λ − γk initially, depending on whether λk is
closer to γk−1 or γk. The iteration step is then applied to the new variable s
to generate a sequence of approximate values s0, s1, . . . , sj , . . . . The iteration
can be written as

sj+1 = sj + Δsj ,

where Δsj is the jth correction.
We use the stopping criterion

(5.1) |Δsj | < cεM |sj+1|,

where εM is the machine epsilon and c is a modest constant (which is set to
48 in our tests).

The procedure for the computation of νk (k = 2, . . . , n) is analogous.

5.2. Computation of λ1.
1. Initial guess. The strategy for choosing starting values z0

1 and starting intervals
[u0, v0] is slightly different than in the case of the other eigenvalues. Since
we know that λ1 ∈ [0, γ1), we first evaluate χ(m1), where m1 = γ1/2. We
use the sign of χ(m1) to determine if λ1 is closer to 0 or γ1. We then use the
root z0

1 ∈ [0, γ) of the equation

p1

λ − γ1
+ r1 = 0,

with r1 = χ(m1) − p1/(m1 − γ1), as the initial starting value.
If χ(m1), χ(z0

1) < 0, then we use m1, z
0
1 to form the initial interval [u0, v0].

If χ(m1), χ(z0
1) > 0, then we replace m1 by another value such that the

corresponding χ value is negative, by using the fact limλ→γ−
1

(λ) = −∞. In
the case that χ(m1), χ(z0

1) < 0, if χ(0) > 0, we replace m1 with 0. If χ(0) = 0,
we still need to check the sign of χ′(0). If χ′(0) > 0, we may use it to find
a small positive number such that its corresponding χ is positive. We then
replace m1 with this number. If χ′(0) ≤ 0, we simply set λ1 = 0, and no
iteration is required.
Note that for the transport theory problem, χ(0) and χ′(0) can be easily
determined by the formulas given in Remark 2.2.
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2. Iteration step. We first use the same iteration steps as described for the eigenvalues
λk, k ≥ 2, to an approximation of λ1. This usually works well for λ1 >
c1
√

εM with some positive constant c1. If, however, λ1 is too small, then it is
difficult to get accurate function values for χ and χ′, which then may cause
convergence problems. In order to overcome this difficulty, once we observe
that the jth approximate zj

1 satisfies zj
1 < c1

√
εM (we used c1 = 100 in

our tests), we evaluate χ(zj
1) and χ′(zj

1) by using their corresponding Taylor
polynomials at 0, given by

χ(zj
1) ≈ χ(0) + zj

1χ
′(0) +

(zj
1)

2

2
χ′′(0),

χ′(zj
1) ≈ χ′(0) + zj

1χ
′′(0) +

(zj
1)

2

2
χ′′′(0),

and use these values in the next step of the Newton iteration. If χ′(zj
1) is also

very small in modulus, then we approximate χ′′(zj
1) by

χ′′(zj
1) ≈ χ′′(0) + zj

1χ
′′′(0).

We then use the approximations for χ(zj
1), χ′(zj

1), χ′′(zj
1) to construct the

second degree Taylor polynomial for χ at zj
1 and use one of the roots of this

polynomial (if it exists) as our next iterate zj+1
1 .

For a general secular equation, the computation of χ(0), χ′(0), χ′′(0), and
χ′′′(0) requires extra cost and it is not clear if the values can be evaluated
accurately. In the secular equation from the transport problem, however,
this computation is essentially cost-free since we may use the formulas in Re-
mark 2.2, and because of the simple formulations the values can be computed
accurately.

3. Stopping criterion. We use again the stopping criterion (5.1) (with γ0 := 0).
The procedure for the computation of ν1 is analogous.

5.3. Costs. The main cost in Algorithms 5.1–5.3 is the evaluation of χ and χ′

during each iteration step. In order to evaluate χ(λ) and χ′(λ), we first compute
λ − γj , λ + δj for j = 1, . . . , n. We then compute pj/(λ − γj) and pj/(λ + δj).
After this χ(λ) can be evaluated. We continue to compute [pj/(λ− γj)]/(λ− γj) and
[pj/(λ+δj)]/(λ+δj)], which costs one extra flop for each term, and then evaluate χ′(λ).
So if the Newton iteration is used in the iteration step, then the cost per iteration
step and per eigenvalue is about 10n flops. If the average number of iterations is
M , then the cost for Algorithm 5.1 is about (20M + 9)n2 flops, and the cost for
Algorithms 5.2 and 5.3 is about (10M + 9)n2 flops. Note that it requires 3n2 flops
to compute each set of the values ξk, ηk, κk, εk, and it requires another 3n2 flops to
compute the components of X . Note also that in these complexity estimates we did
not count the cost for the computation of the initial values.

5.4. Error analysis. To analyze the computational errors in the described pro-
cedures, we first estimate the errors in the computed eigenvalues; see also [30]. We
assume that the iteration for each eigenvalue stops when (5.1) holds, and the com-
puted sequence satisfies the conditions in the following lemma observed by Kahan
(see, e.g., [24]).
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Lemma 5.4. Let {xj}∞j=1 be a sequence of real numbers produced by some rapidly
convergent iteration scheme, such that limj→∞ xj = x∗. If the sequence of ratios
|xj+1−xj |
|xj−xj−1| is decreasing for j ≥ k, and if |xk+1−xk|

|xk−xk−1| < 1, then

|xk+1 − x∗| <
|xk+1 − xk|2

|xk − xk−1| − |xk+1 − xk|
.

Let λj , νj be the exact eigenvalues of H , and let λ̂j , ν̂j be the corresponding
computed eigenvalues. With the discussed properties of the eigenvalues, the presented
procedures, and Lemma 5.4, it is reasonable to assume that the computed eigenvalues
satisfy

|λj − λ̂j | < Cλj εM min{γj − λj , λj − γj−1},(5.2)

|νj − ν̂j | < Cνj εM min{δj − νj , νj − δj−1},(5.3)

for j = 1, . . . , n, where γ0 = δ0 = 0 and Cλj , Cνj are some modest constants. We then
have the following lemma.

Lemma 5.5. Suppose that the computed eigenvalues λ̂j, −ν̂j of H as in (1.5)
satisfy (5.2) and (5.3). Let ξ̂k, η̂k, ε̂k, κ̂k be the computed quantities determined via
the formulas given in Theorem 3.3. Then

ξ̂k = ξk(1 + nCξk
εM ), η̂k = ηk(1 + nCηk

εM ),

κ̂k = κk(1 + nCκk
εM ), ε̂k = εk(1 + nCεk

εM ),

for k = 1, . . . , n, where Cξk
, Cηk

, Cκk
, Cεk

are constants.
Proof. For the proof we just consider the first order error.
Note that ξ̂k is actually computed by the formula

n∏
j=1

(γk − λ̂j)/
∏
j �=k

(γk − γj);

i.e., λj is replaced with λ̂j . We then have

|γk − λ̂j | = |(γk − λj) + (λj − λ̂j)| = |γk − λj |
∣∣∣∣∣1 +

λj − λ̂j

γk − λj

∣∣∣∣∣ =: |γk − λj ||1 + C̃kjεM |,

for j = 1, . . . , n, where by (5.2) and the interlacing property of the eigenvalues

|C̃kj | =
1

εM

∣∣∣∣∣λj − λ̂j

γk − λj

∣∣∣∣∣ < Ckj
min{γj − λj , λj − γj−1}

|γk − λj |
≤ Ckj .

With this relation, it is not difficult to obtain that

ξ̂k = ξk(1 + nCξk
εM ),

where Cξk
is a constant. The corresponding relations for the other terms follow in

the same way.
Using this lemma we obtain the following relative errors for the components of

the minimal positive solution computed by the formulas given in section 3.
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Theorem 5.6. Consider the problem of computing the minimal positive solution
X = [xij ] of (1.1) using formulas (3.8)–(3.11), and suppose that the computed eigen-
values satisfy the relations (5.2) and (5.3). Then for the computed solution X̂ = [x̂ij ],
the relative error estimate

|x̂ij − xij |
xij

= DijnεM , i, j = 1, . . . , n

holds, where Dij’s are positive constants.
Proof. The relative error estimates follow from Lemma 5.5.

6. Numerical examples. In this section we present some numerical test results
for the problems from transport theory; see [20, 21]. The weights c1, . . . , cn and nodes
ω1, . . . , ωn are generated from the composite four-node Gauß–Legendre quadrature
formula on [0, 1] with n/4 equally spaced subintervals; see, e.g., [29]. All the numerical
examples were tested in MATLAB version 7.1.0 with machine precision εM ≈ 2.22e−
16. We solved the problem for various numbers of the parameters α and β and the
size n. We used all four formulas to compute the minimal positive solution, with a
secular equation solver as described in section 5.

The computed minimal positive solutions via formulas (3.8)–(3.11) are denoted
by X(1), X(2), X(3), X(4), respectively. In the following we display the test results.
We present one table for each pair (α, β) and various values of n. (The used norm is
always the spectral norm.) In each of Tables 6.1–6.6, we list the following results:

• Maximum residual:

R = max
j∈{1,2,3,4}

||X(j)Γ + ΔX(j) − (e + X(j)p)(eT + pT X(j))||.

• Maximum and minimum entrywise relative errors:

REmax = max
i,j∈{1,2,3,4}

i�=j

max
k,l∈{1,...,n}

|x(i)
kl − x

(j)
kl |

min{x(i)
kl , x

(j)
kl }

,

REmin = min
i,j∈{1,2,3,4}

i�=j

max
k,l∈{1,...,n}

|x(i)
kl − x

(j)
kl |

min{x(i)
kl , x

(j)
kl }

.

• Largest entry x11 (determined by one of the four solutions).
• Smallest entry xnn (determined by one of the four solutions).
• Norm ||X || (X is one of the four solutions). Note that we have proved that
||X̃ || ≤ 1, which translates to ||X || ≤ 1/ min pj .

• Number of iterations for ν1: N−.
• Number of iterations for λ1: N+.
• Average of the number of iterations for all 2n eigenvalues: N .

We also give the eigenvalues −ν1, λ1 in the caption.
We can summarize the numerical results as follows.
1. The values of R in the tables are usually the residual of X(1). The other

residuals are basically the same, but some can be one order smaller.
2. Since we do not know the exact solution, we use REmax and REmin to detect

if high relative accuracy can actually be achieved. The values of REmax and
REmin do support the high relative accuracy result. (Note that xnn is small
in all examples.)
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3. The number of iterations for ν1 and λ1 increases as α → 0 and β → 1. This
shows the numerical difficulty when the eigenvalues −ν1 and λ1 are getting
close to each other. However, our computed values of ν1, λ1 are much more
accurate than those obtained by running the MATLAB code eig on H̃ .

4. Our MATLAB implementation of the root finder based on the secular equa-
tion is still not very robust. In general, about .5% of the eigenvalues need
100 iterations, the maximum iteration number used in our experimental code.
Some further improvement could enhance these convergence properties.

Table 6.1

α = 0.5, β = 0.5, (−ν1, λ1) ≈ (−1.166, 3.996).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 2.70e-13 1.83e-14 6.80e-15 .263 8.23e-04 7.87e+00 8 7 5
128 1.27e-12 6.72e-14 3.33e-14 .263 4.09e-04 1.57e+01 9 8 5
256 5.35e-12 1.64e-13 7.73e-14 .264 2.04e-04 3.15e+01 9 9 5
512 1.97e-11 2.70e-13 1.34e-13 .264 1.02e-04 6.29e+01 10 8 5

Table 6.2

α = 0.1, β = 0.99, (−ν1, λ1) ≈ (−7.98e− 02, 3.83e− 01).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 5.16e-13 2.65e-14 1.23e-14 2.70 2.19e-03 6.12e+01 8 6 5
128 2.43e-12 9.67e-14 4.06e-14 2.72 1.08e-03 1.22e+02 10 5 5
256 8.48e-12 1.46e-13 7.03e-14 2.72 5.37e-04 2.45e+02 9 5 5
512 3.48e-11 4.21e-13 2.04e-13 2.72 2.67e-04 4.89e+02 10 6 6

Table 6.3

α = 10−4, β = 1− 10−8, (−ν1, λ1) ≈ (−7.91e− 05, 3.79e− 04).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 2.46e-11 1.48e-12 7.35e-13 4.19 2.24e-03 8.59e+01 23 16 5
128 1.02e-10 5.16e-12 2.57e-12 4.21 1.10e-03 1.72e+02 26 25 5
256 4.66e-11 1.24e-12 5.60e-13 4.22 5.48e-04 3.43e+02 19 25 5
512 5.43e-10 7.02e-12 3.48e-12 4.22 2.73e-04 6.87e+02 34 25 6

Table 6.4

α = 10−14, β = 1− 10−14, (−ν1, λ1) ≈ (−1.73e− 07, 1.73e− 07).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 6.09e-13 2.52e-14 1.02e-14 4.19 2.24e-03 8.59e+01 28 26 6
128 2.72e-12 7.80e-14 3.15e-14 4.21 1.10e-03 1.72e+02 28 26 5
256 1.02e-11 1.85e-13 8.30e-14 4.22 5.48e-04 3.44e+02 28 26 5
512 4.28e-11 4.12e-13 1.60e-13 4.22 2.73e-04 6.87e+02 28 26 6

Table 6.5

α = 10−8, β = 1, (−ν1, λ1) = (0, 3.00e− 08).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 7.74e-13 4.84e-14 1.94e-14 4.19 2.24e-03 8.59e+01 0 30 5
128 2.95e-12 8.97e-14 4.07e-14 4.21 1.10e-03 1.72e+02 0 30 5
256 1.21e-11 1.76e-13 7.39e-14 4.22 5.48e-04 3.44e+02 0 32 5
512 4.51e-11 4.14e-13 1.87e-13 4.22 2.73e-04 6.87e+02 0 30 6
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Table 6.6

α = 10−15, β = 1, (−ν1, λ1) = (0, 3.00e− 15).

n R REmax REmin x11 xnn ||X|| N− N+ N
64 6.97e-13 3.39e-14 1.42e-14 4.19 2.24e-03 8.59e+01 0 55 5
128 2.71e-12 7.83e-14 2.91e-14 4.21 1.10e-03 1.72e+02 0 55 5
256 1.02e-11 1.60e-13 7.47e-14 4.22 5.48e-04 3.44e+02 0 55 5
512 4.19e-11 3.71e-13 1.53e-13 4.22 2.73e-04 6.87e+02 0 55 5

7. Conclusion. We have presented four formulas for the minimal positive solu-
tion of the nonsymmetric Riccati equation (1.1) that depend on the eigenvalues of the
associated matrix. With the help of the formulas we have given some properties and
entrywise bounds for the minimal positive solution. We have used the formulas to
develop fast numerical algorithms for computing the minimal positive solution. If the
eigenvalues can be computed accurately, then the computed minimal positive solution
has high relative accuracy.
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to improve this paper. Hongguo Xu wishes to gratefully acknowledge the hospitality
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A NOTE ON BACKWARD ERROR ANALYSIS OF THE
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Abstract. In terms of the generalized singular value decomposition, we define the generalized
singular matrix sets and their backward errors. The explicit expressions of backward errors are
derived, which extend a result of Sun [SIAM J. Matrix Anal. Appl., 22 (2000), pp. 323–341]. The
results are illustrated by a numerical example.
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1. Introduction. The generalized singular value decomposition (GSVD) of two
matrices having the same number of columns, first proposed by Van Loan [13], is
a very useful tool in many matrix computation problems. Numerical methods and
perturbation analysis of the GSVD have been developed (e.g., see [1, 2, 4, 8, 9, 10, 12]).
In this paper, we discuss the backward errors for the GSVD and derive their explicit
expressions.

Throughout this paper, we always use the following notations. Let Cm×n be the
set of m × n complex matrices, and let Cm = Cm×1 and C = C1. The symbol Ip

stands for the identity matrix of order p. By AT , A∗, and A† we denote the transpose,
conjugate transpose, and Moore–Penrose inverse of a matrix A, respectively. PA =
AA† is the orthogonal projection onto the column space of A and P⊥

A = I − PA. We
use ‖ · ‖2, ‖ · ‖F , and ‖ · ‖∞ for the Euclidean vector norm and the spectral norm,
Frobenius norm, and ∞-norm, respectively.

Let A ∈ Cm×n and B ∈ Cp×n. The matrix pair {A, B} is called an (m, p, n)-
Grassmann matrix pair (GMP) if rank(AT , BT ) = n. In [6] Paige and Saunders
obtained the following GSVD of the (m, p, n)-GMP.

Theorem 1.1. Let {A, B} be an (m, p, n)-GMP. Then there exist two unitary
matrices U ∈ Rm×m, V ∈ Rp×p and a nonsingular matrix X ∈ Rn×n such that

U∗AX =

(
Dα

0(m−r−s)×(n−r−s)

)
, V ∗BX =

(
0(p+r−n)×r

Dβ

)
,(1.1)

where 0k×l denotes the k × l null matrix, and

Dα = diag(α1, . . . , αr+s), Dβ = diag(βr+1, . . . , βn)(1.2)

with

1 = α1 = · · · = αr > αr+1 ≥ · · · ≥ αr+s > αr+s+1 = · · · = αn = 0,(1.3)

0 = β1 = · · · = βr < βr+1 ≤ · · · ≤ βr+s < βr+s+1 = · · · = βn = 1,(1.4)

∗Received by the editors September 21, 2007; accepted for publication (in revised form) by B. T.
K̊agström May 19, 2008; published electronically October 16, 2008. This work was supported by the
Natural Science Foundation of Guangdong Province (06025061) and by the National Natural Science
Foundation of China (10671077).
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and

α2
j + β2

j = 1 ∀j.(1.5)

Let {A, B} be an (m, p, n)-GMP with the GSVD given by (1.1)–(1.5). Then
{(αj , βj)}n

j=1 are the generalized singular values (GSVs) of {A, B}, and every column
xj of the matrix X of (1.1) is a right generalized singular vector of {A, B} associated
with (αj , βj).

Let l be a natural number satisfying max{n − p, 0} < l < min{m, n}. From
(1.1)–(1.5) we obtain formally

A(X1, X2) = (U1, U2)

(
A11 0
0 A22

)
, B(X1, X2) = (V1, V2)

(
B11 0
0 B22

)
(1.6)

and

A∗(U1, U2) = (Y1, Y2)

(
A∗

11 0
0 A∗

22

)
, B∗(V1, V2) = (Y1, Y2)

(
B∗

11 0
0 B∗

22

)
,(1.7)

where A11 ∈ Cl×l, B11 ∈ C(p+l−n)×l, and the matrices (U1, U2) ∈ Cm×m, (V1, V2) ∈
Cp×p with U1 ∈ Cm×l, V1 ∈ Cp×(p+l−n) are unitary, and X = (X1, X2) ∈ Cn×n,
Y = X−∗ = (Y1, Y2) with X1, Y1 ∈ Cn×l are nonsingular.

From the relations (1.6) and (1.7) we have

AX1 = U1A11, BX1 = V1B11, A∗U1 = Y1A
∗
11, B∗V1 = Y1B

∗
11,(1.8)

Y ∗
1 X1 = U∗

1 U1 = Il, V ∗
1 V1 = Ip+l−n.

The matrix set {X1, Y1, U1, V1} of (1.8) is called a generalized singular matrix set of
{A, B} associated with the (l, p + l − n, l)-GMP {A11, B11}.

Let {
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} be an approximate generalized singular matrix set of {A, B}

associated with an approximate (l, p+ l−n, l)-GMP {
∼
A11,

∼
B11}; that is, the matrices

∼
X1,

∼
Y 1,

∼
U1 and

∼
V 1 satisfy

A
∼
X1≈

∼
U1

∼
A11, B

∼
X1≈

∼
V 1

∼
B11, A∗ ∼

U1≈
∼
Y 1

∼
A

∗
11, B∗ ∼

V 1≈
∼
Y 1

∼
B

∗
11,

∼
Y

∗
1

∼
X1=

∼
U

∗
1

∼
U1= Il,

∼
V

∗
1

∼
V 1= Ip+l−n.

We always assume that γA and γB are positive parameters.
Now we define the set E1 by

E1 =

⎧⎨⎩
(

E

F

)
:

(A + E)
∼
X1=

∼
U1

∼
A11, (A + E)∗

∼
U1=

∼
Y 1

∼
A

∗
11,

(B + F )
∼
X1=

∼
V 1

∼
B11, (B + F )∗

∼
V 1=

∼
Y 1

∼
B

∗
11

⎫⎬⎭ ,(1.9)

and define the backward errors η2({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) and ηF ({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) of {A, B} with respect to the approximate generalized singular matrix

set {
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} associated with the approximate (l, p+ l−n, l)-GMP {

∼
A11,

∼
B11}

by

η2({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) = min(

E
F

)
∈E1

∥∥∥∥(‖E‖2

γA
,
‖F‖2

γB

)∥∥∥∥
∞

(1.10)
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and

ηF ({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) = min(

E
F

)
∈E1

∥∥∥∥( E

γA
,

F

γB

)∥∥∥∥
F

,(1.11)

respectively.
In some applications (e.g., investigating the generalized singular subspace group

[4, 8, 10]) we only need an approximate matrix set {
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1}, while {

∼
A11,

∼
B11}

is not available. Hence we define the backward error ηF (
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) of {A, B}

with respect to the approximate generalized singular matrix set {
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} by

ηF (
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) = min(

E
F

)
∈E2

∥∥∥∥( E

γA
,

F

γB

)∥∥∥∥
F

,(1.12)

where

E2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

E

F

)
:

(A + E)
∼
X1=

∼
U1

∼
A1, (A + E)∗

∼
U1=

∼
Y 1

∼
A

∗
1,

(B + F )
∼
X1=

∼
V 1

∼
B1, (B + F )∗

∼
V 1=

∼
Y 1

∼
B

∗
1,

{
∼
A1,

∼
B1} is an (l, p + l − n, l)-GMP

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .(1.13)

It is well known that numerical algorithms for computing the GSVD do not pro-
duce the factors X1 and Y1 simultaneously (e.g., see [1, 5]). So, one needs to invert
Y ∗ in order to get X1. Hence if Y is very ill-conditioned, this inversion will introduce
additional errors. Hence we also define the backward error ηF ({

∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1)

with respect to an approximate generalized singular matrix set {
∼
Y 1,

∼
U1,

∼
V 1} associ-

ated with an approximate (l, p + l − n, l)-GMP {
∼
A11,

∼
B11} by

ηF ({
∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1) = min(

E
F

)
∈E3

∥∥∥∥( E

γA
,

F

γB

)∥∥∥∥
F

,(1.14)

where

E3 =

{(
E

F

)
: (A + E)∗

∼
U1=

∼
Y 1

∼
A

∗
11, (B + F )∗

∼
V 1=

∼
Y 1

∼
B

∗
11

}
.(1.15)

Similarly to (1.12) we also define the backward error ηF (
∼
Y 1,

∼
U1,

∼
V 1) of {A, B}

with respect to the approximate generalized singular matrix set {
∼
Y 1,

∼
U1,

∼
V 1} by

ηF (
∼
Y 1,

∼
U1,

∼
V 1) = min(

E

F

)
∈E4

∥∥∥∥( E

γA
,

F

γB

)∥∥∥∥
F

,(1.16)

where

E4 =

⎧⎨⎩
(

E

F

)
:

(A + E)∗
∼
U1=

∼
Y 1

∼
A

∗
1, (B + F )∗

∼
V 1=

∼
Y 1

∼
B

∗
1,

{
∼
A1,

∼
B1} is an (l, p + l − n, l)-GMP

⎫⎬⎭ .(1.17)
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Remark 1.1. Taking γA = γB = 1, the above errors are called the absolute
backward errors; and taking γA = ‖A‖F and γB = ‖B‖F in (1.11), (1.12), (1.14), and
(1.16), and taking γA = ‖A‖2 and γB = ‖B‖2 in (1.10), the above errors are called
the relative backward errors.

Remark 1.2. By definitions of E1, E2, E3, and E4, it is easy to see that

E1 ⊂ E2, E3 ⊂ E4, E1 ⊂ E3, E2 ⊂ E4.

Hence we have

ηF (
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) ≤ ηF ({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1),

ηF (
∼
Y 1,

∼
U1,

∼
V 1) ≤ ηF ({

∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1),

ηF ({
∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1) ≤ ηF ({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1),

and

ηF (
∼
Y 1,

∼
U1,

∼
V 1) ≤ ηF (

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1).

From the definitions of the backward errors, we know that a small backward er-
ror means that the approximate solution of a problem is the exact one of a slightly
perturbed problem. For example, a small ηF (

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) means that the ap-

proximate generalized singular matrix set {
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} is the exact generalized

singular matrix set of a slightly perturbed {
∼
A,

∼
B} of {A, B}. Consequently, a com-

putable formula of the backward error may be useful for assessing the numerical
quality of a computed GSVD and for testing the backward stability of algorithms for
the computation of the GSVD.

The rest of this paper is organized as follows. In section 2, we shall derive ex-
plicit expressions of the backward errors of η2({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1), ηF ({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1), ηF (

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1), ηF ({

∼
A11,

∼
B11},

∼
X1,

∼
U1,

∼
V 1), and ηF (

∼
X1,

∼
U1,

∼
V 1), respectively. We extend a result of Sun [12] to the generalized singular

matrix set. In section 3, the results are illustrated by a numerical example.

2. Expressions of backward errors. In order to obtain the explicit expres-
sions of backward errors for the GSVD, we need the following lemmas.

Lemma 2.1 (see [12]). Let A ∈ Ck×m, B ∈ Cn×l, and C ∈ Ck×l be given, and let

E = {E ∈ Cm×n : AEB = C}.

Then E 
= ∅ (the empty set) if and only if A, B, and C satisfy

PACPB∗ = C,

and in the case of E 
= ∅, any E ∈ E can be expressed by

E = A†CB† + Z − PA∗ZPB, Z ∈ Cm×n.

Lemma 2.2. Let A ∈ Cm×n, U1 ∈ Cm×l, A1 ∈ Cl×r, and X1, Y1 ∈ Cn×r with
U∗

1 U1 = Il, rank(X1) = r, and let

G =
{
E ∈ Cm×n : (A + E)X1 = U1A1, (A + E)∗U1 = Y1A

∗
1

}
.(2.1)
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Let X1 = W1H be the polar decomposition of X1, where W ∗
1 W1 = Ir and H is a

Hermitian positive definite matrix. Choose U2 ∈ Cm×(m−l), W2 ∈ Cn×(n−r) so that
U = (U1, U2) and W = (W1, W2) are unitary. Then G 
= ∅, and any E ∈ G can be
expressed by

E = U

(
U∗

1 (U1A1 − AX1)H−1 (A1Y
∗
1 − U∗

1 A)W2

−U∗
2 AW1 U∗

2 LW2

)
W ∗, L ∈ Cm×n.(2.2)

Proof. From (2.1), we know that E ∈ G if and only if E satisfies

EX1 = U1A1 − AX1, E∗U1 = Y1A
∗
1 − A∗U1.(2.3)

Applying Lemma 2.1 to the first equation of (2.3), it is easy to see that the equation
is solvable and any solution E can be expressed as

E = (U1A1 − AX1)X
†
1 + Z(I − X1X

†
1), Z ∈ Cm×n.(2.4)

Since X†
1 = H−1W ∗

1 and X1X
†
1 = W1W

∗
1 , (2.4) can be written as

E = (U1A1 − AX1)H−1W ∗
1 + ZW2W

∗
2 ,(2.5)

which together with the second equation of (2.3) gives

W1H
−1(U1A1 − AX1)∗U1 + W2W

∗
2 Z∗U1 = Y1A

∗
1 − A∗U1.

Multiplying the above equation by W ∗
2 on the left-hand side yields

U∗
1 ZW2 = (Y1A

∗
1 − A∗U1)∗W2.(2.6)

By Lemma 2.1, (2.6) is solvable, and any solution Z can be expressed as

Z = U1(A1Y
∗
1 − U∗

1 A)W2W
∗
2 + L − U1U

∗
1 LW2W

∗
2 , L ∈ Cm×n.(2.7)

Substituting (2.7) into (2.5) gives

E = (U1A1 − AX1)H−1W ∗
1 + U1(A1Y

∗
1 − U∗

1 A)W2W
∗
2 + U2U

∗
2 LW2W

∗
2 , L ∈ Cm×n,

from which (2.2) follows immediately.
Sun [11] provided the following lemma, which can be found in [7].
Lemma 2.3 (see [11]). Let F ∈ Cp×m, G ∈ Cn×q, and K ∈ Cp×q be given, and let

X∗ = F †KG†. Then

min
X∈Cm×n

‖FXG − K‖F = ‖FX∗G − K‖F .

Lemma 2.4 (see [3]). Let

f(X) =

(
A11 A12

A21 X

)

with A11 ∈ Ck×k and A21, A
T
12 ∈ Cl×k. Then

min
X∈Cl×l

‖f(X)‖2 = max

{∥∥∥∥∥
(

A11

A21

)∥∥∥∥∥
2

, ‖(A11, A12)‖2

}
.
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The following theorem gives explicit expressions of η2({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)

and ηF ({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1).

Theorem 2.1. Let
∼
U1∈ Cm×l,

∼
V 1∈ Cp×(p+l−n),

∼
X1,

∼
Y 1∈ Cn×l,

∼
A11∈ Cl×l, and

∼
B11∈ C(p+l−n)×l with

∼
X

∗
1

∼
Y 1=

∼
U

∗
1

∼
U1= Il,

∼
V

∗
1

∼
V 1= Ip+l−n. Suppose that the matrix set

{
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} is an approximate generalized singular matrix set of an (m, p, n)-

GMP {A, B} associated with the approximate GMP {
∼
A11,

∼
B11}. Then

η2({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)(2.8)

= max
{

1
γA

max
{∥∥∥∥R1

∼
X

†
1

∥∥∥∥
2

, ‖R3‖2

}
,

1
γB

max
{∥∥∥∥R2

∼
X

†
1

∥∥∥∥
2

, ‖R4‖2

}}
and

ηF ({
∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)(2.9)

=

√√√√√√√√√√
1
γ2

A

(
‖R3‖2

F +
∥∥∥∥R1

∼
X

†
1

∥∥∥∥2
F

−
∥∥∥∥∼
U

∗
1 R1

∼
X

†
1

∥∥∥∥2
F

)

+
1

γ2
B

(
‖R4‖2

F +
∥∥∥∥R2

∼
X

†
1

∥∥∥∥2
F

−
∥∥∥∥ ∼
V

∗
1 R2

∼
X

†
1

∥∥∥∥2
F

)
,

where

R1 =
∼
U1

∼
A11 −A

∼
X1, R2 =

∼
V 1

∼
B11 −B

∼
X1,(2.10)

R3 =
∼
Y 1

∼
A

∗
11 −A∗ ∼

U1, and R4 =
∼
Y 1

∼
B

∗
11 −B∗ ∼

V 1 .

Proof. From (1.9), we know that
(

E
F

)
∈ E1 if and only if E and F satisfy

(A + E)
∼
X1=

∼
U1

∼
A11, (A + E)∗

∼
U1=

∼
Y 1

∼
A

∗
11(2.11)

and

(B + F )
∼
X1=

∼
V 1

∼
B11, (B + F )∗

∼
V 1= Y1B

∗
11.(2.12)

Let
∼
X1=

∼
W 1

∼
H be the polar decomposition of

∼
X1, where

∼
W

∗
1

∼
W 1= Ir and

∼
H is a

Hermitian positive definite matrix, and choose
∼
U2∈ Cm×(m−l),

∼
W 2∈ Cn×(n−l), and

∼
V 2∈ Cp×(n−l) so that

∼
U= (

∼
U1,

∼
U2),

∼
W= (

∼
W 1,

∼
W 2), and

∼
V = (

∼
V 1,

∼
V 2) are unitary. By

(2.10) we have

∼
U

∗
2 R1

∼
H

−1

= −
∼
U

∗
2 A

∼
W 1 and

∼
V

∗
2 R2

∼
H

−1

= −
∼
V

∗
2 A

∼
W 1 .

Thus applying Lemma 2.2 to (2.11) and (2.12) gives

E =
∼
U

⎛⎝ ∼
U

∗
1 R1

∼
H

−1

R∗
3

∼
W 2

∼
U

∗
2 R1

∼
H

−1 ∼
U

∗
2 L

∼
W 2

⎞⎠ ∼
W

∗
≡ E(L), L ∈ Cm×n,(2.13)
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and

F =
∼
V

⎛⎝ ∼
V

∗
1 R2

∼
H

−1

R∗
4

∼
W 2

∼
V

∗
2 R2

∼
H

−1 ∼
V

∗
2 N

∼
W 2

⎞⎠ ∼
W

∗
≡ F (N), N ∈ Cp×n,(2.14)

respectively, where R1, R2, R3, and R4 are given by (2.10). From Lemma 2.4 and
(2.13) and (2.14), we obtain

min
L∈Cm×n

1
γA

‖E(L)‖2(2.15)

=
1

γA
max

⎧⎨⎩
∥∥∥∥∥∥
⎛⎝ ∼

U
∗
1 R1

∼
H

−1

∼
U

∗
2 R1

∼
H

−1

⎞⎠∥∥∥∥∥∥
2

,

∥∥∥∥(∼
U

∗
1 R1

∼
H

−1

, R∗
3

∼
W 2

)∥∥∥∥
2

⎫⎬⎭
and

min
N∈Cp×n

1
γB

‖F (N)‖2(2.16)

=
1

γB
max

⎧⎨⎩
∥∥∥∥∥∥
⎛⎝ ∼

V
∗
1 R2

∼
H

−1

∼
V

∗
2 R2

∼
H

−1

⎞⎠∥∥∥∥∥∥
2

,

∥∥∥∥( ∼
V

∗
1 R2

∼
H

−1

, R∗
4

∼
W 2

)∥∥∥∥
2

⎫⎬⎭ .

The equations
∼
X1=

∼
W 1

∼
H and

∼
Y

∗
1

∼
X1= I imply that

∼
X1

∼
H

−1

=
∼
W 1 and

∼
H

−1

=
∼
Y

∗
1

∼
W 1,

which together with (2.10) gives

∼
U

∗
1 R1

∼
H

−1

= R∗
3

∼
W 1,

∼
V

∗
1 R2

∼
H

−1

= R∗
4

∼
W 1 .(2.17)

Clearly, ∥∥∥∥R1

∼
H

−1
∥∥∥∥

2

=
∥∥∥∥R1

∼
X

†
1

∥∥∥∥
2

,

∥∥∥∥R2

∼
H

−1
∥∥∥∥

2

=
∥∥∥∥R2

∼
X

†
1

∥∥∥∥
2

.(2.18)

Combining (1.10) with (2.15)–(2.18) yields (2.8).
Now we prove (2.9). By (1.11), (2.13), (2.14), and (2.17) we have

η2
F ({

∼
A11,

∼
B11},

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)

= min
L∈Cm×n

1
γ2

A

‖E(L)‖2
F + min

N∈Cp×n

1
γ2

B

‖F (N)‖2
F

=
1

γ2
A

(∥∥∥∥∼
U

∗
1 R1

∼
H

−1
∥∥∥∥2

F

+
∥∥∥∥∼
U

∗
2 R1

∼
H

−1
∥∥∥∥2

F

+
∥∥∥R∗

3

∼
W 2

∥∥∥2
F

)

+
1

γ2
B

(∥∥∥∥ ∼
V

∗
1 R2

∼
H

−1
∥∥∥∥2

F

+
∥∥∥∥ ∼
V

∗
2 R2

∼
H

−1
∥∥∥∥2

F

+
∥∥∥R∗

4

∼
W 2

∥∥∥2

F

)

=
1

γ2
A

(∥∥∥∥R1

∼
H

−1
∥∥∥∥2

F

+ ‖R3‖2
F −

∥∥∥∥∼
U

∗
1 R1

∼
H

−1
∥∥∥∥2

F

)

+
1

γ2
B

(∥∥∥∥R2

∼
H

−1
∥∥∥∥2

F

+ ‖R4‖2
F −

∥∥∥∥ ∼
V

∗
1 R2

∼
H

−1
∥∥∥∥2

F

)
,
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from which (2.9) follows immediately.
Remark 2.1. It is noted that the result of Sun [12] can be derived from (2.8). Let

(
∼
α,

∼
β) 
= (0, 0) with

∼
α,

∼
β≥ 0 be an approximate GSV of an (m, p, n)-GMP{A, B},

and let {∼x,
∼
y,

∼
u,

∼
v} be an associated approximate generalized singular vector set, that

is, the vectors
∼
x,

∼
y∈ Cn,

∼
u∈ Cm, and

∼
v∈ Cp satisfy

A
∼
x≈∼

α
∼
u, B

∼
x≈

∼
β
∼
v, A∗ ∼

u≈∼
α
∼
y, B∗ ∼

v≈
∼
β
∼
y,

∼
y
∗∼
x= 1, ‖ ∼

u ‖2 = ‖ ∼
v ‖2 = 1.

Let

r1 =
∼
α
∼
u −A

∼
x, r2 =

∼
β
∼
v −B

∼
x,

r3 =
∼
α
∼
y −A∗ ∼

u, r4 =
∼
β
∼
y −B∗ ∼

v .

Then by (2.8) and (2.9) we can obtain

η2((
∼
α,

∼
β),

∼
x,

∼
y,

∼
u,

∼
v)

= max

{
1
γA

max

{
‖r1‖2

‖ ∼
x ‖2

, ‖r3‖2

}
,

1
γB

max

{
‖r2‖2

‖ ∼
x ‖2

, ‖r4‖2

}}
,

which was proved by Sun [12] and

ηF ((
∼
α,

∼
β),

∼
x,

∼
y,

∼
u,

∼
v)

=

√√√√ 1
γ2

A

(
‖r3‖2

2 +
‖r1‖2

2

‖ ∼
x ‖2

2

− | ∼
u
∗

r1|2

‖ ∼
x ‖2

2

)
+

1
γ2

B

(
‖r4‖2

2 +
‖r2‖2

2

‖ ∼
x ‖2

2

− | ∼
v
∗

r2|2

‖ ∼
x ‖2

2

)
,

respectively.
Next we give the expression of ηF

( ∼
X1,

∼
Y 1,

∼
U1,

∼
V 1

)
.

Theorem 2.2. Let
∼
U1∈ Cm×l,

∼
V 1∈ Cp×(p+l−n), and

∼
X1,

∼
Y 1∈ Cn×l with

∼
U

∗
1

∼
U1=

∼
X

∗
1

∼
Y 1= Il and

∼
V

∗
1

∼
V 1= Ip+l−n. Let {

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1} be an approximate generalized

singular matrix set of the (m, p, n)-GMP{A, B}. If {
∼
U

∗
1 A

∼
Y

†∗
1 ,

∼
V

∗
1 B

∼
Y

†∗
1 } is an

(l, p + l − n, l)-GMP, then

ηF (
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)(2.19)

=

√√√√√√√√
1
γ2

A

(∥∥∥P⊥
∼
U1

AP∼
X1

∥∥∥2
F

+
∥∥∥P∼

U1
AP⊥

∼
Y 1

∥∥∥2
F

)
+

1
γ2

B

(∥∥∥P⊥
∼
V 1

BP∼
X1

∥∥∥2

F
+
∥∥∥P∼

V 1
BP⊥

∼
Y 1

∥∥∥2
F

)
.

Proof. From (1.13), we know that
(

E
F

)
∈ E2 if and only if there exists an (l, p +

l − n, l)-GMP {
∼
A1,

∼
B1} such that

(A + E)
∼
X1=

∼
U1

∼
A1, (A + E)∗

∼
U1=

∼
Y 1

∼
A

∗
1(2.20)
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and

(B + F )
∼
X1=

∼
V 1

∼
B1, (B + F )∗

∼
V 1=

∼
Y 1

∼
B

∗
1 .(2.21)

Applying Lemma 2.2 to (2.20) and (2.21) gives

E =
∼
U

⎛⎝ ∼
U

∗
1 (

∼
U1

∼
A1 −A

∼
X1)

∼
H

−1

(
∼
A1

∼
Y

∗
1 −

∼
U

∗
1 A)

∼
W 2

−
∼
U

∗
2 A

∼
W 1

∼
U

∗
2 L

∼
W 2

⎞⎠ ∼
W

∗
(2.22)

≡ E
(∼
A1, L

)
, L ∈ Cm×n,

and

F =
∼
V

⎛⎝ ∼
V

∗
1 (

∼
V 1

∼
B1 −B

∼
X1)

∼
H

−1

(
∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B)

∼
W 2

−
∼
V

∗
2 B

∼
W 1

∼
V

∗
2 N

∼
W 2

⎞⎠ ∼
W

∗
(2.23)

≡ F
(∼
B1, N

)
, N ∈ Cp×n,

respectively, where
∼
U= (

∼
U1,

∼
U2),

∼
V = (

∼
V 1,

∼
V 2),

∼
W= (

∼
W 1,

∼
W 2), and

∼
H are given by

the proof in Theorem 2.1. From (2.22) and (2.23), we have

min
∼
A1∈Cl×l, L∈Cm×n

∥∥∥E (∼A1, L
)∥∥∥2

F
= min

∼
A1∈Cl×l

(∥∥∥∥∼
U

∗
1

(∼
U1

∼
A1 −A

∼
X1

) ∼
H

−1
∥∥∥∥2

F

(2.24)

+
∥∥∥(∼

A1

∼
Y

∗
1 −

∼
U

∗
1 A
) ∼

W 2

∥∥∥2
F

)
+
∥∥∥∼
U

∗
2 A

∼
W 1

∥∥∥2
F

and

(2.25)

min
∼
B1∈C(p+l−n)×l, N∈Cp×n

∥∥∥F (∼
B1, L

)∥∥∥2
F

= min
∼
B1∈C(p+l−n)×l

(∥∥∥∥ ∼
V

∗
1

( ∼
V 1

∼
B1 −B

∼
X1

) ∼
H

−1
∥∥∥∥2

F

+
∥∥∥(∼

B1

∼
Y

∗
1 −

∼
V

∗
1 B
) ∼

W 2

∥∥∥2
F

)
+
∥∥∥ ∼
V

∗
2 B

∼
W 1

∥∥∥2
F

.

It is easy to see that∥∥∥∼
U

∗
2 A

∼
W 1

∥∥∥
F

=
∥∥∥P⊥

∼
U1

AP∼
X1

∥∥∥
F

,
∥∥∥ ∼
V

∗
2 B

∼
W 1

∥∥∥
F

=
∥∥∥P⊥

∼
V 1

BP∼
X1

∥∥∥
F

.(2.26)

Similarly to (2.17), we have

∼
U

∗
1

(∼
U1

∼
A1 −A

∼
X1

) ∼
H

−1

=
(∼
A1

∼
Y

∗
1 −

∼
U

∗
1 A
) ∼

W 1,(2.27)

∼
V

∗
1

( ∼
V 1

∼
B1 −B

∼
X1

) ∼
H

−1

=
(∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B
) ∼

W 1 .(2.28)
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Hence from (2.27) and (2.28) we obtain∥∥∥∥∼
U

∗
1 (

∼
U1

∼
A1 −A

∼
X1)

∼
H

−1
∥∥∥∥2

F

+
∥∥∥(∼A1

∼
Y

∗
1 −

∼
U

∗
1 A)

∼
W 2

∥∥∥2
F

=
∥∥∥∼A1

∼
Y

∗
1 −

∼
U

∗
1 A
∥∥∥2

F
,(2.29)

∥∥∥∥ ∼
V

∗
1 (

∼
V 1

∼
B1 −B

∼
X1)

∼
H

−1
∥∥∥∥2

F

+
∥∥∥(∼B1

∼
Y

∗
1 −

∼
V

∗
1 B)

∼
W 2

∥∥∥2
F

=
∥∥∥∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B
∥∥∥2

F
.(2.30)

Applying Lemma 2.3 to (2.29) and (2.30) gives

min
∼
A1∈Cl×l

∥∥∥∼A1

∼
Y

∗
1 −

∼
U

∗
1 A
∥∥∥

F
=
∥∥∥∥∼
U

∗
1 A

∼
Y

∗†
1

∼
Y

∗
1 −

∼
U

∗
1 A

∥∥∥∥
F

=
∥∥∥P∼

U1
AP⊥

∼
Y 1

∥∥∥
F

(2.31)

and

min
∼
B1∈C(p+l−n)×l

∥∥∥∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B
∥∥∥

F
=
∥∥∥∥ ∼
V

∗
1 B

∼
Y

∗†
1

∼
Y

∗
1 −

∼
V

∗
1 B

∥∥∥∥
F

=
∥∥∥P∼

V 1
BP⊥

∼
Y 1

∥∥∥
F

,(2.32)

respectively. Notice that {
∼
U

∗
1 A

∼
Y

†∗
1 ,

∼
V

∗
1 B

∼
Y

†∗
1 } is an (l, p+ l−n, l)-GMP. Combining

(1.12) with (2.24)–(2.26) and (2.29)–(2.32) shows the formula (2.19). The proof is
complete.

The following two results give computable formulae of the backward errors
ηF ({

∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1) and ηF (

∼
Y 1,

∼
U1,

∼
V 1).

Theorem 2.3. Let
∼
U1∈ Cm×l,

∼
V 1∈ Cp×(p+l−n),

∼
Y 1∈ Cn×l,

∼
A11∈ Cl×l, and

∼
B11∈

C(p+l−n)×l with
∼
U

∗
1

∼
U1= Il,

∼
V

∗
1

∼
V 1= Ip+l−n. Suppose that the matrix set {

∼
Y 1,

∼
U1,

∼
V 1} is

an approximate generalized singular matrix set of an (m, p, n)-GMP{A, B} associated
with the GMP {

∼
A11,

∼
B11}. Then we have

ηF ({
∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1) =

√
1
γ2

A

‖R3‖2
F +

1
γ2

B

‖R4‖2
F ,(2.33)

where R3 and R4 are defined by (2.10).
Proof. From (1.15) and (2.10), we see that

(
E
F

)
∈ E3 if and only if E and F satisfy

E∗ ∼
U1= R3, F ∗ ∼

V 1= R4.(2.34)

Applying Lemma 2.1 to (2.34) gives

E∗ = R3

∼
U

∗
1 +Z1(Im−

∼
U1

∼
U

∗
1), F ∗ = R4

∼
V

∗
1 +Z2(Ip−

∼
V 1

∼
V

∗
1),

where Z1 ∈ Cm×n and Z2 ∈ Cp×n. From the above equations and (1.14), it is easy to
see that

η2
F ({

∼
A11,

∼
B11},

∼
Y 1,

∼
U1,

∼
V 1)

=
1
γ2

A

min
Z1∈Cm×n

∥∥∥R3

∼
U

∗
1 +Z1(Im−

∼
U1

∼
U

∗
1)
∥∥∥2

F
+

1
γ2

B

min
Z2∈Cp×n

∥∥∥R4

∼
V

∗
1 +Z2(In−

∼
V 1

∼
V

∗
1)
∥∥∥2

F

=
1
γ2

A

‖R3‖2
F +

1
γ2

B

‖R4‖2
F ,
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which implies (2.33). The proof is complete.

Theorem 2.4. Let
∼
U1∈ Cm×l,

∼
V 1∈ Cp×(p+l−n), and

∼
Y 1∈ Cn×l with

∼
U

∗
1

∼
U1= Il,

∼
V

∗
1

∼
V 1= Ip+l−n. Let {

∼
Y 1,

∼
U1,

∼
V 1} be an approximate generalized singular matrix set

of the (m, p, n)-GMP {A, B}. If {
∼
U

∗
1 A

∼
Y

†∗
1 ,

∼
V

∗
1 B

∼
Y

†∗
1 } is an (l, p + l − n, l)-GMP,

then

ηF (
∼
Y 1,

∼
U1,

∼
V 1) =

√
1

γ2
A

∥∥∥∥P∼
U1

AP⊥
∼
Y 1

∥∥∥∥2
F

+
1

γ2
B

∥∥∥∥P∼
V 1

BP⊥
∼
Y 1

∥∥∥∥2
F

.(2.35)

Proof. By definition (1.17),
(

E
F

)
∈ E4 if and only if there is an (l, p+ l−n, l)-GMP

{
∼
A1,

∼
B1} such that

E∗ ∼
U1=

∼
Y 1

∼
A

∗
1 −A∗ ∼

U1, F ∗ ∼
V 1=

∼
Y 1

∼
B

∗
1 −B∗ ∼

V 1 .

By Lemma 2.1, we know that the above two equations are solvable and E and F are
expressed by

E =
∼
U1 (

∼
A1

∼
Y

∗
1 −

∼
U

∗
1 A) + (Im−

∼
U1

∼
U

∗
1)Z1,

F =
∼
V 1 (

∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B) + (Ip−

∼
V 1

∼
V

∗
1)Z2,

where Z1 ∈ Cm×n, Z2 ∈ Cp×n. From (1.16) and the above two equalities we have

η2
F (

∼
Y 1,

∼
U1,

∼
V 1)(2.36)

=
1

γ2
A

min
∼
A1∈Cl×l,Z1∈Cm×n

∥∥∥∼
U1 (

∼
A1

∼
Y

∗
1 −

∼
U

∗
1 A) + (Im−

∼
U1

∼
U

∗
1)Z1

∥∥∥2
F

+
1

γ2
B

min
∼
B1∈C(p+l−n)×l,Z2∈Cp×n

∥∥∥ ∼
V 1 (

∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B) + (Ip−

∼
V 1

∼
V

∗
1)Z2

∥∥∥2
F

=
1

γ2
A

min
∼
A1∈Cm×n

∥∥∥∼A1

∼
Y

∗
1 −

∼
U

∗
1 A
∥∥∥2

F
+

1
γ2

B

min
∼
B1∈C(p+l−n)×l

∥∥∥∼
B1

∼
Y

∗
1 −

∼
V

∗
1 B
∥∥∥2

F
.

From Lemma 2.3 and (2.36) we have

η2
F (

∼
Y 1,

∼
U1,

∼
V 1) =

1
γ2

A

∥∥∥∥∼
U

∗
1 A(I−

∼
Y 1

∼
Y

†
1)
∥∥∥∥2

F

+
1

γ2
B

∥∥∥∥ ∼
V

∗
1 B(I−

∼
Y 1

∼
Y

†
1)
∥∥∥∥2

F

.(2.37)

Notice that {
∼
U

∗
1 A

∼
Y

†∗
1 ,

∼
V

∗
1 B

∼
Y

†∗
1 } is an (l, p + l − n, l)-GMP. Then (2.35) follows

from (2.37). The proof is complete.

3. A numerical example. In this section we use a simple example to illus-
trate the results of the previous section. All computations were performed by using
MATLAB 6.5. The relative machine precision is 2.22 × 10−16.

Example 3.1. Consider the (3,3,3)-GMP {A, B} with

A =

⎛⎜⎝
7
2 3 −3

2
√

2 4
√

2(1 + 10−14) −4
√

2
− 1

2 3 −3

⎞⎟⎠ , B =

⎛⎜⎝ − 1
2 1 −1

√
2

2

√
2(1 + 10−14) −

√
2

3
2 1 −1

⎞⎟⎠ .
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By using function [U,V,Y,C,S]= gsvd(A,B) in MATLAB 6.5, we get the computed
GSVD A = UCY T and B = V SY T , where

U =

⎛⎜⎝ 0.72882766003858 −0.68439687422507 −0.02027709332328
−0.01691197215049 0.01161155660932 −0.99978955633228
−0.68448829585368 −0.72901720851024 0.00311167724380

⎞⎟⎠ ,

V =

⎛⎜⎝ −0.69179597797044 −0.72206709187087 0.00611879898952
−0.00818050022115 −0.00063616783742 −0.99996633678670
0.72204667735546 −0.69182274473136 −0.00546677165349

⎞⎟⎠ ,

Y =

⎛⎜⎝ 3.18138671232003 −2.10966551430603 −2.98799096458163
0.04176115800505 −4.40778386049074 −5.87960010926594
−0.04176115800505 4.40778386049074 5.87960010926588

⎞⎟⎠ ,

C = diag(0.89436052092627, 0.94708758346252, 0.97067146447266),

and

S = diag(0.44734691080692, 0.32097524710033, 0.24040987512682).

By using the function inv in MATLAB 6.5, we obtain

X = Y −T

=

⎛⎝ 0.31622982070089 0.00507812500000 −0.00156084661164

−9.288469999189297e + 11 2.251799813685225e + 13 −1.688775709899456e + 13

−9.288469999187793e + 11 2.251799813685248e + 13 −1.688775709899456e + 13

⎞⎠ .

Let
∼
A11= C(1 : 2, 1 : 2),

∼
B11= S(1 : 2, 1 : 2),

∼
α3= C(3, 3),

∼
β3= S(3, 3),

∼
U1= U(1 : 3, 1 : 2),

∼
u3= U(1 : 3, 3),

∼
V 1= V (1 : 3, 1 : 2),

∼
v3= V (1 : 3, 3),

∼
Y 1= Y (1 : 3, 1 : 2),

∼
y3= Y (1 : 3, 3),

∼
X1= X(1 : 3, 1 : 2),

∼
x3= X(1 : 3, 3),

where K(i : j, k : l) is the submatrix of K with entries having row and column indices
in the ranges i through j and k through l, respectively. Taking γA = ‖A‖F and
γB = ‖B‖F we get the relative backward errors

ηF ((
∼
A11,

∼
B11),

∼
X1,

∼
Y 1,

∼
U1,

∼
V 1)= 0.00185341925320,(3.1)

ηF ((
∼
α3,

∼
β3),

∼
x3,

∼
y3,

∼
u3,

∼
v3) = 8.724097354653458e− 16,(3.2)

ηF (
∼
X1,

∼
Y 1,

∼
U1,

∼
V 1) = 0.00203991762337,(3.3)

ηF (
∼
x3,

∼
y3,

∼
u3,

∼
v3) = 4.300498624031868e− 16,(3.4)

ηF ((
∼
A11,

∼
B11),

∼
Y 1,

∼
U1,

∼
V 1) = 1.322954207342138e− 15,(3.5)

ηF ((
∼
α3,

∼
β3),

∼
y3,

∼
u3,

∼
v3) = 8.710521422021934e− 16,(3.6)

ηF (
∼
Y 1,

∼
U1,

∼
V 1) = 2.516175515362349e− 16,(3.7)
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and

ηF (
∼
y3,

∼
u3,

∼
v3)= 4.255419420330271e− 16.(3.8)

The results (3.5)–(3.8) show that the computation of the GSVD by using function
gsvd in MATLAB 6.5 has proceeded stably. But since Y is very ill-conditioned, in
fact, cond2(Y ) = ‖Y ‖2‖Y −1‖2 = 4.360846260436090e+014, inverting Y to get X will
introduce additional errors. This means that the backward errors of (3.1)–(3.4) may
not be very small.
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A GRAPH BASED APPROACH TO THE CONVERGENCE OF ONE
LEVEL SCHWARZ ITERATIONS FOR SINGULAR M-MATRICES

AND MARKOV CHAINS∗
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Abstract. We study the convergence of additive and multiplicative Schwarz iterations applied to
singular M-matrices and Markov chains. We do our investigations in order to solve consistent linear
systems or to calculate a probability distribution vector of a Markov chain. It turns out that for a
certain set of equations we are able to prove convergence for both methods with a reliable degree of
freedom concerning the overlap. These new convergence theorems are based on a graph theoretical
approach and represent the main results of this paper. Other applications of the introduced theory
are also discussed.

Key words. linear systems, M-matrices, Markov chains, singular matrices, iterative methods,
block methods, additive Schwarz, multiplicative Schwarz, domain decomposition methods, overlap,
graph theory
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1. Introduction. Schwarz methods are mainly used for the numerical solution
of partial differential equations and can be classified as domain decomposition meth-
ods [22, 27, 30]. Another common application of these methods is to use them as a
preconditioner for Krylov subspace methods. But recently, these methods have also
been proposed to solve symmetric [20] and nonsymmetric [8, 16] Markov chains it-
eratively. To this purpose, an algebraic formulation was developed which is partly
recapitulated in section 4; see also [3, 8, 13, 16, 19, 20].

In this paper we analyze Schwarz methods for the iterative solution of consistent
linear systems of the form

(1.1) Ax = b.

Here, either A is a square singular M-matrix or, as a special case, A = I − B, I the
identity matrix and B a square column stochastic matrix [28]. We assume that (1.1)
is consistent; i.e., b lies in the range of A.

We do not tackle the system (1.1) in the most general setting but introduce some
restrictions concerning the null space of A. We assume that

(1.2) N (A) = {x ∈ R
n : Ax = 0} = span{z} for some positive vector z.

This assumption allows us to construct convergent additive and multiplicative Schwarz
iterations to solve (1.1). Whereas the convergence is not too hard to prove, the con-
sistency of the convergence process takes considerable effort, and a lot of the theory
developed here is to obtain consistency.

The theory presented can be applied to reducible nonsymmetric matrices A which
satisfy (1.2). In [20] only symmetric semidefinite systems are considered. In [8] an

∗Received by the editors April 11, 2007; accepted for publication (in revised form) by D. B. Szyld
June 19, 2008; published electronically October 22, 2008.
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Germany (borovac@math.uni-wuppertal.de).
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alternative to our ansatz is studied, but there only certain cases of overlap are con-
sidered. The approach in [16] appears to be more general than ours but relies on an
assumption of consistency which is actually not known to hold.

Our theory is based on properties of the nonzero pattern of A which must neces-
sarily exist if A satisfies (1.2) (cf. section 3). We use this in a graph based approach
to construct convergent Schwarz iterations which are also consistent in the sense that
we converge to a reliable solution. For one level multiplicative Schwarz we do this in
two steps. First we present the basic idea (section 5.1) and prove, as an intermediate
result, the convergence of the Gauss–Seidel iteration. In sections 5.2 and 5.3 we extend
our theory to multiplicative Schwarz iterations. For our type of problem the Schwarz
decomposition has to be somehow compatible with the graph of A.

In section 6 we consider a damped (relaxed) version of multiplicative Schwarz. It
turns out that this variant converges for virtually any type of decomposition so that
compatibility with the graph of A is not required.

Additive Schwarz iterations are studied in section 7. We will see that the theory
developed in this paper can be directly applied to obtain new convergence results.

In section 8 we give an overview of other results and generalizations which can
be obtained using our theory.

2. Definitions and auxiliary results. In this section we recall some defini-
tions and preliminaries. If not stated otherwise, they can be found in [4]. The basic
definitions concerning graphs are taken from [25].

2.1. Basics. Let A = (aij) ∈ R
m×n be given. We assume that the reader is

familiar with the concept of nonnegativity (A ≥ 0) and positivity (A > 0); see, e.g.,
[4, 31].

For a given matrix A ∈ R
n×n and sets V1, V2 ⊂ {1, . . . , n} the matrix A[V1, V2]

consists of aij satisfying i ∈ V1 and j ∈ V2. By A[V1] we denote the principal minor
of A with respect to V1.

For A ∈ R
n×n we denote by R(A),N (A), σ(A), and ρ(A) the range, the null

space, the spectrum, and the spectral radius of A, respectively. The term indλ(A)
identifies the index of an eigenvalue λ of A. Finally, we define

γ(A) := max{|λ| : λ ∈ σ(A) and λ �= ρ(A)}.

A ∈ R
n×n is an M-matrix if A = βI −B, B ≥ 0, and ρ(B) ≤ β. If ρ(B) = β, the

matrix A is singular; otherwise, it is nonsingular. A matrix A ∈ R
n×n is a nonsingular

M-matrix if and only if A−1 ≥ 0. When A is a nonsingular M-matrix, each principal
minor is a nonsingular M-matrix.

2.2. Graph theory. It is assumed that the basics from graph theory are known
to the reader; see, e.g., [11].

Let Γ1 = (V,E1) and Γ2 = (V,E2) be directed graphs with identical vertex sets
V . The union Γ1 ∪ Γ2 is defined to be the union of the edge sets. The product graph
Γ1Γ2 = (V,E) is defined by (u,w) ∈ E if there is a v ∈ V such that (u, v) ∈ E1 and
(v, w) ∈ E2. We write Γ2 = ΓΓ and Γk+1 = ΓkΓ. If V is a given vertex set, the graph
Δ = (V,E) with E := {(v, v) : v ∈ V } denotes the diagonal graph of V .

The reflexive transitive closure Γ of a graph Γ is defined to be

Γ = Δ ∪ Γ ∪ Γ2 ∪ . . . .

Therefore, u ∈ V has access to w ∈ V in Γ if and only if (u,w) is an edge of Γ.
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For A ∈ R
n×n, we denote by Γ(A) = (V (A), E(A)) the corresponding directed

graph. Now the vertices are also called states or indices.

Lemma 2.1. Let A,B ∈ R
n×n be nonnegative, and let α ∈ R be positive. Then

Γ(αA) = Γ(A), Γ(A + B) = Γ(A) ∪ Γ(B), and Γ(AB) = Γ(A)Γ(B).

If A is a nonsingular M-matrix, then Γ(A−1) = Γ(A).

2.3. Classification of vertices and eigenvectors. Let a graph Γ be given.
Equivalence classes of Γ are always to be understood with respect to the communi-
cation relation. If A ∈ R

n×n is some matrix, then A is called irreducible if Γ(A) is
strongly connected; i.e., there is only one equivalence class. Otherwise, A is called
reducible.

Theorem 2.2. Let A ∈ R
n×n be an irreducible M-matrix.

(1) If A is nonsingular, then A−1 > 0.
(2) If A is singular, then each proper principal minor of A is a nonsingular

M-matrix.

For an A ∈ R
n×n, the classes of A are the equivalence classes of Γ(A). A class is

called final if none of its vertices has access to another class. A class α is called basic
if ρ(A[α]) = ρ(A); otherwise, α is called nonbasic.

We will need the following result on the relation between graphs of nonnegative
matrices, positive eigenvectors, and their index. A proof can be found in [24].

Theorem 2.3. Let B ∈ R
n×n be nonnegative, and let N ((ρ(B)I −B)k) with k =

indρ(B)(B) be the algebraic eigenspace. Assume that B has m basic classes α1, . . . , αm.
Then the algebraic eigenspace corresponding to ρ(B) contains nonnegative vectors

v(1), . . . , v(m), such that v
(i)
j > 0 if and only if the index j has access to αi in Γ(B).

Furthermore, any such collection is a basis of the algebraic eigenspace.

Theorem 2.4. Let B ∈ R
n×n be nonnegative; then there is a positive eigenvector

z corresponding to the spectral radius if and only if the basic classes of B are exactly
its final ones.

2.4. Semiconvergence. For a given T ∈ R
n×n we say that T is semiconvergent

if limk−→∞ T k = T ∗ exists and, additionally, T ∗ �= 0. This concept is used to analyze
stationary iterations

(2.1) xk+1 = Txk + c, k = 0, 1, 2, . . . ,

which are known to converge for every initial guess x0 if c ∈ R(I − T ) and T is
semiconvergent.

A square matrix T is semiconvergent if and only if T satisfies the following three
conditions (see [4, Lemma 7.6.9]):

(1) 1 ∈ σ(T ), (2) γ(T ) < 1, and (3) R(I − T ) ⊕N (I − T ) = R
n.

Furthermore, T ∗ = limk−→∞ T k is a projection onto N (I − T ) along R(I − T ).

Note that condition (3) states that there are no generalized eigenvectors to the
eigenvalue 1. This is equivalent to ind1(T ) = 1 and automatically fulfilled if Tz = z
for some positive vector z; see [4, 31]. If T ≥ 0, then condition (2) can be replaced by
T having all its diagonal elements positive [1] or, in the case that T is irreducible, it
suffices to have one positive diagonal element; see [4, Corollary 2.2.28].
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3. The model problem MP. In this section we present our model problem
which represents the class of singular systems which we consider. We will see that the
model problem exposes a nice graph structure which allows us to construct convergent
Schwarz iterations.

Assume that for A ∈ R
n×n there holds

(3.1) A = I −B, B ≥ 0, ρ(B) = 1.

For a given b ∈ R(A), the problem to be solved is to find a solution x∗ ∈ R
n of

(3.2) Ax = b ⇔ x = Bx + b

for x ∈ R
n.

Equation (3.2) will not be considered in its greatest generality; only in the fol-
lowing case.

Definition 3.1. The model problem MP is to find a solution x∗ of (3.2) satisfying
(3.1) in the case that N (A) = span{z} for a positive vector z.

We now characterize N (A) = span{z} with z > 0 via the graph structure of A. We
say that a directed graph Γ = (V,E) contains a directed spanning tree T = (VT , ET )
(see, e.g., [9]) if

(1) T is a directed tree, (2) VT = V , and (3) ET ⊂ E.

As we discuss only directed graphs, the term “directed” will be omitted in the rest of
the paper.

Definition 3.2. Let B ∈ R
n×n be such that B ≥ 0, ρ(B) = 1, and let Γ(B) =

(V (B), E(B)) be the corresponding graph. Then B is said to be an ST-matrix (ST for
“spanning tree”) if the following hold:

(1) Γ(BT ) contains a spanning tree TB,
(2) if the index i0 ∈ V (B) is the root of TB, then i0 has access to some j0 ∈ V (B)

via (i0, j0) ∈ Γ(B), and
(3) each class of B is final if and only if it is basic.
The index j0 defined above will be called the guard index.
Remark 3.1. Note that it might happen that the root i0 communicates only

with itself via (i0, i0) ∈ Γ(B). As this leads to some problems when using Schwarz
iterations, we will always assume j0 �= i0 if not stated otherwise.

The following lemma characterizes ST-matrices. The results can directly be de-
duced from Theorems 2.3 and 2.4 and the theory of Markov chains [4, 26].

Lemma 3.3. Let B be an ST-matrix; then there is a permutation matrix Π such
that

(3.3) ΠBΠT =

(
D 0
E F

)
.

Furthermore, the following hold:
(1) D is square and irreducible.
(2) If B is irreducible, then Π = I and B = D.
(3) If i0 is the root index of any tree in Γ(BT ), then i0 resides in the index set

belonging to D.
(4) ρ(B) = ρ(D) = 1.
(5) ρ(F ) < 1.
(6) There exists a vector z > 0 such that Bz = z, N (I − B) = span{z}, and

ind1(B) = 1.
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Remark 3.2. Note that the representation (3.3) can be efficiently calculated with
the algorithm of Tarjan [29].

Now we state a few corollaries of Lemma 3.3.
Corollary 3.4. Let B ∈ R

n×n be an ST-matrix and let α be the set of indices of
the final class of B. Then Γ(BT ) contains at least |α| spanning trees with corresponding
guard indices; i.e., each index in α might act as a root.

Proof. It is easy to see that every index i0 ∈ α has access to all other indices in
Γ(BT ).

Corollary 3.5. Let B ∈ R
n×n be an irreducible ST-matrix. Then Γ(BT ) con-

tains at least n spanning trees with corresponding guard indices; i.e., every index can
act as a root.

Corollary 3.6. If B ∈ R
n×n is a symmetric ST-matrix, then B is irreducible.

Corollary 3.7. Consider a nonnegative matrix B ∈ R
n×n, ρ(B) = 1, and a

positive vector z > 0 such that Bz = z. If B contains a spanning tree and a guard
index, then B is an ST-matrix.

If the final classes are exactly the basic ones and there is only one such class, then
the existence of a spanning tree is not only sufficient but also necessary.

Theorem 3.8. Let B ∈ R
n×n be nonnegative, and let ρ(B) = 1. Then B is an

ST-matrix if and only if the final classes of B are exactly its basic ones and there is
only one such class.

Proof. The sufficiency is given in Lemma 3.3. The necessity is shown now. Assume
that B has exactly one final class which is also the only basic class.

There is a permutation matrix Π such that (3.3) holds; then

(3.4) CT =

(
DT ET

0 FT

)

and D is irreducible, satisfying ρ(D) = 1 and ρ(F ) < 1. Additionally, there exists a
positive vector z > 0 such that Bz = z (cf. Theorem 2.4). Let the index set {1, . . . , n}
be split with respect to (3.4) into sets V1 and V2, where V1 corresponds to the indices
of D. It remains to show that each index in V2 is accessible from V1 in Γ(BT ). If this
is proven, the existence of a spanning tree is obvious because any index belonging to
D then has access to every other index in Γ(BT ) (cf. Corollary 3.4).

Assume that there is a nonempty subset W2 of V2 containing all the indices that
are not accessible from V1. Then there is another permutation matrix Π̃ acting on V2

such that

(3.5) Π̃CΠ̃T =

⎛
⎝ D 0 0

E1 F11 F12

E2 F21 F22

⎞
⎠ and Π̃TCT Π̃ =

⎛
⎝ DT ET

1 ET
2

0 FT
11 FT

21

0 FT
12 FT

22

⎞
⎠ .

Here F22 corresponds to the index set W2 ⊂ V2 of all nonaccessible indices, while F11

corresponds to the indices W1 = V2 \W2.
Since each j ∈ W2 is not accessible from V1, one gets ET

2 = 0, whereas ET
1 �= 0.

But then FT
21 = 0, since all indices in W1 are accessible from V1; hence FT

21 �= 0 would
imply that an index i ∈ V1 has access to some j ∈ W2 via a k ∈ W1. Thus

Π̃CΠ̃T =

⎛
⎝ D 0 0

E1 F11 F12

0 0 F22

⎞
⎠ .

If z is split into (z1, z2, z3) with respect to V1,W1, and W2, then F22z3 = z3 > 0.
Consequently, F22 is a final and basic class, contradicting the assumptions. As there
is only one final and basic class, z is a basis for N (A).
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In order to give an alternative characterization of our model problem, we define
the following class of singular M-matrices.

Definition 3.9. A matrix A ∈ R
n×n is called an STM-matrix (STM for “span-

ning tree monotone”) if A = I −B and B is an ST-matrix.
An STM-matrix naturally fulfills the requirements of the model problem. On the

other hand, each matrix A = I − B having a positive vector z > 0 such that Az = 0
and dimN (A) = 1 is an STM-matrix by Theorem 3.8. Thus, the model problem can
be restated as follows.

Given an STM-matrix A ∈ R
n×n and b ∈ R(A), find a solution x∗ ∈ R

n of

Ax = b, x ∈ R
n.

4. Schwarz methods. We give a brief introduction to algebraic Schwarz meth-
ods following, e.g., [3, 8, 13, 16, 19, 20]. For technical reasons we will distinguish
between partitionings and decompositions.

Let the finite set S = {1, . . . , n} be given. The nonempty sets S1, . . . , Sp are a
decomposition of S if

p⋃
i=1

Si = S.

If an index j ∈ S appears in more than one set, we speak of overlap. The measure of
overlap is the maximum number of sets any index j ∈ S belongs to, i.e.,

(4.1) q = max
j=1,...,n

|{i : j ∈ Si}|.

We have q = 1 if and only if no overlap occurs; see, e.g., [3]. In the latter case we say
that S1, . . . , Sp form a partitioning.

If A ∈ R
n×n, then a partitioning or a decomposition S1, . . . , Sp of {1, . . . , n} is

called regular (with respect to A) if A[Si] is invertible for every i = 1, . . . , p. Note
that it is impossible to find a regular decomposition of an STM-matrix if the basic
class consists only of one index.

For a given A ∈ R
n×n and a regular decomposition S1, . . . , Sp we define restriction

operators Ri ∈ R
|Si|×n by the rows of the identity matrix corresponding to the indices

in Si; e.g., if n = 6 and S1 = {1, 3, 2}, then

R1 =

⎛
⎝ 1 0 0 0 0 0

0 0 1 0 0 0
0 1 0 0 0 0

⎞
⎠ .

With the above restriction operators, a projection onto the subspace associated with
Si is given by

(4.2) Pi := RT
i (RiART

i )−1RiA.

A (one level) multiplicative Schwarz method for an initial vector x0 is given by the
stationary iteration (2.1) with

(4.3) T = Tμ := (I − P1) · (I − P2) · · · (I − Pp).

The (damped) additive Schwarz method is also defined by (2.1), but now

(4.4) T = Tθ := I − θ

p∑
i=1

Pi = I − θ

p∑
i=1

RT
i (RiART

i )−1RiA

and θ ∈ (0, 1) is a damping factor.
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Note that the usage of partitionings instead of decompositions puts (4.3) into a
block Gauß–Seidel and (4.4) into a damped block Jacobi operator.

The following proposition is easy to prove and summarizes the properties of the
operators defined above. The proof for the semiconvergence of Tθ can be found in [8].
The rest is easy to obtain.

Proposition 4.1. Let A ∈ R
n×n be an STM-matrix and let S1, . . . , Sp be a

regular decomposition of {1, . . . , n}. Let z ∈ R
n be the positive vector satisfying Az =

0. Then, with operators as given in (4.2) and (4.3):

(1) I − Pi ≥ 0, i = 1, . . . , p, (5) Tμ ≥ 0,

(2) (I − Pi)z = z, i = 1, . . . , p, (6) Tμz = z,

(3) ρ(I − Pi) = 1, i = 1, . . . , p, (7) ρ(Tμ) = 1,

(4) ind1(I − Pi) = 1, i = 1, . . . , p, (8) ind1(Tμ) = 1.

If Tθ is defined by (4.4) and θ ∈ (0, 1/q), where q is the measure of overlap, then
assertions (5)–(8) apply verbatim to Tθ. Moreover, Tθ has all its diagonal elements
positive, and therefore Tθ is semiconvergent.

Comparing Proposition 4.1 with the conditions of semiconvergence stated in sec-
tion 2.4, we see that they match directly except for multiplicative Schwarz. But a
closer look on the iterations reveals that, for both additive and multiplicative Schwarz,
consistency is nontrivial; i.e., it is not clear that

(4.5) N (I − Tμ) = N (I − Tθ) = N (A)

holds for an STM-matrix A.
Indeed, consider the STM-matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 0 0 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 0 1 0 0 −1
0 0 −1/2 0 1 0 −1/2
0 0 0 0 0 1 −1
0 0 0 0 −1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and put S1 = {1, 2, 3}, S2 = {4, 5, 7}, and S3 = {6, 7}. Then

Tμ := (I − P1)(I − P2)(I − P3) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is a rank two semiconvergent matrix. Thus

N (I − Tμ) = span{(1, . . . , 1)T , e6} �= N (A) = span{(1, . . . , 1)T },

and the iteration might fail to converge against a desired solution. In what follows,
we therefore have to investigate consistency and semiconvergence for multiplicative
Schwarz, whereas for additive Schwarz we have only to consider consistency.
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1 2 3 5 64

1 2 3 5 64T (A2) :

T (A :)1

Fig. 5.1. Trees of A1 and A2.

Note that a consistency problem cannot occur if we use partitions instead of
decompositions, i.e., we use block Jacobi or block Gauß–Seidel iterations. This is not
hard to see.

5. Convergence of multiplicative Schwarz for MP. In this section we define
decompositions for an STM-matrix which allows us to prove that a corresponding
operator of the form (4.3) is semiconvergent and consistent. As the basic ideas can be
derived from simple Gauß–Seidel iterations, we will start with partitionings consisting
of singletons.

5.1. The basic idea. Consider the following STM-matrices Ai = I−Bi, Bi ≥ 0
(we show only the nonzero entries):

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

1 −1
1 −1

1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, A2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

1 −1
1 −1

1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We assume a multiplicative Schwarz iteration for the partitioning S1, . . . , S6,
where Si = {i}; i.e., we consider a Gauß–Seidel iteration. Then the projection I −P3,
e.g., for A2, becomes

I − P3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

0 1
1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that, for both matrices A1 and A2, the operator

Tμ = (I − P1) · · · (I − P6)

has a positive first column. And this can be explained by considering the spanning
trees of the respective matrices (see Figure 5.1) and multiplying the Bi by an appro-
priate vector: Consider a vector x = (ξ, 0, 0, 0, 0, 0)T , ξ > 0, and the product Bix for
some Bi. Then the initial value ξ is stored in state 6, the root. Another application of
Bi to Bix reveals that ξ is carried to the states which are direct children of the root,
and so on. Hence ξ “flows” through the tree, until it reaches the leaves. The product
operator Tμ combines this transport into a single step; i.e., it can be interpreted as
introducing a shortcut. The most important property of Tμ is given in the following
theorem.
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Fig. 5.2. A flow compatible numbering.

Theorem 5.1. Let B ∈ R
n×n be nonnegative with ρ(B) = 1. Assume that B has

a positive column and there exists z > 0 such that Bz = z. Then γ(B) < 1; i.e., B is
semiconvergent and N (I −B) = span{z}.

The above result has been used and proved in [15] and [26]. But it is easy to prove
it in the ST-matrix context.

Proof. Let column i0 of B be positive. Then B contains a spanning tree of height
one with the root index i0 (it is exactly the column i0 and here we allow the root
to coincide with the guard index; cf. Remark 3.1). Since Bz = z for a some z, it
follows from Corollary 3.7 that B is an ST-matrix and from section 2.4 that ρ(B) = 1
and ind1B = 1. By Lemma 3.3, there is a permutation matrix Π such that (3.3)
holds, where ρ(F ) < 1, ρ(D) = 1, and D is irreducible. The existence of a positive
column is invariant under symmetric permutation. Hence D has a positive diagonal
element. But then, γ(D) < 1 from section 2.4. Thus γ(B) < 1 and the semiconvergence
follows.

Theorem 5.1 gives us the direction we need. If we can characterize decomposi-
tions which lead us to operators having a positive column, then the iteration is both
semiconvergent and consistent. The example above gives us a hint how to obtain
such operators—simply by respecting the above-mentioned “flow.” As we will see,
the “flow” can be generalized to decompositions and is the key concept behind our
investigations.

Based on this idea, we are looking for decompositions such that we have a mapping
from the set of STM-matrices (original matrix) into the set of consistent semiconver-
gent ST-matrices (operator of the multiplicative Schwarz iteration).

Definition 5.2. Let A be an STM-matrix (or ST-matrix), and let T be an arbi-
trary spanning tree in Γ(AT ) with some guard index. A flow compatible numbering (or
permutation) of the vertices of T is a permutation π : {1, . . . , n} −→ {1, . . . , n} such
that if there is a path from π(i) to π(j) in T , then i > j for each 1 ≤ i, j ≤ n, i �= j.
Any such permutation is also called flow compatible (with respect to T ).

Figure 5.2 shows a flow compatible numbering for an ST-matrix B (guard edges
have been left out). The example defines a permutation (10, 11, 9, 8, 7, 5, 6, 4, 3, 2, 1),
but note that the permutation (9, 11, 8, 4, 6, 3, 10, 7, 5, 2, 1) is also flow compatible.

Remark 5.1. Note that a flow compatible numbering can easily be calculated
using a simple depth first search strategy [9] if we start within the strongly connected
component (cf. Remark 3.2 and [5, section 4.3]).
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We now have the following theorem, which also gives a proof for the classical
Gauß–Seidel iteration for STM-matrices.

Theorem 5.3. Let A = I − B ∈ R
n×n be an STM-matrix, and let π be a flow

compatible permutation with respect to some tree T ⊂ Γ(BT ). Assume that the reg-
ular partitioning S1, . . . , Sn is such that Si = {i}, and let Pi be the corresponding
projections given by (4.3) for i = 1, . . . , n. Then

(I − Pπ(1)) · (I − Pπ(2)) · · · (I − Pπ(n))

has at least one positive column and is therefore semiconvergent.
Proof. We prove the theorem using a straightforward calculation of the matrix

product.
Since the node π(n) is always the root of a tree T in Γ(BT ) (cf. Definition 5.2),

there is a guard index j0 such that (I − Pπ(n))π(n),j0 > 0. It will first be shown that

((I − Pπ(k)) · (I − Pπ(k+1)) · · · (I − Pπ(n)))π(k),j0 > 0

for an arbitrary k ∈ {1, . . . , n}. As the proposition is obvious for k = n, let 1 ≤ k < n
be arbitrary but fixed.

Case 1. (π(k), π(k + 1)) ∈ Γ(B). In this case, the node π(k + 1) represents the
parent of π(k) in T . Thus we have (I − Pπ(k))π(k),π(k+1) > 0, and there is an index
l ∈ N, k < l ≤ n, such that (I − Pπ(k+1))π(k+1),π(l) > 0. The latter holds, since there
is a path from π(k + 1) to π(n) in T . But then

((I − Pπ(k)) · (I − Pπ(k+1)))π(k),π(l) > 0.

Case 2. (π(k), π(k + 1)) /∈ Γ(B). In this case, the index π(k) must have access to
π(l) for some l ∈ N, k + 1 < l ≤ n, since there is again a path from π(k) to π(n) in
T . The construction of the operators implies that (I − Pπ(k+1))π(l),π(l) > 0 because
π(l) /∈ Sk+1; thus

((I − Pπ(k)) · (I − Pπ(k+1)))π(k),π(l) > 0.

A simple induction leads to

((I − Pπ(k)) · · · (I − Pπ(n−1)))π(k),π(l) > 0

for some l ∈ N, n− 1 < l ≤ n, i.e., l = n. But (I − Pπ(n))π(n),j0 > 0, and there holds

((I − Pπ(k)) · · · (I − Pπ(n)))π(k),j0 > 0.

To finish the proof of the theorem observe that (I − Pπ(j))π(k),π(k) > 0 follows for all
1 ≤ j < k from the construction of (I − Pπ(j)). Hence

((I − Pπ(1)) · (I − Pπ(2)) · · · (I − Pπ(n)))π(k),j0 > 0.

This is the theorem since k was arbitrary.
Theorem 5.3 gives us information about the order of row updates to be used in

the Gauß–Seidel iteration. As the proof shows, if the matrix is full, any order works.
Corollary 5.4. Let A = I − B ∈ R

n×n. If B > 0 and ρ(B) = 1, then the
Gauß–Seidel iteration converges.
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5.2. Block operators. We now extend the concept of flow compatibility to
block operators. We start with an investigation of the structure of a single projection.

The following lemma is fundamental, but we need additional notation. To this
purpose, let A be an STM-matrix, and let T be any spanning tree in Γ(AT ).

We say a vertex i has access to a vertex j along T if there is a path (j =
l1, l2, . . . , lk = i) in T . This is denoted by i →T j.

Remark 5.2.

(1) If i →T j, then (i = lk, lk−1, . . . , l1 = j) is a path in Γ(A).
(2) The access relation along T is useful, because T represents a minimal struc-

ture of positive elements needed to determine for which decompositions multiplicative
Schwarz iterations converge. All other positive elements of A can be ignored.

Lemma 5.5. Let A be an STM-matrix, and let T be an arbitrary spanning tree in
Γ(AT ). Let π be a flow compatible permutation corresponding to T . Let the tuple

V := (π(k), π(k + 1), . . . , π(l)), 1 ≤ k < l ≤ n, l − k < n− 1,

be chosen in such a way that A[V ]−1 exists and denote by Π the permutation matrix
corresponding to π. According to (4.2), let the matrix I − P be defined through

(5.1) Π(I − P )ΠT =

⎛
⎝ I 0 0

M−1NL 0 M−1NR

0 0 I

⎞
⎠,

where NL = −A[V, (π(1), . . . , π(k − 1))], NR = −A[V, (π(l + 1), . . . , π(n))], and M =
A[V ]. Then for each index j0, k ≤ j0 ≤ l, one of the following three conditions holds:

(1) If j0 = n, then there exists a node π(i0) /∈ V such that π(n) → π(i0) in Γ(A)
and (π(n), π(i0)) ∈ Γ(I − P ).

(2) If j0 �= n and (π(i0), π(j0)) ∈ T for some node π(i0) /∈ V , then (π(j0), π(i0)) ∈
Γ(I − P ).

(3) If j0 �= n and (π(h), π(j0)) ∈ T for some node π(h) ∈ V , then there exists
π(i0) /∈ V such that π(j0) →T π(i0). For any such π(i0) we have (π(j0), π(i0)) ∈
Γ(I − P ).

Furthermore, the node π(i0) in (1), (2), and (3) satisfies the following:
(4) If l < n, then i0 > l.
(5) If l = n, then i0 < k and i0 is given by assertion (1) (with j0 = l).
In case (4) i0 is unique (with respect to T ). In case (5) i0 depends on the chosen

guard.
Before we prove the lemma, we provide a few explanations.
Remark 5.3. The lemma has an easy interpretation if we consider the represen-

tation (5.1).
(i) The case π(n) ∈ V plays a special role. Assertion (1) states that there exists

a path in Γ(A) starting at π(n), which leads out of V , and this path is replaced by
an edge in Γ(I − P ), which resides in M−1NL (note that NR is empty).

(ii) Assertion (2) says that if π(j0) ∈ V has direct access to π(i0) /∈ V along T
(i.e., (π(j0), π(i0)) ∈ Γ(A)), then this edge is still in Γ(I−P ); i.e., connections leading
out of V are preserved.

(iii) Assertion (3) says that if π(j0) ∈ V has direct access to some element in V
along T , then there is a path in V along T leading to some π(i0) /∈ V . Furthermore,
for each such path there will be an edge in Γ(I − P ). We can interpret this as that
a multiplication with M−1 introduces a shortcut in T , with the flow itself being
preserved.
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(iv) Assertion (4) states that the edges of interest lie in M−1NR except in the
case in which the root is in V , which is considered in assertion (5). Then, since
each vertex has access to the root, access to some vertex outside V is guaranteed by
assertion (1).

Figure 5.3 describes the situation for an STM-matrix A = I − B. The figure
shows the graph of A and the tuple V = (π(4), π(5), π(6), π(7)) = (8, 7, 5, 6). The
graph Γ(I − P ) is the graph of P given by (5.1) with respect to V . Note that the
dashed edges in Γ(I −P ) are shortcuts of paths existing in Γ(A). The diagonal edges
and the guard edges in Γ(A) are not shown.

2

5

7

8

6

3=π(11)

=π(9)

=π(8)

=π(7)

=π(6)

=π(5)

=π(4)

=π(3)
=π(2)

=π(1)

=π(10)

1

2

3

4

9

6

5

7

10

11

8

=π(10)

=π(4)

Γ Γ(A) (I−P)

=π(9)

=π(7)

=π(5)

=π(6)

Fig. 5.3. Graph of a matrix and of a corresponding projection.

Proof. The proof of Lemma 5.5 is a bit technical and is therefore split into several
parts.

Part 1: Classification of vertices in V . Define boundary, inner, and outer vertices
B(V ), I(V ), O(V ), respectively, by

B(V ) := {v ∈ V : there exist w /∈ V such that (w, v) ∈ T },
I(V ) := {v ∈ V : there exist u ∈ V such that (u, v) ∈ T },
O(V ) := V \ (B(V ) ∪ I(V )).

Taking the set V from Figure 5.3, we have B(V ) = {π(6), π(7)} = {5, 6}, I(V ) =
{π(4), π(5)} = {8, 7}, and O(V ) = ∅.

Now we have
(i) B(V ) ∩ I(V ) = ∅,
(ii) B(V ) ∪O(V ) ∪ I(V ) = V ,
(iii) O(V ) �= ∅ ⇒ O(V ) = {π(n)}, and
(iv) B(V ) = ∅ ⇔ O(V ) �= ∅.

To prove this let v ∈ V be arbitrary. Assume there exists a w such that (w, v) ∈ T .
Then w is unique since T is tree. If w ∈ V , then v ∈ I(V ); else v ∈ B(V ). If there
exists no w satisfying (w, v) ∈ T , then v = π(n) and obviously π(n) ∈ O(V ). Since
the root is unique, this proves (i)–(iii).

Suppose B(V ) = ∅. Every vertex, except the root, has a parent, but no vertex
v ∈ V has an adjacent vertex w /∈ V in T . Thus, every vertex v ∈ V has an adjacent
vertex in V along T (except the root), and therefore π(n) ∈ V holds necessarily.

Now assume O(V ) �= ∅; then O(V ) = {π(n)} by (iii) and l = n by the flow
compatibility and the definition of V . If there is a v ∈ B(V ), then there exists a
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w /∈ V satisfying (w, v) ∈ T . Additionally, there are numbers k1, k2 ∈ {1, . . . , n} such
that v = π(k1) and w = π(k2). Since π is flow compatible, k ≤ k1 < k2 ≤ n. But then
w = π(k2) ∈ V , which is a contradiction, and (iv) follows.

Part 2: The case π(n) ∈ V . Here we prove the existence of the index i0 as stated
in assertion (1) and (i) in Remark 5.3. We have

V := (π(k), π(k + 1), . . . , π(n)), 1 < k < n,

and π(j0) = π(n). Now we show that there is always a path in Γ(A[V ]) = Γ(M)
starting at π(n) which leads us to some π(i0) not in V .

As A is an STM-matrix, there is a guard index k0 ∈ {1, . . . , n} such that (A)π(j0),π(k0)

> 0. If π(k0) /∈ V , we have found the path and choose i0 := k0.

Hence assume π(k0) ∈ V . Let α be the final and basic class of A. Denote α̃ = π(α).
Then there is an index π(i0) ∈ α̃ which fulfills π(i0) /∈ V . Otherwise, the strongly
connected class α̃ would be a subset of V and because 0 ∈ σ(A[α̃]) we also have
0 ∈ σ(A[V ]) (cf. Lemma 3.3). The latter is impossible because M−1 = A[V ]−1 exists
by assumption.

Now there exist π(i0) ∈ α̃\V and a path (π(n) = π(ik), . . . , π(i1), π(i0)) from π(n)
to π(i0) in Γ(A). We can choose the path such that (π(ik), . . . , π(i1)) ⊂ Γ(A[V ]) =
Γ(M). Then (π(i1), π(i0)) ∈ Γ(A) and, by the construction, π(i0) /∈ V and i0 < k <
l = n; i.e., we have found a path leading outside V .

Additionally, by Lemma 2.1, Γ(M−1) = Γ(M); thus there is an edge (π(n), π(i1)) ∈
Γ(M−1). We will see that this part of the path will be cut short in the final operator
(we give an example of this situation later).

Part 3: Inner vertices. Now we analyze inner vertices as mentioned in (iii) in
Remark 5.3. Let v ∈ I(V ); then there exists exactly one vertex w ∈ V such that
(w, v) ∈ T . If w ∈ I(V ), we continue inductively until a vertex u /∈ I(V ). Then
u ∈ B(V ) or u = π(n) (part 1, (iv)). In either case there is a unique path p =
(u = π(ik), π(ik−1), . . . , π(i1) = v) in T ; i.e., v →T u. Furthermore, l ≥ ik > ik−1 >
· · · > i1 ≥ k and pT = (π(i1), . . . , π(ik)) is a path in Γ(M). As in part 2, we have
Γ(M−1) = Γ(M), i.e., (v, u) ∈ Γ(M−1). So the path in T will be cut short in Γ(M−1)
by the vertex (v, u) = (π(i1), π(ik)). Additionally, we have ik > i1.

Part 4: Proving the assertions. Now we use the results from the previous parts
to prove the assertions for an arbitrary but fixed j0 with k ≤ j0 ≤ l. Write I − P as
follows:

Π(I − P )ΠT =

⎛
⎝ I 0 0

0 M−1 0
0 0 I

⎞
⎠

⎛
⎝ I 0 0

NL 0 NR

0 0 I

⎞
⎠ =: M−1

n Nn.

By Lemma 2.1

(5.2) Γ(M−1
n Nn) = Γ(M−1

n )Γ(Nn) = Γ(Mn)Γ(Nn).

Case (a) π(j0) ∈ B(V ). There exists exactly one π(i0) satisfying (π(j0), π(i0))T
and π(i0) /∈ V . But then (π(j0), π(i0)) ∈ Γ(NR) since i0 > j0 by the flow compatibility.
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With Δ ⊂ Γ(Mn) and (5.2) the relation (π(j0), π(i0)) ∈ Γ(I − P ) follows. Hence,
assertion (2) combined with (4) is proven.

Case (b) π(j0) ∈ I(V ) and B(V ) �= ∅. In view of part 3 there exists exactly one
π(h) ∈ B(V ) such that (π(j0), π(h)) ∈ Γ(Mn) and h > j0. Applying case (a) to h
instead of j0, we see that there is exactly one edge (π(h), π(i0)) ∈ Γ(NR). From (5.2)
we again get (π(j0), π(i0)) ∈ Γ(I−P ), and i0 > h > j0. This is assertion (3) combined
with (4).

Case (c) π(j0) = π(n). By part 2 there are vertices π(i0) /∈ V and π(j1) ∈ V such
that (π(j1), π(i0)) ∈ Γ(A) and (π(j0), π(j1)) ∈ Γ(M−1). But i0 < k < l = n; thus
(π(j1), π(i0)) ∈ Γ(NL), and again by (5.2), (π(j0), π(i0)) ∈ Γ(I−P ). This is assertion
(1) combined with (5).

Case (d) π(j0) ∈ I(V ) and π(n) ∈ V . By part 1, B(V ) = ∅. Part 3 implies that
there exists an edge (π(j0), π(n)) ∈ Γ(Mn) which is unique in T . Applying case (c)
shows the existence of edges (π(j1), π(i0)) ∈ Γ(NL) and (π(j0), π(j1)) ∈ Γ(Mn). This
implies (π(j0), π(i0)) ∈ Γ(I −P ) and j0 ≥ k > i0. Hence, assertion (2) combined with
(5) is proven.

This finishes the proof of the lemma.

Remark 5.4. The lemma also holds for the projection P instead of I − P .

The proof shows that Lemma 5.5 holds independently of the order within V ;
hence, V can be interpreted as a set rather than a tuple.

Definition 5.6. Let A ∈ R
n×n be an STM-matrix, and let π be a flow compat-

ible numbering of a spanning tree T ⊂ Γ(AT ). A regular partitioning S1, . . . , Sp of
(π(1), . . . , π(n)) is termed a block flow compatible partitioning if for 1 ≤ k < l ≤ p
we have

max{j : π(j) ∈ Sk} < min{j : π(j) ∈ Sl}.

We will use Lemma 5.5 and Definition 5.6 to prove the convergence of multiplica-
tive Schwarz iterations. Before we start with this, we consider some other applications
of the results presented so far. The first application concerns the block Jacobi iteration
operator and will be used to motivate the approach in section 6.

Corollary 5.7. Let A ∈ R
n×n be an STM-matrix, and let π be a flow compatible

numbering of a spanning tree T ⊂ Γ(AT ). Consider a block flow compatible partition-
ing S1, . . . , Sp and define Mi := A[Si], M = diag(M1, . . . ,Mp), and N = M − A.
Then M−1N is an ST-matrix.

Proof. Since the partitioning is regular, each Mi is invertible. By Lemma 5.5, each
index u ∈ Si, i < p has access to some v ∈ Sj , j > i, in Γ(M−1N). Therefore, each
index u ∈ {1, . . . , n} \ Sp has access to some v ∈ Sp. Furthermore, each index v ∈ Sp

has access to a single index w /∈ Sp, which is the guard index of π(n) ∈ Sp. Hence
Γ((M−1N)T ) contains a spanning tree. Since w /∈ Sp, we have w ∈ Si for some i < p
and w has access to some index in Sj , j > i. Hence there is a path from w to itself in
Γ(M−1N). The vertex w can be considered as the root, and there must exist a guard
index, since there is a path from w to itself. The ST-matrix property follows now from
Corollary 3.7.

Corollary 5.8. With the assumptions of Corollary 5.7 there exists a spanning
tree T̃ in M−1N of height at most p.

To give an example to illustrate Corollary 5.7 and Lemma 5.5, consider the STM-
matrix A = I − B, where the graph of B is given by Figure 5.3 and the guard index
of the root index 1 is index 3. Then
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A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
−1 1

−1 1 −1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the flow compatible permutation given in Figure 5.3, A becomes

ΠAΠT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1
1 −1

1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
−1 1 −1

1 −1
−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now consider the (permuted) partition S1 = {1, 2, 3}, S2 = {4, 5, 6, 7}, and S3 =
{8, 9, 10, 11}. To give an example for the proof of Lemma 5.5 note that

(i) S1 consists of only boundary nodes,
(ii) S2 consists of both boundary and inner nodes,
(iii) S3 has one outer node (the root) and some inner nodes, and
(iv) the guard index of the root lies within S3; thus S3 is an example as discussed

in part 2 of the proof of Lemma 5.5.
To illustrate Corollary 5.7, the block Jacobi iteration matrix becomes

M−1N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

1
1
1

1

1
1
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix M−1N is obviously an ST-matrix with the root index 4 = π−1(8)
and the guard index 10 = π−1(2). Note that M−1N is not semiconvergent.

Now let (I − P1), (I − P2), and (I − P3) be the operators given by (5.1) with
respect to Si, i = 1, 2, 3. Then the nontrivial block row of I − Pi corresponds to the
ith block row of M−1N . Additionally, a short computation shows that the product
(I −P1) · (I −P2) · (I −P3) has a positive fourth column and is thus semiconvergent.
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This is not very surprising because now the block rows behave like single states and
the order of the projections in the product can be interpreted as a flow compatible
numbering of a (block) spanning tree of height 3 (cf. Corollary 5.8). In the general
case, the following result holds.

Theorem 5.9. Let A ∈ R
n×n be an STM-matrix and S1, . . . , Sp be a block flow

compatible partitioning. Let (I − Pi) be given by (5.1); then the product

P := (I − P1) · · · (I − Pp)

has at least one positive column and is semiconvergent.
Proof. This theorem is a special case of Theorem 5.13 to be proven later.
Theorem 5.9 has a corollary which has the same meaning as Corollary 5.4 has for

Theorem 5.3.
Corollary 5.10. Let A = I − B ∈ R

n×n. Assume B > 0 and ρ(B) = 1; then
the block Gauß–Seidel iteration converges for every regular partitioning S1, . . . , Sp.

To prepare our convergence theorem for the overlapping case, we must adapt flow
compatibility to decompositions rather than partitionings. The following definition is
a natural extension of block flow compatibility for partitionings (cf. Definition 5.6) to
decompositions.

Definition 5.11. Let A ∈ R
n×n be an STM-matrix, and let π be a flow compatible

numbering of a spanning tree T ⊂ Γ(AT ). A regular decomposition S1, . . . , Sp of
(π(1), . . . , π(n)) is said to be ms-compatible (ms for “multiplicative Schwarz”) if there
exists a block flow compatible partitioning S̃1, . . . , S̃p such that S̃i ⊆ Si for all i =
1, . . . , p and if, in addition, π(n) /∈ Sj for j = 1, . . . , p− 1.

The restriction for the root residing in just one set will be discussed after the next
theorem. As a preparation, we need the following corollary to Lemma 5.5 for the case
that V ⊂ {1, . . . , n} is arbitrary.

Corollary 5.12. Let V be any subset of {π(1), . . . , π(n)} such that M−1 =
A[V ]−1 exists.

(1) If π(n) /∈ V , then the assertions (2), (3), and (4) of Lemma 5.5 hold.
(2) If π(n) ∈ V , define TV := T ∩ Γ(MT ):

VT := {π(k) ∈ V : π(k) →TV
π(n)} ∪ {π(n)},

V¬T := V \ VT .

(i) Then the assertions (2), (3), and (4) of Lemma 5.5 hold for V¬T , and
(ii) the assertions (1), (3), and (5) of Lemma 5.5 hold for VT with an index

i0 ∈ {1, . . . , n} satisfying i0 < n.
Proof. Assertion (1) follows as in the proof of Lemma 5.5. As π(n) /∈ V¬T , there

is also nothing to prove for V¬T , i.e., for assertion 2, part (i).
To prove assertion 2, part (ii), consider the guard index π(j0) of π(n) ∈ VT .

If π(j0) /∈ V , then Lemma 5.5 applies directly to VT with i0 = j0. Thus assume
π(j0) ∈ V . Then an argument analogous to part (2) of the proof of Lemma 5.5 can be
used which gives the proposition for some i0 satisfying i0 < n and π(i0) /∈ V .

Theorem 5.13. Let A ∈ R
n×n be an STM-matrix, π a flow compatible numbering

of a spanning tree T ⊂ Γ(AT ), and S1, . . . , Sp an ms-compatible decomposition. Let
(I − Pi) be given by (4.2). Then the product

P := (I − P1) · · · (I − Pp)

has at least one positive column.
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Proof. Let S̃1, . . . , S̃p be the corresponding partitioning according to Definition
5.11, and set

S̄j :=

p⋃
l=j

S̃l, j = 1, . . . , p.

Put

Pj := (I − Pj) · · · (I − Pp).

By induction we now show that for j = p, . . . , 1

(5.3) there is an l0 such that for all π(k) ∈ S̄j there holds (π(k), π(l0)) ∈ Γ(Pj).

Note that S̄p = S̃p and S̃p = {π(kp), π(kp + 1), . . . , π(n)} for kp < n. Corollary
5.12 implies that there is an index l0 < n such that (π(j), π(l0)) ∈ Γ(I −Pp) = Γ(Pp)
for all j = kp, . . . , n.

Let p > j > 1 and assume that (5.3) holds for some j. The inductive step has two
parts.

Increasing number of positive elements. Let S̃j−1 = {π(kj−1), π(kj−1 + 1), . . . ,
π(kj−1 + l)} for some l ∈ N0. Due to Lemma 5.5, there exists for each i = 0, . . . , l an
index li > kj−1 + i such that (π(kj−1 + i), π(li)) ∈ Γ(I−Pj−1). Since π(n) /∈ Sj−1 one
gets li > kj−1 + l for all i = 0, . . . , l. But kj−1 + l = kj − 1 and thus n ≥ li ≥ kj for
all i = 0, . . . , l. By the induction hypothesis there is an edge (π(li), π(l0)) ∈ Γ(Pj) for
all i = 0, . . . , l. Since Γ(Pj−1) = Γ(I − Pj−1)Γ(Pj), the relation (π(kj−1 + i), π(l0)) ∈
Γ(Pj−1) follows for all i = 0, . . . , l.

Positivity preservation. Let π(k0) ∈ S̄j = {π(kj), . . . , π(n)} be arbitrary but fixed.
Then by the induction hypothesis (π(k0), π(l0)) ∈ Γ(Pj). There are two possible cases.

In the case π(k0) /∈ Sj−1, there is an edge (π(k0), π(k0)) ∈ Γ(I−Pj−1) by the con-
struction of Pj−1. But then (π(k0), π(l0)) ∈ Γ(Pj−1) as the positive diagonal element
in I − Pj−1 preserves the entry. In the case π(k0) ∈ Sj−1, Lemma 5.5 implies that
there is an edge (π(k0), π(l1)) ∈ Γ(I − Pj−1), and l1 > k0. Consequently, π(l1) ∈ S̄j .
By the induction hypothesis there is an edge (π(l1), π(l0)) ∈ Γ(Pj), and therefore
(π(k0), π(l0)) ∈ Γ(Pj−1).

We have thus shown that (5.3) holds for j = p, . . . , 1.

Taking j = 1, S̄1 = {π(1), . . . , π(n)} and (π(j), π(l0)) ∈ Γ(P1) for all j = 1, . . . , n.
Hence the theorem is proven.

The condition π(n) /∈ Sj for j �= p in Definition 5.11 appears to be restrictive. It
cannot, however, be omitted when general overlap is allowed. This has been shown by
the example from section 4. There are alternative conditions for which we can prove
Theorem 5.13 holds. For a given regular decomposition S1, . . . , Sp, these conditions
are as follows.

(1) Every set Si containing the root can be written as Si = {π(ki), π(ki +
1), . . . , π(n)} for an index 1 ≤ ki ≤ n; i.e., the sets have no gap.

(2) All sets Si1 , . . . , Sik containing the root have access to the same index in
Γ(A); i.e., there exists an index π(i0) /∈ Sij for j = 1, . . . , k, such that π(n) −→ π(i0)
in Γ(A).

Results based on these conditions are not presented here. Note that neither con-
dition is satisfied in the example from section 4.
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5.3. Application to multiplicative Schwarz. Now we have elements in place
to prove the convergence of multiplicative Schwarz to a solution of the model problem
MP ; cf. Definition 3.1.

Theorem 5.14. Let A ∈ R
n×n be an STM-matrix and let S1, . . . , Sp be an ms-

compatible decomposition. Then the one level multiplicative Schwarz iteration (2.1)
using Tμ given by (4.3) converges to a solution of Ax = b for every given x0 ∈ R

n

whenever b ∈ R(A).
Proof. The operator Tμ has a positive column by Theorem 5.13. Hence, Corollary

3.7 implies that it is an ST-matrix and the semiconvergence follows from Theorem 5.1.
Theorem 5.1 implies also that dimN (I − Tμ) = 1. Thus one gets N (I − Tμ) = N (A)
and the iteration is consistent.

6. Damped projections. Now we investigate multiplicative Schwarz iterations
for damped projections; i.e., for an STM-matrix A we consider the operator

(6.1) Tμ,η := (I − ηP1) · · · (I − ηPp)

for a regular decomposition S1, . . . , Sp and some η ∈ (0, 1). We choose η ∈ (0, 1) since
we can view this as introducing under relaxation because

I − ηPi = (1 − η)I + η(I − Pi)

for all i = 1, . . . p.
Proposition 4.1 applies verbatim to Tμ,η. Trivially, since η ∈ (0, 1), it follows that

Tμ,η has a positive diagonal; thus it is semiconvergent. Hence, it remains only to prove
consistency.

We will show that Tμ,η is an ST-matrix. Then we are done, because the ST
property implies consistency. We need the following lemma, which transforms the
question of consistency from a multiplicative problem into an additive one and follows
in a straightforward manner from Lemma 2.1.

Lemma 6.1. Consider nonnegative square matrices L1, . . . , Lp and assume that
the diagonal of each Li is positive. Then for any permutation σ : {1, . . . , p} −→
{1, . . . , p},

Γ

⎛
⎝ p∑

j=1

Lσ(j)

⎞
⎠ =

p⋃
j=1

Γ(Lσ(j)) ⊂ Γ(Lσ(1) · · ·Lσ(p)).

We can now prove the desired result.
Theorem 6.2. Suppose A ∈ R

n×n is an STM-matrix, α is the final and basic
class of A, and i0 ∈ α is arbitrary. Let S1, . . . , Sp be a regular decomposition such that
i0 is contained in exactly one set Sj. Then

T (σ)
μ,η := (I − ηPσ(1)) · · · (I − ηPσ(p))

is a semiconvergent ST-matrix for any permutation σ : {1, . . . , p} −→ {1, . . . , p} and
η ∈ (0, 1).

Proof. By Lemma 6.1 and the nonnegativity of the damped projections, it suffices
to show that the “flow” given by T is preserved, i.e., that the graph of

p∑
j=1

(I − ηPj)

contains a spanning tree with a guard.
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To prove this let T ⊂ Γ(AT ) be an arbitrary spanning tree with root i0 (cf.
Corollary 3.4). Consider a flow compatible numbering π of T ; then i0 = π(n). Assume
w.l.o.g. that π(n) ∈ Sp and define

(6.2) S̃p := {π(j) ∈ Sp : π(j) →T π(n)} ∪ {π(n)}.

By Corollary 5.12 there exists an index j0 such that j0 < n and each π(j) ∈ S̃p

has access to π(j0) /∈ S̃p in Γ(I − ηPp). Thus, it remains to show that each π(l) ∈
{1, . . . , n} \ S̃p has access to some π(j) ∈ S̃p in

(6.3) Γ

⎛
⎝ p∑

j=1

(I − ηPj)

⎞
⎠ .

Therefore, we let π(l0) ∈ {1, . . . , n} \ S̃p be arbitrary but fixed. Then π(l0) ∈ Sk0 \ S̃p

for some k0 ∈ {1, . . . , p}. It follows from Lemma 5.5 that π(l0) has access to some
π(l1) in Γ(I − ηPk0

) and l1 > l0. If π(l1) /∈ S̃p, then π(l1) has access to some π(l2) in
Γ(I − ηPk1

) for some k1 ∈ {1, . . . , p} and l2 > l1. So, inductively, after a maximum of
n−1 steps, it follows that π(l0) has access to some π(j) ∈ S̃p in the graph from (6.3).

Consequently, each π(j) ∈ {1, . . . , n} has access to π(j0) and since π(j0) ∈
{1, . . . , n} \ S̃p, π(j0) must have access to itself; i.e. the graph (6.3) contains a span-

ning tree with a guard index. Lemma 6.1 implies that this also holds for T
(σ)
μ,η . As

T
(σ)
μ,η z = z for the positive vector z ∈ N (A), we have from Corollary 3.7 that T

(σ)
μ,η is

an ST-matrix. Additionally, the diagonals of T
(σ)
μ,η are positive; thus T

(σ)
μ,η is semicon-

vergent.
Remark 6.1. We do not know whether one could dispense with the condition that

one index from α is contained in just one set Sj . In the case of an irreducible matrix,
this condition reduces to having one variable which has no overlap, which will usually
be fulfilled.

Definition 6.3. Let A = I − B ∈ R
n×n be an STM-matrix and denote by α its

basic class. A regular decomposition S1, . . . , Sp with respect to A is said to be root
preserving if there exists an i0 ∈ α such that |{j : i0 ∈ Sj}| = 1.

The following theorem is a simple application of Theorem 6.2 and gives us the
convergence of the damped Schwarz iteration for MP.

Theorem 6.4. Let A ∈ R
n×n be an STM-matrix, and let S1, . . . , Sp be a root

preserving decomposition. Then the damped one level multiplicative Schwarz iteration,
i.e., iteration (2.1) using Tμ,η given by (6.1), converges to the solution of Ax = b for
every given x0 ∈ R

n whenever b ∈ R(A) and η ∈ (0, 1).

7. Convergence of additive Schwarz for MP. Finally, we investigate the
convergence of additive Schwarz iterations for the model problem MP given by the
iteration (2.1) and (4.4). This is now quite simple using the theory already developed.

Let us consider a root preserving decomposition S1, . . . , Sp from the last section.
We know that

p∑
j=1

(I − ηPj) = pI − ηP1 − · · · − ηPp(7.1)
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is a semiconvergent ST-matrix by the proof of Theorem 6.2. Comparing (7.1) and
(4.4) reveals that Tθ is also an ST-matrix because

Γ(Tθ) = Γ

⎛
⎝ p∑

j=1

(I − ηPj)

⎞
⎠ .

The semiconvergence of Tθ has been considered in Proposition 4.1. Thus we have the
following theorem (which obviously applies to MP).

Theorem 7.1. Let A ∈ R
n×n be an STM-matrix and let S1, . . . , Sp be a root

preserving decomposition. Then the one level additive Schwarz iteration, i.e., iteration
(2.1) using Tθ given by (4.4), converges to the solution of Ax = b for every given
x0 ∈ R

n whenever b ∈ R(A) and θ ∈ (0, 1/q), where q is the measure of overlap.

8. Concluding remarks and outlook. In this paper we introduce a graph
theoretical approach and prove new convergence theorems for the classical one level
multiplicative Schwarz iteration, the damped one level multiplicative Schwarz itera-
tion, and the one level additive Schwarz method when applied to singular M-matrices.

The major ingredient is a compatibility condition between a spanning tree em-
bedded in the graph of the matrix and the sets defining the Schwarz decomposition.
In the case of overlap, additional conditions had to be imposed on the root of the
tree. It is not possible to completely ignore these conditions, as we have shown in a
counterexample.

Several generalizations are possible [5]. We can weaken condition (1.2) to

Az = 0 for some positive vector z;

i.e., we allow the dimension of the null space of A to be larger than one. Indeed, the
results presented here carry over with only minor restrictions to this new situation.
Additionally, within our framework we can also obtain convergence results of Schwarz
methods for two-stage (see, e.g., [6, 17, 21]) and partially asynchronous (see, e.g.,
[2, 7, 14, 12]) variants. These results are presented in a future companion paper.

Finally we mention that the graph based approach used here is quite different from
those in [10, 18, 23, 25]. In those references, only splittings of a singular M-matrix
without overlap are discussed.
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Abstract. We present some new criteria for the feasibility of the interval Cholesky method. In
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1. Introduction. In [2] we introduced the interval Cholesky method in order to
enclose the symmetric solution set

Ssym = {x ∈ R
n| Ax = b, A = AT ∈ [A] = [A]T , b ∈ [b]},

where [A] = [A,A] is a given n× n interval matrix and [b] is a corresponding interval
vector. The algorithm uses the formulae of the classical Cholesky method, replacing
the real entries and arithmetic by interval ones. It terminates with an interval vector
[x]C = ICh([A], [b]) which encloses Ssym but not necessarily the general solution set

S = {x ∈ R
n| Ax = b, A ∈ [A], b ∈ [b]},

which also contains the solutions of linear systems with unsymmetric matrices from
[A]. A criterion necessary for [x]C to exist is the positive definiteness of all sym-
metric matrices in [A]—independently of any right-hand side [b]. Unfortunately, this
property is not sufficient as Reichmann’s example in [13] shows which originally was
constructed for a different situation. This example caused the necessity of criteria
which guarantee the existence of [x]C or, equivalently, the feasibility of the inter-
val Cholesky method for arbitrary right-hand interval sides. In [2] we proved that
[x]C exists for a variety of structured matrices, among them H-matrices, M -matrices,
diagonal dominant matrices, and tridiagonal ones, all with appropriate additional
properties. In [3] we extended these criteria of feasibility by perturbation results
analogously to those in [11]. In [15] further results of feasibility were presented for
block variants of the algorithm which were introduced there. It is the purpose of
the present paper to add others. In particular, we will show that the feasibility of
the interval Gaussian algorithm [1] implies the existence of [x]C provided that [A]
contains at least one positive definite element matrix. Based on this crucial result a
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great deal of criteria for the interval Gaussian algorithm carries over to the interval
Cholesky method. Unfortunately, the feasibility of the interval Cholesky method does
not necessarily imply that of the interval Gaussian algorithm. We will illustrate this
phenomenon by an example. It was unexpected, since we can show that the existence
of [x]C for each symmetric matrix Ã ∈ [A] implies the feasibility of the Gaussian
algorithm for any matrix A ∈ [A] and not only for the symmetric ones.

We have organized this paper as follows: In section 2 we recall the formulae for
the algorithm and a recursive representation. In addition we introduce our notation
and some basic facts that are used later on. In section 3 we state and prove our new
results illustrating them by examples.

2. Preliminaries. By R
n,Rn×n, IR, IRn, IRn×n we denote the set of real vectors

with n components, the set of real n×n matrices, the set of intervals, the set of interval
vectors with n components, and the set of n × n interval matrices, respectively. By
“interval” we always mean a real compact interval. We write interval quantities in
brackets with the exception of point quantities (i.e., degenerate interval quantities)
which we identify with the element they contain. Examples are the zero matrix
O, the identity matrix I, and the vector e = (1, 1, . . . , 1)T . We use the notation
[A] = [A,A] = ([a]ij) = ([aij , aij ]) ∈ IR

n×n simultaneously without further reference,
and we proceed similarly for the elements of R

n,Rn×n, IR, and IR
n. We also mention

the standard notation from interval analysis ([1], [11]),

ǎ = mid([a]) = (a + a)/2 (midpoint),

|[a]| = max{|ã| | ã ∈ [a]} = max{|a|, |a|} (absolute value),

〈[a]〉 = min{|ã| | ã ∈ [a]} =

{
min{|a|, |a|} if 0 �∈ [a],

0 otherwise
(minimal absolute value)

for intervals [a]. For [A] ∈ IR
n×n we obtain |[A]| ∈ R

n×n by applying the operator
| · | entrywise, and we define the comparison matrix 〈[A]〉 = (cij) ∈ R

n×n by setting

cij =

{
−|[a]ij | if i �= j,

〈[a]ii〉 if i = j.

Since real numbers can be viewed as degenerate intervals, | · | and 〈 · 〉 can also be
used for them. In this case they coincide with their well known real counterpart.

By A ≥ O we denote a nonnegative n× n matrix, i.e., aij ≥ 0 for i, j = 1, . . . , n.
Analogously, we define x ≥ 0 for x ∈ R

n. We call x ∈ R
n positive writing x > 0 if

xi > 0, i = 1, . . . , n. We use Zn×n for the set of real n× n matrices with nonpositive
off-diagonal entries. Trivially, Zn×n contains the n× n matrix 〈A〉. As usual we call
A ∈ R

n×n an M -matrix if A is nonsingular with A−1 ≥ O and A ∈ Zn×n. It is an
H-matrix if 〈A〉 is an M -matrix.

An interval matrix [A] ∈ IR
n×n is defined to be an M -matrix if each element

Ã ∈ [A] is an M -matrix. In the same way the term “H-matrix” can be extended to
IR

n×n. It is easy to verify that [A] ∈ IR
n×n is an M -matrix if and only if A is an

M -matrix and aij ≤ 0 for i �= j, and that [A] ∈ IR
n×n is an H-matrix if and only if

〈[A]〉 is an M -matrix.
We call [A] ∈ IR

n×n irreducible if 〈[A]〉 is irreducible. In the same way we
define [A] to be diagonally dominant, strictly diagonally dominant, and irreducibly
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diagonally dominant, respectively. If there is a positive vector x such that

(2.1) 〈[A]〉x ≥ 0

holds, then we call [A] generalized diagonally dominant. Moreover, we define [A] to
be generalized strictly diagonally dominant if strict inequality holds in (2.1). Anal-
ogously, a generalized irreducibly diagonally dominant matrix [A] is irreducible and
generalized diagonally dominant with (〈[A]〉x)i > 0 in (2.1) for at least one compo-
nent i. It is well known that generalized strictly diagonally dominant matrices are
H-matrices and vice versa.

We equip IR, IRn, IRn×n with the usual real interval arithmetic as described in
[1], [11]. We assume that the reader is familiar with the basic properties of this
arithmetic. For [a] ∈ IR we define

√
[a] = {

√
a | a ∈ [a]} for 0 ≤ a

and

(2.2) [a]2 = {a2 | a ∈ [a]}.

Instead of
√

[a] we also write [a]1/2.
Then the interval Cholesky method reads as follows.
Given [A] = [A]T ∈ IR

n×n and [b] ∈ IR
n, define the lower triangular matrix [L]

and the vectors [y], [x]C = ([x]Ci ) = ICh([A], [b]) ∈ IR
n by

[l]jj =

(
[a]jj −

j−1∑
k=1

[l]2jk

)1/2

,

[l]ij =

(
[a]ij −

j−1∑
k=1

[l]ik[l]jk

)
/ [l]jj , i = j + 1, . . . , n,

j = 1, . . . , n,

[y]i =

⎛
⎝[b]i −

i−1∑
j=1

[l]ij [y]j

⎞
⎠ / [l]ii, i = 1, . . . , n,

[x]Ci =

⎛
⎝[y]i −

n∑
j=i+1

[l]ji[x]Cj

⎞
⎠ / [l]ii, i = n, n− 1, . . . , 1.

Sums with an upper bound smaller than the lower one are defined to be zero;
the squares in the first formula are evaluated by applying the interval square function
(2.2).

Apparently [x]C exists if and only if 0 < lii, i = 1, . . . , n. In this case we call
the algorithm feasible. Note that this feasibility does not depend on the choice of
[b]. For the interval Cholesky method we assume, without loss of generality, [A] to
be symmetric, i.e., [A] = [A]T . (In the case [A] �= [A]T we replace [A] by the largest
interval matrix [B] ⊆ [A] which satisfies [B] = [B]T and rename [B] to [A].) By the
overestimation of the interval arithmetic only

[A] ⊆ [L][L]T
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can be guaranteed; cf. [2] for details. Nevertheless the pair ([L], [L]T ) is called the
Cholesky decomposition of [A]. This decomposition can also be defined in a recursive
way. To this end write [A] ∈ IR

n×n as

[A] =

(
[a]11 [c]T

[c] [A]′

)

and use its Schur complement ΣC
[A] = [A]′ − [c][c]T /[a]11 if n > 1, 0 �∈ [a]11, where

[c]i[c]i is evaluated as [c]2i .
Definition 2.1 (equivalent definition of ([L], [L]T )). The pair ([L], [L]T ) is called

the Cholesky decomposition of [A] = [A]T ∈ IR
n×n if 0 < a11 and if either n = 1,

[L] = (
√

[a]11), or if n > 1 and

(2.3) [L] =

( √
[a]11 0

[c]/
√

[a]11 [L]′

)
,

where ([L]′, ([L]′)T ) is the Cholesky decomposition of ΣC
[A]. If 0 ∈ [a]11, then the

Cholesky decomposition does not exist.
In [2] we showed that the matrix [L] in Definition 2.1 is the same as that defined

by the interval Cholesky method. In particular, the existence of the Cholesky de-
composition is equivalent to the feasibility of the interval Cholesky method. We will
exploit this fact later. It is a basic fact of matrix analysis that the existence of the
Cholesky decomposition of a symmetric point matrix A ∈ R

n×n is equivalent to A
being positive definite, to A having only positive eigenvalues, and to A having only
positive leading principal minors; cf., for instance, [7].

Directly from the formulae of the interval Cholesky method we obtain the follow-
ing result which corresponds to Lemma 3.1 (b) in [8].

Lemma 2.1. Let [A] = [A]T ∈ IR
n×n, [b] ∈ IR

n, and let [x]C = ICh([A], [b])
exist. If D = diag(d1, . . . , dn) ∈ R

n×n has positive entries di, i = 1, . . . , n, in the
diagonal, then [x̃]C = ICh([D[A]D,D[b]) exists and satisfies [x̃]C = D−1[x]C .

Proof. Denote by a tilde all items which belong to [x̃]C . Then, by induction,
the formulae of the interval Cholesky method yield [L̃] = D[L], hence [ỹ] = [y] and
[x̃]C = D−1[x]C .

We continue by recalling some results from [2].
Theorem 2.1. Let [A] = [A]T ∈ IR

n×n be an H-matrix with 0 < aii, i = 1, . . . , n.
Then the following statements hold.

(a) The vector [x]C exists, and [L] is again an H-matrix.
(b) Each symmetric matrix Ã ∈ [A] is positive definite.
From Theorem 2.1 we easily get the following corollary.
Corollary 2.1. Let [A] = [A]T ∈ IR

n×n be an H-matrix. Then the following
statements are equivalent.

(i) The vector [x]C exists.
(ii) The sign condition aii > 0, i = 1, . . . , n, holds.
(iii) The matrix [A] contains at least one symmetric and positive definite element

Ã ∈ [A].
Proof. (i) ⇒ (ii). Since 〈[A]〉 is an M -matrix we have 〈[a]ii〉 > 0, i = 1, . . . , n,

whence 0 �∈ [a]ii. The existence of [x]C then implies aii > 0.
The implications (ii) ⇒ (i) and (ii) ⇒ (iii) follow directly from Theorem 2.1.
(iii) ⇒ (ii). As in the first implication above, one gets 0 �∈ [a]ii, and the sign

condition for aii follows from the positive definiteness of Ã.
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Theorem 2.2. Let [A] = [A]T ∈ IR
n×n be a tridiagonal matrix, and let Ã ∈ [A]

be any symmetric matrix which satisfies 〈Ã〉 = 〈[A]〉 and is positive definite. Then [A]
is an H-matrix; in particular, all symmetric matrices A ∈ [A] are positive definite,
and [x]C exists.

Theorem 2.3. Let

A =

(
a11 cT

c A′

)
∈ R

n×n

be symmetric and positive definite. Then the Schur complement ΣC
A = A′ − ccT /a11

of A is symmetric and positive definite.

Proof. Use 0 < xTAx = (x′)T ΣC
A x′ for x =

(
−cTx′/a11, (x′)T

)T
and any nonzero

vector x′ ∈ R
n−1.

Since we will also use results of the interval Gaussian algorithm we will recall its
formulae, too.

Given [A] ∈ IR
n×n and [b] ∈ IR

n, define [A](k) = ([a]
(k)
ij ) ∈ IR

n×n, [b](k) =

([b]
(k)
i ) ∈ IR

n, k = 1, . . . , n, and [x]G = ([x]Gi ) = IGA([A], [b]) ∈ IR
n by

[A](1) = [A], [b](1) = [b],

[a]
(k+1)
ij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[a]
(k)
ij , i = 1, . . . , k, j = 1, . . . , n,

[a]
(k)
ij −

[a]
(k)
ik · [a](k)

kj

[a]
(k)
kk

, i = k + 1, . . . , n, j = k + 1, . . . , n,

0 otherwise,

[b]
(k+1)
i =

⎧⎪⎪⎨
⎪⎪⎩

[b]
(k)
i , i = 1, . . . , k,

[b]
(k)
i − [a]

(k)
ik

[a]
(k)
kk

· [b](k)
k , i = k + 1, . . . , n,

k = 1, . . . , n− 1,

[x]Gi =

⎛
⎝[b]

(n)
i −

n∑
j=i+1

[a]
(n)
ij [x]Gj

⎞
⎠/

[a]
(n)
ii , i = n, n− 1, . . . , 1.

For i = n the sum is set equal to zero.
Note that [x]G is defined without permuting rows or columns. The algorithm

is feasible if and only if 0 �∈ [a]
(k)
kk , k = 1, . . . , n, where again the feasibility does

not depend on the choice of [b]. Define the lower triangular matrix [L̂] by [l̂]ii = 1,

[l̂]ij = [a]
(j)
ij /[a]

(j)
jj for i > j, and the upper triangular matrix [Û ] by [û]ij = [a]

(n)
ij for

i ≤ j. According to [11] the pair ([L̂], [Û ]) is called the triangular decomposition of
[A].

Similar to Definition 2.1 there is an equivalent recursive definition of that decom-
position. It uses the partition

[A] =

(
[a]11 [c]T

[d] [A]′

)
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and its Schur complement ΣG
[A] = [A]′ − [d][c]T /[a]11 if n > 1, 0 �∈ [a]11. Note that

for [A] = [A]T we have [c] = [d]. In this case we assume that [c]i[c]i in the product
[d][c]T = [c][c]T is evaluated as a product of intervals and not as in (2.2). This implies

(2.4) ΣC
[A] ⊆ ΣG

[A],

where both matrices may differ from each other. For symmetric point matrices A ≡
[A], however, equality always holds in (2.4), provided that a11 > 0.

Definition 2.2 (equivalent definition of ([L̂], [Û ])). The pair ([L̂], [Û ]) is called
triangular decomposition of [A] ∈ IR

n×n if 0 �∈ [a]11 and if either n = 1, [L̂] = 1,
[Û ] = ([a]11), or if n > 1 and

[L̂] =

(
1 0

[d]/[a]11 [L̂]′

)
, [Û ] =

(
[a]11 [c]T

0 [Û ]′

)
,

where ([L̂]′, [Û ]′) is the triangular decomposition of ΣG
[A]. If 0 ∈ [a]11, then the trian-

gular decomposition does not exist.
In what follows we will use the notation of section 2 without further reference.

3. New results. In this section we will present some new criteria for the feasi-
bility of the interval Cholesky method. Since neither the existence of [x]C nor that of
[x]G depends on the right-hand side [b], we do not refer to [b] in our results.

Assume now that A ∈ R
n×n is symmetric and positive definite. Then from the

Cholesky decomposition (L,LT ) of A we define the diagonal matrix D = diag(l11, . . .
. . . , lnn). It is well known that D has positive diagonal entries. Hence A = LLT =
(LD−1)(DLT ) yields the unique (L̂, Û)-decomposition of A with L̂ = LD−1 and Û =
DLT . Conversely, from the (L̂, Û)-decomposition of a symmetric matrix A ∈ R

n×n

with positive diagonal entries ûii, i = 1, . . . , n, one easily verifies positive definiteness
of A and hence the existence of the Cholesky decomposition. Therefore, the question
arises at once whether a similar result also holds in the interval case. In one direction
the answer is positive.

Theorem 3.1. Let [A] = [A]T ∈ IR
n×n contain a symmetric and positive definite

matrix Ã. If [x]G exists, then [x]C exists, too.
Proof. Since Ã ∈ [A] is symmetric and positive definite we have ã11 > 0. More-

over, since by assumption [x]G exists we obtain a11 > 0. We now proceed by induction
on the dimension of [A].

If n = 1, then the assertion is obvious. If n > 1, then let it hold for dimensions
less than n, and let

[A] =

(
[a]11 [c]T

[c] [A
′
]

)
.

From a11 > 0, the Schur complements

ΣC
[A] = [A]′ − [c][c]T /[a]11 (with [c]i[c]i being evaluated as [c]2i )

for the Cholesky method and

ΣG
[A] = [A]′ − [c][c]T /[a]11 ⊇ ΣC

[A]

(with [c]i[c]i being evaluated as a product of two intervals) for the Gaussian algo-
rithm exist. Since, by assumption, the interval Gaussian algorithm is feasible for ΣG

[A]
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and since this interval matrix contains the symmetric and positive definite matrix
ΣG

Ã
= ΣC

Ã
(cf. Theorem 2.3), the induction hypothesis applies for ΣG

[A]. Therefore, the

Cholesky decomposition exists for this interval matrix and thus exists for the (possibly
proper) subset ΣC

[A], too.
We will prove now a result on point matrices which originally increased our hope

for a converse of Theorem 3.1.
Theorem 3.2. Let all symmetric matrices Ã ∈ [A] = [A]T ∈ IR

n×n be positive
definite. Then the Gaussian algorithm is feasible without pivoting for all matrices
A ∈ [A] (and not only for the symmetric ones).

Proof. Let A ∈ [A]. Then the symmetric part1 Asym = (A + AT )/2 of A is
contained in [A], and hence it is positive definite by assumption. For x �= 0 we have

(3.1) 0 < xTAsymx = (xTAx + xTATx)/2 = xTAx,

where we used xTATx = (xTATx)T = xTAx. From (3.1) we immediately get detA �=
0. Since this implication applies also to all leading submatrices of A the assertion
follows from Theorem 9.1.2 in [12].

Despite this positive result the converse of Theorem 3.1 does not hold. This is
illustrated by the following example.

Example 3.1. Consider the matrix

[A] =

⎛
⎜⎜⎜⎝

1 [−1, 1] 0 0

[−1, 1] 2 1 2

0 1 2 2

0 2 2 5 + ε

⎞
⎟⎟⎟⎠

with a positive parameter ε which will be chosen below. Then for the interval Cholesky
method we get

[L] =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

[−1, 1] [1,
√

2] 0 0

0 [1/
√

2, 1] [1,
√

3/2] 0

0 [2/
√

2, 2] [0, 1] [
√
ε,
√

3 + ε]

⎞
⎟⎟⎟⎟⎠ ,

i.e., [x]C exists for any positive value of ε. On the other hand we obtain

[Û ] = [A](4) =

⎛
⎜⎜⎜⎝

1 [−1, 1] 0 0

0 [1, 3] 1 2

0 0 [1, 5/3] [0, 4/3]

0 0 0 [ε− 7/9, ε + 11/3]

⎞
⎟⎟⎟⎠

for the upper triangular matrix of the interval Gaussian algorithm. Choosing ε = 1/3

results in the interval [a]
(4)
44 = [−4/9, 4] which contains zero. Hence [x]G does not

exist although [x]C does. In particular, the assumptions of Theorem 3.2 are fulfilled.
Therefore, the Gaussian algorithm is feasible for any matrix Ã ∈ [A], and our example
is also a counterexample for the interval Gaussian algorithm.

1We thank Prof. M. Plum of the University of Karlsruhe for his suggestion to apply the symmetric
part of A, which made our original proof more elementary.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CHOLESKY METHOD WITH INTERVAL DATA 1399

The dimension n = 4 in Example 3.1 is minimal for a counterexample. This can
be seen from our next result.

Theorem 3.3. Let [A] = [A]T ∈ IR
n×n contain a symmetric and positive definite

matrix Ã, and let n ≤ 3. Then [x]C exists if and only if [x]G exists.
Proof. By virtue of Theorem 3.1 we must only show that the existence of [x]C

implies that of [x]G. Therefore, from now on we assume that [x]C exists. In particular,
0 < a11 holds, which immediately guarantees the existence of [x]G in the case n = 1.

n = 2: By Theorem 3.2 no matrix Ã ∈ [A] ∈ IR
2×2 is singular, hence [x]G exists

by Proposition 4.5.4 in [11].
n = 3: From a11 > 0 we know that ΣG

[A] exists. Since any interval [c] satisfies

[c]2 ⊆ [c] · [c] = [c]2 + [−d, 0]

with an appropriate nonnegative number d, we obtain

ΣG
[A] = ΣC

[A] + [D] with [D] = diag([0, d1], [0, d2], [0, d3]),

where d1, d2, d3 are appropriate nonnegative real numbers. Note that min(ΣG
[A])11 =

min(ΣC
[A])11 > 0. Choose x ∈ R

2\{0} and Σ̃G = (Σ̃G)T ∈ ΣG
[A]. Then Σ̃G can be

written as Σ̃G = Σ̃C + D̃ with Σ̃C = (Σ̃C)T ∈ ΣC
[A] and O ≤ D̃ ∈ [D], whence

(3.2) xT Σ̃Gx = xT Σ̃Cx + xT D̃x ≥ xT Σ̃Cx > 0.

Thus any symmetric matrix Σ̃G ∈ ΣG
[A] is positive definite, and Theorem 3.2 applies

to ΣG
[A]. Therefore, no matrix Σ ∈ ΣG

[A] is singular, and [x]G ∈ IR
3 exists again by

virtue of Proposition 4.5.4 in [11] applied to ΣG
[A] ∈ IR

2×2.
Another interesting negative result can be seen from Example 3.1: For symmetric

and positive definite matrices Ã ∈ R
n×n, one proves similarly as for Σ̃G in (3.2) that

Ã + D̃ with D̃ ≥ O is positive definite, hence the Cholesky method is feasible for
Ã + D̃, too. For interval matrices [A] + [O,D], D ≥ O, an analogous result does
not hold if one merely knows that [x]C exists for [A]. Otherwise apply this result to
ΣG

[A] = ΣC
[A] + [O,D]; it would guarantee that ΣG

[A] has a Cholesky decomposition if

[A] has one, and an inductive argument would show that Theorem 3.1 has a converse.
This contradicts Example 3.1.

There are more classes of matrices for which one can prove the converse of The-
orem 3.1. In order to characterize some of them we use the concept of an undirected
graph of a real matrix A ∈ R

n×n with the nodes 1, . . . , n and the edges {i, j} when-
ever |aij | + |aji| �= 0; cf. for instance [6]. We call j a neighbor of the node i (�= j)
if i and j are connected by an edge. The number of neighbors of i are the degree
of i in the underlying graph. Let Gk denote the kth elimination graph of [A], i.e.,
the undirected graph of |[A](k)| in which the nodes 1, . . . , k− 1 and the corresponding

edges have been removed and for which we assume that [a]
(k−1)
ij �= 0 implies [a]

(k)
ij �= 0,

i, j ≥ k (no accidental zeros!); cf. [6]. If in Gk the node k has the smallest degree and
if this holds for all k = 1, . . . , n, then we say that [A] is ordered by minimum degree.
If the graph of such a matrix has tree structure (i.e., it is a connected graph with no
cycles of length ≥ 3; cf. [4]), then the following result holds.

Theorem 3.4. Let [A] = [A]T ∈ IR
n×n contain a symmetric and positive definite

matrix Ã. If the undirected graph of 〈[A]〉 is a tree and if it is ordered by minimum
degree, then the following statements are equivalent.
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(i) The vector [x]G exists.
(ii) The vector [x]C exists.
(iii) Each symmetric matrix in [A] is positive definite.

Proof. (i) ⇒ (ii) follows from Theorem 3.1.

(ii) ⇒ (iii) is trivial.

(iii) ⇒ (i) follows from Theorem 3.2 and Theorem 4 in [4].

For a variant of the interval Cholesky method, Theorem 3.4 was proved in [4].
Note that symmetric tridiagonal interval matrices and symmetric arrowhead interval
matrices [14] belong to the class of matrices characterized in Theorem 3.4 (provided
that they contain a symmetric and positive definite matrix Ã).

Example 3.2. Consider the arrowhead matrix

[A] =

⎛
⎜⎝

2 0 [−1, 1]

0 2 [−1, 1]

[−1, 1] [−1, 1] 2

⎞
⎟⎠ .

Then Gerschgorin’s theorem shows that the eigenvalues of each symmetric matrix
Ã ∈ [A] are nonnegative. They are even positive as can be seen in most cases by
the same theorem. For the remaining cases Ã is irreducibly diagonally dominant and
thus an H-matrix. Since such a matrix is regular it cannot have zero as an eigenvalue.
Therefore, each symmetric matrix Ã ∈ [A] is positive definite, and [x]C exists for [A]
by Theorem 3.4.

In order to formulate our next result we need the extended sign matrix S′ which
we define recursively as in [8].

Definition 3.1 (sign matrix S and extended sign matrix S′ for [A]). Let [A] ∈
IR

n×n. Then we have the following.

(a) The matrix S ∈ R
n×n with sij = signǎij is called the sign matrix of [A].

(b) With S from (a) the extended sign matrix S′ is defined as follows:
S′ = S
for k = 1 : (n− 1)

for i = (k + 1) : n
for j = (k + 1) : n

if s′ij == 0 then s′ij = −s′iks
′
kks

′
kj .

Note that the values of s′ij depend only on S. Any other matrix [Â] with the
same sign matrix S as [A] yields the same extended sign matrix S′.

Theorem 3.5. Let [A] = [A]T ∈ IR
n×n be irreducible and generalized diagonally

dominant with 0 < aii, i = 1, . . . , n. Moreover, let S′ be the extended sign matrix of
[A] defined in Definition 3.1. Then the following statements are equivalent.

(i) The vector [x]C exists.
(ii) The vector [x]G exists.
(iii) The matrix [A] is generalized irreducibly diagonally dominant or the sign

condition

(3.3) s′ij s
′
ik s

′
kj s

′
kk =

{
1 if i �= j,

−1 if i = j

holds for some triple (i, j, k) with k < i, j.
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(iv) The matrix [A] is generalized irreducibly diagonally dominant or the sign
condition

(3.4) s′ij s
′
ik s

′
kj = 1

holds for some triple (i, j, k) with k < j < i.

Proof. The case n = 1 is trivial since a11 > 0. Therefore, from now on we assume
n > 1.

(ii) ⇔ (iii) holds by virtue of Theorem 4.7 in [8].

(iii) ⇔ (iv). From the general assumptions of the theorem we get sii = 1 = s′ii,
i = 1, . . . , n, and S = ST , whence S′ = (S′)T . Therefore,

s′ii s
′
ik s

′
ki s

′
kk = (s′ik)

2 �= −1

holds, i.e., the second sign condition in (3.3) can never be fulfilled. Moreover, a factor
s′kk = 1 can always be added in (3.4) which results in the first sign condition in (3.3).
Hence the existence of some triple (i, j, k) as required in (iii) is equivalent to the
existence of some triple as required in (iv).

(ii) ⇒ (i). Since [x]G exists by assumption, each matrix Ã ∈ [A] is regular.
Consider the matrix [A] + εI, ε > 0. Since aii > 0, i = 1, . . . , n, we get 〈[A] + εI〉 =
〈[A]〉 + εI which shows that [A] + εI is generalized strictly diagonally dominant.
Therefore, it is an H-matrix by Theorem 4.4 (a) in [8] and Theorem 2.1 guarantees
that Ã + εI is positive definite for each symmetric matrix Ã ∈ [A]. Hence Ã + εI
has only positive real eigenvalues which remain positive in the limit ε → 0 since Ã
is regular and since the eigenvalues behave continuously when changing the entries
of a matrix continuously. Therefore, Ã is positive definite for each symmetric matrix
Ã ∈ [A]. In particular, [A] contains at least one such matrix, and Theorem 3.1 finishes
the proof.

(i) ⇒ (ii). Let [x]C exist and assume that [x]G does not exist. Then [A] cannot
be an H-matrix; in particular, by Theorem 4.4 (b) in [8] it cannot be generalized
irreducibly diagonally dominant. However, since it is generalized diagonally dominant
by assumption, there must exist a positive vector x such that 〈[A]〉x = 0. Without
loss of generality, we can assume x = e, i.e.,

(3.5) 〈[A]〉 e = 0.

Otherwise consider the matrix D[A]D with D = diag(x1, . . . , xn) ∈ R
n×n. This

matrix has the same extended sign matrix S′ as [A], is irreducible and diagonally
dominant, but not irreducibly diagonally dominant. Moreover, it fulfills (3.5), and
by Lemma 2.1 the interval Cholesky method is feasible for it since it is for [A] by
assumption.

Since we assumed that [x]G does not exist, the equivalence of (ii) and (iii) shows
that the sign condition (3.3) does not hold. Choose k = 1 for the moment and let S
be the sign matrix of [A]. If sij �= s′ij , then sij must be zero by the construction of S′

in Definition 3.1. (Note that at the beginning of this definition we have S′ = S. Later
s′ij is changed only if it was equal to zero.) Therefore, sij = s′ij or sij = 0. Hence
(3.3) does not hold if s′ij is replaced there by sij . By Lemma 2.1 in [9] this implies

(3.6)

∣∣∣∣[a]ij − [a]i1 · [a]1j
[a]11

∣∣∣∣ = |[a]ij | +
|[a]i1| · |[a]1j |

〈[a]11〉
if i �= j and i, j > 1.
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Next we remark that the equality |[a]2| = |[a]|2 = |[a] · [a]| holds for any interval [a].
Since aii is positive and since [x]C exists we have 0 < lii and

0 < (lii)
2 = aii −

i−1∑
k=1

|[l]2ik| ≤ aii − |[l]2i1| = aii −
∣∣∣∣∣
(

[a]i1
[l]11

)2
∣∣∣∣∣ = 〈[a]ii〉 −

∣∣∣∣ [a]
2
i1

[a]11

∣∣∣∣

= 〈[a]ii〉 −
|[a]2i1|
〈[a]11〉

= 〈[a]ii〉 −
|[a]i1|2
〈[a]11〉

, i > 1.

In particular, 〈[a]ii〉 >
|[a]i1|2
〈[a]11〉

holds, and Lemma 2.1(b) in [9] implies

(3.7)

〈
[a]ii −

[a]2i1
[a]11

〉
=

〈
[a]ii −

[a]i1 · [a]i1
[a]11

〉
= 〈[a]ii〉 −

|[a]i1|2
〈[a]11〉

, i > 1.

From (3.6) and (3.7) we directly get

(3.8) 〈ΣC
[A]〉 = ΣC

〈[A]〉 = ΣG
〈[A]〉 = 〈ΣG

[A]〉

although ΣC
[A] � ΣG

[A] may hold. In fact, by construction both matrices can differ at

most in the diagonal because [c]2i � [c]i · [c]i can occur. Since [x]C exists the diagonal
entries of ΣC

[A] are positive; hence the sign matrices of ΣC
[A] and ΣG

[A] coincide and the
same holds for the extended sign matrices.

With e = ( 1
e′ ) and (3.5) we obtain

(
〈ΣC

[A]〉e′
)
i
=

(
ΣC

〈[A]〉e
′
)
i
=

(
〈[a]ii〉 −

|[a]i1|2
〈[a]11〉

)
−

n∑
j=2
j �=i

(
|[a]ij | +

|[a]i1| · |[a]j1|
〈[a]11〉

)

=

⎧⎪⎨
⎪⎩〈[a]ii〉 −

n∑
j=1
j �=i

|[a]ij |

⎫⎪⎬
⎪⎭ +

|[a]i1|
〈[a]11〉

⎧⎨
⎩〈[a]11〉 −

n∑
j=2

|[a]j1|

⎫⎬
⎭

= (〈[A]〉 e)i +
|[a]i1|
〈[a]11〉

(〈[A]〉 e)1 = 0, i = 2, . . . , n.

Hence

〈ΣC
[A]〉 e′ = ΣC

〈[A]〉 e
′ = ΣG

〈[A]〉e
′ = 〈ΣG

[A]〉 e′ = 0.

Moreover, from (3.8) together with Lemma 3.3 in [5] we know that ΣC
[A] is irreducible

provided that n ≥ 3.
Since we assumed that [x]G does not exist, the interval Gaussian algorithm cannot

be feasible for ΣG
[A]. Therefore, (3.3) cannot hold when formulated for the extended

sign matrix of ΣG
[A]. (In fact, deleting the first row and column of S′ for [A] results in

the corresponding extended sign matrix for the Schur complement.) Since we already
showed that ΣC

[A] and ΣG
[A] have the same extended sign matrices the equivalence of

(ii) and (iii) implies that the interval Gaussian algorithm is not feasible for ΣC
[A].

Thus the assumptions of Theorem 3.5 for [A] are also fulfilled for ΣC
[A] = (ΣC

[A])
T .

Therefore, the previous conclusions can be repeated up to the dimension n = 2 for



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CHOLESKY METHOD WITH INTERVAL DATA 1403

ΣC
[A]. (Note that the restriction of the dimension n concerns only the irreducibility.)

For ease of notation assume that [A] plays the role of ΣC
[A] if n = 2, i.e., it is an

irreducible symmetric 2×2 interval matrix satisfying 〈[A]〉 e = 0. As before we obtain
〈ΣC

[A]〉 e′ = 0, i.e., 0 ∈ ΣC
[A] ∈ IR

1×1, which contradicts the feasibility of the interval

Cholesky method and which finally shows that (3.3) must hold for some triple (i, j, k)
unless [A] ∈ IR

n×n is generalized irreducibly diagonally dominant. (In this case the

sign condition (3.3) may be hurt as the example [A] = ( 2 1
1 2 ) shows.)

Example 3.3.

(a) Let

[A]α =

⎛
⎜⎝

4 [α, 2] [α, 2]

[α, 2] 4 2

[α, 2] 2 4

⎞
⎟⎠ , −2 ≤ α ≤ 2.

Then 〈[A]α〉 e = 0. For −2 < α ≤ 2 we obtain S = eeT = S′. Thus (3.4) is
fulfilled with (i, j, k) = (3, 2, 1), and [x]C exists.
If α = −2, then things change. Here

S =

⎛
⎜⎝

1 0 0

0 1 1

0 1 1

⎞
⎟⎠ = S′

and (3.4) does not hold as one can easily check. Thus [x]C does not exist. In
fact, [A]−2 contains the singular matrix

Ã =

⎛
⎜⎝

4 2 −2

2 4 2

−2 2 4

⎞
⎟⎠ .

(b) Let

[A] =

⎛
⎜⎜⎜⎝

4 0 [0, 2] [−2, 0]

0 4 [0, 2] [0, 2]

[0, 2] [0, 2] [6, 9] [−2, 2]

[−2, 0] [0, 2] [−2, 2] [6, 9]

⎞
⎟⎟⎟⎠ .

Then [A] is irreducible and diagonally dominant. In particular, it satisfies the
assumptions of Theorem 3.5. Moreover, we have

S =

⎛
⎜⎜⎜⎝

1 0 1 −1

0 1 1 1

1 1 1 0

−1 1 0 1

⎞
⎟⎟⎟⎠ �= S′ =

⎛
⎜⎜⎜⎝

1 0 1 −1

0 1 1 1

1 1 1 1

−1 1 1 1

⎞
⎟⎟⎟⎠

with (3.4) for (i, j, k) = (4, 3, 2). Hence [x]C exists.
It is easy to see by Example 3.3 (b) that (3.4) does not hold if the entries of S′

are replaced there by the corresponding entries of S. Doing so, nevertheless, yields a
sufficient criterion analogously to Theorem 5.3 in [5]. We state this result as a corollary
which follows directly from Theorem 3.5(iv) since (3.9) below can be written as (3.4).
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Corollary 3.1. Let [A] = [A]T ∈ IR
n×n, n ≥ 3, be irreducible and generalized

diagonally dominant with 0 < aii, i = 1, . . . , n. Moreover, let S be the sign matrix of
[A] defined in Definition 3.1. If

(3.9) sij sik skj = 1

for some triple (i, j, k) with k < j < i, then [x]C exists.
Now we consider tridiagonal matrices.
Theorem 3.6. Let [A] = [A]T ∈ IR

n×n be tridiagonal. Then the following
statements are equivalent.

(i) The vector [x]G exists and [A] contains at least one symmetric and positive
definite matrix.

(ii) The vector [x]C exists.
(iii) Each symmetric matrix Ã ∈ [A] is positive definite.
Proof. (i) ⇒ (ii) follows from Theorem 3.1.
(ii) ⇒ (iii) follows from the feasibility of the Cholesky method for each symmetric

matrix Ã ∈ [A].
(iii) ⇒ (i) follows from Theorem 2.2 and the feasibility of the interval Gaussian

algorithm for H-matrices; cf. [1] or [11].
Example 3.4. Let [A] = tridiag([−1, 1], 2, [−1, 1]) ∈ IR

n×n. Then Gershgorin’s
theorem shows that the eigenvalues of each symmetric matrix Ã ∈ [A] are nonnegative.
Since Ã is either irreducibly diagonally dominant or consists of blocks of such matrices,
it is an H-matrix. Therefore, no eigenvalue can be zero, each symmetric matrix
Ã ∈ [A] is positive definite, and [x]C exists for [A] by Theorem 3.6.

Our final result deals with matrices of the form [A] = I + [−R,R], which at first
glance look very specific. However, preconditioning any regular interval matrix by its
midpoint inverse Ǎ−1 finally results in such a matrix.

Theorem 3.7. Let [A] = I + [−R,R] with O ≤ R = RT ∈ R
n×n and 0 < aii,

i = 1, . . . , n. Then the following statements are equivalent.
(i) The vector [x]G exists.
(ii) The vector [x]C exists.
(iii) The spectral radius of R is less than one.
(iv) The matrix [A] is an H-matrix.
Proof. The equivalence of (i), (iii), and (iv) is contained in Theorem 3.1 of [10];

cf. also Theorem 4.2 in [8]. The implication (iv) ⇒ (ii) follows from Theorem 2.1. For
the implication (ii) ⇒ (iv), let [x]C exist. Then the Cholesky method is feasible for
Ã = I − R = 〈[A]〉 ∈ [A], hence Ã is symmetric and positive definite. Moreover, it is
an M -matrix whence [A] is an H-matrix.

Acknowledgment. We thank PD Dr. Uwe Schäfer of the University of Karl-
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CHARACTERIZING MATRICES THAT ARE
CONSISTENT WITH GIVEN SOLUTIONS∗

X.-W. CHANG† , C. C. PAIGE† , AND D. TITLEY-PELOQUIN†

Abstract. For given vectors b ∈ Cm and y ∈ Cn we describe a unitary transformation approach
to deriving the set F of all matrices F ∈ Cm×n such that y is an exact solution to the compatible
system Fy = b. This is used for deriving minimal backward errors E and f such that (A+E)y = b+f
when possibly noisy data A ∈ Cm×n and b ∈ Cm are given, and the aim is to decide if y is a
satisfactory approximate solution to Ax = b. The approach might be different, but the above results
are not new. However, we also prove the apparently new result that two well-known approaches
to making this decision are theoretically equivalent and discuss how such knowledge can be used in
designing effective stopping criteria for iterative solution techniques. All these ideas generalize to the
following formulations. We extend our constructive approach to derive a superset FSTLS+ of the set
FSTLS of all matrices F ∈ Cm×n such that y is a scaled total least squares solution to Fy ≈ b. This
is a new general result that specializes in two important ways. The ordinary least squares problem is
an extreme case of the scaled total least squares problem, and we use our result to obtain the set FLS

of all matrices F ∈ Cm×n such that y is an exact least squares solution to Fy ≈ b. This complements
the original less-constructive derivation of Waldén, Karlson, and Sun [Numer. Linear Algebra Appl.,
2 (1995), pp. 271–286]. We do the equivalent for the data least squares problem—the other extreme
case of the scaled total least squares problem. Not only can the results be used as indicated above
for the compatible case, but the constructive technique we use could also be applicable to other
backward problems—such as those for underdetermined systems, the singular value decomposition,
and the eigenproblem.

Key words. matrix characterization, approximate solutions, iterative methods, linear algebraic
equations, least squares, data least squares, total least squares, scaled total least squares, backward
errors, stopping criteria
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1. Introduction. We will study a class of “backward” problems for linear sys-
tems Fy ≈ b. Specifically, given two vectors y and b we want to find the sets of all
matrices F such that y is the exact solution (i.e., Fy = b), the least squares (LS) solu-
tion, the data least squares (DLS) solution, and the scaled total least square (STLS)
solution. We will propose a unified unitary transformation approach to handling these
problems.

Some of these problems have been investigated before. The result for the com-
patible case is well known, and the result for the least squares case was obtained
elegantly by Waldén, Karlson, and Sun in [31]. But while [31] presents, then proves,
the least squares result, our approach shows how to derive a more general result in a
fairly simple way, and we suspect that this constructive approach is not only easier to
comprehend for non-mathematicians, but perhaps easier to apply to other problems.

Thus the technique we use is widely applicable and an important part of this
paper: it is to transform the unknown matrices F from the left and right by certain
theoretical unitary matrices related to the given vectors b and y. These are designed
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so that the constraints, such as Fy = b in the compatible case, reveal the structure
of the set of possible matrices F .

One of the main uses for finding sets of matrices consistent with given approximate
solutions is to find minimal backward errors; see, for example, section 2.2 here. If the
normwise relative backward error is of the order of the unit roundoff, then we say that
the approximate solution is a (normwise) backward stable solution. This is useful in
practice, for sometimes we do not know if an algorithm for solving a problem is
numerically stable—but if we know that a computed solution of a specific problem
is a backward stable solution, we are usually satisfied with this computed solution.
Also, when we solve a problem by an iterative algorithm, the minimal backward error
can often be used to design effective stopping criteria. There has been a lot of work
on backward error problems, especially in recent years. For example, for consistent
linear systems (including structured problems), see [10], [12], [19], [24], [25], [26], [30],
[32]; for unconstrained least squares problems, see [6], [8], [11], [12], [13], [14], [20],
[21], [22], [23], [31]; for constrained least squares problems, see [3], [13], [14]; and for
data least squares problems, see [2].

To illustrate the basic ideas and techniques of our approach and the uses of the
results, we start with the simplest compatible case in section 2. In section 3 we
find a useful superset FSTLS+ of the set FSTLS of matrices consistent with given
STLS solutions. The STLS problem is a generalization of the ordinary LS and DLS
problems. From the results for the STLS problem we obtain the set FLS of consistent
matrices for the LS problem and a superset FDLS+ of the set FDLS of consistent
matrices for the DLS problem. The results are given in sections 4 and 5. We have
not been able to find simple and practical representations of FDLS and FSTLS, but
we discuss in section 6 how the sets FSTLS+ and FDLS+ can be just as useful.

In problems which have known structure we will sometimes be interested only in
those matrices with that structure; see, for example, several papers in [27], [28] for
total least squares problems. We have not looked at such problems, but one approach
might be to start with the sets we derive here and then consider the subsets of these
with the desired structures.

We will use I = [e1, . . . , en] to denote the unit matrix; ‖x‖2 ≡ xHx; ‖B‖2 ≡
σmax(B), the maximum singular value of B; ‖B‖2

F ≡ trace(BHB). We will use B† to
represent the Moore–Penrose generalized inverse of B. For any complex vector v,

v† ≡
{

0 if v = 0,
vH/‖v‖2 if v �= 0,

and Pv⊥ = I−vv† is always the projector onto the orthogonal complement of range(v).
We will regularly use the following: if v ∈ C

n and V2 ∈ C
n×(n−1), then

(1.1) V2V
H
2 = I − vv† ⇔ V ≡ [v/‖v‖, V2] ∈ C

n×n is unitary.

2. The compatible case. Our analysis for known results for compatible linear
systems Ax = b will provide the basic ideas and techniques used throughout this
paper. The useful Lemma 2.1 and an apparently new result Corollary 2.3 will be
given.

2.1. The set of consistent matrices F for Fy = b. The backward problem
is the following: given b ∈ C

m and y ∈ C
n we wish to characterize all F ∈ C

m×n such
that y is the exact solution to Fy = b. We can write

(2.1) F = F(b, y) ≡
{
F ∈ C

m×n : Fy = b
}

.
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An explicit expression for F can be used in various problems such as finding optimal
such F , structured such F , etc. We now obtain such an explicit characterization of
all F ∈ F . Note that if y = 0, then every F ∈ C

m×n will do if b = 0, but none will
do if b �= 0, and we now consider only y �= 0.

Lemma 2.1. For given b ∈ C
m and nonzero y ∈ C

n define

F ≡ {F ∈ C
m×n : Fy = b},

N ≡
{
by† + Z

(
I − yy†) : Z ∈ C

m×n
}

.(2.2)

Then F = N , and any F ∈ F can also be written as

(2.3) F = by† + G2Y
H
2 , where G2 ∈ C

m×(n−1), Y2Y
H
2 = I − yy†.

Proof. In the theory of generalized inverses, any solution X of XA = B can be
written as X = BA† + Z(I − AA†), so F = N follows immediately. However, the
following constructive derivation provides the useful representation (2.3) and can be
extended to solve other backward problems such as those in sections 3, 4, and 5.

Note in (2.3) that Y2 has n−1 columns, so from (1.1) we see that Y = [y/‖y‖, Y2]
is unitary. Such unitary matrices are the tools we use in our constructive derivations
of sets such as those above. For any F ∈ F , let Y be any unitary matrix of the form
Y = [y/‖y‖, Y2], so that Y Hy = e1‖y‖. In order to describe our sets, we introduce an
unknown matrix G. Specifically we define G ≡ FY ∈ C

m×n so that the constraint
Fy = b can be rewritten as

(2.4) Fy = FY Y Hy = Ge1‖y‖ = b.

We will show how (2.4) limits the possible G. Express G as G ≡ [g1, G2] for some
vector g1. Then (2.4) gives g1‖y‖ = b, so that g1 = b/‖y‖ and F = GY H = by† +
G2Y

H
2 , proving (2.3). Here G2, and only G2, is independent of the constraint Fy = b.
We can replace G2Y

H
2 by ZY2Y

H
2 as follows. For any Z ∈ C

m×n define G2 ≡ ZY2,
so that G2Y

H
2 = ZY2Y

H
2 . Conversely, for any G2 we can define Z ≡ G2Y

H
2 so that

G2Y
H
2 = G2Y

H
2 Y2Y

H
2 = ZY2Y

H
2 . Thus we can use (1.1) to rewrite any F in (2.3) as

F = by† + ZY2Y
H
2 = by† + Z

(
I − yy†)

for some totally unknown Z ∈ C
m×n. Thus F ∈ F ⇒ F ∈ N , and so F ⊆ N . But if

F ∈ N , then clearly Fy = b, so F ∈ F , proving N ⊆ F , and thus F = N .
If y = 0 and b = 0, it is easy to see that F = N still holds, but (2.3) does not

since no such Y2 can exist.
Notice that, although (2.2) is a compact explicit representation of all possible ma-

trices F such that Fy = b, the equivalent (2.3) shows there are other representations.
The most useful representation will depend on the problem being solved.

Compatible linear systems are a distinct and important special case of each of
the later problems we examine. It is helpful to continue this introduction by apply-
ing Lemma 2.1 to give some well-known results and an interesting corollary. These
illustrate how these set representations might be used in general.

2.2. Minimal backward errors and acceptable solutions. In this section
we will consider only the matrix 2- and F-norms and use one description for both.
Thus η2,F etc. will indicate that one can use either the matrix 2-norm throughout or
the F-norm throughout.
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Given A ∈ C
m×n, b ∈ C

m, and nonzero y ∈ C
n, suppose we wish to find the

smallest (in some sense) perturbations E and f in A and b such that (A+E)y = b+f .
One approach proposed by Rigal and Gaches [19, section 3.1] is to essentially solve

(2.5) η2,F ≡ min
η,E,f

{η : ‖E‖2,F ≤ ηα‖A‖2,F , ‖f‖ ≤ ηβ‖b‖, (A + E)y = b + f}

for given α ≥ 0 and β ≥ 0 (not both zero). See Remark 2.1 for comments on η2,F .
Another well-known approach (see, for example, [9, Problem 7.8]) is to solve

(2.6) ζ ≡ min
E,f

{‖[E, fθ]‖F : (A + E)y = b + f}

for some given real scalar θ ≥ 0.
Although the solutions are known for the above two approaches, these are appar-

ently not compared in the literature. We prove in Corollary 2.3 that for the 2- and
F-norms the two approaches are, in fact, theoretically equivalent.

Theorem 2.2. Given A ∈ C
m×n, b ∈ C

m, and nonzero y ∈ C
n, along with

nonnegative real scalars α and β (not both zero), and θ ≥ 0, then with the definitions

(2.7) r ≡ b − Ay, μ2,F ≡ β‖b‖
α‖A‖2,F ‖y‖ + β‖b‖ , ν ≡ 1

1 + θ2‖y‖2
,

the minimum in (2.5) is

(2.8) η2,F =
‖r‖

α‖A‖2,F ‖y‖ + β‖b‖ ,

which is reached with the optimal

(2.9) Ê = r(1 − μ2,F )y†, f̂ = −rμ2,F ,

while the minimum in (2.6) is

(2.10) ζ =
(

θ2‖r‖2

1 + θ2‖y‖2

)1/2

,

which is reached with the optimal

(2.11) Ê = r(1 − ν)y†, f̂ = −rν.

Proof. The quickest proof is to follow the approach of Higham [9, Theorem 7.1]:
for each of (2.8) and (2.10) it is straightforward to show that the right-hand side is
a lower bound on the minimand and that the stated optimal values give the lower
bound.

But for possible future work it is useful to see how the actual solutions can be
found via Lemma 2.1. Using the notation of Lemma 2.1 we see from (2.1) and (2.3)
that, for any given f , any E satisfying the constraint (A + E)y = b + f has the form

E = (b + f)y† + G2Y
H
2 − A, Y2Y

H
2 = I − yy†,

for some G2 ∈ C
m×(n−1). Therefore with unitary Y of the form Y = [y/‖y‖, Y2],

‖E‖2
2,F = ‖EY ‖2

2,F = ‖[(b + f)y† + G2Y
H
2 − A][y/‖y‖, Y2]‖2

2,F

= ‖[(b + f − Ay)/‖y‖, G2 − AY2]‖2
2,F

≥ ‖r + f‖2/‖y‖2.
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The last inequality becomes an equality if G2 = AY2, which is independent of f .
Thus G2 = AY2 is optimal for both (2.5) and (2.6), and so with this G2 we have
E = (b + f)y† − Ayy† = (r + f)y† for both problems.

Note that we can always write f = −rμ + u for some (possibly complex) scalar μ
and some u ∈ C

m such that uHr = 0, so

‖f‖2 = ‖r‖2|μ|2 + ‖u‖2, ‖r + f‖2 = ‖r‖2|1 − μ|2 + ‖u‖2.

But ‖E‖2,F = ‖r + f‖/‖y‖, from which we can see that the minima in both (2.5) and
(2.6) require u = 0 and μ real, since for a given real part μR, both |μ| and |1− μ| are
minimized by taking μ = μR. This gives f = −rμ , E = r(1 − μ)y†.

The theorem is obvious when r = 0, so assume r �= 0. For (2.5) we solve

min
μ

{η : |1 − μ|·‖r‖ ≤ ηα‖A‖2,F ‖y‖, |μ|·‖r‖ ≤ ηβ‖b‖},

from which we can see that if α = 0, then μ = 1; if β = 0, then μ = 0; otherwise, the
minimum occurs when

η =
|1 − μ|·‖r‖
α‖A‖2,F‖y‖

=
|μ|·‖r‖
β‖b‖ , 0 < μ < 1,

giving μ = β‖b‖/(α‖A‖2,F‖y‖+β‖b‖) = μ2,F in all cases, so that the optimal η = η2,F ,
proving (2.8) with its minimizers (2.9).

In (2.10)

‖[E, fθ]‖2
F =

[
(1 − μ)2 + μ2θ2‖y‖2

]
‖r‖2/‖y‖2,

which is minimized by μ = (1 + θ2‖y‖2)−1 = ν, 1−μ = νθ2‖y‖2, proving (2.10) with
its minimizers (2.11) and completing this longer but constructive proof.

Rigal and Gaches [19, section 3.1] essentially proved (2.8), while the result (2.10)
is well known; see, for example, [9, Problem 7.8]. Here we relate these two results.

Corollary 2.3. With the notation in Theorem 2.2, taking θ in (2.6) to be

(2.12) θ2,F ≡

⎧⎨⎩
(

α‖A‖2,F

β‖b‖·‖y‖

)1/2

if β > 0,

∞ if β = 0

makes the optimal Ê and f̂ for (2.10) identical to the optimal Ê and f̂ for (2.8).
Proof. From Theorem 2.2 we see that the optimal Ê and f̂ have the same forms

E = r(1 − μ)y† and f = −rμ, where the only differences are in the values of μ. The
values of μ become the same by choosing θ so that ν = μ2,F ; that is,

ν−1 = 1 + θ2‖y‖2 = μ−1
2,F = (α‖A‖2,F ‖y‖ + β‖b‖)/β‖b‖,

giving θ = θ2,F in (2.12) when β > 0. If β = 0, then taking θ = ∞ results in
ν = μ2,F = 0, which forces f = 0; cf. the DLS case in section 5.

Thus in order to define optimal backward perturbations in these cases, it does
not matter which of the theoretical approaches (2.8) or (2.10) we take, as long as we
choose α and β, or θ, according to (2.12).

The quantity η2,F can be used to check if an approximate solution to Ax = b
is an acceptable solution. Most practical problems contain uncertainties in the data,
and, instead of solving Ax = b with ideal data A and b, we solve some system

(2.13) (A + δA)x̃ = b + δb, where ‖δA‖2,F ≤ α‖A‖2,F , ‖δb‖ ≤ β‖b‖
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for some hopefully approximately known α ≥ 0 and β ≥ 0. Notice that the given
y solves a problem within the range of uncertainty in the data (2.13) if and only
if η2,F ≤ 1, so that if η2,F ≤ 1 we can conclude that the given y is an acceptable
solution to the compatible system Ax = b, and this can be used as a stopping criterion
for iterative methods such as the modified Gram-Schmidt GMRES method (MGS-
GMRES).

Remark 2.1. If α = β = 1 in (2.5), then from (2.8) η2,F becomes the normwise
relative backward error (NRBE) ‖r‖/(‖A‖2,F‖y‖+‖b‖) in [9, p. 120]. This is excellent
for plotting the performance of an iterative solution of equations algorithm and can
be used in the stopping criterion η2,F ≤ O(ε) for a numerically stable algorithm. To
handle α �= β in (2.13) we chose η2,F as in (2.5). This is then neither a NRBE nor
a direct measure of backward error, and it has to be used with the very different
stopping criterion η2,F ≤ 1. But in this case it is easy to define and compute the two
distinct NRBEs—that in A: η2,F α = ‖Ê‖2,F /‖A‖2,F and that in b: η2,F β = ‖f̂‖/‖b‖.

A knowledge of the uncertainties will usually suggest rough values for α and β.
If we do not know such values, or want maximum accuracy in a normwise backward
sense, we can use a backward stable algorithm and take α = β = O(ε), where ε is
the floating point arithmetic unit roundoff and O(ε) depends on the algorithm. For
example, it was shown in [15, sections 1 and 8.2] that, for sufficiently nonsingular
n×n A in the real problem Ax = b, for MGS-GMRES we would use the F-norm and
might take α = β = 100knε at step k if we wanted to be unrealistically careful, or
more sensibly α = β = 10nε, where experience suggests we can usually obtain even
better accuracy than this.

Sometimes we will have only an estimate of the α/β ratio or of the equivalent θ
satisfying (2.12). For example, we might know only that the relative error in b can
be about ten times that in A. If we have no idea of the individual α and β values, we
do not have a clear acceptance criterion. For certainty we could assume that α and β
were very small, and in the case β/α ≥ 1 we could set α = O(ε) and β = (β/α)O(ε).
For example, when using MGS-GMRES, if we know that the relative error in b is
about ten times that in A, we might set α = 10nε, β = 100nε.

If only θ, or the ratio α/β, is available, the quantity ζ in (2.6) is sometimes
referred to as a normwise backward error; see, for example, [9, Problem 7.8]. But
it is important to be aware that this quantity can be a poor measure of backward
error for small θ. This is because ζ → 0 as θ → 0 (see (2.10)) while (2.6) shows that
the optimal E → 0, f → Ay − b = −r as θ → 0, so that if r �= 0, then ζ will be
an inappropriate measure when θ is small. A generally more appropriate measure of
backward error for the ‖[E, fθ]‖F approach might be ‖[Ê, f̂ ]‖2

F , where with (2.11)
and (2.7)

(2.14)
∥∥∥[Ê, f̂

]∥∥∥2

F
=

1 + θ4‖y‖2

(1 + θ2‖y‖2)2
‖r‖2.

Note that this quantity is equal to ζ when θ = 1 and in the limit as θ → ∞ but tends
to the desired ‖r‖2 as θ → 0. Thus, although for a given θ we minimize ‖[E, fθ]‖F ,
a more meaningful indicator of the backward error might be ‖[Ê, f̂ ]‖F .

Finally for fixed ‖y‖ and ‖r‖ the minimum of (2.14) is given by θ2 = 1. This is
one argument for taking θ = 1 if we have no reasonable a priori idea of α/β or θ.

3. The scaled total least squares problem. Given A ∈ C
m×n, b ∈ C

m, and
γ ∈ (0,∞), the STLS problem was formulated in [18] as finding Ê, f̂ , and x̂, which
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solve

(3.1) σS ≡ min
E,f,x

‖[E, fγ]‖F subject to (A + E)x = b + f.

By taking g = fγ, (3.1) was reformulated in [16, equation (5.1)] as

(3.2) σS ≡ min
E,g,x

‖[E, g]‖F subject to (A + E)xγ = bγ + g.

The scalar σS is called the STLS distance, and x̂ = x̂(γ) the STLS solution. The
formulation (3.1) is closely related to the minimal backward error problem for com-
patible systems (2.6), while (3.2) has the advantage of being an unscaled total least
squares problem, for which codes are easily available.

Let Umin be the left singular vector subspace of A corresponding to its minimum
singular value σmin(A). In [16] it was shown that a satisfactory condition for building
the theory for the STLS problem is the condition that we will now assume holds:

(3.3) the m × n matrix A has rank n, and b �⊥ Umin.

Under this condition the solution to (3.2) must exist and be unique.
The STLS solution reduces to the ordinary least squares solution in the limit as

γ → 0 (so E = 0), to the unscaled total least squares solution when γ = 1, and to the
data least squares solution in the limit as γ → ∞ (so f = 0); see, for example, [16].

It was shown in [4] for the real case, and in [16, equation (5.9)] for the complex
case, that the STLS solution x̂ solves

(3.4) σ2
S

= min
x

{
σ2

S
(x) ≡ ‖b − Ax‖2

γ−2 + ‖x‖2

}
.

If we differentiate the real version of σ2
S
(x) in (3.4) with respect to x and equate the

result to zero, we see that x̂ satisfies the real version of

AH(b − Ax̂) = −x̂
‖b − Ax̂‖2

γ−2 + ‖x̂‖2
= −x̂σ2

S
(x̂).

This is a necessary optimality condition, but it is not sufficient since the function
σ2

S(x) is not convex. In fact, it can be proven (see [29, Theorem 2.7], [16, section 6])
that when (3.3) holds, x̂ solves (3.2) if and only if

(3.5) AH(b − Ax̂) = −x̂σ2
S
, σ2

S
≡ ‖b − Ax̂‖2

γ−2 + ‖x̂‖2
< σ2

min(A).

Given b ∈ C
m and nonzero y ∈ C

n, the backward STLS problem is then to
characterize the set FSTLS of all F ∈ C

m×n such that y is the exact STLS solution to
Fy ≈ b; see (3.1). From (3.4) and (3.5), the sets FSTLS and FSTLS+ can be defined
as follows:

FSTLS ≡
{

F ∈ C
m×n :

‖b − Fy‖2

γ−2 + ‖y‖2
= min

x∈Cn

‖b − Fx‖2

γ−2 + ‖x‖2

}
(3.6)

≡
{

F ∈ C
m×n : FH(b−Fy) = −y

‖b − Fy‖2

γ−2+‖y‖2
,
‖b − Fy‖2

γ−2+‖y‖2
< σ2

min(F )
}

(3.7)

⊆ FSTLS+ ≡
{

F ∈ C
m×n : FH(b − Fy) = −y

‖b − Fy‖2

γ−2 + ‖y‖2

}
.(3.8)
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There might be elements of FSTLS+ which do not satisfy the inequality in (3.7).
In other words, there might be F ∈ FSTLS+ for which the given y is not the minimizer,
but merely a stationary point, of the right-hand side in (3.6). In the use of such sets,
optimizing over FSTLS would be difficult, so in practice we would usually choose to
use the more amenable FSTLS+. One reason for this is that any particular element
found in FSTLS+ could be tested to see if it also satisfied (3.7). A more important
reason is that in all the problems we can imagine we would be given a y that is a
reasonable approximation to x̂, and use this to find an F ∈ FSTLS+ which is as close
as possible to A. It can be seen from (3.5) that if y = x̂ then the closest F in any
measure would be A itself, so that F would satisfy (3.7). If we only had y ≈ x̂ then
finding F as close as possible to A would tend to force (3.7) to hold. A good example
of this is in [2] which deals with the minimum backward error for an approximate
solution y to the DLS problem, see section 5. Using the notation in (5.4), in [2] we
used

μF (y) ≡ min
A+ΔA∈FDLS+

‖ΔA‖F in order to find μ̂F (y) ≡ min
A+ΔA∈FDLS

‖ΔA‖F ,

and proved in [2, Theorem 2.8] that if x̂ is the DLS solution to Ax ≈ b then there
exists an ε > 0 such that if ‖y − x̂‖2 < ε then μF (y) = μ̂F (y). So that for a good
approximation y nothing is lost by using FDLS+ instead of FDLS . In fact, in the
thousands of numerical tests in [2, Section 5], no example was found where using
FDLS+ gave the wrong answer, where the y were chosen to have relative errors up
to 10−1. Since FDLS is a limiting case of FSTLS , we suspect that in many practical
cases FSTLS+ will also be a useful and usable replacement for FSTLS .

To develop an explicit expression for all F ∈ FSTLS+, we will use the following
lemma as a guide.

Lemma 3.1. If F ∈ C
m×n, b ∈ C

m, nonzero y ∈ C
n, and γ ∈ (0,∞), then

FH(b − Fy) = −y‖b − Fy‖2/
(
γ−2 + ‖y‖2

)
(3.9)

⇐⇒ w = b − Fy,
(
I − yy†)FHw = 0, bHw =

‖w‖2

1 + γ2‖y‖2
(3.10)

⇐⇒ w = b − Fy,
(
FH + yγ2bH

)
w = 0.(3.11)

Proof. Define w ≡ b − Fy, and then

(3.12) ‖w‖2 = bHw − yHFHw.

Suppose that (3.9) holds. Multiplying (3.9) on the left by yH gives

yHFHw = −‖y‖2‖w‖2/
(
γ−2 + ‖y‖2

)
,

which with (3.12) leads to the last equality in (3.10):

(3.13) bHw = ‖w‖2/
(
1 + γ2‖y‖2

)
.

The second equality in (3.10) can be obtained immediately by multiplying (3.9) on
the left by I − yy†. Thus (3.10) holds. From (3.9) and (3.13) we obtain

FHw = −y‖w‖2/
(
γ−2 + ‖y‖2

)
= −yγ2bHw,

leading to (3.11).
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Conversely if (3.10) holds, then using its second, first, and third equalities we
have

FHw =
y
(
yHFHw

)
‖y‖2

=
y
(
bHw − wHw

)
‖y‖2

=
y
(

‖w‖2

1+γ2‖y|2 − ‖w‖2
)

‖y‖2
= −y

‖w‖2

γ−2 + ‖y‖2
,

so that (3.9) holds. Finally if (3.11) holds, then from its two equalities we obtain

‖w‖2 = bHw − yHFHw = bHw − yH
(
−yγ2bHw

)
=
(
1 + γ2‖y‖2

)
bHw.

Therefore the second equality in (3.11) can be rewritten as

FHw = −yγ2bHw = −yγ2‖w‖2/
(
1 + γ2‖y‖2

)
,

so that (3.9) holds.
We now obtain two new characterizations of all matrices F ∈ FSTLS+ in (3.8).
Theorem 3.2. For given b ∈ C

m, nonzero y ∈ C
n, and γ ∈ (0,∞), write

FSTLS+ ≡
{

F ∈ C
m×n : FH(b − Fy) = −y

‖b − Fy‖2

γ−2 + ‖y‖2

}
,(3.14)

NSTLS+ ≡
{

(b − w)y† +
(
I − ww†)Z

(
I − yy†) :(3.15)

w ∈ C
m, bHw =

‖w‖2

1 + γ2‖y‖2
, Z ∈ C

m×n

}
,

ÑSTLS+ ≡
{
− w̃w̃†bγ2yH +

(
I − w̃w̃†) [by† + Z

(
I − yy†)] :(3.16)

w̃ ∈ C
m, Z ∈ C

m×n
}
.

Then FSTLS+ = NSTLS+ = ÑSTLS+, and, for any matrix F in these identical sets,
the corresponding w in the representation (3.15) satisfies w = b − Fy and is a scalar
multiple of the corresponding w̃ in the representation (3.16).

Proof. In order to show that FSTLS+ ⊆ NSTLS+ and FSTLS+ ⊆ ÑSTLS+,
consider any F ∈ FSTLS+ so that by Lemma 3.1

(3.17) w ≡ b − Fy,
(
FH + yγ2bH

)
w = 0.

If w = 0, then Fy = b, so from Lemma 2.1 we see that F ∈ F = N . But obviously
N ⊆ NSTLS+ and N ⊆ ÑSTLS+; thus F ∈ NSTLS+ and F ∈ ÑSTLS+. Now
assume w �= 0. Write ŵ ≡ w/‖w‖, ŷ ≡ y/‖y‖, and let W = [ŵ, W2] ∈ C

m×m and
Y = [ŷ, Y2] ∈ C

n×n be unitary matrices, so that Y Hy = e1‖y‖ and WHw = e1‖w‖.
Define G ≡ WHFY ∈ C

m×n, so F = WGY H . The restrictions in (3.17) can then be
written as

(3.18) Ge1‖y‖ = WH(b − w), GHe1‖w‖ = −e1

(
‖y‖γ2bHw

)
.

We will now show how (3.18) limits the possible G. Write

m × n G =
[
g11 gH

1

g2 G22

]
, with (m − 1) × (n − 1) G22.
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Then from (3.18) we obtain[
g11

g2

]
‖y‖ =

[
ŵH(b − w)

WH
2 b

]
,

[
gH
11

g1

]
‖w‖ =

[
−‖y‖γ2bHw

0

]
,

leading to

(3.19) g1 = 0, g2 = WH
2 b/‖y‖, g11 = ŵH(b − w)/‖y‖ = −‖y‖γ2ŵHb.

From these it follows that

F = WGY H = (ŵg11 + W2g2)ŷH + W2G22Y
H
2

= ww†(b − w)y† + W2W
H
2 by† + W2G22Y

H
2(3.20)

= −ww†bγ2yH + W2W
H
2 by† + W2G22Y

H
2 .(3.21)

Similarly to what we did in the proof of Lemma 2.1, we can replace W2G22Y
H
2 in

(3.20) and (3.21) by W2W
H
2 ZY2Y

H
2 for some totally unknown Z ∈ C

m×n. Then
using (1.1) we have from (3.20) and (3.21) that

F = ww†(b − w)y† +
(
I − ww†) by† +

(
I − ww†)Z

(
I − yy†)

= (b − w)y† +
(
I − ww†)Z

(
I − yy†)(3.22)

= −ww†bγ2yH +
(
I − ww†) [by† + Z

(
I − yy†)] .(3.23)

From (3.22) and (3.10) it follows that F ∈ NSTLS+, so FSTLS+ ⊆ NSTLS+; and from
(3.23) it follows that F ∈ ÑSTLS+, and therefore FSTLS+ ⊆ ÑSTLS+.

Conversely suppose that F ∈ NSTLS+, so that

F = (b − w)y† +
(
I − ww†)Z

(
I − yy†)

for some Z and some w satisfying bHw = ‖w‖2/(1 + γ2‖y‖2). Then it follows that

(3.24) Fy = b − w,
(
I − yy†)FHw = 0.

Therefore by Lemma 3.1 and (3.14), F ∈ FSTLS+, and thus NSTLS+ ⊆ FSTLS+,
proving that NSTLS+ = FSTLS+. Finally suppose that F ∈ ÑSTLS+, so that

F = −w̃w̃†bγ2yH +
(
I − w̃w̃†) [by† + Z

(
I − yy†)]

for some Z and w̃. Then w̃HF = −w̃Hbγ2yH , so (FH + yγ2bH)w̃ = 0, and

Fy = −w̃w̃†bγ2‖y‖2 +
(
I − w̃w̃†) b = b − w̃w̃†b

(
1 + γ2‖y‖2

)
.

This gives an expression for w defined by

(3.25) w ≡ b − Fy = w̃
[
w̃†b

(
1 + γ2‖y‖2

)]
.

We see by Lemma 3.1 and (3.14) that F ∈ FSTLS+, and thus ÑSTLS+ ⊆ FSTLS+,
proving that FSTLS+ = ÑSTLS+. The first equality in (3.24) and (3.25) indicates
that w in (3.15) is a scalar multiple of w̃ in (3.16) for the same matrix F .

Here we make two remarks. Unlike the expression for NSTLS+ in (3.15), the
expression for ÑSTLS+ in (3.16) does not involve any constraint and so is easier to
use. But if we want to consider γ → ∞, it is easier to use NSTLS+; see section 5.
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The condition (3.3) does not necessarily hold for every F ∈ FSTLS+—an example
is the rank-1 matrix by† ∈ FSTLS+ in (3.8) which does not have full column rank if
n > 1 nor need it hold for every F ∈ FSTLS . This knowledge needs to be taken into
account in the use of these sets, but at least we know that, for every F ∈ FSTLS+, y
gives a stationary point of ‖b − Fx‖2/(γ−2 + ‖x‖2); see (3.4).

This completes our theory for the general STLS formulation. We will now use
Theorem 3.2 to characterize matrices consistent with given approximate solutions for
its two extreme cases: the least squares and data least squares problems.

4. The least squares problem. Given A ∈ C
m×n and b ∈ C

m, the ordinary
LS problem is defined as

σLS ≡ min
f,x

‖f‖ subject to Ax = b + f.

It is well known that x̂ is the LS solution if and only if it satisfies the normal equations:

AH(b − Ax̂) = 0.

See, for example, [1] or [5] for useful background.
Given b ∈ C

m and nonzero y ∈ C
n, the backward LS problem is then to charac-

terize the set FLS of all F ∈ C
m×n such that y is the exact LS solution to Fy ≈ b.

Obviously we have

FLS ≡
{

F ∈ C
m×n : ‖b − Fy‖2 = min

x∈Cn
‖b − Fx‖2

}
=
{
F ∈ C

m×n : FH(b − Fy) = 0
}

.

We now give an alternative derivation to that in [31] of an explicit representation for
all F ∈ FLS.

Theorem 4.1. Given b ∈ C
m and nonzero y ∈ C

n, write

FLS ≡
{

F ∈ C
m×n : ‖b − Fy‖2 = min

x∈Cn
‖b − Fx‖2

}
=
{
F ∈ C

m×n : FH(b − Fy) = 0
}

,(4.1)

ÑLS ≡
{(

I − w̃w̃†) [by† + Z
(
I − yy†)] : w̃ ∈ C

m, Z ∈ C
m×n

}
.(4.2)

Then FLS = ÑLS, and, for any matrix F in these two identical sets, w ≡ b − Fy is
a scalar multiple of the corresponding w̃ in the representation (4.2).

Proof. This theorem could be proved by the same approach as that used in proving
Theorem 3.2. But we can obtain the results directly from Theorem 3.2. Notice from
(3.14) and (4.1) that

FLS = lim
γ→0

FSTLS+.

Now since FSTLS+ = ÑSTLS+ from Theorem 3.2, it follows that

FLS = lim
γ→0

FSTLS+ = lim
γ→0

ÑSTLS+

=
{(

I − w̃w̃†) [by† + Z
(
I − yy†)] : w̃ ∈ C

m, Z ∈ C
m×n

}
= ÑLS .

The conclusion that w = b − Fy is a scalar multiple of w̃ still holds. In fact, this can
be seen from (3.25) by taking γ → 0.
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In [31] Waldén, Karlson, and Sun gave the original and elegant proof that FLS =
ÑLS , and used the result to find the minimal backward error for the LS problem.
It is not the intent of this paper to find minimal backward errors, and we will now
specialize the general result of Theorem 3.2 to DLS problems.

5. The data least squares problem. Given A ∈ C
m×n and b ∈ C

m, the DLS
problem is defined as (see [7] and, for example, [16], [17]):

(5.1) σD ≡ min
E,x

‖E‖F subject to (A + E)x = b.

When γ → ∞, the STLS problem (3.1) becomes the DLS problem (5.1); see [16]. The
condition (3.3) is still needed for building the theory for the DLS problem.

It is easy to show that (5.1) is equivalent to (see, e.g., [16])

(5.2) σ2
D = min

x

‖b − Ax‖2

‖x‖2
.

From [16, equations (5.14)–(5.17)], when (3.3) holds, x̂ solves (5.1) if and only if

(5.3) AH(b − Ax̂) = −x̂σ2
D
, σ2

D
≡ ‖b − Ax̂‖2

‖x̂‖2
< σ2

min(A).

Both (5.2) and (5.3) can also be obtained by taking γ → ∞ in (3.4) and (3.5).
Given b ∈ C

m and nonzero y ∈ C
n, the backward DLS problem is then to charac-

terize the set FDLS of all F ∈ C
m×n such that y is the exact DLS solution to Fy ≈ b.

As in the STLS problem, the sets FDLS and FDLS+ can be defined as follows:

FDLS ≡
{

F ∈ C
m×n :

‖b − Fy‖2

‖y‖2
= min

x∈Cn

‖b − Fx‖2

‖x‖2

}
⊆ FDLS+ ≡

{
F ∈ C

m×n : FH(b − Fy) = −y
‖b− Fy‖2

‖y‖2

}
.(5.4)

Comments paralleling those given after (3.8) and Theorem 3.2 apply here as well.
We now obtain an explicit characterization for all F ∈ FDLS+.
Theorem 5.1. For given b ∈ C

m and nonzero y ∈ C
n, write

FDLS+ ≡
{

F ∈ C
m×n : FH(b − Fy) = −y

‖b − Fy‖2

‖y‖2

}
,

NDLS+ ≡
{
(b − w)y† +

(
I − ww†)Z

(
I − yy†) : w ∈ C

m, bHw = 0, Z ∈ C
m×n

}
.

(5.5)

Then FDLS+ = NDLS+, and, for any F ∈ NDLS+, the w in the representation (5.5)
satisfies w = b − Fy.

Proof. We could prove this theorem by using a constructive derivation similar to
that used in proving Theorem 3.2. Instead we obtain the results by taking the limit
γ → ∞ for the results in Theorem 3.2. In fact, we have

FDLS+ = lim
γ→∞

FSTLS+ = lim
γ→∞

NSTLS+

=
{
(b − w)y† +

(
I − ww†)Z

(
I − yy†) : bHw = 0, Z ∈ C

m×n
}

= NDLS+.

The conclusion that w in (5.5) satisfies w = b−Fy still holds and can also be verified
by forming Fy for any F ∈ NDLS+.

The result of Theorem 5.1 is used in [2] for the backward perturbation analysis
for the DLS problem.
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6. Summary and comments. Given b ∈ C
m and y ∈ C

n we have presented
a unitary transformation approach to finding sets, or supersets, of all matrices F ∈
C

m×n such that y is the solution to Fy ≈ b for some common classes of approximation
problems.

Our approach is constructive and easy to follow. We have used the well-known
compatible case Fy = b to illustrate this approach in its simplest setting, as well as
to illustrate one of the uses of such sets—finding minimal backward errors. In doing
so we have shown the equivalence of two often used problem formulations for such
errors—an apparently new result.

We then applied this approach to finding new and useful supersets of matrices
consistent with the STLS solution to Fy ≈ b. From (3.1) or (3.5) the STLS solution
becomes the LS solution as γ → 0 and becomes the DLS solution as γ → ∞; see,
for example, [16, section 6]. Based on these facts, we derived the results for the LS
and DLS problems using the results of Theorem 3.2 directly, although we could have
separately given a full constructive derivation for these two problems, similar to that
in Theorem 3.2.

We summarize the different problems and sets we have obtained as follows:
• the STLS problem; see (3.8) and Theorem 3.2:

FSTLS ≡
{

F ∈ C
m×n :

‖b − Fy‖2

γ−2 + ‖y‖2
= min

x∈Cn

‖b − Fx‖2

γ−2 + ‖x‖2

}
⊆ FSTLS+ ≡

{
F ∈ C

m×n : FH(b − Fy) = −y
‖b − Fy‖2

γ−2 + ‖y‖2

}
= NSTLS+ ≡

{
(b − w)y† +

(
I − ww†)Z

(
I − yy†) :

w ∈ C
m, wHb =

‖w‖2

1 + γ2‖y‖2
, Z ∈ C

m×n

}
= ÑSTLS+ ≡

{
−w̃w̃†bγ2yH +

(
I − w̃w̃†) [by† + Z

(
I − yy†)] :

w̃ ∈ C
m, Z ∈ C

m×n
}

.

• compatible systems; see Lemma 2.1:

F ≡ {F ∈ C
m×n : Fy = b}

= N ≡
{
by† + Z

(
I − yy†) : Z ∈ C

m×n
}

.

• the LS problem; see Theorem 4.1:

FLS ≡ {F ∈ C
m×n : ‖b − Fy‖ = min

x∈Cn
‖b − Fx‖}

= {F ∈ C
m×n : FH(b − Fy) = 0}

= ÑLS ≡
{(

I − w̃w̃†) [by† + Z
(
I − yy†)] : w̃ ∈ C

m, Z ∈ C
m×n

}
.

• the DLS problem; see Theorem 5.1:

FDLS ≡
{

F ∈ C
m×n :

‖b − Fy‖2

‖y‖2
= min

x∈Cn

‖b − Fx‖2

‖x‖2

}
⊆ FDLS+ ≡

{
F ∈ C

m×n : FH(b − Fy) = −y
‖b − Fy‖2

‖y‖2

}
= NDLS+ ≡

{
(b−w)y†+

(
I−ww†)Z

(
I−yy†) : bHw = 0, w∈C

m, Z∈C
m×n

}
.
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The sets FSTLS+ and FDLS+ are supersets of FSTLS and FDLS, respectively.
But some theoretical arguments and numerical experiments given in [2] have shown
that, when y is a reasonable approximation to the solution of the DLS problem for
Ax ≈ b, the set NDLS+ can usually be used with no further constraints to obtain
the minimal backward errors for the DLS problem. This is probably true for the
STLS problem as well. However, since such behavior is problem-dependent, we will
not discuss it further here, except to state that for many practical uses NSTLS+ or
ÑSTLS+ can be used in place of FSTLS, and NDLS+ can be used in place of FDLS .

The constructive technique we use could also be applicable to other backward
problems, e.g., finding a matrix whose partial eigenvalues and eigenvectors are known.

Acknowledgment. We would like to thank the referees for their helpful com-
ments.
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A NOTE ON EIGENVALUES OF MATRICES WHICH ARE
SELF-ADJOINT IN SYMMETRIC BILINEAR FORMS∗

ZHI-HAO CAO†

Abstract. In this note we discuss the eigenvalue properties of matrices which are self-adjoint
in symmetric bilinear forms and point out that an assertion given by Stoll and Wathen in [SIAM
J. Matrix Anal. Appl., 30 (2008), pp. 582–608] is not true.

Key words. eigenvalues, symmetric bilinear forms, symmetric indefinite matrices
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Let H ∈ Rn,n be a symmetric matrix. The symmetric bilinear form < ·, · >H
defined by H is

< x, y >H: ≡ xTHy.

The fact that a matrix A ∈ Rn,n is self-adjoint in the symmetric bilinear form
< ·, · >H means that

xTATHy =< Ax, y >H=< x,Ay >H= xTHAy ∀x, y ∈ Rn,

which is equivalent to

(1) ATH = HA;

i.e., HA is symmetric. Thus, the fact that the matrix A is self-adjoint in the symmetric
bilinear form < ·, · >H can also be defined by (1), and we say A is H-symmetric.

It is well known that if A is I-symmetric, i.e., AT = A, then A has real eigenvalues.
In [3, p. 587], Stoll and Wathen discuss eigenvalues of matrices which are self-adjoint
in symmetric bilinear forms, as follows.

Assume that a matrix A ∈ Rn,n is H-symmetric, where H ∈ Rn,n is symmetric;
i.e., ATH = HA holds and (λ, v) is a given eigenpair of A. Thus

(2) Av = λv, v �= 0.

Multiplying (2) from the left by v∗H, where v∗ is the conjugate transpose of v, gives

(3) v∗HAv = λv∗Hv.

From (3), Stoll and Wathen claim that λ must be real. Thus, they [3, p. 587, lines
29–30] state: “Note that the above arguments establish that there is no symmetric
bilinear form in which A is self-adjoint unless A has real eigenvalues.”

However, the assertion above is not true as the following example shows.

∗Received by the editors June 23, 2008; accepted for publication (in revised form) by H. A. van
der Vorst August 9, 2008; published electronically November 7, 2008. This work is supported by
NSFC Project 10871051.

http://www.siam.org/journals/simax/30-4/72806.html
†School of Mathematical Sciences and Laboratory of Mathematics for Nonlinear Sciences, Fudan

University, Shanghai 200433, People’s Republic of China (zcao@fudan.edu.cn, zhcao@cableplus.com.
cn).
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Example. Let

A =
(

0 −1
1 0

)
and H =

(
1 1
1 −1

)
.

Obviously, the eigenvalues of A are ±i and H is symmetric indefinite. However, we
have

HA ≡
(

1 1
1 −1

)(
0 −1
1 0

)
=

(
1 −1
−1 −1

)
=

(
0 1
−1 0

)(
1 1
1 −1

)
≡ ATH.

Thus, A is self-adjoint in < ·, · >H and its eigenvalues are not real.
In this case, if we take an eigenpair (λ, v) of A as λ = i and v∗ = [1, i], then

(2) is as follows:

(
0 −1
1 0

)(
1
−i

)
= i

(
1
−i

)
.

Multiplying the above equation from left by v∗H gives (3) as follows:

v∗HAv ≡ [1, i]
(

1 −1
−1 −1

)(
1
−i

)
= 0 = i[1, i]

(
1 1
1 −1

)(
1
−i

)
≡ λv∗Hv.

Thus, we cannot deduce that λ is real.
We can revise the assertion of Stoll and Wathen as follows.
Proposition A1. If A ∈ Rn,n is H-symmetric, where H ∈ Rn,n is symmetric

and v∗Hv �= 0 for all eigenvectors of A, then all eigenvalues of A are real. In partic-
ular, if H is symmetric definite and A is H-symmetric, then all eigenvalues of A are
real.

It should be noted that Benzi and Simoncini in [1] investigated spectral properties
of the block 2 × 2 matrix of the form

M− =
(

A BT

−B C

)
,

where A ∈ Rn,n is symmetric positive definite, B ∈ Rm,n with m ≤ n, and C ∈ Rm,m

is symmetric positive semidefinite. Let

J =
(

In

−Im

)
,

which is symmetric indefinite. Then it is easy to see that

JM− = MT
−J ;

i.e., M− is J -symmetric. The eigenvalues of the matrix M− are usually not all real
(cf. [1, section 2]).

Finally, we point out that an important related result is given by Gohberg, Lan-
caster, and Rodman (cf. [2, Corollary 5.2]).

Proposition A2. Every real matrix A is H-symmetric for some invertible, real,
symmetric matrix H; i.e., there is such an H for which A = H−1ATH.
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Comment from Stoll and Wathen. This short note by Professor Cao gives
an important correction to some incorrect statements in our SIAM Journal on Matrix
Analysis and Applications paper
Martin Stoll and Andy Wathen,
Combination preconditioning and the Bramble–Pasciak+ preconditioner,
SIAM J. Matrix Anal. Appl., 30 (2008), pp. 582–608.

Precisely on page 587, the one-sentence paragraph before Lemma 3.8 should say
“Note that the above arguments establish that there is no inner product in which A
is self-adjoint unless A has real eigenvalues,” the preceding paragraph should have
the ammended sentence “On the right-hand side v∗Hv is also real since H is real
symmetric, therefore the eigenvalue must be real unless v∗Hv = 0,” and the final
sentence in that paragraph is not relevant.

The case when v∗Hv = 0 for some eigenvector v of A is more important than
we had realized and Professor Cao significantly points out that for every real square
matrix A there is a real symmetric matrix H such that HA = ATH; i.e., that for
every real square matrix there is a symmetric bilinear form in which it is self-adjoint.

These corrections do not affect any of the other results and statements in our
paper as far as we are aware.

Martin Stoll, Andy Wathen
Oxford University Computing Laboratory
7th August 2008
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FAST COMPUTATION OF MINIMAL FILL INSIDE A GIVEN
ELIMINATION ORDERING∗

PINAR HEGGERNES† AND BARRY W. PEYTON‡

Abstract. Minimal elimination orderings were introduced by Rose, Tarjan, and Lueker in 1976,
and during the last decade they have received increasing attention. Such orderings have important
applications in several different fields, and they were first studied in connection with minimizing fill
in sparse matrix computations. Rather than computing any minimal ordering, which might result in
fill that is far from minimum, it is more desirable for practical applications to start from an ordering
produced by a fill-reducing heuristic and then compute a minimal fill that is a subset of the fill
produced by the given heuristic. This problem has been addressed previously, and there are several
algorithms for solving it. The drawback of these algorithms is that either there is no theoretical
bound given on their running time, although they might run fast in practice, or they have a good
theoretical running time, but they have never been implemented, or they require a large machinery
of complicated data structures to achieve the good theoretical time bound. In this paper, we present
an algorithm called MCS-ETree for solving the mentioned problem in O(nm A(m,n)) time, where
m and n are, respectively, the number of edges and vertices of the graph corresponding to the input
sparse matrix and A(m,n) is the very slowly growing inverse of Ackerman’s function. A primary
strength of MCS-ETree is its simplicity and its straightforward implementation details. We present
run time test results to show that our algorithm is fast in practice. Thus our algorithm is the first
that both has a provably good running time with easy implementation details and is fast in practice.

Key words. sparse matrix computations, minimal fill, elimination trees, composite tree rota-
tions, maximum cardinality search (MCS), minimal triangulation

AMS subject classifications. 65F05, 65F50, 05C85, 05C90

DOI. 10.1137/070680680

1. Introduction. Consider the Cholesky factorization A = LLT of an n × n
symmetric positive definite sparse matrix A. Elements lij �= 0, where aij = 0, are
called fill elements. It is well known that finding a good permutation matrix P and
computing the Cholesky factor of PAPT rather than the Cholesky factor of A can
give much less fill and is an essential operation in sparse matrix computations. The
matrix A is conveniently interpreted as a graph G, where G has a vertex vi for each
row (or equivalently column) i of A and {vi, vj} is an edge in G if and only if aij �= 0.
Similarly, the filled graph G+ is the graph of L + LT , and the fill elements of L
correspond to the fill edges of G+. Any permutation matrix P for A corresponds to
an elimination ordering α on G such that Gα is the graph of PAPT , and the number
of fill edges in G+

α is entirely dependent on α. Thus we refer to the fill edges of G+
α

as the fill produced by α. (Definitions and notation are detailed in section 2.)
For sparse matrix computations [26] and in many other fields [7, 16, 27], one

would like to find orderings that produce the minimum possible fill. This problem
was shown to be NP-hard by Yannakakis in 1981 [28]. Already in 1976, Rose, Tarjan,
and Lueker [25] conjectured the NP-hardness of this problem. They also introduced
the notion of minimal elimination orderings and minimal fill, and they presented an
algorithm for computing both in O(nm) time in the same paper. An ordering α is a
minimal elimination ordering if there is no ordering β such that G+

β is a strict subgraph

∗Received by the editors January 22, 2007; accepted for publication (in revised form) by E. Ng
July 17, 2008; published electronically December 3, 2008.
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of G+
α . For any ordering α, the filled graph G+

α is a chordal graph [10] and is called
a triangulation of G. If α is a minimal elimination ordering, then G+

α is a minimal
triangulation. One reason that minimal elimination orderings are highly desirable in
sparse matrix computations is that they ensure that subsequent equivalent reorderings
do not change the space allocation requirements [5]. In the field of graph algorithms,
minimal elimination orderings and minimal triangulations are very important and well
studied [13], as they include the set of triangulations that correspond to widely studied
graph parameters, like minimum fill and treewidth, and thus provide a tool to compute
these by approximation algorithms [21] or exact (fast) exponential time algorithms [9].

A minimal triangulation can contain fill that is far from minimum fill. Conse-
quently, for practical applications, it is more appropriate to start with a good trian-
gulation produced by a common heuristic algorithm, like Minimum Degree [1, 17] or
Nested Dissection [11], and then compute a minimal triangulation that is a subgraph
of the initial triangulation [6]. This problem, sometimes called the minimal triangu-
lation sandwich problem, was first posed and solved by Blair, Heggernes, and Telle
in 1996 [5], and they presented an algorithm with running time O(mf + f2), where
f is the number of fill edges in the initial triangulation. For small f , this algorithm
is fast in practice; however, its running time is heavily dependent on f , which might
be O(n2), giving an O(n4) time algorithm in the worst case. Later, Dahlhaus solved
the same problem with an algorithm of running time O(nm) [8], but this algorithm
has never been implemented to our knowledge. A more recent algorithm by Berry
et al. solves the same problem in O(nm) time [3]; however, a heavy machinery of
complicated data structures is necessary to achieve this time bound. In addition to
these, two algorithms based on iterations were given without running time analysis
separately by Peyton [24] and by Berry, Heggernes, and Simonet [4]. The algorithm
of Peyton is documented to run fast in practice,1 whereas the latter algorithm is of
less practical and more theoretical interest [22].

In this paper, we present an algorithm called MCS-ETree that takes as input
a graph G and an initial ordering β and produces as output a minimal elimination
ordering α such that G+

α is a subgraph of G+
β (i.e., G+

α is sandwiched between G and
G+

β ). The running time of our algorithm is O(nm A(m, n)), where A(m, n) is the
very slowly growing inverse of Ackerman’s function. Hence, our theoretical running
time is very close to the best known theoretical running time O(nm) for solving this
problem. Compared to O(nm) algorithms solving the same problem, MCS-ETree
has the advantage of being both fast in practice and easy to implement, while not
relying on complicated data structures; it uses basic operations and data structures
commonly used in practice in sparse matrix computations, with modest adaptations
for use by the algorithm. In addition, in practical tests our algorithm is usually faster
than the previous algorithm with the fastest running time.

This paper is organized as follows. Section 2 introduces most of the background,
terminology, and notation. Section 3 gives some background on composite elimination
tree rotations [19], which are used by our new algorithm in a slightly modified form.
Section 4 presents the new algorithm MCS-ETree, which computes minimal orderings
and solves the above-mentioned sandwich problem. This section also proves that
the algorithm is correct. Section 5 discusses some of the implementation issues and
shows that the running time is O(nm A(m, n)). Also, section 5 both presents a
straightforward implementation and discusses how to enhance the implementation in

1In fact, the algorithm of Peyton [24] is the fastest in practice of all mentioned algorithms.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1426 PINAR HEGGERNES AND BARRY W. PEYTON
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Fig. 2.1. For the given graph G and its ordering β, the Elimination Game results in the filled
graph G+

β . The three fill edges are dashed lines. Also pictured is the elimination tree produced by

the ordering.

ways that dramatically improve the performance in our tests. Section 6 reports the
results of these tests. Finally, section 7 gives some concluding remarks.

2. Background and notation. A graph G = (V, E) consists of a set V of n
vertices and a set E of m edges. For a given graph G, we denote the set of its vertices by
V (G) and the set of its edges by E(G). When {u, v} is an edge, we say that u and v are
adjacent or neighbors. For a vertex v of G, adjG(v) denotes the set of vertices adjacent
to v, also called the adjacency or neighborhood of v, and adjG[v] = adjG(v)∪{v}. For a
set of vertices X ⊆ V , adjG(X) =

⋃
x∈X adjG(x)\X and adjG[X ] = adjG(X)∪X . An

ordering α of G is a bijective function α : V → {1, 2, . . . , n}, and we will sometimes
write α = (v1, v2, . . . , vn), meaning that α(vi) = i for 1 ≤ i ≤ n (we will call i
the number of vi). When an ordering α is given, the ordered graph is denoted by
Gα. In this case, hadjGα

(vi) = adjGα
(vi) ∩ {vi+1, vi+2, . . . , vn} is the set of higher-

numbered neighbors of vi, and ladjGα
(vi) = adjGα

(vi)∩{v1, v2, . . . , vi−1} is the set of
lower-numbered neighbors of vi.

If two graphs G and H have the same vertex set, then G is a subgraph of H if
E(G) ⊆ E(H), and G is a proper subgraph of H if E(G) ⊂ E(H). A subgraph of G
induced by a vertex set X ⊆ V will be denoted by G(X). An induced subgraph G(X)
contains every edge of G with both endpoints in X . A set X ⊆ V of vertices is a
clique if every pair of vertices in X is adjacent in G. A maximal clique is any clique
whose vertex set is maximal with respect to subset inclusion for this property. A path
is a sequence of distinct vertices x1 − x2 − · · · − xk such that xi is adjacent to xi+1

for 1 ≤ i < k. A chord on a path is an edge between two nonconsecutive vertices of
the path. A cycle is a path where the first vertex is the same as the last vertex. A
graph is chordal if it contains no chordless cycle on four or more vertices.

The following simple algorithm is called the Elimination Game [23], and it sim-
ulates (on graphs) the Cholesky factorization of matrices. With input graph G and
ordering α, repeatedly pick the smallest numbered vertex, add edges to make its set
of neighbors a clique, and remove this vertex and the edges incident upon it from the
graph until the graph is empty. The set of edges that are added during the algorithm
is called fill, and the filled graph G+

α is obtained by adding to G this fill. Figure 2.1
shows a graph G, an ordering β of the graph (Gβ), and the filled graph G+

β associated
with the ordering. This graph and initial ordering will be used throughout the paper
to illustrate algorithms and other points as needed.

The following lemma, which we will use in our proofs, characterizes the edges in
a filled graph G+

α .
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Lemma 2.1 (see [25]). Given a graph G and an ordering α = (v1, v2, . . . , vn),
an edge {vi, vj}, with i < j is present in G+

α if and only if {vi, vj} is an edge of
G or there is a path between vi and vj in G containing only vertices from the set
{v1, v2, . . . , vi−1}.

A path between vi and vj containing only vertices that all have smaller numbers
in α than the smaller of i and j will be called a fill path.

If G+
α contains no fill edges, then α is called a perfect elimination ordering (peo).

Fulkerson and Gross showed that chordal graphs are exactly the class of graphs that
have perfect elimination orderings [10]. Thus for every graph G and ordering α, the
filled graph G+

α is chordal, and G+
α is a triangulation of G. In a chordal graph, the

vertices of any maximal clique can be ordered last by some peo in any arbitrary
internal order [27].

Any ordering β of G that is a peo of G+
α is an equivalent reordering of G with

respect to α. An equivalent reordering introduces no new fill, that is, G+
β is a subgraph

of G+
α . If there exists no ordering β for which G+

β is a proper subgraph of G+
α , then

α is called a minimal elimination ordering (meo), and G+
α is a minimal triangulation.

Computing an meo is equivalent to computing a minimal triangulation, as every peo
of a minimal triangulation gives the same filled graph when applied to the original
graph [5, 25]. The following is a characterization of minimal triangulations that we
will use in the proof that our new algorithm is correct.

Theorem 2.2 (see [25]). A given triangulation H of a graph G is a minimal
triangulation if and only if every fill edge added to G to obtain H is the unique chord
of a 4-cycle in H.

Given a graph G and an ordering α, the filled graph G+
α defines a structure called

an elimination tree T as follows: vertex vj is the parent of vertex vi in T if vj is
the smallest numbered vertex in hadjG+

α
(vi). The elimination tree associated with the

filled graph in Figure 2.1 is included in Figure 2.1. Due to Lemma 2.1, the elimination
tree corresponding to α can be computed directly from G and α without computing
G+

α explicitly [20]. A topological ordering of T is any ordering that numbers each
child with a number smaller than that of its parent. The ordering in Figure 2.1 is
a topological ordering of T . Any topological ordering of T is an equivalent ordering
of G with respect to α. Consequently, we will talk about equivalent orderings with
respect to an ordering and with respect to an elimination tree interchangeably. Liu [20]
provides a thorough examination of elimination trees. Note also that if G has more
than one connected component, then one obtains an elimination forest with one tree
for each connected component.

In a rooted tree, an ancestor of a vertex v is any vertex that is on the unique path
between v and the root, including the root; a descendant of v is any vertex of which v
is an ancestor. Let T [v] be the subtree of an elimination tree T that is rooted at v and
consists of v and every descendant of v in T ; such subtrees will be called elimination
subtrees. It is well known that hadjG+

α
(v) = adjG(V (T [v])) [20], and we will make use

of this fact throughout the paper. As an illustration, note that in Figure 2.1 we have

adjG(V (T [v3])) = adjG({v1, v2, v3})
= {v4, v5, v6}
= adjG+

β
(v3).

Finally, we let ancT (v) be the set of ancestors of v in T , where v is not included in
the set; we also write ancT [v] = ancT (v) ∪ {v}.
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Algorithm Change Root(G, T , u)
Input: A graph G = (V, E), an elimination tree T of G, and a vertex u ∈ V .
Output: A reordering γ of G that is equivalent with respect to T ,

where u is numbered last.
Number u last in γ and mark u as already numbered;
z ← u;
while z is not the root of T do

Order the unnumbered vertices of adjG(V (T [z])) last in γ, but
before those that are already numbered by γ;
Mark the newly numbered vertices as already numbered;
z ← the parent of z in T ;

end while;
Number in γ the vertices in V \ ancT [u] using their original
relative order in T ;

end Change Root;

Fig. 3.1. An algorithm for changing the root of an elimination tree with an equivalent reordering
(see Algorithm 3.2 Composite Rotations in Liu [19]).

3. Changing the root of an elimination subtree. In our new algorithm
MCS-ETree, we will need to reorder an elimination subtree T [v] in such a way that
a particular vertex u ∈ V (T [v]) is numbered last by this reordering, and the corre-
sponding reordering of G(V (T [v])) is equivalent to any given topological ordering of
T [v]. Since u is numbered last among the vertices in V (T [v]) by the reordering, it
will be the root of the new elimination subtree associated with the new equivalent re-
ordering. A trivial modification of the composite elimination tree rotations algorithm
in Liu [19] will perform this task.

For a given graph G and a given ordering β, let T be the elimination tree as-
sociated with the filled graph G+

β , and let u ∈ V (G). Algorithm 3.2 (Compos-
ite Rotations) from [19] reorders G with a peo γ of G+

β such that the vertices of
adjG(V (T [u])) are numbered last in γ. (Recall that γ is an equivalent reordering of G
with respect to β.) Notice that there might be ancestors of u in T that do not belong
to adjG(V (T [u])), and hence u will often become closer to the root of the resulting
new elimination tree corresponding to γ and will never be further away than it is in
T . The algorithm Change Root in Figure 3.1 adds a single first line to Liu’s Compos-
ite Rotations algorithm in order to number u last and also modifies the last line to
number the vertices in V \ancT [u] so that u is not also numbered there. These are the
only modifications to the original algorithm. Consequently, the rest of the vertices
are numbered in the same order as in Composite Rotations, that is, the vertices of
adjG(V (T [u])) are ordered next-to-last and so on. The elimination tree obtained from
the ordering produced by Change Root clearly is rooted at vertex u.

In Figure 3.2, we illustrate a run of Change Root on the graph and elimination
tree in Figure 2.1. The elimination tree in Figure 3.2 is the same as that in Figure 2.1
with the numbers replaced by the appropriate letters. The vertex u has been chosen
to become the new root. The algorithm first numbers u last with the number 6. The
main loop then processes the ancestors of u in ascending order. When u is processed,
the unnumbered neighbors of V (T [u]), namely, w and x, are numbered next-to-last
in front of u with numbers 4 and 5, respectively. When w is processed next, the
unnumbered neighbors of V (T [w]), namely, z and y, are numbered last in front of
the previously numbered vertices with numbers 2 and 3, respectively. When y and
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u v

w

x

y

z

T

v 6

y w x

z

Number u last

v 6

y 4 5

z

Process u

v 6

3 4 5

2

Process w

1 6

3 4 5

2

Number
nonancestor

1 6

3 4 5

2

G+
γ

Fig. 3.2. The algorithm Change Root is run on the graph and elimination tree shown in Fig-
ure 2.1. The new root is to be vertex u.

z are processed, no vertices receive their numbers. Finally, when the main loop is
finished, the single nonancestor of u, namely v, receives the number 1. Note that G+

γ

in Figure 3.2 is identical to G+
β in Figure 2.1 so that γ is an equivalent reordering with

respect to β, as required. Note also that u will be the root of the new elimination
tree, as desired.

The following lemma shows that Change Root produces an ordering equivalent
to the input ordering.

Lemma 3.1. Let β be an ordering of a graph G, and let T be the elimination tree
associated with G+

β . Choose u ∈ V (G). Any ordering γ produced by Change Root(G,
T , u) is equivalent with respect to β.

Proof. The desired property is inherited directly from Composite Rotations, as we
will see. Consider the ordering γ′ produced by Composite Rotations that corresponds
as closely as possible to the ordering γ produced by Change Root. It is known from
Liu [19] that γ′ is equivalent with respect to β. The ordering γ′ matches the ordering
γ except for the placement of u. The ordering γ numbers u at the end of the ordering;
the ordering γ′ numbers u before the vertices of adjG(V (T [u])) and after the vertices
of V (T [u]) \ {u}. The lowest numbered vertex of adjG(V (T [u])) will be the parent
of u in the elimination tree T ′ associated with γ′. Note then that the set {u} ∪
adjG(V (T [u])) is a clique in G+

γ′ and forms a chain in T ′ from u to the root of the
tree. A new topological ordering of T ′ can be obtained by ordering the vertices of
{u} ∪ adjG(V (T [u])) last (consistent with γ′) and then ordering the rest earlier, but
consistent with γ′. The key observation is that when we change this ordering so
that u is moved to the end (i.e., u is ordered last, but the vertices of adjG(V (T [u]))
remain ordered consistent with γ′), we obtain a topological ordering of the elimination
tree associated with the ordering γ. Since we have merely changed the order of the
vertices in the highest-numbered clique, clearly, γ is equivalent with respect to γ′.
Since γ′ is equivalent with respect to β, we have γ is equivalent with respect to β, as
desired.

We will use Change Root to process elimination subtrees. Choose a vertex v ∈
V (T ) and consider the elimination subtree T [v]. Observe that T [v] is the elimination
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tree one obtains by applying a topological ordering of T [v] to the induced subgraph
H = G(V (T [v])). This follows because any topological ordering of an elimination
tree will produce the same elimination tree. Let u ∈ V (T [v]). When we execute
Change Root(H , T [v], u), we obtain an equivalent reordering of H with respect to
T [v], where u is numbered last and hence will become the root of the new elimination
subtree. When this new subtree is glued to the old elimination tree with the old
parent of v now becoming the new parent of u, a revised elimination tree for the
entire graph is obtained.

4. Algorithm MCS-ETree and its proof of correctness. In this section, we
present a new algorithm MCS-ETree that solves the minimal triangulation sandwich
problem. Given an original ordering β and graph G, this algorithm generates a
minimal ordering α such that G+

α is a subgraph of G+
β . The algorithm generates α

by numbering the vertices from n down to 1, and the key feature is the selection at
each step of a vertex of “maximum cardinality” to receive the next number. Hence
the algorithm resembles a minimal triangulation algorithm called MCS-M [2], and its
proof of correctness uses the same technique used there. In section 5, we will show
that it can be implemented to run in O(nm A(m, n)) time and can be implemented
so that it does not compute any filled graphs explicitly.

Our new algorithm is given in Figure 4.1. First the algorithm computes the
elimination tree T ∗ obtained when β is used as an elimination order on G. The set
of elimination subtrees remaining to be processed (i.e., numbered) is Trees. Initially
Trees contains the single member T ∗ = T ∗[x], where x is the root of T ∗. We have
assumed that G is a connected graph so that we have an elimination tree rather than
an elimination forest. If we had an elimination forest, then we would place each tree
of the forest in Trees.

4.1. Executing MCS-ETree on an example. Figure 4.2 walks step-by-step
through an execution of MCS-ETree on the example introduced in Figure 2.1. In
Figure 4.2, the filled graph G+

β is the same as that pictured in Figure 2.1. The
initialization step computes the elimination tree T ∗ of G with respect to β. This is
shown next in the figure. The elimination subtree T ∗[x] is placed in Trees, the set
of elimination subtrees yet to receive their α-numbers. The set of vertices that have
received their α-numbers, namely L, is initially empty. The set L is listed above the
heavy horizontal line above T ∗. The counter k used to assign the next α-number is
initially 6.

The algorithm then enters the main while loop. There is only one unnumbered
elimination subtree to process, which is referred to as T = T [v] by the algorithm.
Now, T = T ∗ at this stage in the example. Since L = ∅, the cardinalities referred to
next in the algorithm are all zero. In the figure, these zero cardinalities are written
beside each vertex. A vertex of maximum cardinality, with no descendant of maximum
cardinality, will have to be a leaf in this case. The algorithm chooses vertex 1 as the
maximum cardinality vertex.

The algorithm next uses Change Root to reorder the subtree and change the root
to vertex 1. Precisely this operation was illustrated in Figure 3.2. The ordering shown
in the first graph of Figure 4.2, labeled G+

γ , is precisely the same as the final ordering
shown in Figure 3.2.

The algorithm next computes the elimination subtree for the new reordering. This
new elimination tree T ′ rooted at the vertex now numbered 6 by γ appears next in the
figure. At the bottom of the while loop, the root vertex receives its α-number 6. It is
removed and added to the set of α-numbered vertices L. The unnumbered elimination
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Algorithm MCS-ETree
Input: A graph G and an ordering β.
Output: An meo α of G such that G+

α is a subgraph of G+
β .

/* Initializations */
Compute the elimination tree T ∗ of G with respect to β;
x ← root of T ∗;
Trees ← {T ∗[x]}; L ← ∅; k ← n;

while Trees �= ∅ do

/* Get an unnumbered elimination subtree T */
Pick an arbitrary elimination subtree T = T [v] from Trees;
Trees ← Trees \ {T };

/* Find a special vertex u in T of “maximum cardinality” */
Find a vertex u ∈ V (T ) for which |adjG(V (T [u])) ∩ L| = |adjG(V (T ))|,
and |adjG(V (T [w])) ∩ L| < |adjG(V (T [u])) ∩ L| for each descendant w of
u in T ;

/* Reorder the subtree and change the root to u */
H ← G(V (T ));
Compute a topological order γ1 of T ;
Use Change Root(H , T , u) to compute a peo γ2 of H+

γ1
that numbers u last;

/* Compute the elimination subtree for the new reordering */
Compute the elimination tree T ′ = T ′[u] of H with respect to γ2;

/* Number u and store the unnumbered subtrees for future processing */
for each child c of u in T ′ do

Trees ← Trees ∪ {T ′[c]};
end for;
α(u) ← k; L ← L ∪ {u}; k ← k − 1;

end while;

end MCS-ETree;

Fig. 4.1. Algorithm MCS-ETree, which finds a minimal ordering and solves the minimal tri-
angulation sandwich problem.

subtree rooted at the sole child of vertex 6 (i.e., vertex 5) is also added to Trees to
be processed later.

At the top of the next iteration of the while loop, the unnumbered subtree T ′[c],
where c is the vertex numbered 5 by the current ordering γ, is chosen to be processed
next. Note that in the previously filled graph, only vertices 5 and 4 are neighbors
of the vertex that received α-number 6. The cardinalities of vertices 4 and 5 then
are both 1, while the cardinalities of the rest of the vertices in the subtree are 0,
as indicated in the figure. The vertex with γ-number 4 is the maximum cardinality
vertex with no descendants of maximum cardinality.
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Fig. 4.2. An execution of Algorithm MCS-ETree on the example introduced in Figure 2.1.
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We leave it for the reader to walk through the remaining steps of MCS-ETree on
our example shown in Figure 4.2. Observe that in the final filled graph G+

γ , the fill
edge that once joined current vertices 2 and 4 has disappeared. In the unfilled graph,
vertices 1, 5, 3, and 2 form an unchorded 4-cycle and so do vertices 6, 4, 3, and 5
(using the current γ-numbers). No single fill edge will suffice to chord both cycles,
so any minimum fill set will have two fill edges—one to chord each cycle. It follows
that the last filled graph pictured has minimum fill, and hence minimal fill. We leave
it for the reader to verify that the final ordering α produced by the algorithm is the
same as that shown in the last graph G+

γ shown at the bottom of the figure. Hence
the final ordering α is a minimal ordering.

4.2. Proving the algorithm correct. In this subsection, we will show that
the algorithm is correct. The following simple loop invariant is needed to verify the
integrity of the elimination subtrees.

Lemma 4.1. The following is a loop invariant of algorithm MCS-ETree:

adjG(V (T )) ⊆ L for each elimination subtree T ∈ Trees.

Proof. The statement is clearly true before the first iteration of the while loop.
Suppose that it is true at the beginning of an iteration. Then, for the elimina-
tion subtree T = T [v] chosen to be processed and removed from Trees, we have
adjG(V (T )) ⊆ L, where L is the set of vertices already numbered by the eventual
meo α. The next step in the iteration chooses a vertex u ∈ V (T ) of maximum car-
dinality. As in the MCS-M ordering [2], the cardinality is determined by the number
of neighbors in the filled graph that have received their number in α. Subsequently,
the iteration reorders the connected component H = G(V (T )) so that u is numbered
last. Next, the iteration computes the new elimination subtree T ′ = T ′[u] obtained
when the computed reordering is applied to H . The vertex u is the root of this new
elimination subtree. Then u is ordered next by MCS-ETree and added to L. From
the basic properties of elimination trees [20] and the fact that the loop invariant holds
at the beginning of the iteration, we have the following for each elimination subtree
T ′[c] added to Trees:

adjG(V (T ′[c])) ⊆ {u} ∪ adjG(V (T ′[u]))
= {u} ∪ adjG(V (T ′))
= {u} ∪ adjG(V (T ))
⊆ L.

The result then follows.
At the beginning or end of any iteration, a current ordering γ is implicitly asso-

ciated with the algorithm, as follows. For each vertex x ∈ L, we let γ(x) = α(x). The
vertices in V \ L are numbered from 1 to n− |L| so that each child in an elimination
subtree in Trees receives a smaller number than that assigned to its parent. Then,
at the beginning or end of any iteration, the current filled graph implicitly associated
with the algorithm is G+

γ .
Lemma 4.1 says that there are no edges in G joining two vertices from different

elimination subtrees in Trees at any point during the algorithm. It follows that the
elimination subtrees generated throughout the algorithm will maintain their integrity,
with no pair of elimination subtrees merged into a single elimination subtree by a
current ordering γ associated with the algorithm. In other words, every elimination
tree in Trees is an elimination subtree of the elimination tree with respect to γ.
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The key step within each iteration of the algorithm selects the vertex to receive
the highest α-number among the vertices in the elimination subtree T = T [v]. For
any vertex x ∈ V (T ), the set of vertices in L adjacent to x in the current filled
graph G+

γ is hadjG+
γ
(x) ∩ L. What MCS-ETree requires is a maximum cardinality

vertex in T with no descendants that are maximum cardinality vertices. That is,
choose a vertex u ∈ V (T ) for which |hadjG+

γ
(u) ∩ L| = |hadjG+

γ
(v)| and for which

|hadjG+
γ
(w)∩L| < |hadjG+

γ
(u)∩L| for every descendant w of u. Since hadjG+

γ
(x)∩L =

adjG(V (T [x])) ∩ L for every vertex x ∈ V (T ), the algorithm equivalently chooses
a vertex u ∈ V (T ) for which |adjG(V (T [u])) ∩ L| = |adjG(V (T ))| and for which
|adjG(V (T [w])) ∩ L| < |adjG(V (T [u])) ∩ L| for every descendant w of u. Notice that
such a vertex u always exists, since adjG(V (T [v]))∩L = adjG(V (T )), and hence v can
be chosen as u if no descendant x of v satisfies |adjG(V (T [x])) ∩ L| = |adjG(V (T ))|.
Furthermore, if every descendant x of v satisfies |adjG(V (T [x]))∩L| = |adjG(V (T ))|,
then u is chosen to be a leaf of T .

A second important step within each iteration uses algorithm Change Root to
compute a new peo of the filled graph of induced subgraph H = G(V (T )) under a
topological ordering of T . This is instrumental in causing G+

α to be a subgraph of G+
β .

Lemma 4.2. If γ is a current ordering for the algorithm at the beginning of
an iteration and γ′ is a current ordering for the algorithm at the end of the same
iteration, then E(G+

γ′) ⊆ E(G+
γ ).

Proof. Let {x, y} be a fill edge in E(G+
γ′) at the end of the iteration. Let L be

the set of numbered vertices at the beginning of the iteration. (Vertex u is added
to L at the end of the iteration.) If both x and y belong to L, then by Lemma 2.1,
we have {x, y} ∈ E(G+

γ ). If either x or y is a vertex in one of the unnumbered
elimination subtrees other than T = T [v], then {x, y} ∈ E(G+

γ ) because the subtree
is ordered topologically by both γ and γ′. If both x and y are vertices in V (T ), then
{x, y} ∈ E(G+

γ ) because H = G(V (T )) is renumbered by algorithm Change Root with
a peo of the filled graph H+

γ1
, where γ1 is a topological ordering of T . Finally, the only

case remaining is where x ∈ V (T ) and y ∈ L. If x �∈ ancT [u], then from algorithm
Change Root, we have T ′[x] = T [x], so by Lemma 2.1, we have {x, y} ∈ E(G+

γ ). If
x ∈ ancT [u], then by the choice of u in the algorithm and the simple properties of
elimination trees [20],

adjG+
γ′

(x) ∩ L = adjG(V (T ′[x])) ∩ L

⊆ adjG(V (T ′))
= adjG(V (T ))
= adjG(V (T [u])) ∩ L

⊆ adjG(V (T [x])) ∩ L

= adjG+
γ
(x) ∩ L.

This completes the proof.
Observe that Lemma 4.2 holds for the sequence of filled graphs associated with

the sequence of current orderings in Figure 4.2. Observe also that in the final filled
graph in Figure 4.2, fill edge {4, 5} is the sole chord of a 4-cycle joining vertices 3, 5, 6,
and 4, and fill edge {2, 5} is the sole chord of a 4-cycle joining vertices 1, 5, 3, and 2. In
our proof of correctness, we will show that every fill edge in the final filled graph G+

α

generated by MCS-ETree is the sole chord of a 4-cycle and then use Theorem 2.2 to
argue the result.
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Theorem 4.3. Given a graph G and an ordering β of G, algorithm MCS-ETree
generates an meo α of G such that G+

α is a subgraph of G+
β .

Proof. From Lemma 4.2 and the definition of current orderings γ within the
algorithm, it follows that G+

α is a subgraph of G+
β . If there are no fill edges in G+

α ,
then G is chordal and α is a peo of G. It follows that α is an meo of G, and hence we
have the result in this case. Assume therefore that G+

α has at least one fill edge. Let
{u, w} be a fill edge in G+

α . We will find a 4-cycle in G+
α for which {u, w} is the only

chord. The minimality of the ordering α will then follow by Theorem 2.2.
Without loss of generality, assume that α(u) < α(w). Let T = T [v] be the

elimination subtree that the algorithm is processing when u is chosen by the algorithm
to receive its α-number. Let γ be a current ordering for the algorithm at the beginning
of this iteration. By Lemma 4.2, since {u, w} is a fill edge in G+

α , {u, w} is also a fill
edge in the current filled graph G+

γ . By Lemma 2.1, there is a fill path u− x1 − · · · −
xr − w (r ≥ 1) in G through vertices xi that are the descendants of u in T . Notice
that u therefore cannot be a leaf of T . The vertices xi come from one (and only one)
of the subtrees rooted at a child of u in T , say, T [c]. Let xt be the vertex among the
xi that is eventually numbered highest by the algorithm. Then there are fill paths (or
direct edges) in G from xt to u and from xt to w under the final ordering α generated
by the algorithm. So {xt, u} and {xt, w} are edges in the final filled graph G+

α .
By Lemma 2.1, we know that hadjG+

γ
(c) ∩ L ⊆ hadjG+

γ
(u) ∩ L for each child c of

u in T . From the choice of u, we can conclude that hadjG+
γ
(c) ∩ L ⊂ hadjG+

γ
(u) ∩ L

(proper subset). Let y ∈ (hadjG+
γ
(u) ∩ L) \ (hadjG+

γ
(c) ∩ L), which is not empty.

By Lemma 2.1, none of the vertices xi is adjacent to y in G+
γ (including xt). By

Lemma 4.2, {xt, y} is not an edge in the final filled graph G+
α .

Finally, the set hadjG+
γ
(u)∩L = hadjG+

γ
(v) is the higher adjacency set of u in the

final filled graph G+
α , since u receives its number at this step, and all vertices that are

numbered higher than u in α have already received their numbers. So hadjG+
γ
(u)∩L =

hadjG+
α
(u), and recall that hadjG+

α
(u) ∪ {u} is a clique in G+

α . Note that both y and
w belong to hadjG+

α
(u). It follows that {u, y} and {w, y} are both edges in G+

α . This
completes a 4-cycle xt − u − y − w − xt in G+

α for which {u, w} is the only chord.
Since every fill edge is the only chord of such a 4-cycle, the final filled graph G+

α

is a minimal chordal supergraph by Theorem 2.2, and the final ordering, which is a
peo of G+

α , is an meo of G.

5. Implementation details and running time analysis. We can adapt basic
tools from sparse matrix computations to obtain a time bound of O(nm A(m, n)) for
algorithm MCS-ETree.

Theorem 5.1. The running time of algorithm MCS-ETree is O(nm A(m, n)).
Proof. Let us consider the three major tasks the algorithm must perform as it

goes through a single iteration of the while loop. Let γ be a current ordering at the
beginning of the iteration, and let T = T [v] be the elimination subtree chosen to be
processed.

First, the algorithm needs the values |hadjG+
γ
(x) ∩ L| = |adjG(V (T [x])) ∩ L|

for every vertex x ∈ V (T ). One option is to compute and work directly with the
filled graph G+

γ , but this leads to O(nm′) total work for this task (summed over all
iterations of the while loop), where m′ is the number of edges in the initial filled graph
G+

β . It also requires the storage of filled graphs rather than just the original graph
G. We have not implemented this option. Gilbert, Ng, and Peyton [12] introduced
a fast algorithm for computing the number of nonzeros in each row and each column
of a sparse Cholesky factor. Hence a second, and better, option is to modify the
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algorithm in [12] for column nonzero counts to compute the values |hadjG+
γ
(x) ∩ L|

for every vertex x ∈ V (T ). This option leads to O(nm A(m, n)) total work for this
task, summed over all iterations of the while loop. It does not involve or require the
computation of any filled graphs explicitly.

The algorithm in [12] is geared to compute |ladjG+
γ
(x)∪{x}| (the “row count”) and

|hadjG+
γ
(x)∪{x}| (the “column count”) for every vertex x ∈ V (G). In adapting for use

by MCS-ETree, the computation is restricted in three different ways. First, none of the
computation connected with row counts is carried out. Second, the computation can
be restricted to the elimination subtree T = T [v] processed by the current iteration
of the algorithm rather than the entire elimination tree associated with a current
ordering γ. And third, the counts must be restricted to compute |hadjG+

γ
(x) ∩ L|

rather than |hadjG+
γ
(x) ∪ {x}|. It is straightforward to adapt the implementation in

Gilbert, Ng, and Peyton [12, page 1085] to incorporate these restrictions. Note also
that a postordering of the elimination subtree T is required by our adaptation of the
algorithm. This requirement is inherited from the original algorithm.

Second, MCS-ETree uses algorithm Change Root to reorder the vertices of T so
that u becomes the new root and there is no additional fill under the new current
ordering. To implement Change Root, we initially reorder the vertices of T by a
postordering that numbers each vertex in ancT [u] before any of its siblings. The
ordering and marking process can then be performed as the vertices are visited in this
postorder. The total work spent on this task over all iterations of the outer loop is
O(nm).

Third, the algorithm needs to recompute the elimination subtree for the new
ordering of H = G(V (T )). The elimination subtree can be computed with a single
sweep of the full adjacency lists of the vertices of T and the required disjoint set union
operations. It is trivial to adapt the standard algorithm [20] for computing the entire
elimination tree to compute the elimination subtrees needed here. The total work for
this task over all iterations of the outer loop is O(nm A(m, n)). This concludes the
proof.

5.1. Basic implementation. We have implemented these three steps in the
most straightforward way possible, with no attempt at avoiding redundant work.
The object with the first implementation was to make it as simple as possible. We
have called this first implementation the basic implementation.

With the basic implementation established, we sought to enhance the implemen-
tation by avoiding redundant work. There is much redundant work to be avoided in
all three of the major steps within each iteration. Getting rid of this redundant work
does not reduce the overall provable time bound of the algorithm, but it results in
a much faster implementation in practice, as the test results will show in the next
section.

5.2. Enhanced implementation. Consider again the computation of the val-
ues |hadjG+

γ
(x)∩L| for every vertex x ∈ V (T [v]). A key part of the algorithm in [12] is

the recognition of and reduction to the so-called skeleton adjacency sets [18] associated
with the current ordering. If these sets are known and stored ahead of the computa-
tion, then they can be traversed rather than using full adjacency sets. Let z ∈ L, and
let T [v] be the current elimination subtree. Let Tr[z, v] denote the row subtree of z in
T [v]. That is, V (Tr[z, v]) is the set of the vertices of T [v] that are adjacent to z in the
current filled graph G+

γ . We say that z is in the skeleton adjacency set of x ∈ V (T [v])
if x is a leaf of Tr[z, v]. Note that our skeleton adjacency set of x ∈ V (T [v]) is limited



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FAST MINIMAL FILL INSIDE A GIVEN ORDERING 1437

to vertices in L. To ultimately improve efficiency, we store the skeleton adjacency sets
of all vertices x ∈ V (T [v]) as the values |hadjG+

γ
(x) ∩ L| are computed. The skeleton

adjacency sets come as a natural by-product of the computation.
In Figure 4.2, consider the point where the vertex of maximum cardinality is

chosen from the unnumbered elimination subtree T ′[c], whose root has current γ-
number 4. The skeleton adjacency sets of vertices 1, 2, 3, and 4 are {5}, {5}, ∅,
and {6}, respectively. These skeleton adjacency sets suffice to compute the needed
cardinalities.

Again, let T = T [v]. For each vertex x ∈ ancT [u], it is possible that T ′[x] �= T [x]
because of the reordering obtained from algorithm Change Root (if u �= v). So the
vertices in the skeleton adjacency set of x cannot safely be used during the next
step that processes the subtree containing x. The entire adjacency set of x must be
used during the next step that processes the subtree containing x. But in the case
where x ∈ V (T ) \ ancT [u], we have T ′[x] = T [x] because of the reordering obtained
from algorithm Change Root. The descendants of x remain precisely the same, so
the skeleton adjacency set of x does not change, except for the possible addition of
the new root u. We take care of the update with u and process the old abbreviated
skeleton adjacency set during the next step that processes the subtree containing x.

So in summary, we process abbreviated skeleton adjacency sets, many of which
are in practice empty, for vertices that at the most recent relevant step were in V (T )\
ancT [u]; we process full adjacency sets for vertices that at the most recent relevant
step were in ancT [u]. To store the skeleton adjacency sets requires another vector
large enough to store the full adjacency structure of G. But this technique promises
to improve run times appreciably.

Consider again how to implement algorithm Change Root for computing a re-
ordering of an elimination tree T so that u ∈ V (T ) becomes the new root and no
new fill is introduced. As before, we reorder the vertices of T with a postordering for
which every vertex in ancT [u] is numbered before any of its siblings. The procedure
Change Root2 in Figure 5.1 can then be used to perform the reordering. The pre-
scribed postordering is input as γ1, which is, of course, a topological ordering of T .
Unlike our earlier implementation of algorithm Change Root, the only adjacency sets
that algorithm Change Root2 traverses are those for vertices in ancT [u]. This also
promises to improve run times appreciably.

Consider the recomputation of the elimination subtree, replacing T = T [v] with
T ′ = T ′[u]. Again, the subtrees rooted at vertices in V (T )\ancT [u] remain unchanged
as MCS-ETree goes forward to the next iteration. So there is no need to recompute
these portions of the elimination subtree. The new subtree can be patched together
with an enhanced implementation that traverses the adjacency sets of the vertices of
ancT [u] only.

These enhancements do not change the time complexity of the algorithm; it re-
mains O(nm A(m, n)). We call the improved implementation of the algorithm the
enhanced implementation. Because the components of the work of lower time com-
plexity have greater relative influence on performance after these enhancements are
incorporated, there are other improvements implemented in marking processes and
initializations. These are not described here.

5.3. Blocked implementation. Finally, there is one further enhancement of a
completely different sort to incorporate into the code. For this last version, we first
include all of the enhancements described thus far, then we add the following. When
T = T [v] is processed and vertex u is to be numbered, we can often detect other
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procedure Change Root2(G, T , γ1, u, γ2)
Input: A graph G, an elimination tree T of G with respect to γ1,

a prescribed postordering γ1 of T , and a vertex u ∈ V (T ).
Output: An equivalent reordering γ2 of G with respect to γ1,

where u is numbered last.
for i ∈ [0, 1, . . . , |V (T )|]; B(i) ← ∅; end for;
j ← 0;
for x ∈ V (T ) in the prescribed postorder γ1

if x ∈ V (T ) \ ancT [u] then
j ← j + 1; γ2(x) ← j;

end if;
end for;
B(0) ← B(0) ∪ {u};
for x ∈ ancT (u)

j ← |V (T )|;
for y ∈ adjG(x)

j ← min(j, γ1(y));
end for;
B(j) ← B(j) ∪ {x};

end for;
j ← |V (T )|;
for i ∈ [0, 1, . . . , |V (T )|] in order

for x ∈ B(i)
γ2(x) ← j;
j ← j − 1;

end for;
end for;

end Change Root2;

Fig. 5.1. An enhanced variant of algorithm Change Root for the second step in the main loop
of MCS-ETree.

vertices among the vertices of ancT (u) that can be numbered in a block along with
u and removed with no further processing. There are two cases to consider. First,
consider the case where u has descendants in T . Let c1, . . . , cr be the children of u
in T . If a vertex x ∈ ancT (u) is adjacent to each subtree T [c1], . . . , T [cr] and the
adjacency set of x contains every vertex that is in the skeleton adjacency set of u
(again, limited to skeleton neighbors in L), then x can be ordered in a block along
with u (see Lemma 5.2). Having possession of the skeleton adjacency sets is crucial
here for implementing detection of this condition. These are available only after our
enhancement for the computation of cardinalities.

In Figure 4.2, consider the unnumbered elimination subtree T ′[c], whose root
has γ-number 5. There, the maximum cardinality vertex chosen is vertex 4. The sole
member of the skeleton adjacency set of vertex 4 is vertex 6. Since vertex 5 is adjacent
in G to vertex 6 and also adjacent in G to the subtree rooted at vertex 3, it follows
that vertex 5 can be ordered in a block along with vertex 4.

Second, consider the case where u has no descendants in T . If a vertex x ∈ ancT (u)
is adjacent to u and every vertex in adjG(u) (except x, of course), then x can be
ordered in a block along with u (see Lemma 5.3).

Lemma 5.2. Let u be a vertex of maximum cardinality chosen at some iteration
of algorithm MCS-ETree such that u has descendants in T = T [v]. Let X be the set
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comprised of u and any vertex x ∈ ancT (u) adjacent to all of the subtrees rooted at
children of u and adjacent to all of the members of u’s skeleton adjacency set. Our
algorithm can be modified so that it numbers next as a block the vertices in X in the
current iteration.

Proof. Let the algorithm be modified so that it numbers the vertices of X next
as a block in the current iteration. Let L be the set of numbered vertices before the
vertices of X are numbered. Note first that by the choice of u, the definition of X , and
Lemma 2.1, every vertex of X will be adjacent to every vertex of adjG(V (T )) in the
final filled graph. Choose x ∈ X , and let {x, w} be a fill edge, where w is numbered
higher than x by the ordering. (Note that x may be u.) For our first case, suppose
that w ∈ L. Note that w is not in u’s skeleton adjacency set, otherwise w would be
in x’s adjacency set, and hence we would not have a fill edge. This means that w is
adjacent to one of the subtrees rooted at a child c of u. Since x is adjacent to every
vertex of adjG(V (T )) in the final fill graph and x is also adjacent to T [c], this means
that we can argue, just as in the proof of correctness, the existence of a 4-cycle that
has the fill edge {x, w} as its sole chord.

For our second case, suppose that w ∈ X . Since both x and w are adjacent to
all subtrees rooted at children of u, we can again argue, as above and in the proof of
correctness, the existence of a 4-cycle that has the fill edge {x, w} as its sole chord.

Lemma 5.3. Let u be a vertex of maximum cardinality chosen at some iteration
of MCS-ETree such that u has no descendants in T = T [v]. Any vertex x ∈ ancT (u)
that is adjacent to u and every vertex in adjG(u) (except x) can be ordered in a block
along with u.

Proof. In this case, there is no fill edge incident to x and a higher-numbered
vertex, so the result follows.

Based on Lemma 5.2, we modified MCS-ETree to number all vertices of any block
X described by the lemma at the end of the current iteration. Based on Lemma 5.3,
we also modified MCS-ETree to number all vertices of any block described by the
lemma at the end of the current iteration. We call our implementation that includes
all of the previous enhancements and this capability to number blocks of vertices the
blocked implementation. The detection of the blocks is implemented by additional
code within the Change Root2 procedure that does not require any further traversal
of adjacency sets. The vertices of a block are placed in the set B(0), where they are
labeled last by ordering γ2 among the vertices of the current elimination subtree.

6. Test results. We have coded the basic, enhanced, and blocked implementa-
tions discussed in section 5. For test results in an earlier technical report [15], we
ran these implementations on a set of test problems taken from the Harwell–Boeing
collection of sparse matrices. The initial orderings used in [15] were approximate
minimum degree (AMD) [1] orderings and random orderings. As reported in earlier
work [5, 24], minimum degree orderings are so close to minimal in practice that there
is very little extraneous fill to remove. Consequently, the practical impact of MCS-
ETree is extremely limited when AMD initial orderings are used. But our timing
results in [15] indicate that the best implementation of MCS-ETree is very efficient
on AMD initial orderings. A full set of tables and a discussion of results on AMD and
random initial orderings can be found in our technical report [15].

In this paper, we run our three implementations of MCS-ETree on a set of test
problems taken from the sparse matrix collection of Tim Davis. A greater variety
of stuctural analysis problems are included, along with a number of problems from
optimization and other application areas. The structural analysis problems include
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Table 6.1

The number of vertices in each graph, the number of edges in each filled graph, and the number
of factorization operations when the initial ordering is ND.

Edges in filled graph Factorization operations
Matrix |V | ND MCS-ETree % ND MCS-ETree %

(×103) (×103) decr. (×106) (×106) decr.
BCSSTK17 10974 1126 1061 5.81 191.2 162.6 14.95
BCSSTK25 15439 1541 1434 6.89 350.4 286.1 18.35
SRBEDDY 46772 7527 7057 6.25 2190.1 1764.6 19.43
CRYSTK02 13965 4248 4205 1.02 1923.5 1863.2 3.13
CRYSTK03 24696 9508 9390 1.24 5631.4 5388.9 4.31
nasasrb 54870 10505 10011 4.70 3559.9 3055.4 14.17
pkustk01 22044 2075 2053 1.04 421.9 414.9 1.66
pwt 36519 1346 1341 0.39 110.9 110.3 0.52
shuttle eddy 10429 352 329 6.58 22.2 17.9 19.00
skirt 12598 466 453 2.65 31.1 29.5 5.08
tandem dual 94069 6481 6466 0.23 2265.0 2260.7 0.19
helm3d01 32226 4914 4900 0.29 2783.9 2773.5 0.37
pli 22695 13842 13799 0.31 15845.2 15813.4 0.20
Pres Poisson 14822 2387 2338 2.05 553.2 522.1 5.63
ex3sta1 16782 7748 7658 1.16 7440.5 7276.8 2.20
fxm4 6 18892 435 424 2.65 23.5 22.5 4.53
gupta1 31802 2014 1987 1.33 297.1 270.9 8.83
minsurfo 40806 954 952 0.23 97.5 97.3 0.22
nemeth02 9506 460 220 52.05 24.5 5.8 76.35
pfinan512 74752 1748 1723 1.45 163.0 156.4 4.08
ted B 10605 87 72 17.05 1.5 1.1 29.23
vibrobox 12328 2483 2466 0.68 1318.3 1310.4 0.60

BCSSTK17, BCSSTK25, SRBEDDY, CRYSTK02, CRYSTK03, nasasrb, pkustk01,
pwt, shuttle eddy, skirt, tandem dual, and pli. The optimization problems include
ex3sta1, fxm4 6, gupta1, minsurfo, and pfinan512. Also included are Helmholtz equa-
tions on a unit cube (helm3d01), a CFD problem (Pres Poisson), a quantum chemistry
problem (nemeth02), a thermoelasticity problem (ted B), and an acoustics problem
(vibrobox).

Also, we look at nested dissection (ND) initial orderings only. For ND initial
orderings, there is sometimes a significant amount of extraneous fill to remove; hence
MCS-ETree is tested in a more demanding setting and gives results of more practical
consequence. We also run a code that implements the algorithm from Peyton [24]
for solving the same problem and compare our algorithm with this algorithm, since
it has the fastest documented practical running time. We remind the reader that the
theoretical running time bound of the algorithm of [24] is not known.

Table 6.1 reports the number of vertices in each graph and the number of edges
in the filled graphs for the ND orderings and the minimal orderings obtained from the
blocked implementation of MCS-ETree. Also shown are the number of factorization
operations that result from the ND orderings and the minimal orderings. The percent
decrease in edges is less than 2% for 12 of the 22 problems. It is greater than 5% for 6 of
the 22 problems. For matrix ted B, which comes from coupled linear thermoelasticity
equations, the decrease is 17%. For nemeth02, which comes from a Newton–Schultz
iteration for a chemistry problem, the decrease is 52%. The latter is a long “path-
like” problem for which nested dissection is inappropriate unless one seeks to exploit
parallelism during the factorization.

Looking at the reductions in factorization operations gives us more matrices where
MCS-ETree has some practical impact. Nonetheless, the reduction is less than 5%
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Table 6.2

CPU seconds to compute the ND initial orderings and the minimal orderings using the algorithm
of [24] and the three implementations of MCS-ETree.

ND MCS-ETree Peyton
Matrix time (Basic) (Enhanced) (Blocked) [24]

time time time time
BCSSTK17 0.124 9.769 0.820 0.052 0.496
BCSSTK25 0.256 10.141 1.688 0.088 0.604
SRBEDDY 0.188 129.492 10.225 0.280 0.648
CRYSTK02 0.144 38.538 3.016 0.088 0.144
CRYSTK03 0.272 98.350 7.800 0.152 0.276
nasasrb 1.056 225.106 16.173 0.368 4.044
pkustk01 0.076 24.914 2.332 0.156 1.316
pwt 0.420 12.029 2.160 0.144 0.304
shuttle eddy 0.096 2.356 0.400 0.040 0.088
skirt 0.148 1.952 0.316 0.052 0.556
tandem dual 1.236 72.601 22.221 0.472 2.772
helm3d01 0.580 62.580 12.829 0.324 1.988
pli 0.972 94.538 11.277 0.148 1.776
Pres Poisson 0.148 22.333 1.680 0.080 0.184
ex3sta1 0.336 64.776 10.205 0.240 3.056
fxm4 6 0.248 5.064 0.660 0.104 0.768
gupta1 1.680 38.178 17.565 6.876 17148.713
minsurfo 0.355 12.854 3.172 0.188 0.369
nemeth02 0.219 44.676 2.082 1.859 2.553
pfinan512 1.188 20.822 3.971 0.324 4.281
ted B 0.057 2.057 0.168 0.076 0.148
vibrobox 0.293 17.010 2.592 0.080 0.867

for 12 of the 22 problems. For three of the structural analysis matrices used also
in our technical report [15], namely, BCSSTK17, BCSSTK25, and SRBEDDY, the
decreases are roughly 15%, 18%, and 19.5%, respectively. Two structural analysis
matrices added to our problem set for this paper, namely, nasasrb and shuttle eddy,
have decreases of roughly 14% and 19%, respectively. The two matrices with the
largest fill reductions, namely, ted B and nemeth02, have decreases of roughly 29%
and 76%, respectively.

Table 6.2 reports the CPU time in seconds for the ND orderings, for each of the
three implementations of algorithm MCS-ETree, and for the algorithm of [24]. The
tests were run on a PC with a Pentium 4 processor running at 2.66 GHz with 0.99
GB RAM available. The code was written in Fortran and executed under the Linux
operating system. We used the Metis software package available from the University
of Minnesota to compute nested dissection orderings.

The basic implementation of MCS-ETree has much larger run times than the
ND code and is clearly too inefficient for practical sparse matrix computations. The
enhanced implementation of MCS-ETree is much faster than the basic implementation
in every case. Often it is ten times faster, or close to ten times faster, than the basic
implementation. But comparing run times for the enhanced implementation with
the ND ordering times, it is obvious that the enhanced implementation is also too
inefficient for practical sparse matrix computations, despite its improvements.

Our timings, however, improve dramatically for most problems as we move to the
blocked implementation, which includes the blocking technique along with all of the
enhancements employed by the enhanced implementation. For 17 of the 22 problems,
the blocked implementation runs more than ten times faster than the enhanced im-
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plementation. For 13 of the 22 problems, the blocked implementation runs more than
100 times faster than the basic implemenation.

The three problems for which the reduction in time from the basic implementation
to the blocked implementation is smallest are gupta1, nemeth02, and ted B. For each
of these problems, the number of blocks detected by the blocked implementation is
unusually large relative to the number of vertices in the graph. For gupta1, there
are 31,198 blocks and 31,802 vertices; for nemeth02, there are 7,619 blocks and 9506
vertices; for ted B, there are 8,750 blocks and 10,605 vertices. For nemeth02, the
reduction from the enhanced implementation to the blocked implementation is very
small—from 2.082 seconds to 1.859 seconds. The matrix gupta1, which arises in a
linear programming problem, presents the greatest difficulties to all of the algorithms
we have looked at. For gupta1, the reduction from the basic implementation to the
blocked implementation is from 38.178 seconds to 6.876 seconds—a reduction of only
82%. The time for the ND ordering of gupta1 is also greater than the ND ordering
time for any other matrix. The matrices nemeth02 and ted B have, by far, the greatest
percent reduction in edges, and it may be natural to pay more in time to remove a
greater percentage of edges.

The algorithm of Peyton [24] runs reasonably fast for ND initial orderings (except
on the matrix gupta1). It is not as fast as the blocked implementation of MCS-ETree
for any test matrix when ND initial orderings are used; however, there are a few
instances where it is faster when AMD initial orderings are used [15]. In fairness, the
implementation of the algorithm of [24] has not been improved to the extent that the
blocked implementation of MCS-ETree has been improved. It would be interesting to
see if the implementation of the algorithm of [24] could be improved to the extent that
it would prove more competitive than the blocked implementation of MCS-ETree for
ND initial orderings.

The algorithm of [24] takes an exhorbitant amount of time (4.76 hours) to compute
the minimal ordering for the matrix gupta1. It became clear to us what was going
on when we saw that the AMD ordering time for gupta1 is 52.2 seconds, which
is extremely large. It was shown in Heggernes et al. [14] that AMD is an O(nm)
algorithm and that there exist examples to which this worst-case time complexity
applies. The algorithm of [24] relies on the iteration of a restricted version of the
minimum degree algorithm with exact degrees. The time complexity of minimum
degree with exact degrees is O(n2m) [14]. This interesting test matrix fully reveals
the vulnerability of the algorithm of [24].

Finally, run times for the blocked implementation are reduced to the point that
MCS-ETree is fast enough to be considered for sparse matrix computations. For 16 of
22 problems, the time required by the blocked implementation of MCS-ETree is less
than that required by the ND algorithm. For only two of the 22 problems, the ratio
of the time for the blocked implementation to the time for the ND ordering is greater
than three; for gupta1 the ratio is 4.09, and for nemeth02, the ratio is 8.50.

7. Concluding remarks. We have introduced a new algorithm MCS-ETree for
computing a minimal ordering whose minimal fill lies inside the fill of any given initial
ordering. The O(nmA(m, n)) running time complexity is virtually as good as the best
known time complexity of O(nm). In practical tests, our algorithm performs better
than the previous fastest algorithm of [24] and has the advantage of having a provably
good theoretical running time as well. Algorithm MCS-ETree explicitly deals with
a current ordering and the structure associated with that ordering, at the cost of
disjoint set union operations that lead to the extremely slowly growing A(m, n) term
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in its running time complexity. By explicitly computing and exploiting elimination
subtrees and partial Cholesky column nonzero counts, one obtains a relatively simple
algorithm whose proof of correctness is also relatively simple. The new algorithm is
based on selecting a special vertex of maximum cardinality at each step and resembles,
in this regard, the algorithm MCS-M introduced in [2].

The algorithm can be implemented in O(nm A(m, n)) time by adapting three
commonly used sparse matrix algorithms that date from the mid-1980’s to the mid-
1990’s:

1. An O(m A(m, n)) algorithm for computing the number of nonzeros in each
column of a Cholesky factor [12];

2. An O(m) algorithm for computing equivalent reorderings [19]; and
3. An O(m A(m, n)) algorithm for computing an elimination tree [20].

We were able to improve the basic implementation to obtain much faster implementa-
tions. The first set of enhancements are straightforward programming-level improve-
ments that greatly limit the number of times adjacency lists are traversed or shorten
those lists to abbreviated skeleton adjacency lists. The other improvement allows
blocks of vertices to be numbered by a single iteration of the algorithm, and this is
based closely on the idea of indistinguishable vertex sets in elimination graphs ex-
ploited so successfully by the implementations of the minimum degree algorithm [17].

We coded in Fortran the basic, enhanced, and blocked implementations, and our
timing results show that the blocked implementation is fast enough to be considered
for use in sparse matrix computations. The best implementation of the algorithm
could prove useful when the initial orderings are nested dissection orderings, because
sometimes the fill and factorization operations can be significantly reduced by remov-
ing extraneous fill.
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Abstract. Matrix fixed-point iterations zn+1 = ψ(zn) defined by a rational function ψ are
considered. For these iterations a new proof is given that matrix convergence is essentially reduced
to scalar convergence. It is shown that the principal Padé family of iterations for the matrix sign
function and the matrix square root is a special case of a family of rational iterations due to Ernst
Schröder. This characterization provides a family of iterations for the matrix pth root which preserve
the structure of a group of automorphisms associated with a bilinear or a sesquilinear form. The first
iteration in that family is the Halley method for which a convergence result is proved. Finally, new
algorithms for the matrix pth root based on the Newton and Halley iterations are designed using the
idea of the Schur–Newton method of Guo and Higham.
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1. Introduction. The study of rational iterations, which have the form xk+1 =
ϕ(xk), where ϕ(z) is a rational function, is a topic of great interest in computation,
particularly for the design and analysis of root-finding algorithms. The local conver-
gence at a fixed point z∗, such that z∗ = ϕ(z∗), is related to the properties of the
derivatives of ϕ at z∗. A study of the global convergence is very difficult: the sets
of initial values for which the sequence generated by a rational iteration converges
to a fixed point are bounded by the so-called Julia sets which in most cases are
fractals [1].

The generalization to the matrix case appears in the study of matrix equations
and in the computation of matrix functions [9]. It raises problems somehow new: it
is not straightforward how to define a rational matrix iteration; there can be infinite
fixed points, the lack of commutativity in finite arithmetic can have effects on the
convergence, and so on.

In this paper we provide a general convergence result for rational matrix iterations,
and then we prove some properties of specific classes of rational iterations.

General results concern the case where the iterates are rational functions of a
matrix A, say, sk(A). We prove that the uniform convergence of sk(z) on a compact
neighborhood of the spectrum of A implies the matrix convergence. Then we show
that if the iteration is of the type xk+1 = ϕ(xk), where ϕ is a rational function, then
the pointwise convergence of sk(λ) to attractive fixed points for each eigenvalue λ
of A implies the uniform convergence on a compact neighborhood of the spectrum
of A and thus the matrix convergence. This extends in part a result of Higham [9,
Thm. 4.15].
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Concerning specific classes, we first consider the principal Padé family introduced
in [17] and discussed in [8, 10, 11, 4]. We prove that the family can be obtained by the
König root-finding method applied to the polynomial x2−1, which goes back to a work
of Schröder in 1870 [20]. Second, using the characterization given above, we extend
to the König family for the polynomial xp−1 a result of Higham et al. [10] concerning
the property of a part of the principal Padé family of preserving the structure of group
of automorphisms associated with a bilinear or a sesquilinear form. Third, we show
that the Halley method, which belongs to the König family, for the computation of
the principal pth root of a matrix preserves the structure described above, and we
prove a result on the convergence of that method. Finally, we show that the idea of
the Schur–Newton method proposed by Guo and Higham in [6] for the inverse Newton
iteration for the computation of the principal pth root of a matrix can be applied to
the direct Newton iteration and to the Halley method, providing new algorithms with
good numerical properties.

We recall that the principal pth root of a matrix A having no nonpositive real
eigenvalues is the unique solution X of the matrix equation Xp − A = 0, such that
the eigenvalues of X have argument less in modulus than π/p.

The paper is organized as follows: in section 2 we define the class of pure rational
matrix iterations and we discuss their convergence; in section 3 we show the equiv-
alence between the principal Padé iterations and the König iterations for x2 − 1; in
section 4 we generate a König family of matrix iterations preserving the structure of
a group of automorphisms; in sections 5 and 6 we prove convergence results for the
Newton and Halley method, and we extend the idea of the Schur–Newton method of
Guo and Higham to them.

2. Pure rational matrix iterations. Given a rational function ϕ, the iteration

(2.1)
{

z0 ∈ C,
zk+1 = ϕ(zk), k = 0, 1, 2, . . . ,

is called a rational iteration. The function ϕ can have poles, so that the sequence
is not necessarily well defined for each z0. We use the notation ϕ◦k to denote the
kth iterate of the function ϕ, i.e., ϕ◦1 = ϕ and ϕ◦k+1 = ϕ ◦ ϕ◦k. A fixed point z∗
of (2.1) is such that ϕ(z∗) = z∗ and is said to be attractive if |ϕ′(z∗)| < 1. For an
attractive fixed point z∗, the basin of attraction is the set B = {z0 ∈ C : zk → z∗};
the immediate basin is the connected component of B which contains z∗.

We state a useful lemma on the basin of attraction which is a special case of
Theorem 6.3.1 of [1].

Lemma 2.1. Let z∗ be an attractive fixed point of iteration (2.1). The sequence
ϕ◦k(z) converges locally uniformly to z∗ for each z0 belonging to the basin of z∗. In
other words, z0 has a neighborhood in which ϕ◦k converges uniformly to z∗.

Proof. Since |ϕ′(z∗)| < 1, there exists a closed disk D centered at z∗ and such
that |ϕ(z) − z∗| � M |z − z∗| for a positive constant M < 1 and for each z ∈ D, and
thus ϕ◦k converges uniformly on the compact sets of D.

Let z0 belong to the basin of attraction of z∗. There exists m such that ϕ◦m(z0)
belongs to the interior of D. Since ϕ◦m is continuous, there exists a compact neigh-
borhood K of z0 such that ϕ◦m(z) is a compact set fully contained in the interior of
D, and thus ϕ◦k(z) converges uniformly to z∗ for each z ∈ K.

In the matrix case, a formula like (2.1) would give an iteration of the form

(2.2)
{

Z0 ∈ C
n×n,

Zk+1 = ϕ(Zk), k = 0, 1, 2, . . . ,
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where ϕ(z) is a rational function and ϕ(Z), where Z is a square matrix, is defined
by substituting Z for z and replacing scalar numbers by multiples of the identity
and arithmetic operations by matrix operations. That procedure leads to the usual
definition of function of a matrix [12, 5, 9]. We call an iteration defined by a function,
as in (2.2), a pure rational matrix iteration.

The class of pure rational matrix iterations is not suitable to approximate generic
matrix functions, since, as we will explain in Remark 2.5, there hold strong conditions
on the limits of such sequences.

A larger class of iterations than the pure rational matrix iterations can be studied
with similar techniques. An iteration in this larger class can be written in the form

(2.3)
{

Z0 = p(A),
Zk+1 = ψ(Zk, A), k = 0, 1, 2, . . . ,

where A is a square matrix, ψ = ψ(t, z) is a two-variable rational function, and p is
a polynomial. In that case, for each A, the sequence Zk defines the same sequence
of rational functions sk(z) such that sk(A) = ψ(sk−1(A), A) = Zk and s0(A) = p(A).
That class contains the pure rational matrix iterations as a special case if p is the
identity function and the formula for ψ does not contain A.

Consider an iteration of the class (2.3) described above. Let Zk be the kth iterate,
so that Zk = sk(A), with sk(z) being a rational function. Using the Jordan canonical
form of A, say, M−1AM = J1⊕· · ·⊕Jr, one has M−1ZkM = sk(J1)⊕· · ·⊕sk(Jr) for
each k. Therefore, by means of similarity M , the iteration can be uncoupled into r
iterations involving only functions of the Jordan blocks. The study of the convergence
is thus restricted to the case in which A is a Jordan block of arbitrary size for the
eigenvalue λ, which will be denoted by J .

Moreover, in view of the formula for a function of a Jordan block [5, Thm. 11.1.1],

(2.4) f(J) =

⎡⎢⎢⎢⎢⎢⎣
f(λ) f ′(λ) . . . f(k−1)(λ)

(k−1)!

f(λ)
. . .

...
. . . f ′(λ)

© f(λ)

⎤⎥⎥⎥⎥⎥⎦ ,

each of the iterates is upper triangular.
A question arises naturally: if the sequence sk(λ), with s0(λ) = p(λ), converges

for each eigenvalue of A, what can be said about the convergence of sk(A)? The
following easy example shows that, in general, scalar convergence does not imply
matrix convergence.

Example 2.2. Consider the rational iteration zk+1 = ϕ(zk), where ϕ(z) = z2. The
sequence ϕ◦k(1) converges to 1, but it fails to converge uniformly on any neighborhood
of the point 1. Consider the matrix iteration Zk+1 = Z2

k and the starting point
Z0 = [ 1 1

0 1 ]; the iterates are Zk = [ 1 2k

0 1
], and the sequence fails to converge. For this

iteration and Z0 being a Jordan block of size n for the eigenvalue 1, there is matrix
convergence only for n = 1, that is, in the scalar case.

A sufficient condition for the convergence of the matrix sequence, given the scalar
convergence, is stated in Lemma 2.3, in which the notation ‖f(z)‖K = supx∈K |f(x)|
is used for a function f defined on a compact set K. This approach generalizes a proof
of matrix convergence in [15]. A different approach for the matrix convergence has
been used in [17] and generalized in [9, Thm. 4.15], where it is proved that the matrix
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convergence follows from the scalar convergence of the eigenvalues to attracting fixed
points.

Lemma 2.3. If sk(z) is a sequence of rational functions that converges uniformly
in a compact neighborhood K of λ to the function f(z), then sk(J) converges to f(J),
where J is a Jordan block of arbitrary size n relative to the eigenvalue λ. Moreover,
there exists a function c = c(n), independent of k, such that

(2.5) ‖sk(J) − f(J)‖∞ � c‖sk(z) − f(z)‖K .

Proof. The function f is holomorphic on K since it is the uniform limit on a
compact set of holomorphic functions.

From formula (2.4), the matrix sequence converges if the sequence sk(z) and
its derivatives up to the order n − 1 converge. Consider a small circle γ of radius
R, centered at λ and fully contained in K. Using the Cauchy formula, for p =
0, 1, . . . , n − 1, it holds that∣∣∣∣∣s

(p)
k (λ)
p!

− f (p)(λ)
p!

∣∣∣∣∣ =
∣∣∣∣ 1
2πi

∮
γ

sk(z) − f(z)
(z − λ)p+1

dz

∣∣∣∣ � 1
Rp

‖sk(z) − f(z)‖K .

The previous relation provides the convergence of the sequence sk(J) to f(J), since
the latter term tends to zero as k tends to ∞ by the uniform convergence assumption.
It also provides the proof of (2.5), since from formula (2.4) it follows that

(2.6) ‖sk(J) − f(J)‖∞ =
n−1∑
p=0

∣∣∣∣∣s
(p)
k (λ)
p!

− f (p)(λ)
p!

∣∣∣∣∣ � ‖sk(z) − f(z)‖K

n−1∑
p=0

1
Rp

.

In summary, if the sequence sk(z) converges uniformly on a compact neighborhood
of the spectrum of A, then the sequence sk(A) converges, and formula (2.6) can be
used to provide an upper bound for the convergence of the matrix sequence. If the
scalar convergence is not uniform, then the matrix iteration may fail to converge, as
Example 2.2 shows.

We have turned the problem from matrix convergence to uniform scalar conver-
gence on a compact neighborhood of the spectrum. This does not seem at first sight
an advantage, but its benefit is clear in the case of pure rational iterations; in fact,
Lemma 2.1 shows that if the sequence sk(λ) converges, for each eigenvalue λ of A, to
an attractive fixed point λ∗, then the sequence sk(z) converges uniformly to λ∗ on a
neighborhood of λ. We have the following result.

Theorem 2.4. Let Zk+1 = ϕ(Zk) be a pure rational matrix iteration. If for
each eigenvalue λ of Z0 the scalar sequence zk+1 = ϕ(zk), z0 = λ, converges to an
attractive fixed point λ∗, then there exists a locally constant function f(z) such that for
each initial value Z in a neighborhood of Z0 the matrix iteration converges to f(Z).
Moreover, f(Z) is diagonalizable.

Proof. Lemma 2.1 guarantees that the scalar iteration converges uniformly in
a compact neighborhood K of spectrum of Z0 to a locally constant function f(z).
Lemma 2.3 provides the matrix convergence for the Jordan blocks relative to eigen-
values belonging to the interior of K. Since the eigenvalues of a matrix are continuous
functions of the entries, there exists a neighborhood V of Z0 in the space of square
matrices such that for each matrix Z of V , the eigenvalues of Z belong to the interior
of K, so the matrix iteration converges to f(Z).
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The diagonalizability follows from the fact that f is locally constant and thus
its derivatives are 0: By formula (2.4), f(J) is a diagonal matrix for each Jordan
block J .

Remark 2.5. Theorem 2.4 states that the limit of a pure rational matrix iteration
is a (scalar) locally constant function of the initial value, and it is diagonalizable
provided that the convergence of the scalar sequence on the eigenvalues of Z0 is to
attractive fixed points (a scalar locally constant function need not be locally constant if
applied to matrices; consider, for instance, the matrix sign function). A consequence is
that only (scalar) locally constant functions can be the limit of a pure rational matrix
iteration, which explains why in the literature the sole matrix functions computed
using pure rational matrix iterations are the matrix sign function and the matrix
sector function, which are (scalar) locally constant.

On the other hand, Theorem 2.4 shows that a function which is not (scalar) locally
constant cannot be the limit of a pure rational matrix iteration; thus there is no hope
to find, for instance, a pure rational matrix iteration converging to the matrix pth
root, logarithm or exponential.

We note that Theorem 2.4 implies that a matrix function defined as the limit of
a pure rational iteration is diagonalizable, which in particular gives another proof of
the diagonalizability of the matrix sign function.

Remark 2.6. A convergence result for iterations of the type (2.3) is given by
Higham [9, Thm. 4.15], generalizing a result for the matrix sign function in [17,
Lem. 5.1]. His result guarantees matrix convergence if the scalar eigenvalue sequences
converge to attractive fixed points. When [9, Thm. 4.15] is specialized to the case of
pure rational matrix iterations, it gives a result similar to, but weaker than, Theo-
rem 2.4. Theorem 2.4, together with Lemma 2.3, has the advantage of specifying the
limit to which the matrix sequence converges as a matrix function, provides a bound
for the matrix convergence, and can be further extended to the case |ϕ′(λ∗)| = 1
using, for instance, the Leau–Fatou theorem [1].

3. Equivalence between the König family and the principal Padé it-
erations family. In the paper [17] Kenney and Laub derive a family of rational
iterations for the computation of the matrix sign function. The derivation is based
on the theory of Padé approximations and exploits the relation

sign(z) =
z√
z2

=
z√

1 − (1 − z2)
=

z√
1 − ξ

,

where ξ = 1 − x2. They consider the approximants of the function

h(ξ) = (1 − ξ)−1/2,

which are well known.
Given pmn(ξ)/qmn(ξ), the (m, n) Padé approximant to h, the recurrence

xk+1 = fmn(xk) = xk
pmn(1 − x2

k)
qmn(1 − x2

k)
,

defines a family of iterations for the matrix sign function.
The iterations with m = n− 1 and m = n are globally convergent and have been

called principal Padé iterations [9]. For these values of m and n one can define

(3.1) gr(x) = fmn(x) for r = m + n + 1,
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for which we have the following result [17].
Theorem 3.1. For the function (3.1) it holds that
1. for each nonimaginary x0, the iteration xk+1 = gr(xk) is convergent to

sign(x0), with order of convergence r; and
2. gr(x) = (1+x)r−(1−x)r

(1+x)r+(1−x)r .
Higham [9] noticed that these families were essentially derived by Howland [14];

though for even r the iteration functions of Howland are the reciprocal of those of
Kenney and Laub.

In fact, the family of principal Padé iterations is a particular case of iterations
going back to Schröder in his monumental paper of 1870 [20] (an English translation
is available in [21]). This family was studied by Householder [13] and many other
authors, who called it the König family [3] or the basic family [16].

The König method of order σ, applied to the function f , is defined by the formula
[3]

(3.2) Kf,σ(z) = z + (σ − 1)
(1/f(z))(σ−2)

(1/f(z))(σ−1)
,

where (1/f)(k) is the kth derivative of 1/f . It can be proved that the method converges
to simple roots of f with order at least σ. For σ = 2 the König method is the Newton
method, while for σ = 3 it is the so-called Halley method.

If f is a polynomial, then Kf,σ is a rational function. Let us define Kp,σ as the
König family applied to the polynomial f = xp − 1.

Theorem 3.2. For the König rational functions relative to the polynomial x2−1
it holds that K2,r(x) = (x+1)r+(x−1)r

(x+1)r−(x−1)r . Thus, K2,r coincides with gr of (3.1) for odd
r and with the reciprocal of gr for even r.

Proof. From

dn

dxn

(
1

x2 − 1

)
=

1
2

dn

dxn

(
1

x − 1
− 1

x + 1

)
=

(−1)nn!
2

(
1

(x − 1)n+1
− 1

(x + 1)n+1

)
=

(−1)nn!
2

(
(x + 1)n+1 − (x − 1)n+1

(x2 − 1)n+1

)
,

it follows that

K2,r(x) = x − (x2 − 1)
(x + 1)r−1 − (x − 1)r−1

(x + 1)r − (x − 1)r
=

(x + 1)r + (x − 1)r

(x + 1)r − (x − 1)r
.

4. Structure-preserving algorithms in the König family. It has been proved
in [11, Thm. 3.13] that an iteration of the form

(4.1) z
q(z)

rev q(z)
,

where rev q(z) = zdq(1/z) for a real polynomial q(z) of degree d, preserves the struc-
ture of group of automorphisms associated with

• a bilinear form on R
n or C

n and
• a sesquilinear form on C

n.
To ease the notation we call structure-preserving an iteration with the form (4.1),
recalling that the rational functions preserving bilinear or sesquilinear forms (fully
characterized in [11, Thm. 3.13]) are more general.
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The principal Padé iterations and, in view of Theorem 3.2, the K2,σ iterations for
odd σ are iterations for the matrix sign function which are structure-preserving [11];
this is a case of a more general theorem.

Theorem 4.1. If n ≡ 3 (mod p), then the function Kp,n, namely, the König
method for the polynomial xp − 1, has the form

(4.2) z
q(zp)

rev q(zp)
,

where q is a real polynomial, and so in particular it is structure-preserving.
Proof. The proof is obtained by deriving a formula for the derivatives of 1/(xp−1)

and, from it, an explicit elementary formula for the König function from which we
deduce the theorem. Let p � 3; the case p = 2 follows easily from Theorem 3.2.

Let ω = cos(2π/p)+ i sin(2π/p) and ϕ(x) = (xp −1)/(x−1) =
∑p−1

k=0 xk. Observe
that ϕ(ωk) = 0 for k �≡ 0 (mod p).

It holds that

1
xp − 1

=
1
p

p−1∑
k=0

ωk

x − ωk
;

in fact,

p−1∑
k=0

ωk

x − ωk
=

1
xp − 1

p−1∑
k=0

1
ω̄k

xp − 1
x − ωk

=
1

xp − 1

p−1∑
k=0

(ω̄kx)p − 1
ω̄kx − 1

=
1

xp − 1

p−1∑
k=0

ϕ(ω̄kx) =
1

xp − 1

p−1∑
k=0

p−1∑
r=0

(ω̄kx)r =
1

xp − 1

p−1∑
r=0

xr

p−1∑
k=0

ω̄kr =
p

xp − 1
.

Now,

dn

dxn

(
1

xp − 1

)
=

1
p

p−1∑
k=0

dn

dxn

ωk

x − ωk
=

(−1)nn!
p

p−1∑
k=0

ωk

(x − ωk)n+1

=
(−1)nn!

p(xp − 1)n+1

p−1∑
k=0

ω̄knϕn+1(ω̄kx) =
(−1)nn!

p(xp − 1)n+1

p−1∑
k=0

ωknϕn+1(ωkx),

and defining ψn(x) = 1
p

∑p−1
k=0 ωk(n−1)ϕn(ωkx) yields the explicit formula

Kp,n = x − (xp − 1)
ψn−1

ψn
=

xψn − (xp − 1)ψn−1

ψn
.

The denominator of Kp,n, namely, ψn(x), is formed by the terms of ϕn(x) in which
the exponent of x is congruent to (1 − n) modulo p; in fact, if ϕn(x) =

∑
arx

r, then

ψn(x) =
1
p

p−1∑
k=0

ωk(n−1)
∑

r

arω
krxr =

1
p

∑
r

(
arx

r

p−1∑
k=0

ωk(n+r−1)

)
=

∑
r≡1−n

arx
r.
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The numerator of Kp,n, namely, xψn(x)− (xp − 1)ψn−1(x), is formed by the terms of
ϕn(x) in which the exponent of x is congruent to (2 − n) modulo p; in fact,

xψn(x)−(xp−1)ψn−1(x) =
1
p

p−1∑
k=0

(
ωk(n−1)xϕn(ωkx) − ωk(n−2)(xp − 1)ϕn−1(ωkx)

)
=

1
p

p−1∑
k=0

(
ωk(n−1)xϕn(ωkx) − ωk(n−2)(ωkx − 1)ϕn(ωkx)

)
=

1
p

p−1∑
k=0

ωk(n−2)ϕn(ωkx)

=
1
p

p−1∑
k=0

ωk(n−2)
∑

r

arω
krxr =

1
p

∑
r

(
arx

r

p−1∑
k=0

ωk(n+r−2)

)
=

∑
r≡2−n

arx
r,

where we have used the identity xp − 1 = (ωkx − 1)ϕ(ωkx) for any k.
Let aα1 , . . . , aαν be the coefficients of ϕn(x) relative to exponents congruent to

1−n modulo p, and let aβ1 , . . . , aβμ be the coefficients of ϕn(x) relative to exponents
congruent to 2 − n modulo p, so that

Kp,n =
aβ1x

β1 + · · · + aβμxβμ

aα1x
α1 + · · · + aαν xαν

.

To conclude the proof, it is enough to prove that, for n ≡ 3 (mod p), it holds that
μ = ν and aα1 = aβμ , aα2 = aβμ−1 , . . . , aαν = aβ1 .

Let N = deg ϕn(x) = np−n. To prove the equality μ = ν observe that μ and ν are
the numbers of solutions of the congruences r ≡ 1−n (mod p) and r ≡ 2−n (mod p),
respectively, such that 0 � r � N . For n ≡ 3 (mod p) there exists an integer γ such
that N = γp − 3; thus the number of solutions of the two congruences r ≡ 1 − n ≡
−2 (mod p) and r ≡ 2 − n ≡ −1 (mod p) such that 0 � r � N is the same.

Observe that since N = np − n, then βμ = N + 2 − p, and observe that ϕn(x) =
revϕn(x), namely, ar = aN−r for each r = 0, 1, . . . . For n ≡ 3 (mod p), it holds that
α1 = p − 2, and thus aα1 = ap−2 = aN+2−p = aβμ .

The equalities aαi+1 = aβμ−i for i = 1, 2, . . . follow from the fact that if n ≡ 3
(mod p), then αi+1 = (i + 1)p − 2 = N − (N + 2 − p − ip) = N − βμ−i.

Simplifying the common factors gives the required form for Kp,n.
By the properties of the König method [3], the iteration zk+1 = Kp,n(zk) con-

verges locally, with order of convergence at least n, to the roots of the polynomial
xp − 1. It is easy to see, by an induction argument, that the iteration

(4.3) xk+1 = ζKp,n(ζ−1xk),

where ζ is any pth root of the nonzero scalar a, for x0 = ζz0, is such that xk = ζzk

and thus converges locally to the roots of xp − a = 0.
Iteration (4.3) does not seem effective for computing the pth roots of a, since it

uses ζ, but for n ≡ 3 (mod p); in view of Theorem 4.1, the iteration for xk has the
form

(4.4) xk+1 = xk
q(a−1xp

k)
rev q(a−1xp

k)
= xk

q̂(xp
k)

rev q̂(xp
k)

,

where q̂ is obtained by multiplying q by a suitable power of a. In this way, an
effective iteration is obtained to approximate with high precision the pth roots of a
given complex number.
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A difficulty in the use of iteration (4.4) is the global convergence. We will not
investigate further the global convergence of (4.4), but in section 5 we will give a
convergence proof for the case n = 3, which is a structure-preserving iteration for
each p, in view of Theorem 4.1.

Remark 4.2. Theorem 4.1 has a perhaps surprising application to the theory
of root-finding algorithms. Following McMullen [19], a rational iterative root-finding
algorithm is said to be generally convergent if it converges to a root for almost every
initial guess and for almost every polynomial (where the Lebesgue measure on the
complex plane and on the space of coefficients is considered).

It is known that the Newton method is generally convergent for quadratic poly-
nomials, but not for cubics. In fact, the Newton iteration for the polynomial p(z) =
z3−2z +2 does not converge to any root for initial values in a suitable set of measure
greater than zero.

McMullen constructed in [19] a generally convergent algorithm for cubic poly-
nomials and proved that there does not exist a generally convergent algorithm for
polynomials of degree greater than 3.

Using the results of McMullen, Hawkins proved that any generally convergent
root-finding algorithm is generated by a root-finding algorithm for the polynomial
x3 − 1 of the form (4.2) [7]. Thus, Theorem 4.1 could be used to construct gen-
erally convergent algorithms for a cubic polynomial of an arbitrarily high order of
convergence.

5. Nice properties of the Halley method. The König method of order 3 is
the so-called Halley method, which, for the equation xp − 1 = 0, is

(5.1) xk+1 = xk
(p − 1)xp

k + (p + 1)
(p + 1)xp

k + (p − 1)
, x0 ∈ C.

Here we considered a matrix generalization of the Halley method for computing the
principal pth root of a matrix A.

A very nice feature of the Halley method for the equation xp − 1 = 0 is that the
basin of attraction for the fixed point 1 is somewhat nicer than that of the Newton
method (see Figure 5.1 for a comparison in the case p = 4). It was proved [15] that
for the Newton method applied to the equation xp − 1 = 0 the basin of attraction for
the fixed point 1 contains the set

(5.2) T2p = {z ∈ C \ {0} : −π/(2p) < arg (z) < π/(2p), |z| � 1},

while for the Halley method there holds the following result.
Theorem 5.1. The immediate basin of attraction for the fixed point 1 of the

rational iteration (5.1) contains the sector

(5.3) S2p = {z ∈ C \ {0} : −π/(2p) < arg (z) < π/(2p)}.

Proof. Let us define

ϕ(z) =
(p − 1)zp + (p + 1)
(p + 1)zp + (p − 1)

;

iteration (5.1) can be written as zk+1 = zkϕ(zk). The sector S2p contains the fixed
point z = 1 and is an open connected set, and, by Lemma 5.2, if z ∈ S2p, then
zϕ(z) ∈ S2p. Thus, the set S2p belongs to the immediate basin of the fixed point
z = 1. In fact, given a rational iteration xk+1 = ψ(xk) of degree greater than 1,
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Fig. 5.1. Comparison of the basins of attraction for the Newton method (left) and the Halley
method (right) for the equation x4 − 1 in the set [−2, 2] × [−2, 2] ⊂ C. The sets T2p of (5.2) and
S2p of (5.3) are highlighted.

any connected open set U such that ψ(U) ⊂ U and containing only a fixed point z∗
belongs to the immediate basin of z∗ (compare with [1, Thm. 4.2.5]).

Lemma 5.2. For each z ∈ S2p, it holds that | arg(zϕ(z))| � | arg(z)| and the
equality holds if and only if z is real.

Proof. If z is real, then ϕ(z) is real. Let us consider the case arg(z) > 0; since
arg(zϕ(z)) = arg(z) + arg(ϕ(z)), it is enough to prove that

(5.4) −2 arg(z) < arg(ϕ(z)) < 0.

Removing real positive constants, it holds that

arg(ϕ(z)) = arg
(
((p − 1)zp + (p + 1)) · ((p + 1)z̄p + (p − 1))

)
.

Using the decomposition z = r(cos ϑ + i sinϑ), one has

arg(ϕ(z)) = arg
(
(p2 − 1)(|r|2p + 1) + 2(p2 + 1)rp cos(pϑ) − 4iprp sin(pϑ)

)
.

Applying the tangent trigonometric function to the inequalities (5.4), we obtain the
equivalent

(5.5) − sin(2ϑ)
cos(2ϑ)

<
−4prp sin(pϑ)

(p2 − 1)(r2p + 1) + 2(p2 + 1)rp cos(pϑ)
< 0.

The latter inequality is evident from 0 < ϑ < π/(2p). The former needs a bit more
work; it can be rewritten as

(p2 − 1) sin(2ϑ)r2p + 2
(
(p2 + 1) cos(pϑ) sin(2ϑ) − 2p sin(pϑ) cos(2ϑ)

)
rp

+ (p2 − 1) sin(2ϑ) > 0(5.6)

and can be seen as a quadratic inequality on the variable x = rp. The quadratic
has the form γ(x) = ax2 + 2bx + a, where a = (p2 − 1) sin(2ϑ) and b = (p2 +1)
cos(pϑ) sin(2ϑ)−2p sin(pϑ) cos(2ϑ). Since a > 0, the inequality γ(x) > 0 is true if the
equation γ(x) = 0 has no solution. Observe that if γ(x) = 0, then γ(1/x) = 0, and if
γ(1) > 0, there exists no positive solution.
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Using the inequalities (ϑ−ϑ3/6) � sin ϑ � ϑ for 0 < ϑ < π/p and sin((p−2)ϑ) =
sin(pϑ) cos(2ϑ) − sin(2ϑ) cos(pϑ), one can see that

1
2
γ(1) � (p2 − 1) sin(2ϑ) − 2p sin((p − 2)ϑ) > (p2 − 1)

(
2ϑ − 4

3
ϑ3

)
− 2p(p− 2)ϑ

=
2
3
ϑ
(
6p − 3 − 2(p2 − 1)ϑ2

)
;

the last expression is positive if ϑ2 � 6p−3
2p2−2 , and this is true since ϑ � π/(2p).

It is worth giving a corollary of Theorem 5.1 which could be used for the compu-
tation of the scalar pth root.

Corollary 5.3. Consider the Halley method for the equation xp − a = 0,

(5.7) xk+1 = xk
(p − 1)xp

k + (p + 1)a
(p + 1)xp

k + (p − 1)a
, x0 ∈ C.

The principal basin for the initial value x0 = 1 contains the set C> = {z ∈ C : Re z >
0}.

Theorem 2.4 guarantees the convergence of the pure matrix iteration

(5.8) Yk+1 = Yk((p − 1)Y p
k + (p + 1)I)((p + 1)Y p

k + (p − 1)I)−1

to the identity matrix I for each Y0 having eigenvalues in S2p, particularly for Y0 =
A−1/p, where A has eigenvalues in the open right half complex plane, which will be
denoted by C>. Iteration (5.8) is strictly related to

(5.9) Xk+1 = Xk((p − 1)Xp
k + (p + 1)A)((p + 1)Xp

k + (p − 1)A)−1;

in fact, if A has eigenvalues in C>, Y0 = A−1/p, and X0 = I, then it can be shown
that Xk = YkA1/p for each k (the proof follows by an induction argument and using
the fact that Xk and Yk are functions of A and so commute with A and A1/p).

Corollary 5.4. The sequence Xk obtained by iteration (5.9) with X0 = I
converges to A1/p for each A having eigenvalues in C>.

Moreover, for what we have proved in section 4, iteration (5.8) is structure-
preserving. If A belongs to a group of automorphisms as in section 4, so does A1/p;
thus, each of the iterates obtained by (5.9) belongs to that group.

Iteration (5.9) cannot be used directly to approximate the principal pth root. In
fact, using the same idea as in [15], one can prove that iteration (5.9) is not stable
in a neighborhood of A1/p; i.e., a perturbation on the value of Xk is amplified in the
following steps preventing the convergence in a finite arithmetic computation.

This problem can be overridden using another algorithm which provides the same
sequence but which is stable in a neighborhood of A1/p—for instance,

(5.10)

⎧⎨⎩
X0 = I, N0 = A,
Xk+1 = Xk((p + 1)I + (p − 1)Nk)−1((p − 1)I + (p + 1)Nk),
Nk+1 = Nk

(
((p + 1)I + (p − 1)Nk)−1((p − 1)I + (p + 1)Nk)

)−p
,

where Nk → I and Xk → A1/p. If the pth power is computed using the binary
powering technique [5, Alg. 11.2.2], the computational cost of iteration (5.10) is 2(5+
ϑ log2 p)n3 arithmetic operations (ops) per step, where 1 � ϑ � 2.
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6. New algorithms for the matrix pth root. A family of iterations for com-
puting the principal pth root of a matrix A is

(6.1) Xk+1 =
(p − 1)Xk + AX1−p

k

p
,

which coincides with the Newton method for the equation Xp − A = 0, when the
latter is well defined and X0 commutes with A [22]; this is the reason why iteration
(6.1) is referred to, somehow improperly, as the Newton method.

In [22] it was proved that this iteration is not stable in a neighborhood of A1/p.
A stable variant, for X0 = I,

(6.2)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Y0 = I, N0 = A,

Yk+1 = Yk

(
(p − 1)I + Nk

p

)
,

Nk+1 =
(

(p − 1)I + Nk

p

)−p

Nk,

was proposed in [15], where it was proved that (Yk, Nk) converges quadratically to
(A1/p, I) for each A having eigenvalues in the set

(6.3) D = {z ∈ C : Re z > 0, |z| � 1}.

This leads to an algorithm for computing the principal pth root.
Algorithm 1 (a Newton method for A1/p [15]). Given are A ∈ C

n×n with no
nonpositive real eigenvalues, an integer p > 2, and an algorithm for computing the
square root.

1. Compute B, the principal square root of A;
2. set C = B/‖B‖ for a suitable norm; the eigenvalues of C belong to the set D

of (6.3);
3. by means of iteration (6.2),

• if p is even, compute S = C2/p, the (p/2)th root of C, and set X =
S‖B‖2/p;

• if p is odd, compute S = C1/p, the pth root of C, and set X =(
S‖B‖1/p

)2
.

Iteration (6.2) of Algorithm 1 has a computational cost of 2(3+ϑ log2 p)n3 ops per
step, where 1 � ϑ � 2. The initial square root can be obtained by forming the Schur
decomposition of A, without affecting the complexity order with respect to p. An
observation of Guo and Higham is that the Schur decomposition gives the eigenvalues
of A, and that information is not exploited in Algorithm 1.

Since the number of steps to achieve the required accuracy in the numerical
computation depends on the localization of the eigenvalues of the matrix whose pth
root is required, a smarter preprocessing could reduce the number of steps needed for
the expensive iteration (6.2) (or other similar iterations) to verify a suitable stopping
criterion. In order to give a better localization of the eigenvalues, one could perform
a small number of initial square roots without affecting the order of complexity of
the overall algorithm. Moreover, multiplying the preprocessed matrix by a scalar
parameter could further reduce the number of steps needed for convergence.

The Schur–Newton method, an algorithm of Guo and Higham [6], is based on these
ideas. The algorithm does not use iteration (6.2) but an iteration which generalizes
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the scalar Newton method for the equation x−p − a = 0. The iteration, introduced in
[2], is

(6.4) Xk+1 =
1
p

(
(p + 1)Xk − Xp+1

k A
)

, X0 = I,

which converges to A−1/p, and for which in [6] is constructed a convergence region for
the eigenvalues of A: if the spectrum of A belongs to that region, then Xk → A−1/p.
From iteration (6.4) can be obtained a stable iteration [15, 18, 6]

(6.5)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y0 =
1
c
I, N0 =

1
cp

A,

Yk+1 = Yk

(
(p + 1)I − Nk

p

)
,

Nk+1 =
(

(p + 1)I − Nk

p

)p

Nk,

such that Yk → A−1/p and Nk → I. Setting Xk = Y −1
k gives the iteration [6]

(6.6)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X0 = cI, N0 =
1
cp

A,

Xk+1 =
(

(p + 1)I − Nk

p

)−1

Xk,

Nk+1 =
(

(p + 1)I − Nk

p

)p

Nk,

for which Xk → A1/p. The computational costs of iterations (6.5) and (6.6) are
2(2 + ϑ log2 p)n3 and 2(3 + ϑ log2 p)n3 ops per step, respectively, where 1 � ϑ � 2.

Algorithm 2 (Schur–Newton algorithm for A1/p using (6.5) and (6.6) [6]). Given
are A ∈ C

n×n with no nonpositive real eigenvalues and an integer p = 2k0q with
k0 � 0 and q odd.

1. Compute the Schur decomposition of A = QRQT ;
2. if q = 1, then k1 = k0; else choose k1 � k0 such that arg(λ1/2k1

i ) ∈ (−π/8, π/8)
for each i and |λ1/λn|1/2k1 � 2, where the eigenvalues of A are ordered
|λn| � · · · � |λ1|;

3. compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT ; else continue;

4. let μ1 = |λ1|1/2k1 , μn = |λn|1/2k1 ;
• if the λi are all real, if μ1 �= μn, determine c = ( α1/qμ1−μn

(α1/q−1)(p+1)
)1/q with

α = μ1/μn; else c = μ
1/q
n ;

• if some λi is complex, then c =
(

μ1+μn

2

)1/q
;

5. compute C = B1/q by (6.6); X = QC2k1−k0
QT (or compute C = B−1/q by

(6.5), X = Q(C2k1−k0 )−1QT ).
The initial square roots computation, in certain cases, may dramatically reduce

the number of steps needed by the iteration, but each square root in preprocessing
corresponds to a squaring at the final step of the algorithm. The cost of a square root
and a squaring is less than the cost of one step of the iteration, but a large number of
initial square roots may result in a waste of computation if there is no saving in the
number of iteration steps.
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A little extension of the region of convergence D of (6.3) allows one to use the
ideas of Algorithm 2 also for iteration (6.2). The proof will be given in section 6.1
and is based on the proof of Theorem 2.3 of [15].

Theorem 6.1. The immediate basin of attraction for the fixed point 1 of the
iteration

(6.7) xk+1 =
(p − 1)xk + x1−p

k

p

contains the set

E =
{

z ∈ C : |z| � 1
21/p

, | arg(z)| < π/(4p)
}

.

Observe that iteration (6.1) with X0 = I converges to A1/p if and only if the
iteration

(6.8) Xk+1 =
(p − 1)Xk + X1−p

k

p
, X0 = A−1/p,

converges to the identity matrix. This fact and Theorem 2.4 give the following result.
Corollary 6.2. Iteration (6.1) converges for each A having eigenvalues in

(6.9) D+ = {z ∈ C : |z| � 2, | arg(z)| < π/4}.

Corollary 6.2 leads to an analogue of Algorithm 2 using iteration (6.2).
Algorithm 3 (Schur–Newton algorithm using (6.2)). Given are A ∈ C

n×n with
no nonpositive real eigenvalues and an integer p = 2k0q with k0 � 0 and q odd.

1. Compute the Schur decomposition of A = QRQT ;
2. if q = 1, then k1 = k0; else choose k1 � k0 such that there exists a positive

number s such that for each eigenvalue λ of A, sλ1/2k1 ∈ D, where D is the
disk of center 6/5 and radius 3/4;

3. compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT ; else continue;

4. compute C = (B/s)1/q by (6.2); X = Q(Cs1/q)2
k1−k0

QT .
The convergence of Algorithm 3 is guaranteed by Corollary 6.2; in fact, iteration

(6.2) is applied to a matrix having eigenvalues in the set D, which is a subset of D+

of (6.9). The set D is chosen heuristically in order to need at most 5 steps of the
Newton iteration in the scalar case.

Step 2 of Algorithm 3 can be performed in an inexpensive way. For m � k0 and
for each eigenvalue λ of A, one looks for an interval [t1(λ), t2(λ)] such that t1(λ) > 0
and tλ1/2m

lies in D for t ∈ [t1(λ), t2(λ)]; if such an interval exists for each λ and the
intersection is not void, then s can be any point of the intersection; else increase m.

In Figure 6.1 we have constructed experimentally the level sets of convergence for
iterations (6.1) and (6.4) applied to scalar numbers. Given the tolerance ε = 10−15,
a point x0 of the region [−1, 5] × [−3, 3] of the complex plane has been colored by a
tonality of grey if convergence up to ε occurs in less than 10 steps. Each tonality of grey
corresponds to a different number of iterations needed: the lighter one corresponds to
the points for which convergence up to ε occurs in 9 steps. The black contour encloses
the sets in which the eigenvalues of the matrix preprocessed by Algorithms 3 and 2
lie; observe that in the examples in Figure 6.1 the scalar iteration with an initial value



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A FAMILY OF RATIONAL ITERATIONS FOR THE pTH ROOT 1459

Fig. 6.1. Comparison of the level sets of convergence for the Newton method (first row) and
the inverse Newton method (second row) for p = 4 (first column), p = 20 (second column), and
p = 200 (last column). The black contour encloses the regions in which lie the eigenvalues of the
preprocessed matrices to which is applied the iterative step of Algorithms 3 (first row) and 2 (second
row).

inside the bordered regions needs at most five iterations. The expected number for
the matrix iteration is the same, unless the matrix is nondiagonalizable.

In practice, due to the larger level sets of convergence (see Figure 6.1), Algorithm 3
is likely to obtain the same number of iteration steps as Algorithm 2 with a slightly
milder condition on step 2, which could save a couple of square roots in preprocessing.

From the stable version of Halley’s iteration (5.10) and Corollary 5.4, we obtain
another algorithm.

Algorithm 4 (Schur–Halley algorithm using (5.10)). Given are A ∈ C
n×n with

no nonpositive real eigenvalues and an integer p = 2k0q with k0 � 0 and q odd.
1. Compute the Schur decomposition of A = QRQT ;
2. if q = 1, then k1 = k0; else choose k1 � k0 such that there exists a positive

number s such that for each eigenvalue λ of A, sλ1/2k1 ∈ D, where D is the
disk of center 8/5 and radius 1;

3. compute B = R1/2k1 by taking the square root k1 times; if q = 1, then
X = QBQT ; else continue;

4. compute C = (B/s)1/q by (5.10); X = Q(Cs1/q)2
k1−k0

QT .
The convergence of Algorithm 4 is guaranteed by Corollary 5.4; in fact, iteration

(5.10) is applied to a matrix having eigenvalues in the set C>.
Once again, the choice of D is heuristic and is based on the observation of the

experimental regions of convergence. With this preprocessing the iteration usually
needs three steps to converge.

Algorithms 3 and 4 do not have the disadvantages of Algorithm 1, described in [6],
i.e., a large number of steps or a possible instability in certain cases. They do have
the same excellent numerical behavior of Algorithm 2; moreover, in most cases, they
can save some square roots in preprocessing.
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Table 6.1

Results for the 5th root of a random nonnormal matrix.

Algorithm 2 Algorithm 3 Algorithm 4
iteration (6.5) iteration (6.2) iteration (5.10)

ρA(X̃) = 3.3e -16 ρA(X̃) = 2.7e -16 ρA(X̃) = 2.8e -16

ρA−1 (X̃−1) = 7.4e -17 ρA−1(X̃−1) = 4.2e -16 ρA−1 (X̃−1) = 4.7e -16
iter=5, k1 = 3 iter=5, k1 = 2 iter=3, k1 = 2

Table 6.2

Results for the 15th root of a 3-by-3 matrix A with real eigenvalues and condition number
κ2(A) ≈ 1010.

Algorithm 2 Algorithm 3 Algorithm 4
iteration (6.5) iteration (6.2) iteration (5.10)

err = 2.7e -8 err = 2.7e -8 err = 2.7e -8

ρA(X̃) = 5.0e -17 ρA(X̃) = 8.1e -18 ρA(X̃) = 1.5e -17
iter=5, k1 = 5 iter=5, k1 = 4 iter=3, k1 = 4

To compare the algorithms, we use the criterion used in [6], considering the relative
residual

ρA(X̃) .=
‖A − X̃p‖

‖X̃‖
∥∥∥∥∥

p−1∑
i=0

(
X̃p−1−i

)T

⊗ X̃ i

∥∥∥∥∥
,

where X̃ is the computed matrix and where the norm used is the infinity norm, and
the algorithms are stopped when ‖Nk − I‖ < 100nu, where n is the size of A and u
is the machine precision.

As a first test, the 5th root of a random nonnormal matrix constructed as de-
scribed in [6] is computed with Algorithms 2, 3, and 4. This example was used in [6] to
show the better behavior of Algorithm 2 with respect to Algorithm 1. In Table 6.1 we
compare the results in terms of relative residual, number of steps (iter), and number
of square roots in preprocessing (k1).

A second test is performed considering the nonnormal matrix

S =

⎡⎣ −1 −2 2
−4 −6 6
−4 −16 13

⎤⎦,

whose eigenvalues are {1, 2, 3}, and computing the 15th root of A
.= S15, which is

formed exactly. The condition number κ2(A) = ‖A‖2‖A−1‖2 of the matrix A is
about 1010. In Table 6.2 the algorithms are compared in terms of the relative residual
and the relative error of the computed solution X̃, namely, err = ‖X̃−S‖/‖S‖, where
the Frobenius norm is used.

Observe that Algorithm 3 gives the same numerical results as Algorithm 2, with
fewer square roots in preprocessing. Algorithm 4 requires, in general, fewer square
roots in preprocessing and a minor number of steps since it has cubic convergence,
though the computational cost per step is higher than in the other two. An advantage
of Algorithm 4 is that it is structure-preserving.
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Fig. 6.2. In black the region E of the proof of Theorem 6.1 for p = 3.

6.1. Proof of Theorem 6.1. It is enough to prove that the set E ∩ {|z| < 1}
belongs to the immediate basin of attraction; in fact, the case |z| � 1 is a corollary of
Theorem 2.3 of [15].

In Lemma 2.4 of [15], it is proved that a disk centered at z = 1 and with radius
Rp is contained in the basin of 1, where Rp = 1− sp and sp is the unique real solution
of the equation (2p − 1)sp − 2p sp−1 + 1 = 0 in the interval (0, 1). In Lemma 2.8 of
[15], it is proved that Rp � α0/p for each p > 1, where α0 > 1.256.

To achieve the proof it is enough to show that the half line forming an angle of
π/(4p) with the real axis meets the circle |z − 1| = Rp at two points z1 and z2 such
that

r1 <
1

p
√

2
< 1 < r2,

where r1 = |z1| and r2 = |z2|. That would imply that the set E (the black set in
Figure 6.2) belongs to the disk |z − 1| � Rp and then to the basin of attraction of the
fixed point 1.

The equation that gives the two points of intersection is |reiπ/(4p) − 1| = Rp,
which can be rewritten as

γ(r) .= r2 − 2r cos(π/(4p)) + 1 − R2
p = 0.

The function γ(r) is quadratic; to prove that r2 > 1, observe that

γ(1) = 2 − R2
p − 2 cos

( π

4p

)
� 1

p2

(
π2

16
− α2

0

)
< 0.

The inequality r1 < 1/ p
√

2 can be written as

cos(π/(4p)) −
√

cos2(π/(4p)) − 1 + R2
p <

1
p
√

2
,

which follows from√
cos2(π/(4p)) − 1 + R2

p �
√

α2
0 − π2/16

p
> 0 >

log 2
p

� cos(π/(4p)) − 1
p
√

2
,
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where we have used the following inequalities: cos2(π/(4p)) − 1 � −π2/(16p2), R2
p �

α2
0/p2, 1/ p

√
2 > 1 − log(2)/p, and cos(π/(4p)) < 1.
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THE QUADRATIC ARNOLDI METHOD FOR THE SOLUTION OF
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Abstract. The quadratic Arnoldi algorithm is a Krylov method for the solution of the quadratic
eigenvalue problem, that exploits the structure of the Krylov vectors. This allows us to reduce the
memory requirements by about a half. The method is an alternative to the second order Arnoldi
(SOAR) method. In the SOAR method it is not clear how to perform an implicit restart. We discuss
various choices of linearizations in L1 and DL. We also explain how to compute a partial Schur form
of the underlying linearization with respect to the structure of the Schur vectors. We also formulate
some open problems.
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tion
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1. Introduction. The goal is to solve the quadratic eigenvalue problem

(1.1) Q(λ)u = 0 with Q(λ) = K + λC + λ2M.

The matrices K, −iC, and −M are the stiffness, damping, and mass matrices,
respectively, and arise from the Fourier transformation of the spatial discretization by
finite elements of the equation of motion. The matrices are large n × n matrices and
usually sparse. Equation (1.1) is solved when the engineer is interested in the eigen-
frequencies (resonance frequencies) and damping properties of the mode shapes (i.e.,
the eigenvectors). Krylov methods for the solution of quadratic eigenvalue problems
have been studied by Parlett and Chen [20], Saad [21], and Mehrmann and Watkins
[18]. The quadratic eigenvalue problem and solution methods are reviewed by Tisseur
and Meerbergen [25].

Standard methods cannot be used directly to efficiently solve (1.1) because of the
quadratic term in λ. Instead, (1.1) can be “linearized” into a problem of the form

(1.2) (A − λB)
(

λu
u

)
= 0,

where A and B will be defined in section 2. Since we are interested in the eigenvalues
near zero, we usually solve the inverted problem

(1.3) S

(
u
θu

)
= θ

(
u
θu

)
with S = A−1B and θ = λ−1. There are three disadvantages to the Arnoldi method:
first, the doubling of the size of the problem increases the memory cost by a factor of
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1464 KARL MEERBERGEN

two; second, the typical structure of the eigenvectors of the linearization is lost; and
finally, the Ritz values are computed from a small Hessenberg matrix and not from a
small quadratic eigenvalue problem.

All these disadvantages can be overcome by the second order Arnoldi (SOAR)
method [4]. However, the SOAR method is not the preferred method for computing a
Schur form of the linearization. As a consequence, classical implicit restarting [22, 19]
is no longer possible.

In this document, we propose a method that is close to the SOAR method. We
call it Q-Arnoldi, where Q stands for “quadratic.” It exploits the structure of the
linear problem to reduce the storage cost of the Arnoldi method roughly by a factor
of two. We propose a locking procedure of converged Schur vectors that do keep the
structure of the exact Schur vectors.

Both the SOAR method [4] and the Q-Arnoldi method compute the same sub-
space of the linearized problem. Q-Arnoldi performs a projection that does not pro-
duce a quadratic eigenvalue problem: the Ritz pairs are computed from the Arnoldi
recurrence relation, which allows for the computation of a Schur form. Exploiting the
Schur form of the linearization in the SOAR method for restarting purposes is not
trivial and is, to date, an open question. See [15] for exploiting the Schur form in the
inverse residual iteration and Jacobi–Davidson methods. The difficulty is that the
Schur vectors, computed by the SOAR method, cannot, in general, be mapped in a
Krylov recurrence relation.

Nevertheless, some results in this paper also have consequences concerning the
SOAR method. We devote some time to the choice of linearization in L1 and DL [13],
which is also useful for the SOAR method.

Note that B−1A can be used as an alternative to A−1B. In applications this is
usually less effective than using A−1B when the eigenvalues near zero are wanted.
Many applications are not extremely large, i.e., smaller than 100,000 degrees of free-
dom, which allows the use of a direct linear system solver for applying A−1.

The fact that the Krylov vectors belong to C
2n instead of C

n may limit their
practical use, especially when the Arnoldi method [1, 12, 3] is used when a large
number of vectors need to be stored: k iterations of the Arnoldi method require the
storage of the order of (2k + 2)n floating point numbers (real or complex). The Q-
Arnoldi scheme exploits the structure of S to reduce the memory requirements to
(k + 2)n floating point numbers. Similar tricks can be used for reducing the storage
cost for partial reorthogonalization in the Lanczos method. Although the Lanczos
method [9, 10] can be used to keep the storage requirements low, the Arnoldi method
is usually preferred for eigenvalue computations. This memory reduction trick is also
used in the SOAR algorithm.

The eigenvectors of (1.1) appear twice in the eigenvectors of (1.2). When the
linearized problems are solved in a Krylov subspace, however, the two computed
solutions are, in general, different. Therefore, we address which one of the two should
be returned as an approximate solution vector of (1.1).

The paper is organized as follows. In section 2, we introduce linearizations for
(1.1). In section 3, we review the Arnoldi method for (1.2) and present a modification
of Arnoldi’s method that saves memory. We call this the Q-Arnoldi algorithm, where
Q stands for “quadratic.” We discuss various issues including the choice of lineariza-
tion, some thoughts on computations in finite precision arithmetic, and the choice of
component of the Ritz vectors. Section 4 shows how to exploit the structure of (1.2)
in the computation of Schur vectors. In section 5 we show a numerical example from
applications. We conclude with some remarks in section 6.
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Throughout the paper, we use x∗ to denote the Hermitian transpose, x∗y for the
inner product of two vectors, and ‖x‖ =

√
x∗x for the induced two-norm. We also

use ‖ · ‖ to denote the two-norm of a matrix. The matrix Frobenius norm is denoted
by ‖ · ‖F .

2. Linearization via the first companion form. By linearization, we mean
the transformation of (1.1) into (1.2) by a suitable choice of A and B so that there
is a one-to-one correspondence between eigenpairs of (1.1) and the A − λB pencil
[24, 14, 13]. The linearization should be chosen so that the application of S = A−1B
is efficient and accurate. We therefore assume that A and so K are invertible. The
motivation for using linearizations other than the classical companion forms lies in
respecting the structure of the eigenvalue problem. In this section, we show that this
structure is lost in the shift-and-invert Arnoldi method for the linearizations from
[14, 13], meaning that the structure is not respected by the Arnoldi method.

The fact that K has no factor λ in (1.1) suggests that K should appear in A. A
straightforward choice is

(2.1) A =
[

D
K

]
, B =

[
D

−M −C

]
, y =

(
λx
x

)
,

where D can be any nonsingular matrix. It is easy to see that

(2.2) S = A−1B =
[

I
−K−1M −K−1C

]
,

from which D disappears.
Lemma 2.1. The pencil A−λB with (2.1) is a linearization iff D is nonsingular.
Proof. If D is nonsingular, A − λB is a linearization. If D were singular, λ = 0

is an eigenvalue of A− λB but not of (1.1). Also, λ = ∞ is an eigenvalue even if it is
not an eigenvalue of (1.1). In addition, it is no longer guaranteed that all eigenvectors
have the form (1.2), so A − λB is not a linearization.

An alternative to (2.1) is the first companion form

(2.3) B =
[

−M
D

]
, A =

[
C K
D

]
, y =

(
λx
x

)
,

which also produces (2.2).
The matrix used in [18] for the skew-Hamiltonian/Hamiltonian eigenvalue prob-

lem does not have the form (2.2).
The linearization can be chosen so that A and B respect the special structures

of K, C, and M . For example, if all matrices are symmetric and M is nonsingular,
one could use D = −M . Although A−1B is independent of D, the choice of D may
help build the Krylov subspace more efficiently. We discuss this in more detail in
section 3.2.

3. The Arnoldi method. Let N = 2n. The Arnoldi method applied to S ∈
C

N×N and b ∈ C
N produces the Krylov subspace

Kk(S, b) = span{b, Sb, S2b, . . . , Sk−1b}.

It computes the N × k matrix Vk = [v1, . . . ,vk] of iteration vectors, the upper
Hessenberg matrix Hk, and the residual term vk+1βk so that

SVk − VkHk = vk+1βke∗k,(3.1)
SVk − Vk+1Hk = 0,
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where V∗
k+1Vk+1 = I. Equation (3.1) is called the Arnoldi recurrence relation. An

algorithm for computing Vk and Hk is now given.
Algorithm 3.1 (Arnoldi method).

1. Set the initial vector v1 so that ‖v1‖2 = 1.
2. For j = 1, . . . , k do

2.1. Compute v̂j = Svj.
2.2. Compute the Arnoldi coefficients hj = V∗

j v̂j.
2.3. Update ṽj = v̂j − Vjhj.
2.4. Get the scalar βj = ‖ṽj‖2 and compute vj+1 = ṽj/βj.
End for

Steps 2.2–2.4 orthonormalize Svj against v1, . . . ,vj into vj+1. The coefficients
hj form the jth column of Hj , and βj is the (j + 1, j)th element of Hk. Roughly
speaking, k iterations cost about 2N(k + 3)k flops, excluding the cost for Step 2.1,
where one flop is the cost for an addition or a multiplication.

3.1. The Q-Arnoldi algorithm. We now discuss how we can make Algo-
rithm 3.1 more efficient for S from (2.2). We decompose the jth Arnoldi vectors
into

vj =
(

vj

wj

)
,

with vj , wj ∈ C
n. The Arnoldi recurrence relation (3.1) for the linearization (2.1) can

now be written as[
I

−K−1M −K−1C

](
Vk

Wk

)
−
(

Vk

Wk

)
Hk = βk

(
vk+1

wk+1

)
e∗k,(3.2)

from which we deduce that

(3.3) Wk = Vk+1Hk.

This implies that we have only to store the vectors Vk, vk+1, and wk+1 to evaluate
the recurrence relation, which contain (2 + k)n floating point numbers. Storing only
Vk, vk+1, and wk+1 results in an important reduction of the memory cost compared
to Algorithm 3.1. The following algorithm implements this idea.

Algorithm 3.2 (Q-Arnoldi).
1. Let v1 and w1 be chosen so that ‖v1‖2

2 + ‖w1‖2
2 = 1.

2. For j = 1, . . . , k do
2.1. Compute ŵj = −K−1(Mvj + Cwj) and v̂j = wj .
2.2. Compute the Arnoldi coefficients

hj =
[

V ∗
j−1v̂j + H∗

j−1(V
∗

j ŵj)
v∗j v̂j + w∗

j ŵj

]
.

2.3. Update

ṽj = v̂j − Vjhj ,

w̃j = ŵj − [Vj wj ]
([

Hj−1 0
0 1

]
hj

)
.

2.4. Normalize vj+1 = ṽj/βj and wj+1 = w̃j/βj with βj = (‖ṽj‖2 +
‖w̃j‖2)1/2.

2.5. Set the jth column of Hj as [hT
j βj ]T .

End for
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The difference between Algorithm 3.1 and Algorithm 3.2 is only in Steps 2.2–2.3,
where Wj−1 is replaced by VjHj−1. The cost for computing H∗

j−1(V ∗
j ŵj) in Step 2.2

is 2(nj +j(j−1)) flops, so that the total cost for Step 2.2 is 2(2nj +n+j(j−1)) flops.
The cost for computing w̃j in Step 2.3 is 2((j − 1)j + n(j + 1)), and the computation
of ṽj requires 2nj flops. Step 2.4 costs 8n flops, as for Algorithm 3.1. The total
cost for Steps 2.2–2.4 is 8nj + 12n + 4j(j − 1). For k iterations the cost is of the
order of 4nk2 + 16nk + 4

3 (k − 1)k(k + 1) flops. Algorithm 3.1 requires 4n(k + 1)k
flops. So, when k is significantly smaller than n (which is usually the case; otherwise
the Arnoldi method is not suitable anyway), Steps 2.2–2.4 of Algorithms 3.1 and 3.2
have a cost of approximately 4nk2. Note that only v1, . . . , vj+1 and wj+1 need to be
stored on iteration j so that the memory requirements for the storage of the Arnoldi
vectors for k iterations is limited to n(k+2) with the Q-Arnoldi method. The storage
for the Arnoldi method is of the order of 2n(k + 1). Although Q-Arnoldi is slightly
more expensive in computation time, the extra cost is usually small compared to the
computation of A−1Bvj .

3.2. Other linearizations. In this section, we study the use of linearizations
other than the companion form in (2.3). These are introduced for respecting special
structures in the eigenvalues. Consider the vectorspace of linearizations [14] of the
form

(3.4) L1(Q) =
{

A − λB : (A − λB)
(

λ
1

)
=
(

η1Q(λ)
η2Q(λ)

)
, η1,2 ∈ C

}
,

where Q is defined in (1.1). From (3.4), we have

A =
[

A11 η1K
A21 η2K

]
and B =

[
−η1M A11 − η1C
−η2M A21 − η2C

]
,

where A11, A21, η1, and η2 can be freely chosen.
Theorem 3.1. Let A and B be defined following (3.4), and let K be invert-

ible. Then A − λB is a linearization of (1.1) iff A is invertible. In addition, (2.2)
holds, and applying the Arnoldi method to A−1B produces Arnoldi vectors with the
structure (3.3).

Proof. Let

S = A−1B =
[

S11 S12

S21 S22

]
.

From B = AS, i.e.,[
−η1M A11 − η1C
−η2M A21 − η2C

]
=
[

A11 η1K
A21 η2K

] [
S11 S12

S21 S22

]
,

it is easy to verify (2.2).
Formally, A does not need to be invertible for AS = B to be true. If both

η1 = η2 = 0, then det(A − λB) = 0 for all λ’s, so A − λB is not a linearization.
Suppose η1 �= 0. If we multiply the first block of A and B by η2 and the second block
row by η1, we find the pencil Ã−B̃ with the same eigenvalues and eigenvectors, where

Ã =
[

A11 η1K
η2A11 − η1A21 0

]
, B̃ =

[
−η1M A11 − η1C

0 η2A11 − η1A21

]
.
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Since K is nonsingular, A can be singular only when

η2A11 − η1A21

is singular. Following Lemma 2.1, the pencil Ã − B̃ can only be a linearization when
η2A11−η1A21 is nonsingular. In other words, A should be invertible for A−λB being
a linearization of (1.1).

Since A−1B is the same matrix for all linearizations of this form, the Arnoldi
method produces the same recurrence relation, which finishes the proof.

One example that fits into this framework is the solution of palindromic eigenvalue
problems [13]. Let K = MT and C = CT ; then (1.1) is called T-palindromic. If (λ, x)
is an eigenpair to (1.1) and the associated left eigenvector is y so that y∗Q(λ) = 0,
then λ−1 also is an eigenvalue with (right) eigenvector ȳ and left eigenvector x̄. In [13],
methods that produce eigenvalue approximates that respect this spectral structure are
advocated. They therefore introduce the linearization with B = −AT in (3.4) of the
form

A =
[

K K
C − M K

]
and B =

[
−M K − C
−M −M

]
.

This corresponds to η1 = η2 = 1, A11 = K, and A21 = C − M . A is invertible when
K and C − M − K are invertible, i.e., 0 and −1 are not eigenvalues of (1.1). The
linearized pencil A + λ(−B) is T-palindromic, since (−B) = AT . Using A−1B in the
Arnoldi method requires the inverse of K and C −M −K = C −K −KT . However,
note that the Ritz values from Arnoldi’s method do not necessarily come in pairs of
the form λ, λ−1.

The generalization of the second companion form is given by

L2(Q) = {A − λB : (λI I)(A − λB) = (η̃1Q(λ) η̃2Q(λ)), η̃1,2 ∈ C} .

Similarly to L1, we can show that A and B take the form

A =
[

A11 A12

η̃1K η̃2K

]
with B =

[
−η̃1M −η̃2M

A11 − η̃1C A12 − η̃2C

]
and

BA−1 =
[

0 −MK−1

I −CK−1

]
.

Note that A−1B depends on A11, A12, and η̃1,2.
The intersection of L1 and L2 is denoted by DL(Q) [14]. Its general form is

A =
[

η1C − η2M η1K
η1K η2K

]
and B =

[
−η1M −η2M
−η2M −η2C + η1K

]
.

The common cases for symmetric K, C, and M are η1,2 = {0, 1} and η1,2 = {1, 0}.
Note that A is invertible iff

η1η2C − η2
2M − η2

1K

is invertible, i.e., −η2/η1 is not an eigenvalue of (1.1). Although working with pencils
in DL does not seem important for the Arnoldi method, it might be of interest when
using the Lanczos method; see [20, 2]. The pseudo-Lanczos method [20] is the Lanczos
method applied to A−1B using the B pseudo-inner product; i.e., the Lanczos vectors
are orthogonal with respect to B, where A and B are chosen in DL. Using the B inner
product xT By rather than the Euclidean inner product x∗y produces a tridiagonal
Hk.
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3.3. Applying a shift. In this section, we review ideas for shifting the eigen-
value problem, which is a key element in the shift-and-invert Arnoldi method. We
first apply a shift to (1.1) in section 3.3.1, and then to the linearization (2.1) in section
3.3.2.

3.3.1. Shifting the quadratic equation. The convergence of eigenvalues near
σ can be improved [21, 3] by shifting the eigenvalue problem (1.1) into

(3.5) (K̃ + (λ − σ)C̃ + (λ − σ)2M̃)u = 0,

with

K̃ = K + σC + σ2M, C̃ = C + 2σM, M̃ = M.

Without loss of generality, we can assume that σ = 0, by replacing K, C, and M by
K̃, C̃, and M̃ , respectively, and λ − σ by λ.

3.3.2. Shifting the linearization. We can also shift (2.1) into

(A − σB)−1(A − λB)y(λ) = 0.

The recurrence relation for (A − σB)−1B becomes[
A11 + ση1M η1K − σA11 + ση1C
A21 + ση2M η2K − σA21 + ση2C

]−1 [ −η1M A11 − η1C
−η2M A21 − η2C

](
Vk

Wk

)

=
(

Vk+1

Wk+1

)
Hk.

With Ãj1 = Aj1 + σηjM this becomes[
Ã11 η1K̃ − σÃ11

Ã21 η2K̃ − σÃ21

]−1 [ −η1M Ã11 − η1C̃ + η1σM

−η2M Ã21 − η2C̃ + η2σM

](
Vk

Wk

)

=
(

Vk+1

Wk+1

)
Hk.

The pencil (A−σB)−μB does not lie in L1(Q(λ−σ)). However, when we introduce
Zk+1 = Vk+1 − σWk+1, we have[

Ã11 η1K̃

Ã21 η2K̃

]−1 [ −η1M Ã11 − η1C̃

−η2M Ã21 − η2C̃

](
Zk

Wk

)
=
(

Zk+1

Wk+1

)
Hk,

which is exactly the same as (3.2) with Vk+1 = Zk+1, where K̃, C̃, and M are related
to the shifted problem (3.5). We compute Wk = Zk+1Hk and Vk = Zk+1 + σWk.

3.4. Numerical stability. A few words about numerical stability are in order.
In this section, we perform a traditional rounding error analysis on Algorithms 3.1
and 3.2.

The fact that we compute Wk from (3.3) changes the Arnoldi method in finite
precision arithmetic. In this section, we show that, under certain conditions, the
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Q-Arnoldi method is as backward stable for the recurrence relation as the Arnoldi
method. More specifically, we shall give bounds to

τR = ‖Wk − Vk+1Hk‖F ,(3.6)

where Vk+1 and Hk are computed by either the Arnoldi method or the Q-Arnoldi
method.

The reader is referred to Higham [8, Chapter 3] for more details on computations
with finite precision arithmetic. We denote by u the machine precision. We introduce
the symbol � to denote

α � β ⇔ α ≤ cβ + O(u),

where c is a u independent constant. We also bound ‖|X | · |Y |‖F ≤ ‖X‖F · ‖Y ‖F .
We define the error matrices Fj and Gj on the recurrence relation (3.1):

V̂j − Vj+1Hj = Fj ,(3.7a)

Ŵj − Wj+1Hj = Gj .(3.7b)

3.5. Analysis for the Arnoldi algorithm. We first show two lemmas that
will help us to make a statement on the backward stability of the Arnoldi method.

Lemma 3.2. For all j = 1, . . . , k we have

‖vj+1βj − ṽj‖ � u‖ṽj‖ � u‖vj+1‖βj ,(3.8a)
‖wj+1βj − w̃j‖ � u‖w̃j‖ � u‖wj+1‖βj,(3.8b) ∥∥∥∥( vj+1

wj+1

)
βj −

(
ṽj

w̃j

)∥∥∥∥ � u

∥∥∥∥( ṽj

w̃j

)∥∥∥∥ � uβj.(3.8c)

We also have

(3.9) ‖Vj‖2
F + ‖Wj‖2

F = j + O(u).

Proof. The proofs of (3.8a), (3.8b), and (3.8c) follow from the fact that vj+1 and
wj+1 are computed as vj+1 = ṽj/βj and wj+1 = w̃j/βj . The proof of (3.9) follows
from [8, Theorem 18.2] with m = 1 for ‖vj‖2 + ‖wj‖2 = 1 + O(u).

Lemma 3.3. In finite precision arithmetic, Algorithm 3.1 produces Vj+1, Wj+1,
and Hj so that (3.7) holds with

‖Fj‖F � u‖|Vj+1| · |Hj |‖F � u‖Vj+1‖F ‖Hj‖F ,(3.10a)
‖Gj‖F � u‖|Wj+1| · |Hj |‖F � u‖Wj+1‖F ‖Hj‖F ,(3.10b) ∥∥∥∥∥

(
V̂j − Vj+1Hj

Ŵj − Wj+1Hj

)∥∥∥∥∥
F

� u‖Hj‖F .(3.10c)

In addition, we have

(3.11)
∥∥∥∥hj −

(
Vj

Wj

)∗(
v̂j

ŵj

)∥∥∥∥ � u

∥∥∥∥( v̂j

ŵj

)∥∥∥∥ .

Proof. Recall that we can omit constant factors from error bounds using the
notation �. We first prove (3.10a). We define

f̃j = v̂j − Vjhj − ṽj ,(3.12)
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where ṽj is computed in Step 2.3 of Algorithm 3.1. We have

‖f̃j‖ � u(‖v̂j‖ + ‖|Vj | · |hj |‖).

Denote by fj the last column of Fj :

fj = v̂j − Vjhj − vj+1βj = f̃j + (ṽj − vj+1βj),(3.13)

where vj+1 and βj are computed from Step 2.4. The application of Lemma 3.2 on
Step 2.4 of Algorithm 3.1 readily produces

‖fj‖ � u(‖v̂j‖ + ‖|Vj | · |hj |‖ + ‖vj+1‖βj) � u

∥∥∥∥|Vj+1| ·
∣∣∣∣( hj

βj

)∣∣∣∣∥∥∥∥ ,

using ‖v̂j‖ � ‖|Vj ||hj |+|vj+1|βj‖. Accumulating fj in Fj = [f1, . . . , fj ] proves (3.10a).
The proofs for (3.10b) and (3.10c) are similar. We use (3.9) to bound (3.10c).

The proof of (3.11) readily follows from standard rounding error analysis.

3.6. Analysis for the Q-Arnoldi algorithm. We define

δj = ‖Vj‖F ,(3.14)
γj = ‖[|Vj | · |Hj−1| wj ]‖F ,(3.15)

γ̃j+1 = ‖[|Vj | · |Hj−1| wj wj+1]‖F .(3.16)

For the Q-Arnoldi algorithm, Wjz and ( Vj

Wj
)∗( v̂j

ŵj
) are computed as

(3.17) [VjHj−1 wj ]z and
(

H∗
j−1(V ∗

j ŵj)
w∗

j ŵj

)
+ V ∗

j v̂j ,

respectively. The componentwise errors on the computation of (3.17) are of the order

(3.18) u[|Vj | · |Hj−1| |wj |]|z| and u

∣∣∣∣( |Hj−1|∗(|Vj |∗|ŵj |)
|wj |∗|ŵj |

)
+ |Vj |∗|v̂j |

∣∣∣∣ ,
respectively. The normwise error bounds are

(3.19) uγj‖z‖ and u(γj + δj)
∥∥∥∥( v̂j

ŵj

)∥∥∥∥ ,

respectively.
We extend Lemma 3.3 to the Q-Arnoldi algorithm.
Lemma 3.4. In finite precision arithmetic, Algorithm 3.2 produces Vj+1, Wj+1,

and Hj so that (3.7) holds with

‖Fj‖F � uδj+1‖Hj‖F ,(3.20a)
‖Gj‖F � uγj+1‖Hj‖F ,(3.20b) ∥∥∥∥∥

(
V̂j − Vj+1Hj

Ŵj − Wj+1Hj

)∥∥∥∥∥
F

� u
√

γ2
j+1 + δ2

j+1‖Hj‖F .(3.20c)

Proof. Similar to the proof of (3.10a), we find for the componentwise analysis
that

|Fj | = |Wj − Vj+1Hj | � u|Vj+1| · |Hj |,
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which proves (3.20a).
We now prove (3.20b). We define

g̃j = ŵj − [VjHj−1 wj ]hj − w̃j ,(3.21)

where w̃j is computed in Step 2.3 of Algorithm 3.2. We have

‖g̃j‖ � u(‖ŵj‖ +
∥∥[ |Vj | · |Hj−1| |wj |

]
|hj |
∥∥).

Let

gj = ŵj − Wjhj − wj+1βj ,(3.22)
= g̃j + (w̃j − wj+1βj) + ([VjHj−1 wj ] − Wj)hj ,(3.23)

where wj+1 and βj are computed from Step 2.4. Using Lemma 3.2, we find that

‖gj‖ � u(‖ŵj‖ + ‖[|Vj | · |Hj−1| |wj |]|hj |‖ + ‖wj+1‖βj + ‖[|Vj | · |Hj−1| 0]|hj|‖)

� u

∥∥∥∥[|Vj | · |Hj−1| |wj | |wj+1|]
∣∣∣∣( hj

βj

)∣∣∣∣∥∥∥∥ .

Accumulating gj in Gj = [g1, . . . , gj ] and noting that γ̃j+1 ≤ γj+1 proves (3.20b).
The proof for (3.20c) is similar.

Let σmin and σmax denote the smallest and largest singular values, respectively.
Define

ξj,min =
√

σmin

(
Hj−1

)2 + 1,(3.24)

ξj,max =
√

σmax

(
Hj−1

)2 + 1.(3.25)

Note that ξj,min ≤ 1 ≤ ξj,max. For vibration problems, S usually has small eigenvalues,
usually leading to ξj,min ≈ 1. The choice of pole σ (see section 3.3) may influence
the large singular values of S. It is common practice not to pick the pole close to
an eigenvalue when several eigenvalues are wanted [7, 16]. In this case, ξj,max is not
large.

Theorem 3.5. In exact arithmetic,∥∥∥∥( Vj−1

|Vj | · |Hj−1|

)∥∥∥∥
2

≤ ξj,max

ξj,min
.

Proof. First,

σmin

((
Ij−1

Hj−1

))
= λ

1/2
min(I + H∗

j−1Hj−1) =
√

σmin

(
Hj−1

)2 + 1 = ξj,min.

Similarly,

σmax

((
Ij−1

Hj−1

))
= ξj,max.

From (
Vj−1

VjHj−1

)
=
[

Vj 0
0 Vj

](
Ij−1

Hj−1

)
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and ∥∥∥∥( Vj−1

VjHj−1

)∥∥∥∥
2

= 1,

we have that

ξ−1
j,max ≤ ‖Vj‖2 ≤ ξ−1

j,min.

The proof follows from∥∥∥∥[ Vj 0
0 Vj

](
Ij−1

Hj−1

)∥∥∥∥ ≤ ξ−1
j,minξj,max.

The conclusion from this section is that a loss of precision is possible in the
computation of Hk (see (3.11) and (3.19)) and the recurrence relation in the Q-
Arnoldi process when ξk,max/ξk,min is large.

4. The solution of the quadratic eigenvalue problem. To simplify, we write
S, defined in (2.2), in the form

S =
[

I
S1 S2

]
.

The solution of the quadratic eigenvalue problem by the shift-and-invert Arnoldi
method is the objective of this section. For the computation of a number of eigenvalues
of a non-Hermitian linear problem, we usually compute a partial Schur form. The
idea is that we want the computed Schur vectors to have the structure of the exact
Schur vectors, i.e., the form

(4.1)
(

Uk

UkSk

)
,

where Sk is the (upper-triangular) Schur matrix. The Schur vectors from the Arnoldi
method do not have the form (4.1). It turns out that when we force the Schur vectors
to satisfy the structure (4.1), we can keep the structure of the Krylov vectors in the
form (3.3). In addition, implicit restarting also maintains the structure of the Krylov
vectors.

We first introduce the notion of the Q-Arnoldi triple.

4.1. Definition and properties of Q-Arnoldi triples.
Definition 4.1. Q = {Vk+1, Hk, wk+1} is a Q-Arnoldi triple associated with S

iff Vk+1 ∈ C
n×(k+1), wk+1 ∈ C

n, Hk ∈ C
(k+1)×k, and for

(4.2) Vk =
(

Vk

Vk+1Hk

)
and Vk+1 =

(
Vk vk+1

Vk+1Hk wk+1

)
,

1. the Arnoldi recurrence relation (3.1) holds, and
2. the Arnoldi vectors are orthogonal:

(4.3) ‖I − V∗
k+1Vk+1‖ = 0.

Definition 4.2. We denote by Qk(S) the set of all Q-Arnoldi triples associated
with S.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1474 KARL MEERBERGEN

4.1.1. Inexact Q-Arnoldi triples. In practice, we may allow a small error on
(3.1) and (4.3) so that

(4.4) SVk − Vk+1Hk = Fk

and

(4.5)
∥∥I − V∗

k+1Vk+1

∥∥ = γk,

where Fk can be considered a backward error on S.
Definition 4.3. The set of inexact Q-Arnoldi triples

Qk(S, η, ρ)

consists of {Vk+1, Hk, wk+1} that satisfy (4.4), (4.5), and (4.2) with ‖Fk‖ ≤ η and
γk ≤ ρ.

4.1.2. Transformations of (inexact) Q-Arnoldi triples.
Definition 4.4. Let Z be a full column rank k + 1 × p + 1 matrix of the form

Z = ( Z1 z
0 ζ ) with Z1 a k × p matrix and k ≥ p. We define the transformation

TZ {Vk+1, Hk, wk+1} = {Vk+1Z, Z†HkZ1, Vk+1Hkz + wk+1ζ},

where Z† is the generalized inverse, i.e., Z†Z = I.
The following theorem characterizes the transformation of an (inexact) Q-Arnoldi

triple.
Theorem 4.5. Let Q ∈ Qk(S, η, ρ). Let TZ be a transformation as defined by

Definition 4.4. If

ZZ†HkZ1 = HkZ1,

then

TZQ ∈ Qp(S, η‖Z1‖, ‖Z‖2ρ + ‖I − Z∗Z‖).

Proof. Let Q = {Vk+1, Hk, wk+1} ∈ Qk(S, η, ρ). Under the condition of the
theorem, the elements of TZQk(S) respect the structure (4.2). Multiplication of (4.4)
on the right by Z1 proves that the error on the recurrence relation of the transformed
triple is bounded by ‖Z1‖η. Finally, we have that

I − Z∗V∗
k+1Vk+1Z = Z∗(I − V∗

k+1Vk+1)Z + (I − Z∗Z),

which proves the theorem.
When Z is square, Theorem 4.5 always holds. When, in addition to the conditions

of Theorem 4.5, Z∗Z = I, TZQk(S) ⊂ Qp(S).

4.1.3. Modification of the vectors of a Q-Arnoldi triple. Let {Vk+1, Hk,
wk+1} ∈ Qk(S). Suppose we modify the second block of the Arnoldi vectors as
follows: W̃k = Wk +vk+1g

∗. Not surprisingly, (4.2), (3.1), and (4.3) are broken. With
Ṽk = ( Vk

W̃k
), we have that the recurrence relation becomes

SṼk − Ṽk+1Hk = Gk :=
(

vk+1g
∗

S2vk+1g
∗ − vk+1g

∗Hk

)
,
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where

(4.6) ‖Gk‖ ≤ (‖S2vk+1‖ + ‖vk+1‖‖Hk‖ + 1)‖g‖.

The structure of the vectors (4.2) can be restored by modifying H̃k = Hk + ek+1g
∗.

The recurrence relation for the new Hk becomes

(4.7) SṼk − Ṽk+1H̃k = G̃k :=
(

0
S2vk+1g

∗ − vk+1g
∗Hk − wk+1g

∗

)
.

The upper bound (4.6) also holds for G̃k. The orthogonality of Ṽk is restored by
applying TZ−1 to the Q-Arnoldi triple, where Z is upper-triangular and so that
Ṽ∗

kṼk = Z∗Z, which can be computed by a Cholesky factorization.
Suppose we modify the first block of the Arnoldi vectors as follows: V̂k = Vk +

vk+1g
∗; then (4.2) is restored by modifying Ĥk = Hk − ek+1g

∗Hk. With V̂k = ( V̂k

Wk
),

we have that the recurrence relation for the new vectors becomes

(4.8) SV̂k − V̂k+1Ĥk =
(

0
S1vk+1g

∗ − wk+1g
∗Hk

)
.

The orthogonality can be restored in the same way as for Ṽk.

4.2. Computing Ritz vectors and Schur vectors.

4.2.1. Ritz vectors. The Ritz vectors corresponding to Ritz value θ have the
form x = ( x1

x2 ) = ( Vkz
Vk+1Hkz ), where Hkz = θz. When (θ, x) is an eigenpair of S,

x2 = θx1. As a Ritz vector of (1.1), we can return x2/θ or x1.
In this section, we study which of these is the best choice. Let the residual of the

Ritz pair computed by the Arnoldi method be

(4.9)
(

r1

r2

)
=
[

0 I
S1 S2

](
x1

x2

)
− θ

(
x1

x2

)
=
(

x2 − θx1

S1x1 + S2x2 − θx2

)
.

If we use x1 as a Ritz vector for (1.1), the Ritz vector for the linearization is then

(4.10) x̃ =
(

x1

θx1

)
.

The residual is[
0 I
S1 S2

](
x1

θx1

)
− θ

(
x1

θx1

)
=
(

0
−(S2 − θI)r1 + r2

)
.

If we use x2/θ as a Ritz vector for (1.1), the Ritz vector for the linearization is
then

(4.11) x̂ =
(

θ−1x2

x2

)
.

The residual is[
0 I
S1 S2

](
θ−1x2

x2

)
− θ

(
θ−1x2

x2

)
=
(

0
θ−1S1r1 + r2

)
.

The conclusion from this analysis is that for large θ there may be an advantage in
using x2/θ and for small θ in using x1. From (4.10) and (4.11), we derive that if x is
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close enough to an eigenvector, ‖x̃‖ ≈ ‖x̂‖. Alternatively, the norms ‖S1‖ and ‖S2‖
may also play a role in the decision to make the choice.

Related to the choice of the first or second component is the difference x2−θx1. If
this difference is small, it probably does not make much difference which component
we take.

Theorem 4.6. Recall (3.24). Let x1 = Vkz and x2 = Wkz with Hkz = θz and
‖z‖ = 1 and define ρ = βk|e∗kz|.

‖x2 − θx2‖1 ≤ ξ−1
k,minρ.

Proof. From (4.9), we have that

‖x2 − θx1‖2 = βk‖vk+1‖2e
∗
kz.

We conclude that ‖x2 − θx1‖2 is at most ρ but can be smaller. Recall that

ξk,min =
√

1 + σ2
min(Hk) > 1,

which is large when the singular values of Hk are large.

4.2.2. Schur decomposition. The eigenvectors usually do not form an orthog-
onal set of vectors and are not even guaranteed to exist (in the defective case). The
Schur vectors always form an orthogonal basis and a Schur decomposition always
exists.

For the linearized quadratic eigenvalue problem, the Schur decomposition of S is

S

(
U

UT

)
=
(

U
UT

)
T.

The diagonal elements of T are the Ritz values. (In the case of real matrices, T is in
pseudo–upper-triangular form when a Ritz value is complex. For the details, see [6,
section 7.4].)

Let HkZk = ZkTk be the Schur decomposition of Hk. Define the residual r∗k =
βke∗kZk. The Schur vectors computed from a Q-Arnoldi triple have the form

(4.12) Uk = VkZk =
(

VkZk

VkZkTk + vk+1r
∗
k

)
.

The structure in the Schur vectors is lost in the Krylov subspace for the same reasons
as in the case of the Ritz vectors. However, we can similarly select the upper or lower
components as Schur vectors. When we do this, we not only add an error in the
recurrence relation but also perturb the orthogonality of the basis vectors. We study
this problem in detail in section 4.4.

4.3. Implicit restarting. When k gets large, the storage and computational
costs of the Arnoldi method can become unacceptably high. Therefore, some form
of restarting or reduction of the basis is desirable. The idea is to reduce the Krylov
subspace by throwing away a part of the spectrum we are not interested in.

Implicit restarting in Arnoldi’s method was first introduced by Sorensen [22].
Sorensen uses implicit QR steps. Variations on this theme have been proposed where
the Schur form of the Hessenberg matrix is truncated [26, 23]. This is mathematically
equivalent to [22] using exact shifts.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

Q-ARNOLDI FOR THE QUADRATIC EIGENVALUE PROBLEM 1477

4.3.1. Implicit QR step. One way to perform such a reduction is called implicit
restarting and was proposed by Sorensen [22]. Also see [22, 19, 11, 12, 17]. The idea is
to apply an orthogonal transformation to Hk that pushes the p desired Ritz values of
Hk to the principle p× p block. The orthogonal transformation produces a reduction
of the subspace of dimension k + 1 to p + 1 keeping the p desired Ritz values.

When Z results from the QR factorization Hk − μI, we have that

Z∗
kHk = Rk + μZ∗

kI,

and so

ZkZ∗
kHkZk−1 = Zk

(
RkZk−1 + μI

)
= HkZk−1.

So, if Q = {Vk+1, Hk, wk+1} ∈ Qk(S), following Theorem 4.5, TZQ ∈ Qp=k−1(S).

4.3.2. Purging. Another way to reduce the subspace dimension is purging [11].
The idea here is to purge the undesired part of the Schur factorization of Hk.

Recall the definitions of Tk, Zk, and rk from section 4.2.2. By multiplying on the
right by Zk, the Arnoldi recurrence relation (3.1) can be written in terms of Schur
vectors as follows:

(4.13) SVkZk − VkZkTk = vk+1r
∗
k.

Let the Schur form be ordered so that the last k − p diagonal elements in Tk are
unwanted Ritz values. The idea of purging is to keep the first p Schur vectors in the
basis. Removing the last k − p columns from (4.13) produces

(4.14) SVkZp − [VkZp vk+1]
(

Tp

r∗p

)
= 0,

where Zp are the first p columns of Z, Tp is the leading p × p block of Tk, and rp are
the first p elements of rk. There exists a unitary Up so that

H̃p =
(

Up 0
0 1

)∗(
Tp

r∗p

)
Up

is p + 1 × p upper Hessenberg [6].
Let T have transformation matrix ( ZpUp 0

0 1
) (Definition 4.4). From

HkZp =
[

Zp 0
0 1

](
Tp

r∗p

)
,

we derive that [
Zp

1

] [
Zp

1

]∗
HkZp = HkZp,

and so [
ZpUp

1

] [
ZpUp

1

]∗
HkZpUp = HkZpUp.

We conclude that T {Vk+1, Hk, wk+1} ∈ Qp(S).
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4.4. Locking. Suppose that the first l elements in rk are smaller than a con-
vergence tolerance. The idea of locking is to set these small elements explicitly to
zero assuming that the Schur vectors are exact. Decompose r∗k = [r∗l r∗k−l]. Locking
introduces an error in the recurrence relation:

(4.15) SUk − [Uk vk+1]
(

Tk

[0 r∗k−l]

)
= vk+1(r∗l 0).

This can be considered a backward error on the solution. The corresponding Q-
Arnoldi triple is in Q(S, ‖rl‖, 0). Reasons for the use of locking in eigenvalue codes
are the reduction of the dimension of the Krylov subspace and the computation of
multiple eigenvalues without the need of block methods.

For linear problems it is accepted that the recurrence relation of Arnoldi’s method
has a small error. The residual term in the right-hand side of (4.15) is usually con-
sidered a backward error on S. The Bauer–Fike theorem [21, Theorem 3.6] shows an
upper bound to the perturbation of the eigenvalues that is proportional to ‖rl‖ and
that is small when the eigenvectors associated with different eigenvalues are almost
orthogonal. The Schur vectors form an orthogonal set, so the orthogonality is pre-
served. In the following, we aim to preserve the structure of the Schur vectors (4.12).
As we will see, this modifies the error on the recurrence relation and destroys the
orthogonality. The goal of this section is to restore the orthogonality and analyze the
impact on the recurrence relation using the results from section 4.1.3.

When we use the upper component as Schur vectors of the quadratic eigenvalue
problem, the Schur vectors obtain the form

(4.16) Ũk =
(

VkZl U1,k−l

VkZlTl U2,k−l

)
= Uk −

(
0 0

vk+1r
∗
l 0

)
.

Following (4.7) with g∗ = −[r∗l 0], we find

H̃k =
(

Tk

[0 r∗k−l]

)
.

This is precisely the matrix we want to have with locking. Recall that ‖G̃k‖ �
‖Gk‖ ∼ ‖rl‖ is small. The new basis can be orthogonalized by applying an appropriate
transformation.

Similarly, we can use the lower part of Uk as Schur vectors. Decompose

Zk = [Zl Zk−l] and Tk =
[

Tl Tl,k−l

Tk−l

]
.

Now define Schur vectors using the lower part of Ul:

(4.17) Ûk =
(

VkZl + vk+1r
∗
l T−1

l U1,k−l

VkZlTl + vk+1r
∗
l U2,k−l

)
= Uk −

(
vk+1r

∗
l T−1

l 0
0 0

)
.

This assumes that Tl is nonsingular. With g∗ = −[r∗l T−1
l 0], following (4.8), the

structure of the vectors is restored by using

Ĥk =
(

Tk

[0 r̂∗k−l]

)
,

with r̂∗k−l = r∗k−l − r∗l T−1
l Tl,k−l. The most important point is that the residual term

corresponding to the first l Ritz values is set equal to zero. The residual terms of the
remaining Ritz values are modified. This is not the case when Ũk is used as the Schur
basis. The error on the recurrence relation is again proportional to ‖rl‖.
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Table 5.1

Illustration of instabilities in the Q-Arnoldi method. γ⊥ = ‖I −V∗
k+1Vk+1‖F is the deviation

of orthogonality, and γR is the error on the recurrence relation.

ζ 1 104 106

κ(Hk) 30.0 1 · 108 1 · 1012

‖Hk‖2 1.6 1 · 108 1 · 1012√
γ2

k
+δ2

k
+1.0

√
k+1

1.03 3.66 106 1.66 1010

γ⊥ γR γ⊥ γR γ⊥ γR

Arnoldi 1 · 10−13 1 · 10−16 5 · 10−14 1 · 10−16 2 · 10−13 2 · 10−16

Q-Arnoldi 3 · 10−13 1 · 10−16 4 · 10−10 6 · 10−12 3.0 4 · 10−6

5. Numerical examples.

5.1. Illustration of numerical instabilities in Q-Arnoldi. From section 3.4,
we can see that the Q-Arnoldi method may lose stability when γk is large. This is
possible only when ‖Hk‖2 and κ(Hk) are large.

We have run k = 10 iterations of the Arnoldi method for a problem of dimension
n = 10, 000 with K = I, C = ζI, and M = ζdiag(μ1, . . . , μn), where μj = 1/j
for three values of ζ. Table 5.1 illustrates the numerical behavior of the Arnoldi
and Q-Arnoldi algorithms for this example. The Q-Arnoldi algorithm is sensitive to
large ζ’s. The example illustrates that scaling the matrices may help improve the
numerical stability of the Q-Arnoldi algorithm: indeed, the eigenvectors are the same
for all cases, independent of ζ, and the eigenvalues of (1.1) are divided by ζ, but when
ζ = 1, K, C, and M have norms around one.

5.2. Selection of component of Ritz vectors. Consider the quadratic eigen-
value problem (1.1) with K = I, M = diag(μ1, . . . , μn), and C = 0.01M with μj = 1/j
for n = 10, 000. We have run 10 steps of the Arnoldi method with an initial vector
with equal components. Let (θ, x = ( x1

x2 )) be a Ritz vector returned by the Arnoldi
method. Define

ρ = ‖A−1(θA − B)x‖,
ρ1 = ‖K−1(θ2K + θC + M)x1‖,
ρ2 = ‖K−1(θ2K + θC + M)x2‖.

Table 5.2 shows the Ritz values and the corresponding residual norms. For this
example, x2 shows to be a better Ritz vector than x1 for the large Ritz values.

5.3. Quadratic eigenvalue problem for an acoustic box. In this section we
study the problem of an acoustic box with walls covered with carpet with dimensions
0.54m × 0.54m × 0.55m. The material has a complex speed of sound 340 + i3.4, and
the density is 1.225kg/m3. The box is discretized with 64,710 hexahedral elements.

The matrices are produced by ACTRAN [5]. The problem to be solved has the
form (1.1) and n = 13, 623. We want to compute the 50 eigenvalues with imaginary
part larger than 600. We applied the shift σ = 600i; see section 3.3. We used the
following algorithm.

Algorithm 5.1 (restarted Q-Arnoldi method).
1. Choose v1 randomly and normalize.
2. Until the wanted eigenvalues have converged, do:

2.1. Build a Krylov subspace of dimension k.
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Table 5.2

Comparison of Ritz vectors.

Ritz value ρ ρ1 ρ2

1.0099 2 · 10−7 2 · 10−7 3 · 10−8

0.509808 1 · 10−4 7 · 10−5 2 · 10−5

0.342946 3 · 10−3 1 · 10−3 6 · 10−4

0.256429 2 · 10−2 5 · 10−3 3 · 10−3

0.183618 3 · 10−2 7 · 10−3 5 · 10−3

0.117528 3 · 10−2 4 · 10−3 5 · 10−3

−0.00203237 7 · 10−5 1 · 10−5 5 · 10−4

0.00250052 5 · 10−3 2 · 10−4 6 · 10−5

0.0381711 ± i0.00132763 3 · 10−2 2 · 10−3 2 · 10−3

Table 5.3√
γ2

k + δ2k for the different restarts in the solution of the quadratic eigenvalue problem of the box.

Before restart 2.14777
First restart 1.93901
Second restart 1.73840
Third restart 1.69189

2.1. Compute Ritz values, Ritz vectors, and residual norms.
2.2. Order the Ritz values in increasing distance to σ.
2.3. Purge the last m − p columns of the recurrence relation.

We solved the problem using the Arnoldi method with k = 100 and p = 50. The
first iteration costs k = 100 products with S. In Step 2.3, the purging operation
keeps p iteration vectors with Ritz values corresponding to the Ritz values nearest σ.
The goal of the next iterations is to improve these values. The next call to Step 2.1
requires only k − p additional iterations to obtain a subspace of dimension k. After
three restarts, 50 Ritz values were computed with residual norms smaller than 10−8.
The computations were carried out on a Linux PC. The final loss of orthogonality in
the Q-Arnoldi algorithm was

‖I − V∗
k+1Vk+1‖F � 3.1 10−13.

For the Arnoldi algorithm we also had

‖I − V∗
k+1Vk+1‖F � 3.1 10−13.

Table 5.3 shows
√

γ2
k + δ2

k for the different restarts. For all restarts,
√

γ2
k + δ2

k is
small, so we do not expect numerical difficulties. This is no surprise since the shift
σ = 600i is not close to an eigenvalue of (1.1), so ‖Hk‖2 ≤ ‖S‖2 is small.

6. Conclusions. The Q-Arnoldi algorithm is a memory efficient implementation
of the Arnoldi method for specific choices of linearization of the quadratic eigenvalue
problem.

We have proposed an algorithm that preserves the structure of the Schur vectors
and that shows that implicit restarting, purging, and locking similarly preserve the
structure of the Arnoldi vectors.

As for the choice of linearization, due to A−1, the Arnoldi method produces the
same results for any linearization in L1. The same conclusion holds for the SOAR
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method. This also implies (as we already knew) that the Arnoldi method in its
standard form is not able to preserve structure.

An important conclusion lies in the influence of ξmin and ξmax. The ratio should
not be far away from one in order to reduce the chance of cancelation in the numerical
computations. In addition, the components of the Ritz vectors lie in the same direc-
tion when ξmin is large. However, as we mentioned earlier, for the shift-and-invert
transformation, ξmin usually lies close to one. We have some freedom in choosing the
pole σ to keep ξmax low. The derivation of scalings of S1 and S2 is still an open prob-
lem. Note that S1 and S2 are known only in factored forms −K−1C and −K−1M ,
respectively.

The conclusion is not that the SOAR method is useless when more than one
eigenvalue needs to be computed or restarting the Arnoldi process is required. The
Q-Arnoldi algorithm produces a Krylov subspace, whereas the SOAR method projects
K, C, and M on Vk+1. This is still possible in a postprocessing step in the Q-Arnoldi
algorithm in order to improve the Ritz values or impose spectral structure.

The extension to higher order polynomials,

(A0 + λA1 + · · · + λp)u = 0,

is straightforward and leads to a similar algorithm with similar conclusions.
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HOW TO MAKE SIMPLER GMRES AND GCR MORE STABLE∗

PAVEL JIRÁNEK† , MIROSLAV ROZLOŽNÍK‡ , AND MARTIN H. GUTKNECHT§

Abstract. In this paper we analyze the numerical behavior of several minimum residual methods
which are mathematically equivalent to the GMRES method. Two main approaches are compared:
one that computes the approximate solution in terms of a Krylov space basis from an upper triangular
linear system for the coordinates, and one where the approximate solutions are updated with a
simple recursion formula. We show that a different choice of the basis can significantly influence
the numerical behavior of the resulting implementation. While Simpler GMRES and ORTHODIR
are less stable due to the ill-conditioning of the basis used, the residual basis is well-conditioned as
long as we have a reasonable residual norm decrease. These results lead to a new implementation,
which is conditionally backward stable, and they explain the experimentally observed fact that the
GCR method delivers very accurate approximate solutions when it converges fast enough without
stagnation.

Key words. large-scale nonsymmetric linear systems, Krylov subspace methods, minimum
residual methods, numerical stability, rounding errors

AMS subject classifications. 65F10, 65G50, 65F35
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1. Introduction. In this paper we consider certain methods for solving a system
of linear algebraic equations

(1.1) Ax = b, A ∈ R
N×N , b ∈ R

N ,

where A is a large and sparse nonsingular matrix that is, in general, nonsymmetric.
For solving such systems, Krylov subspace methods are very popular. They build
a sequence of iterates xn (n = 0, 1, 2, . . .) such that xn ∈ x0 + Kn(A, r0), where
Kn(A, r0) ≡ span{r0, Ar0, . . . , A

n−1r0} is the nth Krylov subspace generated by the
matrix A from the residual r0 ≡ b − Ax0 that corresponds to the initial guess x0.
Many approaches for defining such approximations xn have been proposed; see, e.g.,
the books by Greenbaum [9], Meurant [16], and Saad [22]. In particular, due to their
smooth convergence behavior, minimum residual methods satisfying

(1.2) ‖rn‖ = min
x̃∈x0+Kn(A,r0)

‖b − Ax̃‖, rn ≡ b − Axn,

are widely used; see, e.g., the GMRES algorithm of Saad and Schultz [23]. We recall
that the minimum residual property (1.2) is equivalent to the orthogonality condition

rn ⊥ AKn(A, r0),
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where ⊥ is the orthogonality relation induced by the Euclidean inner product 〈·, ·〉.
The classical implementation of GMRES [23] makes use of a nested sequence of

orthonormal bases of the Krylov subspaces Kn(A, r0). These bases are generated
by the Arnoldi process [2], and the approximate solution xn satisfying the minimum
residual property (1.2) is constructed from the transformed least squares problem with
an upper Hessenberg matrix. This problem is solved via its recursive QR factorization,
updated by applying Givens rotations. Once the norm of the residual is small enough,
which can be seen without explicitly solving the least squares problem, the triangular
system with the computed R-factor is solved, and the approximate solution xn is
computed. In [3, 11, 18] it was shown that this “classical” version of the GMRES
method is backward stable provided that the Arnoldi process is implemented using
the modified Gram–Schmidt algorithm or Householder reflections.

In this paper we deal with a different approach. Instead of building an or-
thonormal basis of Kn(A, r0), we look for an orthonormal basis Vn ≡ [v1, . . . , vn] of
AKn(A, r0). We will also consider a basis Zn ≡ [z1, . . . , zn] of Kn(A, r0) and assume
in our analysis that the vectors Zn have unit lengths, but they need not be orthogonal.
The orthonormal basis Vn of AKn(A, r0) is obtained from the QR factorization of the
image of Zn:

(1.3) AZn = VnUn.

Since rn ∈ r0 + AKn(A, r0) = r0 + R(Vn) and rn ⊥ R(Vn), the residual rn = (I −
VnV T

n )r0 is just the orthogonal projection of r0 onto the orthogonal complement of
R(Vn), which can be computed recursively as

(1.4) rn = rn−1 − αnvn, αn ≡ 〈rn−1, vn〉

(R(Vn) denotes the range of the matrix Vn). Let Rn+1 ≡ [r0, . . . , rn], let Dn ≡
diag(α1, . . . , αn), and let Ln+1,n ∈ R

(n+1)×n be the bidiagonal matrix with 1’s on the
main diagonal and −1’s on the first subdiagonal; then the recursion (1.4) can be cast
into a matrix relation

(1.5) Rn+1Ln+1,n = VnDn.

Since the columns of Zn form a basis of Kn(A, r0), we can represent xn in the form

(1.6) xn = x0 + Zntn,

so that rn = r0 − AZntn = r0 − VnUntn. Due to rn ⊥ R(Vn), it follows that

(1.7) Untn = V T
n r0 = [α1, . . . , αn]T .

Hence, once the residual norm is small enough, we can solve this upper triangular
system and compute the approximate solution xn = x0 +Zntn. We call this approach
the generalized simpler approach. Its pseudocode is given in Figure 1.1. It includes,
as a special case, Simpler GMRES, which was proposed by Walker and Zhou [30],
where Zn = [ r0

‖r0‖ , Vn−1]. We will be also interested in the case of the residual basis

Zn = R̃n ≡ [ r0
‖r0‖ , . . . , rn−1

‖rn−1‖ ]; we will call this case RB-SGMRES (Residual-based
Simpler GMRES). Recently this method was also derived and implemented by Yvan
Notay [17].
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Generalized simpler approach

choose x0, compute r0 := b− Ax0

for n = 1, 2, . . . ,m (until convergence)

compute zn (z1 = r0
‖r0‖

) and Azn;

orthonormalize Azn with respect to v1, . . . , vn−1

to obtain vn so that AZn = VnUn

αn := rT
n−1vn

rn := rn−1 − αnvn

solve Umtm = [α1, . . . , αm]T

xm := x0 + Zmtm

Fig. 1.1. Pseudocode of the generalized simpler approach.

Generalized update approach

choose x0, compute r0 := b− Ax0

for n = 1, 2, . . . ,m (until convergence)

compute zn (z1 = r0
‖r0‖

) and Azn;

orthonormalize Azn with respect to v1, . . . , vn−1

to obtain vn so that AZn = VnUn

compute pn from zn and p1, . . . , pn−1 so that Zn = PnUn

αn := rT
n−1vn

rn := rn−1 − αnvn

xn := xn−1 + αnpn

Fig. 1.2. Pseudocode of the generalized update approach.

Recursion (1.4) reveals the connection between the generalized simpler approach
and yet another minimum residual approach. Let us set pk ≡ A−1vk (k = 1, . . . , n)
and Pn ≡ [p1, . . . , pn]. Then, left-multiplying (1.4) by A−1 yields

(1.8) xn = xn−1 + αnpn

or, in matrix form, Xn+1Ln+1,n = −PnDn with Xn+1 ≡ [x0, . . . , xn]. So, instead of
computing the coordinates tn of xn −x0 with respect to the basis Zn, we can directly
update xn from xn−1. However, this requires that we construct the direction vectors
Pn forming an AT A-orthogonal basis of Kn(A, r0). Since Un is known from (1.3), the
recursion for pn can be extracted from the formula

(1.9) Zn = PnUn.

Note that two recursions (1.3) and (1.9) can be run in the same loop, and we have
to store all the direction vectors in Pn and all the orthonormal basis vectors in Vn.
We will use the terminology generalized update approach for this case. Its pseudocode
is given in Figure 1.2. The case Zn ≡ [ r0

‖r0‖ , Vn−1] of this method was proposed
in [20] under the name AT A-variant of GMRES, and up to the normalization of
the vectors Vn in (1.3) it is equivalent to the ORTHODIR algorithm due to Young
and Jea [33, 7]. Likewise, the case Zn = [r0, . . . , rn−1] corresponds to the GCR (or
full ORTHOMIN) method of Elman, Eisenstat, and Schultz [6, 5] (the orthogonal
vectors vn are unnormalized in the original implementation), and it is identical to
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Table 1.1

Computational costs (without the cost of m+1 matrix-vector products) and storage requirements
(without the storage of A) of the generalized simpler and update approaches after m iteration steps.

Computational costs Storage requirements

Generalized
simpler

approach
(2N + 1

2
)m2 + (9N − 1

2
)m + 4N (2N + 3

2
)m+ 1

2
m2 + 2N + 1

Generalized
update

approach
(3N − 1

2
)m2 + (9N − 1

2
)m + 4N (2N + 1)m+ 2N + 2

the GMRESR method [28] of van der Vorst and Vuik (with the choice u
(0)
n = rn).

Without normalization it was also treated in [33]. As we have already mentioned,
here we will analyze the choice Zn = R̃n. The importance of normalizing Zn before
the orthogonalization in (1.3) will be seen later.

In Table 1.1 we summarize the computational costs and storage requirements of
performing m iteration steps in the generalized simpler approach and the generalized
update approach, where we have excluded the storage for A and the cost of m + 1
matrix-vector products. In both approaches we have to store two sets of vectors—the
bases Vm and Zm (the generalized simpler approach) or Vm and Pm (the generalized
update approach)—making these schemes comparable to FGMRES [21], the (flexible)
preconditioned variant of the standard GMRES method [23]. This remains true also
in the case of preconditioned versions of our algorithms, but we do not treat these
explicitly here. In contrast to the generalized simpler approach, we do not need
to store the triangular m × m matrix of orthogonalization coefficients Um in the
generalized update approach, but we have to compute the additional set of vectors
Pm. Some savings are possible in special cases, as in Simpler GMRES with the
particular choice of the basis Zm = [ r0

‖r0‖ , Vm−1], where the last m− 1 columns of Zm

need not to be stored and normalized again. Simpler GMRES is in terms of work
and storage competitive to the GMRES method, which in addition was shown to be
backward stable and in this context should clearly be the method of choice when
preconditioning is not considered.

The paper is organized as follows. In section 2 we analyze first the maximum at-
tainable accuracy of the generalized simpler approach based on (1.6) and (1.7). Then
we turn to the generalized update approach based on (1.9) and (1.8). To keep the text
readable, we assume rounding errors only in selected, most relevant parts of the com-
putation. The bounds presented in Theorems 2.1 and 2.3 show that the conditioning
of the matrix Zn plays an important role in the numerical stability of these schemes.
Both theorems give bounds on the maximum attainable accuracy measured by the
normwise backward error. We also formulate analogous statements for the residual
norm in terms of the condition number of the matrix Un. While for the generalized
simpler approach these bounds do not depend on the conditioning of A, the bound for
the generalized update approach is proportional to κ(A) (as we will show in our con-
structed numerical example, the bound is attained). However, the additional factor of
κ(A) in the generalized update approach is usually an overestimate; in practice, both
approaches behave almost equally well for the same choice of basis. This is especially
true for the relative errors of the computed approximate solutions, where we have es-
sentially the same upper bound. The situation is completely analogous to results for
the MINRES method [19] given by Sleijpen, van der Vorst, and Modersitzki in [25].
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In section 3 we derive particular results for two choices of the basis Zn—first
for Zn = [ r0

‖r0‖ , Vn−1], leading to Simpler GMRES by Walker and Zhou [30] and to

ORTHODIR, and then for Zn = R̃n, which leads to RB-SGMRES and to a variant of
GCR, respectively. It turns out that the two choices lead to a truly different behavior
in the condition number of Un, which governs the stability of the considered schemes.
Since all these methods converge in a finite number of iterations, we fix the iteration
index n such that r0 �∈ AKn−1(A, r0); that is, the exact solution has not yet been
reached. Based on this we give conditions on the linear independence of the basis
Zn. It is known that the residuals are linearly dependent (or even identical) when the
GMRES method stagnates (a breakdown occurs in GCR as well as in RB-SGMRES),
while this does not happen for [ r0

‖r0‖ , Vn−1] (Simpler GMRES and ORTHODIR are
breakdown-free). On the other hand, we show that while the choice Zn = [ r0

‖r0‖ , Vn−1]
leads to inherently unstable or numerically less stable schemes, the second selection
Zn = R̃n gives rise to conditionally stable implementations provided that we have
some reasonable residual decrease. In particular, we show that the RB-SGMRES
implementation is conditionally backward stable. Our theoretical results are illus-
trated by selected numerical experiments. In section 4 we draw conclusions and give
directions for future work.

Throughout the paper, we denote by ‖ · ‖ the Euclidean vector norm and the
induced matrix norm and by ‖ · ‖F the Frobenius norm. Moreover, for B ∈ R

N×n

(N ≥ n) of rank n, σ1(B) ≥ σn(B) > 0 are the extremal singular values of B, and
κ(B) = σ1(B)/σn(B) is the spectral condition number. By I we denote the unit
matrix of a suitable dimension and by ek (k = 1, 2, . . .) its kth column, and we let
e ≡ [1, . . . , 1]T . We assume the standard model of finite precision arithmetic with the
unit roundoff u (see Higham [13] for details). In our bounds, instead of distinguishing
between several constants (which are in fact low-degree polynomials in N and n that
can differ from place to place), we use the generic name c for constants.

2. Maximum attainable accuracy of the generalized simpler and update
approaches. In this section we analyze the final accuracy level of the generalized
simpler and update approaches formulated in the previous section. In order to make
our analysis readable, we assume that only the computations performed in (1.3), (1.7),
and (1.9) are affected by rounding errors.

Different orthogonalization techniques for computing the columns of Vn can be
applied in the QR factorization (1.3). Here we focus on such implementations where
the computed R-factor Un has been obtained in a backward stable way; i.e., there
exists an orthonormal matrix V̂n so that V̂n and Vn satisfy

AZn = V̂nUn + En, ‖En‖ ≤ cu‖A‖‖Zn‖,(2.1)
AZn = VnUn + Fn, ‖Fn‖ ≤ cu‖A‖‖Zn‖.(2.2)

This is certainly true for the implementation based on Householder reflections [32],
the modified Gram–Schmidt process [18], or the Gram–Schmidt process with full
reorthogonalization [3]. For details we refer the reader to [13, 8]. From [31, 13] we
have for the computed solution t̂n of (1.7) that

(2.3) (Un + ΔUn)t̂n = Dne, |ΔUn| ≤ cu|Un|,

where the absolute value and inequalities are understood componentwise. The ap-
proximation x̂n to x is then computed as

(2.4) x̂n = x0 + Znt̂n.
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The crucial quantity for the analysis of the maximum attainable accuracy is the
gap between the true residual b − Ax̂n of the computed approximation and the up-
dated residual rn obtained from the update formula (1.4) describing the projection of
the previous residual; see [9, 12]. In fact, once the updated residual becomes negligible
compared to the true one (and in all algorithms considered here it ultimately will),
the gap will be equal to the true residual divided by ‖A‖‖x̂n‖, which therefore can be
thought of as the normwise backward error of the ultimate approximate solution x̂n

(after suitable normalization). Here is our basic result on this gap for the generalized
simpler approach.

Theorem 2.1. In the generalized simpler approach, if cuκ(A)κ(Zn) < 1, the gap
between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(Zn)
(

1 +
‖x0‖
‖x̂n‖

)
.

Proof. From (2.4), (2.2), and (2.3) we have b−Ax̂n = r0−AZnt̂n = r0− (VnUn +
Fn)(Un + ΔUn)−1Dne, and (1.4) gives rn = r0 − VnDne. It is clear from (2.1) and
(2.3) that the assumption cuκ(A)κ(Zn) < 1 implies the invertibility of the perturbed
matrix Un +ΔUn. Using the identity I −Un(Un +ΔUn)−1 = ΔUn(Un +ΔUn)−1 and
the relation Zn(Un + ΔUn)−1Dne = Znt̂n = x̂n − x0 following from (2.4) and (2.3),
we can express the gap between b − Ax̂n and rn as

b − Ax̂n − rn = (Vn − (VnUn + Fn)(Un + ΔUn)−1)Dne

= (Vn(I − Un(Un + ΔUn)−1) − Fn(Un + ΔUn)−1)Dne

= (VnΔUn − Fn)(Un + ΔUn)−1Dne

= (VnΔUn − Fn)Z†
nZn(Un + ΔUn)−1Dne

= (VnΔUn − Fn)Z†
n(x̂n − x0).

Taking the norm, considering (2.1), and noting that the terms in VnΔUn and Fn can
be subsumed into the generic constant c, we get ‖VnΔUn − Fn‖ ≤ cu‖A‖‖Zn‖ and

‖b − Ax̂n − rn‖ ≤ cu‖A‖κ(Zn)‖x̂n − x0‖.

Using the triangle inequality and division by ‖A‖‖x̂n‖ concludes the proof.
In the previous theorem we have expressed the residual gap using the difference

between the actual and initial approximations x̂n and x0, respectively. However, its
norm is strongly influenced by the conditioning of the upper triangular matrix Un.
As shown in section 3, the matrix Un can be ill-conditioned for the particular case
Zn = [ r0

‖r0‖ , Vn−1], thus leading to an inherently unstable scheme, whereas (under some

assumptions) the scheme with Zn = R̃n gives rise to a well-conditioned triangular
matrix Un. In the following corollary we give a bound for the residual gap in terms
of the minimal singular values of the matrices Zk and norms of the updated residuals
rk−1, k = 1, . . . , n.

Corollary 2.2. In the generalized simpler approach, if cuκ(A)κ(Zn) < 1, the
gap between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖ ≤ cuκ(A)
1 − cuκ(A)κ(Zn)

n∑
k=1

‖rk−1‖
σk(Zk)

.
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Proof. The gap between the true residual b−Ax̂n and the updated residual rn can
be expressed as b−Ax̂n − rn = (VnΔUn−Fn)(Un +ΔUn)−1Dne. Since eT

k Dnek = αk

and |αk| =
√
‖rk−1‖2 − ‖rk‖2 ≤

√
2‖rk−1‖, the norm of the term (Un + ΔUn)−1Dne

can be estimated as follows:

‖(Un + ΔUn)−1Dne‖ ≤
n∑

k=1

‖(Un + ΔUn)−1Dnek‖

≤
√

2
n∑

k=1

‖rk−1‖
σk([Un + ΔUn]1:k,1:k)

,

(2.5)

where [Un +ΔUn]1:k,1:k denotes the principal k×k submatrix of Un +ΔUn. Owing to
(2.4), we can estimate the perturbation of [Un]1:k,1:k = Uk as ‖[ΔUn]1:k,1:k‖ ≤ cu‖Uk‖.
Perturbation theory of singular values (see, e.g., [14]) shows that

σk([Un + ΔUn]1:k,1:k) ≥ σk(Uk) − cu‖Uk‖ ≥ σk(AZk) − cu‖A‖‖Zk‖(2.6a)
≥ σN (A)σk(Zk) − cu‖A‖‖Zk‖,(2.6b)

which together with (2.5) concludes the proof.
The estimates (2.5) and (2.6a) given in the previous proof that involve the min-

imum singular values of Uk (k = 1, . . . , n) are quite sharp. However, the estimate
(2.6b) relating the minimum singular values of Uk to those of Zk can be a large
underestimate, as also observed in our numerical experiments in section 3.

Next we analyze the maximum attainable accuracy of the generalized update ap-
proach. We assume that in finite precision arithmetic the computed direction vectors
satisfy

(2.7) Zn = PnUn + Gn, ‖Gn‖ ≤ cu‖Pn‖‖Un‖.

This follows from the standard rounding error analysis of the recursion for vectors Pn.
Note that the norm of the matrix Gn cannot be bounded by cu‖A‖‖Zn‖ as it can in
the case of the QR factorization (2.2). We update then the approximate solution x̂n

according to (1.8):

(2.8) x̂n = x̂n−1 + αnpn.

Theorem 2.3. In the generalized update approach, if cuκ(A)κ(Zn) < 1, the gap
between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖
‖A‖‖x̂n‖

≤ cuκ(A)κ(Zn)
1 − cuκ(A)κ(Zn)

(
1 +

‖x0‖
‖x̂n‖

)
.

Proof. From (2.8), (1.4), (2.2), and (2.7), x̂n = x0 + PnDne = x0 + (Zn −
Gn)U−1

n Dne and rn = r0 − VnDne = r0 − (AZn − Fn)U−1
n Dne, we have that

(2.9) b − Ax̂n − rn = (AGn − Fn)U−1
n Dne,

and from (2.7) and (2.1) we get Pn = A−1V̂n + A−1EnU−1
n − GnU−1

n . The norm of
the matrix Gn in (2.7) can hence be bounded by

(2.10) ‖Gn‖ ≤ cuκ(A)‖Zn‖.
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Owing to (2.8), we have the identity U−1
n Dne = U−1

n P †
nPnDne = (PnUn)†(x̂n − x0),

where ‖(PnUn)†‖ ≤ [1− cuκ(A)κ(Zn)]−1‖Z†
n‖, as follows from (2.7). Thus we obtain

(2.11) ‖U−1
n Dne‖ ≤ ‖Z†

n‖
1 − cuκ(A)κ(Zn)

‖x̂n − x0‖,

which together with (2.9), (2.10), and (2.2) leads to

‖b − Ax̂n − rn‖ ≤ cu‖A‖κ(A)κ(Zn)
1 − cuκ(A)κ(Zn)

‖x̂n − x0‖.

The proof is concluded using the triangle inequality and dividing by ‖A‖‖x̂n‖.
In the following we formulate an analogous corollary for the residual gap as in

the case of the generalized simpler approach.
Corollary 2.4. In the generalized update approach, if cuκ(A)κ(Zn) < 1, the

gap between the true residual b − Ax̂n and the updated residual rn satisfies

‖b − Ax̂n − rn‖ ≤ cuκ2(A)
1 − cuκ(A)κ(Zn)

n∑
k=1

‖rk−1‖
σk(Zk)

.

Proof. Considering (2.2), (2.7), and (2.10) the norm of the term AGn − Fn in
(2.9) can be bounded as ‖AGn − Fn‖ ≤ cu‖A‖κ(A), while the term U−1

n Dne can be
treated as in Corollary 2.2.

The bound on the ultimate backward error given in Theorem 2.3 is worse than
the one in Theorem 2.1. We see that for the generalized simpler approach the norm-
wise backward error is of the order of the roundoff unit, whereas for the generalized
update approach we have an upper bound proportional to the condition number of
A. Similarly, the bounds on the ultimate relative residual norms given in Corollaries
2.2 and 2.4 indicate that the relative residuals in the generalized simpler approach
will reach the level which is approximately equal to uκ(A), while in the generalized
update approach this level becomes uκ2(A).

In the previous text we have given bounds in terms of the true residual b−Ax̂n and
the updated residual rn. It should be noted that the true residual is not available in
practical computations, but for verification or for other purposes it can be estimated
by the explicit evaluation of fl(b−Ax̂n). It is clear from ‖fl(b−Ax̂n)− (b−Ax̂n)‖ ≤
cu(‖b‖ + ‖A‖‖x̂n‖) ≤ cu‖A‖(‖x‖ + ‖x̂n‖) that the error in the evaluation of the
true residual (if needed) is significantly smaller than other quantities involved in our
analysis.

In Theorems 2.1 and 2.3 we have estimated the attainable level of the normwise
backward error of both generalized simpler and update approaches. The resulting
bound is in general worse for the generalized update approach. However, as shown
below, it appears that the generalized update approach leads to an approximate solu-
tion whose forward error is essentially on the same accuracy level as the generalized
simpler approach. A similar phenomenon was also observed by Sleijpen, van der Vorst,
and Modersitzki [25] in the symmetric case for two different implementations (called
GMRES and MINRES in their paper).

Corollary 2.5. If cuκ(A)κ(Zn) < 1, the gap between the error x − x̂n and the
vector A−1rn in both the generalized simpler and update approaches satisfies

‖(x − x̂n) − A−1rn‖
‖x‖ ≤ cuκ(A)κ(Zn)

1 − cuκ(A)κ(Zn)
‖x̂n‖ + ‖x0‖

‖x‖ .
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Fig. 2.1. The test problem solved by the generalized simpler and update approaches with the
almost orthonormal basis Zn satisfying κ(Zn) ≈ 1.

Proof. For the generalized simpler approach, the result follows directly from
Theorem 2.1. For the generalized update approach, using (2.9) we have

(x − x̂n) − A−1rn = (−A−1Fn + Gn)U−1
n Dne,

and the statement follows from (2.2), (2.10), and (2.11).
Theorems 2.1 and 2.3 indicate that as soon as the backward error of the approx-

imate solution in the generalized simpler approach gets below cuκ(A)κ(Zn), the dif-
ference between the backward errors in the generalized simpler and update approaches
may become visible and can be expected to be up to the order of κ(A). Based on
our experience it is difficult to find an example where this difference is significant.
Similarly to Sleijpen, van der Vorst, and Modersitzki [25], we use here a model ex-
ample, where A = G1DGT

2 ∈ R
100×100 with D = diag(10−8, 2 · 10−8, 3, 4, . . . , 100)

and with G1 and G2 being Givens rotations over the angle of π
4 in the (1, 10)-plane

and the (1, 100)-plane, respectively; finally, b = e. The numerical experiments were
performed in MATLAB using double precision arithmetic (u ≈ 10−16) and x0 = 0.
In Figure 2.1 we have plotted the normwise backward errors ‖b − Ax̂n‖/(‖A‖‖x̂n‖)
(thin and thick solid lines), and the relative 2-norms of the errors ‖x− x̂n‖/‖x‖ (thin
and thick dash-dotted lines). In all our experiments the basis Vn in (1.3) is computed
with the modified Gram–Schmidt orthogonalization process, where the upper trian-
gular factor Un is obtained in a backward stable way satisfying (2.1). In order to
ensure that the difference is not affected by a possibly high condition number of Zn,
we use the implementation where the basis Zn is computed with the modified Gram–
Schmidt Arnoldi process so that κ(Zn) ≈ 1. We see that the actual backward errors
are close to each other until they stagnate: for the generalized update approach this
happens approximately at a level approaching uκ(A), while for the generalized simpler
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approach we have stagnation on the roundoff unit level u. Similar observations could
be made for the relative true residual norms (for better readability they are not shown
in Figure 2.1); in the case of the generalized simpler approach the final level of the
relative 2-norm of the true residual is on the level of uκ(A), while for the generalized
update approach this level is approximately one factor of κ(A) higher. In contrast,
the 2-norms of the errors stagnate on the uκ(A) level in both approaches considered.

3. Choice of basis and stability. In this section we discuss the two main
particular choices for the matrix Zn leading to different algorithms for the generalized
simpler and update approaches. For the sake of simplicity, we assume exact arithmetic
here. The conditioning of Zn plays an important role in our analysis. The effect of
scaling the columns on the condition number has been analyzed by van der Sluis in [27],
who showed that the normalization of columns is a nearly optimal strategy producing
the condition number within the factor

√
n of the minimum 2-norm condition number

achievable by column scaling.
First, we choose Zn = [ r0

‖r0‖ , Vn−1], which leads to the Simpler GMRES method of
Walker and Zhou [30] and to ORTHODIR by Young and Jea [33]. Hence, we choose
{ r0
‖r0‖ , v1, . . . , vn−1} as a basis of Kn(A, r0). To be sure that such a choice is adequate,

we state the following simple lemma.
Lemma 3.1. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 �∈

AKn−1(A, r0). Then the vectors r0
‖r0‖ , v1, . . . , vn−1 form a basis of Kn(A, r0).

Proof. The result follows easily from the assumption r0 �∈ AKn−1(A, r0).
Note that if r0 ∈ AKn(A, r0), then the condition (1.2) yields xn = A−1b, rn = 0,

and any implementation of a minimum residual method will terminate. Lemma 3.1
ensures that it makes sense to build an orthonormal basis Vn of AKn(A, r0) by the
successive orthogonalization of the columns of the matrix A[ r0

‖r0‖ , Vn−1] via (1.3). It re-
flects the fact that, for any initial residual r0, both Simpler GMRES and ORTHODIR
converge (in exact arithmetic) to the exact solution; see [33]. However, as observed by
Liesen, Rozložńık, and Strakoš [15], this choice of the basis is not very suitable from
the stability point of view. This shortcoming is reflected by the unbounded growth of
the condition number of [ r0

‖r0‖ , Vn−1] discussed next. The upper bound we recall here
was also derived in [30].

Theorem 3.2. Let r0 �∈ AKn−1(A, r0). Then the condition number of [ r0
‖r0‖ , Vn−1]

satisfies

‖r0‖
‖rn−1‖

≤ κ([ r0
‖r0‖ , Vn−1]) ≤ 2

‖r0‖
‖rn−1‖

.

Proof. Since rn−1 = (I − Vn−1V
T
n−1)r0, it is easy to see that rn−1 is the residual

of the least squares problem Vn−1y ≈ r0. The statement therefore follows from [15,
Theorem 3.2].

The conditioning of [ r0
‖r0‖ , Vn−1] is thus related to the convergence of the method;

in particular, it is inversely proportional to the actual relative norm of the residual.
Small residuals lead to the ill-conditioning of the matrices A[ r0

‖r0‖ , Vn−1] and Un,
and this negatively affects the accuracy of computed approximate solutions. This
essentially means that, after some initial residual reduction, Simpler GMRES and
ORTHODIR can behave unstably, which makes our analysis on maximum attainable
accuracy inapplicable.

As a remedy, we now turn to the second choice, Zn = R̃n, which leads to RB-
SGMRES (proposed here as a more stable counterpart of Simpler GMRES) and to a
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version of GCR due to Eisenstat, Elman, and Schultz [6, 5] (see also [29]). Hence, we
choose normalized residuals r0, . . . , rn−1 as the basis of Kn(A, r0). To make sure that
such a choice is adequate, we state the following result.

Lemma 3.3. Let v1, . . . , vn−1 be an orthonormal basis of AKn−1(A, r0), r0 �∈
AKn−1(A, r0), and rk = (I − VkV T

k )r0, where Vk ≡ [v1, . . . , vk], k = 1, 2, . . . , n − 1.
Then the following statements are equivalent:

1. ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n − 1,
2. r0, . . . , rn−1 are linearly independent.

Proof. Since r0 �∈ AKn−1(A, r0) = R(Vn−1), we have rk �= 0 for all k =
0, 1, . . . , n − 1. It is clear that ‖rk‖ < ‖rk−1‖ if and only if 〈rk−1, vk〉 �= 0. If that
holds for all k = 1, . . . , n − 1, the diagonal matrix Dn−1 is nonsingular. Using the
relation (1.5), we find that Rn[Ln,n−1, en] = [Vn−1Dn−1, rn−1]. Since rn−1 ⊥ Vn−1,
the matrix [Vn−1Dn−1, rn−1] has orthogonal nonzero columns, and hence its rank
equals n. Moreover, rank([Ln,n−1, en]) = n, and thus rank(Rn) = n; i.e., r0, . . . , rn−1

are linearly independent. Conversely, from the same matrix relation we find that if
r0, . . . , rn−1 are linearly independent, then rank([Vn−1Dn−1, rn−1]) = n, and hence
Dn−1 is nonsingular, which proves that ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n− 1.

Therefore, if the method does not stagnate, i.e., if the 2-norms of the residuals
r0, . . . , rn−1 are strictly monotonously decreasing, then r0, . . . , rn−1 are linearly inde-
pendent. In this case, we can build an orthonormal basis Vn of AKn(A, r0) by the
successive orthogonalization of the columns of AR̃n via (1.3). If r0 ∈ AKn−1(A, r0),
we have an exact solution of (1.1), and the method terminates with xn−1 = A−1b.

Several conditions for the nonstagnation of the minimum residual method have
been given in the literature. For example, Eisenstat, Elman, and Schultz [5, 6] show
that GCR (and hence any minimum residual method) does not stagnate if the sym-
metric part of A is positive definite, i.e., if the origin is not contained in the field of
values of A. See also Greenbaum and Strakoš [10] for a different proof and Eiermann
and Ernst [4]. Several other conditions can be found in Simoncini and Szyld [24] and
the references therein. If stagnation occurs, the residuals are no longer linearly inde-
pendent, and thus the method prematurely breaks down. In particular, if 0 ∈ F(A),
choosing x0 such that 〈Ar0, r0〉 = 0 leads to a breakdown in the first step. This was
first pointed out by Young and Jea [33] with a simple 2 × 2 example.

However, as shown in the following theorem, when the minimum residual method
does not stagnate, the columns of R̃n are a reasonable choice for the basis of Kn(A, r0).

Theorem 3.4. If r0 �∈ AKn−1(A, r0) and ‖rk‖ < ‖rk−1‖ for all k = 1, . . . , n− 1,
the condition number of R̃n satisfies

(3.1) 1 ≤ κ(R̃n) ≤
√

nγn, γn ≡

√√√√1 +
n−1∑
k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
.

Proof. From (1.5) it follows that

R̃n[L̃n,n−1, en] =
[
Vn−1,

rn−1

‖rn−1‖

]
, L̃n,n−1 ≡ diag(‖r0‖, . . . , ‖rn−1‖)Ln,n−1D

−1
n−1.

Since [Vn−1,
rn−1

‖rn−1‖ ] is an orthonormal matrix, we have from [14, Theorem 3.3.16]

1 = σn

([
Vn−1,

rn−1

‖rn−1‖

])
≤ σn(R̃n)‖[L̃n,n−1, en]‖

≤ σn(R̃n)‖[L̃n,n−1, en]‖F .
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The value of ‖[L̃n,n−1, en]‖F can be directly computed as

‖[L̃n,n−1, en]‖F =

√√√√1 +
n−1∑
k=1

‖rk−1‖2 + ‖rk‖2

‖rk−1‖2 − ‖rk‖2
= γn

since α2
k = ‖rk−1‖2 − ‖rk‖2. The statement then follows using ‖R̃n‖ ≤ ‖R̃n‖F

≤
√

n.
We define the quantity γn in (3.1) as the stagnation factor. The conditioning of R̃n

is thus related to the convergence of the method, but in contrast to the conditioning
of [ r0

‖r0‖ , Vn−1], it is related to the intermediate decrease of the residual norms and not
to the residual decrease with respect to the initial residual. A different bound for the
conditioning of the matrix R̃n in terms of the residual norms of GMRES and FOM
could be derived using the approach in [26].

We illustrate our theoretical results by two numerical examples using the ill-con-
ditioned matrices FS1836 (‖A‖ ≈ 1.2 · 109, κ(A) ≈ 1.5 · 1011) and STEAM1 (‖A‖ ≈
2.2 ·107, κ(A) ≈ 3 ·107) obtained from the Matrix Market [1] with the right-hand side
b = Ae and with the initial guess x0 = 0. In Figures 3.1, 3.2, 3.4, and 3.5 we show the
normwise backward error ‖b−Axn‖/(‖A‖‖xn‖), the relative norm of the residual ‖b−
Axn‖/‖b‖ and ‖rn‖/‖b‖, and the relative norms of the error ‖x−xn‖/‖x‖ for the choice
Zn = [ r0

‖r0‖ , Vn−1] that corresponds to Simpler GMRES and ORTHODIR (Figures 3.1

and 3.4), and for Zn = R̃n corresponding to RB-SGMRES and GCR (Figures 3.2
and 3.5), respectively. In Figures 3.3 and 3.6 we report the condition numbers of
the system matrix A, the basis Zn, and the triangular matrix Un multiplied by the
unit roundoff u. We see that the backward errors, residual norms, and error norms
are almost identical for corresponding implementations of the generalized simpler and
update approaches. This can be observed in most cases: the differences between
Simpler GMRES and ORTHODIR, and RB-SGMRES and GCR, respectively, are
practically negligible. Figures 3.1 and 3.4 illustrate our theoretical considerations and
show that, after some initial reduction, the backward error of Simpler GMRES and
ORTHODIR may stagnate at a significantly higher level than the backward error of
RB-SGMRES or GCR, which stagnates at a level proportional to the roundoff units,
as shown in Figures 3.2 and 3.5. Due to Theorem 3.2, after some initial phase, the
norms of the errors start to diverge in Simpler GMRES and ORTHODIR, while for
RB-SGMRES and GCR we have a stagnation on a level approximately proportional
to uκ(A). The difference is clearly caused by the choice of the basis Zn, which has an
effect on the conditioning of the matrix Un. We see that R̃n remains well-conditioned
up to the very end of the iteration process, while the conditioning of [ r0

‖r0‖ , Vn−1] is
linked to the convergence of Simpler GMRES and may lead to a very ill-conditioned
triangular matrix Un. Consequently, the approximate solution xn computed from
(1.7) becomes inaccurate, and its error starts to diverge. This problem does not occur
in the RB-SGMRES method and GCR, since the matrix Un remains well-conditioned
due to the low stagnation factor. These two implementations behave almost equally
to the backward stable MGS-GMRES method. For numerical experiments with MGS-
GMRES on the same examples, we refer the reader to [11] and [15].

4. Conclusions. In this paper we have studied the numerical behavior of sev-
eral minimum residual methods mathematically equivalent to GMRES. Two general
formulations have been analyzed: the generalized simpler approach that does not re-
quire an upper Hessenberg factorization and the generalized update approach which
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Fig. 3.1. The test problem FS1836 solved by Simpler GMRES and ORTHODIR: Normwise
backward error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line: Simpler GMRES; thin solid line: OR-
THODIR), relative true residual norm ‖b − Axn‖/‖b‖ (thick dashed line: Simpler GMRES; thin
dashed line: ORTHODIR), relative norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative
norms of the error ‖x − xn‖/‖x‖ (thick dash-dotted line: Simpler GMRES; thin dash-dotted line:
ORTHODIR).
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Fig. 3.2. The test problem FS1836 solved by RB-SGMRES and GCR: Normwise backward
error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line: RB-SGMRES; thin solid line: GCR), relative true
residual norm ‖b − Axn‖/‖b‖ (thick dashed line: RB-SGMRES; thin dashed line: GCR), relative
norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative norms of the error ‖x−xn‖/‖x‖ (thick
dash-dotted line: RB-SGMRES; thin dash-dotted line: GCR).
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Fig. 3.3. The test problem FS1836, condition numbers multiplied by unit roundoff u: uκ(A)
(dash-dotted line); uκ(Zn) (thick solid line) and uκ(Un) (thick dashed line) for Zn = [ r0

‖r0‖
, Vn−1];

uκ(Zn) (thin solid line) and uκ(Un) (thin dashed line) for Zn = R̃n.
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Fig. 3.4. The test problem STEAM1 solved by Simpler GMRES and ORTHODIR: Normwise
backward error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line: Simpler GMRES; thin solid line: OR-
THODIR), relative true residual norm ‖b − Axn‖/‖b‖ (thick dashed line: Simpler GMRES; thin
dashed line: ORTHODIR), relative norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative
norms of the error ‖x − xn‖/‖x‖ (thick dash-dotted line: Simpler GMRES; thin dash-dotted line:
ORTHODIR).
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Fig. 3.5. The test problem STEAM1 solved by RB-SGMRES and GCR: Normwise backward
error ‖b − Axn‖/(‖A‖‖xn‖) (thick solid line: RB-SGMRES; thin solid line: GCR), relative true
residual norm ‖b − Axn‖/‖b‖ (thick dashed line: RB-SGMRES; thin dashed line: GCR), relative
norm of the updated residual ‖rn‖/‖b‖ (dotted line), relative norms of the error ‖x−xn‖/‖x‖ (thick
dash-dotted line: RB-SGMRES; thin dash-dotted line: GCR).
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Fig. 3.6. The test problem STEAM1, condition numbers multiplied by unit roundoff u: uκ(A)
(dash-dotted line); uκ(Zn) (thick solid line) and uκ(Un) (thick dashed line) for Zn = [ r0

‖r0‖
, Vn−1];

uκ(Zn) (thin solid line) and uκ(Un) (thin dashed line) for Zn = R̃n.
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is based on generating a sequence of appropriately computed direction vectors. It has
been shown that for the generalized simpler approach our analysis leads to an upper
bound for the backward error proportional to the roundoff unit, whereas for the gen-
eralized update approach the same quantity can be bounded by a term proportional
to the condition number of A. Although our analysis suggests that the difference
between both may be up to the order of κ(A), in practice they behave very similarly,
and it is very difficult to find a concrete example with a significant difference in the
limiting accuracy measured by the normwise backward error of the approximate so-
lutions xn. Our first test problem displayed in Figure 2.1 is such a rare example.
Moreover, when looking at the errors, we note that both approaches lead essentially
to the same accuracy of xn.

We have indicated that the choice of the basis Zn is the most important issue for
the stability of the considered schemes. Our analysis supports the well-known fact
that, even when implemented with the best possible orthogonalization techniques,
Simpler GMRES and ORTHODIR are inherently less stable due to the choice Zn =
[ r0
‖r0‖ , Vn−1] for the basis. The situation becomes significantly better when we use

the residual basis Zn = R̃n. This choice leads to the popular GCR (ORTHOMIN,
GMRESR) method, which is widely used in applications. Assuming some reasonable
residual decrease (which happens almost always in finite precision arithmetic), we
have shown that this scheme is quite efficient, and we have proposed a conditionally
backward stable variant RB-SGMRES. Our theoretical results in a sense justify the
use of the GCR method in practical computations. In this paper we studied only the
unpreconditioned implementations. The implications for the preconditioned GCR
scheme will be discussed elsewhere.
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ANALYSIS OF THE TRUNCATED SPIKE ALGORITHM∗

CARL CHRISTIAN KJELGAARD MIKKELSEN† AND MURAT MANGUOGLU†

Abstract. The truncated SPIKE algorithm is a parallel solver for linear systems which are
banded and strictly diagonally dominant by rows. There are machines for which the current imple-
mentation of the algorithm is faster and scales better than the corresponding solver in ScaLAPACK
(PDDBTRF/PDDBTRS). In this paper we prove that the SPIKE matrix is strictly diagonally dom-
inant by rows with a degree no less than the original matrix. We establish tight upper bounds on
the decay rate of the spikes as well as the truncation error. We analyze the error of the method and
present the results of some numerical experiments which show that the accuracy of the truncated
SPIKE algorithm is comparable to LAPACK and ScaLAPACK.
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1. Introduction. A matrix A = [aij ] is diagonally dominant by rows if

(1.1)
∑
i�=j

|aij | ≤ |aii|

for all i. If the inequality is sharp, then A is strictly diagonally dominant by rows.
The truncated SPIKE algorithm is a parallel solver for linear systems which

are banded and strictly diagonally dominant by rows. Polizzi and Sameh demon-
strated [10], [11] that there are parallel machines for which the algorithm is faster
and scales better than the algorithm which is implemented in ScaLAPACK (PDDB-
TRF/PDDBTRS) [1]. We present the algorithm in section 2 and prove certain key
properties of the truncated SPIKE algorithm in section 3. We analyze the error in
section 4. We present the results of some experiments which supplement our theo-
retical analysis, and we compare the accuracy of the truncated SPIKE algorithm and
ScaLAPACK in section 5.

The SPIKE algorithms are designed to solve banded systems on a parallel ma-
chine. The basic idea was introduced by Sameh and Kuck [12] who considered the
tridiagonal case and Chen, Kuck, and Sameh [2] who studied the triangular case.
Lawrie and Sameh [8] applied the algorithm to the symmetric positive definite sys-
tems, while Dongarra and Sameh [4] considered the strictly diagonally dominant case.
Variations of the SPIKE algorithms for tridiagonal systems were introduced by Sun,
Zhang, and Ni [13], who also analyzed the truncation error for tridiagonal systems
which are evenly diagonally dominant. The truncation error for tridiagonal Toeplitz
systems, which are also strictly diagonally dominant, as well as symmetric or skew
symmetric was considered by Sun [14]. Another variation of the SPIKE algorithm for
strictly diagonally dominant systems was studied by Larriba-Pey, Jorba, and Navarro
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[7]. Polizzi and Sameh have extended the SPIKE algorithms to the general banded
case, and they developed the SPIKE package.

If A is nonsingular and diagonally dominant by rows, then the diagonal entries
are nonzero and the dominance factor [5] ε is defined as follows:

(1.2) ε = max
i

{∑
i�=j |aij |
|aii|

}
.

If ε > 0, then the degree of diagonal dominance d is given by

(1.3) d = ε−1.

The degree of diagonal dominance is central to the analysis of the truncated SPIKE
algorithm.

2. The algorithm. Consider the nonsingular linear system

Ax = f,

where A is a n by n banded matrix which is strictly diagonally dominant by rows.
We assume that the number of superdiagonals k is equal to the number of subdi-

agonals and that the matrix is narrow banded, i.e., k � n. Let p denote the number of
processors. We assume for simplicity that p divides n. Let the system be partitioned
into the block diagonal form shown below

(2.1) Ax =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

A1 B1

C2 A2
. . .

. . . . . . . . .
. . . . . . Bp−1

Cp Ap

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
x1

x2

...

...
xp

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
f1

f2

...

...
fp

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where Ai, i = 1, 2, . . . , p is a banded matrix of order μ = n/p and bandwidth 2k + 1
(just like A),

Bi =
[

0 0
Bi 0

]
, and Ci+1 =

[
0 Ci+1

0 0

]
, i = 1, 2, . . . p − 1,

in which Bi and Ci are lower and upper triangular matrices, respectively, each of
order k. Let D denote the main block diagonal D, i.e.,

D = diag{A1, A2, . . . , Ap}.

The matrix D is nonsingular because A is strictly diagonally dominant. If we premul-
tiply both sides of (2.1) by D−1, we obtain a system Sx = g of the form

(2.2)

⎡⎢⎢⎢⎢⎢⎣
Iμ V 1

W 2 Iμ V 2

. . . . . . . . .
W p−1 Iμ V p−1

W p Iμ

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1

x2

...
xp−1

xp

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
g1

g2

...
gp−1

gp

⎤⎥⎥⎥⎥⎥⎦ ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1502 C. C. KJELGAARD MIKKELSEN AND M. MANGUOGLU

where

V i =
[
Vi 0

]
, and W i =

[
0 Wi

]
,

in which Vi and Wi are matrices with k columns given by

Vi = A−1
i

[
0
Bi

]
, and Wi = A−1

i

[
Ci

0

]
,

and will in general be full. Let the tall and narrow matrices Vi and Wi be partitioned,
in turn, as follows

Vi =

⎡⎢⎣ V
(t)
i

V
(m)
i

V
(b)
i

⎤⎥⎦ , and Wi =

⎡⎢⎣ W
(t)
i

W
(m)
i

W
(b)
i

⎤⎥⎦ ,

where V
(t)
i , V

(b)
i , W

(t)
i , and W

(b)
i ∈ R

k×k. The superscripts t, m, and b are abbrevia-
tions of the words top, middle, and bottom, respectively. Let xi and gi be partitioned
conformally, i.e.,

xi =

⎡⎢⎣ x
(t)
i

x
(m)
i

x
(b)
i

⎤⎥⎦ , and gi =

⎡⎢⎣ g
(t)
i

g
(m)
i

g
(b)
i

⎤⎥⎦ .

As an illustration we show the system (2.2) for p = 3, where ν = μ − 2k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik V
(t)
1

Iν V
(m)
1

Ik V
(b)
1

W
(t)
2 Ik V

(t)
2

W
(m)
2 Iν V

(m)
2

W
(b)
2 Ik V

(b)
2

W
(t)
3 Ik

W
(t)
3 Iν

W
(t)
3 Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x
(t)
1

x
(m)
1

x
(b)
1

x
(t)
2

x
(m)
2

x
(b)
2

x
(t)
3

x
(m)
3

x
(b)
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g
(t)
1

g
(m)
1

g
(b)
1

g
(t)
2

g
(m)
2

g
(b)
2

g
(t)
3

g
(m)
3

g
(b)
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

It is from these narrow block columns or spikes extending from the main diagonal
that the algorithm has derived its name. We will frequently refer to the Vi as the
superdiagonal spikes and to the Wi as the subdiagonal spikes, and call the matrix S
the SPIKE matrix.

Observe that the union of the k equations above and the k equations below the
p − 1 partition lines forms an independent subsystem of order 2k(p − 1). We shall
refer to this system as the “reduced” system and write Rxr = gr. It has the form

(2.3)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E1 F1

G2 E2
. . .

. . . . . . . . .
. . . . . . Fp−2

Gp−2 Ep−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣
xr,1

xr,2

...
xr,p−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
gr,1

gr,2

...
gr,p−1

⎤⎥⎥⎥⎦ ,
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where

Ei =

[
Ik V

(b)
i

W
(t)
i+1 Ik

]
, Fi =

[
0 0
0 V

(t)
i+1

]
, and Gi =

[
W

(b)
i 0
0 0

]
,

and

xr,i =

[
x

(b)
i

x
(t)
i+1

]
, and gr,i =

[
g
(b)
i

g
(t)
i+1

]
.

The subscript r is an abbreviation of the word “reduced”. Dongarra and Sameh [4]
noted that the reduced system is strictly diagonally dominant by rows and solved
the reduced system using a parallel implementation of the Jacobi iteration. In The-
orem 3.3 we show that the reduced system is strictly diagonally dominant by rows
with a degree no less than the original matrix.

Once the reduced system has been solved

zi = gi − Wix
(b)
i−1 − Vix

(t)
i+1,

where x0, xp+1, W1, and Vp are undefined and should be taken to zero in this equation.
If the calculations are carried out using exact arithmetic, then z is the solution of
Ax = f .

In general the reduced system is block tridiagonal. However, Polizzi and Sameh
[10] noted that the off diagonal blocks are often negligible and can be dropped, yielding
a truncated reduced system Txtr = gr, which is block diagonal,

(2.4)

⎡⎢⎢⎢⎢⎢⎢⎣
E1

E2

. . .
. . .

Ep−1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

xtr,1

xtr,2

...
xtr,p−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
gr,1

gr,2

...
gr,p−1

⎤⎥⎥⎥⎦ .

The subscript tr is an abbreviation of the words “truncated” and “reduced”. In
Theorem 3.8 we establish a tight upper bound on the size of the off diagonal blocks in
terms of the degree of diagonal dominance of the original matrix and the size of the
partitions. Polizzi and Sameh [10] showed that it is possible to compute the truncated
reduced system without assembling the entire SPIKE system. Let A denote one of
the diagonal blocks and consider the problem of computing the bottom V(b) of the
corresponding spike V , given by

(2.5) AV =
[
0
B

]
,

where B is a k by k dense matrix. It is not important here that B is lower trian-
gular. We can exploit the remaining structure as follows. Let A = LU be the LU
factorization of A. Partition L and Y conformally with the right-hand side,[

L11 0
L21 L22

] [
Y1

Y2

]
=
[
0
B

]
,
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where L22 is a k by k lower unit triangular matrix. Since L11Y1 = 0, we have Y1 = 0,
and the problem reduces to solving L22Y2 = B. Then we solve UV = Y . Partition U
and V conformally with Y and the right-hand side,[

U11 U12

0 U22

] [
V1

V2

]
=
[
Y1

Y2

]
.

Since U is upper triangular we can compute V(b) = V2 = U−1
22 Y2 without computing

V1. Similarly if Ai = U ′
iL

′
i is a UL factorization of Ai, then it is possible to extract

the top of the subdiagonal spikes without computing the entire spike.
Polizzi and Sameh [10] found experimentally that it is faster to extract the trun-

cated reduced system using the LU/UL combinations than it is to compute the entire
SPIKE matrix using the LU factorizations only. This is true on machines where arith-
metic operations require much less time than memory references. The UL/LU strat-
egy has greater data locality: computing the spikes is a BLAS2 operation, whereas
computing the LU/UL factorizations is a BLAS3 operation.

The original equation is equivalent to

(2.6) Aixi = fi − Cix
(b)
i−1 − Bix

(t)
i+1, i = 1, 2, . . . p,

where x
(b)
0 , x

(t)
p+1, C1, and Bp are undefined and should be taken to zero in this

equation.
These observations led to the truncated SPIKE algorithm by Polizzi and Sameh

[10]. The algorithm consist of four stages.
Stage 1. Processor i computes the LU/UL factorizations

Ai = LiUi and Ai = U ′
iL

′
i, i = 1, 2, . . . p.

Stage 2. Processor i solves

Aigi = fi, i = 1, 2, . . . p,

using the LU factorization. Processor i computes V
(b)
i using (Li, Ui), i = 1, 2, . . . p−1.

Processor i computes W
(t)
i using (U ′

i , L
′
i) , i = 2, 3 . . . p.

Stage 3. Processor i + 1 sends W
(t)
i+1 and g

(t)
i+1 to processor i, i = 1, 2, . . . p − 1.

Processor i solves one block of the truncated reduced system, specifically[
Ik V

(b)
i

W
(t)
i+1 Ik

][
x

(b)
i

x
(t)
i+1

]
=

[
g
(b)
i

g
(t)
i+1

]
, i = 1, 2, . . . p − 1,

using Gaussian elimination without pivoting.
Stage 4. Processor i sends x

(b)
i to processor i + 1, for i = 1, 2, . . . , p − 1, and

processor i sends x
(t)
i to processor i − 1 for i = 2, 3, . . . , p. Then processor i solves

Aiyi = fi − Cix
(b)
i−1 − Bix

(t)
i+1, i = 1, 2, . . . , p

using the LU factorization, where x
(b)
0 , x

(t)
p+1, C1, and Bp are undefined and should

be taken to zero in this equation. The vector y is an approximation of the solution to
Ax = f .
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3. The matrices S, R, and T . In this section we prove that the matrices S, R,
and T in (2.2), (2.3), and (2.4) are strictly diagonally dominant by rows with degree
no less than A, and we establish an upper bound on their condition number. The
degree of diagonal dominance is defined by (1.3). We bound the truncation error, i.e.,
the difference between R and T , and show that all our bounds are tight.

The general estimates for the decay rates of the inverse of a banded matrix dis-
covered by Demko, Moss, and Smith [3] are not suitable in our situation because it
is necessary to exploit the relationship between the matrices and the right-hand sides
which determine the spikes, in order to obtain estimates which are tight.

Lemma 3.1. Let n ≤ m and let A be any n by m matrix which is strictly
diagonally dominant by rows with degree d > 1. Let A = LU be the LU factorization
which is obtained by applying Gaussian elimination without pivoting to A. Then U is
strictly diagonally dominant by rows with degree no less than d.

Proof. Gaussian elimination produces a chain of matrices A(j), where the first
j − 1 columns of A(j) are lower triangular, A = A(1) and A(n) = U . Due to the
recursive nature of Gaussian elimination, it suffices to consider the transition from
A = A(1) to B = A(2). Let B = [bij ]. We must show the following equalities

|bkk| ≥ d
∑

j �∈{1,k}
|bk,j |, k = 2, 3, . . . , m.

Now, since d ≥ 1 and |a11| ≥ d
∑m

j=2 |a1j | we have

|akk| ≥ d
∑
j �=k

|akj | ≥ |ak1| + d
∑

j �∈{1,k}
|akj |

≥ |ak1|
d
∑m

j=2 |a1j |
|a11|

+ d
∑

j �∈{1,k}
|akj |

≥ |ak1|
|a1k|
|a11|

+ d
∑

j �∈{1,k}

(
|akj | +

|ak1|
|a11|

|a1j |
)

.

Now, since

bij = aij −
ai1

a11
a1j , i = 2, 3, . . . , n, j = 2, 3, . . . , m,

the previous inequality implies

|bkk| ≥ |akk| −
|ak1|
|a11|

|a1k| ≥ d
∑

j �∈{1,k}

(
|akj | +

|ak1|
|a11|

|a1j |
)

≥ d
∑

j �∈{1,k}
|bkj |.

Corollary 3.2. Let A be an n by n matrix, and let F be an n by m matrix. If
the matrix

[
A, F

]
is strictly diagonally dominant by rows with degree d > 1, then

the matrix
[
I, A−1F

]
is strictly diagonally dominant by rows with degree no less

than d.
Proof. We use Gaussian elimination without pivoting to reduce the n by n + m

matrix
[
A, F

]
to upper triangular form, U = [uij ]. By Lemma 3.1, U is diagonally

dominant by rows with degree no less than d, and using back substitution we have a
formula for the entries gij of the n by m matrix G = A−1F , namely,

gn−t,j =
1

un−t,n−t

(
un−t,n+j −

n∑
s=n−t+1

un−t,sgs,j

)
,
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for j = 1, 2, . . .m and t = 0, 1, 2 . . . n− 1. Let ε = d−1 and let Ω ⊆ {0, 1, . . . n − 1} be
given by

t ∈ Ω ⇔
m∑

j=1

|gn−t,j| ≤ ε.

We will prove that Ω = {0, 1, . . . n − 1}. First, 0 ∈ Ω because U is strictly diagonally
dominant by rows with degree no less than d, and if {0, 1, 2, . . . t− 1} ⊂ Ω with t < n,
then

m∑
j=1

|gn−t,j| ≤
1

|un−t,n−t|

m∑
j=1

(
|un−t,n+j| +

n∑
s=n−t+1

|un−t,s||gs,j |
)

=
1

|un−t,n−t|

⎛⎝ m∑
j=1

|un−t,n+j | +
n∑

s=n−t+1

|un−t,s|
m∑

j=1

|gs,j|

⎞⎠
≤ 1

|un−t,n−t|

⎛⎝ m∑
j=1

|un−t,n+j | +
n∑

s=n−t+1

|un−t,s|ε

⎞⎠ ≤ ε,

which implies t ∈ Ω. Therefore Ω = {0, 1, 2 . . . n− 1} and the proof is complete.
Theorem 3.3. Let A be strictly diagonally dominant by rows with degree d > 1.

Then the matrices S, R, and T are strictly diagonally dominant by rows with degree
no less than d, specifically

d ≤ d(S) ≤ d(R) ≤ d(T ),

with equality possible. The condition numbers share a common bound, namely

max{ κ∞(S), κ∞(R), κ∞(T )} ≤ d + 1
d − 1

,

with the possibility of

κ∞(S) = κ∞(R) = κ∞(T ) =
d + 1
d − 1

.

Proof. If S is strictly diagonally dominant by rows, then it is clear that T and
R are strictly diagonally dominant by rows and d(S) ≤ d(R) ≤ d(T ). By applying
Lemma 3.2 to the matrices

[
Ai, Fi

]
where

F1 =
[

0
B1

]
, Fi =

[[
0
Bi

]
,

[
Ci

0

]]
, i = 2, . . . p − 1, and Fp =

[
Cp

0

]
,

we see that S is strictly diagonally dominant by rows with degree no less than d. Since
Sii = 1, we have ‖S− I‖∞ ≤ ε < 1 which allows us to treat S as a small perturbation
of the identity matrix and estimate

‖S−1‖∞ ≤ 1
1 − ε

, and κ∞(S) ≤ 1 + ε

1 − ε
=

d + 1
d − 1

,

and similarly for R and T .
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It remains to be seen that our bounds are tight. To this end we consider a special
case of the original problem, (2.1), where the diagonal blocks satisfy Ai = Iμ and the
off-diagonal blocks are given by

Bi =
[

0 0
εJk 0

]
, and Ci+1 =

[
0 εJk

0 0

]
, i = 1, 2, . . . p − 1,

where Jk is the k by k antidiagonal identity matrix, and ε ∈ (0, 1). The matrix
A is diagonally dominant by rows with degree d = ε−1. The upper and the lower
bandwidths are equal to k. The main block diagonal is equal to the identity matrix,
which implies A = S. The reduced system is block diagonal which implies T = R. It
follows that

d(T ) = d(R) = d(S) = d.

Computing S−1 reduces to inverting the 2 by 2 matrix [ 1 ε
ε 1 ]. Direct computation

establishes that

κ∞(T ) = κ∞(R) = κ∞(S) =
1 + ε

1 − ε
=

d + 1
d − 1

.

We now study the truncation error, i.e., ‖R − T ‖∞. Let A denote one of the
diagonal blocks of A, and let V be the corresponding superdiagonal spike given by
(2.5). We are especially interested in the size of the elements at the top of the spike,
i.e., the submatrix V(t), which is given by

V(t) = V(1 : k, 1 : k).

There is no loss of generality in limiting the analysis to the first diagonal block,
rather there is a slight notational advantage, because the numbering of the elements
of A and A coincide. We will use μ to denote the size of the first diagonal block.

We begin by estimating the size of the elements located in the bottom of V ; i.e.,
the submatrix V(b) given by

V(b) = V(μ − k + 1 : μ, 1 : k).

Lemma 3.4. Let A be strictly diagonally dominant by rows with degree d > 1.
Let V be a superdiagonal spike. Then the submatrix V(b) satisfies

‖V(b)‖∞ ≤ ε,

where ε = d−1.
Proof. Reduce the first μ by n block row to upper triangular form U . Since

Gaussian elimination without pivoting preserves the upper bandwidth and does not
decrease the degree of diagonal dominance, we have the following set of inequalities

(3.1)
k∑

j=1

|uμ−t,μ−t+j | ≤ ε|uμ−t,μ−t|, t = 0, 1, . . . k − 1.

Our goal is to show that ‖V(b)‖∞ ≤ ε or equivalently

(3.2)
k∑

j=1

|vμ−t,j | ≤ ε, t = 0, 1, . . . k − 1.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1508 C. C. KJELGAARD MIKKELSEN AND M. MANGUOGLU

To this end we define the set Ω ⊆ {0, 1, 2, . . . , k − 1} by

t ∈ Ω ⇔
k∑

j=1

|vn−t,j | ≤ ε.

We claim that Ω = {0, 1, 2, . . . , k − 1}. Clearly 0 ∈ Ω, because

k∑
j=1

|uμ,μ+j | ≤ ε|uμ,μ|, and vμ,j =
uμ,μ+j

uμ,μ
, j = 1, 2, . . . k.

Now suppose {0, 1, 2, . . . t− 1} ⊂ Ω with t < k. We wish to show that t ∈ Ω. By back
substitution we find that

vμ−t,j =
1

uμ−t,μ−t

(
uμ−t,μ+j −

t∑
s=1

uμ−t,μ−t+svμ−t+s,j

)
, j = 1, 2, . . . , (k − t),

and

vμ−t,j = − 1
uμ−t,μ−t

t∑
s=1

uμ−t,μ−t+svμ−t+s,j , j = (k − t) + 1, . . . , k.

It follows that

k∑
j=1

|vμ−t,j | ≤
1

|uμ−t,μ−t|

⎛⎝k−t∑
j=1

|uμ−t,μ+j | +
k∑

j=1

t∑
s=1

|uμ−t,μ−t+svμ−t+s,j |

⎞⎠
=

1
|uμ−t,μ−t|

⎛⎝k−t∑
j=1

|uμ−t,μ+j | +
t∑

s=1

|uμ−t,μ−t+s|
k∑

j=1

|vμ−t+s,j |

⎞⎠
≤ 1

|uμ−t,μ−t|

⎛⎝k−t∑
j=1

|uμ−t,μ+j | + ε

t∑
s=1

|uμ−t,μ−t+s|

⎞⎠
≤ 1

|uμ−t,μ−t|

k∑
j=1

|uμ−t,μ−t+j | ≤ ε,

which implies t ∈ Ω. It follows that Ω = {0, 1, 2, . . . k − 1} and ‖V(b)‖∞ ≤ ε.
We continue with the following lemma which relates the size of the elements in

a specific row of V to the infinity norm of the k by k submatrix which lies directly
below the row.

Lemma 3.5. Let μ denote the dimension of the diagonal block A and let i ≥ μ−k.
Then

k∑
j=1

|vi,j | ≤ ε‖V(i + 1 : i + k, 1 : k)‖∞.

Proof. We have

V = A−1

[
0
B

]
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for the appropriate k by k matrix B. We use Gaussian elimination without pivoting
to reduce the matrix [

A,

[
0
B

]]
,

to upper triangular form U = [uij ]. By Lemma 3.2 U is strictly diagonally dominant
by rows with degree no less than d. Since the original matrix A was banded and
no pivoting was applied, it follows that uij = 0 for all i and j such that j > μ and
i ≥ μ − k. It follows by back substitution that

vi,j = − 1
ui,i

i+k∑
s=i+1

ui,svs,j ,

which implies

k∑
j=1

|vi,j | ≤
1

|ui,i|

i+k∑
s=i+1

|ui,s|
k∑

j=1

|vs,j |.

By definition

max
s=i+1,...i+k

k∑
j=1

|vs,j | = ‖V(i + 1 : i + k, 1 : k)‖∞,

and since U is strictly diagonally dominant by rows with degree no less than d, we
have

1
|ui,i|

i+k∑
s=i+1

|ui,s| ≤ ε,

which completes the proof.
The following corollary is an immediate consequence.
Corollary 3.6. Let V ′ and V ′′ be two k by k submatrices of the superdiagonal

spike V, such that V ′ lies directly on top of V ′′. Then

‖V ′‖∞ ≤ ε‖V ′′‖∞.

This corollary establishes a chain of inequalities leading from the bottom to the
top of the spike which together with Lemma 3.4 implies the following theorem.

Theorem 3.7. Let d denote the degree of diagonal dominance of A, let μ denote
the dimension of one of the diagonal blocks, and q = 
μ/k� is the largest integer less
than or equal to μ/k. The top of the corresponding superdiagonal spike V satisfies the
inequality

‖V(t)‖∞ ≤ εq.

Is this estimate for the decay rate of the spikes tight or not? Let ε ∈ (0, 1) and
consider the upper triangular matrix A given by aii = 1, aij = ε for i = j − k,
and aij = 0 in all other cases. Now consider a partition of a certain size μ. Write
μ = qk + r, where q = 
μ/k�, and the remainder r satisfies 0 ≤ r < k. If r > 0, then
by back substitution we find that the corresponding spike is given by

V =
[
VT

q+1 VT
q . . . VT

1

]T
,
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where

Vj = (−1)j−1εjIk for j = 1, 2, . . . , q,

and Vq+1 = (−1)qεq+1Er, where Ik is the k by k identity matrix and Er consists of
the last r rows of Ik. If r = 0, then the term Vq+1 does not appear. Regardless of the
value of the remainder r, we have ∥∥V(t)

∥∥
∞ = εq.

In short, if we limit ourselves to matrices A which are strictly diagonally dominant by
rows with degree d and upper bandwidth k, then the estimate given in Theorem 3.7
is tight.

The following theorem is an immediate consequence of Theorem 3.7.
Theorem 3.8. Let A be a n by n narrow banded matrix with upper and lower

bandwidth k, and strictly diagonally dominant by rows with degree d. Then the trun-
cation error satisfies

‖R − T ‖∞ ≤ max
i=1,...p

d−qi ,

where qi = 
μi/k�, and μi is the size of the ith partition.
A better bound exists in the special case in which A is a tridiagonal, evenly

diagonally dominant matrix [13], or when A is a tridiagonal Toeplitz matrix, which
is also strictly diagonally dominant, as well as symmetric or skew symmetric [14].

Now, consider for the sake of simplicity, the case when the partitions have the
same size μ. Then Theorem 3.8 reduces to the statement

‖R − T ‖∞ ≤ d−q,

where q = 
μ/k�. Let ST denote the matrix obtained by eliminating the tips of the
spikes from the spike matrix S. Then the reduced system matrix for ST is equal to
T . The truncation error effectively replaces A with the matrix AT = DST , for which
we have

(3.3) ‖A − AT ‖∞ ≤ ‖D‖∞‖S − ST ‖∞ ≤ ‖A‖∞‖R − T ‖∞ ≤ d−q‖A‖∞,

or equivalently AT = A + ΔA, where ‖ΔA‖∞ ≤ d−q‖A‖∞. We see that the effect of
the truncation is to introduce a normwise relative backward error which is bounded
by d−q.

We have already seen that the estimate of Theorem 3.8 is tight, but which matrices
exhibit the slowest possible decay rate? We can answer this question for tridiagonal
matrices.

Theorem 3.9. Let {(ai, bi, ci)}n
i=1 be a finite sequence, such that ai �= 0, and

max
i=1,...,n

|bi| + |ci|
|ai|

= ε < 1.

If the vector x = (x1, x2, . . . , xn)T given by⎡⎢⎢⎢⎣
x1

x2

...
xn

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
a1 b1

c2
. . . . . .
. . . bn−1

cn an

⎤⎥⎥⎥⎥⎦
−1 ⎡⎢⎢⎢⎣

0
...
0
bn

⎤⎥⎥⎥⎦
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exhibits the smallest possible decay rate, i.e., if |x1| = εn, ε = d−1, then ci = 0, for
i = 1, 2, 3, . . . , n and |bi| = ε|ai| for i = 1, 2, . . . n.

Proof. Mikkelsen [9] gives a direct proof.

4. Error analysis. In this section we do an error analysis of the truncated
SPIKE algorithm. We begin by deriving a few results on Gaussian elimination for
systems which are strictly diagonally dominant by rows with degree d > 1.

We assume that the original problem has been scaled by rows such that aii = 1.
Such a scaling preserves the degree of diagonal dominance, and allows us to estimate

‖Ai‖∞ ≤ 1 + d−1, ‖A−1
i ‖∞ ≤ 1

1 − d−1
, and κ∞(Ai) ≤

d + 1
d − 1

.

Let u denote the unit roundoff error on the machine, and following Higham [6], we
define

(4.1) γj =
ju

1 − ju
,

when ju < 1. If A is any matrix, then B = |A| is the matrix given by bij = |aij |. If
A, B are matrices of the same dimension, then we write A ≤ B, if aij ≤ bij for all i
and j.

If A is a banded matrix with upper and lower bandwidth k, which is diagonally
dominant by rows, and if Gaussian elimination runs to completion, then the computed
solution x̂ to Ax = f satisfies

(A + ΔA)x̂ = f, |ΔA| ≤ γ3k+2|L̂||Û |,

where L̂ and Û are the computed LU factors.
Now, how large is ‖ΔA‖∞? If A is any n by n matrix and if A = LU is the exact

LU factorization, then

|L||U | = |AU−1||U | ≤ |A||U−1||U |.

If U is diagonally dominant by rows, then by Lemma 8.8 [6]

(4.2) ‖|U−1||U |‖∞ ≤ (2n − 1).

This estimate is tight. However, if A is strictly diagonally dominant by rows with
degree d > 1, then we may be able to improve upon it. By Theorem 3.1 U is strictly
diagonally dominant by rows with degree no less than d. Write U = DV , where D is
the main diagonal of U , then

|U−1||U | = |V −1D−1||DV | = |V −1||V |,

which allows us to estimate

(4.3) ‖|U−1||U |‖∞ ≤ d + 1
d − 1

,

because ‖I − V ‖∞ ≤ d−1 < 1.
It is important to realize that neither (4.2) nor (4.3) need apply to the computed

LU factorization, because, while L̂Û is the exact LU factorization of the matrix A +
ΔA, this matrix need not be diagonally dominant! However, since L̂ → L, and Û → U
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as u → 0, then A+ΔA will be strictly diagonally dominant by rows with degree close
to d, for u sufficiently small, and then we may estimate

‖ΔA‖∞ ≤ γ3k+2‖|L̂||Û |‖∞ � γ3k+2
d + 1
d − 1

‖A‖∞.

In the following we assume that we may estimate

‖ΔA‖∞ ≤ γ3k+2
d + 1
d − 1

‖A‖∞.

Now, what can be said about the solution X̂ to the equation AX = F where X
and F have m columns? We have

(A + ΔAj)x̂j = fj, |ΔAj | ≤ γ3k+2|L̂||Û |, j = 1, 2, . . .m,

where the perturbations ΔAj depend on j, but share a common bound which is
independent of j. Now, if the unit roundoff error is sufficiently small, specifically if

(4.4) α = γ3k+2

(
d + 1
d − 1

)2

< 1,

then I + A−1ΔAj and I + ΔAjA
−1 are both invertible and we may write

x̂j =
∞∑

i=0

(
−A−1ΔAj

)i
xj = A−1

∞∑
i=0

(
−(ΔAj)A−1

)i
fj ,

from which it follows immediately that

|x̂j − xj | ≤ E1|xj |, E1 =
∞∑

i=1

(
γ3k+2|A−1||L̂||Û |

)i

,

|Ax̂j − fj | ≤ E2|fj |, E2 =
∞∑

i=1

(
γ3k+2|L̂||Û ||A−1|

)i

,

which implies

|X̂ − X | ≤ E1|X |, and |AX̂ − F | ≤ E2|F |.

The two operators, E1 and E2, share a common bound, namely,

‖E1‖∞ ≤ α

1 − α
, and ‖E2‖∞ ≤ α

1 − α
,

where α is defined by (4.4). It follows that

(4.5) ‖X̂ − X‖∞ ≤ α

1 − α
‖X‖∞, and ‖AX̂ − F‖∞ ≤ α

1 − α
‖F‖∞.

Stage 1 Each matrix Ai has dimension μ and is strictly diagonally dominant by
rows. The computed LU factorization satisfies

Ai + ΔAi = L̂iÛi, |ΔAi| ≤ γk+1

∣∣L̂i

∣∣∣∣Ûi

∣∣,
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where ∥∥∣∣L̂i

∣∣∣∣Ûi

∣∣∥∥
∞ � d + 1

d − 1
‖Ai‖∞,

when the unit roundoff error u is sufficiently small. We have the same type of estimate
for the computed UL factorizations.

Stage 2 In the truncated SPIKE algorithm, we do not compute the entire SPIKE
matrix but stop substituting as soon as the truncated reduced system matrix has been
computed. However, in order to estimate the error, it is convenient to consider the
computation of the entire SPIKE matrix S.

By applying (4.5) repeatedly to the individual block rows we find

‖Ŝ − S‖∞ ≤ 2α

1 − α
‖S − I‖∞,

∥∥DŜ − A
∥∥
∞ ≤ 2α

1 − α
‖A − D‖∞.

The extra factor of 2 is introduced because we have to treat the superdiagonal and
the subdiagonal spikes separately.

Similarly we find for the computation of the modified right-hand side that

‖ĝ − g‖∞ ≤ α

1 − α
‖g‖∞, and

∥∥Dĝ − f
∥∥
∞ ≤ α

1 − α
‖f‖∞.

It is clear that since T̂ − T is a submatrix of Ŝ − S we have∥∥T̂ − T
∥∥
∞ ≤

∥∥Ŝ − S
∥∥
∞ ≤ 2α

1 − α
‖S − I‖∞ ≤ 2α

1 − α
d−1.

Stage 3 By Theorem 3.8 the truncated reduced system is a good approximation
of the reduced system if d is not too close to 1 and if the partitions are not too small.
By Theorem 3.3 the truncated reduced system is strictly diagonally dominant by rows
with a degree no less than the original system. It consists of p−1 independent systems
which are of dimension 2k. By Theorem 9.3 [6] it follows that if Gaussian elimination
runs to completion, then the computed solution x̂tr of the computed truncated reduced
system T̂ xtr = ĝr satisfies(

T̂ + ΔT̂
)
x̂tr = ĝr,

∣∣ΔT̂
∣∣ ≤ γ6k

∣∣L̂t

∣∣∣∣Ût

∣∣,
where L̂tÛt is the computed LU factorization of the computed truncated reduced
system matrix T̂ . It follows that

‖x̂tr − xtr‖∞ ≤ β

1 − β
‖xtr‖∞ and

∥∥T̂ x̂tr − ĝr

∥∥ ≤ β

1 − β
‖ĝr‖∞,

provided the unit round off error is so small that

β = γ6k

(
d + 1
d − 1

)2

< 1.

Stage 4 Adjusting the original right-hand side, i.e., computing

hi = fi − Cix
(b)
i−1 − Bix

(t)
i+1,

introduces a small forward error. Notice that Ci affects only the top of fi and Bi

affects only the bottom of fi. The componentwise relative forward error is no more
than

|ĥi − hi| ≤ γk+1

(
|fi| + |Ci||x(b)

i−1| + |Bi||x(t)
i+1|
)

,
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Fig. 5.1. The degree of diagonal dominance for the matrix S(k) as a function of the degree
of diagonal dominance of the original matrices: A(k) (left), and B(k) (right). The matrices are
defined by equation (5.1). The red dotted line is the experimental result and the solid blue line is the
theoretical lower bound.

regardless of the order in which the scalar products are evaluated. This is an over-
estimate which does not take into account that the central components of fi are not
changed at all. The solution of the final set of linear equations is identical to stage
2 and generates a normwise relative residual of at most α

1−α , as well as a normwise
relative forward error of at most α

1−α ; cf. (4.5).
In short, if d is not too close to 1 and if the partitions are not too small, then the

errors at every stage of the algorithm are small. We found that the simplest way to
evaluate the overall error was to calculate the residual and estimate

‖x − y‖∞ ≤ ‖A−1‖∞‖f − Ay‖∞ ≤ 1
1 − d−1

‖f − Ay‖∞,

which turned out to be fairly effective as long as d is not too close to 1.

5. Numerical experiments. We ran experiments to verify the main results of
this paper as well as compare the accuracy of the truncated SPIKE algorithm with
the algorithm implemented in ScaLAPACK.

5.1. The matrices S, R, and T . We wanted to verify that the degree of
diagonal dominance of the SPIKE matrix S was no less than that of the original
matrix A. We selected two sequences of matrices with (n, ku, kl) = (106, 5, 5):

(5.1) A
(k)
ij =

⎧⎪⎨⎪⎩
1 + 0.01k for i = j

−0.1 for 0 < |i − j| ≤ 5,
0 otherwise

B
(k)
ij =

⎧⎪⎨⎪⎩
1 + 0.01k for i = j

0.1 for 0 < |i − j| ≤ 5,
0 otherwise

for k = 1, 2, . . . , 100. We selected p = 8 partitions and a uniform block size of 1.25·105.
We explicitly computed the entire SPIKE matrix S and the excess ‖S − I‖∞ for each
of these 200 matrices, from which we determined the degree of diagonal dominance
as d(S) = 1/‖S − I‖∞. Our results are displayed in Figure 5.1. We found that not
only is the degree of diagonal dominance preserved, i.e., d(S) ≥ d(A), but there can
be a substantial increase in diagonal dominance as well.

We extracted the truncated reduced system matrix T from each of the 200 ma-
trices and computed the condition number in the infinity norm by explicitly inverting
T and calculating ‖T−1‖∞. We then plotted the condition number of T as a function
of the degree of diagonal dominance of A. The results are displayed in Figure 5.2.
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Fig. 5.2. The condition number of the truncated reduced system as a function of the degree of
diagonal dominance of the original system matrices: A(k) (left), and B(k) (right). The matrices
are defined by equation (5.1). The dotted red line is the experimental result and the solid blue line
is the theoretical upper bound.
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Fig. 5.3. The infinity norm of the truncation error as a function of the number of partitions.
Solid blue line is the theoretical upper bound, while red dots are experimental results. The matrix
has d = 1.01 and is tridiagonal.

The theoretical upper bound is given by d+1
d−1 where d = d(A) is the degree of diag-

onal dominance of A. We found that the truncated reduced system was even better
conditioned than expected.

We wanted to investigate the size of the truncation error as a function of the
degree of diagonal dominance of the original matrix A and the number of partitions
p. We selected a tridiagonal Toeplitz matrix with n = 5 · 105 and 1.01 on the main
diagonal and 0.5 on the off-diagonal elements. We choose p = 500j, for j = 1, 2, . . . , 10
and computed the truncation error explicitly. The theoretical upper bound is given by
d−q where d = 1.01 and q = 
5 · 105/p�. The results are displayed in Figure 5.3. The
truncation error is much smaller than the theoretical upper bound and it is smaller
than the unit roundoff error u = 2−53 ≈ 1.1 · 10−16 as long as p ≤ 2000.

5.2. The error analysis. We wanted to verify the bounds presented in section
4. We constructed matrices which were diagonally dominant by rows with different
degrees and ran them through our implementation of the truncated SPIKE algorithm.
The matrices all had (n, kl, ku) = (106, 10, 10) with every diagonal entry equal to 1.
The nonzero, off-diagonal entries where positive and constant for each matrix, such
that the degree of diagonal dominance varied from 1.1 for the first matrix to 2.0 for
the last matrix, with steps of 0.1. The right-hand side side was generated from the
solution which was selected as x = (1, 1, . . . , 1)T . Our results are listed as Table 5.1
and Table 5.2. The bounds were computed as follows:

1. The modified right-hand side,

‖Dĝ − f‖∞ ≤ α

1 − α
‖f‖∞.
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Table 5.1

A comparison of certain measurable quantities and their bounds for 10 different matrices dis-
tinguished by their degree of diagonal dominance.

d α ‖Dĝ − f‖∞
∥∥DŜ − A∥∥∞

measured bound measured bound
1.1 1.57e − 12 9.58e − 16 2.99e− 12 6.94e− 17 2.85e − 12
1.2 4.30e − 13 1.25e − 15 7.88e− 13 5.90e− 17 7.16e − 13
1.3 2.09e − 13 1.57e − 15 3.69e− 13 7.05e− 17 3.21e − 13
1.4 1.28e − 13 1.51e − 15 2.19e− 13 6.94e− 17 1.83e − 13
1.5 8.88e − 14 1.64e − 15 1.48e− 13 5.11e− 17 1.18e − 13
1.6 6.67e − 14 9.78e − 16 1.08e− 13 5.55e− 17 8.34e − 14
1.7 5.29e − 14 1.51e − 15 8.39e− 14 2.93e− 17 6.22e − 14
1.8 4.35e − 14 1.47e − 15 6.77e− 14 4.47e− 17 4.84e − 14
1.9 3.69e − 14 1.75e − 15 5.63e− 14 4.27e− 17 3.88e − 14
2.0 3.20e − 14 1.30e − 15 4.80e− 14 4.16e− 17 3.20e − 14

Table 5.2

A comparison of certain measurable quantities and their bounds for 10 different matrices dis-
tinguished by their degree of diagonal dominance.

d
∥∥T̂ x̂tr − gr

∥∥
∞ ‖Ax̂− f‖∞ ‖x̂− x‖∞

measured bound measured measured bound
1.1 7.77e − 16 1.40e − 13 8.88e− 16 8.88e− 16 9.77e − 15
1.2 7.77e − 16 7.33e − 14 1.33e− 15 1.11e− 15 7.99e − 15
1.3 5.55e − 16 5.11e − 14 1.55e− 15 1.55e− 15 5.44e − 15
1.5 4.44e − 16 3.33e − 14 1.55e− 15 1.55e− 15 4.66e − 15
1.6 7.77e − 16 2.89e − 14 8.88e− 16 8.88e− 16 2.37e − 15
1.7 5.55e − 16 2.57e − 14 1.55e− 15 1.22e− 15 3.77e − 15
1.8 5.55e − 16 2.33e − 14 1.55e− 15 1.55e− 15 3.50e − 15
1.9 6.66e − 16 2.15e − 14 1.78e− 15 1.55e− 15 3.75e − 15
2.0 5.55e − 16 2.00e − 14 1.33e− 15 1.33e− 15 2.66e − 15

2. The SPIKE matrix, ∥∥DŜ − A
∥∥
∞ ≤ 2

α

1 − α
d−1.

3. The computed truncated reduced system,∥∥T̂ x̂tr − ĝr

∥∥
∞ ≤ γ6k

d + 1
d − 1

‖x̂tr‖∞.

4. The overall error,

‖x̂ − x‖∞ ≤ 1
1 − d−1

‖Ax̂ − f‖∞.

We see that the modified right-hand side g is computed with a small residual and that
the bound becomes increasingly accurate as d becomes larger. The SPIKE matrix is
computed with a very small residual and the bound is between 103 and 105 times
too large. The computed reduced system is solved with a very small residual and the
bound is between 102 and 103 times larger. Finally we see that using the residual to
estimate the error is very reliable, leading to estimates that are accurate within one
order of magnitude.

5.3. Comparisons with ScaLAPACK. We began by comparing the errors in
the truncated SPIKE algorithm to ScaLAPACK (PDDBTRF/PDDBTRS) for four
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Table 5.3

The 2-norm of the absolute error for ScaLAPACK (Sca) (PDDBTRF/PDDBTRS) and the
truncated SPIKE (T.S) algorithm for four different banded matrices and different numbers of par-
titions. The results from LAPACK (DGBTRF/DGBTRS) are listed at the bottom of the table.

(n, kl, ku)
(2e4, 10, 10) (1e5, 10, 10) (1e5, 50, 50) (1e6, 10, 10)

p Sca T.S Sca T.S Sca T.S Sca T.S
2 4.98e − 10 5.02e− 10 5.33e− 9 5.34e − 9 1.33e − 8 1.33e− 8 2.10e− 7 2.10e − 7
4 4.98e − 10 5.02e− 10 5.33e− 9 5.33e − 9 1.33e − 8 1.33e− 8 2.10e− 7 2.10e − 7
8 4.97e − 10 5.02e− 10 5.32e− 9 5.33e − 9 1.33e − 8 1.33e− 8 2.10e− 7 2.10e − 7
12 4.97e − 10 5.01e− 10 5.32e− 9 5.33e − 9 1.33e − 8 1.34e− 8 2.10e− 7 2.10e − 7
16 4.97e − 10 5.02e− 10 5.32e− 9 5.33e − 9 1.33e − 8 1.33e− 8 2.10e− 7 2.10e − 7
24 4.95e − 10 5.00e− 10 5.32e− 9 5.33e − 9 1.33e − 8 1.34e− 8 2.10e− 7 2.10e − 7
32 4.95e − 10 5.02e− 10 5.32e− 9 5.33e − 9 1.32e − 8 1.33e− 8 2.10e− 7 2.10e − 7
48 4.90e − 10 4.98e− 10 5.31e− 9 5.32e − 9 1.33e − 8 1.33e− 8 2.10e− 7 2.10e − 7
64 4.88e − 10 4.95e− 10 5.30e− 9 5.32e − 9 1.32e − 8 1.33e− 8 2.10e− 7 2.10e − 7
128 4.81e − 10 4.88e− 10 5.28e− 9 5.30e − 9 1.33e − 8 1.34e− 8 2.10e− 7 2.10e − 7
256 N/A 1.43e − 7 5.23e− 9 5.26e − 9 1.33e − 8 7.64e− 2 2.10e− 7 2.10e − 7
LA 4.99e − 10 5.33e− 9 1.33e− 8 2.10e − 7

different matrices with

(n, kl, ku) ∈
{(

2.0 · 104, 10, 10
)
,
(
105, 10, 10

)
,
(
105, 50, 50

)
,
(
106, 10, 10

)}
.

Every diagonal entry was 1 and all other entries within the band were 10−2. The right-
hand side was constructed from the solution which was selected as (1, 2, . . . , n)T . The
number of partitions were 2, 4, 8, 16, 24, 32, 48, 64, 128, and 256. The calculations
were carried out in IEEE double precision arithmetic. We measured the 2-norm of
the absolute error. Our results are displayed in Table 5.3. In our experiments ScaLA-
PACK did slightly better than the truncated SPIKE algorithm, but the difference
between the two algorithms decreased, as the problems became larger. We would
like to draw attention to the case of p = 256. In this case ScaLAPACK cannot be
applied to the first matrix where n = 20,000, because the matrix is too small and
the bandwidth is large compared to the number of partitions, and the routine issues
the appropriate error message. The truncated SPIKE algorithm had a large error for
the first and the third matrix. This is due to the fact that the infinity norm of the
truncation error was very large: for the first matrix it was 1.62 · 10−12, while for the
third matrix it was 1.52·10−7. In all other cases we found that the infinity norm of the
truncation error was either less than machine ε or much smaller than the unit round
off error u. The experiments with p = 256 emphasize the fact that the truncated
SPIKE algorithm should not be applied to problems where the partitions are either
too small or where the diagonal blocks are not diagonally dominant enough. The first
matrix is diagonally dominant with degree d = 5, and for p = 256 the dimension of
the smallest partition was 78. In this case Theorem 3.7 gives an upper bound for the
infinity norm of the truncations error of 5−7 ≈ 1.28 · 10−5. In other words, we knew
in advance that the result might not be accurate. Theorem 3.7 does not apply to the
third matrix, which is not strictly diagonally dominant.

We found nine matrices that were diagonally dominant at Matrix Market. They
were all quite small, with dimensions no larger than 5000. We extracted narrow
banded matrices from these matrices by choosing k = �0.01n�. We ran the examples
through LAPACK (DGBTRF/DGBTRS), ScaLAPACK (PDDBTRF/PDDBTRS),
our own implementation of the truncated SPIKE algorithm, as well as the SPIKE
package itself (TU0). The matrices were scaled such that the main diagonals were 1
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Table 5.4

The 2-norm of the absolute error for nine different matrices from Matrix Market. The results
are given for LAPACK (dgbtrf/dgbtrs) and ScaLAPACK (PDDBTRF/PDDBTRS). The results are
given for 2, 4, and 8 partitions.

matrix n LA ScaLAPACK
2 4 8

dwb512 512 3.27e − 15 3.14e − 15 3.14e− 15 3.14e − 15
gr 30 30 900 0.00e + 00 0.00e + 00 1.57e− 16 2.94e − 16
jpwh 991 991 1.37e − 15 2.04e − 15 2.03e− 15 2.01e − 15

nos6 675 0.00e + 00 3.05e − 15 3.07e− 15 3.10e − 15
orsirr 1 1030 4.40e − 15 4.44e − 15 4.42e− 15 4.36e − 15
orsirr 2 886 4.11e − 15 4.10e − 15 4.11e− 15 4.12e − 15
orsreg 1 2205 7.08e − 15 7.12e − 15 7.30e− 15 6.93e − 15

sherman3 5005 1.92e − 12 1.99e − 12 1.99e− 12 1.99e − 12
sherman4 1104 2.53e − 15 2.59e − 15 2.58e− 15 2.58e − 15

Table 5.5

The 2-norm of the absolute error for nine different matrices from Matrix Market. The results
are given for our implementation (T.S) of the truncated SPIKE algorithm, as well as the current
implementation of the SPIKE package (TU0). The results are given for 2, 4, and 8 partitions.

matrix T.S T.U
2 4 8 2 4 8

dwb512 3.30e− 15 3.30e− 15 3.30e − 15 3.04e − 15 3.09e− 15 3.11e− 15
gr 30 30 0.00e + 00 0.00e + 00 0.00e + 00 0.00e + 00 1.11e− 16 5.09e− 16
jpwh 991 2.00e− 15 1.97e− 15 1.95e − 15 2.03e − 15 2.06e− 15 2.01e− 15

nos6 0.00e + 00 0.00e + 00 0.00e + 00 3.03e − 15 3.12e− 15 3.01e− 15
orsirr 1 4.39e− 15 4.38e− 15 4.31e − 15 4.40e − 15 4.26e− 15 4.15e− 15
orsirr 2 4.07e− 15 4.10e− 15 4.10e − 15 4.16e − 15 3.94e− 15 4.06e− 15
orsreg 1 7.16e− 15 7.16e− 15 7.00e − 15 6.49e − 15 6.79e− 15 6.18e− 15

sherman3 1.99e− 12 1.99e− 12 1.99e − 12 1.98e − 12 1.98e− 12 1.98e− 12
sherman4 2.49e− 15 2.50e− 15 2.51e − 15 2.44e − 15 2.41e− 15 2.48e− 15

and the right-hand side was generated from the solution which was selected as x =
(1, 1, . . . , 1)T . We measured the 2-norm of the absolute error. Our results are listed
in Table 5.4 and Table 5.5. We found no substantial difference in the accuracy of the
four different routines.

6. Conclusion. We have shown that the SPIKE matrix is diagonally dominant
by rows with a degree no less than that of the original matrix. We have derived a
tight upper bound on the truncation error for the general case. We showed that the
error committed at each stage is small, and we found that our bounds are proba-
bly pessimistic. We compared the truncated SPIKE algorithm to the corresponding
algorithm in ScaLAPACK (PDDBTRF/PDDBTRS) and found no substantial dif-
ference between the accuracy of the two methods. The advantage of the truncated
SPIKE algorithm is that if the matrix is diagonally dominant by rows with degree
d > 1 and the partitions are sufficiently large, then the reduced system is essentially
block diagonal and can be solved with a constant amount of communication, with
all but one processor contributing equally to the solution of the reduced system. In
ScaLAPACK (PDDTRS) the reduced system is solved recursively with the number
of active processors being cut in half at each iteration.
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SYMBOLIC AND EXACT STRUCTURE PREDICTION FOR SPARSE
GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING∗

LAURA GRIGORI† , JOHN R. GILBERT‡ , AND MICHEL COSNARD§

Abstract. In this paper we consider two structure prediction problems of interest in Gaussian
elimination with partial pivoting of sparse matrices. First, we consider the problem of determining the
nonzero structure of the factors L and U during the factorization. We present an exact prediction of
the structure that identifies some numeric cancellations appearing during Gaussian elimination. The
numeric cancellations are related to submatrices of the input matrix A that are structurally singular,
that is, singular due to the arrangements of their nonzeros, and independent of their numerical values.
Second, we consider the problem of estimating upper bounds for the structure of L and U prior to
the numerical factorization. We present tight exact bounds for the nonzero structure of L and U
of Gaussian elimination with partial pivoting PA = LU under the assumption that the matrix A
satisfies a combinatorial property, namely, the Hall property, and that the nonzero values in A are
algebraically independent of each other. This complements existing work showing that a structure
called the row merge graph represents a tight bound for the nonzero structure of L and U under a
stronger combinatorial assumption, namely, the strong Hall property. We also show that the row
merge graph represents a tight symbolic bound for matrices satisfying only the Hall property.

Key words. sparse LU factorization, partial pivoting, structure prediction, characterization of
fill
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1. Introduction. In this paper we consider the problem of structure prediction
when solving a linear system Ax = b by Gaussian elimination with partial pivoting,
where A is an n × n sparse, nonsingular, and nonsymmetric matrix and b is an n-
vector. This elimination, also called LU factorization, involves explicit factorization
of the matrix A into the product of L and U , where L is a unit lower triangular matrix
and U is an upper triangular matrix.

One of the main characteristics of the sparse LU factorization is the notion of fill.
“Fill” denotes a nonzero entry in the factors that was a zero in matrix A. When Gaus-
sian elimination without pivoting is used, the nonzero structure of the factors can be
computed without referring to the numerical values of the matrix and is determined
before performing the numerical computation of the factors themselves. Knowledge
of this structure is used to allocate memory, set up data structures, schedule parallel
tasks, and save time [16] by avoiding operations on zeros. When pivoting is used for
numerical stability [13], the structure of L and U depends not only on the structure
of A but also on the row interchanges. As the row interchanges are determined while
doing the numerical factorization, the computation of the structure of the factors has
to be interleaved with the computation of the numerical values of the factors. Prior
to the numerical factorization, only upper bounds of the structure of L and U can be
determined.
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We discuss in this paper two structure prediction problems. The first problem
considers the computation of the nonzero structure of the factors during Gaussian
elimination with row interchanges. The second problem is to obtain tight bounds of
the structure of L and U prior to the numerical factorization. For both problems, we
study relations between the combinatorial properties of the nonzero structure of the
matrix A and the LU factorization.

Two kinds of structure prediction and two combinatorial properties of the input
matrix are usually considered for these problems. The two structure predictions are
called symbolic and exact [11]. Symbolic structure prediction assumes that the addi-
tion or subtraction of two nonzero results always yields a nonzero result. It ignores
possible numeric cancellations occurring during the LU factorization. Exact structure
prediction assumes that the nonzero values in A are algebraically independent from
each other; in other words, it assumes that any computed zero is due to combinatorial
properties of the nonzero structure. The two combinatorial properties of the input
matrix are called the strong Hall property and the Hall property. The strong Hall
property is an irreducibility condition. The Hall property is a weaker combinatorial
assumption and is related to matrices with full-column rank. We will define these two
properties in more detail later in the paper. A matrix that satisfies the Hall property
can be decomposed using the Dulmage–Mendelsohn decomposition [2, 17, 18] into a
block upper triangular form such that every block on the diagonal satisfies the strong
Hall property. However, in practice this decomposition is not always used, and hence
it is interesting to understand the structure prediction for matrices satisfying either
the strong Hall property or the Hall property.

Much of the research has been aimed at predicting the structure and bounds of
the factors L and U as tightly as possible [9, 10, 11, 12, 20]. The existing results
for determining the nonzero structure of L and U during Gaussian elimination with
partial pivoting PA = LU are symbolic [20]. Under several additional conditions,
this structure prediction is exact [11]. But in general it ignores possible numeric
cancellations during the factorization for matrices satisfying the strong Hall property
or only the Hall property. For the problem of predicting bounds for the structure of L
and U prior to the numerical factorization, the existing results in the literature assume
that A satisfies the strong Hall property. The results assume the LU factorization with
partial pivoting is seen as

A = P1L1P2L2 . . . Pn−1Ln−1U,

where Pi is an n×n elementary permutation matrix identifying the row interchanges
at step i. Li is an n×n elementary lower triangular matrix whose ith column contains
the multipliers at step i. U is an n×n upper triangular matrix. L̃ is the n×n matrix
whose ith column is the ith column of Li so that L̃ − I =

∑
i (Li − I). Note that

this L̃ is not the same as the factor L obtained from the factorization PA = LU .
Both matrices are unit lower triangular, and they contain the same nonzero values
but in different positions. The factor L has its rows in the order described by the
entire row permutations. The factor L̃ has the rows of its ith column in the order
described by only the first i row interchanges. George and Ng [9] predict an upper
bound of the nonzero structure of L̃ and U , called the row merge graph, that contains
the nonzeros in L̃ and U for all possible row permutations which can later appear
in the numerical factorization due to pivoting. Gilbert and Ng [11] showed that this
is a tight exact bound for a square matrix with nonzero diagonal which satisfies the
strong Hall property.
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In this paper we provide answers to several open questions related to the two
structure prediction problems considered here. For the first problem, we identify the
exact structure prediction of L and U during LU factorization with partial pivoting.
For the second problem, we describe the exact bounds of the factors obtained from the
factorization PA = LU , when the matrix A satisfies only the Hall property. These
exact bounds are not symbolic bounds. Then we show that the row merge graph
represents symbolic bounds for the structure of L̃ and U .

The exact structure prediction is based on the following approach: all of the
elements of the factors L and U can be computed using the determinants of two
submatrices of the input matrix A (see, for example, Gantmacher [8]). Consider, for
example, the element in position (i, j) of U , where i and j are two indices with i ≤ j.
Let Ai−1 be the submatrix of A formed by the first (i − 1) columns and the first
(i − 1) rows of A. Let K be the i × i submatrix of A that includes the first i rows,
the first i − 1 columns, and column j of A. Then the value in position (i, j) of the
factor U is given by the quotient of the determinant of K and the determinant of
Ai−1. A similar relation exists for the elements of L. Our new results identify when
the submatrix K is structurally singular, that is, singular due to the arrangements
of its nonzeros, and independent of the numerical values. In exact arithmetic, the
determinant of K is zero, and hence the element in position (i, j) corresponds to a
numeric cancellation. This numeric cancellation is identified in our new results on
exact structure prediction. However, in a backward stable factorization A+ E = L̂Û ,
the computed factors L̂ and Û are not necessarily close to the exact A = LU factors,
even though the norm of E is small. In particular, a zero in L or U may, in principle,
be large in L̂ or Û , so rounding it to zero may cause backward instability.

The rest of the paper is organized as follows. In section 2 we present background
and several new results used throughout the paper. In section 3 we consider the
problem of determining the nonzero structure of the factors L and U during Gaussian
elimination with partial pivoting. We present new results that give an exact charac-
terization of the fill occurring in the LU factorization. We show how the theoretical
results can be used in an algorithm for computing fill-ins.

In sections 4 and 5 we consider the problem of predicting bounds for the structure
of L and U prior to the numerical factorization. In section 4 we present an exact
analysis for matrices that satisfy the Hall property. We present tight exact bounds
for the nonzero structure of L and U of Gaussian elimination with partial pivoting
PA = LU . In section 5 we present a symbolic analysis, and we show that the row
merge graph is a lower symbolic bound for the factors L̃ and U of the factorization
A = P1L1P2L2 . . . Pn−1Ln−1U . In other words, for every edge of the row merge graph
of a Hall matrix, there is a permutation such that this edge corresponds to a symbolic
nonzero in L̃ or U . By a simple counterexample, we will show that the row merge
graph is not a tight bound for the factors L and U in the exact sense. These results are
of practical interest since the row merge graph is used by several solvers implementing
the sparse LU factorization with partial pivoting. In solvers like the sequential and
shared memory versions of SuperLU [5, 6], the row merge graph is used to estimate
the memory needs prior to the LU factorization. In solvers proposed in [9, 21], the
numerical computation of the factors L and U is performed on the row merge graph,
and some operations involve zero elements. Finally, section 6 presents concluding
remarks.

2. Graphs of matrices and their properties. In this section we provide the
necessary notions to study the structure prediction of the sparse LU factorization
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with partial pivoting. We give definitions, previously published results, and two new
results (Lemmas 2.6 and 2.7) that are needed by our subsequent proofs.

Let A be a sparse n × n matrix. Aij denotes the element at row i and column j
of A. We refer to the determinant of matrix A as det(A). We denote the submatrix
of A formed by elements of row indices from i to j and column indices from d to e
as A(i: j, d: e). When the indices are not consecutive, we use the following notation:
A([i: j, k], d: e) denotes the submatrix of A formed by elements of row indices from i
to j and k and column indices from d to e. We refer to the submatrix A(1: i, 1: i) as
the principal minor of order i of A.

Two graphs are used to predict the nonzero structure of the factors L and U from
the structure of A. The first graph is the directed graph of A and is denoted by G(A).
This graph has n vertices and an edge 〈i, j〉 for each nonzero element Aij . We say
that the edge 〈i, j〉 is incident on the vertices i and j.

The second graph is the bipartite graph of A, denoted by H(A). This graph is
undirected and has n row vertices, n column vertices, and an edge 〈i′, j〉 if and only if
the element Aij is nonzero. Note that whenever possible, we use prime to distinguish
between row vertices and column vertices in a bipartite graph. Also we use i, j, k, d,
and e to denote a vertex of H for which it is known if it is a column or a row vertex.
That is, i′ stands for a row vertex and i for a column vertex. We use v and w to
denote a generic vertex of H , that is, a vertex that can be a row vertex or a column
vertex.

A path is a sequence of distinct vertices Q = (v0, v1, . . . , vq−1, vq) such that for
each two consecutive vertices vi, vi+1 there is an edge from vi to vi+1. The length of
this path is q. The vertices v1, . . . , vq−1 are called intermediate vertices.

Let H be a bipartite graph with m row vertices and n column vertices. A matching
M on H is a set of edges, no two of which are incident on the same vertex. A vertex
is covered or matched by M if it is an end point of an edge of M . A matching is
called column-complete if it has n edges, row-complete if it has m edges, and perfect
if m = n and it is both row- and column-complete. Given a graph H and a column
vertex i, we denote by H − i the subgraph of H induced by all of the row vertices and
all of the column vertices except i.

The next lemma identifies a matching in the bipartite graph H of A such that if
the edges of M become the diagonal elements, the values chosen make the permuted
matrix strongly diagonally dominant. It will be used in section 4 to prove our results
on exact structure prediction for Hall matrices.

Lemma 2.1 (Gilbert and Ng [11]). Suppose the bipartite graph H has a perfect
matching M . Let A be a matrix with H(A) = H such that Aij > n for 〈i′, j〉 ∈ M
and 0 < Aij < 1 for 〈i′, j〉 /∈ M . If A is factored by Gaussian elimination with partial
pivoting, then the edges of M will be the pivots.

If M is a matching on H , an alternating path with respect to M is a path on which
every second edge is an element of M . A c-alternating path is a path that follows
matching edges from rows to columns. An r-alternating path is a path that follows
matching edges from columns to rows. Suppose the last vertex of one c-alternating
path is the first vertex of another c-alternating path. The path obtained by their
concatenation is also a c-alternating path. The same result holds for r-alternating
paths. Suppose Q is an alternating path from an unmatched vertex v to a different
vertex w. If the last vertex w on Q is unmatched or the last edge on Q belongs to M ,
then a new matching M1 can be obtained from M by alternating along path Q. The
set of edges of M1 is given by M ⊕Q = (M ∪ Q) − (M ∩ Q). If w is matched by M ,
then v is matched and w is unmatched by M1 and |M1| = |M |. If w is unmatched
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by M , then both v and w are matched by M1, |M1| = |M | + 1, and Q is called an
augmenting path with respect to M .

2.1. Hall and strong Hall graphs. We briefly review the Hall and the strong
Hall properties and related results. For a detailed description of Hall and strong Hall
matrices and their properties, the reader is directed to [2, 3, 11].

A bipartite graph with m rows and n columns has the Hall property if every set
of k column vertices is adjacent to at least k row vertices, for all 1 ≤ k ≤ n. The
next theorem and corollary relate the Hall property to column-complete matchings
and matrices with full-column rank. In Corollary 2.3 [11] it is shown that if H is Hall
and given a matrix A with H = H(A), then the set of ways to fill in its values to
make it singular has measure zero. Hence almost all matrices A with H = H(A) have
full-column rank.

Theorem 2.2 (Hall’s theorem). A bipartite graph has a column-complete match-
ing if and only if it has the Hall property.

Corollary 2.3 (Gilbert and Ng [11]). If a matrix A has full-column rank, then
H(A) is Hall. Conversely, if H is Hall, then almost all matrices A with H = H(A)
have full-column rank.

Known results in structure prediction were obtained under an additional assump-
tion, called the strong Hall property. A bipartite graph with m rows and n ≤ m
columns satisfies the strong Hall property if

(i) m = n > 1 and every set of k column vertices is adjacent to more than k row
vertices, for all 1 ≤ k < n, or

(ii) m > n and every set of k column vertices is adjacent to more than k row
vertices, for all 1 ≤ k ≤ n.

Lemma 2.4 (Gilbert and Ng [11]). If H is strong Hall and has more nonzero
rows than columns and M is any column-complete matching on H, then from every
row or column vertex v of H there is a c-alternating path to some unmatched row
vertex i′ (which depends on v and M).

The next theorem relates alternating paths and matchings in strong Hall graphs.
This theorem was used in several structure prediction results, in the context of sparse
LU factorization by Gilbert and Ng in [11], as well as in the sparsity analysis of QR
factorization by Coleman, Edenbrandt, and Gilbert in [4] and Hare et al. in [15]. In
this paper we will use it in Lemma 2.6 to derive a new result on alternating paths
and matchings in strong Hall graphs.

Theorem 2.5 (alternating paths, Gilbert [12]). Let H be a strong Hall graph
with at least two rows, let i be a column vertex of H, and let v be any row or column
vertex of H such that a path exists from i to v. Then H has a column-complete
matching for which there exists a c-alternating path from i to v (or, equivalently, an
r-alternating path from v to i).

The next lemma is new. Given a path in a bipartite graph H between a column
vertex and a row vertex or between two row vertices, the lemma shows that there is an
alternating path with respect to a column-complete matching of H which excludes a
row vertex at the extremity of the path. We will use it in sections 3 and 4 to estimate
the nonzero structure of the factors L and U .

Lemma 2.6. Let H be a strong Hall graph with more nonzero rows than columns,
let v be a row or column vertex of H, and let i′ be any row vertex of H such that
a path exists from v to i′. Then H has a column-complete matching which excludes
vertex i′ and for which there exists a c-alternating path from v to i′.

Proof. We distinguish two different cases.
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v

d’

k’

v

d’

k’

i’

i’

Fig. 2.1. Case 1 of Lemma 2.6. In the upper graph, the solid edges are the matching M ; path
P is the horizontal path from v to i′; path Q is the light dotted line from i′ to k′. In the lower graph,
the solid edges are the matching M1. The path obtained by concatenating P[v: d′] and Q[d′: i′] is
c-alternating with respect to M1.

Case 1 (v is a column vertex). By hypothesis, there is a path from v to i′. As
H is strong Hall, the alternating path Theorem 2.5 applies and says that H has a
column-complete matching M for which there exists a c-alternating path P from v
to i′. If i′ is not covered by M , then M is the column-complete matching searched.
Otherwise, Lemma 2.4 implies that there is an unmatched row vertex k′ and a c-
alternating path Q from i′ to k′. Now obtain matching M1 from M by alternating
along path Q, where i′ is unmatched in M1.

If P and Q have no vertices in common (except row vertex i′), then P is still
c-alternating from v to i′ with respect to M1. If the only vertex in common for P and
Q (except row vertex i′) is column vertex v, then let e′ be the row vertex matched by
M to v that belongs to the path Q. The path formed by 〈v, e′〉 followed by Q[e′: i′] is
c-alternating with respect to M1.

If P and Q have intermediate vertices in common, let d′ be the first (row) vertex
of P (starting from v) which belongs to Q. The path obtained by the concatenation
of P [v: d′] and Q[d′: i′] is c-alternating with respect to M1, and this ends the proof for
this case. This case is illustrated in Figure 2.1.

Case 2 (v is a row vertex). We denote the row vertex v as v′. By hypothesis,
there is a path from v′ to i′. Suppose v′ 	= i′; otherwise there is nothing to prove.
Let d be the first column vertex on this path, that is, the next vertex after v′. H is
a strong Hall graph that has a path from column vertex d to row vertex i′. The first
case of this theorem, that we have just proved, says that there is a column-complete
matching M that excludes vertex i′ and for which there exists a c-alternating path P
from d to i′. We distinguish four cases.

Case 2.1 (v′ is not matched by M). Let e′ be the row vertex matched by M to
the column vertex d. We obtain a new matching M1 by unmatching row vertex e′

and matching row vertex v′ to row vertex d. The path formed by 〈v′, d〉 followed by
P is c-alternating from v′ to i′ with respect to M1. Note that M1 excludes row vertex
i′, and this is the path searched.

Case 2.2 (v′ is matched by M to the column vertex d). The path obtained by
〈v′, d〉 followed by P is c-alternating from v′ to i′ with respect to the matching M ,
and the matching M excludes row vertex i′.

Case 2.3 (v′ is matched by M and belongs to the path P). Then P [v′: i′] is a
c-alternating path with respect to the matching M .
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k

d

v’

i’

j’

Fig. 2.2. Case 2.4 of Lemma 2.6. The solid edges are the matching M ; path P is the horizontal
path from i′ to d; path R is the light dotted line from v′ to j′. Here, P and R have at least one
common vertex. Vertex k is the last vertex on P (starting from d) that belongs to R. The path
obtained by concatenating R[v′: k] and P[k: i′] is c-alternating with respect to M , and M excludes
row vertex i′.

Case 2.4 (v′ is matched by M to a different column vertex than d and does not
belong to the path P). Lemma 2.4 applies and says that there is an unmatched row
vertex j′ and a c-alternating path R from v′ to j′.

If P and R have no vertices in common, then obtain matching M1 from M by
alternating along path R. As v′ is matched in M , then v′ is unmatched in M1 and j′

is matched in M1. From here we proceed as in Case 2.1, and we obtain a matching
that excludes vertex i′ and with respect to which there is a c-alternating path from
v′ to i′.

If P and R have at least one vertex in common, then let k be the last vertex of
P (starting from d) which belongs to R. Note that k has to be a column vertex. The
path obtained by concatenating R[v′: k] and P [k: i′] is c-alternating with respect to
M , M excludes the row vertex i′, and this ends the proof. This case is illustrated in
Figure 2.2.

2.2. Hall sets and their properties. For a bipartite graph H with m row
vertices and n ≤ m column vertices, a set of k column vertices, 1 ≤ k ≤ n, forms a
Hall set if these columns are adjacent to exactly k rows [15].

Under the assumption that A satisfies the Hall property, the union of two Hall
sets is a Hall set, so there exists a unique Hall set of maximum cardinality in any
given set of columns. The set of maximum cardinality might be empty. Let Cj be
the Hall set of maximum cardinality in the first j columns; we define C0 = ∅. Let Rj

be the set of all row indices covered by the columns of Cj ; thus Cj and Rj have the
same cardinality. Note that if we assume all diagonal entries of A are nonzero, then
Rj = {i′ : 1 ≤ i ≤ j and i ∈ Cj}.

The Hall sets of maximum cardinality are useful to partition a Hall graph into
two subgraphs: one that satisfies the Hall property and another one that satisfies the
strong Hall property. Let H be a bipartite graph with m row vertices and n < m
column vertices that satisfies the Hall property. Let C be the Hall set of maximum
cardinality in H , and let R be the set of row vertices covered by column vertices of C.
The first subgraph H̃ is induced by all of the row vertices in R and all of the column
vertices in C. This subgraph satisfies the Hall property. The second subgraph Ĥ is
induced by all of the row vertices except those in R and all of the column vertices
except those in C. This subgraph is strong Hall because its Hall set of maximum
cardinality is empty.

In a similar way, we can partition the edges of a column-complete matching M
of H into edges belonging to the graph H̃ and edges belonging to the graph Ĥ. This
is expressed in a more general way in the following lemma.
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Lemma 2.7. Let A be an m × n Hall matrix, m ≥ n. Let C be a Hall set of
cardinality p in A, where p ≤ n, and let R be the set of all row indices covered by
the columns of C. Suppose M is a column-complete matching in the bipartite graph
H(A). Then each column vertex j of C is matched by M to a row vertex i′ of R.

Proof. The proof is immediate.

3. Nonzero structure of L and U during Gaussian elimination with
partial pivoting. Let A be an n×n nonsingular matrix. In this section we consider
the problem of determining the nonzero structure of the factors L and U during
Gaussian elimination with partial pivoting. In the first part of this section we consider
the LU factorization without pivoting. We first present a brief overview of several well-
known results described in the literature. Then we describe why these results ignore
numeric cancellations related to submatrices of A that are structurally singular. In
section 3.1 we present new results that identify some numeric cancellation occurring
during Gaussian elimination and caused by submatrices of A that are structurally
singular. In section 3.2 we describe how the new results can be used in the Gaussian
elimination with partial pivoting. We also present an algorithm that uses the new
results to compute the nonzero structure of the factors L and U .

The main result in the structure prediction of Gaussian elimination without piv-
oting is the fill path Lemma 3.1. This lemma relates paths in the directed graph
G(A) and the nonzero elements that appear in the factors L and U , represented in
the so-called filled graph G+(A).

Lemma 3.1 (fill path (Rose and Tarjan [20])). Let G be a directed or undirected
graph whose vertices are the integers 1 through n, and let G+ be its filled graph. Then
〈i, j〉 is an edge of G+ if and only if there is a path in G from i to j whose intermediate
vertices are all smaller than min(i, j).

The filled graph G+(A) represents a symbolic bound for the factors L and U ; that
is, it ignores possible numeric cancellation during the factorization. The next lemma
represents an example of conditions under which this structure prediction is exact, by
taking into account the values of the nonzeros in the matrix. In this lemma, a square
Hall submatrix of A denotes a square submatrix of A which satisfies the Hall property
and which is formed by a subset of rows and columns of A that can be different and
noncontiguous.

Lemma 3.2 (Gilbert and Ng [11]). Suppose A is square and nonsingular and
has a triangular factorization A = LU without pivoting. Suppose also that all of the
diagonal elements of A, except possibly the last one, are nonzero and that every square
Hall submatrix of A is nonsingular. Then G(L + U) = G+(A); that is, every nonzero
predicted by the filled graph of A is actually nonzero in the factorization.

We are interested in fill when the diagonal may contain zeros (perhaps due to
pivoting), but Lemma 3.2 does not hold in this case. An example showing this was
given by Brayton, Gustavson, and Willoughby [1]. We give a slightly different example
in Figure 3.1, where we display a matrix A, its bipartite graph H(A), and its directed
graph G(A). Note that H(A) satisfies the strong Hall property. Since there is a path
from 5 to 4 through lower numbered vertices in G(A), the edge 〈5, 4〉 belongs to the
filled graph G+(A), but L54 = 0 regardless of the nonzero values of A. That is because
after the first step of elimination, the elements in column positions 2 and 4 of the rows
2 and 5 are linearly dependent. At the second step of elimination the element L54 is
zeroed.

A simpler way of understanding this numeric cancellation is to consider the two
submatrices A([1: 3, 5], 1: 4) and A(1: 3, 1: 3) and their determinants that determine
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Fig. 3.1. Example showing that the fill path Lemma 3.2 does not predict exactly the nonzero
structure of L and U when factorizing without pivoting the strong Hall matrix A. Details are given
in the text following Lemma 3.1.

H(A(1:3,1:3))A H(A([1:3,5],1:4))
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Fig. 3.2. Example for Theorem 3.4 (1 → 2). Consider the strong Hall matrix A and the
matrix B = A([1: 3, 5], 1: 4) displayed in patterned gray. The Hall set of maximum cardinality of
H(A([1: 3, 5], 1: 3)) is C35 = {3} and R35 = {3′}. Suppose element L54 is nonzero. The perfect
matching Mk of matrix Ak = A(1: 3, 1: 3) is formed by the edges 〈1′, 2〉, 〈2′, 1〉, and 〈3′, 3〉. The
perfect matching MB of B is formed by the edges 〈1′, 4〉, 〈2′, 1〉, 〈3′, 3〉, and 〈5′, 2〉. Form a path by
starting at 5′ and by following one edge in MB and one edge in Mk. This yields the path (5′, 2, 1′, 4).

the value of L54. The submatrix A([1: 3, 5], 1: 4) (displayed in light gray in Figure 3.1)
has three columns (2, 3, and 4) with nonzero elements in only two rows (1 and 3).
This submatrix does not satisfy the Hall property, and its determinant is zero. This
is the approach we use to identify some numeric cancellations in the LU factorization.

The following lemma describes the above observation. Assuming that the LU
factorization exists, this lemma relates the value of an element of the factors L and
U to the singularity of a submatrix of A.

Lemma 3.3 (Gilbert and Ng [11]). Suppose A is square and nonsingular and
has a triangular factorization A = LU without pivoting. Let i be a row index and j
a column index of A, and let B be the submatrix of A consisting of rows 1 through
min(i, j)−1 and i, and columns 1 through min(i, j)−1 and j. Then (L+U)ij is zero
if and only if B is singular.

3.1. New results. Theorem 3.4 is the first new result of this section and pro-
vides necessary and sufficient conditions, in terms of paths in the bipartite graph
H(A) for a fill element to occur in exact arithmetic during Gaussian elimination. It
is illustrated in Figures 3.2 and 3.3. Consider the nonzero structure of L. Suppose
that the factorization exists until the step j − 1 of factorization; that is, the principal
minor of order j − 1 is nonzero. The theorem uses the fact that Lij is nonzero if and
only if the determinant of the submatrix A([1: j − 1, i], 1: j) is nonzero.
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Fig. 3.3. Example for Theorem 3.4 (3→ 1). Consider the strong Hall matrix A as in Figure 3.2,
the matrix B = A([1: 3, 5], 1: 4), C35 = {3}, and R35 = {3′}. Consider the path Q = (5′, 1, 1′, 4) that
has no vertex in C35 ∪ R35. The graph H(A([1: 3, 5], 1: 3)) is partitioned into two subgraphs. The
subgraph induced by column vertex 3 and row vertex 3′ satisfies the Hall property, and it has a perfect

matching M̃ = {〈3′, 3〉}. The subgraph induced by column vertices {1, 2} and row vertices {1′, 2′, 5′}
satisfies the strong Hall property and has a column-complete matching M̂ = {〈1′, 2〉, 〈2′, 1〉} for

which there is a c-alternating path R = (1′, 2, 5′). The matching M is formed by the edges of M̃

and M̂ and is presented by solid edges in the graph H(A([1: 3, 5], 1: 3)). The matching obtained by
alternating along path R is a perfect matching of H(B) and is presented at the right of the figure.

Theorem 3.4. Let A be an n × n nonsingular matrix that has a triangular
factorization A = LU . Suppose that every square Hall submatrix of A is nonsingular.
Let i be a row of A, j be a column of A, and k = min(i, j) − 1. Let Mk be a
perfect matching of A(1: k, 1: k). Let Cki be the Hall set of maximum cardinality in
H(A([1: k, i], 1: k)) and Rki be the set of all row indices covered by columns of Cki.
Then the following three statements are equivalent:

1. (L + U)ij is nonzero.
2. There is an r-alternating path in the bipartite graph H(A) from row vertex i′

to column vertex j with respect to the matching Mk.
3. There is a path in the bipartite graph H(A) from i′ to j whose intermediate

vertices are smaller than or equal to k and that has no vertex in Cki ∪ Rki.
Proof. Let Ak be the leading (k × k) principal submatrix of A and det(Ak) be its

determinant. As we suppose the factorization exists, det(Ak) is nonzero. This implies
that Ak satisfies the Hall property and has a perfect matching Mk. The match-
ing Mk also represents a column-complete matching in the graph H(A([1: k, i], 1: k)).
Lemma 2.7 applies with respect to the graph H(A([1: k, i], 1: k)) and the Hall set Cki

and says that each row vertex of Rki has to be matched by Mk to one of the column
vertices in Cki. Since i′ is not a row vertex matched by Mk, then i′ /∈ Rki.

Let B be the submatrix of A consisting of columns 1 through k and j and rows
1 through k and row i. Suppose edge 〈i′, j〉 does not belong to H(A); otherwise the
proof is trivial. We will prove now that the three statements are equivalent.

1 → 2. As (L+U)ij is nonzero by hypothesis, then Lemma 3.3 applies and shows
that B is a nonsingular matrix. Hence its bipartite graph H(B) satisfies the Hall
property, and there is a perfect matching MB in H(B).

Consider now the row vertex i′ in the bipartite graph H(A). Recall we assume
that edge 〈i′, j〉 does not belong to H(A). Row vertex i′ is matched by MB to column
vertex j0. Since i′ /∈ Rki, we can deduce that j0 /∈ Cki. Column vertex j0 is matched
by Mk to some row vertex i′0, where i′0 	= i′ since i′ is not matched by Mk. Also we
have that i′0 /∈ Rki. Row vertex i′0 is matched by MB to some column vertex j1, where
j1 	= j0 since j0 is matched in MB to i′. If j1 = j, then we stop. Otherwise, we continue
our reasoning. For each row vertex we consider its matched column vertex by MB;
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then for each column vertex we consider its matched row vertex by Mk. Continuing
inductively, we arrive at vertex j. The vertices followed during our reasoning are
vertices i′, j0, i

′
0, j1, i

′
1, . . . , i

′
t, j. Edge 〈i′, j0〉 and edges 〈i′q, jq+1〉 are edges of H(B)

which belong to the perfect matching MB. Edge 〈i′t, j〉 and edges 〈jq, i
′
q〉 are edges of

H(Ak) which belong to the perfect matching Mk. This yields a path in H(A) from
row vertex i′ to column vertex j that is r-alternating with respect to the matching Mk.

2 → 3. Consider the r-alternating path (i′, j0, i′0, j1, i′1, . . . , i′t, j) from i′ to j with
respect to the matching Mk. All of the intermediate vertices on this path are smaller
than or equal to k. Because i′ /∈ Rki, we can deduce that j0 /∈ Cki. Continuing
inductively, we can deduce that this path does not include any vertex in Cki ∪ Rki.

3 → 1. Let d′ be the last row vertex on Q, that is, the vertex just before j on Q.
We partition the graph H(A([1: k, i], 1: k)) into two subgraphs. The first subgraph,
induced by the row vertices in Rki and the column vertices in Cki, satisfies the Hall
property and has a perfect matching M̃ . The second subgraph, induced by the row
vertices 1, . . . k′ and i′, except row vertices in Rki, and the column vertices 1 through
k, except column vertices in Cki, is strong Hall. Lemma 2.6 says that there is a
column-complete matching M̂ which excludes row vertex i′ and for which there exists
a c-alternating path R from d′ to i′.

Let the matching M be formed by the edges of M̂ and the edges of M̃ . This
matching represents a column-complete matching in H(A([1: k, i], 1: k)). We now show
that the graph H(B) satisfies the Hall property. Recall that column vertex j and row
vertex i′ are not matched by the matching M . Consider path R from d′ to i′ that is
c-alternating with respect to matching M . Obtain a new matching M ⊕ R from M
by alternating along path R. As i′ is not matched in M and d′ is matched in M , then
i′ is matched in M ⊕ R and d′ is not matched in M ⊕ R. Add to matching M ⊕ R
the edge 〈d′, j〉.

Thus we obtain a perfect matching in H(B); that is, H(B) satisfies the Hall
property. By hypothesis, every square Hall submatrix of A is nonsingular, and thus
B is nonsingular and its determinant is nonzero. Therefore (L+U)ij is nonzero.

The next theorem uses Hall sets of maximum cardinality associated with subsets
of columns of A to restrict paths corresponding to nonzero elements of L and U . In this
paper we use this theorem in section 4 to determine upper bounds for the factorization
PA = LU , where the matrix A satisfies only the Hall property. Note that for a matrix
satisfying the strong Hall property, the Hall set of maximum cardinality of a subset
of columns is always empty. Thus Theorem 3.5 is relevant to matrices satisfying only
the Hall property. This theorem can also be useful in the algorithm described in
section 3.2. The Hall sets involved can be computed prior to the factorization using
an algorithm as, for example, the one proposed in [15].

Theorem 3.5. Let A be an n×n nonsingular matrix that is factored by Gaussian
elimination as A = LU . Suppose that (L+U)ij is nonzero. Let k = min(i, j)−1, and
let Ck be the Hall set of maximum cardinality in the first k columns and Rk be the set
of all row indices covered by columns of Ck. Then there is a path in the bipartite graph
H(A) from row vertex i′ to column vertex j whose intermediate vertices are smaller
than or equal to k and that has no vertex in Ck ∪ Rk.

Proof. Let Cki be the Hall set of maximum cardinality in H(A([1: k, i], 1: k)) and
Rki be the set of all row indices covered by columns of Cki. It can be easily shown
that Ck ⊆ Cki and Rk ⊆ Rki. The third statement of Theorem 3.4 implies that this
theorem holds.

Note that Theorem 3.5 provides only a necessary condition for fill to occur during
the elimination. Figure 3.4 (as well as Theorem 3.4) shows that the condition is
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Fig. 3.4. Example showing that the converse of Theorem 3.5 is not true.

not sufficient. Consider the Hall matrix A in Figure 3.4. The Hall set of maximum
cardinality is C3 = {3}, and it covers the row index R3 = {3′}. The Hall set of
maximum cardinality in H(A([1: 3, 5], 1: 3)) is C35 = {2, 3}, and it covers the row
indices R35 = {1′, 3′}. There is a path (5′, 1, 1′, 4) in H(A) that has no vertex in C3.
However, the element L54 = 0 because of numeric cancellation.

3.2. Computing the nonzero structure of the factors L and U during
Gaussian elimination with partial pivoting. In this section we present an algo-
rithm that uses the results of the previous section to compute the nonzero structure of
the factors L and U during the LU factorization with partial pivoting. The algorithm
computes one column of L and one row of U at a time.

First, we present Theorem 3.6 that describes explicitly how Theorem 3.4 can be
used during the LU factorization with partial pivoting of a matrix A. This theorem
supposes that the first j − 1 steps of the LU factorization exist, and it gives the
necessary results to compute the structure of column j of L and of row j of U at the
jth step of factorization.

Theorem 3.6. Let A be an n × n nonsingular matrix that is to be decom-
posed using LU factorization with partial pivoting. Suppose that the first j − 1 steps
of LU factorization with partial pivoting of A exist and have been executed. Let
PJ−1 = Pj−1Pj−2 . . . P1 be the permutations performed during the first j − 1 steps
of elimination, and let Mj−1 be a perfect matching of (PJ−1A)(1: j − 1, 1: j − 1).
Suppose that every square Hall submatrix of A is nonsingular. At the jth step of de-
composition, the element Lij is nonzero if and only if there is a c-alternating path in
the bipartite graph H(PJ−1A) from column vertex j to row vertex i′ with respect to the
matching Mj−1. The element Uji is nonzero if and only if there is an r-alternating
path in the bipartite graph H(A) from row vertex j′ to column vertex i with respect to
the matching Mj−1.

Proof. The proof is similar to the proof of Theorem 3.4.
Algorithm 1 uses Theorem 3.6 and sketches the factorization PA = LU , where

P = Pn−1 . . . P1 and each Pj reflects the permutation of two rows at step j of factor-
ization. At each step j, the structure of column j of L is determined, and then its
numerical values are computed. The element of maximum magnitude in column j of
L is chosen as the pivot. Let Lkj be this element. The algorithm interchanges rows
k and j of L and rows k and j of A. Then the structure of row j of U is determined,
followed by the computation of its numerical values.

The structure of column j of L is computed by finding all of the c-alternating
paths with respect to Mj−1 from column vertex j to some row vertex i′. This can be
achieved in a similar way to the augmenting path technique, used in finding maximum
matchings in bipartite graphs and described, for example, in [7]. This technique
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ensures that each edge of the bipartite graph of A is traversed at most once. The
structure of row i of U is computed in a similar way. Since the jth diagonal element
corresponds to a nonzero, Theorem 3.4 ensures that there is a c-alternating path Q
from column vertex j to row vertex j′ with respect to the matching Mj−1. During
the computation of the structure of column j of L, we store for each row vertex i′

the column vertex just before i′ on a c-alternating path with respect to Mj−1 from j
to i′. This allows us to retrace Q. The algorithm computes a new matching Mj by
alternating along path Q.

The overall complexity of computing the structure of L and the structure of U in
Algorithm 1 is hence bounded by O(n · nnz(A)), where n is the order and nnz(A) is
the number of nonzeros of matrix A.

Algorithm 1. LU factorization with partial pivoting, aware of some cancellations
M0 = ∅
for j := 1 to n do

if j < n then
1. Compute structure of L(j: n, j). This is formed by all row vertices i′ ≥ j
such that there is a c-alternating path in H(A) with respect to Mj−1 from
column vertex j to row vertex i′.
2. Compute numerical values of L(j: n, j).
3. Find k such that |Lkj | = max |L(j: n, j)|. Let v = Lkj .
4. Interchange L(j, : ) with L(k, : ) and A(j, : ) with A(k, : ). Let Q[j: j′] be the
c-alternating path in H(A) with respect to Mj−1 that corresponds to Ljj .
5. Scale: L(: , j) = L(: , j)/v.

end if
6. Compute structure of U(j, j+1: n). This is formed by all column vertices i ≥ j
such that there is an r-alternating path in H(A) from row vertex j′ to column
vertex i with respect to the matching Mj−1.
7. Compute numerical values of U(j, j + 1: n). Let Ujj = v.
if j = 1 then

M1 = Q
else

Mj = Mj−1 ⊕Q
end if

end for

Several aspects need to be investigated and remain as open questions. The first
important aspect is related to the practical interest of using this algorithm, which
depends on the utility of identifying numeric cancellations and on the number of
numeric cancellations that appear in real world applications. The second aspect is
related to the complexity of Algorithm 1, which is equivalent to the complexity of one
of the first algorithms for computing the structure of the factors L and U , denoted as
the FILL2 algorithm in [20]. The algorithms proposed more recently for computing
fill-ins [10] are faster in practice than FILL2. Since we expect Algorithm 1 to have
a similar run time to FILL2, further investigation is required to make it competitive
with respect to the new algorithms.

4. Tight exact bounds for the structure prediction of PA = LU , when
A satisfies only the Hall property. Let A be an n × n matrix that satisfies the
Hall property. Suppose A is factored by Gaussian elimination with row interchanges
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as PA = LU . In this section we discuss the problem of predicting bounds for the
factors L and U prior to the numerical factorization. We consider exact results; that
is, the upper bounds do not include elements that correspond to numeric cancellations
due to submatrices of A structurally singular.

The next three theorems give tight exact bounds for the nonzero structure of the
factors L and U . Theorem 4.1 gives upper bounds for the structure of L and U in
terms of paths in the bipartite graph H(A). Theorems 4.2 and 4.3 show that this
bound is the tightest possible for Gaussian elimination with row interchanges of a
matrix that satisfies the Hall property. That is, for every predicted element of the
upper bound, there is a permutation and a choice of the values of matrix A such that
this element corresponds to a nonzero in the factors L or U .

Theorem 4.1. Let A be an n×n nonsingular matrix that is factored by Gaussian
elimination with row interchanges as PA = LU . Let i be an index, j be a column
index, and q = min(i, j) − 1. Let Cq be the Hall set of maximum cardinality in the
first q columns and Rq be the set of all row indices covered by columns of Cq. If Lij

is nonzero, then there is a path in the bipartite graph H(A) from row vertex k′ to
column vertex j whose intermediate column vertices are all in {1, . . . , q} and that has
no vertex in Cq ∪Rq, where k is the row of A that corresponds to row i of PA. If Uij

is nonzero, then there is a path in the bipartite graph H(A) from column vertex i to
column vertex j whose intermediate column vertices are all in {1, . . . , q} and that has
no vertex in Cq ∪ Rq.

Proof of Case 1 (i ≥ j (structure of L)). Due to Theorem 3.5, there is a path Q in
H(A) from row vertex k′ to column vertex j whose intermediate column vertices are
all in {1, . . . , j − 1} and that has no vertex in Cj−1 ∪Rj−1. This is the path searched
in the theorem.

Proof of Case 2 (i < j (structure of U)). According to Theorem 3.5, there is a
path Q in H(A) from row vertex k′ to column vertex j whose intermediate column
vertices are all in {1, . . . , i − 1} and that has no vertex in Ci−1 ∪ Ri−1.

By hypothesis, the factorization exists; thus the ith diagonal element of PA is
nonzero. Theorem 3.5 applies with respect to this element and says that there is a
path R in H(A) from column vertex i to row vertex k′ whose intermediate column
vertices are all in {1, . . . , i − 1} and that has no vertex in Ci−1 ∪ Ri−1.

Using the path R and the path Q, we can form a path in H(A) from column vertex
i to column vertex j whose intermediate column vertices are all in {1, . . . , i − 1} and
that has no vertex in Ci−1 ∪ Ri−1. This is the path searched in the theorem.

The next two theorems show that the upper bound defined in Theorem 4.1 for
the structure of L and U is tight. First, Theorem 4.2 shows that the bound for the
structure of L is tight, and it is illustrated in Figure 4.1. Second, Theorem 4.3 shows
that the bound for U is tight, and it is illustrated in Figure 4.2.

The bound for L depends on the row permutations of A. It considers every row
i of the original matrix A. The bound identifies all column indices j that correspond
to elements of row i that can become potentially nonzeros during the factorization
through permutations. The bound for U is independent of row permutations of A.
It identifies potential nonzeros Uij using paths that relate column vertex i to column
vertex j in the bipartite graph of A. None of the results assumes that the input matrix
A has a zero-free diagonal.

Theorem 4.2. Let H be the structure of a square Hall matrix. Let j be a column
vertex, Cj−1 be the Hall set of maximum cardinality in the first j − 1 columns, Rj−1

be the set of row indices covered by columns in Cj−1, and i′ be any row vertex not
in Rj−1. Suppose that H contains a path from i′ to j whose intermediate column
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Fig. 4.1. Example for Theorem 4.2 showing the construction that makes element L75 nonzero
for the Hall matrix A at the top left. The last row vertex on the path (7′, 4, 2′, 1, 5′, 5) between i′ = 7′

and j = 5 satisfying the conditions in Theorem 4.2 is e′ = 5′. The graph Hj−1, presented at the top
right, is the subgraph of H induced by column vertices 1 through j−1 = 4 and all of the row vertices.
The solid edges represent a column-complete matching Mj−1 that excludes row vertex 7′ and with
respect to which there is a c-alternating path R = (5′, 1, 2′, 2, 7′) from 5′ to 7′. At the bottom right,
K is the submatrix of PA with columns 1 through j = 5 and the rows in corresponding positions after
four steps of pivoting. The fifth row of K is k′ = i′ = 7′. In H(K) there is a maximum matching
Mj−1 ⊕R represented by solid edges at the bottom right. Thus the element L75 is nonzero.

vertices are all in {1, . . . , j−1} and which has no vertex in Cj−1∪Rj−1. There exists
a nonsingular matrix A with H(A) = H and a permutation matrix P such that if A
is factored by Gaussian elimination with row interchanges as PA = LU , then row i
of A is permuted in some row position k of PA, k ≥ j and Lkj 	= 0.

Proof. By hypothesis, there is a path in H from i′ to j whose intermediate column
vertices are all at most j. Consider Hj−1 the subgraph of H induced by all row vertices
and all column vertices from 1 to j − 1. The graph H satisfies the Hall property, and
hence Hj−1 also satisfies the Hall property. We obtain a column-complete matching
Mj−1 in this graph which will induce the pivoting order for the first j − 1 steps of
elimination. We partition the graph Hj−1 into two subgraphs. The first subgraph
H̃j−1 satisfies the Hall property and is induced by all of the row vertices in Rj−1 and
all of the column vertices in Cj−1. Let M̃j−1 be a perfect matching in this subgraph.
The second subgraph Ĥj−1 satisfies the strong Hall property and is induced by all of
the row vertices except row vertices in Rj−1 and all of the column vertices 1 through
j − 1 except column vertices in Cj−1. Let M̂j−1 be a column-complete matching in
this subgraph.

We distinguish two cases to determine M̂j−1, depending on if 〈i′, j〉 is an edge
of H(A) or not. First, assume that 〈i′, j〉 is an edge of H(A). Lemma 2.4 says that
for any column-complete matching M of Ĥj−1 there is a c-alternating path R from
i′ to some unmatched row vertex. We denote by M̂j−1 the matching obtained from
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Fig. 4.2. Example for Theorem 4.3 showing the construction that makes element U45 nonzero
for the Hall matrix A at the top left. The Hall set of maximum cardinality in the first three columns is
C3 = {3}, R3 = {3′}. Consider the path Q = (5, 5′, 1, 2′, 4) satisfying the conditions in Theorem 4.3

(k′ = 5′ and e′ = 2′). The graph Ĥ4, presented at the top right, is the subgraph of H induced by
column vertices 1 through i = 4 and all of the row vertices. The solid edges represent a column

complete-matching M4 that is formed by the edge 〈2′, 4〉, the matching M̂3 (formed by the edges

〈5′, 1〉, 〈7′, 2〉, 〈2′, 4〉), and the matching M̃3 (formed by the edge 〈3′, 3〉). This matching determines

the pivoting order for the first four steps of elimination. With respect to the matching M̂3 there is
a c-alternating path R = (5′, 1, 2′). Consider the matrix K = A([5′, 7′, 3′, 2′][1: 3, 5]) presented at
the bottom left and its graph presented at the bottom right. The perfect matching M is presented by
solid edges in the graph H(K). Since K satisfies the Hall property and the minor of order-3 of PA
is nonzero, then the element U45 is nonzero.

M by alternating along path R. With this choice, row vertex i′ is not covered by the
matching M̂j−1. Second, assume that 〈i′, j〉 is not an edge of H(A). Let e′ be the last
row vertex on the path between i′ and j, that is, the vertex just before j. Therefore
Lemma 2.6 applies and says that there is a column-complete matching M̂j−1 which
excludes vertex i′ and for which there exists a c-alternating path R from e′ to i′.

Let the column-complete matching Mj−1 be formed by the edges of M̂j−1 and
the edges of M̃j−1. We choose the values of A such that every square submatrix of
A that is Hall, including A itself, is nonsingular. We can say that this is possible by
using an argument as the one described in [11] (the determinant of a Hall submatrix
is a polynomial in its nonzero values, not identically zero, since the Hall property
implies a perfect matching). We choose the values of the nonzeros of A corresponding
to edges of Mj−1 to be larger than n and the values of the other nonzeros of A to
be between 0 and 1. With this choice, Lemma 2.1 says that the first j − 1 steps of
elimination of A pivot on nonzeros corresponding to edges of Mj−1. Let P be the
permutation matrix that describes these row interchanges.

Note that with our choice of Mj−1, row vertex i′ is not covered by the matching
Mj−1. Thus, after the first j−1 steps of elimination, row i of A was moved to a row in
position k of PA, where k ≥ j. We prove that this choice makes Lkj nonzero. If 〈i′, j〉
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is an edge of H(A), then Lkj is nonzero. Otherwise, let K be the j× j submatrix of A
that includes the first j columns and the rows 1 to j − 1 in corresponding positions of
PA and row i of A (that is, row k of PA). Thus the columns of K are those numbered
1 through j in H(A). The first j − 1 columns are matched by Mj−1, while the last
column j is not matched by Mj−1. The first j − 1 rows of K are those matched to
columns 1 through j − 1 of H(A) by Mj−1. The last row of K is row number i of A.

To show that Lkj is nonzero, we still need to show that K satisfies the Hall prop-
erty. Recall that column vertex j and row vertex i′ are not matched by the matching
Mj−1 in H(K). Consider path R from e′ to i′ that is c-alternating with respect to
matching Mj−1. Obtain a new matching Mj−1 ⊕R from Mj−1 by alternating along
path R. As i′ is not matched in Mj−1 and e′ is matched in Mj−1, then i′ is matched
in Mj−1⊕R and e′ is not matched in Mj−1⊕R. Add to matching Mj−1⊕R the edge
〈e′, j〉, and thus we get a perfect matching in H(K); that is, H(K) satisfies the Hall
property. By our choice of values, every submatrix that satisfies the Hall property is
nonsingular. Therefore element Lkj is nonzero.

Theorem 4.3. Let H be the structure of a square Hall matrix. Let i and j
be two column vertices, i < j, let Ci−1 be the Hall set of maximum cardinality in
the first i − 1 columns, and let Ri−1 be the row vertices covered by columns in Ci−1.
Suppose that H contains a path from j to i whose intermediate column vertices are
all in {1, . . . , i−1} and that has no vertex in Ci−1 ∪Ri−1. There exists a nonsingular
matrix A with H(A) = H and a permutation matrix P such that if A is factored by
Gaussian elimination with row interchanges as PA = LU , then Uij is nonzero.

Proof. By hypothesis, there is a path Q in H(A) from column vertex j to column
vertex i whose intermediate column vertices are all at most i − 1. Let k′ be the first
row vertex on Q, that is, the vertex just after j on Q. Let e′ be the last row vertex
on Q, that is, the vertex just before i on Q. Note that e′ can be equal to k′.

Let Ĥi−1 be the strong Hall subgraph of H induced by all of the row vertices
except row vertices in Ri−1 and all of the column vertices 1 through i − 1 except
column vertices in Ci−1. Lemma 2.6 says that there is a column-complete matching
M̂i−1 which excludes e′ and for which there exists a c-alternating path R from k′ to
e′. (If k′ = e′, then R is empty.) Let H̃i−1 be the subgraph of H(A) induced by all
of the row vertices in Ri−1 and all of the column vertices in Ci−1. The graph H̃i−1

satisfies the Hall property, and Lemma 2.6 says that there is a perfect matching M̃i−1

in H̃i−1.
Consider Hi the subgraph of H induced by all of the row vertices and all of the

column vertices 1 through i. The matching Mi formed by the edge 〈e′, i〉, all of the
edges of M̂i−1, and all of the edges of M̃i−1 is a column-complete matching in Hi . We
choose the values of A such that every square submatrix of A that is Hall, including
A itself, is nonsingular. We set the values of the nonzeros of A corresponding to edges
of Mi to be larger than n and the values of the other nonzeros of A to be between
0 and 1. With this choice the first i steps of elimination of A pivot on nonzeros
corresponding to edges of Mi (Lemma 2.1). Let P be the permutation matrix that
describes these row interchanges.

We prove that this pivoting choice makes Uij nonzero. Let K be the submatrix
PA(1: i, [1: i − 1, j]). To show that Uij is nonzero, we need to show that the graph
H(K) satisfies the Hall property. For this, consider again the matching M̂i−1 and
the c-alternating path R from k′ to e′. Consider the path formed by the edge 〈j, k′〉
followed by R, and consider the matching M obtained by alternating along this path.
Since k′ is matched by M̂i−1 and j is unmatched by M̂i−1, then both k′ and j are
matched by M , and its cardinality is |M̂i−1|+1. We add to matching M the edges of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STRUCTURE PREDICTION FOR SPARSE LU FACTORIZATION 1537

M̃i−1. Thus M is a perfect matching in H(K); that is, this matrix satisfies the Hall
property, and its determinant is nonzero. This shows that Uij is nonzero.

We make one final note on the similarities between the exact structure prediction
presented in this section and the sparsity analysis of the QR factorization for square
matrices satisfying the Hall property. The structure prediction for the QR factoriza-
tion of matrices satisfying only the Hall property was studied by Hare et al. in [15] and
Pothen in [19]. It can be easily shown that the structure of Q represents a tight exact
bound for the structure of L of the factorization PA = LU and that the structure of
R is a tight exact bound for the structure of U obtained from Gaussian elimination
with row interchanges.

5. The row merge graph and structure prediction for A = P1L1 . . .
Pn−1Ln−1U . Let A be an n×n matrix with nonzero diagonal that satisfies the Hall
property. Suppose A is factored by Gaussian elimination with row interchanges as
A = P1L1P2L2 . . . Pn−1Ln−1U and L̃ is the union of the Li. An upper bound for the
nonzero structure of L̃ and U was proposed by George and Ng [9]. This upper bound,
called the row merge graph, contains the nonzeros in the factors for all possible row
permutations that can later appear in the numerical factorization due to pivoting.
In this section we discuss the row merge graph as an upper bound for the nonzero
structure of the factors L̃ and U when the matrix A satisfies only the Hall property.
Thus we extend the work of Gilbert and Ng who showed in [11] that the row merge
graph is a tight upper bound for Gaussian elimination with row permutations of strong
Hall matrices.

First, we consider an exact analysis; that is, we assume only that the nonzero
values in A are algebraically independent of each other. By a simple counterexample
we show that for matrices satisfying only the Hall property, the row merge graph is
not a tight bound for the factors L̃ and U in the exact sense. This means that the
row merge graph predicts as nonzero elements of L̃ and U that during the actual
factorization are zeroed. Second, we relax the condition on the numerical values of
the nonzeros of A by considering a symbolic analysis. This is a weaker analysis than
the exact analysis performed in section 4, since we ignore the possibility of numeric
cancellation during the factorization. With this assumption, we show that the row
merge graph is a tight bound for the factors L̃ and U . In other words, for every edge
of the row merge graph of a Hall matrix, there is a permutation such that this edge
corresponds to a symbolic nonzero in the factors L̃ or U .

5.1. Existing results. The row merge graph was proposed by George and Ng [9]
as an upper bound for the nonzero structure of L̃ and U and is obtained as follows:
at each step of elimination an upper bound of the structure of L̃ and U is computed.
Consider step i and all of the rows that are candidates to pivoting at this step. An
upper bound of their structure is given by the union of their structures. Thus the
structure of each row candidate to pivoting is replaced by this union. The bipartite
graph that contains all of the edges of the upper bound of L̃ and U is called the row
merge graph, denoted by H×(A). The matrix containing a nonzero element for each
edge of H×(A) is referred to as the row merge matrix of A, denoted as A×. Several
results in the literature use a directed version of the row merge graph, denoted as
G×(A) or G×(H). This graph has n vertices and an edge for each nonzero of A×.
The next theorem proves the claim that the row merge graph is an upper bound for
the structure of L̃ and U .

Theorem 5.1 (George and Ng [9]). Let A be a nonsingular square matrix with
nonzero diagonal. Suppose Gaussian elimination with row interchanges is performed
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Fig. 5.1. Example matrix A showing that the row merge graph is not an exact tight bound. The
nonzero elements of A are denoted by x, and the fill elements of the factors L̃ and U (corresponding
to edges of G+(PA)) are denoted by o.

as A = P1L1 . . . Pn−1Ln−1U , and let L̃ be the union of the Li. Then

G(L + U) ⊆ G×(A).

When the matrix satisfies the strong Hall property, Gilbert and Ng [11] showed that
this graph represents a tight exact bound for the structure of L̃ and U . That is,
having a strong Hall graph H , for every edge 〈i′, j〉 in its row merge graph H×, there
exists a nonsingular matrix A (depending on i′ and j) with H(A) = H such that the
element in position (i, j) of L+U is nonzero. Nothing is known for the case when the
matrix satisfies only the Hall property, and this question is the subject of this section.

5.2. The row merge graph and counterexample for tight exact bounds.
In Figure 5.1 we give a counterexample showing that the row merge graph is not tight
in the exact sense. The edge 〈4′, 3〉 is an edge of the row merge graph H×(A). We
present a permutation that makes the entry in position (4, 3) nonzero in the factor L̃.
At the first step of elimination we pivot on the element at position (2, 1), while at the
next steps of elimination we pivot on the diagonal. Let P be the matrix describing
these permutations. The directed graph G(PA) has a path (4, 1, 3); therefore the
element in position (4, 3) fills in. Then the 〈4, 3〉 entry in G+(PA) is nonzero, but
L̃43 = 0, regardless of the nonzero values of A. Note that there is no choice of pivot
at the first step of elimination that fills the element at position (4, 3). We conclude
that there is no permutation that makes the element L̃43 nonzero.

5.3. The row merge graph as a tight symbolic bound. We now discuss
a symbolic analysis; that is, we ignore the possibility of numeric cancellation during
the factorization. With this assumption, we show that the row merge graph is a tight
bound for the factors L̃ and U .

An example of the construction of the row merge matrix is presented in Figure 5.2.
At the first step of elimination, rows 1, 4, and 5 are candidates to pivoting. The union
of their structure is formed, and it replaces the structure of each one of these rows.
This is repeated at each step on the trailing matrix.

Row merge fill elements refer to elements that are zero in the original matrix A
but are nonzero in the row merge matrix A×. Similarly, row merge fill edges refer to
those edges that don’t belong to H(A) but belong to the row merge graph H×(A).
The row merge fill edges in the row merge graph H×(A) are related to paths in the
bipartite graph H(A) by Definition 5.2 and Theorem 5.3.

Definition 5.2 (Gilbert and Ng [11]). A path Q = (i′, j1, i′1, j2, i
′
2, . . . , jt, i

′
t, j)

in H(A) is a row merge fill path for LU elimination with partial pivoting if either
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Fig. 5.2. Example to illustrate the construction of a row merge matrix A×, Theorems 5.4
and 5.5. The nonzero elements of A are denoted by x, and the row merge fill elements are denoted
by o.

t = 0 or the following conditions are satisfied:
1. jk < j and jk ≤ i′ for all 1 ≤ k ≤ t.
2. Let jp be the largest jk. Then there is some q with p ≤ q ≤ t, jp ≤ i′q ≤ n, and

the three paths Q[i′: jp], Q[jp: i′q], and Q[i′q: j] are also row merge fill paths in
H(A).

The next theorem due to Gilbert and Ng gives a necessary and sufficient condition
for fill to occur in the row merge graph H×(A).

Theorem 5.3 (Gilbert and Ng [11]). For two vertices i′, j of the bipartite graph
H(A), the edge 〈i′, j〉 is an edge of H×(A) if and only if there is a row merge fill path
joining i′ and j in H(A).

We present two algorithms that use Definition 5.2 to decompose a row merge
fill path in paths and edges of the bipartite graph H(A). Algorithm 2 decomposes
the row merge fill path Q[i′: j] in subpaths by recursively applying Definition 5.2.
The recursivity is stopped when a path is reduced to an edge. Its aim is to record
for each intermediate column vertex jp its corresponding row vertex of the middle
path Q[jp: i′q] (that is, MC[jp] = i′q). Note that the vertices belonging to Q[i′: j] are
distinct, and hence each intermediate vertex belongs to one and only one middle path.

Algorithm 2. Decomposition in subpaths
Input Q = (i′, j1, i

′
1, . . . , jt, i

′
t, j)

Output MC array updated
if t �= 0 then

1. decompose Q[i′: j] in Q[i′: jp], Q[jp: i′q], and Q[i′q: j] such that jp is the largest jk,
where 1 ≤ k ≤ t and jp ≤ i′q ≤ n and the three paths are also row merge fill paths
(Definition 5.2).
2. MC[jp] = i′q.
3. decompose each of the three paths (which is not an edge) in sub-fill paths.

end if

Algorithm 3 decomposes the row merge fill path Q[i′: j] in an alternating sequence
of edges and middle paths that we refer to as ASEM . It is easy to check that
this algorithm returns the sequence ASEM = {〈i′, k1〉,Q[k1: MC[k1]], 〈MC[k1], k2〉,
Q[k2: MC[k2]], . . . , Q[ku: MC[ku]], 〈MC[ku], j〉}, where u ≤ t and k1 = j1.

Consider an edge of the row merge graph 〈i′, j〉 and its associated row merge
fill path Q = (i′, j1, i′1, . . . , jt, i

′
t, j). We define a pivoting strategy relative to this

path. At each elimination step k, if column vertex k is an intermediate vertex of
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Algorithm 3. Decomposition in alternating sequence of edges and middle paths
Input Q = (i′, j1, i

′
1, . . . , jt, i

′
t, j)

Output alternating sequence ASEM
if t �= 0 then

1. decompose Q[i′: j] in Q[i′: jp], Q[jp: i′q] and Q[i′q : j] such that jp is the largest jk,
jp ≤ i′q ≤ n, and the three paths are also row merge fill paths (Definition 5.2).
2. decompose Q[i′: jp] in an alternating sequence and assign it to ASEM .
3. add the middle sub-fill path Q[jp: i′q ] at the end of the sequence ASEM .
4. decompose Q[i′q : j] in an alternating sequence and add it at the end of the sequence
ASEM .
5. return the sequence ASEM .

else
6. return the edge 〈i′, j〉.

end if

the path Q[i′: j], then we pivot on the element in position (MC[k], k), and Pk is the
elementary permutation matrix that describes this pivoting. If column vertex k is not
an intermediate vertex of Q[i′: j], then we pivot on the diagonal element; that is, the
elementary permutation matrix Pk is the identity. We call this strategy of pivoting
the middle correspondent pivoting strategy with respect to the path Q[i′: j]. In the
next theorem we prove that such a strategy is valid; that is, the LU factorization
exists in a symbolic sense.

Lemma 5.4. Let A be a square matrix with nonzero diagonal that satisfies the
Hall property. Let 〈i′, j〉 be an edge of the row merge graph H×(A) and Q[i′: j] be its
corresponding fill path in H(A). Let P = Pn−1 . . . P2P1 be the permutation matrix
describing the middle correspondent pivoting strategy relative to Q[i′: j]. Gaussian
elimination A = P1L1 . . . Pn−1Ln−1U exists in the symbolic sense.

Proof. If the fill path Q[i′: j] corresponds to an edge of H(A), then we choose P
to be the identity matrix. As we assume the matrix A has a nonzero diagonal, the
Gaussian elimination exists in the symbolic sense. In the rest of the proof, we assume
that 〈i′, j〉 is not an edge of H(A).

As the case j = 1 is trivial, we will assume that j > 1. We will prove this by
induction. At the first step of elimination, if row vertex 1′ and column vertex 1 do
not belong to Q[i′: j], then we pivot on the element in position (1, 1). If the column
vertex 1 belongs to Q[i′: j], then consider the fill path Q[1: k′], where k′ = MC[1] and
k′ ≥ 1. We can see that Q[1: k′] is an edge of H(A), and thus we can pivot on the
element Ak1. Note that according to Definition 5.2, we cannot have that row vertex
1′ belongs to Q[i′: j] and column vertex 1 does not belong to Q[i′: j].

Consider the kth step of elimination, where k < n. Suppose that at each elim-
ination step prior to k, the middle correspondent pivoting strategy was valid; that
is, the diagonal elements of the permuted matrix are nonzero. We show that at this
step k we can apply the same pivoting strategy. Let PK−1 be the permutation matrix
that describes the first k − 1 row interchanges, that is, PK−1 = Pk−1 . . . P1. Let Ak

be the k × k principal submatrix of PK−1A that includes the first k columns and the
rows in corresponding positions of PK−1A. The columns of Ak are those numbered 1
through k in H(A); the rows of Ak are those given by the permutation matrix PK−1.
We add to the matrix Ak all of the diagonal elements, except the last one, nonzero
by our hypothesis. In the directed graph G(Ak) we will number the vertices from 1
to k.
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First, we will prove that the kth diagonal element of the permuted matrix PK−1A
is nonzero. This corresponds to the last diagonal element of Ak. If k′ is not an inter-
mediate row vertex of the path Q[i′: j], then during the first k−1 steps of elimination
row k was not permuted, and the last diagonal element of Ak is nonzero by our hypoth-
esis. If k′ is an intermediate row vertex on the path Q[i′: j], then row k was permuted
during the first k − 1 steps of elimination. We denoted by d the row that at the kth
step of elimination is in position k of matrix Ak. We now trace the pivoting process
to discover where row d comes from. Let k1 be the middle correspondent vertex of k′

(MC[k1] = k′, k1 ≤ k′). If k1 = k, then d′ = k′. Otherwise, according to our pivoting
choice, the element in position (k′, k1) was used as the pivot at step k1, and thus row k
was interchanged with the row in position k1. At this point, either row vertex k′

1 does
not belong to Q[i′: j], and then d = k1, or else it belongs, and then row k1 was used
as the pivot in some column k2, where it was interchanged with some row k2 < k1.
Extending the induction, we arrive at a row vertex k′

q = d′, which is not an interme-
diate row vertex of Q[i′: j]. The vertices in H(A) followed while tracing the pivoting
process form the path (k, k′, k1, k

′
1, k2, k

′
2, . . . , kq, d

′). On this path, the edge 〈k′, k1〉
and the edges 〈k′

p, k
′
p+1〉, with 1 ≤ p < q, correspond to diagonal elements of Ak.

Hence this path can be transformed into the path (k, k1, . . . , kq, k) in G(Ak). As k >
k1 > · · · > kq, according to Theorem 3.1 this path is a fill path in the directed graph
G(Ak), and the kth diagonal element of PK−1A corresponds to a symbolic nonzero.

Second, we show that at elimination step k we can apply the middle correspondent
pivoting strategy. We distinguish two cases.

Case 1 (column vertex k is not an intermediate column vertex of Q[i′: j]). We
have just proved that the kth diagonal element of PK−1A is an edge of the filled graph
G+(Ak). We use as the pivot the diagonal element.

Case 2 (column vertex k is an intermediate column vertex of Q[i′: j]). Let e′ be
the middle path correspondent vertex of k, that is, MC[k] = e′ and k ≤ e′. Let
Q[e′: k] be the fill path between e′ and k which is a subpath of our initial path Q[i′: j].

If e′ = k′ (that is, MC[k] = k′), then row k′ was not involved in any row per-
mutation. We use as the pivot the diagonal element. If e′ > k, then let K be the
(k + 1)× (k + 1) submatrix of PK−1A that includes the first k columns and the rows
in corresponding positions of PK−1A and column e and row e′ of PK−1A. We add
to matrix K the first k diagonal elements, which correspond to symbolic nonzeros by
our hypothesis. The vertices of the directed graph G(K) are the vertices 1 through k
and vertex e.

In the following, we want to show that 〈e, k〉 is an edge of the directed graph
G+(K). If path Q[e′: k] is simply an edge, then 〈e, k〉 is an edge of G+(K). Other-
wise, we decompose path Q[e′: k] into an alternating sequence of edges and middle
paths using Algorithm 3. The following sequence is obtained: {〈e′, e1〉, Q[e1: MC[e1]],
〈MC[e1], e2〉, Q[e2: MC[e2]],. . . ,Q[eq: MC[eq]], 〈MC[eq], k〉}. We can rewrite the se-
quence as a directed path from vertex e to vertex k of G(K): (e, e1, e2, . . . , eq, k).
The intermediate vertices on this path are less than both e and k, because of the
row merge fill paths Definition 5.2. Therefore 〈e, k〉 is an edge of G+(K), and thus it
corresponds to a symbolic nonzero. This shows that we can choose as the pivot the
element in position (e, k) at this step of elimination, and this ends our proof.

The next theorem shows that the row merge graph represents a tight bound for
the nonzero structure of L̃ and U , in the symbolic sense. It is illustrated in Figures 5.3,
5.4, 5.5, and 5.6.

Theorem 5.5. Let A be a square matrix with nonzero diagonal that satisfies
the Hall property. Let 〈i′, j〉 be an edge of the row merge graph H×(A). There is a
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Fig. 5.3. Example illustrating Theorem 5.5 and showing that L97 is nonzero for the
row merge matrix presented in Figure 5.2. Consider the row merge fill path Q[9′: 7] =
(9′, 6, 10′, 2, 4′, 1, 5′, 4, 7′, 7). This path is displayed by solid edges in the bipartite graph H(A). Fig-
ure 5.4 presents the decomposition of path Q[9′: 7] by Algorithms 2 and 3. First, Algorithm 2
decomposes Q[9′: 7] and obtains the following middle paths: Q[6: 10′],Q[2: 5′],Q[4′: 1],Q[4: 7′]. This
decomposition gives us the pivoting strategy, illustrated in the permuted matrix at the top left of Fig-
ure 5.3. Second, the fill path Q[9′: 7] is decomposed in an alternating sequence of edges and middle
paths using Algorithm 3. This allows us to obtain the path (9, 6, 2, 4, 7) which is a fill path in the
directed graph of the permuted matrix PA.

(7’,7)

(10’,2) (5’,4)

(6,10’)

(4,7’)

(9’,6)

(7’,7)

(10’,2) (5’,4)

(6,10’)

(4,7’)

(2,4’) (4’,1) (1,5’)

Q[9’:7]

Q[10’:7]

Q[10’:4]

Q[2:5’]

Q[9’:7]

Q[10’:7]

Q[10’:4]

Q[2:5’]

(9’,6)

Fig. 5.4. Example of the application of Algorithm 2 (left) and Algorithm 3 (right) on the path
Q[9′: 7] = (9′, 6, 10′, 2, 4′, 1, 5′, 4, 7′, 7) from Figure 5.3.

permutation P = P1P2 . . . Pn−1 such that if A is factored by Gaussian elimination as
A = P1L1 . . . Pn−1Ln−1U , with L̃ being the union of Li, then (L + U)ij 	= 0, in the
symbolic sense.

Proof. According to Theorem 5.3 there is a row merge fill path in H(A) from
row vertex i′ to column vertex j. Let Q[i′: j] be formed by the vertices (i′, j1, i′1, . . . ,
jt, i

′
t, j). Assume that t 	= 0. At each step of elimination we pivot following the

middle correspondent pivoting strategy with respect to the path Q[i′: j], as described
in Lemma 5.4.

Assume now that we are at the jth step of elimination. Let PJ−1 be the permu-
tation matrix that describes the first j − 1 row interchanges. Let K be the principal
submatrix of PJ−1A that includes the first j columns and column i and the rows in
corresponding positions of PA (that is, if i′ ≤ j, then K is a j×j matrix; otherwise K
is a (j + 1)× (j + 1) matrix). In matrix K we add diagonal elements, with 1 ≤ i ≤ j,
which are nonzero by our hypothesis. When i > j, we also add diagonal element (i′, i)
(row i was not permuted). The vertices of the directed graph G(K) are numbered 1
through j and i.
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H(A) G(PA)PA

1

2

3 4 5
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Fig. 5.5. Example illustrating Theorem 5.5 and showing that U89 is nonzero for the row merge
matrix presented in Figure 5.2. The row merge fill path Q[8′: 9] = (8′, 8, 10′, 4, 7′, 5, 5′, 1, 1′, 3, 9′, 9)
is displayed by solid edges in the bipartite graph H(A). Figure 5.6 presents the decomposition of
path Q[8′: 9] by Algorithms 2 and 3. First, the path Q[8′: 9] is decomposed using Algorithm 2,
and the following middle paths are obtained: Q[8: 10′],Q[4: 7′],Q[5: 5′],Q[9′: 3], and Q[1: 1′]. This
decomposition gives us the pivoting strategy, illustrated in the permuted matrix at the top left of
Figure 5.5. Algorithm 3 decomposes the fill path Q[8′: 9] in an alternating sequence of edges and
middle paths. This allows us to obtain the path (8, 4, 5, 1, 3, 9) which is a fill path in the directed
graph of the permuted matrix PA.

(10’,4) (7’,5)(4,7’)

(8’,8) (8,10’)

(5,5’)

(1,1’) (1’,3)

(3,9’) (9’,9)

(5’,1)

Q[8’:9]

Q[10’:9]

Q[10’:5]

Q[5’:3]

Q[5’:9]

Fig. 5.6. Example of the application of Algorithms 2 and 3 on the path Q[8′: 9] =
(8′, 8, 10′, 4, 7′, 5, 5′, 1, 1′, 3, 9′, 9) from Figure 5.5. Both algorithms return the same result.

Case 1 (i > j (structure of L̃)). The proof is similar to the proof of Lemma 5.4,
in which a middle path becomes an edge of the filled graph of A, and we omit the
details here.

Case 2 (i < j (structure of U)). Consider row merge fill path Q[i′: j] = (i′, j1, i′1,
. . . , jt, i

′
t, j). We distinguish two cases. If column vertex i is not a vertex of path

Q[i′: j], then row i of A is not permuted during our pivoting strategy, and the proof
is similar to the L̃ case. If column vertex i is a vertex of path Q[i′: j], Definition 5.2
decomposes this path in the following three paths: Q[i′: i], Q[i: k′], and Q[k′: j] such
that i < k′ ≤ n, and the three paths are also row merge fill paths in H×(A). Our
pivoting strategy interchanges rows i and k of A at the ith step of elimination. We use
Algorithm 3 to decompose the path Q[k′: j] in an alternating sequence of edges and
middle paths. This sequence is transformed into a path from i to j in the graph G(K)
which has all of the intermediate column vertices smaller than i. This corresponds to
an edge in the filled graph G+(K). Thus the element Uij corresponds to a symbolic
nonzero, and this ends our proof.
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We make one note about the structure prediction of A = P1L1 . . . Pn−1Ln−1 U .
The tight bound of U obtained for the structure prediction of PA = LU (Theorem 4.3)
also represents a tight bound for U obtained in A = P1L1 . . . Pn−1Ln−1 U . But there
does not seem to be a simple way to express tight exact bounds for L̃, where L̃ is the
union of the Li obtained from A = P1L1 . . . Pn−1Ln−1U .

6. Concluding remarks. In this paper we have discussed two aspects of interest
in the structure prediction problem of sparse LU factorization with partial pivoting
of a matrix A. The first aspect considers the computation of the nonzero structure
of the factors during Gaussian elimination with row interchanges. We have presented
new results that provide an exact structure prediction for matrices that satisfy the
strong Hall property or only the Hall property. We then have used the theoretical
results to derive an algorithm for computing fill-ins. The second aspect is to estimate
tight bounds of the structure of L and U prior to the numerical factorization. We
have introduced tight exact bounds for the nonzero structure of L and U of Gaussian
elimination with partial pivoting PA = LU , under the assumption that the matrix A
satisfies the Hall property. We have also shown that the row merge graph represents
a tight symbolic bound for the structure of the factors L̃ and U obtained from the
factorization A = P1L1 . . . Pn−1Ln−1U .

The practical usage of the exact structure prediction presented in this paper re-
mains an open problem. Several aspects are of interest. One important question is to
understand if rounding to zero elements that correspond to numeric cancellation in
exact arithmetic leads to instability in the Gaussian elimination. A different aspect is
to analyze on real world matrices how many numeric cancellations, that Theorem 3.4
identifies, occur during Gaussian elimination. Another aspect is to compare exper-
imentally the bounds presented in this paper with the bounds provided by the row
merge graph, knowing that the latter can be efficiently computed [14].

Acknowledgments. The authors thank the anonymous reviewers for their help-
ful comments and suggestions to improve the presentation of the paper.
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ERROR ESTIMATES FOR POLYNOMIAL KRYLOV
APPROXIMATIONS TO MATRIX FUNCTIONS∗
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Abstract. In this paper we are interested in the polynomial Krylov approximations for the
computation of ϕ(A)v, where A is a square matrix, v represents a given vector, and ϕ is a suitable
function which can be employed in modern integrators for differential problems. Our aim consists
of proposing and analyzing innovative a posteriori error estimates which allow a good control of the
approximation procedure. The effectiveness of the results we provide is tested on some numerical
examples of interest.

Key words. Krylov methods, matrix functions, exponential-like functions, error estimates
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1. Introduction. Krylov subspace methods are commonly used for evaluating
y = ϕ(A)v in the case when ϕ is a suitable function, A represents a large sparse
matrix, and v is a given vector. The simplest Krylov approach provides polynomial
approximations achieved in the Krylov subspaces generated by A and v. Its applica-
tion to the exponential matrix operator and, more in general, to functions representing
differential problem solutions has received wide attention in the literature; among oth-
ers, we quote [7], [22], [31], [17], [26], [23], where different a priori error estimates have
been proposed. We notice that these estimates are usually obtained by employing
some minimal information concerning the matrix A, such as the spectrum size or the
numerical range; therefore, they often turn out to be pessimistic and not so useful in
the error-control procedure due to their inability of adaption to the spectrum. Thus,
obtaining adaptive a posteriori error bounds represents an interesting task which, in
our knowledge, has not been developed yet.

In this framework our aim consists of proposing a posteriori error estimates em-
ployed in the computation of a specific class of functions represented in integral form.
In particular, we refer to exponential-like operators that are considered as the basis
for constructing exponential integrators widely used in modern methods for solving
differential problems (see, e.g., [19], [20], [18], [21], [25], [2]); moreover, we also analyze
the case of trigonometric functions which are involved in the solution of second order
differential systems (see [15]).

In this respect, the paper is organized in the following way. In section 2 we provide
some general results related to polynomial Krylov approximations for matrix func-
tions represented by some general integral forms. We specify and extend the results
dealing with the cases of both the exponential-like functions and the trigonometric
ones, in the specific of cos and sinc functions, in section 3. Moreover, some numer-
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ical experiments are shown in section 4 with the aim of testing the effectiveness of
the proposed estimates. Our bounds are compared with the best a priori error esti-
mates already known in the literature (see [7] and [17]) since, up to our knowledge, a
posteriori ones have never been provided so far.

2. Polynomial Krylov methods. We are going to sketch important and well-
known features of polynomial Krylov methods; in particular, we provide and prove
some results concerning their application in computing specific matrix functions rep-
resented in integral form. With this aim, in the sequel ‖·‖ represents the vector and
matrix Euclidean norm and Πk is the set of all the algebraic polynomials with degree
equal or less than k (k ∈ N).

Let A be a given N×N matrix; we denote the spectrum by σ(A) and the numerical
range by W (A), i.e.,

W (A) =
{
〈x, Ax〉
〈x, x〉 , x(�= 0) ∈ C

N

}
,

where 〈·, ·〉 represents the Euclidean inner product. We consider a given vector v with
‖v‖ = 1, and we focus on the Krylov subspaces

Km(A, v) = span
{
v, Av, . . . , Am−1v

}
related to A and v; thus, we suppose that {v1, v2, . . . , vj , . . .} is an ordered system of
vectors providing a basis for each Krylov subspace, that is

Km(A, v) = span {v1, v2, . . . , vm}

for every m. Moreover, under the assumption that

Avj =
j+1∑
i=1

hi,jvi,(1)

where hi,j ’s are suitable coefficients with hj+1,j �= 0 for 1 ≤ j ≤ m − 1, we denote by
Hm the m × m upper Hessenberg matrix having its entries given by the values hi,j

(1 ≤ i, j ≤ m). It follows that

AVm = VmHm + hm+1,mvm+1e
T
m,(2)

where Vm=(v1, v2, . . . , vm) and each ej represents the jth column of the m × m unit
matrix.

It is possible to prove that for any qm−1 ∈ Πm−1 it holds that

qm−1(A)v = Vmqm−1(Hm)e1.(3)

Different choices for the previous basis {v1, v2, . . . , vm}, generated via relation-
ships like (1), have been proposed in the literature: for instance, it is possible to
adopt classical, full, or incomplete (IOM) Arnoldi’s algorithm, Lanczos biorthogonal-
ization, Chebyshev or Faber polynomials ([26]), quasi-kernel polynomials ([27]), or
Leja sequences ([4]). Furthermore, throughout the paper we assume exact arithmetic
(anyway, we refer to the recent survey [24] and the references therein concerning the
treatment of problems related to finite precision arithmetic in the field of Krylov
methods).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1548 F. DIELE, I. MORET, AND S. RAGNI

As already pointed out, our aim consists of evaluating

y = ϕ(A)v

under the assumption that ϕ is a function representable in the general integral form

ϕ(A) =
∫

Γ

g(λ)(λI + A)−1dλ,(4)

where Γ and g are a suitable curve in the complex plane and a scalar function, re-
spectively. We notice that every function analytic in a domain including σ(A) can
be written in this integral form due to the well-known Dunford–Taylor theorem. We
remark also that a specific example in the class of functions (4) consists of the dis-
crete counterpart given by the partial fraction forms. They may arise by applying any
quadrature to evaluate integral representation (4), as it is shown in some applications
in [3], [6], [21]. Moreover, linear partial fractions can give raise to some computa-
tional advantages when they are adopted for representing rational functions; in this
respect, we quote the recent paper [23], where the convergence of the polynomial
Krylov method is investigated as what concerns Padé or Chebyshev approximations
of the exponential function.

Assume that σ(A) ∪ σ(Hm) is included in a given domain G; furthermore let
ϕ be analytic in G itself and continuous on its closure. Then the mth polynomial
approximation (related to (2)) for the computation of y is defined by

ym = Vmϕ(Hm)e1.

We recall that, in particular, if {vj}j=1,2,... are generated by means of the full Arnoldi’s
algorithm, they are orthonormal vectors and the resulting approach is referred to as
the Polynomial Arnoldi (PA) method. More in general, from (2) and the relationship

y − ym =
∫

Γ

g(λ)
(
(λI + A)−1v − Vm(λI + Hm)−1e1

)
dλ,(5)

it follows that for any polynomial Krylov scheme we have

y − ym =
∫

Γ

g(λ)ξm(λ)(λI + A)−1vm+1dλ,(6)

where

ξm(λ) = −hm+1,m

(
eT

m(λI + Hm)−1e1

)
.

By exploiting (6) it is possible both to obtain error estimates and to put a restart
procedure right; indeed the error formulation is featured by the same form of function
ϕ (different approaches of restarting Krylov methods for matrix functions can be
found in [5] and [8]).

We are going to propose another error representation which generalizes a result
already given in [17] and [32] for the Arnoldi’s method. With this aim we set

Hλ,m =
(

λI + Hm

hm+1,meT
m

)
∈ C

(m+1)×(m+1);

thus from (2) we obtain

(λI + A)Vm = Vm+1Hλ,m.(7)
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In the sequel, e1 represents the first column of the (m + 1)× (m + 1) unit matrix and
{Uj}j=1,2,... is a sequence of N × j matrices which satisfy the relationships UH

j Vj = I

and UH
j vj+1 = 0; using these notations, in the following lemma (see [17] for its proof)

a further error formula is given.
Lemma 1. For each pm ∈ Πm with pm(−λ) = 1, it holds that

y − ym =
∫

Γ

g(λ)
(
(λI + A)−1 − Vm(λI + Hm)−1UH

m

)
pm(A)v dλ.

Moreover, for every x ∈ C
m the error formula is given in the equivalent form

y − ym =
∫

Γ

g(λ)
(
(λI + A)−1 − Vm(λI + Hm)−1UH

m

)
Vm+1(e1 − Hλ,mx) dλ.

In the sequel, for any m ≥ 0, we will denote

μm(λ, A) = min
pm∈Πm, pm(−λ)=1

‖pm(A)v‖

and

νm(λ, A) = min
x∈Cm

∥∥e1 − Hλ,mx
∥∥ .

Using (7) it is not so difficult to verify that∥∥UH
m+1

∥∥−1
νm(λ, A) ≤ μm(λ, A) ≤ ‖Vm+1‖ νm(λ, A).

In particular, when the PA method is applied (Um = Vm), Lemma 1 yields

‖y − ym‖ ≤
∫

Γ

|g(λ)|
(∥∥(λI + A)−1

∥∥+
∥∥(λI + Hm)−1

∥∥)μm(λ, A) |dλ| .(8)

For our purposes we set δm = 1 + h2
m+1,m‖(λI + Hm)−Hem‖2 and consider Hλ,m

partitioned in the form

Hλ,m =
(

dH
λ,m

Tλ,m

)
,(9)

where dH
λ,m represents the first row of Hλ,m itself and Tλ,m is an m × m upper

triangular matrix with diagonal entries given by the hj+1,j ’s (j = 1, . . . , m).
Lemma 2. For every λ /∈ σ(A) it holds that

νm(λ, A) =
1√

1 +
∥∥∥T−H

λ,mdλ,m

∥∥∥2
(10)

or, equivalently,

νm(λ, A) = δ−1/2
m |ξm(λ)|(11)

where

|ξm(λ)| =

∣∣∣∣∣∣det(λI + Hm)−1
m∏

j=1

hj+1,j

∣∣∣∣∣∣ .(12)
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Moreover, for m > 1, an upper bound is given by

νm(λ, A) ≤ hm+1,m

∥∥Um(λI + Hm)−Hem

∥∥ δ−1/2
m μm−1(λ, A).(13)

Proof. Identity (10) can be proved using the same arguments as employed in [33],
Proposition 4.1. Moreover it is possible to verify that

〈em, pm−2(Hm)e1〉 = 0(14)

for every pm−2 ∈ Πm−2. Therefore, exploiting the Cayley–Hamilton theorem, (12)
follows. Furthermore, we point out that H

H

λ,mHλ,m = dλ,mdH
λ,m +T H

λ,mTλ,m, and thus
we obtain

m∏
j=1

h2
j+1,j = det

(
T H

λ,mTλ,m

)
= det

(
H

H

λ,mHλ,m

)(
1 +

∥∥∥T−H
λ,mdλ,m

∥∥∥2
)−1

(15)

and det(H
H

λ,mHλ,m) = δm det((λI + Hm)H(λI + Hm)). In this way, once (10) is
proved, we have

νm(λ, A) = δ−1/2
m

∣∣∣∣∣∣
m∏

j=1

hj+1,j det((λI + Hm))−1

∣∣∣∣∣∣ ,
and then (11) follows from (12). Furthermore, due to (14) we obtain

νm(λ, A) = δ−1/2
m

∣∣hm+1,m〈em, ((λI + Hm)−1 + pm−2(Hm))e1〉
∣∣

for every pm−2 ∈ Πm−2 (m ≥ 2). Thus, when we consider any pm−1 ∈ Πm−1 with
pm−1(−λ) = 1, we have

νm(λ, A) = δ−1/2
m

∣∣hm+1,m〈em, (λI + Hm)−1pm−1(Hm)e1〉
∣∣ .

Due to this inequality and to (3) it follows that (13) is proved.
In the remaining part of the section we suppose that the full Arnoldi method is

employed in the construction of the Krylov subspaces; of course, in this case, it holds
that μm(λ, A) = νm(λ, A). Moreover, the results in Lemma 2 point out the hj+1,j ’s
role in the Krylov procedure. It is well known that hj+1,j ≥ 0 for each j and the
following relationship can be proved (see [34, p. 269])

m∏
j=1

hj+1,j = min
qm∈Π

(0)
m

‖qm(A)v‖(16)

with Π(0)
m being the set of all the monic polynomials with degree m. Recall that (16)

is useful for developing a priori bounds for
∏m

j=1 hj+1,j by means of known classical
results. For instance, if A is self-adjoint with spectrum in an interval of length 4γ,
then by suitable bounds for Chebyshev polynomials it is possible to verify that (see
[13, p. 91])

m∏
j=1

hj+1,j ≤ 2γm.(17)
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A further upper bound can be obtained assuming that the distinct eigenvalues of A
are arranged in decreasing order

0 ≤ · · · < λj(A) < λj−1(A) < · · · < λ2(A) < λ1(A)

and choosing pm(λ) =
∏m

j=1(λ − λj(A)) in (16); indeed, under this assumption we
have

m∏
j=1

hj+1,j ≤ max
k>m

m∏
j=1

(λj(A) − λk(A)).(18)

More in general, for any scalar α we consider the singular values of αI + A given
by

σ1(αI + A) ≥ σ2(αI + A) ≥ · · · ≥ σj(αI + A) ≥ · · ·

Since VmV H
m is an orthogonal projection, from (15) and (10) it is possible to obtain

(see [14, p. 128])

Πm
j=1hj+1,j = μm(α, A)

√
det (V H

m (αI + AH) (αI + A)Vm)

≤ μm(α, A)
m∏

j=1

σj(αI + A).

Assuming αI+A to be a compact operator in a Hilbert space with q > 0 summable sin-
gular values (i.e.,

∑+∞
j=1 σq

j < +∞), then by the geometric-arithmetic mean inequality
we have

m∏
j=1

σj(αI + A) ≤

⎛⎝ 1
m

m∑
j=1

(σj(αI + A))q

⎞⎠m/q

.(19)

In particular, for Hilbert–Schmidt operators, in correspondence with q = 2, it holds
that

m∏
j=1

σj(αI + A) ≤

⎛⎝ 1
m

m∑
j=1

(σj(αI + A))2

⎞⎠m/2

≤
(

1
m

‖αI + A‖2
F

)m/2

with ‖·‖F being the Frobenius norm.

3. Application to specific functions. We are interested in applying the re-
sults we have just provided in the previous section to specific cases. More precisely,
we first consider the so-called ϕ-functions which are widely used in modern methods
for solving differential problems; then we account for trigonometric functions, like cos
and sinc ones, that are involved in the construction of several numerical integrators
for solving second-order differential systems. We consider the PA method (anyway,
the use of other bases can be taken into account by developing similar arguments).
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3.1. The case of exponential-like functions. It is well known that ϕ-functions
are exponential-like ones defined as

ϕ0(−tz) = exp(−tz),

ϕk(−tz) =
1

(k − 1)!tk

∫ t

0

exp(−(t − s)z)sk−1ds, k = 1, 2, . . . ,

and they satisfy the recursive formula

ϕk+1(u) =
ϕk(u) − 1

k!

u
, ϕk(0) =

1
k!

, k = 0, 1, 2, . . .(20)

With the aim of evaluating

y(k; t) = ϕk(−tA)v, t > 0,(21)

we recall that W (Hm) ⊆ W (A) holds for each m and we denote by

ym(k; t) = Vmϕk(−tHm)e1

the mth approximation to y(k; t). We would like to remark that, as pointed out by
other authors (see, e.g., [21], [25], [2]), the computation of these functions may be
affected by some difficulties. Concerning the different approaches carried out in the
literature, we quote the one related to Padè approximants discussed in [2].

For a ≥ 0 and 0 ≤ ϑ ≤ π/2 let us define the set

Σϑ,a = {λ ∈ C : |arg(λ − a)| ≤ ϑ}

and assume that

W (A) ⊂ Σϑ,a.(22)

It is well known that this assumption holds in important applications such as parabolic
partial differential equations.

As we already mentioned, our aim consists of introducing novel error estimates,
which will be compared with other results already provided in the literature. In this
respect we remark that a priori error bounds can be found in [7], [22], [31], [17], [26],
[23]. For instance, we refer to the following results given in [17].

Proposition 3. Under the assumption that A is Hermitian with eigenvalues in
the interval [0, 4γ], an error estimate for the PA approximation is given by

‖y(0; t) − ym(0; t)‖ ≤
(

12
γt

m2
+ 8

√
γt

m

)
exp

(
−βm2

4γt

)
,(23)

for
√

4γt ≤ m ≤ 2γt, where β > 0.92 is a suitable parameter, and

‖y(0; t) − ym(0; t)‖ ≤
(

5
γt

+ 3
√

π

γt

)
exp

(
(γt)2

m

)
exp(−2γt)

(
exp(1)γt

m

)m

,(24)

for m > 2γt.
Moreover, assuming A is skew-Hermitian with eigenvalues in an interval of the

imaginary axis with length 4γ, then the PA approximation error is bounded by

‖y(0; t) − ym(0; t)‖ ≤ 1
3

(
4
γt

+
11√
γt

)
exp

(
−(γt)2

m

)(
exp(1)γt

m

)m

,(25)

for m ≥ 2γt(γt > 1
2 ).
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Moreover, we take into account also the following a priori error bounds which can
be obtained by the argument developed in [7]. In several cases, these estimates reveal
sharper than the previous ones as we show in the numerical tests.

Proposition 4. Let A be symmetric with eigenvalues in the interval [0, 4γ]; then,
an upper bound for the error in the PA approximation is obtained as

‖y(0; t) − ym(0; t)‖ ≤ 4 exp(−2tγ)
+∞∑
k=m

Ik(2tγ),(26)

where Ik represents the modified Bessel function of the first kind. Moreover, under the
assumption that A is skew-Hermitian with eigenvalues in an interval of the imaginary
axis with length 4γ, then the PA approximation error is bounded by

‖y(0; t) − ym(0; t)‖ ≤ 4
+∞∑
k=m

|Jk(2tγ)|,(27)

where Jk is the Bessel function of the first kind.
Our analysis is based on the integral representation (cfr. [9, p. 234] and [29,

pp. 28–29])

y(k; t) =
1
tk

lim
n→∞

1
2πi

∫ ε+in

ε−in

exp(tλ)λ−k(λI + A)−1vdλ, k = 0, 1, 2, . . . ,

which, under our assumptions, holds for every ε > 0 with uniform convergence when
t is chosen in compact intervals of (0, +∞). More precisely, in [9] and [29], this
representation is proved for k = 0, 1, 2, but it is possible to verify that it can be
extended also for k > 2 by noting that

lim
n→∞

1
2πi

∫ ε+in

ε−in

λ−k(λI + A)−1vdλ = 0.

Given ε > 0, we set λ = ε + iρ, and then we obtain

y(k; t) =
1
tk

exp(tε) lim
n→∞

1
2π

∫ +n

−n

exp(itρ)(ε + iρ)−k((ε + iρ)I + A)−1vdρ.(28)

In the sequel we suppose A and v to be real, and then we consider μj = aj + ibj

(j = 1, 2, . . . , m) the eigenvalues of matrix Hm arranging them as μ1, . . . , μm1 the real
ones and μm1+1, . . . , μm the complex conjugate ones. Moreover we set

rj = |μj | =
(
(ε + aj)2 + b2

j

)1/2
for j = 1, . . . , m,

R = max
1≤j≤m

rj

and

ωm(ε) =
m∏

j=1

(rj(ε + aj))1/2.(29)

For convenience we also define the functions

βm(ρ) =
m1∏
j=1

(
1 + ρ2/r2

j

)1/2
m∏

j=m1+1

(
1 + ρ2/r2

j

)1/4
(30)
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and

dm(ρ) =

∏m
j=1 hj+1,j

ωm(ε)βm(ρ)
.

Under these assumptions, applying (8) we will prove the following result.
Proposition 5. Consider an arbitrary value ε > 0 and suppose m + m1 + 2k ≥ 4.

Then, for the PA method the following error bound holds:

‖y(k; t) − ym(k; t)‖ ≤ ck,m

∫ ∞

0

(
1 + ρ2/ε2

)−k/2

βm(ρ)
√

1 + dm(ρ)2
dρ(31)

where

ck,m =
2 exp(tε)

∏m
j=1 hj+1,j

πωm(ε)(ε + a)(tε)k
.(32)

Proof. For ρ ≥ 0 we have

|det((ε + iρ)I + Hm)| =
m∏

j=1

|(ε + iρ) + μj |

=
m∏

j=1

(
rj

2 + ρ2 + 2ρbj

)1/2
.

We claim that

|det((ε + iρ)I + Hm)| ≥ ωm(ε)βm(ρ).(33)

Indeed, when m1 = m then the previous relationship clearly holds; otherwise, since
Hm is real, there are (m−m1)/2 couples of conjugate eigenvalues. For each of them,
say μ± = a ± ib (b > 0), we have

|(ε + iρ) + μ+| |(ε + iρ) + μ−| =
((

(ε + a)2 + (ρ + b)2
) (

(ε + a)2 + (ρ − b)2
))1/2

≥
(
(ε + a)2 + b

2
+ ρ2

)1/2

(ε + a);

hence (33) follows. Using the same arguments, we obtain (33) also for ρ < 0. There-
fore, due to (12) we have

|ξm(ε + iρ)| ≤ dm(ρ).(34)

Moreover we account for the following bound

max
(∥∥((ε + iρ)I + A)−1

∥∥ ,
∥∥((ε + iρ)I + Hm)−1

∥∥) ≤ (ε + a)−1,(35)

which arises from the well-known inequality ‖(λI + A)−1‖ ≤ dist(−λ, W (A))−1 and
by assumption (22). Then, referring to representation (28), we consider error formula
(8). From (11) and (13) (Um = Vm) we obtain

|ξm(λ)| ≤ hm+1,m

∥∥(λI + Hm)−Hem

∥∥μm−1(λ, A).
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Thus, due to μm−1(λ, A) ≤ ‖v‖ = 1, from (11) it follows that

μm(λ, A) ≤ |ξm(λ)|√
1 + |ξm(λ)|2

.(36)

As a consequence, by means of (34) and (35), we have

‖y(k; t) − ym(k; t)‖ ≤ 2 exp(tε)
π(ε + a)tk

∫ ∞

0

dm(ρ)dρ

(ε2 + ρ2)k/2
√

1 + dm(ρ)2
.

Thus (31) is proved. We notice that if m + m1 + 2k ≥ 4, then the integral in (31)
converges.

We would like to point out that by (31) we can recognize the well-known super-
linear convergence of the method; indeed, setting ε = m/t, for a suitable constant C,
we obtain

‖y(k; t) − ym(k; t)‖ ≤ Ct

mk+1

(
t exp(1)(

∏m
j=1 hj+1,j)1/m

m

)m

,

which stresses the dependence on the term t(
∏m

j=1 hj+1,j)1/m. A further speed-factor
may be added and a consequent super-super linear convergence is reached when the
product

∏m
j=1 hj+1,j rapidly decreases; but, unfortunately, this does not occur in

the case of approximating parabolic problem solution, where A represents the dis-
cretization of an elliptic operator and its spectrum enlarges as the mesh is refined.
Anyway, in order to overcome this drawback, we mention the use of a rational Krylov
method recently adopted in [28] and [10] (numerical comparisons can be found also
in the recent paper [30]). Moreover, though a priori information on the behavior of∏m

j=1 hj+1,j can be provided by (17), (18), (19), and (2), in our experiments this
product is directly evaluated in the PA process.

The result we give below aims to avoid the use of a quadrature rule for evaluating
the integral in (31).

Proposition 6. Let ε > 0 and assume m + m1 ≥ 4. Referring to the previous
notations, the approximation error obtained by applying the PA method is bounded by

‖y(k; t) − ym(k; t)‖ ≤ ck,mCm(37)

where we set

Cm =
√

π

2
√

(1 + dm(ε)2)S
(1)
m

+
exp

(
−ε2S

(2)
m

)
√

1 + dm(R)2
(R − ε) +

(
ε√

ε2 + R2

)k
Rπ

2(m+m1
4 +1)

with

S(1)
m =

k

4ε2
+

1
2

m1∑
i=1

1

r2
j + ε2

+
1
4

m∑
i=m1+1

1

r2
j + ε2

and

S(2)
m =

k

2(ε2 + R2)
+

1
2

m1∑
i=1

1
r2
j + R2

+
1
4

m∑
i=m1+1

1

r2
j + R2

.
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Proof. Setting

Ψm(ρ) =
(1 + ρ2/ε2)−k/2

βm(ρ)
,

we approximate the integral in (31), exploiting the relationship

Ψm(ρ) ≤ exp

(
−ρ2

(
k

2(ε2 + ρ2)
+

1
2

m∑
i=1

1
r2
j + ρ2

+
1
4

m∑
i=m1+1

1

r2
j + ρ2

))
,(38)

which comes from 1 − x ≤ exp(−x), 0 ≤ x ≤ 1. At first we have∫ ε

0

Ψm(ρ)√
1 + dm(ρ)2

dρ ≤ 1√
1 + dm(ε)2

∫ ε

0

Ψm(ρ)dρ.

Thanks to (38), using formulae 7.1.1 and 7.1.2 in [1], we get

∫ ε

0

Ψm(ρ)dρ ≤
∫ ε

0

exp
(
−ρ2S(1)

m

)
dρ =

1√
S

(1)
m

∫ ε
√

S
(1)
m

0

exp
(
−x2

)
dx

≤
√

π

2
√

S
(1)
m

.

Furthermore (38) yields

∫ R

ε

Ψm(ρ)√
1 + dm(ρ)2

dρ ≤

∫ R

ε exp
(
−ρ2S

(2)
m

)
dρ√

1 + dm(R)2
≤

exp
(
−ε2S

(2)
m

)
(R − ε)√

1 + dm(R)2
.

Finally it is not so difficult to verify that, for m + m1 ≥ 4, it holds∫ +∞

R

Ψm(ρ)√
1 + dm(ρ)2

dρ ≤
∫ +∞

R

Ψm(ρ)dρ

≤
(

ε√
ε2 + R2

)k ∫ +∞

R

1

(1 + ρ2/R2)
m+m1

4

dρ

≤
(

ε√
ε2 + R2

)k
πR

2(m+m1
4 +1)

.

This completes the proof.
Concerning the choice of ε, of course a suitable value is the one minimizing the

bound. In practice ε can be chosen by trying to reach the minimum value of a
significant part of it: for instance, we can find ε > 0 which minimizes

exp(tε)
(ε + a)ωm(ε)εk

(39)

or, when the bj’s are negligible with respect to the aj ’s, simply

exp(tε)
(ε + a)

∏m
j=1(ε + aj)εk

.(40)
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Remark 7. After some computations, it is possible to prove that the following
inequality holds:

max
(∥∥((ε + iρ)I + A)−1

∥∥ ,
∥∥((ε + iρ)I + Hm)−1

∥∥) ≤ κ(ε, ρ, ϑ)−1

where

κ(ε, ρ, ϑ) =
√

(ε + a)2 + ρ2, if |ρ| tan θ ≤ ε + a

and

κ(ε, ρ, ϑ) =
(ε + a) tan θ + |ρ|√

1 + tan2 ϑ
, if |ρ| tan θ > ε + a.

This bound could be employed instead of (35); yet, in practice its use does not influ-
ence substantially the error estimates.

At the end of this subsection we account for the computation of

y+(k; t) = ϕk(−itA)v, t > 0

under the assumption that A is symmetric and positive semidefinite; as it is well
known this problem is related to the solution of the Schrödinger equation (see, for
instance, [16]). In this respect, we refer to (2) and consider the mth PA-approximation

y+
m(k; t) = Vmϕk(−itHm)e1.(41)

Denoting by μj (j = 1, 2, . . .m) the eigenvalues of the Hermitian and positive semidef-
inite matrix Hm, we set

r2
j =

(
ε2 + μ2

j

)
for 1 ≤ j ≤ m, R = max

1≤j≤m
rj ,

ω+
m(ε) =

m∏
j=1

rj and Gm =
m∏

j=1

(1 − μj/rj)1/2.

Furthermore we define

β+
m(ρ) =

m∏
j=1

(
1 + ρ2/rj

2
)1/2

and d+
m(ρ) =

∏m
j=1 hj+1,j

ω+
m(ε)β+

m(ρ)
.

Under these notations we will prove the following result.
Proposition 8. Let us consider an arbitrary ε > 0. Supposing m + k ≥ 2, the

PA approximation (41) yields the error estimate∥∥y+(k; t) − y+
m(k; t)

∥∥ ≤ ck,mCm(42)

where we set

ck,m =
exp(tε)

∏m
j=1 hj+1,j

πεω+
m(ε)(tε)k

(
1 +

1
Gm

)
,

Cm =
√

π

2
√(

1 + d+
m(ε)2

)
S

(1)
m

+
exp

(
−ε2S

(2)
m

)
√

1 + d+
m(R)2

(R − ε) +
(

ε√
ε2 + R2

)k
Rπ

2(m
2 +1)
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with

S(1)
m =

k

4ε2
+

1
2

m∑
j=1

1
r2
j + ε2

and S(2)
m =

k

2(ε2 + R2)
+

1
2

m∑
j=1

1
r2
j + R2

.

Proof. It is similar to the proof of Propositions 5 and 6 with slight modifications
due to the different structure of the spectra of matrices iHm and Hm. We replace A
by iA in (28) and Hm by iHm in (12); thus, we obtain

|ξm(ε + iρ)| =

∏m
j=1 hj+1,j

|det((ε + iρ)I + iHm)| .

Then, for ρ ≥ 0 we have

|det((ε + iρ)I + iHm)| =
m∏

j=1

(
ε2 + (ρ + μj)2

)1/2
=

m∏
j=1

(
rj

2 + ρ2 + 2ρμj

)1/2

≥ ω+
m(ε)β+

m(ρ),

while for ρ < 0 we get

|det((ε + iρ)I + iHm)| =
m∏

j=1

(
r2
j + ρ2

)1/2

(
1 − 2μj |ρ|

r2
j + ρ2

)1/2

≥
m∏

j=1

(
r2
j + ρ2

)1/2
(

1 − μj

rj

)1/2

= ω+
m(ε)β+

m(ρ)Gm.

Hence, for ρ > 0 it holds |ξm(ε + iρ)| ≤ d+
m(ρ) and |ξm(ε − iρ)| ≤ d+

m(ρ)/Gm. There-
fore, due to (35) which holds for a = 0, arguing as in Proposition 5, from (6) and (36)
by easy computations it follows that

∥∥y+(k; t) − y+
m(k; t)

∥∥ ≤ ck,m

∫ ∞

0

(
1 + ρ2/ε2

)−k/2

β+
m(ρ)

√
1 + d+

m(ρ)2
dρ.

By the same arguments as in the proof of Proposition 6, we obtain the bound∫ +∞

0

(
1 + ρ2/ε2

)−k/2

β+
m(ρ)

√
1 + d+

m(ρ)2
dρ ≤ Cm

and we prove the whole result.

3.2. The case of trigonometric functions. Our interest is now focused on
ϕ(x) = cos(t

√
x) and the so-called sinc function defined as ϕ(x) = sin(t

√
x)/

√
x

which arise in the solution of second-order problems (see [15], [12], [7]). In particular,
concerning the solution of hyperbolic equations, we account for the computation of

y(c)(t) = cos
(
t
√

A
)

v t > 0(43)

under the assumption that A is real symmetric and positive semidefinite. In this
respect, [7] provides the following error estimate.
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Proposition 9. Let the eigenvalues of matrix A lie in the interval [0, 4γ]; then,
an upper bound for the error in the PA approximation

y(c)
m (t) = Vm cos

(
t
√

Hm

)
e1

is given by

∥∥∥y(c)(t) − y(c)
m (t)

∥∥∥ ≤ 4
+∞∑
k=m

|J2k(2t
√

γ)|,(44)

where each Jk represents the Bessel function of the first kind.
In the sequel, we add the assumption that A is positive definite with spectrum in

the interval [a, +∞) (a > 0). Then, according to [11], we recall the representation

y(c)(t) = cos
(
t
√

A
)

v = lim
n→∞

1
2πi

∫ ε+in

ε−in

exp(tλ)λ
(
λ2I + A

)−1
vdλ

holds for every ε > 0 and t ∈ (0, +∞). In this way we have

y(c)(t) = exp(tε) lim
n→∞

1
2π

∫ n

−n

exp(itρ)(ε + iρ)
(
(ε + iρ)2I + A

)−1
v dρ,(45)

and we provide the following result concerning the PA approximation.
Proposition 10. Suppose m ≥ 2 and set

R = max
1≤j≤m

(
ε2 + μj

)
,

where μj’s are the eigenvalues of matrix Hm. Then, the error estimate

∥∥∥y(c)(t) − y(c)
m (t)

∥∥∥ ≤ exp(tε)R
2
√

2εm+2

m∏
j=1

hj+1,j

(ε2 + μj)1/2
(46)

holds for each ε > 0 and t > 0.
Proof. We use the error representation (6). Thanks to the following relationship∥∥∥((ε + iρ)2I + A

)−1
∥∥∥ = min

x∈σ(A)

∣∣((ε2 − ρ2) + x
)

+ 2iερ)−1
∣∣

it is not so difficult to verify that∥∥∥((ε + iρ)2I + A
)−1
∥∥∥ ≤

((
ε2 + ρ2

)2
+ a2 + 2a

(
ε2 − ρ2

))−1/2

, if ρ2 ≤ ε2 + a(47)

and ∥∥∥((ε + iρ)2I + A
)−1
∥∥∥ ≤ (2ε|ρ|)−1, if ρ2 > ε2 + a.(48)

From (47) we have

∥∥∥((ε + iρ)2I + A
)−1
∥∥∥ ≤

(
ε2 + ρ2 + a

)−1
(

1 − a

ε2 + a

)−1/2

=
√

ε2 + a

ε(ε2 + ρ2 + a)
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when ρ2 ≤ ε2 + a. Therefore, for any ρ we find that√
ε2 + ρ2

∥∥∥((ε + iρ)2I + A
)−1
∥∥∥ ≤ 1

ε
.

In order to evaluate

∣∣ξm

(
(ε + iρ)2

)∣∣ =
m∏

j=1

hj+1,j

|(((ε2 − ρ2) + μj) + 2iερ)| ,

we notice that∣∣(((ε2 − ρ2
)

+ μj

)
+ 2iερ

)∣∣2 =
(
ε2 + ρ2

)2 + μ2
j + 2μj

(
ε2 − ρ2

)
=
(
ε4 + ρ4 + 2

(
ε2 − μj

)
ρ2 + μ2

j + 2μjε
2
)

≥
(
ε4 + ρ4 + 2ε2ρ2 + μ2

j + 2μjε
2
)(

1 − μj

(ε2 + μj)

)
=
((

ε2 + μj

)2
+ ρ2

(
ρ2 + 2ε2

))( ε2

ε2 + μj

)
= ε2

(
ε2 + μj

)(
1 +

ρ2
(
ρ2 + 2ε2

)
(ε2 + μj)

2

)
.

As a consequence, due to (6) and (45), an upper bound for the error ‖y(c)(t)−y
(c)
m (t)‖

is given by the quantity

exp(tε)
επ

m∏
j=1

hj+1,j

ε (ε2 + μj)
1/2

∫ ∞

0

m∏
j=1

(
1 +

ρ2
(
ρ2 + 2ε2

)
(ε2 + μj)

2

)−1/2

dρ

≤ exp(tε)
εm+1π

m∏
j=1

hj+1,j

(ε2 + μj)
1/2

∫ ∞

0

m∏
j=1

(
1 +

2ρ2ε2

(ε2 + μj)
2

)−1/2

dρ

≤ exp(tε)
εm+1π

m∏
j=1

hj+1,j

(ε2 + μj)
1/2

R

ε
√

2

∫ ∞

0

(
1 + x2

)−1
dρ

≤ exp(tε)
εm+1π

m∏
j=1

hj+1,j

(ε2 + μj)
1/2

Rπ

2ε
√

2
,

which is the desired result.
Also in this case, in practice further improvement can be reached by choosing the

value for ε which minimizes

exp(tε)
εm+2

∏m
j=1(ε2 + μj)1/2

.(49)

Moreover, since Hm is symmetric positive definite, cos(t
√

Hm)e1 can be computed by
diagonalization of Hm.

Finally, as what concerns the computation of the sinc function

y(s)(t) =
(√

A
)−1

sin
(
t
√

A
)

v, t > 0,
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we notice that the relationship

y(s)(t) =
∫ t

0

cos
(
τ
√

A
)

vdτ

holds for each t > 0 so that, by integrating (46), the error bound∥∥∥y(s)(t) − y(s)
m (t)

∥∥∥ ≤ (exp(tε) − 1)R
2
√

2εm+3

m∏
j=1

hj+1,j

(ε2 + μj)1/2

is obtained for the corresponding PA approximation.

4. Numerical experiments. In order to provide some numerical results aiming
to test the effectiveness of the previous error estimates, we account for some matrices
which arise from the discretization of classical partial differential operators. Precisely
we consider

L = − ∂2

∂x2
− ∂2

∂y2
+ c1

∂

∂x
+ c2

∂

∂y
, c1, c2 ∈ R,(50)

where homogeneous Dirichlet boundary conditions are enforced on the unit square
(0, 1)× (0, 1). The spatial discretization of this partial differential operator is carried
out by central differences with uniform steplength δ = 1/(n+1) along both directions
(i.e., N = n2).

We provide several numerical results in order to compare the estimates given in
Propositions 6, 8, and 10 with the true error norm and with a priori error estimates
already known in the literature (in the case when they are available according to
Propositions 3, 4, and 9). We implement bounds (23), (24), and (25) provided in [17]
for β = 1. In the sequel we define the vector v by

v = (1, 1, . . . , 1)T /n ∈ R
N(51)

or, as an alternative, by the normalized discretization of the following function

v(x, y) = x(1 − x)y(1 − y).(52)

Figures 1 and 2 refer to cases concerned with Proposition 6. We account for the
ϕ0-function applied to the matrix A = B − λminI where B is symmetric (given by
setting c1 = c2 = 0 and discretizing (50)) and λmin represents its minimum eigenvalue;
under this assumption, it is possible to compare estimates (23)–(24), (26), and (37)
as it is shown in Figure 1 (on the left) where we have set n = 50, t = 0.005, and
defined v by (52) (normalized). As another test, we consider the skew-symmetric
matrix defined as

A =
(

O B
−B O

)
,

where B is the symmetric block which arises from the discretization of (50) setting
c1 = c2 = 0 and n = 30; in Figure 1 (on the right) we provide the numerical results
obtained in correspondence with ϕ0(−tA)v where t = 0.001 and v = (v, v)T /(‖(v, v)‖)
with v defined by (52). It is evident that, in both cases, our approach is in agreement
with the true error norm and it outperforms the a priori bounds given in Propositions 3
and 4.
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Fig. 1. The error estimates for the ϕ0-function related to Propositions 3, 4, and 6 compared
with the true error norm. On the left: the case when A is symmetric (i.e., c1 = c2 = 0). On the
right: the case when A is skew-symmetric.
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Fig. 2. The error estimates for the ϕk-function (on the left: k = 1; on the right: k = 2)
related to Proposition 6 compared with the true error norm in the case when A is nonsymmetric
(i.e., c1 = 5 and c2 = 10).

Moreover, we are interested in investigating the effectiveness of the estimates
we provided concerning the ϕk-functions for k ≥ 1 in the case of nonsymmetric
matrices; for instance, concerning k = 1, 2 in Figure 2 we give the results related
to the nonsymmetric matrix A obtained by the spatial discretization of (50) where we
have set c1 = 5, c2 = 10, n = 50, taking t = 0.005 and v defined by (51). So far, in all
the numerical experiments related to Proposition 6 the parameter ε has been chosen
by minimizing quantity (40) except for the skew-symmetric case where ε is set equal
to m/t.

In the following, we add further tests: concerning Proposition 8, in Figure 3 we
compare estimates (25), (27), and (42) with the true error referring to ϕ0(−itA)v
where t = 0.001, v is defined by (52), and A is the symmetric matrix obtained by
discretizing (50) with c1 = c2 = 0, n = 50. In Figure 4 we show the results of two
experiments concerning cos(t

√
A)v, where we compare the a posteriori estimate of

Proposition 10 with the a priori bound of Proposition 9. In both cases we suppose
n = 50, t = 0.05, and v defined by (51). On the left we give the results related
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Fig. 3. The error estimates for the ϕ0-function related to Propositions 3, 4, and 8 compared
with the true error norm.

0 2 4 6 8 10 12
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

The error norm ||y(c)(t)−y(c)
m

(t)||

m

Error norm
Error estimate Prop.10
Error estimate Prop.9

1 2 3 4 5 6 7 8 9 10
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

The error norm ||y(c)(t)−y(c)
m

(t)||

m

Error norm
Error estimate Prop.10
Error estimate Prop.9

Fig. 4. The error estimates for the cosine function related to Propositions 9 and 10 compared
with the true error norm.

to the symmetric matrix A obtained by (50) where c1 = c2 = 0; while on the right
we consider A obtained by using finite differences in order to discretize the following
operator

L = − ∂2

∂x2
− 10

∂2

∂y2

on the square (0, 1) × (0, 1) with homogeneous Dirichlet conditions in x and homo-
geneous Neumann conditions in y. In both cases ε is taken by minimizing (49). We
notice that in the first case both the estimates match well with the true error; but, in
the second test, the a priori bound turns out to be too pessimistic and it is not able
to detect the fast convergence of the method, as the a posteriori one does.

We would like to point out that we have found similar results when testing the
effectiveness of the proposed estimates on other examples such as the matrices arising
from the discretization of the three-dimensional Laplacian operator.

All the numerical experiments have been performed in a MatLab environment,
and every value ϕ(Hm) has been computed by means of diagonalization (when it has
been possible) or by built-in functions (expm or more in general funm).
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STRUCTURE-PRESERVING ALGORITHMS FOR PALINDROMIC
QUADRATIC EIGENVALUE PROBLEMS ARISING FROM

VIBRATION OF FAST TRAINS∗

TSUNG-MING HUANG† , WEN-WEI LIN‡ , AND JIANG QIAN§

Abstract. In this paper, based on Patel’s algorithm (1993), we propose a structure-preserving al-
gorithm for solving palindromic quadratic eigenvalue problems (QEPs). We also show the relationship
between the structure-preserving algorithm and the URV-based structure-preserving algorithm by
Schröder (2007). For large sparse palindromic QEPs, we develop a generalized �-skew-Hamiltonian
implicitly restarted shift-and-invert Arnoldi algorithm for solving the resulting �-skew-Hamiltonian
pencils. Numerical experiments show that our proposed structure-preserving algorithms perform well
on the palindromic QEP arising from a finite element model of high-speed trains and rails.

Key words. palindromic quadratic eigenvalue problem, �-symplectic pencil, �-skew-Hamiltonian
pencil
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1. Introduction. In this paper, we consider the palindromic quadratic eigen-
value problem (QEP) of the form

P(λ)x ≡ (λ2A�
1 + λA0 + A1)x = 0,(1.1)

where λ ∈ C, x ∈ C
n\{0} and A1, A0 ∈ C

n×n with A�
0 = A0. Note that the super-

script “�” denotes the complex transpose. The scalar λ and the nonzero vector x
in (1.1) are the eigenvalue and the associated eigenvector of P(λ), respectively. The
underlying matrix polynomial P(λ) has the property that reversing the order of the
coefficients, followed by taking the transpose, leads back to the original matrix poly-
nomial, which explains the word “palindromic.” Consequently, taking the transpose
of (1.1), we easily see that the eigenvalues of P(λ) satisfy the “symplectic” property;
that is, they are paired with respect to the unit circle, containing both an eigenvalue
λ and its reciprocal 1/λ (with 0 and ∞ considered to be reciprocal).

The palindromic QEP (1.1) was first raised in the study of the vibration in the
structural analysis for fast trains in Germany [3, 4], associated with the company
SFE GmbH in Berlin. Existing fast train systems, like the Japanese Shinkansen, the
French TGV, and the German ICE, are being modernized and expanded. Vibration is
produced from the interaction between the wheels of a train and the rails underneath.
Due to the ever increasing speed (currently up to 300 km/hr) of modern trains, the
study of its vibration becomes an important task. Research does not only contribute
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towards the increased comfort of passengers, in terms of lower noise and vibration
levels. More importantly, the safety in the operation of the trains will be improved,
and the operational and construction costs will be optimized [4, 5, 12, 13]. In addition,
innovative designs of railway bridges, embedded rail structures, and train suspension
systems require accurate resolution of the vibration.

A standard approach for solving the palindromic QEP (1.1) is to transform it into
a 2n × 2n linear eigenvalue problem[

0 I
A1 A0

] [
x
λx

]
= λ

[
I 0
0 −A�

1

] [
x
λx

]
(1.2)

and compute its generalized Schur form (see [23]). However, the symplectic property
of the eigenvalues of (1.1) is not preserved by computation, generally, producing large
numerical errors ([5]). Recently, some pioneering work [4, 12, 13] proposed a good
linearization which linearizes the palindromic QEP (1.1) into the form λZ�+Z, which
preserves symplecticity to some extent, and suggested some structure-preserving so-
lution methods. This leads to a vast improvement over previous approaches. Later, a
QR-like algorithm [19] and a Jacobi-type method [4] combined with the Laub trick,
a preprocessing step of the generalized Schur form [11], have been developed for solv-
ing the palindromic linear pencil λZ� + Z. However, the latter method works well,
only if there are no eigenvalues near ±1. The Jacobi method typically needs about
O(n3 log(n)) flops and the QR-like algorithm is of O(n4) flops. Recently, a URV-
decomposition-based structured method of cubic complexity was developed in [20] to
solve the palindromic linear pencil λZ� + Z, producing eigenvalues which are paired
to working precision. In section 3, we will show that the URV-based method [20] is
mathematically equivalent to applying the structure-preserving algorithm in section 2
to the enlarged 2n × 2n palindromic quadratic pencil ζ2Z� + ζ0 + Z (with ζ2 = λ).
On the other hand, a structure-preserving doubling algorithm was developed in [1]
via the computation of a solvent of a nonlinear matrix equation associated with (1.1).
The numerical results show much promise but the convergence theory holds only when
the algorithm does not break down.

As mentioned before, the linearization (1.2) generally cannot preserve the sym-
plectic structure. Fortunately, the special linearization for (1.1) (see [1] or [10])

(M− λL)z ≡
([

A1 0
−A0 −I

]
− λ

[
0 I

A�
1 0

])[
x
y

]
= 0(1.3)

obtained by setting y = 1
λA1x and multiplying the second equation of (1.3) by λ

satisfies

MJM� = LJL�,(1.4)

where J ≡ J2n is the 2n × 2n matrix [ 0
−In

In

0 ]. In other words, the pencil M− λL
or the matrix pair (M,L) in (1.3) preserves the symplectic structure of (1.4) and is
said to be �-symplectic.

For a real matrix pair (M,L) satisfying (1.4), a structure-preserving (S + S−1)-
transform for the computation of all its eigenvalues is proposed by [9] and a numerically
stable algorithm for reducing the transformed pair to a block triangular condensed
form by using only orthogonal transformations was developed by Patel [16]. It is per-
fectly suitable for the �-symplectic pair, but not applicable to the complex conjugate
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symplectic pair (i.e., MJMH = LJLH). In this paper, we adapt Patel’s approach to
solve the �-symplectic pencil in (1.3) resulting from the palindromic QEP (1.1). Only
unitary transformations are used and the symplectic structure is fully preserved, which
make the method attractive. It is worth mentioning that the (S + S−1)-transform is,
in general, a nonlinear transform as in solving the discrete-time optimal control prob-
lem [9, 16]. However, the special form in (1.3) leads to a linear (S + S−1)-transform
without involving any matrix multiplication.

In some applications, the matrices A1 and A0 in (1.1) (and hence M and L
in (1.3)) can be large and sparse and only the eigenvalues in a specified region are
required. To accomplish this, the shift-and-invert (implicitly restarted) Arnoldi algo-
rithm [7, 17, 21] is one of the most widely used standard techniques for computing
selected eigenvalues of the large sparse matrix pencil M− λL. In this approach, the
corresponding shifted and inverted matrix is reduced to a Hessenberg form which no
longer has the desirable symplectic structure.

Mehrmann and Watkins [15] developed a structure-preserving skew-Hamiltonian,
isotropic, implicitly restarted shift-and-invert Arnoldi algorithm (SHIRA) for the
computation of eigenpairs of a large sparse real skew-Hamiltonian/Hamiltonian pen-
cil by transforming the pencils to a skew-Hamiltonian operator. In fact, SHIRA
can be straightforwardly extended to solve a skew-Hamiltonian/Hamiltonian pencil
in the complex transpose case (not in the complex conjugate case), referred to as
�SHIRA. We first transform the �-symplectic pencil to a �-skew-Hamiltonian eigen-
value problem by using the (S + S−1)-transform, then �SHIRA is applied to the
resulting �-skew-Hamiltonian matrix. On the other hand, to avoid explicitly forming
the �-skew-Hamiltonian matrix in the above transformation, we also develop a gen-
eralized �-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi algorithm
(G�SHIRA) for solving the �-skew-Hamiltonian pencil resulting from the (S +S−1)-
transform of the symplectic pencil M− λL.

We introduce some definitions that will be used frequently in this paper.
Definition 1.1.

(i) A matrix A ∈ C
n×n is called �-symmetric or �-skew-symmetric if it satisfies

A� = A or A� = −A, respectively.
(ii) A matrix U ∈ C

2n×2n is called �-symplectic if U�JU = J ; a pencil M −
λL ∈ C

2n×2n or the matrix pair (M,L) is called �-symplectic if MJM� =
LJL�.

(iii) A matrix H ∈ C
2n×2n is called �-Hamiltonian or �-skew-Hamiltonian if it

satisfies (HJ )� = HJ or (HJ )� = −HJ , respectively.
(iv) A pencil K − λN ∈ C

2n×2n or the matrix pair (K,N ) is called �-skew-
Hamiltonian if K and N are �-skew-Hamiltonian.

(v) Let X, Y ∈ C
2n×m(1 ≤ m ≤ n); X is called �-isotropic if X�JX = 0m; and

X and Y are called �-bi-isotropic if X�J Y = 0m.
Throughout this paper, A� and AH denote the transpose and conjugate transpose

of a matrix A, respectively. We denote the m × n zero matrix by 0m,n, and the zero
and identity matrices of order n by 0n and In, respectively. The ith column of In

is denoted by ei. We adopt the following MATLAB notations: v(i : j) denotes the
subvector of the vector v that consists of the ith to the jth entries of v. A(i : j, k : �)
denotes the submatrix of the matrix A that consists of the intersection of the rows i
to j and the columns k to �. A(i : j, :) and A(:, k : �) select the rows i to j and the
columns k to �, respectively, of A.

The paper is organized as follows. In section 2, we briefly present the structure-
preserving algorithm based on Patel’s method [16] for solving palindromic QEPs. In
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section 3, we show the relationship between the structure-preserving algorithm and
the URV-based structured method proposed by Schröder [20]. In section 4, based
on the SHIRA developed in [15], we introduce the �-skew-Hamiltonian implicitly-
restarted shift-and-invert Arnoldi algorithm (�SHIRA) for solving the resulting �-
skew-Hamiltonian matrix. In section 5, a generalized �-skew-Hamiltonian implicitly-
restarted shift-and-invert Arnoldi algorithm (G�SHIRA) for solving the resulting
�-skew-Hamiltonian pencils is developed. We present some numerical results of the
proposed algorithms, using examples from a finite element model of fast trains [1], in
section 6. Conclusions are given in section 7.

2. Structure-preserving algorithm I. We adapt Patel’s algorithm [16] ap-
plying to the (S +S−1)-transform of a �-symplectic matrix pair for the computation
of all its eigenpairs. Let (M,L) be a �-symplectic pair. The (S + S−1)-transform
(Ms,Ls) of (M,L) is defined by (see [9])

Ms ≡ MJL� + LJM�, Ls ≡ LJL�.(2.1)

We first give the relationship between eigenpairs of a �-symplectic pencil and its
(S + S−1)-transform.

Theorem 2.1. Let (M,L) be a �-symplectic pair and (Ms,Ls) be its (S+S−1)-
transform. Then

(i) μ is a double eigenvalue of (Ms,Ls) if and only if ν, 1
ν are eigenvalues of

(M,L), where ν, 1
ν are two roots of the quadratic equation λ + 1

λ = μ.
(ii) Let x and y be linearly independent eigenvectors of (L�,M�) corresponding

to ν and 1
ν , respectively, i.e., (L�−νM�)x = 0 and (L�− 1

νM�)y = 0. Then
x and y are two linearly independent eigenvectors of (Ms,Ls) corresponding
to μ = ν + 1

ν .
(iii) Furthermore, from (ii), if zs = αx + βy (with αβ �= 0) is an eigenvector of

(Ms,Ls) corresponding to μ = ν + 1
ν (μ �= ±2), i.e., (Ms − μLs)zs = 0,

then J (L� − 1
νM�)zs and J (L� − νM�)zs are the eigenvectors of (M,L)

corresponding to ν and 1
ν , respectively.

Proof.
(i) As in [9], since MJM� = LJL�, by (2.1) it holds that

Ms − μLs = MJL� + LJM� −
(

ν +
1
ν

)
LJL�

= (M− νL)J
(
L� − 1

ν
M�

)
=
(
M− 1

ν
L
)
J (L� − νM�).(2.2)

Hence (i) follows.
(ii) From the last two equations of (2.2), it follows that

(Ms − μLs)x =
(
M− 1

ν
L
)
J (L� − νM�)x = 0,

and

(Ms − μLs) y = (M− νL)J
(
L� − 1

ν
M�

)
y = 0.
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(iii) By applying the last two equations of (2.2) again, it remains to show only
that J (L� − 1

νM�)zs �= 0 and J (L� − νM�)zs �= 0. From (ii) we have

J
(
L�− 1

ν
M�

)
zs = J

(
L�− 1

ν
M�

)
(αx+βy) = αJ

(
L�− 1

ν
M�

)
x �= 0.

Similarly,

J (L� − νM�)zs = J (L� − νM�)(αx + βy) = βJ (L� − νM�)y �= 0.

Theorem 2.2. Let (M,L) be the �-symplectic pair as in (1.3) and (Ms,Ls)
be its (S + S−1)-transform. If zs = [z�1 , z�2 ]� with z1, z2 ∈ C

n is an eigenvector of
(Ms,Ls) corresponding to μ = ν + 1

ν (μ �= ±2), then z1 + 1
ν z2 and z1 + νz2 are

eigenvectors of P(λ) in (1.1) corresponding to ν and 1
ν , respectively.

Proof. From (iii) of Theorem 2.1 we compute
(2.3)(

J
(
L� − 1

ν
M�

)
zs

)
(1 : n) = z1+

1
ν

z2, (J (L� − νM�)zs)(1 : n) = z1 + νz2.

Then, from (1.3) and (2.3), it follows that P(ν)(z1 + 1
ν z2) = 0 and P( 1

ν )(z1 + νz2) =
0.

Note that from (1.3), we have

(Ms,Ls) = (MJL� + LJM�,LJL�)

=
([

A1 − A�
1 A0

−A0 A1 − A�
1

]
,

[
0 −A1

A�
1 0

])
=
([

A0 A�
1 − A1

A1 − A�
1 A0

]
,

[
−A1 0

0 −A�
1

])
J

≡ (K,N )J .(2.4)

From (2.4), if z is an eigenvector of (K,N ) corresponding to μ, then zs = J�z is the
eigenvector of (Ms,Ls) corresponding to the same μ.

Remark 2.1.

(i) The (S + S−1)-transform (Ms,Ls) in (2.1) of a �-symplectic pair, in gen-
eral, is a nonlinear (quadratic) transformation. For instance, the (S + S−1)-
transform of the symplectic pair of the form (M,L) ≡ ([ A

−H
0
I ], [ I

0
G

A� ]) with
H = H� and G = G� arisen from discrete-time optimal control problems pro-
duces a quadratic (S +S−1)-transform which involves matrix multiplications
and is not backward stable. However, the special form of the �-symplectic
pair (M,L) in (1.3) leads to a linear (S+S−1)-transform as in (2.4) and does
not involve any matrix multiplication.

(ii) The eigenvectors of P(λ) corresponding to ν and 1/ν can be obtained from
the eigenvectors of (K,N ) directly (see Theorem 2.2), not requiring us to
solve any linear system or perform any matrix-vector multiplications.

It is easily seen that K and N in (2.4) are both �-skew-Hamiltonian. Patel
[16] introduced two types of transformations that preserve the skew-Hamiltonian
structure. The first type involves similarity transformations on K and N , respec-
tively, using Given rotations G0(i, c, s̄) := G(i, n + i, c, s̄). The second type involves
equivalence transformations on K and N , respectively, by the left transformation
Q�

0 := (U� ⊕ V �) and the right transformation Z0 := (V ⊕ U), where the unitary
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U, V ∈ C
n×n represent the application of Givens rotations. One can easily verify that

the new transforming K and N are still �-skew-Hamiltonian.
Based on Patel’s approach [16] with these two types of transformations, we may

reduce (K,N ) to a block triangular structure; that is,

K := Q�KZ =
[
K11 K12

0 K�
11

]
, N := Q�NZ =

[
N11 N12

0 N�
11

]
,(2.5)

where K11 ∈ C
n×n is upper Hessenberg, N11 ∈ C

n×n is upper triangular, and Q, Z
are unitary satisfying

Q = J �ZJ .(2.6)

From (2.5), we see that the pair (K11, N11) contains half of the eigenvalues of
(K,N ). We then apply the QZ algorithm to (K11, N11) for computing all eigenpairs
{(μi, yi)}n

i=1. Consequently, {(μi, Z[ yi

0 ])}n
i=1 are n eigenpairs of (K,N ). From (2.4),

{(μi, zi(≡ J �Z[ yi

0 ]))}n
i=1 are eigenpairs of (Ms,Ls). Finally, we compute all eigen-

values and the associated eigenvectors of P(λ) by Theorem 2.2.
Algorithm 2.1 (structure-preserving algorithm I (SA I)).

Input: A palindromic quadratic pencil P(λ) ≡ λ2A�
1 + λA0 + A1 with

A0, A1 ∈ C
n×n and A�

0 = A0.

Output: All eigenvalues and eigenvectors of P(λ).

Step 1. Form the pair (K,N ) as in (2.4);

Step 2. Reduce (K,N ) to block upper triangular forms in (2.5) using

unitary transformations. (See a pseudocode in Appendix A.1.);

Step 3. Compute eigenpairs {(μi, yi)}n
i=1 of (K11, N11) defined in (2.5) by

using the QZ algorithm;

Step 4. Compute zi = J�Z[yi
0 ] ≡ [ zi1

zi2
], i = 1, 2, . . . , n;

Step 5. Compute eigenvalues νi and 1
νi

of P(λ) by solving ν2 − μiν + 1 = 0;

Compute eigenvectors xi1 ≡ zi1 + 1
νi

zi2, xi2 ≡ zi1 + νizi2 corresponding

to νi,
1
νi

, respectively, for i = 1, 2, . . . , n.

Remark 2.2. The SA I requires approximately 27n3 flops for the eigenvalues,
and an additional 23n3 flops for the eigenvectors. While the QZ algorithm is applied
to (M,L) directly, it requires approximately 120n3 flops for the eigenvalues and an
additional 260

3 n3 flops for the eigenvectors. Here and hereafter a flop is a floating
point multiplication and addition for complex numbers, which involves 6 real flops.

3. Structure-preserving algorithm II vs.URV-based method. Recently
in [4, 12, 13], a “good” linearization of the palindromic quadratic pencil (1.1) was
proposed:

λZ� + Z ≡ λ

[
A�

1 A0 − A1

A�
1 A�

1

]
+
[

A1 A1

A0 − A�
1 A1

]
.(3.1)

This preserves the “symplecticity” of the eigenvalues. In order to solve the palindromic
linear eigenvalue problem of (3.1), we rewrite it into a new palindromic quadratic
pencil

Q(ζ) ≡ ζ2Z� + ζ02n + Z(3.2)
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with ζ2 = λ. We then apply the SA I algorithm proposed in section 2 to solve the
palindromic QEP of (3.2). As in (2.4), we form

K̃ =
[

0 Z� − Z
Z − Z� 0

]
, Ñ =

[
−Z 0
0 −Z�

]
.(3.3)

By (2.5) there are unitary Ua,Va ∈ C
4n×4n with Ua = J �

4nVaJ4n such that

U�
a K̃Va =

[
Ka

11 Ka
12

0 (Ka
11)�

]
, U�

a ÑVa =
[

Na
11 Na

12

0 (Na
11)�

]
,(3.4)

where Ka
11 ∈ C

2n×2n is upper Hessenberg with {0, 2, . . . , 2n − 2}-diagonals being
zeros, Na

11 ∈ C
2n×2n is upper triangular with {1, 3, . . . , 2n− 1}-diagonals being zeros,

and Ka
12 and Na

12 ∈ C
2n×2n are skew symmetric with {1,−1, . . . , 2n − 1,−(2n − 1)}-

diagonals and with {2,−2, . . . , 2n− 2,−(2n− 2)}-diagonals, respectively, being zeros.
Here the �-diagonal of a matrix A ≡ [aij ]ni,j=1 consists of the entries {aij} with
j − i = �. Note that the extra zeros in Ka

11, Na
11, Ka

12, and Na
12 are obtained by

performing some suitable permutations on the special forms of (3.3) without any
calculation. (See Appendix A.2 for details.) Denote

P2n = [e1, en+1, e2, en+2, . . . , en, e2n].(3.5)

Let

U� =
[

P�
2n 0
0 P�

2n

]
U�

a , V = Va

[
P2n 0
0 P2n

]
.(3.6)

Then we have

U�K̃V =

⎡⎢⎢⎣
0 R1 T1 0

R2 0 0 −T2

0 0 0 R�
2

0 0 R�
1 0

⎤⎥⎥⎦ ,(3.7a)

U�Ñ V =

⎡⎢⎢⎣
R3 0 0 −T3

0 R4 T�
3 0

0 0 R�
3 0

0 0 0 R�
4

⎤⎥⎥⎦ ,(3.7b)

where R1 ∈ C
n×n is upper Hessenberg, R2, R3, R4 ∈ C

n×n are upper triangular,
T1, T2 ∈ C

n×n are skew symmetric, and T3 ∈ C
n×n. From (3.7), we see that in order

to compute the eigenvalues and the eigenvectors of (K̃, Ñ ) it suffices to compute those
of the matrix pair

(R1R
−1
4 R2, R3).(3.8)

We apply the periodic QZ algorithm [2, 18] to the matrix pair in (3.8) without forming
the product explicitly, which gives the n eigenpairs {(γi, yi)}n

i=1, where yi ∈ C
n. Let

μi =
√

γi (one branch of the square root of γi), ηi := μiR
−1
1 R3yi, and ỹi = [y�

i , η�
i ]�.

It follows that {(μi, z̃i(≡ V [ ỹi

0 ]))}n
i=1 are n eigenpairs of (K̃, Ñ ). Write z̃i = [z̃�i1, z̃

�
i2]

�

and solve νi and 1
νi

for ν2 +(2−μ2
i )ν +1 = 0. By Theorem 2.2 and (3.1), we compute

the eigenvectors

xi1 = x̃i1(1 : n) + x̃i1(n + 1 : 2n), xi2 = x̃i2(1 : n) + x̃i2(n + 1 : 2n)(3.9a)
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of P(λ) corresponding to νi and 1
νi

, respectively, where

x̃i1 := z̃i2 −
1√
νi

z̃i1, x̃i2 := z̃i2 −
√

νiz̃i1.(3.9b)

Algorithm 3.1 (structure-preserving algorithm II (SA II)).

Input: A palindromic quadratic pencil P(λ) ≡ λ2A�
1 + λA0 + A1 with

A0, A1 ∈ C
n×n and A�

0 = A0.
Output: All eigenvalues and eigenvectors of P(λ).

Step 1. Form the pair (K̃, Ñ ) as in (3.3);
Step 2. Reduce (K̃, Ñ ) to block upper triangular forms as in (3.7) using

unitary transformations of (3.4)–(3.6);
Step 3. Compute eigenpairs {(γi, yi)}n

i=1 of (R1R
−1
4 R2, R3) in (3.8) by

the periodic QZ algorithm [18];
Step 4. Compute z̃i = V [ ỹi

0
] ≡ [ z̃i1

z̃i2
], where ỹi = [ In√

γiR
−1
1 R3

]yi

for i = 1, 2, . . . , n;
Step 5. Compute νi and 1

νi
by solving ν2 + (2 − γi)ν + 1 = 0; Compute

eigenvectors xi1 and xi2 of P(λ) as in (3.9a) corresponding to νi,
1
νi

,
respectively, for i = 1, 2, . . . , n.

Remark 3.1.

(i) In Step 3, since R1, R4, R2, and R3 are already in Hessenberg-triangular form,
the first step in the periodic QZ algorithm is not needed.

(ii) The SA II requires 62n3 flops for the eigenvalues, and an additional 23n3

flops for the eigenvectors.
Recently a URV-decomposition-based structured method was proposed in [20] for

solving the palindromic linear pencil (3.1). From [20] there are unitary U, V ∈ C
2n×2n

such that

U�ZV =

[
0 R̂�

4 Πn

ΠnR̂3 ΠnT̂3Πn

]
, V �(Z − Z�)V =

[
0 −R̂�

2 Πn

ΠnR̂2 ΠnT̂2Πn

]
(3.10a)

and

U�(Z� − Z)U =

[
0 −R̂�

1 Πn

ΠnR̂1 ΠnT̂1Πn

]
,(3.10b)

where Πn = [en, . . . , e1], R̂1 ∈ C
n×n is upper Hessenberg, R̂2, R̂3, R̂4 ∈ C

n×n are
upper triangular, T̂1, T̂2 ∈ C

n×n are skew symmetric, and T̂3 ∈ C
n×n. Define

U�
0 :=

⎡⎢⎢⎣
0 Πn 0 0
0 0 0 Πn

0 0 In 0
−In 0 0 0

⎤⎥⎥⎦[ U� 0
0 V �

]
, V0 := J�

4nU0J4n.(3.11)

Then it is easily seen that UH
0 K̃V0 and UH

0 ÑV0 have the same forms as in (3.7) with
“\hat” being over all submatrices. Furthermore, if we define

U�
b =

[
P2n 0
0 P2n

]
U�

0 , Vb := J �
4nUbJ4n,(3.12)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1574 TSUNG-MING HUANG, WEN-WEI LIN, AND JIANG QIAN

then we have

UH
b K̃Vb =

[
Kb

11 Kb
12

0 (Kb
11)

�

]
, UH

b ÑVb =
[

N b
11 N b

12

0 (N b
11)

�

]
,(3.13)

where Kb
11, K

b
12, N

b
11, and N b

12 are of the same forms as in (3.4).
Theorem 3.1. If Ka

11 and Kb
11 are unreduced, and Na

11 and N b
11 are nonsingular

(see (3.4) and (3.13)), then the SA II is mathematically equivalent to the URV-based
structured method.

Proof. Denote Va := [Va
1 ,Va

2 ] with Va
i ∈ C

4n×2n(i = 1, 2). Since Ua = J�
4nVaJ4n,

it holds that Ua = [J4nVa
2 ,−J4nVa

1 ]. From (3.4), it follows that

K̃Va
1 = J4nVa

2 Ka
11, ÑVa

1 = J4nVa
2 Na

11.(3.14)

This implies that

K̃Va
1 = ÑVa

1 (Na
11)

−1Ka
11.(3.15)

Since the first columns of Va
1 and Vb

1 (Vb ≡
[
Vb

1 ,Vb
2

]
) are both e1, by applying the

implicit Q-theorem to (3.15), the matrices Ua and Va are uniquely determined, and
Ua = Ub and Va = Vb.

4. �-skew-Hamiltonian Arnoldi method. Based on SHIRA [15], in this sec-
tion we briefly introduce the structure-preserving �-skew-Hamiltonian Arnoldi algo-
rithm to compute the desired eigenpairs of a �-skew-Hamiltonian B.

As in (2.4), using the (S + S−1)-transform, we transform M− λL of (1.3) into a
�-skew-Hamiltonian pencil K− μN by

K − μN ≡
[
(LJM� + MJL�) − μLJL�]J�.(4.1)

Next, we derive the shift-invert transformation of K − μN . Let λ0 /∈ σ(M,L).
Then, from Theorem 2.2(i), we have μ0 ≡ λ0 + 1

λ0
/∈ σ(K,N ). Define the shift-invert

transformation K̂ − μ̂N̂ for K − μN with μ̂ = 1
μ−μ0

and

K̂ ≡ −λ0N = −λ0LJL�J� = λ0

[
A�

1 0
0 A1

]
,(4.2a)

N̂ ≡ −λ0(K − μ0N ) = −λ0(LJM� + MJL� − μ0LJL�)J �.(4.2b)

Substituting μ0 = λ0 + 1
λ0

into (4.2b), N̂ can be factorized as

N̂ = −λ0

(
LJM� + MJL� −

(
λ0 +

1
λ0

)
LJL�

)
J�

= (M− λ0L)J
(
M� − λ0L�)J� ≡ N1N2,(4.3)

where

N1 = M− λ0L, N2 = J (M� − λ0L�)J �(4.4)

are nonsingular and satisfy N�
2 J = JN1. The generalized eigenvalue problem K̂z =

μ̂N̂ z is then equivalent to the eigenvalue problem By = μ̂y, where y = N2z and

B ≡ N−1
1 K̂N−1

2 .(4.5)
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Using the facts that K̂J = J K̂� and N�
2 J = JN1, we find that B satisfies

JB� = JN−�
2 K̂�N−�

1 = N−1
1 J K̂�N−�

1 = N−1
1 K̂JN−�

1 = N−1
1 K̂N−1

2 J = BJ ,

and hence B is again �-skew-Hamiltonian.
We now define the Krylov matrix with respect to u1 and j (1 ≤ j ≤ n) by

Kj ≡ Kj [B, u1] = [u1, Bu1, . . . , Bj−1u1](4.6)

and state two useful theorems from [15]. Note that these theorems are slightly different
from the originals, but the proofs are almost identical to the ones in [15].

Theorem 4.1 (see [15]). Let B ∈ C
2n×2n be �-skew-Hamiltonian and Kj ≡

Kj[B, u1] (1 ≤ j ≤ n) be a Krylov matrix with rank(Kj) = j. Then span(Kj) is
�-isotropic and if Kj = UjR̂j is a QR-factorization, then

BUj = UjĤj + ûj+1e
�
j ,(4.7)

where Ĥj ∈ C
j×j is unreduced upper Hessenberg, Uj ∈ C

2n×j is orthonormal and
�-isotropic, and ûj+1 ∈ C

2n is a suitable vector such that

UH
j ûj+1 = 0 and U�

j J ûj+1 = 0.(4.8)

Theorem 4.2 (see [15]). Let B ∈ C
2n×2n be �-skew-Hamiltonian. If rank

(Kn[B, u1]) = n, then there is a unitary �-symplectic matrix U with Ue1 = u1 such
that

UHBU =

[
Ĥn N̂n

0 Ĥ�
n

]
,(4.9)

where Ĥn is unreduced upper Hessenberg and N̂n is �-skew-symmetric.
Based on Theorem 4.2, the jth step of the Arnoldi process is given by

ĥj+1,juj+1 = Buj −
j∑

i=1

ĥijui,(4.10)

where ĥij = uH
i Buj, i = 1, . . . , j, and ĥj+1,j > 0 is chosen so that ‖uj+1‖2 = 1. In

order to ensure that the space span{u1, . . . , uj+1} is �-isotropic to working precision,
the jth step of the �-isotropic Arnoldi process is modified by

ĥj+1,juj+1 = Buj −
j∑

i=1

ĥijui −
j∑

i=1

t̂ijJ ūi,(4.11)

where ĥij = uH
i Buj, t̂ij = −u�

i JBuj, i = 1, . . . , j, and ĥj+1,j > 0 is chosen so that
‖uj+1‖2 = 1. We present the �SHIRA-method.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1576 TSUNG-MING HUANG, WEN-WEI LIN, AND JIANG QIAN

Algorithm 4.1 (�SHIRA).

Input: �-skew-Hamiltonian matrix B with starting vector u1.

Output: U� and upper Hessenberg matrix Ĥ� with BU� = U�Ĥ�, UH
� U� = I�

and U�
� JU� = 0.

Use (4.11) with starting vector u1 to generate the �th step of the �-isotropic

Arnoldi factorization:

BU� = U�Ĥ� + ĥ�+1,�u�+1e�� .

For k = 1, 2, . . . , until wanted � eigenpairs of B are convergent,

Use (4.11) to extend the �th step of the �-isotropic Arnoldi factorization to

the (� + p)th step of the �-isotropic Arnoldi factorization:

BU�+p = U�+pĤ�+p + ĥ�+p+1,�+pu�+p+1e��+p.

Use standard implicitly restarted step for the Arnoldi algorithm [8] to reform

a new �th step of the �-isotropic Arnoldi factorization.

End

Remark 4.1.

(i) ĥ�+1,� is set to zero if |ĥ�+1,�| < tol(|ĥ�,�| + |ĥ�+1,�+1|) for some stopping
tolerance “tol.”

(ii) Let (θi, vi) be an eigenpair of Ĥ�, i.e., Ĥ�vi = θivi. Let yi = U�vi be the Ritz
vector of B corresponding to the Ritz value θi. Then from (4.7) and (4.8), we
have

‖Byi − θiyi‖2 = ‖BU�vi − θiU�vi‖2

= ‖(U�Ĥ� + û�+1,�e
�
� )vi − θiU�vi‖2

= ‖U�(Ĥ�vi − θivi) + ĥ�+1,�(e�� vi)u�+1‖2

= |ĥ�+1,�||e�� vi|.

5. Generalized �-skew-Hamiltonian Arnoldi method. We now consider
the generalized eigenvalue problem K̂z = μ̂N̂ z, where K̂ and N̂ are �-skew-Hamilton-
ian given in (4.2). Based on the reduction method [16], K̂ − μ̂N̂ can be reduced to
block triangular condensed forms

V�(K̂ − μ̂N̂ )U =
[

K11 K12

0 K�
11

]
− μ̂

[
N11 N12

0 N�
11

]
,(5.1)

where K11, N11 ∈ C
n×n are, respectively, upper Hessenberg and upper triangular, and

V and U ∈ C
2n×2n are unitary satisfying

V = J �UJ .(5.2)

In order to solve a large sparse product or a periodic eigenvalue problem, re-
cently, a product (or a periodic) Arnoldi process and a product Krylov process were,
respectively, proposed by Kressner’s book [6, section 4.2.5] and Watkins’ book [24,
section 9.10]. Using the result of Theorem 4.1, we adopt the idea of the periodic
Arnoldi process [6, section 4.2.5] to develop a generalized �-skew-Hamiltonian al-
gorithm which preserves the structure of (5.1) for the computation of the desired
eigenpairs of K̂z = μ̂N̂ z.

Theorem 5.1. Let B ≡ N−1
1 K̂N−1

2 be �-skew-Hamiltonian defined in (4.5). Let
N̂ = N1N2 and Kj ≡ Kj[B, u1] be the Krylov matrix with rank(Kj) = j. If

N−1
2 Kj = ZjR2,j and N1Kj = YjR1,j(5.3)
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are QR-factorizations, where Zj , Yj ∈ C
2n×j are orthonormal and R2,j, R1,j are non-

singular upper triangular, then we have

K̂Zj = YjHj + ŷj+1e
�
j(5.4)

and

N̂Zj = YjRj ,(5.5)

where Hj ∈ C
j×j is unreduced upper Hessenberg, Rj ∈ C

j×j is nonsingular upper
triangular, and Yj and Zj are �-bi-isotropic such that

Y H
j ŷj+1 = 0 and Z�

j J ŷj+1 = 0(5.6)

for a suitable ŷj+1 ∈ C
2n.

Proof. Let Kj = UjR̂j be the QR-factorization of Kj with R̂j being nonsingular
upper triangular. From Theorem 4.1, it follows that

N−1
1 K̂N−1

2 Uj = UjĤj + ûj+1e
�
j .(5.7)

Substituting (5.3) into (5.7) we obtain

K̂Zj = K̂N−1
2 KjR

−1
2,j = K̂N−1

2 UjR̂jR
−1
2,j

= (N1UjĤj + N1ûj+1e
�
j )R̂jR

−1
2,j

= Yj(R1,jR̂
−1
j ĤjR̂jR

−1
2,j) + γjYjY

H
j N1ûj+1e

�
j + γj(I − YjY

H
j )N1ûj+1e

�
j

= YjHj + ŷj+1e
�
j ,(5.8)

where γj = e�j R̂jR
−1
2,jej ,

Hj = R1,jR̂
−1
j ĤjR̂jR

−1
2,j + γjY

H
j N1ûj+1e

�
j ,(5.9)

and

ŷj+1 = γj(I − YjY
H
j )N1ûj+1.(5.10)

Since R̂j , R1,j , and R2,j are nonsingular upper triangular, and Ĥj is unreduced upper
Hessenberg, from (5.9) it follows that Hj is unreduced upper Hessenberg. Clearly, it
holds that Y H

j ŷj+1 = 0 by (5.10).
On the other hand, from (5.3), we also have

N̂Zj = N1N2Zj = N1KjR
−1
2,j = YjR1,jR

−1
2,j ≡ YjRj ,

where Rj = R1,jR
−1
2,j is nonsingular and upper triangular.

We now show that Yj and Zj are �-bi-isotropic. By the fact that N�
2 J = JN1

and (5.3), it holds that

Y �
j JZj = R−�

1,j K�
j (N�

1 JN−1
2 )KjR

−1
2,j = R−�

1,j K�
j JKjR

−1
2,j = 0.(5.11)

From (5.8) and (5.10), we have

Z�
j J ŷj+1e

�
j = Z�

j J (K̂Zj − YjHj) = Z�
j J K̂Zj ,

which is �-skew-symmetric. This implies that Z�
j J ŷj+1 = 0.
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Theorem 5.2. Let B = N−1
1 K̂N−1

2 be �-skew-Hamiltonian defined in (4.5)
and N̂ = N1N2. If rank(Kn[B, u1]) = n, then there are unitary matrices U and V
satisfying (5.2) and Ve1 = N1u1/‖N1u1‖2 such that

V�K̂U =
[

Hn Sn

0 H�
n

]
, V�N̂U =

[
Rn Tn

0 R�
n

]
,(5.12)

where Hn is unreduced upper Hessenberg, Rn is nonsingular upper triangular, and Sn

and Tn are �-skew-symmetric.
Proof. Applying Theorem 5.1 for j = n, we have ŷn+1 being orthogonal to Yn

and J Z̄n. This implies that ŷn+1 = 0. Then (5.4) and (5.5) become

K̂Zn = YnHn and N̂Zn = YnRn,(5.13)

where Hn is unreduced upper Hessenberg and Rn is nonsingular upper triangular.
Let U ≡

[
Zn −J Ȳn

]
, V ≡

[
Yn −J Z̄n

]
. Clearly,

ZH
n Zn = In, Y H

n Yn = In, and Y �
n JZn = 0n.(5.14)

Then U and V satisfy (5.2). Since K̂J and N̂J are �-skew symmetric, from (5.13)–
(5.14), (5.12) follows.

Based on Theorem 5.2, we now introduce a generalized�-isotropic Arnoldi process
which produces �-bi-isotropic matrices Zj and Yj+1 at the jth step.

By the recursive definition of j, let us first assume that the �-bi-isotropic matrices
Zj−1 and Yj satisfy (5.4) and (5.5) with j := j − 1. That is, the (j − 1)th step of the
generalized �-isotropic Arnoldi process generates

N̂Zj−1 = Yj−1Rj−1.(5.15)

Now, we compare the jth columns of both sides in (5.5) which give

N̂ zj =
j−1∑
i=1

rijyi + rjjyj .(5.16)

With (5.15), (5.16) it can be rewritten as

r−1
jj zj = N̂−1yj −

j−1∑
i=1

r̂ijzi,(5.17)

where

[r̂1j , . . . , r̂j−1,j ]� := −r−1
jj R−1

j−1[r1j , . . . , rj−1,j ]�.(5.18)

Since ZH
j Zj = Ij , the coefficient r̂ij in (5.17) can be evaluated by

r̂ij = zH
j N̂−1yj , i = 1, . . . , j − 1,(5.19)

and rjj in (5.17) is chosen so that ‖zj‖2 = 1. Substituting [r̂1j , . . . , r̂j−1,j ]� of (5.19)
into (5.18), we obtain the coefficient vector [r1j , . . . , rj−1,j ]�.
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In exact arithmetic, zj is orthogonal to J Ȳj automatically. As before, round-
off errors cause z�j J yi, i = 1, . . . , j, to be tiny values. Thus, the jth step of the
generalized �-isotropic Arnoldi process for zj should be modified by

r−1
jj zj = N̂−1yj −

j−1∑
i=1

r̂ijzi −
j∑

i=1

sijJ ȳi,(5.20a)

where

sij = y�
i J �

(
N̂−1yj −

j−1∑
i=1

r̂ijzi

)
, i = 1, . . . , j.(5.20b)

From (5.4), similar to (4.11), the jth step of the generalized �-isotropic Arnoldi
process for yj+1 is given by

hj+1,jyj+1 = K̂zj −
j∑

i=1

hijyi −
j∑

i=1

tijJ z̄i,(5.21a)

where

hij = yH
i K̂zj , tij = z�i J�K̂zj , i = 1, . . . , j,(5.21b)

and hj+1,j > 0 is chosen so that ‖yj+1‖2 = 1. Combing (5.20) and (5.21), we state
the jth step of the generalized �-isotropic Arnoldi process.

Algorithm 5.1 (the jth generalized �-isotropic Arnoldi step).

Input: �-skew-Hamiltonian K̂ and N̂ , upper triangular R(1 : j − 1, 1 : j − 1),
Yj = [y1, . . . , yj] and Zj−1 = [z1, . . . , zj−1] with Y H

j Yj = Ij ,
ZH

j−1Zj−1 = Ij−1, and Y �
j JZj−1 = 0.

Output: [h1,j , . . . , hj+1,j ], R(1 : j, 1 : j), yj+1, and zj.
Compute zj in (5.20) by using the modified Gram–Schmidt step:

Solve N̂ zj = yj;
For i = 1, . . . , j − 1

r̂ij = zH
i zj, zj = zj − r̂ijzi

End
Set R(j, j) := ‖zj‖−1

2 , zj := R(j, j)zj, and
R(1 : j − 1, j) := −R(j, j)R(1 : j − 1, 1 : j − 1)[r̂1j , · · · , r̂j−1,j ]�;

Reorthogonalize zj to J Ȳj :
For i = 1, . . . , j

sij = y�
i J �zj, zj = zj − sijJ ȳi

End
Compute yj+1 in (5.21):

Compute yj+1 = K̂zj;
For i = 1, . . . , j

hij = yH
i yj+1, yj+1 = yj+1 − hijyi

End
Set hj+1,j := ‖yj+1‖2 and yj+1 := yj+1/hj+1,jyj+1;
For i = 1, . . . , j

tij = z�i J�yj+1, yj+1 = yj+1 − tijJ z̄i

End
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5.1. Implicitly restart. We now derive the implicitly restarted step for the (�+
p)th step of the generalized �-isotropic Arnoldi process. Suppose we have computed
the (� + p)th step of the generalized �-isotropic Arnoldi factorization:

K̂Z�+p = Y�+pH�+p + h�+p+1,�+py�+p+1e
�
�+p,(5.22)

N̂Z�+p = Y�+pR�+p.(5.23)

Let {λ1, . . . , λ�, λ�+1, . . . , λ�+p} be the eigenvalues of the matrix pair (H�+p, R�+p),
where {λ1, . . . , λ�} are the wanted eigenvalues. Let Qk and Vk for k = 1, . . . , p be
unitary matrices computed by the implicit-QZ step [22, p. 147] for (H�+p, R�+p) with
the single shift λ�+k.

Let Ĥ�+p := QH
p · · ·QH

1 H�+pV1 · · ·Vp, R̂�+p := QH
p · · ·QH

1 R�+pV1 · · ·Vp, Ŷ�+p :=
Y�+pQ1 · · ·Qp, and Ẑ�+p := Z�+pV1 · · ·Vp. Then Ĥ�+p and R̂�+p are upper Hessenberg
and upper triangular, respectively, and Ŷ�+p and Ẑ�+p satisfy Ŷ �

�+pJ Ẑ�+p = 0 because
of Y �

�+pJZ�+p = 0. Multiplying (5.22) and (5.23) by V1 · · ·Vp, we get

K̂Ẑ�+p = Ŷ�+pĤ�+p + h�+p+1,�+py�+p+1e
�
�+pV1 · · ·Vp,(5.24)

N̂ Ẑ�+p = Ŷ�+pR̂�+p.(5.25)

Since

e��+pV1 = α�+pe
�
�+p−1 + β�+pe

�
�+p,

by induction, the first � − 1 entries of e��+pV1 · · ·Vp are zero. Hence a new �th step
of the generalized �-isotropic Arnoldi factorization can be obtained by equating the
first � columns of (5.24) and (5.25):

K̂Ẑ� = Ŷ�Ĥ� + ĥ�+p+1,�+py�+p+1e
�
� ,

N̂ Ẑ� = Ŷ�R̂�.

We summarize the above processes in Algorithm 5.2.
Algorithm 5.2 (generalized implicitly restarted step).

Input: given (Y�+p, y�+p+1, Z�+p, H�+p, h�+p+1,�+p, R�+p);

Output: (Y�, y�+1, Z�, H�, h�+1,�, R�) formed a new �th step of the generalized

�-isotropic Arnoldi factorization. The best � eigenvalues are locked in

(H�, R�).

Sort the eigenvalues of (H�+p, R�+p) from best to worst according to the

sorting criterion and take {λ�+1, . . . , λ�+p} to be the p worst eigenvalues.

Set v := h�+p+1,�+pe�+p;

For k = 1, . . . , p,

Compute unitary matrices Qk and Vk by the implicit-QZ step for

(H�+p, R�+p) with the single shift λ�+k so that QH
k H�+pVk and

QH
k R�+pVk are upper Hessenberg and upper triangular, respectively;

Update Y�+p := Y�+pQk, Z�+p := Z�+pVk, H�+p := QH
k H�+pVk,

R�+p := QH
k R�+pVk, v := ZH

k v;

End

Set H� = H�+p(1 : �, 1 : �), h�+1,� := e�� v, R� = R�+p(1 : �, 1 : �),

Y� := Y�+p(:, 1 : �), y�+1 := y�+p+1, Z� := Z�+p(:, 1 : �).
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We now present the G�SHIRA.
Algorithm 5.3 (G�SHIRA).

Input: �-skew-Hamiltonian matrices K̂ and N̂ with starting vector y1.
Output: Z�, Y�, upper Hessenberg H�, and upper triangular R� with

K̂Z� = Y�H�, N̂Z� = Y�R�, Y
H
� Y� = I�, ZH

� Z� = I�, and Y �
� JZ� = 0.

Use Algorithm 5.1 with starting vector y1 to generate an �th step of the
generalized �-isotropic Arnoldi factorization:

K̂Z� = Y�H� + h�+1,�y�+1e
�
� ,

N̂Z� = Y�R�.
For k = 1, 2, . . . , until wanted � eigenpairs of (K̂, N̂ ) are convergent,

Use Algorithm 5.1 to extend the �th step of the generalized �-isotropic
Arnoldi factorization to the (� + p)th step of the generalized
�-isotropic Arnoldi factorization:

K̂Z�+p = Y�+pH�+p + h�+p+1,�+py�+p+1e
�
�+p,

N̂Z�+p = Y�+pR�+p.
Use Algorithm 5.2 to reform a new �th step of the generalized

�-isotropic Arnoldi factorization.
End

Remark 5.1.

(i) h�+1,� is set to zero if |h�+1,�| < tol(|h�,�| + |h�+1,�+1|) for some stopping
tolerance “tol.”

(ii) Let (θi, vi) be an eigenpair of (H�, R�), i.e., H�vi = θiR�vi, and let zi = Z�vi

be a Ritz vector of the eigenproblem K̂z = μN̂ z corresponding to the Ritz
value θi. Then from (5.4) and (5.5), we have

‖K̂zi − θiN̂ zi‖2 = ‖K̂Z�vi − θiN̂Z�vi‖2

= ‖(Y�H� + h�+1,�y�+1e
�
� )vi − θiY�R�vi‖2

= ‖Y�(H�vi − θiR�vi) + h�+1,�(e�� vi)y�+1‖2

= ‖h�+1,�(e�� vi)y�+1‖2 = |h�+1,�||e�� vi|.

6. Numerical study: Vibration of fast trains. In this section, we shall
study the resonance phenomena of a railway track under high frequent excitation
forces. We present numerical results of the vibration of fast trains to illustrate the
performance of the proposed structure-preserving algorithms in sections 2–5. All nu-
merical experiments are carried out using MATLAB 2006b with the machine precision
eps ≈ 2.22 × 10−16.

Research in the vibration of fast trains contributes to the safety of operations of
high-speed trains as well as new designs of train bridges, embedded rail structures
(ERS), and train suspension systems. Recently, the dynamic response of the vehicle-
rail-bridge interaction system under different train speed was studied in [25] and
a procedure for designing an optimal ERS was proposed in [14]. In both papers,
the accurate numerical estimation to the resonance frequencies of the rail plays an
important role. However, as mentioned by Ipsen in [5], the classical finite element
packages fail to deliver correct resonance frequency for such problems. In this section,
we would like to use our structure-preserving algorithms to solve the palindromic QEP
(1.1) arising from the spectral modal analysis of rails under periodic excitation forces.

In the model of vibration of fast trains, we assume that the rail sections between
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consecutive sleeper bays are identical, the distance between consecutive wheels is the
same, and the wheel loads are equal. The rail between two sleepers is modeled by a
three-dimensional isotropic elastic solid with linear isoparametric tetrahedron finite
elements. Figure 6.1 shows a three-dimensional rail model (see [1] for details).

Fig. 6.1. A three-dimensional rail model.

Based on the ERS design [14], the external force is assumed to be periodic and
the displacements of two boundary cross sections of the modeled rail are assumed
to have a ratio λ, which is dependent on the excitation frequency of the external
force. From the virtual work principle and strain-stress relationship, the governing
equation for the displacement vector q involving viscous damping can be formulated
by Kq + Dq̇ + Mq̈ = f(t), where K, D, and M from the finite element discretization
on a uniform mesh satisfy the given boundary conditions. These matrices have the
form ⎡⎢⎣ E11 Ẽ�

1,2:m−1
1
λEm,m+1

Ẽ1,2:m−1 Ẽ2:m−1 Ẽ�
2:m−1,m

λE�
m,m+1 Ẽ2:m−1,m Em,m

⎤⎥⎦
in which Ẽ�

1,2:m−1 = [E�
12, 0n, . . . , 0n], Ẽ2:m−1,m = [0n, . . . , 0n, Em−1,m], and Ẽ2:m−1 =

tridiag
(
Ei−1,i, Ei,i, E

�
i,i+1

)m−1

i=2
with Eij ∈ R

n×n, i, j = 1, . . . , m + 1. (See [1] for
details.) Furthermore, from the spectral modal analysis, we consider q = x̃eiωt,
where ω is the frequency of the external force and x̃ is the corresponding eigenmode.
Consequently, we get the palindromic QEP(

λ2Ã�
1 + λÃ0 + Ã1

)
x̃ = 0,(6.1)

where [
Ã1

]
ij

=
{

Km,m+1 + iωDm,m+1 − ω2Mm,m+1 (if i = m, j = 1),
0 otherwise,[

Ã0

]
ij

=
{

Ki,j + iωDi,j − ω2Mi,j (if i − 1 ≤ j ≤ i + 1),
0 otherwise.

By consulting the preprocessing procedure (see [4] or [1]) for the deflation of all trivial
zero and infinite eigenvalues of (6.1), we arrive to the deflated palindromic QEP(

λ2A�
1 + λA0 + A1

)
x = 0.(6.2)
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Example 6.1. We first consider the deflated palindromic QEP (6.2) for high-speed
trains and rails. The size of A0 and A1 after deflation is n = 303, and the excitation
frequency ω is chosen as 1000. The absolute values of the eigenvalues vary from 10−20

to 1020.
We compute all eigenpairs of Example 6.1 by the SA I, SA II, and QZ algorithm.

Note that as shown in section 3, SA II and the URV-based method [20] are mathe-
matically equivalent. In practice, we compare the backward error (relative residual
(RRes)) of (1.1) by SA II and the SKURV software [18]. Since SKURV gives only
the eigenvalues, the associated eigenvectors are computed from (3.9) and (3.10) by
inverse iteration. Numerical results show that the backward errors obtained by SA II
and SKURV for Example 6.1 are slightly different. Therefore, in the following com-
putation, we adapt SA II instead of the URV-method.

To measure the accuracy of an approximate eigenpair (λ, x) for (6.2), we use
the RRes

(6.3) RRes ≡ ‖λ2A�
1 x + λA0x + A1x‖2

(|λ2|‖A1‖F + |λ|‖A0‖F + ‖A1‖F )‖x‖2
.

As mentioned before, theoretically, the eigenvalues of (6.2) appear in pairs (λ, 1
λ ).

So, if we sort the eigenvalues in the ascending order by modulus, the product of the
ith and (2n + 1 − i)th sorted eigenvalues should be one. Therefore, we define the
reciprocities of computed eigenvalues by

|λiλ2n+1−i − 1|, i = 1, . . . , n.(6.4)

The RRes of the computed eigenpairs by the SA I, SA II, and QZ algorithm
for the eigenvalues with absolute values in [10−20, 1020] and ω = 1000 are shown in
Figure 6.2. For eigenvalues with small modulus, the SA I performs much better than
the SA II and the QZ algorithm. For eigenvalues near the unit circle or with large
modulus, all three algorithms have similar accuracy.

The important reciprocity property of eigenvalues is shown in Figure 6.3. Clearly,
SA I and SA II preserve the essential reciprocity property as expected, while the QZ
algorithm has only less than 12 pairs of computed eigenvalues near the unit circle
with reciprocity near zero (≈ 1.17 × 10−12). The average and maximal values of all
reciprocities are 0.220 and 1.006, respectively.

Next, we apply the SA I, SA II, and QZ algorithm to the palindromic QEP with
various excitation frequency ω. Figure 6.4 shows the RRes of all computed eigenpairs
with eigenvalues in [10−20, 1020] by the three algorithms for 100 different ω’s uniformly
chosen from 50 to 5000. We see that the RRes of the SA I are better than those of
the SA II and the QZ algorithm for all ω’s.

Example 6.2. We now consider the palindromic QEP (6.1) for high-speed trains
and rails, with n, the size of A0 and A1, being 5757.

Computational cost. Before showing our numerical results computed by the
�SHIRA and G�SHIRA, we compare the computational costs of one step of the
�-isotropic Arnoldi process and the implicitly restarted step in each algorithm.

In one step of the �SHIRA, it requires one matrix-vector product for B, and 3j
inner products and saxpy operations with vector length 2n. Since B = N−1

1 K̃N−1
2 , by

the definitions of K̃ and (N1,N2) in (4.2a) and (4.4), the matrix-vector of B requires
solving 2 linear systems, 4 and 2 matrix-vector products for A1 and A0, respectively,
and 6 saxpy operations with vector length n.
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Fig. 6.2. RRes of Example 6.1 (ω = 1000).
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Fig. 6.3. Reciprocities of computed eigenvalues produced by the QZ algorithm (ω = 1000).

In one step of the G�SHIRA, solving z̃j requires solving 2 linear systems, 2 matrix-
vector products of A0 and A1, and 6 saxpy operations with vector length n; comput-
ing zj requires 2j − 1 inner products and saxpy operations with vector length 2n;
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QZ Algorithm SA_I

SA_II/URV

Fig. 6.4. The RRes of eigenvalues vs. ω.

Table 6.1

Computational cost of one step of the �-isotropic Arnoldi process in the �SHIRA and
G�SHIRA algorithms.

�SHIRA G�SHIRA
Solving linear system 2 2
Matrix-vector product for A1 4 4
Matrix-vector product for A0 2 2
Inner products 6j 8j − 2
Saxpy operations 6j + 6 8j + 4

computing yj+1 requires 2 matrix-vector products for A1, and 2j inner products and
saxpy operations with vector length 2n.

We summarize the above computational costs in Table 6.1. The vector length of
the inner products and saxpy operations in Table 6.1 is equal to n. On the other hand,
the implicitly restarted steps in the �SHIRA and G�SHIRA require 2(�+p−1)p and
4(� + p − 1)p saxpy operations with vector length 2n, respectively. Comparing one
�-isotropic Arnoldi step with one implicitly restarted step, the G�SHIRA algorithm
is slightly more expensive than the �SHIRA algorithm.

Accuracy of eigenpairs. We now compare the numerical results computed by the
�SHIRA and G�SHIRA algorithms. Here, λω,1, . . . , λω,10 denote target eigenvalues,
and we set � = 10, p = 20 in the implicitly restarted step for each algorithm.

The RRes of (λω,i, xi) and ( 1
λω,i

, x̃i) for i = 1, . . . , 10 are shown in Figure 6.5,
where xi and x̃i are the corresponding computed eigenvectors. In (a) and (b) of
Figure 6.5, we show those RRes for frequency ω = 50 and ω = 2000, respectively. The
notations “Δ” and “×” denote the results computed by the �SHIRA and G�SHIRA
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Fig. 6.5. The RRes of the eigenpairs computed by the �SHIRA and G�SHIRA algorithms.
The notations “Δ” and “×” denote the results computed by the �SHIRA and G�SHIRA algorithms,
respectively. In (a) and (b), the frequency ω is equal to 50 and 2000, respectively.
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Fig. 6.6. The stacked bars of �ω,k for k = 1, . . . , 7 with different ω. For each ω, all �ω,k

for k = 1, . . . , 7 are stacked to form a vertical bar with ordering �ω,1, �ω,2, . . . , �ω,7. Each bar is
multicolored and the color corresponds to distinct �ω,k. The color bar in the right position shows
the relationship between color and interval Ik, which corresponds to �ω,k. The results in (a) and (b)
are computed by the �SHIRA and G�SHIRA algorithms, respectively.

algorithms, respectively. From these results, we see that the reciprocity property of
the eigenvalues are preserved in both algorithms, but the accuracy of the eigenpairs
computed by the G�SHIRA algorithm is obviously better than that by the �SHIRA
algorithm.

In order to give an overall comparison between the two algorithms, we compute
the eigenpairs (λω,i, xi) and ( 1

λω,i
, x̃i) for i = 1, . . . , 10 with ω = 5, 10, 15, . . . , 500

and ω = 550, 600, 650, . . . , 5000. We analyze the distribution of the corresponding 20
RRes with respect to ω. We partition the interval (0, 10−9) into seven subintervals
I1 = (0, 10−15], I2 = (10−15, 10−14], . . . , I7 = (10−10, 10−9). For fixed ω, let �ω,k be
the number of the RRes which belongs to the interval Ik for k = 1, . . . , 7. In Figure 6.6,
for each ω, all �ω,k, k = 1, . . . , 7, are stacked to form a vertical bar with ordering
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Fig. 6.7. The average of RRes for the twelve eigenpairs computed by the �SHIRA and
G�SHIRA algorithms. The notations “Δ” and “×” denote the results computed by the �SHIRA
and G�SHIRA algorithms, respectively.

�ω,1, �ω,2, . . . , �ω,7. The bar height is 20 which is the sum of �ω,1, . . . , �ω,7. Each bar is
multicolored and the color corresponds to distinct �ω,k. The color bar in the right bot-
tom position of Figure 6.6 shows the relationship between colors and intervals Ik cor-
responding to �ω,k. All stacked bars of �ω,k (k = 1, . . . , 7) with ω = 5, 10, 15, . . . , 500
are shown in (a.1) and (b.1) of Figure 6.6 and those with ω = 550, 600, 650, . . . , 5000
are shown in (a.2) and (b.2) of Figure 6.6. The results in (a) and (b) of Figure 6.6 are
computed by the �SHIRA and the G�SHIRA algorithms, respectively.

In the above paragraph, we show the distribution of the RRes for different ω
for the comparison of the accuracy of the target eigenpairs. From another point of
view, we show the average of the RRes for the target eigenpairs with each ω in Fig-
ure 6.7. The notations “Δ” and “×” in Figure 6.7 denote the results computed by the
�SHIRA and G�SHIRA algorithms, respectively. From Figures 6.6 and 6.7, we can
summarize that the accuracy of the eigenpairs computed by the G�SHIRA algorithm
are obviously better than that of the �SHIRA algorithm for all ω in (0, 5000].

We now try to explain the different accuracies of the two algorithms. One im-
portant reason is that the �SHIRA algorithm needs to solve a linear system in the
extraction method of eigenvectors, while the G�SHIRA algorithm needs only vector
additions. The accuracy of the extracted eigenvector will be reduced if the condition
number of the linear system is large. On the other hand, Theorem A.1 in Appendix A.3
may help explain this phenomenon from the viewpoint of the minimal residual. The
accuracy of the eigenpair computed by the G�SHIRA algorithm is better than that
by the �SHIRA algorithm, since the G�SHIRA algorithm is a generalized Arnoldi
algorithm for K̂z = μ̂N̂ z, while the �SHIRA algorithm is an Arnoldi algorithm for
N−1

1 K̂N−1
2 y = μ̂y.

7. Conclusions. In this paper, we first transform a palindromic QEP to a �-
skew-Hamiltonian pencil by the (S + S−1)-transform. Then, we extend Patel’s ap-
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proach to solve the �-skew-Hamiltonian pencil efficiently. We have also developed
a structure-preserving generalized �-skew-Hamiltonian implicitly restarted Arnoldi
method (G�SHIRA) for solving the large sparse �-skew-Hamiltonian pencil. Numer-
ical results show that the accuracy of desired eigenpairs computed by the G�SHIRA
is better than that computed by the classical �SHIRA. The standard algorithms
proposed in this paper are numerically stable for solving palindromic QEPs. In the
future, we are motivated to develop structure-preserving algorithms for solving the
antipalindromic QEP λ2A�

1 + λA0 − A1 with A�
0 = −A0, efficiently.

Appendix.

A.1. In this section we list pseudocodes of Step 2 in Algorithm 2.1.
In the following, givensl(α,β,i) returns a Givens rotation G such that G[α

β ] = γei

with γ ∈ C; givensr(α,β,i) returns a Givens rotation G such that [α β]G = γe�i with
γ ∈ C. The functions qr(A) and ql(A) perform the standard QR and QL factorizations.

Step 2 in Algorithm 2.1. function [K,N , Q, Z] = rbutf(K,N )
Input: Matrices K,N in the form (2.4).
Output: Unitary Q, Z and K,N of the form (2.5), where K and N are overwritten
by QKZ and QNZ, respectively.
01: [Q1, R] ← qr(N (1 : n, 1 : n))
02: Q ← diag(QH

1 , In)
03: Z ← diag(In, Q̄1)
04: K ← QKZ
05: N ← QNZ
06: for j = 1 : n − 2
07: for k = j + 1 : n − 1
08: % annihilate K(n + k, j) by Givens rotation in (n + k, n + k + 1) plane
09: G ←givensl(K(n + k, j),K(n + k + 1, j), 2)
10: Q(n + k : n + k + 1, :) ← GQ(n + k : n + k + 1, :)
11: K(n + k : n + k + 1, :) ← GK(n + k : n + k + 1, :)
12: N (n + k : n + k + 1, :) ← GN (n + k : n + k + 1, :)
13: Z(:, k : k + 1) ← Z(:, k : k + 1)G�

14: K(:, k : k + 1) ← K(:, k : k + 1)G�

15: N (:, k : k + 1) ← N (:, k : k + 1)G�

16: % annihilate N (k + 1, k) by Givens rotation in (k, k + 1) plane
17: G ←givensl(N (k, k),N (k + 1, k), 1)
18: Q(k : k + 1, :) ← GQ(k : k + 1, :)
19: K(k : k + 1, :) ← GK(k : k + 1, :)
20: N (k : k + 1, :) ← GN (k : k + 1, :)
21: Z(:, n + k : n + k + 1) ← Z(:, n + k : n + k + 1)G�

22: K(:, n + k : n + k + 1) ← K(:, n + k : n + k + 1)G�

23: N (:, n + k : n + k + 1) ← N (:, n + k : n + k + 1)G�

24: end
25: % annihilate N (2n, j) by Givens rotation in (n, 2n) plane
26: G ←givensl(N (n, j),N (2n, j), 1)
27: Q([n 2n], :) ← GQ([n 2n], :)
28: K([n 2n], :) ← GK([n 2n], :)
29: N ([n 2n], :) ← GN ([n 2n], :)
30: Z(:, [n 2n]) ← Z(:, [n 2n])GH

31: K(:, [n 2n]) ← K(:, [n 2n])GH
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32: N (:, [n 2n]) ← N (:, [n 2n])GH

33: for k = n : −1 : j + 2
34: % annihilate K(k, j) by Givens rotation in (k − 1, k) plane
35: G ←givensl(K(k − 1, j),K(k, j), 1)
36: Q(k − 1 : k, :) ← GQ(k − 1 : k, :)
37: K(k − 1 : k, :) ← GK(k − 1 : k, :)
38: N (k − 1 : k, :) ← GN (k − 1 : k, :)
39: Z(:, n + k − 1 : n + k) ← Z(:, n + k − 1 : n + k)G�

40: K(:, n + k − 1 : n + k) ← K(:, n + k − 1 : n + k)G�

41: N (:, n + k − 1 : n + k) ← N (:, n + k − 1 : n + k)G�

42: % annihilate N (k, k − 1) by Givens rotation in (k − 1, k) plane
43: G ←givensr(N (k, k − 1),N (k, k), 2)
44: Q(n + k − 1 : n + k, :) ← G�Q(n + k − 1 : n + k, :)
45: K(n + k − 1 : n + k, :) ← G�K(n + k − 1 : n + k, :)
46: N (n + k − 1 : n + k, :) ← G�N (n + k − 1 : n + k, :)
47: Z(:, k − 1 : k) ← Z(:, k − 1 : k)G
48: K(:, k − 1 : k) ← K(:, k − 1 : k)G
49: N (:, k − 1 : k) ← N (:, k − 1 : k)G
50: end
51: end

A.2. To show the extra zeros of the subdiagonals of the submatrices in (3.4), let
Hk and Tk be the sets of k×k upper Hessenberg and triangular matrices, respectively,
and let S2k be the set of 2k × 2k �-skew symmetric matrices. Denote

A2k =
{

A ∈ C
2k×2k

∣∣∣∣A ≡ P�
2k

[
0k

0k

]
P2k with ∈ Hk and ∈ Tk

}
,(A2.1)

where P2k = [e1, ek+1, e2, ek+2, . . . , ek, e2k],

R2k =
{

R ∈ C
2k×2k

∣∣∣∣R ≡ P�
2k

[
0k

0k

]
P2k with ∈ Tk

}
,(A2.2)

B2m,2k = {B ∈ C
2m×2k|Be1 = Be3 = · · · = Be2k−1 = 0},(A2.3)

B̂2m,2k = {B̂ ∈ C
2m×2k|B̂e2 = B̂e4 = · · · = B̂e2k = 0},(A2.4)

C2m×2k = {C ∈ C
2m×2k|cij = 0, i = 1, . . . , 2m, j = 1, . . . , 2k

and (i, j) �= (1, 2k)},(A2.5)
D2k = {D ∈ C

2k×2k|D ∈ S2k with {1,−1, 3,−3, . . . , 2k − 1,−(2k − 1)}
– diagonals being zeros},(A2.6)

D̂2k = {D̂ ∈ C
2k×2k|D̂ ∈ S2k with {2,−2, 4,−4, . . . , 2k − 2,−(2k − 2)}

– diagonals being zeros}.(A2.7)

After performing the first and second steps of the SA I (i.e., Steps 07–50 in
section A.1, for j = 1 and 2) on (K̃, Ñ ), it produces

K
(2)
11 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 × 0 · · · 0
× 0 × · · · ×
0 × 0 · · · 0
0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, K

(2)
12 :=

⎡⎢⎢⎢⎢⎢⎣
0 0 × · · · ×
0 0 0 · · · 0
× 0
...

... G2n−2

× 0

⎤⎥⎥⎥⎥⎥⎦ ,(A2.8a)
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K
(2)
21 :=

⎡⎢⎢⎢⎢⎢⎣
0 0 0 · · · 0
0 0 0 · · · 0
0 0
...

... H2n−2

0 0

⎤⎥⎥⎥⎥⎥⎦ , K
(2)
22 := (K(2)

11 )�,(A2.8b)

and

N
(2)
11 :=

⎡⎢⎢⎢⎢⎢⎣
× 0 × · · · ×
0 × 0 · · · 0
0 0
...

... T2n−2

0 0

⎤⎥⎥⎥⎥⎥⎦ , N
(2)
12 :=

⎡⎢⎢⎢⎢⎢⎣
0 × 0 · · · 0
× 0 × · · · ×
0 ×
...

... 02n−2

0 ×

⎤⎥⎥⎥⎥⎥⎦ ,(A2.9a)

N
(2)
21 := 02n, N

(2)
22 := (N (2)

11 )�,(A2.9b)

where G2n−2 and H2n−2 ∈ S2n−2 and T2n−2 ∈ T2n−2. Let m = n − k. Suppose after
2k steps (for j = 1, 2, . . . , 2k) the SA I gives

K
(2k)
11 :=

[
A2k B�

2m,2k

C2m,2k 02m

]
, K

(2k)
12 :=

[
D2k B̂�

2m,2k

B̂2m,2k G2m

]
,(A2.10a)

K
(2k)
21 :=

[
02k 0�2m,2k

02m,2k H2m

]
, K

(2k)
22 := (K(2k)

11 )�,(A2.10b)

and

N
(2k)
11 :=

[
R2k Ê�

2m,2k

02m,2k T2m

]
, N

(2k)
12 :=

[
D̂2k E�

2m,2k

E2m,2k 02m

]
,(A2.11a)

N
(2k)
21 := 02n, N

(2k)
22 := (N (2k)

11 )�,(A2.11b)

where A2k ∈ A2k, R2k ∈ R2k, C2m,2k ∈ C2m,2k, B2m,2k, E2m,2k ∈ B2m,2k, B̂2m,2k,
Ê2m,2k ∈ B̂2m,2k, D2k ∈ D2k, D̂2k ∈ D̂2k, G2m, H2m ∈ S2m, and T2m ∈ T2m.

By letting k′ = k + 1 and m′ = m− 1, we perform the SA I for j = 2k + 1, 2k + 1
and obtain

K
(2k′)
11 :=

[
A2k′ B�

2m′,2k′

C2m′,2k′ 02m′

]
, K

(2k′)
12 :=

[
D2k′ B̂�

2m′,2k′

B̂2m′,2k′ G2m′

]
,(A2.12a)

K
(2k′)
21 :=

[
02k′ 0�2m′,2k′

02m′,2k′ H2m′

]
, K

(2k′)
22 := (K(2k′)

11 )�,(A2.12b)

and

N
(2k′)
11 :=

[
R2k′ Ê�

2m′,2k′

02m′,2k′ T2m′

]
, N

(2k′)
12 :=

[
D̂2k′ E�

2m′,2k′

E2m′,2k′ 02m′

]
,(A2.13a)

N
(2k′)
21 := 02n, N

(2k′)
22 := (N (2k′)

11 )�,(A2.13b)
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where the subblocks in (A2.12)–(A2.13) have the same forms as in (A2.10)–(A2.11)
by replacing k and m by k′ and m′, respectively, and satisfy

A2k = Φ�
2kA2k′Φ2k, D2k = Φ�

2kD2kΦ2k,(A2.14a)

R2k = Φ�
2kR2k′Φ2k, D̂2k = Φ�

2kD̂2k′Φ2k,(A2.14b)

where Φ2k = [e1, . . . , e2k] with ei ∈ C
2k′

, i = 1, . . . , 2k. By the inductive process
above, (3.4) holds with k′ = n in (A2.12)–(A2.13) and with the superscript “a” in
(3.4) being (2n).

A.3. Theorem A.1. Let V ∈ C
n×r be a unitary matrix and A, B ∈ C

n×n. Then

‖AV − BV C‖2 ≥ ‖AV − BV P‖2 for all C ∈ C
r×r,

where P = (V HBHBV )−1(V HBHAV ), or equivalently, P = (UHBV )−1(UHAV ),
where BV = US is the QR factorization of BV .

Proof. Since

−CHV HBHBV P = −CHV HBHBV (V HBHBV )−1(V HBHAV )

= −CHV HBHAV,

it follows that

(V HAH − CHV HBH)(AV − BV C)

= V HAHAV − CHV HBHAV − V HAHBV C + CHV HBHBV C

= V HAHAV + (PH − CH)V HBHBV (P − C) − PHV HBHBV P

= (V HAH − PHV HBH)(AV − BV P ) + (PH − CH)V HBHBV (P − C).

Obviously, (PH − CH)V HBHBV (P − C) is semidefinite. Then by Weyl’s theorem,
we have

λj((AV − BV C)H(AV − BV C)) ≥ λj((AV − BV P )H(AV − BV P )), j = 1, . . . , n.

Hence

‖AV − BV C‖2 ≥ ‖AV − BV P‖2,

since ‖G‖2
2 = λmax(GHG).

REFERENCES

[1] E. K.-W. Chu, T.-M. Hwang, W.-W. Lin, and C.-T. Wu, Vibration of fast trains, palin-
dromic eigenvalue problems and structure-preserving doubling algorithms, J. Comput.
Appl. Math., 219 (2008), pp. 237–252.

[2] J. J. Hench and A. J. Laub, Numerical solution of the discrete-time periodic Riccati equation,
IEEE Trans. Automat. Control, 39 (1994), pp. 1197–1210.

[3] A. Hilliges, Numerische Lösung von quadratischen eigenwertproblemen mit Anwendungen in
der Schiendynamik, Master’s thesis, Technical University Berlin, Berlin, Germany, 2004.

[4] A. Hilliges, C. Mehl, and V. Mehrmann, On the solution of palindromic eigenvalue prob-
lems, in Proceedings of the 4th European Congress on Computational Methods in Applied
Sciences and Engineering (ECCOMAS), Jyväskylä, Finland, 2004.
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DETECTING AND SOLVING HYPERBOLIC QUADRATIC
EIGENVALUE PROBLEMS∗

CHUN-HUA GUO† , NICHOLAS J. HIGHAM‡ , AND FRANÇOISE TISSEUR‡

Abstract. Hyperbolic quadratic matrix polynomials Q(λ) = λ2A + λB + C are an important
class of Hermitian matrix polynomials with real eigenvalues, among which the overdamped quadratics
are those with nonpositive eigenvalues. Neither the definition of overdamped nor any of the standard
characterizations provides an efficient way to test if a given Q has this property. We show that
a quadratically convergent matrix iteration based on cyclic reduction, previously studied by Guo
and Lancaster, provides necessary and sufficient conditions for Q to be overdamped. For weakly
overdamped Q the iteration is shown to be generically linearly convergent with constant at worst
1/2, which implies that the convergence of the iteration is reasonably fast in almost all cases of
practical interest. We show that the matrix iteration can be implemented in such a way that when
overdamping is detected a scalar μ < 0 is provided that lies in the gap between the n largest and
n smallest eigenvalues of the n × n quadratic eigenvalue problem (QEP) Q(λ)x = 0. Once such a
μ is known, the QEP can be solved by linearizing to a definite pencil that can be reduced, using
already available Cholesky factorizations, to a standard Hermitian eigenproblem. By incorporating
an initial preprocessing stage that shifts a hyperbolic Q so that it is overdamped, we obtain an
efficient algorithm that identifies and solves a hyperbolic or overdamped QEP maintaining symmetry
throughout and guaranteeing real computed eigenvalues.

Key words. quadratic eigenvalue problem, hyperbolic, overdamped, weakly overdamped,
quadratic matrix polynomial, quadratic matrix equation, solvent, cyclic reduction, doubling algo-
rithm
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1. Introduction. The quadratic eigenvalue problem (QEP) is to find scalars λ
and nonzero vectors x and y satisfying Q(λ)x = 0 and y∗Q(λ) = 0, where

Q(λ) = λ2A + λB + C, A, B, C ∈ C
n×n(1.1)

is a quadratic matrix polynomial. The vectors x and y are right and left eigenvec-
tors, respectively, corresponding to the eigenvalue λ. The many applications of the
QEP, as well as its theory and algorithms for solving it, are surveyed by Tisseur and
Meerbergen [27].

Our interest in this work is in Hermitian quadratic matrix polynomials—those
with Hermitian A, B, and C—and more specifically those that are hyperbolic. Hyper-
bolic quadratics, and the subclass of overdamped quadratics, are defined as follows.
For Hermitian X and Y we write X > Y (X ≥ Y ) if X − Y is positive definite
(positive semidefinite).
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Definition 1.1. Q(λ) is hyperbolic if A, B, and C are Hermitian, A > 0, and

(x∗Bx)2 > 4(x∗Ax)(x∗Cx) for all nonzero x ∈ C
n.(1.2)

Definition 1.2. Q(λ) is overdamped if it is hyperbolic with B > 0 and C ≥ 0.
Overdamped quadratics arise in overdamped systems in structural mechanics [22,

section 7.6].
Any eigenpair of Q satisfies x∗Q(λ)x = 0 and hence

λ =
−x∗Bx ±

√
(x∗Bx)2 − 4(x∗Ax)(x∗Cx)

2x∗Ax
.(1.3)

Therefore the eigenvalues of a hyperbolic Q are real and those of an overdamped Q
are real and nonpositive. Both classes of quadratics have other important spectral
properties, which we summarize in section 2.

We have two aims. The first is to devise an efficient and reliable numerical test
for hyperbolicity or overdamping of a given Hermitian quadratic. The second aim is
to build upon an affirmative test result an efficient algorithm for solving the QEP that
exploits hyperbolicity and in particular that guarantees real computed eigenvalues in
floating point arithmetic.

Part of the motivation for testing overdamping concerns the stability of gyro-
scopic systems. It is known that a gyroscopic system G(λ) = λ2Ag + λBg + Cg

with Ag, Cg > 0 and Bg Hermitian indefinite and nonsingular is stable whenever the
quadratic Qg(λ) = λ2Ag + λ|Bg| + Cg is overdamped [9]. Here |Bg| is the Hermitian
positive definite square root of B2

g (i.e., the Hermitian polar factor of the Hermitian
matrix Bg) [12].

Checking the hyperbolicity condition (1.2) is a nontrivial task, and plausible suf-
ficient conditions for hyperbolicity may be incorrect. For example, it is claimed in
[21] that when A = I, B > 0, and C ≥ 0, Q is hyperbolic if B > 2C1/2. That this
claim is false has been shown by Barkwell and Lancaster [1].

Guo and Lancaster [9] propose testing overdamping by using a matrix iteration
based on cyclic reduction to compute two solvents (solutions) of the quadratic matrix
equation

Q(X) = AX2 + BX + C = 0(1.4)

and then computing an extremal eigenvalue of each solvent. A definiteness test on Q
evaluated at the average of the two extremal eigenvalues finally determines whether
Q is overdamped. We show that the same iteration can be used to test overdamping
in a much more efficient way that does not necessarily require the iteration to be run
to convergence, even for a positive test result. Our test is based on a more complete
understanding of the behavior of the matrix iteration, developed in section 3.

In section 4 we extend the convergence analysis to weakly overdamped quadratics,
for which the strict inequality in (1.2) is replaced by a weak inequality (≥). The key
idea is to use an interpretation of the matrix iteration as a doubling algorithm. We
show that for weakly overdamped Q with equality in (1.2) for some nonzero x, the
iteration is linearly convergent with constant at worst 1/2 in the generic case. A
reasonable speed of convergence can therefore be expected in almost all practically
important cases.

In section 5 we turn to algorithmic matters. We first show how a hyperbolic Q can
be shifted to make it overdamped. Then we specify our test for overdamping, which
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requires only the building blocks of Cholesky factorization, matrix multiplication,
and the solution of triangular systems. We then show how after a successful test the
eigensystem of an overdamped Q can be efficiently computed in a way that exploits
the symmetry and definiteness and guarantees real computed eigenvalues.

Veselić [28] and Higham, Tisseur, and Van Dooren [19] have previously shown that
every hyperbolic quadratic can be reformulated as a definite pencil L(λ) = λX +Y of
twice the dimension, and this connection is explored in detail and in more generality
by Higham, Mackey, and Tisseur [16]. However, the algorithm developed here is the
first practical procedure for arranging that X or Y is a definite matrix and hence
allowing symmetry and definiteness to be fully exploited.

Section 6 concludes the paper with a numerical experiment that provides further
insight into the theory and algorithms.

2. Preliminaries. We first recall the definition of a definite pencil.
Definition 2.1. A Hermitian pencil L(λ) = λX +Y is definite (or, equivalently,

the matrices X, Y form a definite pair) if (z∗Xz)2 + (z∗Yz)2 > 0 for all nonzero
z ∈ C

n.
Definite pairs have the desirable properties that they are simultaneously diag-

onalizable under congruence and, in the associated eigenproblem L(λ)x = 0, the
eigenvalues are real and semisimple.1

The next result gives three conditions each equivalent to the condition (1.2) in
the definition of hyperbolic quadratic.

Theorem 2.2. Let the n×n quadratic Q(λ) = λ2A+ λB +C be Hermitian with
A > 0 and let

γ = min
‖x‖2=1

[(x∗Bx)2 − 4(x∗Ax)(x∗Cx)].(2.1)

The following statements are equivalent:
(a) Q is hyperbolic.
(b) γ > 0.
(c) x∗Q(λ)x = 0 has two distinct real zeros for all nonzero x ∈ C

n.
(d) Q(μ) < 0 for some μ ∈ R.
Proof. (a) ⇔ (b) ⇔ (c) is immediate. (c) ⇔ (d) follows from Markus [25,

Lemma 31.15].
Hyperbolic quadratics have many interesting properties [25, section 31].
Theorem 2.3. Let the n × n quadratic Q(λ) = λ2A + λB + C be hyperbolic.
(a) The 2n eigenvalues of Q(λ) are all real and semisimple.
(b) There is a gap between the n largest and n smallest eigenvalues, that is, the

eigenvalues can be ordered λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n.
(c) Q(μ) < 0 for all μ ∈ (λn+1, λn) and Q(μ) > 0 for all μ ∈ (−∞, λ2n)∪(λ1,∞).
(d) There are n linearly independent eigenvectors associated with the n largest

eigenvalues and likewise for the n smallest eigenvalues.
(e) The quadratic matrix equation Q(X) = 0 in (1.4) has a solvent S(1) with

eigenvalues λ1, . . . , λn and a solvent S(2) with eigenvalues λn+1, . . . , λ2n. Moreover,

Q(λ) =
(
λI − S(2)∗)A(λI − S(1)) =

(
λI − S(1)∗)A(λI − S(2)).

The n largest eigenvalues of a hyperbolic quadratic are called the primary eigen-
values and the n smallest eigenvalues are the secondary eigenvalues. The solvents

1An eigenvalue of a matrix polynomial P (λ) =
∑�

k=0 λ
kPk is semisimple if it appears only in

1× 1 Jordan blocks in a Jordan triple for P [7].
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S(1) and S(2) having as their eigenvalues the primary eigenvalues and the secondary
eigenvalues, respectively, are referred to as the primary and secondary solvents.

Hyperbolicity can also be defined for matrix polynomials P of arbitrary degree
[25, section 31]. The notion has recently been extended in [16] by replacing the
assumption of a positive definite leading coefficient matrix with P (ω) > 0 for some
ω ∈ R ∪ {∞}.

The next result gives some characterizations of an overdamped quadratic. First,
we need a simple lemma.

Lemma 2.4. Let Q(λ) = λ2A + λB + C be Hermitian and let μ > 0. Then
Q(−μ) < 0 if and only if B > μA + μ−1C.

Proof. The proof is immediate from Q(−μ) = μ2A−μB+C < 0 ⇔ μA−B+μ−1C
< 0.

Theorem 2.5. Let Q(λ) = λ2A + λB + C be Hermitian with A > 0. Then the
following statements are equivalent:

(a) Q(λ) is overdamped.
(b) Q(λ) is hyperbolic and all of its eigenvalues are real and nonpositive.
(c) B > 0, C ≥ 0, and B > μA + μ−1C for some μ > 0.
Proof. (a) ⇔ (b) is proved in [9, Theorem 5]. (b) ⇒ (c): By Theorem 2.3(c),

Q(μ̃) < 0 for some μ̃ < 0; (c) follows on invoking Lemma 2.4. (c) ⇒ (a): B >
μA+μ−1C with μ > 0 implies Q(−μ) < 0 by Lemma 2.4, which implies Q is hyperbolic
by Theorem 2.2(d) and hence overdamped since B > 0 and C ≥ 0.

It follows from (b) in Theorem 2.5 that if we know an upper bound, say, θ, on the
largest eigenvalue λ1 of a hyperbolic quadratic Q then, with λ = μ + θ, the quadratic
Qθ defined by

Q(λ) = Q(μ + θ) = μ2A + μ(B + 2θA) + C + θB + θ2A(2.2)
= μ2Aθ + μBθ + Cθ

=: Qθ(μ)

is overdamped. Thus any hyperbolic quadratic can be transformed into an over-
damped quadratic by an appropriate shifting of the eigenvalues. Hence for the pur-
poses of testing hyperbolicity and overdamping it suffices to consider overdamping.
We make this restriction in the next two sections and consider in section 5 how to
implement the shifting in practice.

3. An iteration for testing overdamping. Suppose we have a Hermitian
quadratic Q(λ) = λ2A+λB+C, where we assume throughout this section that A > 0,
B > 0, and C ≥ 0. The challenge is how to test the hyperbolicity (or, equivalently,
the overdamping) condition (1.2) or, equivalently, condition (c) in Theorem 2.5.

The primary and secondary solvents S(1) and S(2) of an overdamped quadratic
can be found efficiently by applying an iteration based on cyclic reduction [2], [9].
The iteration is

S0 = B, A0 = A, B0 = B, C0 = C,

Sk+1 = Sk − AkB−1
k Ck,

Ak+1 = AkB−1
k Ak,(3.1)

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak,

Ck+1 = CkB−1
k Ck.

The next theorem summarizes properties of the iteration proved in [9, Lemma 6,
Theorem 7 and proof].
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Theorem 3.1. Let Q(λ) = λ2A + λB + C be an n × n overdamped quadratic
with eigenvalues λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n. Consider iteration (3.1) and any
matrix norm ‖ · ‖.

(a) The iterates satisfy Ak > 0, Ck ≥ 0, and Bk > 0 for all k ≥ 0.
(b) ‖Ak‖‖Ck‖ converges quadratically to zero with

lim sup
k→∞

2k
√
‖Ak‖‖Ck‖ ≤ λn

λn+1
< 1.

(c) Sk converges quadratically to a nonsingular matrix Ŝ with

lim sup
k→∞

2k
√
‖Sk − Ŝ‖ ≤ λn

λn+1
< 1.(3.2)

(d) The primary and secondary solvents of Q(X), S(1) and S(2), respectively, are
given by

S(1) = −Ŝ−1C, S(2) = −A−1Ŝ∗.(3.3)

The next lemma reveals a crucial property of iteration (3.1) for overdamped
quadratics. The “only if” part of the result is [9, Lemma 6].

Lemma 3.2. Let μ > 0 and assume Ak > 0 and Ck ≥ 0. In (3.1), Bk > μ2k

Ak +
μ−2k

Ck if and only if Ak+1 > 0, Ck+1 ≥ 0, and Bk+1 > μ2k+1
Ak+1 + μ−2k+1

Ck+1.
Proof. “⇒”: We have

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak

= Bk −
(
μ2k

Ak + μ−2k

Ck

)
B−1

k

(
μ2k

Ak + μ−2k

Ck

)
+ μ2k+1

AkB−1
k Ak + μ−2k+1

CkB−1
k Ck

> μ2k+1
AkB−1

k Ak + μ−2k+1
CkB−1

k Ck,

where we have used the fact that X − Y X−1Y > Y − Y Y −1Y = 0 when X > Y > 0.
Clearly, Ak+1 > 0 and Ck+1 ≥ 0 since B−1

k > 0.
“⇐”: As in the first part we have

Bk+1 = Bk − FkB−1
k Fk + Fk+1,(3.4)

where Fk = μ2k

Ak + μ−2k

Ck. Now if Bk+1 > μ2k+1
Ak+1 + μ−2k+1

Ck+1 = Fk+1 then
(3.4) gives Bk −FkB−1

k Fk > 0. Note that Bk −FkB−1
k Fk is the Schur complement of

Bk > 0 in

T =
[

Bk Fk

Fk Bk

]
.

So we have T > 0, and it follows that Bk − Fk > 0 (for example, by looking at
the (1, 1) block of the congruence

[
I
0
−I
I

]
T
[

I
−I

0
I

]
). Therefore Bk > Fk = μ2k

Ak

+ μ−2k

Ck.
In view of Theorem 2.5(c), Lemma 3.2 implies that Q is overdamped if and only

if any one of the quadratics

Qk(λ) = λ2Ak + λBk + Ck(3.5)
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generated during the iteration is overdamped, assuming that Ak > 0 and Ck ≥ 0 for
all k. Note that the latter assumption holds if Bk > 0 for all k.

Corollary 3.3. Let Q be a Hermitian quadratic with A, B > 0 and C ≥ 0. For
iteration (3.1) and any fixed m ≥ 0, if Bk > 0 for k = 1: m − 1 and

Bm > μ2m

Am + μ−2m

Cm(3.6)

for some μ > 0, then B > μA + μ−1C and Q is overdamped.
Intuitively, we can think of the scalars μ2m

and μ−2m

in (3.6) as trying to balance
Am and Cm. This suggests that (3.6) could be replaced by Bm > Ãm + C̃m if the
iteration is scaled so that Ãm and C̃m are balanced. Normwise balancing is included
in the following scaled version of (3.1), introduced in [9]; it generates iterates Ãk, Bk

(unchanged from (3.1)), and C̃k according to

α0 =
√
‖C‖/‖A‖,

Ã0 = α0A, B0 = B, C̃0 = α−1
0 C,

Ak+1 = ÃkB−1
k Ãk,

Bk+1 = Bk − ÃkB−1
k C̃k − C̃kB−1

k Ãk,(3.7)

Ck+1 = C̃kB−1
k C̃k,

αk+1 =
√
‖Ck+1‖/‖Ak+1‖,

Ãk+1 = αk+1Ak+1, C̃k+1 = α−1
k+1Ck+1.

Here we have assumed that C �= 0 (the overdamping condition holds for the trivial
case C = 0 by (1.2)); thus αk > 0 for each k ≥ 0. The scaling procedure ensures that
‖Ãk‖ = ‖C̃k‖ and ‖Ãk‖‖C̃k‖ = ‖Ak‖‖Ck‖.

The next result describes the behavior of the scaled iteration.
Theorem 3.4. A Hermitian quadratic Q with A, B > 0 and 0 �= C ≥ 0 is

overdamped if and only if in (3.7)

Bk > 0 for all k, lim
k→∞

Ãk = 0, lim
k→∞

C̃k = 0, lim
k→∞

Bk > 0,(3.8)

and in this case

lim sup
k→∞

2k
√
‖Ãk‖ = lim sup

k→∞

2k
√
‖C̃k‖ ≤

(
λn

λn+1

)1/2

,(3.9)

lim sup
k→∞

2k
√
‖Bk − B̂‖ ≤ λn

λn+1
,(3.10)

with B̂ = A(S(1) − S(2)).
Proof. Assume that the conditions in (3.8) hold. Then Bm > Ãm + C̃m for some

m ≥ 0. It is easy to see that the iterates Ãk and C̃k defined in (3.7) are related to Ak

and Ck in (3.1) by

Ãk = α2k

0 α2k−1

1 . . . α2
k−1αkAk, C̃k = α−2k

0 α−2k−1

1 . . . α−2
k−1α

−1
k Ck, k ≥ 0.

So Bm > Ãm + C̃m implies Bm > μ2m

Am + μ−2m

Cm with μ = α0α
2−1

1 α2−2

2 . . . α2−m

m ,
which implies Q is overdamped by Corollary 3.3.
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Table 3.1

Number of iterations m to verify that the quadratic defined by (3.11) is overdamped.

β 1 0.62 0.61 0.53 0.52 0.5197 0.519616 0.51961525 0.5196152423
m 0 0 1 1 2 3 5 8 12

Table 3.2

Number of iterations m to verify that the quadratic defined by (3.11) is not overdamped.

β 0.36 0.47 0.50 0.51 0.5196 0.519615 0.51961524 0.5196152422
m 1 2 3 4 8 11 15 17

Now assume the QEP is overdamped. Then, from Theorem 3.1(a), Bk > 0 for
each k ≥ 0, while, since ‖Ãk‖ = ‖C̃k‖ = (‖Ak‖‖Ck‖)1/2, Theorem 3.1(b) implies
lim Ãk = lim C̃k = 0 and that (3.9) holds. To show the convergence of Bk, we note
that from (3.1), Bk+1 = Bk − (Sk − Sk+1) − (Sk − Sk+1)∗, which implies

Bk = B0 − (S0 − Sk) − (S0 − Sk)∗ = −B + Sk + S∗
k .

In view of (3.2), (3.3), and Bk > 0, (3.10) holds with B̂ = −B + Ŝ + Ŝ∗ = A(S(1) −
S(2)) ≥ 0. Since the sequence {‖B−1

k ‖} is known to be bounded (see the proof of [9,
Theorem 7]), we have B̂ > 0.

The next result confirms that μ can be removed from (3.6) for the scaled iteration.
It follows readily from Theorem 3.4 and its proof.

Corollary 3.5. A Hermitian quadratic Q with A, B > 0 and 0 �= C ≥ 0 is
overdamped if and only if, for some m ≥ 0, Bk > 0 for k = 1: m − 1 in (3.7) and
Bm > Ãm + C̃m.

The corollary is important for two reasons. First, it provides a basis for an elegant,
practical test for overdamping, as definiteness of a matrix is easily tested numerically.
Second, in the case of an affirmative test result a μ with Q(−μ) < 0 can be identified,
and such a μ is very useful when we go on to solve the QEP, as we will show in
section 5.

From a numerical point of view it is preferable to work with the original data
as much as possible. The following variant of Corollary 3.5 tests the overdamping
condition using the original quadratic Q and will be the basis of the algorithm in
section 5. It follows readily from Corollary 3.3 and Theorem 3.4 and its proof.

Corollary 3.6. A Hermitian quadratic Q with A, B > 0 and 0 �= C ≥ 0 is
overdamped if and only if, for some m ≥ 0, Bk > 0 for k = 1: m − 1 in (3.7) and
Q(−μm) < 0, where μm = α0α

2−1

1 α2−2

2 . . . α2−m

m > 0 and the αk are defined in (3.7).
Usually, only a few iterations of the cyclic reduction algorithm (3.7) will be nec-

essary. To illustrate, we consider a quadratic Q(λ) of dimension n = 100 defined by

A = I, B = β

⎡
⎢⎢⎢⎢⎢⎢⎣

20 −10

−10 30
. . .

. . .
. . .

. . .
. . . 30 −10

−10 20

⎤
⎥⎥⎥⎥⎥⎥⎦

, C =

⎡
⎢⎢⎢⎣

15 −5

−5 15
. . .

. . . . . . −5
−5 15

⎤
⎥⎥⎥⎦ ,(3.11)

where β > 0 is a real parameter. This example, which comes from a damped mass-
spring system, is used in [13] with β = 1. We use the 1-norm in (3.7). Tables 3.1
and 3.2 report the number of iterations required to demonstrate that Q is over-
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damped, through verification of the conditions in Corollary 3.6, or that it is not
overdamped, through generation of a non-positive definite iterate Bm. Note that
when Q is “strongly” overdamped and when Q is far from being overdamped, the
overdamping condition is shown to hold or not after just a few iterations.

4. Convergence analysis for weakly overdamped quadratics. For the ex-
ample at the end of section 3 and some β0 ∈ (0.5196152422, 0.5196152423), the in-
equality (1.2) holds as a weak inequality with equality attained for some nonzero x.
We have seen that the overdamping test requires a very small number of iterations
when β is not close to β0. When β ≈ β0, the number of iterations increases but is still
under 20 in our experiments. The purpose of this section is to explain this behavior
by showing that the convergence of iteration (3.1) is reasonably fast even when the
QEP is weakly overdamped in the sense defined as follows.

Definition 4.1. Q(λ) is weakly hyperbolic if A, B, and C are Hermitian, A > 0,
and

γ = min
‖x‖2=1

[(x∗Bx)2 − 4(x∗Ax)(x∗Cx)] ≥ 0.(4.1)

Definition 4.2. Q(λ) is weakly overdamped if it is weakly hyperbolic with B > 0
and C ≥ 0.

The eigenvalues of a weakly hyperbolic Q are real and those of a weakly over-
damped Q are real and nonpositive. The following result collects further properties
of a weakly overdamped quadratic [25, section 31].

Theorem 4.3. Let Q(λ) = λ2A+λB+C be a weakly overdamped n×n quadratic.
(a) If γ = 0 in (4.1), then Q(λ) has 2n real eigenvalues that can be ordered

λ1 ≥ · · · ≥ λn = λn+1 ≥ · · · ≥ λ2n. The partial multiplicities2 of λn are at most 2,
and the eigenvalues other than λn are semisimple.

(b) Q(λn) ≤ 0.
(c) The quadratic matrix equation Q(X) = 0 in (1.4) has a solvent S(1) with

eigenvalues λ1, . . . , λn and a solvent S(2) with eigenvalues λn+1, . . . , λ2n.
In the overdamped case considered in the previous section, convergence results

for the iteration (3.1) are established using matrix identities obtained from the cyclic
reduction method. Those identities do not contain enough information about (3.1) to
allow a proof of convergence for weakly overdamped quadratics with γ = 0, for which
λn+1 = λn. We now study this critical case and thereby obtain a better understanding
of the convergence of the iteration for overdamped QEPs with λn ≈ λn+1. The next
lemma shows that (3.1) remains well defined in the critical case, which is the setting
for the rest of this section.

Lemma 4.4. For a weakly overdamped quadratic Q(λ) = λ2A + λB + C with
γ = 0 in (4.1), there is a positive real number μ such that for the iteration (3.1)

Ak > 0, Ck ≥ 0, Bk ≥ μ2k

Ak + μ−2k

Ck(4.2)

for all k ≥ 0.
Proof. We have λn ≤ λ1 ≤ 0. If λn = 0 then, from Theorem 4.3, C = Q(λn) ≤ 0.

Since C ≥ 0 we must have C = 0. However, γ > 0 for the trivial case C = 0.
Therefore λn < 0 since γ = 0. It then follows from Q(λn) ≤ 0 that B ≥ μA + μ−1C

2The partial multiplicities of an eigenvalue of Q are the sizes of the Jordan blocks in which it
appears in a Jordan triple for Q [7].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS 1601

for μ = −λn > 0. The inequalities in (4.2) are then proved inductively using the
technique from the proof of the first part of Lemma 3.2.

Lin and Xu [24] recently showed that Meini’s iterations based on cyclic reduction
for the matrix equation X + A∗X−1A = Q [26] can also be derived from a structure-
preserving doubling algorithm. Following their approach we show that the iteration
(3.1) is related to a doubling algorithm, and we use this observation to study the
convergence of (3.1) for weakly overdamped quadratics. The rate of convergence will
be shown to be at least linear with constant 1/2 in the generic case, which is the
case where λn = λn+1 is a multiple eigenvalue with partial multiplicities all equal to
2 (that is, λn occurs only in 2 × 2 Jordan blocks). This rate and constant are to be
expected in view of the results of Guo in [8].

Lemma 4.5. Let X =
[

A 0
H −I

]
and Y =

[
G I
C 0

]
be block 2×2 matrices with n×n

blocks. When H + G is nonsingular there exist 2n × 2n matrices X̃ and Ỹ such that
(a) X̃Y = Ỹ X and (b) X̃X, Ỹ Y have the same zero and identity blocks as X and Y ,
respectively.

Proof. Applying block row permutations and block Gaussian elimination to
[

X
Y

]

yields P
[

X
Y

]
=

[
U
0

]
, where U =

[
G I

G + H 0

]
and

P =
[

P11 P12

P21 P22

]
=

⎡
⎢⎢⎣

0 0 I 0
0 I I 0
I −A(G + H)−1 −A(G + H)−1 0
0 C(G + H)−1 C(G + H)−1 −I

⎤
⎥⎥⎦ .

Since
[

P21 P22

][
X
Y

]
= 0, the required equality Ỹ X = X̃Y is satisfied with X̃ := −P22

and Ỹ := P21. Furthermore,

X̃X =
[

A(G + H)−1A 0
H − C(G + H)−1A −I

]
, Ỹ Y =

[
G − A(G + H)−1C I

C(G + H)−1C 0

]
.

Lemma 4.5 and its proof suggest the recurrence

Xk+1 = X̃kXk, Yk+1 = ỸkYk, k ≥ 0,(4.3)

with

Xk =
[

Ak 0
Hk −I

]
, Yk =

[
Gk I
Ck 0

]
(4.4)

and

X̃k =
[

Ak(Gk + Hk)−1 0
−Ck(Gk + Hk)−1 I

]
, Ỹk =

[
I −Ak(Gk + Hk)−1

0 Ck(Gk + Hk)−1

]
,

which leads to

Ak+1 = Ak(Gk + Hk)−1Ak,

Gk+1 = Gk − Ak(Gk + Hk)−1Ck,(4.5)
Hk+1 = Hk − Ck(Gk + Hk)−1Ak,

Ck+1 = Ck(Gk + Hk)−1Ck.

With

A0 = A, C0 = C, G0 = 0, H0 = B,(4.6)
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the iteration (3.1) is recovered from (4.5) by letting Bk = Gk + Hk and Sk = H∗
k . By

Lemma 4.4, Bk > 0 for all k ≥ 0. Therefore with the starting matrices (4.6), iteration
(4.5) is well defined. Note that Xk in (4.4) is nonsingular for all k ≥ 0 and, from (4.3)
and the property that X̃kYk = ỸkXk,

X−1
k+1Yk+1 = (X̃kXk)−1ỸkYk = X−1

k X̃−1
k ỸkYk = X−1

k YkX−1
k Yk = (X−1

k Yk)2.(4.7)

It follows from (4.7) that for all k ≥ 0,

X−1
k Yk =

(
X−1

0 Y0

)2k

.(4.8)

The identity (4.8) is what we need to prove the convergence of (4.5) with (4.6) and
hence the convergence of (3.1).

The next result describes the convergence behavior in the generic case.
Theorem 4.6. Let Q(λ) be weakly overdamped with eigenvalues λ1 ≥ · · · ≥ λn =

λn+1 ≥ · · · ≥ λ2n, and assume that the partial multiplicities of λn are all equal to 2.
Let S(1) and S(2) be the primary and secondary solvents of Q(X) = 0, respectively,
and assume that λn is a semisimple eigenvalue of S(1) and S(2). Then the iterates
Gk, Hk, Ak, and Ck defined by (4.5) and (4.6) satisfy

lim sup
k→∞

k

√
‖Gk − AS(1)‖ ≤ 1

2
, lim sup

k→∞

k

√
‖Hk + AS(2)‖ ≤ 1

2
,

lim sup
k→∞

k
√
‖Ak‖‖Ck‖ ≤ 1

4
.

Proof. We start by making the change of variables (or scaling) λ = μθ, where
θ = |λn| > 0 (see the proof of Lemma 4.4) so that μn = μn+1 = −1, and we
define Q̂(μ) = μ2Â + μB̂ + Ĉ with (Â, B̂, Ĉ) = (θA, B, θ−1C). For this triple denote
the iterates of (4.5) by Âk, Ĝk, Ĥk, and Ĉk. It is easy to see that for all k ≥ 0,
Ĝk = Gk, Ĥk = Hk, Âk = θ2k

Ak, and Ĉk = θ−2k

Ck so that ‖Ak‖‖Ck‖ = ‖Âk‖‖Ĉk‖.
The primary and secondary solvents of ÂS2 + B̂S + Ĉ = 0 are Ŝ(1) = θ−1S(1) and
Ŝ(2) = θ−1S(2), respectively. Note that ÂŜ(i) = AS(i), i = 1, 2. To avoid notational
clutter, we omit the hats on matrices in the rest of the proof.

We now consider the iterations for the block 2 × 2 matrices Xk and Yk in (4.4).
With A0 = A, C0 = C, G0 = 0, and H0 = B, the pencil

μX0 + Y0 = μ

[
A 0
B −In

]
+
[

0 In

C 0

]
(4.9)

is a linearization of Q(μ) [7]. Hence −X−1
0 Y0 and Q(μ) have the same eigenvalues, with

the same partial multiplicities. Suppose there are r 2 × 2 Jordan blocks associated
with eigenvalues equal to μn = −1, where r ≥ 1 by assumption. Rearranging the
Jordan canonical form of X−1

0 Y0 appropriately yields

V −1(X−1
0 Y0)V =

[
D2 ⊕ Ir 0 ⊕ Ir

0 D1 ⊕ Ir

]
=: DV ,(4.10)

W−1(X−1
0 Y0)W =

[
D2 ⊕ Ir 0
0 ⊕ Ir D1 ⊕ Ir

]
=: DW ,(4.11)

where V and W are nonsingular, D1 and D2 are (n − r) × (n − r) diagonal matrices
containing the (semisimple) eigenvalues less than 1 and greater than 1 in modulus,
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respectively, and M ⊕ N denotes
[

M
0

0
N

]
. Now partition V and W as block 2 × 2

matrices with n × n blocks

V =
[

V1 V3

V2 V4

]
, W =

[
W1 W3

W2 W4

]
,

and note from (4.10)–(4.11) that

X−1
0 Y0

[
V1

V2

]
=

[
V1

V2

]
(D2 ⊕ Ir), X−1

0 Y0

[
W3

W4

]
=

[
W3

W4

]
(D1 ⊕ Ir).(4.12)

By Theorem 4.3 and our assumption on S(1) and S(2) there exist nonsingular U1 and
U2 such that

−S(1) = U1(D1 ⊕ Ir)U−1
1 , −S(2) = U2(D2 ⊕ Ir)U−1

2 .(4.13)

Since S(i), i = 1, 2, is a solution of Q(X) = 0, from (4.9) we obtain

X−1
0 Y0

[
In

−AS(i)

]
=

[
In

−AS(i)

]
(−S(i)), i = 1, 2.

On comparing with the invariant subspaces in (4.12) and using (4.13) we deduce that
[

V1

V2

]
=

[
U2

−AS(2)U2

]
Z1,

[
W3

W4

]
=

[
U1

−AS(1)U1

]
Z2,

with Z1 and Z2 nonsingular, where we have also used the fact that there are exactly
r eigenvectors of X−1

0 Y0 corresponding to the eigenvalue 1. Hence V1 and W3 are
nonsingular and

−AS(2) = V2V
−1
1 , −AS(1) = W4W

−1
3 .(4.14)

By (4.8)–(4.11) we have V −1(X−1
k Yk)V = D2k

V and W−1(X−1
k Yk)W = D2k

W , so that

YkV = XkV D2k

V , YkW = XkWD2k

W .(4.15)

On equating blocks using (4.4) this yields

GkV1 + V2 = AkV1(D2k

2 ⊕ Ir),(4.16)

GkV3 + V4 = AkV1(0 ⊕ 2kIr) + AkV3(D2k

1 ⊕ Ir),(4.17)

CkV1 = (HkV1 − V2)(D2k

2 ⊕ Ir),(4.18)

CkV3 = (HkV1 − V2)(0 ⊕ 2kIr) + (HkV3 − V4)(D2k

1 ⊕ Ir)(4.19)

and

GkW1 + W2 = AkW1(D2k

2 ⊕ Ir) + AkW3(0 ⊕ 2kIr),(4.20)

GkW3 + W4 = AkW3(D2k

1 ⊕ Ir),(4.21)

CkW1 = (HkW1 − W2)(D2k

2 ⊕ Ir) + (HkW3 − W4)(0 ⊕ 2kIr),(4.22)

CkW3 = (HkW3 − W4)(D2k

1 ⊕ Ir).(4.23)
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By (4.22) and (4.23) we have

Ck(W3−W1(0⊕2−kIr)) = (HkW3−W4)(D2k

1 ⊕0)−(HkW1−W2)(0⊕2−kIr).(4.24)

By (4.18) we have

Hk = V2V
−1
1 + CkV1(D−2k

2 ⊕ Ir)V −1
1 .(4.25)

Inserting (4.25) in (4.24) we obtain

Ck

(
W3 − W1(0 ⊕ 2−kIr) − V1(D−2k

2 ⊕ Ir)V −1
1

(
W3(D2k

1 ⊕ 0) − W1(0 ⊕ 2−kIr)
))

= (V2V
−1
1 W3 − W4)(D2k

1 ⊕ 0) − (V2V
−1
1 W1 − W2)(0 ⊕ 2−kIr),

from which it follows, since D1 and D2 are diagonal with diagonal elements of mag-
nitude less than 1 and greater than 1, respectively, that

Ck = O(2−k);(4.26)

the latter notation means that ‖Ck‖ = O(2−k). It then follows from (4.25) and (4.14)
that

Hk + AS(2) = Hk − V2V
−1
1 = O(2−k).(4.27)

By (4.20) and (4.21),

GkW3 +W4− (GkW1 +W2)(0⊕2−kIr) = Ak(W3(D2k

1 ⊕0)−W1(0⊕2−kIr)).(4.28)

By (4.16),

Ak = (GkV1 + V2)(D−2k

2 ⊕ Ir)V −1
1 .(4.29)

Inserting (4.29) in (4.28) we obtain

GkW3 + W4 − (GkW1 + W2)(0 ⊕ 2−kIr) = (GkV1 + V2)Mk,

with Mk = O(2−k). Thus

−Gk

(
W3 − W1(0 ⊕ 2−kIr) − V1Mk

)
= W4 − W2(0 ⊕ 2−kIr) − V2Mk.

It follows from (4.14) that

Gk − AS(1) = Gk + W4W
−1
3 = O(2−k).(4.30)

Postmultiplying (4.16) by D−2k

2 ⊕ 0 gives

(GkV1 + V2)(D−2k

2 ⊕ 0) = AkV1(Ir ⊕ 0),(4.31)

while postmultiplying (4.17) by 0 ⊕ 2−kIr gives

(GkV3 + V4)(0 ⊕ 2−kIr) = AkV1(0 ⊕ Ir) + AkV3(0 ⊕ 2−kIr).(4.32)

Adding (4.31) and (4.32) we get

Ak(V1 + V3(0 ⊕ 2−kIr)) = (GkV1 + V2)(D−2k

2 ⊕ 0) + (GkV3 + V4)(0 ⊕ 2−kIr).
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It follows that

Ak = O(2−k),(4.33)

since {Gk} has been shown to be bounded. Equations (4.26), (4.27), (4.30), and (4.33)
yield the required convergence results.

For Sk and Bk in iteration (3.1) we obtain the following convergence result.
Corollary 4.7. Under the conditions of Theorem 4.6, the iterates Sk and Bk

in (3.1) satisfy

lim sup
k→∞

k

√
‖Sk − Ŝ‖ ≤ 1

2
, lim sup

k→∞

k

√
‖Bk − B̂‖ ≤ 1

2
,

where Ŝ = −S(2)∗A is nonsingular and B̂ = A(S(1) − S(2)) ≥ 0 is singular.
Proof. The convergence results follow from Theorem 4.6 by noting Bk = Hk +Gk

and Sk = H∗
k . By (4.27) and (4.30), B̂ = A(S(1)−S(2)). We have B̂ ≥ 0 since Bk > 0

for each k, by Lemma 4.4. We now show that B̂ is singular. Using (4.9) it is easy to
check that

(−X−1
0 Y0)

[
I I

−AS(1) −AS(2)

]
=

[
I I

−AS(1) −AS(2)

]
(S(1) ⊕ S(2)),(4.34)

and S(1) ⊕S(2) is diagonalizable. Now −X−1
0 Y0 is not diagonalizable, by assumption,

since it has at least one eigenvalue of partial multiplicity 2. Thus (4.34) can only
hold if

[
I

−AS(1)
I

−AS(2)

]
is singular. Thus the Schur complement B̂ = A(S(1) −S(2)) is

singular.
In the generic case for a weakly overdamped Q with γ = 0, in which all of the

partial multiplicities of λn are 2, Q is in some sense irreducible or coupled. The next
example shows that this condition is necessary for the conclusions in Theorem 4.6 and
Corollary 4.7 (and at the same time answers an open question from [9, section 4]).
Consider

Q(λ) = λ2A + λB + C = λ2

[
1 0
0 1

]
+ λ

[
3 0
0 1

]
+
[

2 0
0 0

]
.

It is easy to see that γ = 0, so Q(λ) is weakly overdamped with eigenvalues {0,−1,−1,
−2} with λ2 = λ3 = −1 semisimple. In (3.1) and (4.5), (4.6),

lim
k→∞

Ak =
[

0 0
0 1

]
, lim

k→∞
Bk = I2, lim

k→∞
Ck =

[
1 0
0 0

]
,

lim
k→∞

Gk =
[
−1 0
0 0

]
, lim

k→∞
Hk =

[
2 0
0 1

]
.

Neither Ak nor Ck converges to zero. We also note that the convergence is quadratic
for Bk, Gk, and Hk. Moreover, Bk converges to a nonsingular matrix. This does not
come as a surprise, since Q(λ) can be decomposed into the direct sum of two scalar
quadratics

Q1(λ) = λ2 + 3λ + 2, Q2(λ) = λ2 + λ.

It is readily seen that Q1 is overdamped with eigenvalues −1,−2 and that Q2 is
overdamped with eigenvalues 0,−1. Thus the convergence of Bk to a positive definite
matrix is guaranteed by Theorem 3.4 applied to each component of the direct sum.
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5. Algorithm for the detection and numerical solution. Let Q(λ) = λ2A+
λB + C be Hermitian with A > 0. We develop in this section an efficient algorithm
that checks if Q is hyperbolic and, if it is, computes some or all of the eigenvalues
and associated eigenvectors, exploiting the symmetry and hyperbolicity and thereby
preserving the spectral properties.

Our algorithm consists of three steps:
1. Preprocessing. This step forms Qθ(λ) ≡ Q(λ + θ) = λ2Aθ + λBθ + Cθ with

θ such that Bθ > 0 and Cθ ≥ 0 or concludes that Q is not hyperbolic and
terminates the algorithm.

2. Overdamping test. This step checks the overdamping condition for Qθ. If Qθ

is overdamped, a μ ∈ R such that Qθ(μ) = Q(μ + θ) < 0 is also computed;
otherwise the algorithm terminates.

3. Solution. The quadratic Qθ is converted into a definite pencil λX + Y ∈
C

2n×2n with X > 0 or Y > 0. The eigenvalues and eigenvectors of Q(λ) are
then obtained from the eigendecomposition of a 2n × 2n Hermitian matrix
obtained by transforming λX + Y and exploiting the definiteness of X or Y
and the block structure of X and Y .

We now detail each of these three steps and compare the cost and stability of
our solution process with that of three alternative ways of solving the QEP: The QZ
algorithm applied to a linearization of Q(λ), the J-orthogonal Jacobi algorithm [28]
also applied to a linearization of Q(λ), and the method of computing the eigenpairs
of the primary and secondary solvents obtained via the cyclic reduction method [9].

At different stages our algorithm needs to test the (semi)definiteness of a ma-
trix. This is done by attempting a Cholesky factorization, with complete pivoting
in the case of semidefinitiness: Completion of the factorization means the matrix is
(semi)definite. This is a numerically stable test, as shown in [10].

5.1. Preprocessing step. The preprocessing step aims to eliminate, by sim-
ple tests, quadratics that are not hyperbolic and to produce, if possible, a shifted
quadratic Qθ(λ) = Q(λ+θ) (with θ = 0 is possible) for which the necessary condition

B > 0, C ≥ 0(5.1)

for overdamping is satisfied.
If B is singular then, by (1.2), Q cannot be hyperbolic. Assume now that B is

nonsingular but not positive definite or C is not positive semidefinite. Since A > 0,
for θ > 0 large enough the matrices

Bθ = B + 2θA, Cθ = C + θB + θ2A

defining the shifted quadratic Qθ(λ) = Q(λ+ θ) with Aθ = A (see (2.2)) satisfy (5.1).
To avoid numerical instability in the formation of Bθ and Cθ (due to the possibly
large variation in ‖A‖, ‖B‖, and ‖C‖) we would ideally like to choose θ close to

θopt = inf{θ ∈ R : B + 2θA > 0, C + θB + θ2A ≥ 0}.

Rather than solving this optimization problem we choose θ to be an upper bound
on the modulus of λ1, the right-most eigenvalue of Q. With such a shift, all of the
eigenvalues of Qθ lie in the left half plane. When Q is hyperbolic, Qθ is also hyperbolic
with real and nonpositive eigenvalues. Thus Bθ > 0 and Cθ ≥ 0 by Theorem 2.5.
Therefore if Bθ �> 0 or Cθ �≥ 0 we can conclude that Q is not hyperbolic. If Bθ > 0
and Cθ ≥ 0 we proceed to step 2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS 1607

Table 5.1

Operation count for the preprocessing step. Matrices are assumed real and of dimension n.

Operations Cost (flops)

Cholesky factorization of B and C to check definiteness. 2n3/3 or less
Computation of θ when B and/or C not positive definite:

Cholesky factorization of A. n3/3
‖A−1‖ (1-norm estimation [11, section 15.3], typically 4 solves). 4n2

Form Bθ = B + 2θA, Cθ = C + θB + θ2A. 6n2

Cholesky factorizations of Bθ and Cθ. 2n3/3 or less

Total 5n3/3 or less

To construct the shift θ we use the following strategy: let

a = ‖A‖, b = ‖B‖, c = ‖C‖,

where ‖ · ‖ is any consistent matrix norm. Then, from [18, Lemmas 3.1 and 4.1], for
every eigenvalue λ of Q we have

|λ| ≤ 1
2
‖A−1‖

(
b +

√
b2 + 4c/‖A−1‖

)
=: σ1,(5.2)

|λ| ≤
(
1 + ‖A−1‖

)
max(c1/2, b) =: σ2.(5.3)

We take the 1-norm and set σ = min(σ1, σ2). Since σ must greatly overestimate
|λ1| when |λn| � |λ1|, we carry on one step further and form the shifted quadratic
Q−σ/2(λ) = Q(λ − σ/2) for which (5.2)–(5.3) give two new bounds τ1 and τ2 (and
A is unchanged, so ‖A−1‖ can be reused). We then take θ = min(σ, τ − 1

2σ), where
τ = min(τ1, τ2).

As shown by Theorem 3.4, the speed of convergence of iteration (3.7) for over-
damped Q depends on the ratio λn/λn+1. An unnecessarily large shift of the spectrum
to the left can make this ratio very close to 1, potentially causing slow convergence
of the iteration. However, we showed in section 4 that for the generic case of weakly
overdamped Q with λn = λn+1 the convergence is at least linear with constant 1/2,
so convergence of the iteration cannot be unduly delayed by a conservative choice of
shift.

Table 5.1 details the computations and their cost. (Costs of all the operations
used here are summarized in [12, Appendix C].) Preprocessing requires at most 5

3n3

flops.

5.2. Overdamping test. The following algorithm is based on Corollary 3.6. It
runs the scaled iteration (3.7) until either a non-positive definite Bk or a negative
definite Q(μk) is detected, signaling that Q is not overdamped or is overdamped, re-
spectively. The algorithm terminates on one of these conditions or because of possible
nonconvergence of the iteration for a non-overdamped Q. It is intended to be applied
to Qθ from the preprocessing step.

Algorithm 5.1 (overdamping test). This algorithm tests whether a quadratic
Q(λ) = λ2A + λB + C with A, B > 0 and 0 �= C ≥ 0 is overdamped and, if it is,
computes μ < 0 such that Q(μ) < 0. Input parameters are the maximum number of
iterations kmax and a convergence tolerance ε > 0.

1 Set A0 = A, B0 = B, C0 = C.
2 Set α0 = ‖C0‖1/‖A0‖1, μ0 = −α

1/2
0 , k = 0.

3 if Q(μ0) < 0, Q(λ) is (hyperbolic and hence) overdamped, μ = μ0, quit, end
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4 while k < kmax

5 Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak

6 if ‖Bk+1 − Bk‖1/‖Bk+1‖1 ≤ ε, goto line 15, end
7 if Bk+1 �> 0, Q is not overdamped, quit, end
8 Ak+1 = αkAkB−1

k Ak

9 Ck+1 = α−1
k CkB−1

k Ck

10 αk+1 = ‖Ck+1‖1/‖Ak+1‖1

11 μk+1 = μkα
1/2k+2

k+1

12 if Q(μk+1) < 0, Q is overdamped, μ = μk+1, quit, end
13 k = k + 1
14 end
15 Q is not overdamped. % See the discussion below.
Note that the crucial definiteness test on line 12 of Algorithm 5.1 is carried out

on Q and not on Qk in (3.5). Hence a positive test can be interpreted irrespective
of rounding errors in the iteration: The only errors are in forming Q(μk+1) and in
computing its Cholesky factor. For a non-overdamped Q, it is possible that Bk >
0 for all k (see the example at the end of section 4). However, if convergence of
the Bk is detected on line 6 then Q is declared not overdamped because by this
point an overdamped Q would have been detected, while if kmax is large enough (say,
kmax = 20) and this iteration limit is reached then Q can reasonably be declared not
overdamped in view of the fast (quadratic) convergence of (3.7) for an overdamped Q.

The implementation details of Algorithm 5.1 and the cost per iteration are de-
scribed in Table 5.2. The total cost for m iterations is 1

3n3 flops for m = 0 and roughly
20
3 mn3 flops for m ≥ 1.

Guo and Lancaster’s test for overdamping is based on iteration (3.1), scaled as in
(3.7). For the computation of Ŝ, 19

3 �n3 flops are required, where � is the number of
iterations for convergence of (3.1). An extra 5n3 flops is needed to form the two sol-
vents S(1) and S(2) (which are nonsymmetric in general) via (3.3). Then the smallest
eigenvalue λn of S(1) and the largest eigenvalue λn+1 of S(2) need to be computed
and the definiteness of Q((λn + λn+1)/2) tested. The total cost is ( 19

3 � + 16
3 )n3 flops

plus the cost of finding λn and λn+1. Since m ≤ �, Algorithm 5.1 is clearly the more
efficient, possibly significantly so.

We mention two alternative ways to test hyperbolicity. Both are based on the
fact that a Hermitian Q with A > 0 is hyperbolic if and only if a certain 2n× 2n pair

Table 5.2

Operation count per complete iteration of Algorithm 5.1. Matrices are assumed real and of
dimension n.

Operations Cost (flops)

Cholesky factorization of Bk = LkL
T
k

available from previous step.

Form Vk = L−1
k Ak. n3

Form Wk = L−1
k Ck . n3

Compute AkB
−1
k Ck = V T

k Wk. 2n3

Cholesky of Bk+1. n3/3

Compute AkB
−1
k Ak = V T

k Vk. n3

Compute CkB
−1
k Ck = WT

k Wk. n3

Cholesky of −Q(μk+1). n3/3

Total 20n3/3



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HYPERBOLIC QUADRATIC EIGENVALUE PROBLEMS 1609

(A,B) is definite [19, Theorem 3.6]. The first approach is to apply the J-orthogonal
Jacobi algorithm of Veselić [28] to (A,B), since the algorithm breaks down when
applied to an indefinite pair. Drawbacks of this approach are that the algorithm uses
hyperbolic transformations, and so is potentially unstable, and that it must be run
to completion to check whether the problem is overdamped, though of course upon
completion it has computed the eigenvalues. It requires an initial 11

3 n3 flops followed
by 12sn3 flops, where s is the number of sweeps performed. The second approach is
to apply to (A,B) an algorithm of Crawford and Moon [4] for detecting definiteness
of Hermitian matrix pairs. Although only linearly convergent, this algorithm usually
terminates within 30 iterations with a message of “definite,” “indefinite,” or “fail”
(denoting failure of the algorithm to make a determination). The number 30 here
is for difficult problems, for which our algorithm may also need 20 iterations. For
easy problems, the Crawford–Moon algorithm needs about 3 iterations, while our
algorithm needs 0 or 1 iterations. Since the Crawford–Moon algorithm requires one
Cholesky factorization per iteration, here of a 2n× 2n matrix, it needs 8

3n3 flops per
iteration, and this can be reduced to 1

3n3 flops per iteration by working directly with
the n × n quadratic Q through the use of a congruence transformation, as given in
the proof of [19, Theorem 3.6], for example. Since our algorithm needs 20

3 n3 flops per
iteration, it is often more efficient than the Crawford–Moon algorithm applied to the
pair (A,B) and is often less efficient than the Crawford–Moon algorithm working on
Q via the congruence. However, the Crawford–Moon algorithm with or without the
congruence is numerically unreliable, as we now explain.

We use a MATLAB translation of the Fortran code PDFIND from [3] and also
modify it so that it exploits the congruence to work only with the quadratic Q. For
the quadratic (3.11), we found that for β ∈ (0.5196152422, 0.5196152423) (which is a
small interval in which Q changes from being not overdamped to overdamped—see
Tables 3.1 and 3.2) both codes often return with a “fail” message when Algorithm 5.1
correctly diagnoses (non) overdamping. We then considered a scaling of the problem
A ← α2A, B ← αB, with α > 0, which has no effect on the overdamping or on
Algorithm 5.1. However, as α decreases, PDFIND becomes more unreliable, due to
the increasing ill conditioning of the congruence transformation with decreasing α.
To be more specific, we take α = 10−7. First, consider β = 0.5157: 0.0001: 0.5197. For
β = 0.5197 our algorithm detects overdamping in 3 iterations, and for other values our
algorithm detects nonoverdamping in at most 8 iterations. PDFIND, using the con-
gruence, incorrectly detects nonoverdamping for β = 0.5197 and fails for β = 0.5157,
0.5177–0.5181, 0.5188, 0.5189, 0.5194. Next, we take β = 0.51965: 0.00001: 0.51971.
Our algorithm detects overdamping in at most 5 iterations. PDFIND without the con-
gruence incorrectly detects nonoverdamping for 0.51965, 0.51967, 0.51968 and fails for
0.51966, 0.51969, 0.51970. The conclusion is that PDFIND is numerically unreliable
whether the congruence is used or not, and when it gives the wrong answer there is
no warning. The poor performance of PDFIND when working with the pair is due
to the fact that the ill-conditioned congruence transformation is implicitly present in
the equivalence between Q being hyperbolic and (A,B) being definite.

For our algorithm, instability could potentially arise if Bk is ill-conditioned. How-
ever, we know from [2, p. 40, line 10] that Bk is well-conditioned if B0 = B is well-
conditioned (which is verifiable right from the beginning) and if λn/λn+1 is not too
close to 1. When λn/λn+1 is extremely close to 1, Bk is known to be ill-conditioned
for large k. However, Bk appears in our algorithm only in terms like AkB−1

k Ck, and
Ak and Ck converge to 0, so the ill-conditioning of Bk has only a limited effect on our
algorithm. Indeed, instability has not been observed in any of our tests.
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Table 5.3

Operation count for the eigenvalue computation, with reference to (5.4).

Operations Cost (flops)

Cholesky factorizations of A = LAL
T
A

and −C = LCL
T
C already available.

Form R = −(L−1
A LC)T . n3/3

Form G = L−1
A BL−T

A . 3n3/2

Tridiagonalization of
[ −G
−RT

R
0

]
. < 4(2n)3/3

Eigenvalues via (e.g.) QR iteration. O(n2)

Total ≈ 13n3

5.3. Solving hyperbolic QEPs via definite linearizations. Recall that the
scalar μ computed by Algorithm 5.1 applied to Qθ is such that Q(μ+θ) = Qθ(μ) < 0.
Hence with ω = μ + θ we have

Q̃(t) = Q(t + ω) = t2A + t(B + 2ωA) + C + ωB + ω2A

= t2Ã + tB̃ + C̃,

with C̃ = Q(ω) < 0 and Ã = A > 0. The pencils

L1(λ) = λ

[
Ã 0
0 −C̃

]
+
[

B̃ C̃
C̃ 0

]
, L2(λ) = λ

[
0 Ã
Ã B̃

]
+
[
−Ã 0
0 C̃

]

are both Hermitian definite linearizations of Q̃ with a positive definite leading coef-
ficient of L1 and a negative definite trailing coefficient of L2. They share the same
eigenvalues as Q̃, and the eigenvectors of Q̃ are easy to recover from those of L1 or
L2. The sensitivity and stability of these linearizations have recently been studied
in [14], [15], [17]. It is shown therein that the scaling of Fan, Lin and Van Dooren
[6] should be applied to Q̃ before linearizing. The choice between L1 and L2 should
be guided by the fact that, in terms of conditioning and backward error, they favor
large and small eigenvalues, respectively. However, if C̃ or Ã is well-conditioned and
‖B̃‖/(‖Ã‖‖C̃‖)1/2 is not much bigger than 1 then L1 or L2, respectively, can safely
be used to stably obtain all of the eigenpairs. For more details on conditioning and
backward error for L1 and L2, see [14], [15], [17].

Using Cholesky factorizations Ã = LALT
A and −C̃ = LCLT

C , the definite general-
ized eigenvalue problem L1(λ)z = 0 or L2(λ)z = 0 is transformed to a Hermitian (or
real symmetric) standard eigenvalue problem [5]. For example, L1(λ) reduces to

λI +
[

L−1
A B̃L−T

A −L−1
A LC

−LT
CL−T

A 0

]
.(5.4)

As Table 5.3 explains, this phase requires about 13n3 flops, giving a grand total of
(20

3 m + 13)n3 flops.
Guo and Lancaster’s solution algorithm has a total cost of (19

3 � + 25)n3 flops,
assuming the eigenvalues of S(1) and S(2) (which are the eigenvalues of Q) are com-
puted by the QR algorithm. In practice this is significantly more than the cost of our
algorithm given that m ≤ � is usually small.
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The most common way of solving the QEP is to apply the QZ algorithm or a
Krylov method to a linearization L of Q. The QZ algorithm applied to the 2n × 2n
L costs 240n3 flops for the computation of the eigenvalues.

Our algorithm has two important advantages over that of Guo and Lancaster
and QZ applied to a linearization, besides its more favorable operation count. First,
it works entirely with symmetric matrices, which reduces the storage requirement.
Second, it guarantees to produce real eigenvalues in floating point arithmetic; the
other two approaches cannot do so because they invoke the QZ algorithm and the
nonsymmetric QR algorithm.

6. Numerical experiment. We describe an experiment that illustrates the be-
havior of our algorithm for testing overdamping. More extensive testing of this algo-
rithm, and of the preprocessing and solving procedures described in section 5, will be
presented in a future publication. Our experiments were performed in MATLAB 7.4
(R2007a), for which the unit roundoff is u = 2−53 ≈ 1.1× 10−16. We took kmax = 30
and ε = u in Algorithm 5.1.

We first describe a useful technique for generating symmetric quadratic matrix
polynomials with prescribed eigenvalues and eigenvectors and positive definite coeffi-
cient matrices.

Let (λk, vk), k = 1: 2n, be a set of given real eigenpairs such that, with

Λ = diag(λ1, . . . , λ2n) =: Λ1 ⊕ Λ2, Λ1, Λ2 ∈ R
n×n,

V := [ v1, . . . , v2n ] =: [ V1 V2 ] , V1, V2 ∈ R
n×n,

V1 and V2 are nonsingular, and

V1V
T
1 = V2V

T
2 , V1Λ1V

T
1 − V2Λ2V

T
2 =: Γ is nonsingular.(6.1)

Then the symmetric quadratic polynomial defined by the matrices

A = Γ−1, B = −A(V1Λ2
1V

T
1 − V2Λ2

2V
T
2 )A,(6.2a)

C = −A(V1Λ3
1V

T
1 − V2Λ3

2V
T
2 )A + BΓB(6.2b)

has eigenpairs (λk, vk), k = 1: 2n (see [23] for example). We now show how to generate
a potentially overdamped quadratic.

Lemma 6.1. Assume that 0 > λ1 ≥ · · · ≥ λn > λn+1 ≥ · · · ≥ λ2n. Then Γ is
nonsingular and the matrices generated by (6.2) satisfy A > 0, B > 0, and C > 0.

Proof. It follows from Weyl’s theorem [20, p. 181] that Γ > 0 and hence that
A > 0. All matrices V2 that satisfy the first constraint in (6.1) can be written as V1U
for some orthogonal U . Hence we can write

B = −AV1(Λ2
1 − UΛ2

2U
T )V T

1 A = −AV1(H2
1 − H2

2 )V T
1 A,

where H1 = Λ1 and H2 = UΛ2U
T , and again Weyl’s theorem guarantees that B > 0.

It is known that (V, Λ, PV T ), where P = diag(In,−In), forms a self-adjoint triple
for Q(λ) [7, section 10.2]. Since Q has no zero eigenvalues, C is nonsingular and a
formula for its inverse is easily obtained from the resolvent form of Q(λ): For λ �= λi,

Q(λ)−1 = V (λI2n − Λ)−1PV T .
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Table 6.1

Minimum, average, and maximum number of iterations performed by Algorithm 5.1 and per-
centage of overdamped problems, for each n and matrix type.

n type 1 type 2 type 3

5 0.0, 2.4, 6.0 100% 0.0, 0.8, 3.0 100% 0.0, 2.4, 5.0 25%
10 0.0, 3.6, 10.0 100% 0.0, 0.5, 3.0 100% 2.0, 2.7, 4.0 5%
50 0.0, 4.2, 11.0 100% 0.0, 2.1, 4.0 100% 2.0, 2.1, 3.0 0%
100 3.0, 6.2, 10.0 100% 0.0, 2.6, 4.0 100% 2.0, 2.0, 2.0 0%
250 2.0, 6.0, 11.0 100% 2.0, 3.0, 4.0 100% 2.0, 2.0, 2.0 0%
500 3.0, 7.5, 11.0 100% 2.0, 3.0, 4.0 100% 2.0, 2.0, 2.0 0%

Setting λ = 0 in the above expression gives

C−1 = −V Λ−1PV T = −V1(H−1
1 − H−1

2 )V T
1 ,

and once again Weyl’s theorem guarantees that C−1, and therefore also C, is positive
definite.

We use the following eigenvalue distributions:
type 1: λk, k = 1: 2n, is uniformly distributed in [−100,−1].
type 2: λk is uniformly distributed in [−100,−6] for k = n + 1: 2n and [−5,−1] for

k = 1: n.
type 3: λk is uniformly distributed in [−100, 20]. B and C are then shifted as in

(2.2) with θ = 1.1λ1 to ensure that the eigenvalues are all negative.
We took V1 = U1 and V2 = V1U2, where U1 and U2 are random orthogonal matrices
from the Haar distribution [11, section 28.3]. For types 1 and 2, A, B, and C are all
positive definite by construction; for type 3 nothing can be said about the definiteness
of A, B, and C. Table 6.1 shows the minimum, average, and maximum number of
iterations for Algorithm 5.1 over 20 quadratics for each of several values of n, along
with the percentage of Q found to be overdamped for each n and matrix type. In
all cases where Q was deemed overdamped, the computed μ was verified to lie in
(λn+1, λn).

We make several observations:
• For all three eigenvalue distributions, Algorithm 5.1 is quick to terminate,

especially for types 2 and 3, with only very occasional need for more than 10
iterations. The gap between λn and λn+1 is larger for type 2 than type 1,
which explains the greater number of iterations for type 1.

• With V1 orthogonal the coefficients matrices A, B, and C are well-conditioned,
with 2-norm condition numbers of order 102. If instead we take V1 as a ran-
dom matrix with 2-norm condition number 104 (computed in MATLAB as
gallery(’randsvd’,n,1e4,...), the condition numbers of A, B, and C are
of order 108 and the number of iterations of the algorithm increases, though
only slightly: The maximum number of iterations over all tests is 13, and
the largest average over all n rises to 7.8, 3.1, and 3.2 for types 1, 2, and 3,
respectively.

• After detecting overdamping an average of 6–9 more iterations are needed for
convergence of the block cyclic iteration. Recall that the algorithm of Guo and
Lancaster [9] needs to iterate to convergence in order to show overdamping.
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A METHOD TO AVOID DIVERGING COMPONENTS IN THE
CANDECOMP/PARAFAC MODEL FOR GENERIC

I × J × 2 ARRAYS∗

ALWIN STEGEMAN† AND LIEVEN DE LATHAUWER‡

Abstract. Computing the Candecomp/Parafac (CP) solution of R components (i.e., the best
rank-R approximation) for a generic I×J×2 array may result in diverging components, also known as
“degeneracy.” In such a case, several components are highly correlated in all three modes, and their
component weights become arbitrarily large. Evidence exists that this is caused by the nonexistence
of an optimal CP solution. Instead of using CP, we propose to compute the best approximation by
means of a generalized Schur decomposition (GSD), which always exists. The obtained GSD solution
is the limit point of the sequence of CP updates (whether it features diverging components or not)
and can be separated into a nondiverging CP part and a sparse Tucker3 part or into a nondiverging
CP part and a smaller GSD part. We show how to obtain both representations and illustrate our
results with numerical experiments.

Key words. canonical decomposition, parallel factors analysis, low-rank tensor approximations,
degenerate Parafac solutions, diverging components
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1. Introduction. Hitchcock [16, 17] introduced a generalized rank and related
decomposition of a multiway array or tensor. The same decomposition was proposed
independently by Carroll and Chang [3] and Harshman [13] for component analysis
of three-way data arrays. They named it Candecomp and Parafac, respectively. We
denote the Candecomp/Parafac (CP) model, i.e., the decomposition with a residual
term, as

Z =
R∑

h=1

ωh (ah ⊗ bh ⊗ ch) + E,(1.1)

where Z is an I × J × K data array, ωh is the weight of component h, ⊗ denotes the
outer product, and ‖ah‖ = ‖bh‖ = ‖ch‖ = 1 for h = 1, . . . , R, with ‖ · ‖ denoting
the Frobenius norm. To find the R components ah ⊗ bh ⊗ ch and the weights ωh,
an iterative algorithm is used which minimizes the Frobenius norm of the residual
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array E. For an overview and comparison of CP algorithms, see Hopke et al. [18] and
Tomasi and Bro [45].

The rank of a three-way array Z is defined in the usual way, i.e., the smallest
number of rank-1 arrays whose sum equals Z. A three-way array has rank 1 if it
is the outer product of three vectors, i.e., a ⊗ b ⊗ c. We denote three-way rank as
rank⊗(Z). It follows that the CP model tries to find a best rank-R approximation to
the three-way array Z.

The real-valued CP model, i.e., where Z and the model parameters are real-valued,
was introduced in psychometrics (Carroll and Chang [3]) and phonetics (Harshman
[13]). Later on, it was also applied in chemometrics and the food industry (Bro [1]
and Smilde, Bro, and Geladi [37]). For other applications of CP in psychometrics,
see Kroonenberg [25]. Complex-valued applications of CP occur in signal processing,
especially wireless telecommunications; see Sidiropoulos, Giannakis, and Bro [35],
Sidiropoulos, Bro, and Giannakis [36], and De Lathauwer and Castaing [9]. Also, CP
describes the basic structure of fourth-order cumulants of multivariate data on which
a lot of algebraic methods for independent component analysis are based (Comon
[4], De Lathauwer, De Moor, and Vandewalle [5], and Hyvärinen, Karhunen, and
Oja [20]). In this paper, we consider the real-valued CP model. All occurrences of
three-way rank are assumed to be over the real field.

For later use, we mention that the CP model (1.1) is a special case of the Tucker3
model of Tucker [46]. The latter is defined as

Z =
R∑

h=1

P∑
i=1

Q∑
j=1

ghij (ah ⊗ bi ⊗ cj) + E.(1.2)

Clearly, the case with R = P = Q and ghij = 0 if (h, i, j) �= (h, h, h) yields (1.1). The
R × P × Q array G with entries ghij is referred to as the core array. The matrices
[a1| . . . |aR], [b1| . . . |bP ], and [c1| . . . |cQ] are called the component matrices.

A matrix notation of the CP model (1.1) is as follows. Let Zk (I × J) and Ek

(I × J) denote the kth slices of Z and E, respectively. Then (1.1) can be written as

Zk = ACk BT + Ek, k = 1, . . .K,(1.3)

where the component matrices A (I ×R) and B (J ×R) have the vectors ah and bh

as columns, respectively, and Ck (R×R) is the diagonal matrix with the kth elements
of the vectors ωhch on its diagonal. The model part of the CP model is characterized
by (A,B,C), where component matrix C (K × R) has the vectors ch as columns.
Hence, it is assumed that the weights ωh are absorbed by the matrix C.

The most attractive feature of CP is its uniqueness property. Kruskal [26] has
shown that, for fixed residuals E, the vectors ah, bh, and ch and the weights ωh are
unique up to sign changes and a reordering of the summands in (1.1) if

kA + kB + kC ≥ 2 R + 2,(1.4)

where kA, kB, kC denote the k-ranks of the component matrices. The k-rank of a
matrix is the largest number x such that every subset of x columns of the matrix
is linearly independent. If a CP solution is unique up to these indeterminacies, it is
called essentially unique. Two CP solutions which are identical up to the essential
uniqueness indeterminacies will be called equivalent.

In case one of the component matrices A, B, and C has full column rank, a
weaker uniqueness condition than (1.4) has been derived by Jiang and Sidiropoulos
[22] and De Lathauwer [7]. See also Stegeman, Ten Berge, and De Lathauwer [41].
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The practical use of CP has been hampered by the occurrence of diverging CP
components, also known as “degeneracy.” In such cases, convergence of a CP algo-
rithm is extremely slow, and some components display the following pattern. Let
the model parameters of the nth update of a CP algorithm be denoted by a super-
script (n). For the diverging components, the weights ω

(n)
h become arbitrarily large

in magnitude, and the corresponding columns in A(n), B(n), and C(n) become nearly
linearly dependent. Although the individual diverging components may diverge in
nearly opposite directions, their sum still contributes to a better fit of the CP model.
Diverging CP components are a problem to the analysis of three-way arrays, since the
obtained CP solution is hardly interpretable. The occurrence of diverging components
can be avoided by imposing orthogonality constraints on the components matrices;
see Krijnen, Dijkstra and Stegeman [24], but this will come with some loss of fit.
Lim [29] shows that diverging components do not occur for nonnegative Z under the
restriction of nonnegative component matrices.

The first case of diverging CP components was reported in Harshman and Lundy
[14]. Contrived examples are given by Ten Berge, Kiers, and De Leeuw [43] and
Paatero [33]. Kruskal, Harshman, and Lundy [27] have argued that diverging CP
components occur due to the fact that the array Z has no best rank-R approximation,
i.e., CP has no optimal solution. They reason that every sequence of CP updates, of
which the objective value is approaching the infimum of the CP objective function,
must fail to converge and displays a pattern of a diverging CP components. This has
recently been proven by Krijnen, Dijkstra, and Stegeman [24].

De Silva and Lim [10] give results on the existence of a best rank-R approximation
of N -way arrays with N ≥ 3. For the three-way CP model, [10] shows that for
R = 1, an optimal CP solution always exists, while for any I, J, K ≥ 2 and any
R ∈ {2, . . . , min(I, J, K)}, a rank-(R + 1) array Z exists which has no optimal CP
solution. Also, [10] shows that all 2× 2× 2 arrays of rank 3 (a set of positive volume
in R

2×2×2) have no optimal CP solution for R = 2 and that, for any I, J, K ≥ 2, the
set of arrays in R

I×J×K , which have no optimal CP solution for R = 2 has positive
volume.

Stegeman [38, 40] has mathematically analyzed diverging CP components occur-
ring for generic I × J × 2 arrays Z and all values of R. In these cases, diverging
components occur if the sequence of CP updates converges to a limit point X, which
has rank larger than R. Formally, these occurrences of diverging components can be
described as follows. There exist disjoint index sets D1, . . . , Dr ⊂ {1, . . . , R} such
that

|ω(n)
h | → ∞ , for all h ∈ Dj , j = 1, . . . , r,(1.5)

while

∥∥∥∥∥ ∑
h∈Dj

ω
(n)
h (a(n)

h ⊗ b(n)
h ⊗ c(n)

h )

∥∥∥∥∥ is bounded, j = 1, . . . , r.(1.6)

Stegeman [38, 40] gives a complete characterization of the diverging components (1.5)–
(1.6) in terms of properties of the limit point of the sequence of CP updates. Also,
[40] provides a link between diverging CP components and results from the theory of
matrix pencils and algebraic complexity theory.

The only mathematically analyzed cases of diverging CP components so far are
the contrived examples in Ten Berge, Kiers, and De Leeuw [43] and Paatero [33],
generic I × J × 2 arrays in Stegeman [38, 40], and generic 5 × 3 × 3 and 8 × 4 × 3
arrays, and generic 3× 3 × 4 and 3× 3 × 5 arrays with symmetric slices in Stegeman
[39].
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A numerical example of diverging CP components is the following. Let Z be a
4 × 4 × 2 array with slices

Z1 =

⎡⎢⎢⎣
−0.5 −1.2 0.3 −0.6
−1.7 1.1 0.1 2.1
0.1 1.1 −0.2 −0.2
0.2 −0.1 0.7 0.1

⎤⎥⎥⎦ and Z2 =

⎡⎢⎢⎣
0.8 1.1 −1.7 −0.9
0.7 −1.3 0.2 0.5
1.2 −0.1 −1.1 0.2
0.6 −0.2 1.4 −1.0

⎤⎥⎥⎦ .

(1.7)

This array was randomly generated such that rank⊗(Z) = 5. Next, we try to fit the
CP model with R = 4 components using the multilinear engine of Paatero [32]. For a
convergence criterion of 1e-15, the algorithm terminates after 162055 iterations with
an objective value of 0.051204 and final CP update

A =

⎡⎢⎢⎣
0.6787 0.1278 0.6767 −0.6778
−0.6642 −0.7946 −0.6735 0.6693
−0.1189 −0.5895 −0.1464 0.1320
−0.2898 0.0690 −0.2590 0.2746

⎤⎥⎥⎦ ,(1.8)

B =

⎡⎢⎢⎣
−0.6870 −0.8259 −0.6919 −0.6895
−0.2365 −0.0386 −0.2609 −0.2481
−0.0509 0.4005 −0.0080 −0.0298
0.6852 0.3949 0.6732 0.6800

⎤⎥⎥⎦ ,(1.9)

C =
[

1454 −2.8913 1443 2895
789 4.4617 634 1426

]
,(1.10)

where the columns of A and B are normalized to length 1. It can be seen that
columns 1, 3, and 4 in A and B are nearly identical up to a sign change. Also, these
columns have large magnitudes in C. Hence, CP components 1, 3, and 4 appear to
be diverging. The multilinear engine terminates with nearly the same CP update for
all tried random starting values. The alternating least squares CP algorithm gives
the same results.

Since diverging CP components cannot be interpreted, one may wonder whether
they can be avoided. However, the discussion above shows that for some array sizes
and some values of R, there is no best rank-R approximation and, hence, trying to
fit the CP model results in diverging components. To ensure the existence of a best
rank-R approximation, De Silva and Lim [10] propose to consider the closure of the
set of arrays with at most rank R instead. For each array size and value of R, this
involves characterizing the boundary arrays of this set. These are the limit points
of the sequences of CP updates featuring diverging CP components. De Silva and
Lim [10] show that for R = 2, these limit points have rank 3 with the following
decomposition into rank-1 terms:

X = x1 ⊗ x2 ⊗ y3 + x1 ⊗ y2 ⊗ x3 + y1 ⊗ x2 ⊗ x3.(1.11)

In this paper, we apply the idea of De Silva and Lim [10] to the CP model for generic
I × J × 2 arrays Z. Apart from the results in Stegeman [39], this is the only class of
arrays for which the analysis of diverging components is nearly complete. Instead of
fitting the CP model, we propose to find the best approximation of Z in terms of the
generalized Schur decomposition (GSD), which was considered in De Lathauwer, De
Moor, and Vandewalle [6]. The GSD model is the same as (1.3) except that A and
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B are columnwise orthonormal and Ck are upper triangular k = 1, 2. We show that
an optimal solution to the GSD model always exists. Moreover, for I × J × 2 arrays,
the set of feasible GSD solutions equals the closure of the set of feasible CP solutions.
Hence, the optimal GSD solution, if it is unique, is the limit point of the sequence of
CP updates, whether the latter features diverging components or not.

Next, we show how to write the obtained GSD solution in several alternative
forms. First, using the Jordan normal form, the GSD solution may be written as the
sum of the nondiverging CP components and a sparse Tucker3 part. Here, each of the
m sets of diverging CP components in (1.5)–(1.6) forms one block in the Tucker3 part.
We call this the CP+Jordan form. Although this is not a decomposition into rank-1
terms, it is an essentially unique decomposition, and its blocks may be interpretable
to the researcher. Second, the obtained GSD solution may be written as the sum of
the nondiverging CP components and a smaller GSD part. We call this the CP+GSD
form. If one is only interested in obtaining the nondiverging CP components, this is
a fast way to get them. Third, using the CP+Jordan form, the GSD solution may
also be written as a sum of rank-1 terms where the number of terms equals the rank
of the solution array. However, this rank-revealing decomposition is not essentially
unique. During the computation of the GSD solution, the problems of diverging CP
components do not arise, neither during the computation of the mentioned alternative
forms for the GSD solution.

As explained above, the analyzed cases of diverging CP components most likely
occur because the CP model has no optimal solution. Hence, modified CP algorithms
designed to avoid diverging components (e.g., Rayens and Mitchell [34], Cao et al. [2])
are no remedy here. With our method for I × J × 2 arrays, the problems of diverging
CP components are avoided without imposing additional constraints.

Note that the occurrences of diverging CP components we consider do not include
cases where rank⊗(Z) ≤ R and either its full CP decomposition resembles a case
of diverging components or where diverging components occur due to an unlucky
choice of the starting position of the CP algorithm. Examples of these cases can be
found in Mitchell and Burdick [30] and Paatero [33]. We will assume instead that
rank⊗(Z) > R.

This paper is organized as follows. We discuss the analysis of diverging CP
components for typical I × I × 2 arrays Z of rank I + 1 and R = I in section 3. For
this, we need results on the rank of I × I × 2 arrays. These are presented in section
2. In section 4 we discuss the simultaneous GSD model. In section 5, we consider
the GSD model for I × I × 2 arrays and show how it is related to the CP model. In
section 6, we show how to obtain the CP+Jordan and CP+GSD representations of
the GSD solution. In section 7, we discuss the extension of our analysis for I × I × 2
arrays and R = I to I × J × 2 arrays and general R. Section 8 contains numerical
experiments which illustrate our results. Finally, section 9 provides a discussion.

2. The rank of I × I × 2 arrays. For an array Y ∈ R
I×I×2, we denote its

I × I frontal slices by Yk, k = 1, 2. Let

RI = {Y ∈ R
I×I×2 : det(Yk) �= 0 , k = 1, 2}.(2.1)

The following result on the rank of arrays in RI is due to Ja’ Ja’ [21]. For later use,
we also give its proof as formulated in Stegeman [38].

Lemma 2.1. For X ∈ RI , the following statements hold:
(i) If X2X−1

1 has I real eigenvalues and is diagonalizable, then X has rank I.
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(ii) If X2X−1
1 has at least one pair of complex eigenvalues, then X has at least

rank I + 1.
(iii) If X2X−1

1 has I real eigenvalues but is not diagonalizable, then X has at least
rank I + 1.

Proof. If (i) holds, then X2X−1
1 has an eigendecomposition KΛK−1, where Λ is

the I × I diagonal matrix of eigenvalues and K contains the associated eigenvectors.
Taking

A = K, BT = K−1 X1, C1 = II , C2 = Λ,(2.2)

yields a full rank-I decomposition of X as in (1.3).
The proof of (ii)–(iii) is as follows. Since its I × I slices are nonsingular, it follows

that X has at least rank I. Suppose X has rank I. Then there exist nonsingular
matrices A and B and nonsingular diagonal matrices C1 and C2 such that Xk =
ACk BT , k = 1, 2. But then X2X−1

1 = AC2 C−1
1 A−1 is an eigendecomposition

with I real eigenvalues and I linearly independent eigenvectors, which contradicts
(ii)–(iii). Hence, the rank of X is at least I + 1.

If X satisfies (iii) of Lemma 2.1, the rank of X can be deduced from the Jordan
normal form of X2X−1

1 . This is stated in the following result, also due to Ja’ Ja’ [21].
Lemma 2.2. Let X ∈ RI and suppose X2X−1

1 has I real eigenvalues. Let the
Jordan normal form of X2X−1

1 be given by diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)),
where Jmj (μj) denotes an mj × mj Jordan block with diagonal elements equal to μj

and mj ≥ 2. Then

rank⊗(X) = I + r.(2.3)

For an eigenvalue λj of an I × I matrix G, we define the algebraic multiplicity
of λj as the multiplicity of λj as root of the characteristic polynomial det(G − λII),
and the geometric multiplicity of λj as the maximum number of linearly independent
eigenvectors of G associated with λj (i.e., the dimensionality of the eigenspace of
λj). Let G = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)), with mj ≥ 2 for j = 1, . . . , r.
Then the eigenvalues of G are λ1, . . . , λp, μ1, . . . , μr (not necessarily distinct), and
each Jordan block Jmj (μj) adds mj to the algebraic multiplicity of μj and 1 to the
geometric multiplicity of μj . This establishes a relation between the eigenvalues of
X2X−1

1 and the rank of the array X in Lemma 2.2. In particular, if X2X−1
1 has I real

eigenvalues and is diagonalizable, then X has rank I, which is case (i) of Lemma 2.1.
When I × I × 2 arrays are randomly drawn from a continuous distribution, they

have rank I or I + 1, both with positive probability; see Ten Berge and Kiers [44].
Their typical rank is said to be {I, I + 1}. A typical array X of rank I satisfies (i)
of Lemma 2.1, and X2X−1

1 has I distinct real eigenvalues. A typical array X of rank
I + 1 satisfies (ii) of Lemma 2.1, and the eigenvalues of X2X−1

1 are again distinct.
If a three-way array of size I×J×K has a one-valued typical rank, this is called its

generic rank. In this case, a generic I×J×K array has rank equal to its generic rank.

3. Diverging CP components for I × I × 2 arrays of rank I + 1 and
R = I. Here, we discuss the analysis of Stegeman [38] that shows how diverging CP
components occur for typical I × I × 2 arrays of rank I + 1 and R = I. Let

SI = {Y ∈ RI : Y has rank at most I}.(3.1)

Hence, the set SI consists of the arrays in RI which satisfy (i) of Lemma 2.1. Note
that SI contains only arrays of rank I, and not less than I, due to its restriction to RI .
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Let Z ∈ RI be typical and have rank I + 1. Then Z satisfies (ii) of Lemma 2.1.
We consider the following CP problem:

Minimize‖Z− Y‖2(3.2)
subject to Y ∈ SI .

If problem (3.2) has an optimal solution X, then X is a boundary point of SI . The
following result defines the interior points and boundary points of SI in RI and is
due to Stegeman [38].

Lemma 3.1. For X ∈ RI , the following statements hold:
(a) X is an interior point of SI if and only if X2X−1

1 has I distinct real eigen-
values.

(b) X is a boundary point of SI in RI if and only if X2X−1
1 has I real eigenvalues

but not all distinct.
The boundary points in (b) can have rank I or rank ≥ I + 1, depending on

whether X2X−1
1 is diagonalizable (type I) or not (type II); see Lemma 2.1. Hence,

the set SI is not a closed subset of RI , and the existence of an optimal solution for
problem (3.2) is not guaranteed. If problem (3.2) has an optimal solution X, then it
is a boundary point of type I.

Remark 3.2. For a typical Z of rank I + 1, problem (3.2) does not seem to have
an optimal solution in practice. We conjecture the following explanation for this. For
m ≥ 2, define the sets of matrices

B(λ0, m) = {Y ∈ R
I×I : Y has eigenvalue λ0 with algebraic multiplicity m}

= B1(λ0, m) ∪ · · · ∪ Bm(λ0, m),

with

Bl(λ0, m) = {Y ∈ B(λ0, m) : rank(Y − λ0 II) = I − l}, l = 1, . . . , m.

Due to the upper-semicontinuity of matrix rank, the set Bl(λ0, m) lies dense in
Bl(λ0, m)∪ · · · ∪Bm(λ0, m). For a boundary point X of SI , all eigenvalues of X2X−1

1

are real and X2X−1
1 ∈ B(λ0, m) for some eigenvalue λ0 and m ≥ 2 (see Lemma 3.1

(b)). For a boundary point of type I (with rank I), it holds that X2X−1
1 ∈ Bm(λ0, m)

for all multiple eigenvalues λ0 of X2X−1
1 . For a boundary point of type II (with

rank at least I + 1), it holds that X2X−1
1 ∈ Bl(λ0, m), with l < m for some multiple

eigenvalue λ0 of X2X−1
1 . From these observations, it follows that the set of boundary

points of type II lies dense on the boundary of the set SI . As stated above, if problem
(3.2) has an optimal solution, then it is a boundary point of type I. We conjecture
that this implies that, for a typical array Z of rank I +1, problem (3.2) has no optimal
solution.

If problem (3.2) does not have an optimal solution, then the sequence of CP
updates Y(n) converges to a boundary point X of type II (i.e., with X2X−1

1 having
I real eigenvalues and not diagonalizable) such that ‖Z − X‖2 equals the infimum
of ‖Z − Y‖2 over SI . Stegeman [38] shows that when Y(n) converges to X, the
sequence Y(n) features diverging components. This can be seen as follows. The
boundary point X satisfies (iii) of Lemma 2.1, and its rank, which is at least I + 1, is
given by Lemma 2.2. We assume Y(n) to be interior points of SI , i.e., Y(n)

2 (Y(n)
1 )−1

has I distinct real eigenvalues. Then Y(n) has a rank-I decomposition of the form
(2.2). Moreover, for the k-ranks we have kA(n) = kB(n) = I and kC(n) = 2, and
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Kruskal’s condition (1.4) yields that the decomposition is essentially unique. By
continuity, Y(n)

2 (Y(n)
1 )−1 converges to X2X−1

1 . Denote the eigendecomposition of
Y(n)

2 (Y(n)
1 )−1 by K(n)Λ(n)(K(n))−1. The matrix X2X−1

1 has I real eigenvalues but
is not diagonalizable, and we have A(n) = K(n), B(n) = ((K(n))−1Y(n)

1 )T , C(n)
1 = II ,

and C(n)
2 = Λ(n). Let λ be an eigenvalue of X2X−1

1 with algebraic multiplicity strictly
larger than its geometric multiplicity, and associated Jordan block of size m×m. Then
m columns of A(n) converge to the same eigenvector (up to a sign change) of λ, the
corresponding m columns of B(n) tend to linear dependency and large magnitudes,
and the m corresponding columns of C(n) become nearly identical to (1 λ)T . The
pattern of the m CP components is such that their sum does not blow up. Clearly,
this is a case of diverging CP components as defined by (1.5)–(1.6).

The diverging CP components are related to the Jordan form of X2X−1
1 in the way

described above. Hence, based on Lemma 2.2, one may conclude that the number of
groups of diverging CP components equals the rank of the boundary array X minus I.

To illustrate the phenomenon of diverging CP components as described above,
we return to the example in (1.7). For this randomly sampled 4 × 4 × 2 array Z, the
matrix Z2Z−1

1 has one pair of complex eigenvalues. Hence, Z is a typical 4 × 4 × 2
array of rank 5. Trying to fit the CP model with R = 4, results in three diverging
components, as shown in (1.8)–(1.10). Next, we compute the array Y corresponding
to the final CP update, i.e., Yk = ACk BT for k = 1, 2. This Y is an approximation
of the optimal boundary array X. For the eigenvalues of Y2Y−1

1 , we get

−1.5431, 0.4395, 0.4925, 0.5427.(3.3)

Hence, three eigenvalues are close together. This corresponds to the three diverging
components in (1.8)–(1.10) as discussed above.

4. A simultaneous GSD. Here, we introduce the simultaneous GSD (SGSD)
model for I × I ×K arrays and show that it always has an optimal solution. We also
discuss a relation between the CP model and the SGSD model as presented in De
Lathauwer, De Moor, and Vandewalle [6]. In matrix notation, the SGSD model for
an array Z is

Zk = Qa Rk QT
b + Ek, k = 1, . . .K,(4.1)

where Qa and Qb are I×I orthonormal and Rk are I×I upper triangular k = 1, . . . , K.
The matrices Qa, Qb, and Rk are determined by minimizing the sum-of-squares of
the residuals Ek, k = 1, . . . , K. For this purpose, a Jacobi-type algorithm is presented
in [6], and Van der Veen and Paulraj [47] developed an extended QZ algorithm. Like
the CP model, we consider the real-valued SGSD model.

Next, we show that the SGSD model, contrary to the CP model, always has an
optimal solution. Our approach is analogous to Krijnen [23]. We make use of the
following lemma, which can be found in Ortega and Rheinboldt [31, p. 104].

Lemma 4.1. Let g : D ⊂ R
q → R, where D is unbounded. Then all level sets of

g are bounded if and only if g(θn) → ∞ whenever {θn} ⊂ D and ‖θn‖ → ∞.
We define the parameter vector of the SGSD model as

θ = vec(vec(Qa), vec(Qb), vec(R1), . . . , vec(RK)).

Let f(θ) be the sum-of-squares of the residuals of the SGSD model. Since f is contin-
uous, the level sets L(γ) = {θ : f(θ) ≤ γ} are closed. We have the following result.
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Proposition 4.2. All level sets of f are bounded, and the SGSD model has an
optimal solution.

Proof. We have ‖θ‖2 = 2I +
∑K

k=1 ‖Rk‖2. Hence, ‖θn‖ → ∞ implies that
‖Rk‖ → ∞ for at least one k. Moreover,

f(θ)1/2 =
K∑

k=1

‖Zk − QaRkQT
b ‖ ≥

K∑
k=1

∣∣∣‖Zk‖ − ‖QaRkQT
b ‖
∣∣∣ =

K∑
k=1

∣∣∣‖Zk‖ − ‖Rk‖
∣∣∣,

which implies that f(θn) → ∞ whenever ‖θn‖ → ∞. From Lemma 4.1, it follows
that all level sets of f are bounded. Since the level sets are also closed, f attains its
infimum on any nonempty level set. This completes the proof.

Next, we present a relation between the CP model and the SGSD model, which
was partly proven by De Lathauwer, De Moor, and Vandewalle [6]. We have the
following result.

Lemma 4.3. Let X ∈ R
I×I×K . The following statements hold:

(i) If X has a full CP decomposition with R = I, then X has a full SGSD.
(ii) Suppose X1 is nonsingular. Then X has a full CP decomposition with R = I

if and only if XkX−1
1 , k = 1, . . . , K have a simultaneous eigendecomposi-

tion with only real eigenvalues. Moreover, the full CP decomposition of X is
essentially unique if and only if kC ≥ 2.

(iii) Suppose X1 is nonsingular. If X has an essentially unique full CP decompo-
sition with R = I, then the indeterminacies in the full SGSD of X are only
due to the indeterminacies in the full CP decomposition of X.

Proof. First, we show (i). We have Xk = ACk BT , k = 1, . . . , K; see (1.3). Let
A = QaRa be a QR-decomposition of A, with Qa orthonormal and Ra upper trian-
gular. Analogously, let B = QbLb be a QL-decomposition of B, with Qb orthonormal
and Lb lower triangular. Then Xk = Qa (RaCkLT

b )QT
b , k = 1, . . . , K is a full SGSD

for X.
The first part of the proof of (ii) is due to De Lathauwer, De Moor, and Van-

dewalle [6]. Suppose X has a full CP decomposition with R = I. Then we have
XkX−1

1 = ACk C−1
1 A−1, which is an eigendecomposition with real eigenvalues

and shows that XkX−1
1 , k = 1, . . . , K have a simultaneous eigendecomposition.

Next, suppose XkX−1
1 = ACk A−1 for diagonal matrices Ck, k = 2, . . . , K. Then

Xk = ACk A−1 X1. Taking C1 = II and BT = A−1 X1 now yields a full CP
decomposition of X with R = I.

In the CP decomposition of X, we have kA = kB = I. Hence, Kruskal’s condition
(1.4) for essential uniqueness is equivalent to kC ≥ 2. See also Leurgans, Ross, and
Abel [28]. Moreover, kC ≥ 2 is also necessary for uniqueness as is shown in Stegeman
and Sidiropoulos [42].

Next, we show (iii). From (ii), it follows that XkX−1
1 = ACk A−1, k = 2, . . . , K,

and kC ≥ 2. From the full SGSD of X, we obtain that also QT
a XkX−1

1 Qa = RkR−1
1 ,

k = 2, . . . , K have a simultaneous eigendecomposition RaCkR−1
a , with Ra upper

triangular up to a column permutation. From Kruskal’s condition (1.4), it follows
that Rk = RaCkRb, with Rb = R−1

a R1 and C1 = II , is an essentially unique full CP
decomposition. Thus we have XkX−1

1 = QaRaCkR−1
a QT

a = ACkA−1, k = 2, . . . , K,
which implies QaRa = A (since kC ≥ 2). Looking at X−1

1 Xk, we get equivalently
QbRT

b = B. Hence, there are no other indeterminacies in the full SGSD of X than
those implied by CP essential uniqueness. This completes the proof.

From the proof of Lemma 4.3, it follows that a CP decomposition of X (if it exists)
can be obtained from its full SGSD by computing the simultaneous eigendecomposi-
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tion of RkR−1
1 , k = 2, . . . , K. This method is analogous to the one proposed in De

Lathauwer, De Moor, and Vandewalle [6]. For the case I ≤ K a different method is
given in Van der Veen and Paulraj [47].

5. The GSD model for I × I ×2 arrays. Here, we consider the SGSD model
for I×I×2 arrays and discuss its relation with the CP model. Since a (complex-valued)
SGSD for two slices (K = 2) is known as a GSD (see Golub and Van Loan [12]), we
will use the abbreviation GSD. Next, we show which of the arrays in Lemma 2.1 have
a full (real-valued) GSD.

Lemma 5.1. For X ∈ RI , the following statements hold:
(i) If X2X−1

1 has I real eigenvalues and is diagonalizable, then X has a full GSD.
(ii) If X2X−1

1 has at least one pair of complex eigenvalues, then X does not have
a full GSD.

(iii) If X2X−1
1 has I real eigenvalues but is not diagonalizable, then X has a full

GSD.
Proof. If (i) holds, then X has a full CP decomposition with R = I of the form

(2.2). Hence, X also has a full GSD. Next, suppose (ii) holds, and X has a full GSD.
Then X2X−1

1 = QaR2R−1
1 QT

a , and

det(X2X−1
1 − λ II) = det(QT

a X2X−1
1 Qa − λ II) = det(R2R−1

1 − λ II).

Since R2R−1
1 is upper triangular and has only real eigenvalues, it follows that also

X2X−1
1 has only real eigenvalues. But this contradicts (ii). Therefore, X has no full

GSD if (ii) holds.
Next, suppose (iii) holds. Then X2X−1

1 = PJP−1, where J is the Jordan normal
form. Let P = QaRa be a QR-decomposition of P, and let XT

1 Qa = QbLb be a
QL-decomposition of XT

1 Qa. Then

X2 = QaRaJR−1
a QT

a X1 = Qa (RaJR−1
a LT

b )QT
b and X1 = Qa LT

b QT
b(5.1)

is a full GSD of X. This completes the proof.
Note that a full GSD requires R1 and R2 to be upper triangular. This is not

the same as the generalized real Schur decomposition (see Golub and Van Loan [12]),
which always exists for two I × I matrices and which has R1 upper quasi-triangular.

As we see from Lemma 5.1, the arrays satisfying (iii) do not have a full CP
decomposition with R = I but do have a full GSD. Note that the CP decomposition
of arrays satisfying (i) is essentially unique if and only if the eigenvalues of X2X−1

1

are distinct; see (ii) of Lemma 4.3.
Since (iii) of Lemma 4.3 does not apply to the GSD in (5.1), one may wonder what

the uniqueness properties of (5.1) are. The Jordan form J = diag(λ1, . . . , λp,Jm1(μ1),
. . . ,Jmr(μr)) is unique up to the order of the Jordan blocks. If λ1, . . . , λp, μ1, . . . , μr

are distinct, then the columns of P are unique up to the same ordering and up to
scaling. Suppose there is a second GSD, i.e., Xk = Q̃a R̃k Q̃T

b , k = 1, 2. Then there
holds R̃2 R̃−1

1 = (Q̃T
a P)J (Q̃T

a P)−1. In fact, we have Q̃T
a P = R̂Π, with R̂ upper

triangular and Π a permutation. Then R̃2 R̃−1
1 = R̂ (ΠJΠT ) R̂ is a Jordan form

with a different ordering of the Jordan blocks. Hence, the GSD in (5.1) is unique up
to the indeterminacies of the Jordan form of X2X−1

1 .

6. Using the GSD model to avoid diverging CP components. Here, we
show how the relation between the GSD and CP models for I × I × 2 arrays can
be used to avoid the problems of diverging CP components discussed in section 3.
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First, we establish a relation between the set of I × I × 2 arrays that have a full CP
decomposition with R = I, i.e., the set SI in (3.1), and the set of arrays that have a
full GSD. Let

PI = {Y ∈ RI : Y has a full GSD}.(6.1)

Hence, the set PI consists of the arrays satisfying either (i) or (iii) in Lemma 5.1.
From Lemmas 2.1 and 5.1, it follows that SI ⊂ PI . Moreover, Lemmas 3.1 and 5.1
show that PI is the closure of SI in RI and has the same interior points and boundary
points as SI . For the boundary points X of PI and SI , the matrix X2X−1

1 has I real
eigenvalues which are not all distinct; see Lemma 3.1. As explained in Remark 3.2,
the boundary points X of type II, i.e., with X2X−1

1 not diagonalizable, lie dense on
the boundary of PI .

Let Z be a typical I × I × 2 array of rank I +1, i.e., Z satisfies (ii) of Lemma 5.1.
Recall that the CP problem (3.2) for Z usually does not have an optimal solution (see
Remark 3.2). We define the analogue GSD problem as

Minimize‖Z− Y‖2(6.2)
subject to Y ∈ PI .

From the analysis in Stegeman [38], it follows that PI is a closed subset of RI . Hence,
the GSD problem (6.2) has an optimal solution, and a GSD algorithm finds an optimal
solution X of problem (6.2) in terms of its full GSD. We will assume that the optimal
solution X obtained for the GSD problem (6.2) is a boundary point of PI of type
II, i.e., X2X−1

1 has I real eigenvalues but is not diagonalizable. We conjecture (see
Remark 3.2) that this is true almost everywhere for typical Z of rank I + 1.

From the observations above and our discussion in section 3, it follows that the
optimal solution X of the GSD problem (6.2), if it is unique, is the limit point of the
sequence of CP updates (featuring diverging components) which attempts to converge
to the (nonexisting) optimal solution of the CP problem (3.2).

Next, we show how to extract the nondiverging CP components from the optimal
GSD solution. The limit point of the diverging CP components can be obtained from
the optimal GSD solution as a Tucker3 part from the Jordan form of X2X−1

1 or as a
smaller GSD part. These CP+Jordan and CP+GSD representations will be discussed
in sections 6.1 and 6.3, respectively. In section 6.2, we show how the GSD solution
can be decomposed into rank-1 terms using the CP+Jordan representation. Here, the
number of rank-1 terms equals the rank of the solution array.

6.1. Optimal GSD solution in CP+Jordan form. Let X be the optimal
solution of the GSD problem (6.2). As explained above, we assume that X2X−1

1 has
only real eigenvalues but is not diagonalizable. Next, we show how to obtain the non-
diverging CP components from X and write the limit points of the groups of diverging
CP components in Jordan form. We have Xk = Qa Rk QT

b , k = 1, 2 from a GSD algo-
rithm. Since X ∈ RI , the matrices Rk, k = 1, 2 are nonsingular. Let the Jordan nor-
mal form PJP−1 of R2R−1

1 be given by J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)),
where Jmj (μj) denotes an mj × mj Jordan block with mj ≥ 2, and r ≥ 1. Note that
the Jordan form J of R2R−1

1 is also the Jordan form of X2X−1
1 . Hence, R2R−1

1 also
has only real eigenvalues but is not diagonalizable.

Now the following decomposition of X can be obtained. Let C1 = Ip, C2 =
diag(λ1, . . . , λp), and let A contain the corresponding columns of QaP and BT the
corresponding rows of P−1R1QT

b . For the r Jordan blocks Jmj , let Kj contain the
corresponding columns of QaP and LT

j the corresponding rows of P−1R1QT
b . Then
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X2 = AC2 BT +
r∑

j=1

Kj Jmj LT
j ,(6.3)

X1 = AC1 BT +
r∑

j=1

Kj Imj LT
j .(6.4)

Hence, we have decomposed the optimal GSD solution X into a nondiverging CP part
and r parts with a Jordan block Jmj instead of a diagonal matrix. In this way, di-
verging CP components are avoided, i.e., the components A,K1, . . . ,Kr are linearly
independent (since they are columns of QaP), the components B,L1, . . . ,Lr are lin-
early independent (since they are the rows of P−1R1QT

b ), and none of the elements
in the decomposition tends to infinity. Note that each part of the decomposition
(6.3)–(6.4) can be written in GSD form by using QR- and QL-decompositions as in
the proof of (i) of Lemma 4.3.

If the eigenvalues λ1, . . . , λp are distinct, then the CP-part of the representa-
tion (6.3)–(6.4) is essentially unique. Indeed, we have p components and k-ranks
kA = kB = p and kC = 2, and essential uniqueness follows from Kruskal’s condition
(1.4). From the uniqueness properties of the Jordan form of R2R−1

1 it follows that
if μ1, . . . , μr are distinct, then the representation of the non-CP part of (6.3)–(6.4)
is unique up to the order of the Jordan blocks Jmj and the scaling of the principal
vectors in P.

Although the decomposition (6.3)–(6.4) features not only rank-1 terms, it is es-
sentially unique and may be interpretable to the researcher. From a computational
as well as a practical point of view, this is a considerable improvement with respect
to facing diverging CP components.

In practice, the matrix R2R−1
1 of the corresponding optimal GSD solution ob-

tained from a GSD algorithm does not have exactly identical eigenvalues. To be able
to “recognize” the identical eigenvalues of R2R−1

1 and their geometric multiplicities,
the GSD algorithm must have a sufficiently small stopping criterion. The identical
eigenvalues can then be estimated as the average of the ones which are “close to-
gether.” The Jordan normal form of R2R−1

1 can be estimated by using, e.g., the
method proposed in Golub and Wilkinson [11]. Below, we present the algorithm to
obtain representation (6.3)–(6.4). The algorithm is formulated for general R (instead
of R = I) in order to make it applicable to the I × J × 2 case as well (see section 7).

Algorithm for CP+Jordan representation of optimal GSD solution.

Input: Optimal GSD solution Xk = Qa Rk QT
b , k = 1, 2, where R2R−1

1 has only
real eigenvalues but is not diagonalizable.
Output: CP+Jordan representation (6.3)–(6.4).

1. Calculate the Jordan form PJP−1 of R2R−1
1 , where

J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)). Here, Jmj (μj) denotes an
mj × mj Jordan block with mj ≥ 2, and r ≥ 1.

2. Set C1 = Ip, C2 = diag(λ1, . . . , λp). For eigenvalues λ1, . . . , λp, let A
contain the corresponding columns of QaP and BT the corresponding rows
of P−1R1QT

b .
3. For Jordan block Jmj , let Kj contain the corresponding columns of QaP

and LT
j the corresponding rows of P−1R1QT

b , j = 1, . . . , r.
4. The CP+Jordan representation (6.3)–(6.4) follows, with p nondiverging CP

components in A, B, C1, C2 and r limit points of groups of diverging CP
components (see section 3).
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The following result states that (6.3)–(6.4) can be written as a Tucker3 model
(1.2).

Proposition 6.1. Let the Jordan form of R2R−1
1 be given by diag(λ1, . . . , λp,

Jm1(μ1), . . . ,Jmr (μr)), where Jmj (μj) denotes an mj ×mj Jordan block with mj ≥ 2.
Set M = p + r + 1. The decomposition (6.3)–(6.4) can be written as a Tucker3 model
with an I × I × M core array and component matrices

[A |K1 | . . . |Kr], [B |L1 | . . . |Lr],
[

1 . . . 1 0 1 . . . 1
λ1 . . . λp 1 μ1 . . . μr

]
.(6.5)

The number of nonzeros in the core array equals 2I − (p + r).
Proof. The first p columns of the component matrices in (6.5) follow from the

CP part in (6.3)–(6.4). Next, we consider a Jordan block Jm(μ), with m ≥ 2. The
corresponding part in (6.3)–(6.4) can be written as

m∑
i=1

ki ⊗ li ⊗
(

1
μ

)
+

m−1∑
i=1

ki ⊗ li+1 ⊗
(

0
1

)
,(6.6)

where ki and li are the columns of the corresponding matrices K and L, respectively.
Hence, (6.6) uses the corresponding columns of the component matrices in (6.5) and
adds m + (m − 1) nonzeros to the Tucker3 core array.

Since the CP part adds p nonzeros to the Tucker3 core array, the total number
of nonzeros equals

p +
r∑

j=1

(2mj − 1) = p − r + 2
r∑

j=1

mj = p − r + 2(I − p) = 2I − (p + r).(6.7)

This completes the proof.
Note that the restricted Tucker3 model in Proposition 6.1 is unique up to the

indeterminacies in the CP+Jordan representation (6.3)–(6.4).
The result of Proposition 6.1 is in line with Harshman [15], who explains diverging

CP components for 2 × 2 × 2 arrays as “Parafac trying to model Tucker variation.”
Paatero [33] also noticed that his constructed sequences of diverging CP components
have a limit that can be written in Tucker3 form.

The decomposition (6.3)–(6.4) of X into p rank-1 terms and r rank-(mj, mj, 2)
terms (i.e., the ranks of the vectors in the three modes are mj , mj , and 2) is an
example of the block-term decomposition introduced in De Lathauwer [8].

Remark 6.2. Note that it is not our goal to find a CP+Tucker3 representation of
Z, for which Z2Z−1

1 has some complex eigenvalues. Such a representation exists if the
eigenvalues of Z2Z−1

1 are distinct and can be obtained from the transformation

Z2Z−1
1 = KΛK−1,(6.8)

where Λ = diag(λ1, . . . , λs,Γ1, . . . ,Γt) and Γi is 2 × 2 and corresponds to a pair of
complex eigenvalues of Z2Z−1

1 ; see, e.g., Horn and Johnson [19]. Instead, it is our
goal to find the limit point X of the sequence of CP updates featuring diverging
components, and (6.3)–(6.4) is a representation of that point X.

Next, we illustrate the CP+Jordan algorithm by revisiting the 4×4×2 example in
(1.7)–(1.10) that was also discussed at the end of section 3. Using the Jacobi algorithm
of De Lathauwer, De Moor, and Vandewalle [6] with R = 4 and a convergence criterion
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of 1e-9, we obtain the following optimal GSD solution for Z in (1.7):

Qa =

⎡⎢⎢⎣
0.1279 0.8039 −0.5519 0.1813
−0.7946 −0.1776 −0.2749 0.5113
−0.5895 0.3628 0.1606 −0.7037
0.0690 −0.4367 −0.7708 −0.4588

⎤⎥⎥⎦ ,(6.9)

Qb =

⎡⎢⎢⎣
−0.6328 0.3387 −0.0964 −0.6896
0.6382 0.5502 −0.4778 −0.2486
0.1774 0.5110 0.8406 −0.0294
−0.4011 0.5670 −0.2363 0.6795

⎤⎥⎥⎦ ,(6.10)

R1 =

⎡⎢⎢⎣
−1.1875 −1.3604 1.1724 −1.5430

0 −1.0758 0.4567 −0.3733
0 0 −0.9103 −0.7889
0 0 0 1.5915

⎤⎥⎥⎦ ,(6.11)

R2 =

⎡⎢⎢⎣
1.8323 0.0832 0.0009 −0.0168

0 −0.5285 −2.5802 −0.9022
0 0 −0.4472 1.4516
0 0 0 0.7818

⎤⎥⎥⎦ .(6.12)

The GSD algorithm terminated after 24 sweeps with an error sum-of-squares of
0.051016. The latter is less than the value of 0.051204 obtained by the CP algo-
rithm in section 1, indicating that the GSD solution is closer to Z than the final CP
update. The sum-of-squares distance between the GSD solution Xk = Qa Rk QT

b ,
k = 1, 2 and the final CP update Yk = ACk BT , k = 1, 2 is only 3.2144e-7. For the
GSD solution, the eigenvalues of X2X−1

1 are

−1.5430, 0.4912, 0.4912, 0.4912.(6.13)

Hence, for the final CP update, the three eigenvalues of Y2Y1 that were close together
in (3.3) have become identical in the limit point X.

Next, we apply the CP+Jordan algorithm to the obtained GSD solution above.
For the CP-part, we obtain

A =

⎡⎢⎢⎣
0.1279
−0.7946
−0.5895
0.0690

⎤⎥⎥⎦ , B =

⎡⎢⎢⎣
0.8259
0.0385
−0.4005
−0.3950

⎤⎥⎥⎦ , C =
[

2.8918
−4.4621

]
,(6.14)

where the columns of A and B are normalized to length 1. Comparing this to the
final CP-update in (1.8)–(1.10), we see that (6.14) is the nondiverging CP component
of the final CP update. For the non-CP part of the CP+Jordan representation, we
obtain

K =

⎡⎢⎢⎣
−0.6779 −0.0194 −0.0500
0.6690 −0.0900 −0.1191
0.1326 −0.2662 0.1248
0.2744 0.3003 0.1064

⎤⎥⎥⎦ , L =

⎡⎢⎢⎣
0.8879 −2.6832 5.3125
1.7433 −2.6564 1.9149
−0.7556 3.1066 0.2265
1.0387 1.3806 −5.2348

⎤⎥⎥⎦ ,

(6.15)

J =

⎡⎣ 0.4912 1 0
0 0.4912 1
0 0 0.4912

⎤⎦ .(6.16)
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Hence, the limit point of the three diverging CP components is represented as (6.15)–
(6.16).

6.2. A rank-revealing decomposition of the optimal GSD solution. Here
we discuss how one may obtain a decomposition into rank-1 terms of the optimal
GSD solution, where the number of rank-1 terms equals the rank of the solution
array X. We make use of the CP+Jordan representation (6.3)–(6.4). The Tucker3
representation of X in Proposition 6.1 decomposes X into 2I − (p + r) rank-1 terms.
Lemma 2.2 states that X has rank I + r. Hence, the number of rank-1 terms in the
Tucker3 representation is equal to rank⊗(X) = I + r if and only if I = p + 2r. That
is, if all Jordan blocks Jmj (μj) have size mj = 2. In this case, (6.3)–(6.4) itself is a
rank-revealing decomposition of X. From (6.6), it follows that for p = 0, r = 1, and
m = 2, the representation has the form (1.11) of De Silva and Lim [10] with x1 = k1,
x2 = l2, x3 =

(
1
µ

)
, y1 = k2, y2 = l1, and y3 =

(
0
1

)
. For general p and r and mj = 2

for j = 1, . . . , r, the representation (1.11) can be generalized to

X =
p∑

i=1

z(i)
1 ⊗ z(i)

2 ⊗ z(i)
3 +

r∑
j=1

(x(j)
1 ⊗ x(j)

2 ⊗ y3 + x(j)
1 ⊗ y(j)

2 ⊗ x(j)
3

+ y(j)
1 ⊗ x(j)

2 ⊗ x(j)
3 ).

(6.17)

If there is a Jordan block Jmj (μj) with size mj ≥ 3, then the number of rank-1
terms in the decomposition (6.3)–(6.4) is larger than rank⊗(X) = I + r. However,
a method to obtain a decomposition into I + r rank-1 terms from (6.3)–(6.4) can
be found in Ja’ Ja’ [21]. Consider the m × m × 2 array consisting of the slices
Im and Jm(μ), with m ≥ 2. From Lemma 2.2, it follows that this array has rank
m + 1. Let w = (w0 w1 . . . wm−1)T , and let em denote the mth column of Im. Then
Jm(μ) − em wT has characteristic polynomial f(λ − μ), with

f(x) = w0 + w1 x + · · · + wm−1 xm−1 − xm.(6.18)

It follows that we can pick w such that f(x) has m distinct real roots. By Lemma 2.1,
the m × m × 2 array with slices Im and Jm(μ) − em wT has rank m, and a rank-m
decomposition can be obtained from an eigendecomposition of its second slice. Since
we have subtracted the rank-1 slice em wT , this gives us a rank-(m+1) decomposition
of the array with Im and Jm(μ).

Applying this procedure to each Jordan block in (6.3)–(6.4) yields a decomposition
of X into p +

∑r
j=1(mj + 1) = I + r rank-1 terms. Since we have freedom in choosing

the vector w, this decomposition is not essentially unique (also for mj = 2).

6.3. Optimal GSD solution in CP+GSD form. Since the Jordan form has
a discontinuous transition from diagonalizable to nondiagonalizable matrices, it is nu-
merically unstable, and the obtained Jordan form is extremely sensitive to tolerances
for “recognizing” identical eigenvalues; see the discussion in Golub and Van Loan [12].
It follows from (6.3)–(6.4) that the complete non-CP part may also be represented in
a full GSD of size I−p. For this, one only has to determine the eigenvalues of X2X−1

1

with algebraic multiplicity equal to 1, which is numerically more stable. Here, we
show how the CP part and the GSD of the non-CP part can be computed without
first computing the Jordan representation (6.3)–(6.4). Also, if one is only interested in
obtaining the nondiverging CP components, computing the CP-part of the CP+GSD
representation is an efficient way.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AVOIDING DIVERGING COMPONENTS IN CANDECOMP/PARAFAC 1629

We assume that the optimal GSD solution X has been obtained from a GSD
algorithm and the GSD Xk = Qa Rk QT

b , k = 1, 2 is known. Let the Jordan form
of R2R−1

1 be given by J = diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr (μr)), where Jmj (μj)
denotes an mj × mj Jordan block with mj ≥ 2, and r ≥ 1. The eigenvalues and
the Jordan form J of R2R−1

1 are the same as those of X2X−1
1 and those of R−1

1 R2.
As mentioned above, we assume that R2R−1

1 has only real eigenvalues but is not
diagonalizable. In the following, we assume that the eigenvalues λ1, . . . , λp are known.
For this, it is not necessary to compute the complete Jordan form J.

First, we show how to obtain the CP-part of (6.3)–(6.4). For simplicity, we assume
that none of the eigenvalues μj is equal to a λi. Let Ra have as columns the eigen-
vectors of R2R−1

1 corresponding to the eigenvalues λ1, . . . , λp. From the discussion in
section 6.1, it follows that A = Qa Ra. Next, we find B. If R2R−1

1 = PJP−1, then
R−1

1 R2 = (R−1
1 P)J (R−1

1 P)−1. Let Rb have as rows the left eigenvectors of R−1
1 R2

corresponding to the eigenvalues λ1, . . . , λp, i.e., Rb R−1
1 R2 = diag(λ1, . . . , λp)Rb.

Then we have B = Qb RT
b (see section 6.1). Since R2R−1

1 and R−1
1 R2 are upper

triangular, the columns of Ra and the rows of Rb are the columns and rows, re-
spectively, of an I × I upper triangular matrix. We normalize the rows of Rb such
that the first nonzero element becomes 1, and we normalize the columns of Ra such
that the last nonzero element becomes 1. Let Ck be the p × p diagonal matrix con-
taining the diagonal elements of Rk corresponding to the locations of λ1, . . . , λp on
the diagonal of R2R−1

1 . It now follows that the CP-part in (6.3)–(6.4) is equal (up
to scaling/rescaling and a joint permutation of the p CP components) to ACk BT ,
k = 1, 2.

Note that the eigenvalues λ1, . . . , λp may appear anywhere on the diagonal of
R2R−1

1 . Hence, unlike the ordering in the Jordan form J, the eigenvalues λj do
not need to appear as the first p diagonal elements of R2R−1

1 . This is due to the
permutation indeterminacy of the GSD solution. See also the discussion at the end
of section 5.

Next, we show how to obtain the GSD of the non-CP part of (6.3)–(6.4). Define
Tk = Rk −Ra Ck Rb, k = 1, 2. Then Yk = Qa Tk QT

b , k = 1, 2 is the non-CP part of
(6.3)–(6.4). From (6.3)–(6.4), it follows that Y1 = KII−p LT and Y2 = KJ̃LT for
I × (I −p) matrices K and L of full column rank and an (I −p)× (I −p) Jordan form
J̃. This implies that Y1 and Y2 have rank I−p and identical column and row spaces.
These properties of Y1 and Y2 also hold for T1 and T2. Moreover, by definition, Tk

is upper triangular and has zeros on the diagonal corresponding to the locations of
λ1, . . . , λp on the diagonal of R2R−1

1 . From the I locations on the diagonal of R2R−1
1 ,

let 1 ≤ i1 < i2 < · · · < iI−p ≤ I be those not containing λ1, . . . , λp. Let T̃k contain
the columns i1, i2, . . . , iI−p of Tk, in the same order as they appear in Tk, k = 1, 2.
Then each of these columns has a nonzero diagonal element in Tk, and since Tk is
upper triangular, T̃k has rank I − p. Since Tk also has rank I − p, it follows that the
column spaces of T̃k and Tk are identical. Also, the column spaces of T̃1 and T̃2 are
identical. We write Tk = T̃k HT

k , where Hk = TT
k T̃k (T̃T

k T̃k)−1, k = 1, 2. We need
the following lemmas.

Lemma 6.3. There holds T̃k = Q̃ R̃k for some I×(I−p) columnwise orthonormal
Q̃ and some (I − p) × (I − p) upper triangular R̃k, k = 1, 2.

Proof. Let T̃k contain columns i1, . . . , iI−p of Tk, with 1 ≤ i1 < i2 < · · · <

iI−p ≤ I. Let t(k)
in

denote column in of Tk, which is column n of T̃k, k = 1, 2. Then
t(k)
in

has the last I − in elements equal to zero and element in nonzero. We obtain
Q̃ and R̃1 from a QR-decomposition of T̃1 by means of the Gram–Schmidt process.
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Let

v1 = t(1)
i1

and vn = t(1)
in

−
n−1∑
j=1

projvj
t(1)
in

, n = 2, . . . , I − p,(6.19)

where projv t = (tTv)/(vT v)v denotes the orthogonal projection of t onto v. The
columns of Q̃ are the unit length versions of v1, . . . ,vI−p, and the elements of R̃1

follow from (6.19).
The columns of Q̃ form an orthonormal basis for the column space of T̃1 and,

hence, also for the column space of T̃2. This implies that for every column t(2)
in

, there
is a vector w such that

t(2)
in

= Q̃w.(6.20)

From (6.19), it follows that column j of Q̃ has the last I − ij elements equal to zero
and element ij nonzero, j = 1, . . . , I − p. Since t(2)

in
has the last I − in elements equal

to zero, (6.20) implies that t(2)
in

lies in the space spanned by the first n columns of
Q̃. Hence, w in (6.20) has the last I − p − n elements equal to zero. It follows that
T̃2 = Q̃ R̃2 for some (I − p) × (I − p) upper triangular R̃2. Since Q̃ has full column
rank, the matrix R̃2 is uniquely determined. This completes the proof.

Recall that, since the column spaces of T̃k and Tk are identical, we may write
Tk = T̃k HT

k , k = 1, 2.
Lemma 6.4. Let Hk satisfy Tk = T̃k HT

k , k = 1, 2. Then H1 = H2.
Proof. Since T̃k contains columns i1, . . . , iI−p of Tk, it follows that rows i1, . . . ,

iI−p of Hk are equal to rows 1, . . . , I − p of II−p, k = 1, 2. Let the row permutation

Π be such that ΠHk =
[
II−p

H̃k

]
.

Since Hk has full column rank, rank(Tk) = I − p, and TT
k = Hk T̃T

k , the column
space of Hk is identical to the column space of TT

k . Moreover, since the row spaces
of T1 and T2 are identical, the column spaces of H1 and H2 are also identical. It
follows that each column of ΠH1 must lie in the column space of ΠH2. Since both
matrices have II−p as their first I − p rows, this yields that ΠH1 = ΠH2. Hence,
H1 = H2, which completes the proof.

Using Lemmas 6.3 and 6.4, the GSD of the non-CP part of (6.3)–(6.4) can be
computed as follows. From a QR-decomposition of T̃1, we obtain T̃1 = Q̃ R̃1. The
matrix R̃2 in Lemma 6.3 follows from R̃2 = Q̃T T̃2. The matrix H = H1 = H2 in
Lemma 6.4 is obtained as H = TT

1 T̃1 (T̃T
1 T̃1)−1. Next, let H = Q̂ R̂T be a QL-

decomposition of H with an I × (I − p) columnwise orthonormal Q̂ and an (I − p)×
(I − p) upper triangular R̂. It follows that

Yk = Qa Tk QT
b = Qa T̃k HT QT

b = (Qa Q̃) (R̃k R̂) (Qb Q̂)T , k = 1, 2(6.21)

is a full GSD of size I − p of the non-CP part of (6.3)–(6.4). Below, we present the
algorithm to obtain a CP+GSD representation of the optimal GSD solution X. The
algorithm is formulated for general R (instead of R = I) in order to make it applicable
to the I × J × 2 case as well (see section 7).
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Algorithm for CP+GSD representation of optimal GSD solution.

Input: Optimal GSD solution Xk = Qa Rk QT
b , k = 1, 2, where R2R−1

1 has only
real eigenvalues but is not diagonalizable.
Output: CP+GSD representation Xk = ACk BT + Q1 R(0)

k QT
2 , k = 1, 2.

1. Calculate the eigenvalues λ1, . . . , λp of R2R−1
1 with algebraic multiplicity

1. Set Λ = diag(λ1, . . . , λp).
2. Determine Ra (R × p) as R2R−1

1 Ra = Ra Λ. Normalize the columns of
Ra such that the last nonzero element becomes 1. Determine Rb (p×R) as
Rb R−1

1 R2 = ΛRb. Normalize the rows of Rb such that the first nonzero
element becomes 1.

3. Set A = QaRa and B = QbRT
b . Let Ck be the diagonal matrix containing

the diagonal elements of Rk corresponding to the locations of λ1, . . . , λp

on the diagonal of R2R−1
1 , k = 1, 2. The p nondiverging CP components

are now obtained as ACk BT , k = 1, 2.
4. Set Tk = Rk − Ra Ck Rb, k = 1, 2. Let T̃k contain the R − p columns of

Tk with a nonzero diagonal element, in the same order as they appear in
Tk, k = 1, 2.

5. Compute the QR-decomposition T̃1 = Q̃ R̃1 and set R̃2 = Q̃T T̃2.
6. Set H = TT

1 T̃1 (T̃T
1 T̃1)−1 and compute the QL-decomposition H = Q̂ R̂T .

7. Set Q1 = Qa Q̃, Q2 = Qb Q̂ and R(0)
k = R̃k R̂, k = 1, 2. The size-(R − p)

GSD representation of the limit point of the diverging CP components is
now obtained as Q1 R(0)

k QT
2 , k = 1, 2.

To illustrate the CP+GSD algorithm, we return once again to the 4×4×2 example
in (1.7)–(1.10) that was also discussed at the end of sections 3 and 6.1. We apply the
CP+GSD algorithm to the optimal GSD solution (6.9)–(6.12) for Z in (1.7). For the
CP-part, we obtain

Ra =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦ , RT
b =

⎡⎢⎢⎣
1.0000
0.3111
0.8314
2.0353

⎤⎥⎥⎦ , C1 = −1.1875, C2 = 1.8323.(6.22)

Up to scaling/rescaling, the CP-part A = QaRa, B = QbRT
b , C1, C2 in (6.22) is

equal to the CP-part (6.14) of the CP+Jordan representation. For the GSD-part, we
obtain

Q1 =

⎡⎢⎢⎣
−0.6779 −0.0470 0.2357
0.6690 −0.2187 0.5479
0.1326 −0.6466 −0.6812
0.2744 0.7293 −0.4244

⎤⎥⎥⎦ , Q2 =

⎡⎢⎢⎣
0.3387 −0.0964 −0.6896
0.5502 −0.4778 −0.2486
0.5110 0.8406 −0.0294
0.5670 −0.2363 0.6795

⎤⎥⎥⎦ ,

(6.23)

R(0)
1 =

⎡⎣ 1.4627 −1.7991 −0.3176
0 1.5699 1.1872
0 0 1.5963

⎤⎦ , R(0)
2 =

⎡⎣ 0.7185 2.9293 3.2016
0 0.7712 −2.5885
0 0 0.7841

⎤⎦ .

(6.24)
Hence, the limit point of the three diverging CP components is represented as (6.23)–
(6.24).
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Table 7.1

Conjectures of Stegeman [40] on the occurrence of diverging CP components for a generic
I × J × 2 array Z. Here, I ≥ J ≥ 2 and R ≥ 2.

Case Z ∈ RI×J×2 Rank⊗(Z) R Diverging CP components

2 I = J I + 1 R = I almost everywhere

3 I = J I + 1 R < I positive volume

5 I = J I R < I positive volume

8 I > J min(I, 2J) R = J positive volume
9 I > J min(I, 2J) R < J positive volume

7. Extension to I ×J ×2 arrays and general R. Stegeman [40] has mathe-
matically analyzed the cases of diverging CP components occurring for generic I×J×2
arrays and all values of R. The cases in which diverging components occur are listed
in Table 7.1, as well as the conjectures of Stegeman [40] on the frequency of their
occurrence. A generic I × J × 2 array Z has rank min(I, 2J) if I > J , and rank I or
I + 1 (both on a set of positive volume) if I = J ; see Ten Berge and Kiers [44].

It is shown in [40] that the cases of diverging CP components in Table 7.1 can be
transformed to Case 2 (with I = J = R), which we have considered so far. Next, we
extend our results in the previous sections by showing that in all cases in Table 7.1,
the GSD approach may be used to avoid the problem of diverging CP components.
Analogous to our previous results, the optimal GSD solution is the limit point of the
sequence of CP updates (whether it features diverging components or not) and may
be decomposed into a nondiverging CP-part and a Jordan part or into a nondiverging
CP-part and a smaller GSD part.

The GSD model for an I × J × 2 array Z is

Zk = Qa Rk QT
b + Ek, k = 1, 2,(7.1)

where Qa (I×R) and Qb (J×R) are columnwise orthonormal and Rk are R×R upper
triangular, k = 1, 2. Without loss of generality, we assume I ≥ J . Also, we assume
R ≤ J (and R ≤ I) and R < rank⊗(Z). From Table 7.1, it can be seen that this
includes all cases. Finding Qa, Qb, R1, and R2, which minimize the sum-of-squares of
the residuals in (7.1), can be achieved by a modification of the Jacobi algorithm of De
Lathauwer, De Moor, and Vandewall [6]. This will be explained in section 7.1 below.

The proof of Proposition 4.2 can be used to show that the GSD model (7.1) for
I × J × 2 arrays always has an optimal solution. Analogous to (6.1)–(6.2), we define

P(I,J,R) = {Y ∈ R
I×J×2 : Y has a full GSD (7.1) with R1 and R2 nonsingular}

(7.2)
and the GSD problem

Minimize ‖Z− Y‖2(7.3)
subject toY ∈ P(I,J,R).

From the analysis in Stegeman [40], it follows that the set P(I,J,R) is closed, and hence,
problem (7.3) always has an optimal solution. In Cases 3, 5, 8, and 9 of Table 7.1, the
boundary of P(I,J,R) is the set P(I,J,R) itself, and the optimal solution X of the GSD
problem (7.3) has R2R−1

1 with only real eigenvalues, some of which are identical. The
problem of diverging CP components occurs if R2R−1

1 is not diagonalizable; see [40].
In this case, the GSD of X cannot be fully transformed to a CP representation, and
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sequences of CP updates converging to X feature diverging components. As in Case 2
of Table 7.1, two alternatives are a CP+Jordan or a CP+GSD representation. These
can be obtained by using the algorithms in sections 6.1 and 6.3, respectively. As
explained in section 6.2, a decomposition of X into rank⊗(X) terms of rank 1 can be
obtained from the CP+Jordan representation of X using the method of Ja’ Ja’ [21].

If, in Cases 3, 5, 8, and 9 of Table 7.1, the optimal GSD solution X has a GSD with
R2R−1

1 diagonalizable, then the GSD can be transformed into a full CP representation
of X, and the problems of diverging components do not occur. That is, X is also an
optimal solution of the CP problem. The CP representation of R1 and R2 can be ob-
tained from the eigendecomposition of R2R−1

1 analogous to (2.2). Premultiplying by
Qa and postmultiplying by QT

b then yields the full CP representation for X1 and X2.

7.1. The Jacobi algorithm for the GSD problem of I × J × 2 arrays.
Here, we show how the Jacobi algorithm of De Lathauwer, De Moor, and Vandewalle
[6] for solving the GSD problem (6.2) can be modified to the case of I × J × 2 arrays
and all values of R not larger than I and J . That is, the modified Jacobi algorithm
can be used to solve the more general class of GSD problems (7.3).

Let I = J = R. The Jacobi algorithm of [6] sets out to find (Qa,Qb,R1,R2) such
that QT

a ZkQb, k = 1, 2 are as upper triangular as possible. Their upper triangular
parts are then the estimates of Rk, k = 1, 2. The estimates (Qa,Qb,R1,R2) are
updated by applying Givens rotations to the rows and columns of QT

a ZkQb, k = 1, 2,
as follows. Let Gij be equal to II except for the entries (Gij)ii = (Gij)jj = cosα

and (Gij)ji = −(Gij)ij = sin α, where α is the rotation angle. Let G̃ij be defined
as Gij for a rotation angle β. One sweep of the Jacobi algorithm determines for
each (i, j) with 1 ≤ i < j ≤ I, the optimal rotation angles α and β such that
GijQT

a ZkQbG̃T
ij , k = 1, 2 are as upper triangular as possible. The updated estimates

of (Qa,Qb,R1,R2) are given by QaGT
ij , QbG̃T

ij , and GijRkG̃T
ij , k = 1, 2.

Next, consider the general case where possibly I �= J and R ≤ I, R ≤ J . In
the modified Jacobi algorithm, we have the orthonormal variables Q̃a (I × I) and Q̃b

(J × J). The modified Jacobi algorithm maximizes the sum-of-squares of the upper
triangular parts of the first R rows and columns of R̃k = Q̃T

a ZkQ̃b, k = 1, 2. These
R × R upper triangular parts are then the estimates of Rk, k = 1, 2. The estimates
of Qa and Qb are the first R columns of Q̃a and Q̃b, respectively. Each sweep of the
algorithm consists of two phases. In the first phase, the Givens rotations Gij (I × I)
and G̃ij (J × J) are determined as above for each (i, j) with 1 ≤ i < j ≤ R. Within
the first R rows and columns of R̃k, k = 1, 2, these rotations make the structure as
upper triangular as possible.

In the second phase, rotations Gi, 1 ≤ i ≤ R are determined such that they
transfer as much energy as possible from rows R + 1, . . . , I of R̃k to row i of (the
upper triangular part of) R̃k, k = 1, 2. Independently, rotations G̃j , 1 ≤ i ≤ R
are determined such that they transfer as much energy as possible from columns
R + 1, . . . , J of R̃k to column j of (the upper triangular part of) R̃k, k = 1, 2. We
first show how to obtain Gi. Let

R̂i =

⎡⎢⎢⎢⎣
(R̃1)ii . . . (R̃1)iR (R̃2)ii . . . (R̃2)iR

(R̃1)R+1,i . . . (R̃1)R+1,R (R̃2)R+1,i . . . (R̃2)R+1,R

...
...

...
...

(R̃1)I,i . . . (R̃1)I,R (R̃2)I,i . . . (R̃2)I,R

⎤⎥⎥⎥⎦ = SDVT

(7.4)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1634 ALWIN STEGEMAN AND LIEVEN DE LATHAUWER

be the singular value decomposition (SVD) of R̂i. Then ST R̂i is an orthogonal
rotation of the rows of R̂i such that its first row has maximum sum-of-squares. The
square root of this is equal to the dominant singular value of R̂i. From ST , the
rotation Gi can be obtained.

The computation of G̃j is analogous. Let

R̄j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(R̃1)1j (R̃1)1,R+1 . . . (R̃1)1,J

...
...

...
(R̃1)jj (R̃1)j,R+1 . . . (R̃1)j,J

(R̃2)1j (R̃2)1,R+1 . . . (R̃2)1,J

...
...

...
(R̃2)jj (R̃2)j,R+1 . . . (R̃2)j,J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= SDVT(7.5)

be the SVD of R̄j. Then R̄jV is an orthogonal rotation of the columns of R̄j such
that its first column has maximum sum-of-squares. The square root of this is equal
to the dominant singular value of R̄j . The rotation G̃j can be obtained from V.

Below, we present the steps of one sweep of the modified Jacobi algorithm.

One sweep of the Modified Jacobi Algorithm for the GSD problem.

Input: I × J × 2 array Z with I × J slices Zk, k = 1, 2.
Previous GSD update: Q̃a (I × I) and Q̃b (J × J) orthonormal, and R̃k (I × J),
k = 1, 2.
Output: New GSD update Q̃a, Q̃b, and R̃k, k = 1, 2.

1. (Do for 1 ≤ i < j ≤ R.) Let Gij be equal to II except for the entries
(Gij)ii = (Gij)jj = cosα and (Gij)ji = −(Gij)ij = sin α, where α is the
rotation angle. Let G̃ij be equal to IJ and analogous to Gij for a rotation
angle β. Using the Jacobi algorithm of [6], determine α and β such that
the sum-of-squares of the upper triangular part of the first R rows and
columns of GijR̃kGT

ij , k = 1, 2 are maximal.
Update Q̃a → Q̃aGT

ij , Q̃b → Q̃bG̃T
ij , and R̃k → GijR̃kG̃T

ij , k = 1, 2.
2. (Do for 1 ≤ i ≤ R.) Compute the SVD (7.4) and let smn denote the

elements of S. Let Gi be equal to II except (Gi)ii = s11, (Gi)i,R+m =
s1,m+1 for m = 1, . . . , I−R, (Gi)R+m,i = sm+1,1 for m = 1, . . . , I −R, and
(Gi)mn = sm−R+1,n−R+1 for R + 1 ≤ m, n ≤ I.
Update Q̃a → Q̃aGT

i and R̃k → GiR̃k, k = 1, 2.
3. (Do for 1 ≤ j ≤ R.) Compute the SVD (7.5) and let vmn denote the

elements of VT . Let Gj be equal to IJ except (Gj)jj = v11, (Gj)j,R+m =
v1,m+1 for m = 1, . . . , I − R, (Gj)R+m,j = vm+1,1 for m = 1, . . . , I − R,
and (Gj)mn = vm−R+1,n−R+1 for R + 1 ≤ m, n ≤ I.
Update Q̃b → Q̃bGT

j and R̃k → R̃kG̃T
j , k = 1, 2.

8. Numerical experiments. Here, we illustrate the GSD method to avoid di-
verging CP components for generic I×J×2 arrays. For each of the cases in Table 7.1,
we randomly generate 50 arrays Z of a chosen size. For each such Z, we use the (mod-
ified) Jacobi algorithm of De Lathauwer, De Moor, and Vandewall [6] to compute the
optimal solution X of the GSD problem (7.3), in terms of its full GSD representation
(Qa,Qb,R1,R2). The stopping criterion of the (modified) Jacobi algorithm is set to
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Table 8.1

Types of optimal solutions encountered when solving the GSD problem (7.3) for randomly gen-
erated arrays Z in the cases of Table 7.1. For each case, the value of (I, J, R), the number of runs,
and the average time to compute the GSD solution and the Jordan form of R2R

−1
1 (on a Pentium

4 PC) are given. In all runs, the matrix R2R
−1
1 has distinct eigenvalues λ1, . . . , λp, μ1, . . . , μr,

where λj has algebraic multiplicity 1 and μi has algebraic multiplicity larger than 1 and geometric
multiplicity 1. For each case, the number of solutions with the same (p, r) value are given.

Case, (I, J, R), runs, time (p, r) Freq. (p, r) Freq. (p, r) Freq. (p, r) Freq.

Case 2 (0,2) 4 (1,2) 7 (2,3) 2 (4,1) 3
(I, J,R) = (10, 10, 10) (0,3) 2 (1,3) 2 (3,1) 5 (4,2) 1

48 runs, 58 sec. (0,4) 2 (2,1) 2 (3,2) 4 (5,2) 1
(1,1) 3 (2,2) 9 (3,3) 1

Case 3 (0,2) 5 (2,1) 1 (3,2) 5 (6,1) 1
(I, J, R) = (10, 10, 8) (1,1) 8 (2,2) 5 (4,1) 5

49 runs, 12 sec. (1,2) 3 (2,3) 1 (4,2) 3
(1,3) 3 (3,1) 7 (5,1) 2

Case 5 (1,1) 2 (2,2) 2 (3,2) 6 (6,1) 15
(I, J, R) = (10, 10, 8) (1,3) 1 (2,3) 1 (4,2) 4 (8,0) 12

50 runs, 32 sec. (2,1) 1 (3,1) 2 (5,1) 4

Case 8 (0,2) 4 (1,2) 10 (3,1) 4 (4,2) 3
(I, J,R) = (10, 8, 8) (0,3) 2 (2,1) 1 (3,2) 2 (5,1) 2

50 runs, 10 sec. (1,1) 3 (2,2) 15 (4,1) 4

Case 9 (0,2) 4 (1,2) 7 (2,2) 4 (4,1) 9
(I, J,R) = (10, 8, 6) (1,1) 4 (2,1) 5 (3,1) 10 (6,0) 6

49 runs, 3 sec.

1e-9. Next, the Jordan normal form of R2R−1
1 is computed, which we denote as J =

diag(λ1, . . . , λp,Jm1(μ1), . . . ,Jmr(μr)), where Jmj (μj) denotes an mj × mj Jordan
block, with mj ≥ 2. Numerically, we treat two eigenvalues μ1 and μ2 as identical
if |μ1 − μ2| < 0.01. The multiple eigenvalue μ is then estimated as the mean of all
“identical” eigenvalues. The geometric multiplicity of an eigenvalue μ is determined
as the number of singular values sj of (R2R−1

1 − μ II) that satisfy |sj | < 0.0001.
In the (modified) Jacobi algorithm, we use the following initial values for (Qa,Qb,

R1,R2). In Case 2 in Table 7.1, these are obtained from the “generalized real Schur
decomposition” (GRSD) of Z1 and Z2, which is computed by means of the QZ-
method; see Golub and Van Loan [12]. In the other cases, the slices are first trans-
formed to UT

RZkVR, k = 1, 2, where UR contains the R dominant left singular vectors
of [Z1|Z2] and VR contains the R dominant right singular vectors of

[
Z1
Z2

]
. The initial

values are then obtained from UR, VR and the GRSD of UT
RZkVR, k = 1, 2.

Table 8.1 summarizes the results of computing the optimal solutions X of the
GSD problem (7.3) and the Jordan forms of R2R−1

1 . As can be seen, a wide variety
of values (p, r) is encountered among the optimal solutions X. In a few of the 50 runs
per case, some identical eigenvalues were not recognized. These runs do not appear
in Table 8.1. In all runs in Table 8.1, the estimated eigenvalues λ1, . . . , λp, μ1, . . . , μr

are distinct. Hence, each μi has algebraic multiplicity larger than 1 and geometric
multiplicity 1. As observed in Remark 3.2, this is probably due to the fact that the
set of these arrays lies dense on the boundary of the set P(I,J,R). For the solutions
with r ≥ 1, diverging CP components occur, and the GSD of the solution cannot be
fully transformed into a CP solution. The solutions with r = 0 can be transformed
into a nondiverging CP solution, i.e., diverging CP components do not occur.
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As can be seen from Table 8.1, all runs in Cases 2, 3, and 8 have a solution with
r ≥ 1. For Case 2, this is in line with the conjecture of Stegeman [40] in Table 7.1.
For Cases 3 and 8, this does not seem to support the conjectures of Stegeman [40]
in Table 7.1, which state that diverging CP components occur on a set of positive
volume (and not almost everywhere). However, trying different values of R in Case 3
yields 15 solutions with r = 0 (out of 50) for R = 4 and 3 solutions with r = 0 (out of
50) for R = 6. Hence, it seems that nondiverging CP solutions occur less frequently
as R is increased. The same holds for Case 8, where we get 13 solutions with r = 0
(out of 50) for R = J = 4 and 5 solutions with r = 0 (out of 50) for R = J = 6. For
Cases 5 and 9, there are both solutions with r = 0 as well as solutions with r ≥ 1,
which is in line with the conjectures of Stegeman [40] in Table 7.1.

Also listed in Table 8.1 are the average computational times (on a Pentium 4
PC) for the (modified) Jacobi algorithm to terminate and for the computation of the
Jordan form of R1R−1

1 . For Case 2, this is 58 seconds. For comparison, we tried
finding an approximate solution to the CP problem (3.2) for random Z as in Case
2, by using the multilinear engine of Paatero [32]. For a convergence criterion of
1e-15 over 1000 consecutive iterations, the algorithm terminated after 40 minutes.
However, for the obtained approximate solution X, the eigenvalues of X2X−1

1 are all
clearly distinct. On the other hand, running the Jacobi algorithm on the same Z
yields a solution with two groups of identical eigenvalues within 1 minute. Hence, to
obtain an equally accurate estimate of the solution X using a CP algorithm requires a
very small stopping criterion and takes prohibitively long. This shows the spectacular
improvement in efficiency when using the Jacobi GSD algorithm instead.

9. Discussion. We have proposed, analyzed, and demonstrated a method to
avoid diverging components when trying to fit the CP model for generic I × J × 2
arrays and R ≤ I, J components. Instead of fitting the CP model, we fit the GSD
model. The problems of diverging CP components are likely to occur because the
CP model has no optimal solution in these cases. We showed that the GSD model
always has an optimal solution. Moreover, the optimal GSD solution is the limit
point of the sequence of CP updates, whether it features diverging components or
not. Hereby we assume that the GSD model has a unique optimal solution (up
to trivial indeterminacies) which is always satisfied in our numerical experiments.
Also, we showed that the optimal GSD solution can be represented as the sum of
the nondiverging CP components and a sparse Tucker3 part (CP+Jordan form) or
as the sum of the nondiverging CP components and a smaller GSD part (CP+GSD
form). The CP+Jordan form is essentially unique and sparse. Although it is not an
outer-product decomposition, it may still be interpretable to the researcher. From
the CP+Jordan representation, we can obtain a rank-revealing decomposition of the
optimal GSD solution using the method of Ja’ Ja’ [21]. However, this decomposition
is not essentially unique. The CP+GSD representation is numerically more stable
and suitable if only the nondiverging CP components are of interest.

The GSD method not only yields an accurate solution, it is also much faster
than trying to fit CP in the case of diverging components. Hence, to compute the CP
solution for generic I×J×2 arrays, it is advisable to compute the GSD solution instead
and then transfer the nondiverging part of the solution into CP components. We may
conclude that from a computational as well as a practical point of view, our method
is a considerable improvement with respect to facing diverging CP components.

Our analysis is confined to arrays in the sets RI in (2.1) and P(I,J,R) in (6.1).
For a given array size, these sets are dense in the space of all arrays. The results
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of our numerical experiments and those in Stegeman [38, 40], together with the fact
that we consider generic arrays Z to be approximated, lead us to conclude that this
confinement is justified in practice. However, from a theoretical point of view, this
leaves open the question whether the complement set of RI or P(I,J,R) can contain
all best rank-R approximations of a generic I × J × 2 array.

Stegeman [39] has mathematically analyzed diverging CP components occurring
for several generic I × J × 3 arrays. Whether the SGSD method can also be used for
arrays with three slices is currently under investigation.
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COMPUTING THE FRÉCHET DERIVATIVE OF THE MATRIX
EXPONENTIAL, WITH AN APPLICATION TO CONDITION

NUMBER ESTIMATION∗

AWAD H. AL-MOHY† AND NICHOLAS J. HIGHAM†

Abstract. The matrix exponential is a much-studied matrix function having many applica-
tions. The Fréchet derivative of the matrix exponential describes the first-order sensitivity of eA

to perturbations in A and its norm determines a condition number for eA. Among the numerous
methods for computing eA the scaling and squaring method is the most widely used. We show that
the implementation of the method in [N. J. Higham, The scaling and squaring method for the matrix
exponential revisited, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 1179–1193] can be extended to
compute both eA and the Fréchet derivative at A in the direction E, denoted by L(A,E), at a cost
about three times that for computing eA alone. The algorithm is derived from the scaling and squar-
ing method by differentiating the Padé approximants and the squaring recurrence, reusing quantities
computed during the evaluation of the Padé approximant, and intertwining the recurrences in the
squaring phase. To guide the choice of algorithmic parameters, an extension of the existing backward
error analysis for the scaling and squaring method is developed which shows that, modulo rounding
errors, the approximations obtained are eA+ΔA and L(A + ΔA,E + ΔE), with the same ΔA in
both cases, and with computable bounds on ‖ΔA‖ and ‖ΔE‖. The algorithm for L(A,E) is used
to develop an algorithm that computes eA together with an estimate of its condition number. In
addition to results specific to the exponential, we develop some results and techniques for arbitrary
functions. We show how a matrix iteration for f(A) yields an iteration for the Fréchet derivative
and show how to efficiently compute the Fréchet derivative of a power series. We also show that a
matrix polynomial and its Fréchet derivative can be evaluated at a cost at most three times that of
computing the polynomial itself and give a general framework for evaluating a matrix function and
its Fréchet derivative via Padé approximation.

Key words. matrix function, Fréchet derivative, matrix polynomial, matrix iteration, ma-
trix exponential, condition number estimation, scaling and squaring method, Padé approximation,
backward error analysis
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1. Introduction. The sensitivity of a matrix function f : C
n×n → C

n×n to
small perturbations is governed by the Fréchet derivative. The Fréchet derivative at
a point A ∈ C

n×n is a linear mapping

C
n×n L(A)

−→ C
n×n

E �−→ L(A, E)

such that for all E ∈ C
n×n,

f(A + E) − f(A) − L(A, E) = o(‖E‖),(1.1)

and it therefore describes the first-order effect on f of perturbations in A. If we need
to show the dependence of L on f we will write Lf (A, E).
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It is desirable to be able to evaluate efficiently both f(A) and the Fréchet deriva-
tive in order to obtain sensitivity information or to apply an optimization algorithm
requiring derivatives. However, while the numerical computation of matrix functions
is quite well developed, fewer methods are available for the Fréchet derivative, and
the existing methods for L(A, E) usually do not fully exploit the fact that f(A) is
being computed [6].

The norm of the Fréchet derivative yields a condition number [6, Theorem 3.1]:

cond(f, A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A + E) − f(A)‖
ε‖f(A)‖ =

‖L(A)‖‖A‖
‖f(A)‖ ,(1.2)

where

‖L(A)‖ := max
Z �=0

‖L(A, Z)‖
‖Z‖(1.3)

and the norm is any matrix norm. When evaluating f(A) we would like to be able
to efficiently estimate cond(f, A); (1.3) shows that to do so we need to approximately
maximize the norm of L(A, Z) over all Z of unit norm.

The main aim of this work is to develop an efficient algorithm for simultaneously
computing eA and L(A, E) and to use it to construct an algorithm for computing eA

along with an estimate of cond(exp, A). The need for such algorithms is demonstrated
by a recent paper in econometrics [8] in which the authors state that “One problem
we did discover, that has not been accentuated in the literature, is that altering the
stability properties of the coefficient matrix through a change in just one parameter
can dramatically alter the theoretical and computed matrix exponential.” If A = A(t)
depends smoothly on a vector t ∈ C

p of parameters then the change in eA induced by
small changes θh in t (θ ∈ C, h ∈ C

p) is approximated by θL(A,
∑p

i=1 hi ∂A(t)/∂ti),
since

f(A(t + θh)) = f

(
A + θ

p∑
i=1

∂A(t)
∂ti

hi + O(θ2)

)

= f(A) + L

(
A, θ

p∑
i=1

∂A(t)
∂ti

hi + O(θ2)

)
+ o(θ)

= f(A) + θL

(
A,

p∑
i=1

∂A(t)
∂ti

hi

)
+ o(θ).

Thus a single Fréchet derivative evaluation with h = ej (the jth unit vector) provides
the information that the authors of [8] needed about the effect of changing a single
parameter tj .

We begin in section 2 by recalling a useful connection between the Fréchet deriva-
tive of a function and the same function evaluated at a certain block triangular matrix.
We illustrate how this relation can be used to derive new iterations for computing
L(A, E) given an iteration for f(A). Then in section 3 we show how to efficiently
evaluate the Fréchet derivative when f has a power series expansion, by exploiting a
convenient recurrence for the Fréchet derivative of a monomial. In section 4 we show
that under reasonable assumptions a matrix polynomial and its Fréchet derivative
can both be evaluated at a cost at most three times that of evaluating the polyno-
mial itself. Then in section 5 we show how to evaluate the Fréchet derivative of a
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rational function and give a framework for evaluating f and its Fréchet derivative via
Padé approximants. In section 6 we apply this framework to the scaling and squaring
algorithm for eA [14], [17], and in particular to the implementation of Higham [5],
which is the basis of MATLAB’s expm function. We extend Higham’s analysis to
show that, modulo rounding errors, the approximations obtained from the new al-
gorithm are eA+ΔA and L(A + ΔA, E + ΔE), with the same ΔA in both cases—a
genuine backward error result. The computable bounds on ‖ΔA‖ and ‖ΔE‖ enable
us to choose the algorithmic parameters in an optimal fashion. The new algorithm
is shown to have significant advantages over existing ones. In section 7 we combine
the new algorithm for L(A, E) with an existing matrix 1-norm estimator to develop
an algorithm for computing both eA and an estimate of its condition number, and
we show experimentally that the condition estimate can provide a useful guide to the
accuracy of the scaling and squaring algorithm. Some concluding remarks are given
in section 8.

2. Fréchet derivative via function of block triangular matrix. The fol-
lowing result shows that the Fréchet derivative appears as the (1, 2) block when f is
evaluated at a certain block triangular matrix. Let D denote an open subset of R

or C.
Theorem 2.1. Let f be 2n−1 times continuously differentiable on D and let the

spectrum of X lie in D. Then

f

([
X E
0 X

])
=

[
f(X) L(X, E)

0 f(X)

]
.(2.1)

Proof. See Mathias [13, Theorem 2.1] or Higham [6, section 3.1]. The result is
also proved by Najfeld and Havel [15, Theorem 4.11] under the assumption that f is
analytic.

The significance of Theorem 2.1 is that given a smooth enough f and any method
for computing f(A), we can compute the Fréchet derivative by applying the method
to the 2n×2n matrix in (2.1). The doubling in size of the problem is unwelcome, but
if we exploit the block structure the computational cost can be reduced. Moreover,
the theorem can provide a simple means to derive, and prove the convergence of,
iterations for computing the Fréchet derivative.

To illustrate the use of the theorem we consider the principal square root function,
f(A) = A1/2, which for A ∈ C

n×n with no eigenvalues on R
− (the closed negative

real axis) is the unique square root X of A whose spectrum lies in the open right
half-plane. The Denman–Beavers iteration

Xk+1 =
1
2
(
Xk + Y −1

k

)
, X0 = A,

Yk+1 =
1
2
(
Yk + X−1

k

)
, Y0 = I

(2.2)

is a Newton variant that converges quadratically with [6, section 6.3]

lim
k→∞

Xk = A1/2, lim
k→∞

Yk = A−1/2.(2.3)

It is easy to show that if we apply the iteration to Ã =
[

A
0

E
A

]
then iterates X̃k and

Ỹk are produced for which

X̃k =
[

Xk Fk

0 Xk

]
, Ỹk =

[
Yk Gk

0 Yk

]
,
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where

Fk+1 =
1
2
(
Fk − Y −1

k GkY −1
k

)
, F0 = E,

Gk+1 =
1
2
(
Gk − X−1

k FkX−1
k

)
, G0 = 0.

(2.4)

By applying (2.3) and Theorem 2.1 to Ã we conclude that

lim
k→∞

Fk = Lx1/2(A, E), lim
k→∞

Gk = Lx−1/2(A, E).(2.5)

Moreover, scaling strategies for accelerating the convergence of (2.2) [6, section 6.5]
yield corresponding strategies for (2.4).

The next result shows quite generally that differentiating a fixed point iteration
for a matrix function yields a fixed point iteration for the Fréchet derivative.

Theorem 2.2. Let f and g be n − 1 times continuously differentiable on D.
Suppose that for any matrix X ∈ C

n×n whose spectrum lies in D, g has the fixed
point f(X), that is, f(X) = g(f(X)). Then for any such X, Lg at f(X) has the fixed
point Lf (X, E) for all E.

Proof. Applying the chain rule to f(X) ≡ g(f(X)) gives the relation Lf(X, E) =
Lg(f(X), Lf(X, E)), which is the result.

The iteration (2.4) for computing the Fréchet derivative of the square root function
is new, and other new iterations for the Fréchet derivative of the matrix square root
and related functions can be derived, and their convergence proved, in the same way,
or directly by using Theorem 2.2. In the case of the Newton iteration for the matrix
sign function this approach yields an iteration for the Fréchet derivative proposed by
Kenney and Laub [10, Theorem 3.3] (see also [6, Theorem 5.7]) and derived using
Theorem 2.1 by Mathias [13].

In the rest of this paper we consider the situation in which the underlying method
for computing f(A) is based on direct approximation rather than iteration, and we
develop techniques that are more sophisticated than a direct application of Theo-
rem 2.1.

3. Fréchet derivative via power series. When f has a power series expansion
the Fréchet derivative can be expressed as a related series expansion.

Theorem 3.1. Suppose f has the power series expansion f(x) =
∑∞

k=0 akxk with
radius of convergence r. Then for A, E ∈ C

n×n with ‖A‖ < r, the Fréchet derivative

Lf (A, E) =
∞∑

k=1

ak

k∑
j=1

Aj−1EAk−j .(3.1)

Proof. See [6, Problem 3.6].
The next theorem gives a recurrence that can be used to evaluate (3.1).
Theorem 3.2. Under the assumptions of Theorem 3.1,

Lf(A, E) =
∞∑

k=1

akMk,(3.2)

where Mk = Lxk(A, E) satisfies the recurrence

Mk = M�1A
�2 + A�1M�2 , M1 = E,(3.3)
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with k = �1 + �2 and �1 and �2 positive integers. In particular,

Mk = Mk−1A + Ak−1M1, M1 = E.(3.4)

In addition,

‖f(A)‖ ≤ f̃(‖A‖), ‖Lf(A)‖ ≤ f̃ ′(‖A‖),(3.5)

where f̃(x) =
∑∞

k=0 |ak|xk.
Proof. Since the power series can be differentiated term-by-term within its radius

of convergence, we have

Lf(A, E) =
∞∑

k=1

akMk, Mk = Lxk(A, E).

One way to develop the recurrence (3.3) is by applying Theorem 2.1 to the monomial
xk = x�1+�2 . A more direct approach is to use the product rule for Fréchet derivatives
[6, Theorem 3.3] to obtain

Mk = Lxk(A, E) = Lx�1 (A, E)A�2 + A�1Lx�2 (A, E) = M�1A
�2 + A�1M�2 .

Taking �1 = k − 1 and �2 = 1 gives (3.4). It is straightforward to see that ‖f(A)‖ ≤
f̃(‖A‖). Taking norms in (3.1) gives

‖Lf(A, E)‖ ≤ ‖E‖
∞∑

k=1

k|ak|‖A‖k−1 = ‖E‖f̃ ′(‖A‖),

and maximizing over all nonzero E gives ‖Lf(A)‖ ≤ f̃ ′(‖A‖).
The recurrence (3.3) will prove very useful in the rest of the paper.

4. Cost analysis for polynomials. Practical methods for approximating f(A)
may truncate a Taylor series to a polynomial or use a rational approximation. Both
cases lead to the need to evaluate both a polynomial and its Fréchet derivative at the
same argument. The question arises “what is the extra cost of computing the Fréchet
derivative?” Theorem 3.2 does not necessarily answer this question because it only
describes one family of recurrences for evaluating the Fréchet derivative. Moreover,
the most efficient polynomial evaluation schemes are based on algebraic rearrange-
ments that avoid explicitly forming all the matrix powers. Does an efficient evaluation
scheme for a polynomial p also yield an efficient evaluation scheme for Lp?

Consider schemes for evaluating pm(X), where pm is a polynomial of degree m
and X ∈ C

n×n, that consist of s steps of the form

q
(k)
1 (X) = q

(k−1)
2 (X)q(k−1)

3 (X) + q
(k−1)
4 (X), k = 1: s,(4.1a)

deg q
(k)
i < m, i = 1: 4, k < s, deg q

(k)
i ≥ 1, i = 2: 3,(4.1b)

where the qi are polynomials, q
(k)
i , i = 2: 4, is a linear combination of q

(1)
1 , . . . , q

(k−1)
1 ,

and pm(X) = q
(s)
1 (X). This class contains all schemes of practical interest, which

include Horner’s method, evaluation by explicit powers, and the Paterson and Stock-
meyer method [16] (all of which are described in [6, section 4.2]), as well as more ad
hoc schemes such as those described below. We measure the cost of the scheme by the
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number of matrix multiplications it requires. The next result shows that the overhead
of evaluating the Fréchet derivative is at most twice the original cost.

Theorem 4.1. Let p be a polynomial and let πp denote the cost of evaluating
p(X) by any scheme of the form (4.1). Let σp denote the extra cost required to compute
Lp(X, E) by using the scheme obtained by differentiating the scheme for p(X). Then
σp ≤ 2πp.

Proof. The proof is by induction on the degree m of the polynomial. For m = 1,
p1(x) = b0+b1x and the only possible scheme is the obvious evaluation p1(X) = b0I+
b1X with π1 = 0. The corresponding Fréchet derivative scheme is Lp1(X, E) = b1E
and σ1 = 0, so the result is trivially true for m = 1. Suppose the result is true for
all polynomials of degree at most m − 1 and consider a polynomial pm of degree m.
By (4.1) the last stage of the scheme can be written pm(X) = q

(s−1)
2 (X)q(s−1)

3 (X) +
q
(s−1)
4 (X), where the polynomials qi ≡ q

(s−1)
i , i = 2: 4 are all of degree less than m.

Note that πpm = πq2 + πq3 + πq4 + 1 and by the inductive hypothesis, σqi ≤ 2πqi ,
i = 2: 4. Now Lpm(X, E) = Lq2(X, E)q3(X) + q2(X)Lq3(X, E) + Lq4(X, E) by the
product rule and so

σpm ≤ σq2 + σq3 + σq4 + 2 ≤ 2(πq2 + πq3 + πq4 + 1) = 2πpm ,

as required. This proof tacitly assumes that there are no dependencies between the
q
(k)
i that reduce the cost of evaluating p, for example, q

(s−1)
2 = q

(s−1)
3 . However, any

dependencies equally benefit the Lp evaluation and the result remains valid.
To illustrate the theorem, consider the polynomial p(X) = I + X + X2 + X3 +

X4 + X5. Rewriting it as

p(X) = I + X
(
I + X2 + X4

)
+ X2 + X4,

we see that p(X) can be evaluated in just three multiplications via X2 = X2, X4 = X2
2 ,

and p(X) = I + X(I + X2 + X4) + X2 + X4. Differentiating gives

Lp(X, E) = Lx(1+x2+x4)(X, E) + M2 + M4

= E(I + X2 + X4) + X(M2 + M4) + M2 + M4,

where M2 = XE + EX and M4 = M2X2 + X2M2 by (3.3). Hence the Fréchet
derivative can be evaluated with six additional multiplications, and the total cost is
nine multiplications.

5. Computational framework. For a number of important functions f , such
as the exponential, the logarithm, and the sine and cosine, successful algorithms for
f(A) have been built on the use of Padé approximants: a Padé approximant rm of f
of suitable degree m is evaluated at a transformed version of A and the transformation
is then undone. Here, rm(x) = pm(x)/qm(x) with pm and qm polynomials of degree
m such that f(x) − rm(x) = O(x2m+1) [2]. It is natural to make use of this Padé
approximant by approximating Lf by the Fréchet derivative Lrm of rm. The next
result shows how to evaluate Lrm .

Lemma 5.1. The Fréchet derivative Lrm of the rational function rm(x) = pm(x)/
qm(x) satisfies

qm(A)Lrm(A, E) = Lpm(A, E) − Lqm(A, E)rm(A).(5.1)
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Proof. Applying the Fréchet derivative product rule to qmrm = pm gives

Lpm(A, E) = Lqmrm(A, E) = Lqm(A, E)rm(A) + qm(A)Lrm(A, E),

which rearranges to the result.
We can now state a general framework for simultaneously approximating f(A)

and Lf(A, E) in a way that reuses matrix multiplications from the approximation of
f in the approximation of Lf .

1. Choose a suitable Padé degree m and transformation function g and set A ←
g(A).

2. Devise efficient schemes for evaluating pm(A) and qm(A).
3. Fréchet differentiate the schemes in the previous step to obtain schemes for

evaluating Lpm(A, E) and Lqm(A, E). Use the recurrences (3.3) and (3.4) as
necessary.

4. Solve qm(A)rm(A) = pm(A) for rm(A).
5. Solve qm(A)Lrm(A, E) = Lpm(A, E) − Lqm(A, E)rm(A) for Lrm(A, E).
6. Apply the appropriate transformations to rm(A) and Lrm(A, E) that undo

the effect of the initial transformation on A.
In view of Theorem 4.1, the cost of this procedure is at most (3πm + 1)M + 2D,

where πmM is the cost of evaluating both pm(A) and qm(A), and M and D denote a
matrix multiplication and the solution of a matrix equation, respectively.

If we are adding the capability to approximate the Fréchet derivative to an existing
Padé-based method for f(A) then our attention will focus on step 1, where we must
reconsider the choice of m and transformation to ensure that both f and Lf are
approximated to sufficient accuracy.

In the next section we apply this framework to the matrix exponential.

6. Scaling and squaring algorithm for the exponential and its Fréchet
derivative. The scaling and squaring method for computing the exponential of A ∈
C

n×n is based on the relation

eA =
(
e2−sA

)2s

.(6.1)

For suitably chosen nonnegative integers s and m, this method approximates e2−sA

by rm(2−sA), where rm is the [m/m] Padé approximant to ex, and it takes eA ≈
(rm(2−sA))2

s

. A choice of the parameters s and m with a certain optimality property
is given in the following algorithm from [5], [6, Algorithm 10.20], which forms the
basis of MATLAB’s expm function.

Algorithm 6.1 (scaling and squaring algorithm for exponential). This algorithm
evaluates the matrix exponential X = eA of A ∈ C

n×n using the scaling and squaring
method. It uses the parameters θm given in Table 6.1. The algorithm is intended for
IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ θm, evaluate X = rm(A) using (6.11) and (6.14), quit, end
3 end
4 A ← 2−sA with s = �log2(‖A‖1/θ13)�
5 Evaluate r13(A) using (6.14) and the preceding equations.
6 X = r13(A)2

s

by repeated squaring.
Cost: (πm + s)M + D, where m is the degree of Padé approximant used and πm

(tabulated in [5, Table 2.2]) is the cost of evaluating pm and qm.
Our aim is now to adapt this algorithm to compute Lexp(A, E) along with eA.
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Table 6.1

Maximal values �m of ‖2−sA‖ such that the backward error bound (6.10) does not exceed u =
2−53, along with maximal values θm such that a bound for ‖ΔA‖/‖A‖ does not exceed u.

m 1 2 3 4 5 6 7 8 9 10

θm 3.65e-8 5.32e-4 1.50e-2 8.54e-2 2.54e-1 5.41e-1 9.50e-1 1.47e0 2.10e0 2.81e0
�m 2.11e-8 3.56e-4 1.08e-2 6.49e-2 2.00e-1 4.37e-1 7.83e-1 1.23e0 1.78e0 2.42e0

m 11 12 13 14 15 16 17 18 19 20

θm 3.60e0 4.46e0 5.37e0 6.33e0 7.34e0 8.37e0 9.44e0 1.05e1 1.17e1 1.28e1
�m 3.13e0 3.90e0 4.74e0 5.63e0 6.56e0 7.52e0 8.53e0 9.56e0 1.06e1 1.17e1

A recurrence for the Fréchet derivative of the exponential can be obtained by
differentiating (6.1). Note first that differentiating the identity eA = (eA/2)2 using
the chain rule [6, Theorem 3.4] along with Lx2(A, E) = AE + EA gives the relation

Lexp(A, E) = Lx2

(
eA/2, Lexp(A/2, E/2)

)
(6.2)

= eA/2Lexp(A/2, E/2) + Lexp(A/2, E/2)eA/2.

Repeated use of this relation leads to the recurrence

L̃s = Lexp(2−sA, 2−sE),

L̃i−1 = e2−iAL̃i + L̃i e
2−iA, i = s:−1: 1(6.3)

for L̃0 = Lexp(A, E). Our numerical method replaces Lexp by Lrm and e2−iA by
rm(2−sA)2

s−i

, producing approximations Li to L̃i:

Xs = rm(2−sA),
Ls = Lrm(2−sA, 2−sE),

Li−1 = Xi Li + Li Xi

Xi−1 = X2
i

}
i = s:−1: 1.(6.4)

The key question is what can be said about the accuracy or stability of L0 relative
to that of the approximation X0 = (rm(2−sA))2

s

to eA. To answer this question we
recall the key part of the error analysis from [5] (see also [6, section 10.3]), which
is summarized in the following result. We denote by log the principal logarithm of
A ∈ C

n×n, which is defined for A with no eigenvalues on R
− and is the unique

logarithm whose eigenvalues all have imaginary parts in (−π, π).
Theorem 6.2. Suppose that

‖e−Arm(A) − I‖ < 1, ‖A‖ < min{ |t| : qm(t) = 0 }(6.5)

for some consistent matrix norm, so that gm(A) = log(e−Arm(A)) is guaranteed to
be defined. Then rm(A) = eA+gm(A) and ‖gm(A)‖ ≤ − log(1 − ‖e−Arm(A) − I‖). In
particular, if (6.5) is satisfied with A ← 2−sA then

rm(2−sA) = e2−sA+gm(2−sA),(6.6)

so that rm(2−sA)2
s

= eA+2sgm(2−sA), where

‖2sgm(2−sA)‖
‖A‖ ≤ − log(1 − ‖e−2−sA rm(2−sA) − I‖)

‖2−sA‖ .(6.7)
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Differentiating (6.6) gives, using the chain rule,

Ls = Lrm(2−sA, 2−sE)
= Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
.(6.8)

From (6.4), (6.6), and (6.8),

Ls−1 = rm(2−sA)Ls + Lsrm(2−sA)

= e2−sA+gm(2−sA) Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
+ Lexp

(
2−sA + gm(2−sA), 2−sE + Lgm(2−sA, 2−sE)

)
e2−sA+gm(2−sA)

= Lexp

(
2−(s−1)A + 2gm(2−sA), 2−(s−1)E + Lgm(2−sA, 2−(s−1)E)

)
,

where we have used (6.2) and the fact that L is linear in its second argument. Con-
tinuing this argument inductively, and using

Xi = X2s−i

s =
(
e2−sA+gm(2−sA)

)2s−i

= e2−iA+2s−igm(2−sA),

we obtain the following result.
Theorem 6.3. If (6.5) is satisfied with A ← 2−sA then L0 from (6.4) satisfies

L0 = Lexp

(
A + 2sgm(2−sA), E + Lgm(2−sA, E)

)
.(6.9)

Theorem 6.3 is a backward error result: it says that L0 is the exact Fréchet
derivative for the exponential of a perturbed matrix in a perturbed direction. We
emphasize that the backward error is with respect to the effect of truncation errors in
the Padé approximation, not to rounding errors, which for the moment are ignored.

Theorems 6.2 and 6.3 show that X0 = eA+ΔA and L0 = Lexp(A + ΔA, E + ΔE)
with the same ΔA = 2sgm(2−sA). We already know from the analysis in [5] how to
choose s and m to keep ΔA acceptably small. It remains to investigate the norm of
ΔE = Lgm(2−sA, E).

Let g̃m(x) =
∑∞

k=2m+1 ckxk be the power series resulting from replacing the
coefficients of the power series expansion of the function gm(x) = log(e−xrm(x)) by
their absolute values. Using the second bound in (3.5) we have

‖ΔE‖
‖E‖ =

‖Lgm(2−sA, E)‖
‖E‖ ≤ ‖Lgm(2−sA)‖ ≤ g̃m

′(θ),(6.10)

where θ = ‖2−sA‖. Define �m = max{ θ : g̃m
′(θ) ≤ u }, where u = 2−53 ≈ 1.1× 10−16

is the unit roundoff for IEEE double precision arithmetic. Using MATLAB’s Symbolic
Math Toolbox we evaluated �m, m = 1: 20, by summing the first 150 terms of the series
symbolically in 250 decimal digit arithmetic. Table 6.1 shows these values along with
analogous values θm calculated in [5], which are the maximal values of θ such that a
bound on ‖ΔA‖/‖A‖ obtained from (6.7) does not exceed u. In every case �m < θm,
which is not surprising given that we are approximating Lrm by an approximation
chosen for computational convenience rather than its approximation properties, but
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the ratio θm/�m is close to 1. For each m, if θ ≤ �m then we are assured that

X0 = eA+ΔA, L0 = Lexp(A + ΔA, E + ΔE), ‖ΔA‖ ≤ u‖A‖, ‖ΔE‖ ≤ u‖E‖;

in other words, perfect backward stability is guaranteed for such θ.
In order to develop an algorithm we now need to look at the cost of evaluating

rm = pm/qm and Lrm , where rm is the [m/m] Padé approximant to ex. Higham [5]
shows how to efficiently evaluate pm(A) and qm(A) by using one type of scheme
for m ≤ 11 and another for m ≥ 12; the number of matrix multiplications, πm,
required to compute pm(A) and qm(A) is given in [5, Table 2.2]. As Theorem 4.1
suggests, the Fréchet derivatives Lpm and Lqm can be calculated at an extra cost of
2πm multiplications by differentiating the schemes for pm and qm. We now give the
details.

We consider the odd degree Padé approximants to the exponential function. Anal-
ogous techniques apply to the even degree approximants (which, as in Algorithm 6.1,
it will turn out we do not need). For m = 3, 5, 7, 9, we decompose pm =

∑m
i=0 bix

i

into its odd and even parts:

pm(x) = x

(m−1)/2∑
k=0

b2k+1x
2k +

(m−1)/2∑
k=0

b2kx2k =: um(x) + vm(x).(6.11)

It follows that qm(x) = −um(x) + vm(x) since qm(x) = pm(−x), and hence

Lpm = Lum + Lvm , Lqm = −Lum + Lvm .

We obtain Lum(A, E) and Lvm(A, E) by differentiating um and vm, respectively:

Lum(A, E) = A

(m−1)/2∑
k=1

b2k+1M2k + E

(m−1)/2∑
k=0

b2k+1A
2k(6.12)

Lvm(A, E) =
(m−1)/2∑

k=1

b2kM2k.(6.13)

The Mk = Lxk(A, E) are computed using (3.3).
For m = 13 it is more efficient to use the odd-even splitting p13 = u13+v13, where

u13(x) = xw(x), w(x) = x6w1(x) + w2(x), v13(x) = x6z1(x) + z2(x),
w1(x) = b13x

6 + b11x
4 + b9x

2, w2(x) = b7x
6 + b5x

4 + b3x
2 + b1,

z1(x) = b12x
6 + b10x

4 + b8x
2, z2(x) = b6x

6 + b4x
4 + b2x

2 + b0.

Differentiating these polynomials yields

Lu13(A, E) = ALw(A, E) + Ew(A),
Lv13(A, E) = A6Lz1(A, E) + M6z1(A) + Lz2(A, E),

where

Lw(A, E) = A6Lw1(A, E) + M6w1(A) + Lw2(A, E),
Lw1(A, E) = b13M6 + b11M4 + b9M2,

Lw2(A, E) = b7M6 + b5M4 + b3M2,

Lz1(A, E) = b12M6 + b10M4 + b8M2,

Lz2(A, E) = b6M6 + b4M4 + b2M2.
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Table 6.2

Number of matrix multiplications, ωm, required to evaluate rm(A) and Lrm(A,E), and measure
of overall cost Cm in (6.17).

m 1 2 3 4 5 6 7 8 9 10

ωm 1 4 7 10 10 13 13 16 16 19
Cm 25.5 12.5 8.5 6.9 5.3 5.2 4.4 4.7 4.2 4.7

m 11 12 13 14 15 16 17 18 19 20

ωm 19 19 19 22 22 22 22 25 25 25
Cm 4.4 4.0 3.8 4.5 4.3 4.1 3.9 4.7 4.6 4.5

Then Lp13 = Lu13 + Lv13 and Lq13 = −Lu13 + Lv13 . We finally solve for rm(A) and
Lrm(A, E) the equations

(−um + vm)(A)rm(A) = (um + vm)(A),(6.14)
(−um + vm)(A)Lrm(A, E) = (Lum + Lvm)(A, E) + (Lum − Lvm)(A, E)rm(A).(6.15)

We are now in a position to choose the degree m and the scaling parameter s.
Table 6.2 reports the total number of matrix multiplications, ωm = 3πm+1, necessary
to evaluate rm and Lrm for a range of m, based on [5, Table 2.2] and the observations
above. In evaluating the overall cost we need to take into account the squaring phase.
If ‖A‖ > �m then in order to use the [m/m] Padé approximant we must scale A by
2−s so that ‖2−sA‖ ≤ �m, that is, we need s = �log2(‖A‖/�m)�. From the recurrence
(6.4), we see that 3s matrix multiplications are added to the cost of evaluating rm

and Lrm . Thus the overall cost in matrix multiplications is

ωm + 3s = 3πm + 1 + 3 max(�log2 ‖A‖ − log2 �m�, 0).(6.16)

To minimize the cost we therefore choose m to minimize the quantity

Cm = πm − log2 �m,(6.17)

where we have dropped the constant terms and factors in (6.16). Table 6.2 reports
the Cm values. The table shows that m = 13 is the optimal choice, just as it is for
the scaling and squaring method for the exponential itself [5]. The ωm values also
show that only m = 1, 2, 3, 5, 7, 9 need be considered if ‖A‖ < �13. As in [5] we rule
out m = 1 and m = 2 on the grounds of possible loss of significant figures in floating
point arithmetic.

It remains to check that the evaluation of Lpm , Lqm , and Lrm is done accurately
in floating point arithmetic. The latter matrix is evaluated from (6.15), which involves
solving a matrix equation with coefficient matrix qm(A), just as in the evaluation of
rm, and the analysis from [5] guarantees that qm(A) is well conditioned for the scaled
A. It can be shown that for our schemes for evaluating Lpm we have

‖Lpm(A, E) − fl(Lpm(A, E))‖1 ≤ γ̃n2p′m(‖A‖1)‖E‖1 ≈ γ̃n2e‖A‖1/2‖E‖1,

where we have used the facts that pm has positive coefficients and pm(x) ≈ ex/2.
Here, γ̃k = cku/(1 − cku), where c denotes a small integer constant. At least in an
absolute sense, this bound is acceptable for ‖A‖ ≤ �13. An entirely analogous bound
can be obtained for Lqm , since qm(x) = pm(−x).

We now state the complete algorithm.
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Algorithm 6.4 (scaling and squaring algorithm for exponential and Fréchet
derivative). Given A, E ∈ C

n×n this algorithm computes R = eA and L = Lexp(A, E)
by a scaling and squaring algorithm. It uses the parameters �m listed in Table 6.1.
The algorithm is intended for IEEE double precision arithmetic.

1 for m = [3 5 7 9]
2 if ‖A‖1 ≤ �m

3 Evaluate U = um(A) and V = vm(A), using (6.11).
4 Evaluate Lu = Lum(A, E) and Lv = Lvm(A, E), using (6.12) and (6.13).
5 s = 0; goto line 26
6 end
7 end
8 s = �log2(‖A‖1/�13)�, the minimal integer such that ‖2−sA‖1 ≤ �13.
9 A ← 2−sA and E ← 2−sE

10 A2 = A2, A4 = A2
2, A6 = A2A4

11 M2 = AE + EA, M4 = A2M2 + M2A2, M6 = A4M2 + M4A2

12 W1 = b13A6 + b11A4 + b9A2

13 W2 = b7A6 + b5A4 + b3A2 + b1I
14 Z1 = b12A6 + b10A4 + b8A2

15 Z2 = b6A6 + b4A4 + b2A2 + b0I
16 W = A6W1 + W2

17 U = AW
18 V = A6Z1 + Z2

19 Lw1 = b13M6 + b11M4 + b9M2

20 Lw2 = b7M6 + b5M4 + b3M2

21 Lz1 = b12M6 + b10M4 + b8M2

22 Lz2 = b6M6 + b4M4 + b2M2

23 Lw = A6Lw1 + M6W1 + Lw2

24 Lu = ALw + EW
25 Lv = A6Lz1 + M6Z1 + Lz2

26 Solve (−U + V )R = U + V for R.
27 Solve (−U + V )L = Lu + Lv + (Lu − Lv)R for L.
28 for k = 1: s
29 L ← RL + LR
30 R ← R2

31 end
Cost: (ωm + 3s)M + 2D, where m is the degree of Padé approximant used and ωm

is given in Table 6.2. The linear systems at lines 26 and 27 have the same coefficient
matrix, so an LU factorization can computed once and reused.

Since Lexp(A, αE) = αLexp(A, E), an algorithm for computing Lexp(A, E) should
not be influenced in any significant way by ‖E‖, and this is the case for Algorithm 6.4.
Najfeld and Havel [15] propose computing Lexp(A, E) using their version of the scal-
ing and squaring method for the exponential in conjunction with (2.1). With this
approach E affects the amount of scaling, and overscaling results when ‖E‖  ‖A‖,
while how to scale E to produce the most accurate result is unclear.

To assess the cost of Algorithm 6.4 we compare it with Algorithm 6.1 and with
a “Kronecker–Sylvester scaling and squaring algorithm” of Kenney and Laub [11],
which is based on a Kronecker sum representation of the Fréchet derivative. In the
form detailed in [6, section 10.6.2], this latter algorithm scales to obtain ‖2−tA‖ ≤ 1,
evaluates the [8/8] Padé approximant to tanh(x)/x at the scaled Kronecker sum, and
then uses the recurrence (6.4) or the variant (6.3) that explicitly computes Xi = e2−iA
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in each step. It requires one matrix exponential, (17 + 3t)M , and the solution of 8
Sylvester equations if (6.4) is used, or s matrix exponentials, (18 + 2t)M , and the
same number of Sylvester equation solutions if (6.3) is used.

To compare the algorithms, assume that the Padé degree m = 13 is used in Algo-
rithms 6.1 and 6.4. Then Algorithm 6.4 costs (19+3s)M +2D and Algorithm 6.1 costs
(6+ s)M +D. Two conclusions can be drawn. First, Algorithm 6.4 costs about three
times as much as just computing eA. Second, since the cost of solving a Sylvester equa-
tion is about 60n3 flops, which is the cost of 30 matrix multiplications, the Kronecker–
Sylvester algorithm is an order of magnitude more expensive than Algorithm 6.4. To
be more specific, consider the case where ‖A‖ = 9, so that s = 1 in Algorithms 6.1
and 6.4 and t = 4, and ignore the cost of computing the matrix exponential in the less
expensive “squaring” variant of the Kronecker–Sylvester algorithm. Then the oper-
ation counts in flops are approximately 48n3 for Algorithm 6.4 (eA and Lexp(A, E)),
16n3 for Algorithm 6.1 (eA only), and 538n3 for the Kronecker–Sylvester algorithm
(Lexp(A, E) only). A further drawback of the Kronecker–Sylvester algorithm is that
it requires complex arithmetic, so the effective flop count is even higher.

Other algorithms for Lexp(A, E) are those of Kenney and Laub [9] and Mathias
[12] (see also [6, section 10.6.1]), which apply quadrature to an integral representa-
tion of the Fréchet derivative. These algorithms are intended only for low accuracy
approximations and do not lend themselves to combination with Algorithm 6.1.

We describe a numerical experiment, modeled on that in [5], that tests the accu-
racy of Algorithm 6.4. We took 74 test matrices, which include some from MATLAB
(in particular, from the gallery function), some from the Matrix Computation Tool-
box [3], and test matrices from the eA literature; most matrices are 10×10, with a few
having smaller dimension. We evaluated the normwise relative errors of the computed
Fréchet derivatives Lexp(A, E), using a different E, generated as randn(n), for each A.
The “exact” Fréchet derivative is obtained using (2.1) with the exponential evaluated
at 100 digit precision via MATLAB’s Symbolic Math Toolbox. Figure 6.1 displays
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Algorithm 6.4
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Fig. 6.1. Normwise relative errors in Fréchet derivatives Lexp(A,E) computed by Algorithm 6.4
and two variants of the Kronecker–Sylvester algorithm for 74 matrices A with a different random
E for each A, along with estimate of cond(Lexp, A)u (solid line).
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Algorithm 6.4
Kronecker−Sylvester (exp)
Kronecker−Sylvester (squaring)

Fig. 6.2. Same data as in Figure 6.1 presented as a performance profile.

the Frobenius norm relative errors for Algorithm 6.4 and for the Kronecker–Sylvester
algorithm in both “squaring” and “exponential” variants. Also shown is a solid line
representing a finite difference approximation to cond(Lexp, A)u, where cond(Lexp, A)
is a condition number defined in terms of the Jacobian of the map L regarded as a
function of A and E (we use (1.2) with a small, random E); this line indicates the
accuracy we would expect from a forward stable algorithm for computing the Fréchet
derivative. Figure 6.1 shows that all the methods are performing in a reasonably
forward stable manner but does not clearly reveal differences between the methods.

Figure 6.2 plots the same data as a performance profile: for a given α the cor-
responding point on each curve indicates the fraction p of problems on which the
method had error at most a factor α times that of the smallest error over all three
methods. The results show clear superiority of Algorithm 6.4 over the Kronecker–
Sylvester algorithm in terms of accuracy, for both variants of the latter algorithm.
Since Algorithm 6.4 is also by far the more efficient, as explained above, it is clearly
the preferred method.

7. Condition number estimation. We now turn our attention to estimating
the condition number of the matrix exponential, which from (1.2) is

κexp(A) =
‖Lexp(A)‖‖A‖

‖eA‖ .

Algorithm 6.4 can compute Lexp(A, E) for any direction E, but to obtain the norm
‖Lexp(A)‖ we need to maximize Lexp(A, E) over all E of unit norm.

For the moment we will consider general f . We can write

vec(L(A, E)) = K(A)vec(E),(7.1)

where K(A) ∈ C
n2×n2

is independent of E and vec(E) ∈ C
n2

denotes the vector
comprising the columns of E strung one on top of the other from first to last. We
refer to K(A) as the Kronecker form of the Fréchet derivative. From (7.1) we have
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FRÉCHET DERIVATIVE OF THE MATRIX EXPONENTIAL 1653

‖L(A, E)‖F = ‖K(A)vec(E)‖2, and on dividing by ‖E‖F = ‖vec(E)‖2 and maximiz-
ing over all E it follows that

‖L(A)‖F = ‖K(A)‖2.(7.2)

Therefore we can compute ‖L(A)‖F exactly by forming K(A), whose columns are
vec(L(A, eie

T
j )) for i, j = 1: n, and then taking the 2-norm. This is a prohibitively

expensive computation, typically requiring O(n5) flops. However, in practice only an
estimate of the correct order of magnitude is needed. For this purpose it is appropriate
to use matrix norm estimation techniques.

The following algorithm is essentially the usual power method applied to K(A),
and exploits the relation (7.2) [6, section 3.4], [9].

Algorithm 7.1 (power method on Fréchet derivative). Given A ∈ C
n×n and

the Fréchet derivative L of a function f , this algorithm uses the power method to
produce an estimate η ≤ ‖L(A)‖F .

1 Choose a nonzero starting matrix Z0 ∈ C
n×n.

2 for k = 0:∞
3 Wk+1 = L(A, Zk)
4 Zk+1 = L�(A, Wk+1)
5 ηk+1 = ‖Zk+1‖F /‖Wk+1‖F

6 if converged, η = ηk+1, quit, end
7 end

Here, � denotes the adjoint, and for the exponential, L�
exp(A, W ) ≡ Lexp(A∗, W ).

We do not specify Algorithm 7.1 in any more detail because we prefer a 1-norm
variant of the power method. For the 1-norm there is no analogue of (7.2), but the
next lemma shows how ‖K(A)‖1 compares with ‖L(A)‖1.

Lemma 7.2 ([6, Lemma 3.18]). For A ∈ C
n×n and any function f ,

‖L(A)‖1

n
≤ ‖K(A)‖1 ≤ n‖L(A)‖1.(7.3)

The following algorithm, which again needs the ability to evaluate L(A, E) and
L�(A, E), is essentially [6, Algorithm 3.22]; it employs a block 1-norm estimation
algorithm of Higham and Tisseur [7], which for an n× n matrix carries out a 1-norm
power iteration whose iterates are n × t matrices, where t is a parameter.

Algorithm 7.3 (block 1-norm estimator for Fréchet derivative). Given a matrix
A ∈ C

n×n this algorithm uses a block 1-norm estimator to produce an estimate η of
‖L(A)‖1. More precisely, η ≤ ‖K(A)‖1, where ‖K(A)‖1 satisfies (7.3).

1 Apply Algorithm 2.4 from Higham and Tisseur [7] with parameter t = 2 to
the Kronecker matrix representation B := K(A) of L(A), noting that
By ≡ vec(L(A, E)) and B∗y ≡ vec(L�(A, E)), where vec(E) = y.

Key properties of Algorithm 7.3 are that it typically requires about 4t Fréchet
derivative evaluations and it almost invariably produces an estimate of ‖K(A)‖1 cor-
rect to within a factor 3. A factor n of uncertainty is added when we take η as an
estimate of ‖L(A)‖1, but just changing the norm from the 1-norm to the ∞-norm can
introduce such a factor, so it is not a serious weakness. Overall, the algorithm is a
very reliable means of estimating ‖L(A)‖1 to within a factor 3n.

Returning to the exponential, our interest is in how to combine Algorithms 6.4
and 7.3 in the most efficient manner. We need to evaluate L(A, E) and L(A∗, E)
for a fixed A and several different E, without knowing all the E at the start of the
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Table 7.1

Matrices that must be computed and stored during the initial eA evaluation, to be reused during
the Fréchet derivative evaluations. “LU fact” stands for LU factorization of −um + vm, and B =
A/2s.

m

3 r3(A) LU fact. W3(A)
5 r5(A) A2 LU fact. W5(A)
7 r7(A) A2 A4 LU fact. W7(A)
9 r9(A) A2 A4 LU fact. W9(A)

13 r13(B)2
i
, i = 0: s− 1 B2 B4 B6 LU fact. W

computation. To do so we will store matrices accrued during the initial computation
of eA and reuse them in the Fréchet derivative evaluations. This of course assumes the
availability of extra storage, but in modern computing environments ample storage is
usually available.

In view of the evaluation schemes (6.11)–(6.13) and (6.15), for m ∈ {3, 5, 7, 9}
we need to store A2k, k = 1: d(m−1)/2, where d = [0 1 2 2], along with Wm(A) =∑(m−1)/2

k=0 b2k+1A
2k, rm(A), and the LU factorization of (−um +vm)(A). For m = 13,

the matrix A needs to be scaled, to B = A/2s. According to the scheme used in
Algorithm 6.4 we need to store B2k, k = 1: 3, W ≡ w(B), the LU factorization of
(−um + vm)(B), and rm(B)2

i

, i = 0: s − 1. Table 7.1 summarizes the matrices that
need to be stored for each m.

The following algorithm computes the matrix exponential and estimates its con-
dition number. Since the condition number is not needed to high accuracy we use the
parameters θm in Table 6.1 (designed for eA) instead of �m (designed for L(A, E)).
The bound in (6.10) for the Fréchet derivative backward error ‖ΔE‖/‖E‖ does not
exceed 28u for m ≤ 13 when we use the θm, so the loss in backward stability for
the Fréchet derivative evaluation is negligible. If the condition estimate is omit-
ted, the algorithm reduces to Algorithm 6.1. The algorithm exploits the relation
Lf (A∗, E) = Lf(A, E∗)∗, which holds for any f with a power series expansion with
real coefficients, by (3.1).

Algorithm 7.4 (scaling and squaring algorithm for the matrix exponential with
1-norm condition estimation). Given A ∈ C

n×n this algorithm computes X = eA by
the scaling and squaring method (Algorithm 6.1) and an estimate γ ≈ κexp(A) using
the block 1-norm estimator (Algorithm 7.1). It uses the values θm listed in Table 6.1.
The algorithm is intended for IEEE double precision arithmetic.

1 α = ‖A‖1

2 for m = [3 5 7 9]
3 if α ≤ θm

4 Evaluate U = um(A) and V = vm(A), using (6.11).
5 Solve (−U + V )X = U + V for X .
6 Store the needed matrices (see Table 7.1).
7 Use Algorithm 7.3 to produce an estimate η ≈ ‖Lexp(A)‖1.

. . . . . . To compute Lexp(A, E) for a given E:
8 Evaluate M2k = Lx2k (A, E), k = 1 : (m − 1)/2.
9 Lu ← A

(∑(m−1)/2
k=1 b2k+1M2k

)
+ EWm(A)

10 Lv ←
∑(m−1)/2

k=1 b2kM2k

11 Solve (−U + V )L = Lu + Lv + (Lu − Lv)X for L.
. . . . . . To compute L�

exp(A, E) for a given E:
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12 Execute lines 8–11 with E replaced by its conjugate
transpose and take the conjugate transpose of the result.

13 goto line 44
14 end
15 % Use degree m = 13.
16 s = �log2(α/θ13)�, the minimal integer such that 2−sα ≤ θ13.
17 A ← 2−sA
18 A2 = A2, A4 = A2

2, A6 = A2A4

19 W1 = b13A6 + b11A4 + b9A2

20 Z1 = b12A6 + b10A4 + b8A2

21 W = A6W1 + b7A6 + b5A4 + b3A2 + b1I
22 U = AW
23 V = A6Z1 + b6A6 + b4A4 + b2A2 + b0I
24 Solve (−U + V )Xs = U + V for Xs

25 for i = s:−1: 1
26 Xi−1 = X2

i

27 end
28 X = X0

29 Use Algorithm 7.3 to produce an estimate η ≈ ‖Lexp(Ã)‖1,
where Ã denotes the original input matrix A.
. . . . . . To compute Lexp(Ã, E) for a given E:

30 E ← 2−sE
31 M2 = AE + EA, M4 = A2M2 + M2A2, M6 = A4M2 + M4A2

32 Lw1 = b13M6 + b11M4 + b9M2

33 Lw2 = b7M6 + b5M4 + b3M2

34 Lz1 = b12M6 + b10M4 + b8M2

35 Lz2 = b6M6 + b4M4 + b2M2

36 Lw = A6Lw1 + M6W1 + Lw2

37 Lu = ALw + EW
38 Lv = A6Lz1 + M6Z1 + Lz2

39 Solve (−U + V )L = Lu + Lv + (Lu − Lv)Xs for L.
40 for i = s:−1: 1
41 L ← XiL + LXi

42 end
. . . . . . To compute L�

exp(Ã, E) for a given E:
43 Execute lines 30–42 with E replaced by its conjugate

transpose and take the conjugate transpose of the result.
44 γ = ηα/‖X‖1

The cost of Algorithm 7.4 is the cost of computing eA plus the cost of about 8
Fréchet derivative evaluations, so obtaining eA and the condition estimate multiplies
the cost of obtaining just eA by a factor of about 17. This factor can be reduced to
9 if the parameter t in the block 1-norm power method is reduced to 1, at a cost of
slightly reduced reliability.

In our MATLAB implementation of Algorithm 7.4 we invoke the function funm_
condest1 from the Matrix Function Toolbox [4], which interfaces to the MATLAB
function normest1 that implements the block 1-norm estimation algorithm of [7].

With the same matrices as in the test of the previous section we used Algo-
rithm 7.4 to estimate ‖K(A)‖1 and also computed ‖K(A)‖1 exactly by forming K(A)
as described at the start of this section. Figure 7.1 plots the norms and the estimates.
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Fig. 7.1. ‖K(A)‖1 and underestimation ratio η/‖K(A)‖1 , where η is the estimate of ‖K(A)‖1
produced by Algorithm 7.4.
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Fig. 7.2. Normwise relative error for computed exponential and error estimate comprising
condition number estimate times unit roundoff.

The worst underestimation ratio is 0.61, so the estimates are all within a factor 2 of
the true 1-norm.

Finally, we invoked Algorithm 7.4 on the same set of test matrices and computed
the “exact” exponential in 100 digit precision. Figure 7.2 plots the error in the
computed exponential along with the quantity γu: the condition estimate multiplied
by the unit roundoff, regarded as an error estimate. If the scaling and squaring
algorithm were forward stable and the condition estimate reliable we would expect
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the error to be bounded by φ(n)γu for some low degree polynomial φ. The overall
numerical stability of the scaling and squaring algorithm is not understood [6], but our
experience is that the method usually does behave in a forward stable way. Figure 7.2
indicates that the condition estimate from Algorithm 7.4 provides a useful guide to
the accuracy of the computed exponential from the algorithm.

8. Concluding remarks. The LAPACK Users’ Guide states [1, p. 77] that
“Our goal is to provide error bounds for most quantities computed by LAPACK.”
This is a desirable goal for any numerical algorithm, and in order to achieve it error
analysis must be developed that yields a reasonably sharp error bound that can be
efficiently estimated. For matrix function algorithms a complete error analysis is not
always available, and for the forward error a bound of the form cond(f, A)u is the
best we can expect in general. To date relatively little attention has been paid to
combining evaluation of f(A) with computation of the Fréchet derivative L(A, E)
and estimation of the condition number cond(f, A). We are currently applying and
extending the ideas developed here to other transcendental functions such as the
logarithm and the sine and cosine and will report on this work in a future paper.

Acknowledgment. We thank Bruno Iannazzo for his helpful comments on a
draft of this paper.

REFERENCES

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra,

J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen,
LAPACK Users’ Guide, 3rd ed., SIAM, Philadelphia, PA, 1999.

[2] G. A. Baker, Jr., and P. Graves-Morris, Padé Approximants, Encyclopedia of Mathematics
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Abstract. We present a fast condition estimation algorithm for the eigenvalues of a class of
structured matrices. These matrices are low rank modifications to Hermitian, skew-Hermitian, and
unitary matrices. Fast structured operations for these matrices are presented, including Schur de-
composition, eigenvalue block swapping, matrix equation solving, compact structure reconstruction,
etc. Compact semiseparable representations of matrices are used in these operations. We use these
operations in a new, improved version of the statistical condition estimation method for eigenvalue
problems. The estimation algorithm costs O(n2) flops for all eigenvalues, instead of O(n3) as in
traditional algorithms, where n is the order of the matrix. The algorithm provides reliable condition
estimates for both eigenvalues and eigenvalue clusters. The proposed structured matrix operations
are also useful for additional eigenvalue problems and other applications. Numerical examples are
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1. Introduction. The condition number of an eigenvalue or eigenvalue cluster
measures the sensitivity of the eigenvalue or eigenvalue cluster to small changes in the
input matrix, and it may be used to bound the error in the computed approximation.
For a general order-n matrix, it usually costs O(n3) flops or more to estimate the sen-
sitivity of all its eigenvalues, for example, by considering separations of eigenvalues,
considering angles between left eigenvectors and right eigenvectors, and other meth-
ods [1], [6], [19], [21], [28]. For structured eigenvalue problems, on the one hand, it is
important to capture the structures [13]. We can take advantage of the structures to
obtain fast condition estimation. The development of new fast structured algorithms
for these matrices in recent years makes it possible to obtain fast condition estima-
tion. In this paper, we consider condition estimation for the eigenvalues of a class
of structured matrices, and we present a reliable estimation scheme which costs only
O(n2) flops. This class of matrices has the following structures:

1. Low rank modifications to Hermitian and skew-Hermitian matrices. Examples
include Frobenius matrices, diagonal plus rank one matrices, and arrowhead
matrices which arise in applications such as bidiagonal SVD, divide-and-
conquer algorithms for some eigenvalue problems [18], etc.

2. Low rank modifications to unitary matrices such as companion matrices,
which are closely related to the problems of finding polynomial roots and
solving certain differential equations.

Any such matrix C ∈ R
n×n is a low rank perturbation to a rank symmetric

matrix [3] (a matrix Ĉ is said to be rank symmetric if for any 2× 2 block partition of
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Ĉ =
[ Ĉ11 Ĉ12

Ĉ21 Ĉ22

]
with Ĉ11 and Ĉ22 square, the ranks of Ĉ12 and Ĉ21 are equal). That

is,

(1.1) C = Ĉ + xyT ,

where x, y ∈ C
n×k with k � n, and Ĉ is rank symmetric. Some fast methods for

finding the eigenvalues of these matrices have been proposed in recent years (see, e.g.,
[3], [4], [5], [11], [16]). These methods exploit certain rank structure of the QR iterates
when using QR iterations to find the eigenvalues. In this paper we show that the rank
structure can also be used to accelerate the condition estimation of the eigenvalues.

As an example, the companion matrix

(1.2) C =

⎡⎢⎢⎢⎣
−an−1 −an−2 · · · −a0

1 0 · · · 0
. . .

. . .
...

0 1 0

⎤⎥⎥⎥⎦
can be written as

C =

⎡⎢⎢⎢⎣
0 · · · 0 ±1
1 0 · · · 0

. . . . . .
...

0 1 0

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
1
0
...
0

⎤⎥⎥⎥⎦ [ an−1 an−2 · · · a0 ∓ 1
]
.

To quickly find the eigenvalues of (1.2), the fast structured QR iteration algorithm in
[11] computes structured QR iterates which are unitarily similar to C. The iterations
are done via the Q and R factors of the QR iterates. It can be shown that the QR
iterates have small off-diagonal ranks [3], [5], [11]. Thus the Q and R factors can
be efficiently represented by rank structures called sequentially semiseparable (SSS)
matrix forms, proposed in [7], [8], [9]. An SSS matrix looks like

(1.3)

⎡⎢⎢⎣
D1 U1VT

2 U1W2VT
3 U1W2W3VT

4

P2QT
1 D2 U2VT

3 U2W3VT
4

P3R2QT
1 P3QT

2 D3 U3VT
4

P4R3R2QT
1 P4R3QT

2 P4QT
3 D4

⎤⎥⎥⎦ ,

where the matrices {Di}, {Ui}, {Wi}, {Vi}, {Pi}, {Ri}, {Qi} are called (SSS) gener-
ators. SSS structures are useful for problems where the off-diagonal blocks have small
ranks (see, e.g., [10], [11]). When the off-diagonal ranks of an SSS matrix are small
and the sizes of {Wi} and {Ri} are close to the off-diagonal ranks, the matrix is said
to be in compact SSS form. In such a situation, the matrix can be represented by
only a linear amount of data, and operations on the compact SSS matrices are very
efficient. For example, it costs only linear time to solve compact SSS linear systems
and to multiply two compact SSS matrices with the same partition. More details can
be found in [7], [8], [9], [10], [11]. The use of compact SSS matrices in the algorithm in
[11] provides an O(n2) cost eigensolver for companion matrices (and polynomial root
problems).

1.1. Main results. This paper shows that we can also exploit the rank structure
of the above class of eigenvalue problems (1.1) to provide efficient condition estimation
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for the eigenvalues. We use the statistical condition estimation (SCE) method by
Kenney and Laub [23]. In [19], a perturbation analysis for the average eigenvalues
of a general matrix based on SCE has been given, and an SCE condition estimator
is provided. The cost is O(n3) flops for all eigenvalues. Here, we first improve the
estimator in [19] from various points of view. Then we take into account the rank
structure of the above class of matrices in SCE and extend the estimator in [19] to
all the eigenvalues or eigenvalue clusters of these matrices. Given the facts that the
related matrix computations become structured, and that SCE is good at respecting
matrix structures, we can reduce the total condition estimation cost for all eigenvalues
to O(n2).

We present the main idea based on the companion matrix (1.2). For convenience,
we consider only real matrices and maintain real arithmetic in this paper. Similar
techniques can be easily extended to other matrices in the above class. This is discussed
in section 4. In this paper, the following structured matrix algorithms are used or
developed:

1. Use the existing algorithm in [11] to compute a compact SSS Schur decom-
position of C in O(n2) flops. Improve the algorithm so that the maximum
generator size is smaller than the original one in [11] (see the next item).

2. Preserve quasi-triangular (a block upper triangular matrix with 1× 1 and/or
2 × 2 diagonal blocks) Schur form when bringing any desired eigenvalue or
eigenvalue cluster to any other position. This is done by swapping the contigu-
ous 1×1 or 2×2 diagonal blocks of the Schur form in structured form. Quickly
update the initial Schur form to recover a new compact Schur form. A recov-
ery procedure in [11] is improved (with even less cost) so that it also works
for quasi-triangular matrices, and the computational rank result is consistent
with the theoretical prediction as well. The total cost for all eigenvalues is
O(n2) flops.

3. Represent certain Sylvester equations in structured forms. Quickly solve a
structured Sylvester equation for each eigenvalue so that the total cost for all
eigenvalues is O(n2) instead of O(n3).

4. Use structured perturbation in SCE and evaluate all the condition estimates
in O(n2) flops by taking advantage of matrix structures. Efficiently recon-
struct certain invariant subspaces.

Our estimator works for both simple or multiple eigenvalues or eigenvalue clusters.
The paper [26] presents some similar work. However, [26] requires that the eigenvalues
of C all be distinct. The new operations here are more general, more efficient, and
even simpler to implement than those in [26]. For example, after the diagonal block
swapping, [26] uses SSS matrix multiplications to get the SSS representation of the new
Schur form. But when the matrix has multiple eigenvalues, many SSS multiplications
may be needed and the SSS Schur form may not be compact anymore. Instead, here we
use a recovery strategy which always guarantees that the SSS Schur form is compact.
As another example, here we simplify the reconstruction of the invariant subspace
corresponding to an eigenvalue or eigencluster after the diagonal block swapping.

Similar techniques can also speed up the condition estimation for the eigenvectors
of (1.1). We emphasize that the structured matrix operations in this paper are also
useful in many other problems, in addition to condition estimation. Condition estima-
tion for the eigenvalues of a companion matrix C can be used to assess the accuracy
of polynomial roots including multiple or clustered roots.
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1.2. Overview and notation. The rest of this paper is organized as follows.
Section 2 reviews SCE for general eigenvalue problems and gives some new improve-
ments. The fast structured condition estimation scheme is presented in section 3 in
detail. Related matrix algorithms are derived. We also briefly discuss the extension
of the techniques to general matrices (1.1) in the above class. Section 4 provides the
algorithm, together with detailed flop counts, and shows some numerical examples.
We draw some concluding remarks in section 6.

The following notation is used in this paper:
– The ith row (or block row) and the jth column (or block column) of A ≡

(Aij)n×n are denoted by Ai,: and A:,j , respectively. Similarly, A1:i,1:j denotes
the submatrix of A at (block) rows 1 through i and (block) columns 1 through
j.

– vec(A) denotes the column vector formed by stacking the columns of A from
left to right.

– If A is an SSS matrix, Di(A), Ui(A), etc. represent its SSS generators as in
(1.3).

– δA means the product of a small scalar δ with A.
– If a vector u is selected uniformly and randomly from the unit n-sphere Sn−1,

we write u ∈ U(Sn−1).

2. Condition estimation for general eigenvalue problems.

2.1. General SCE scheme for average (mean) eigenvalues. For a general
n × n real matrix C, Gudmundsson, Kenney, and Laub derived an SCE condition
estimator for its average or mean eigenvalues in the following way [19]. Assume we
have a block Schur decomposition of C,

(2.1) C = UTUT , U = [U1, Uc], T =
[

T1 H
0 Tc

]
,

where U is orthogonal and T1 and Tc have orders n1 and n − n1, respectively. The
average eigenvalue of T1 is defined to be [1], [19]

μ(T1) =
trace(T1)

n1
.

If the spectra of T1 and Tc are well separated [22], [31], then the sensitivity of μ(T1)
is well defined. A condition number κ for μ(T1) is given in [19].

In SCE, a condition estimate for μ(T1) can be obtained by perturbing C to C +
δE with a relative perturbation matrix δE, where δ is a small number, and E =
(CijZij)n×n with Z = (Zij)n×n satisfying vec(Z) ∈ U(Sn2−1). Accordingly, μ(T1) is
perturbed to [19]

(2.2) μ(T̃1) ≈ μ(T1 + δB) = μ(T1) + δμ(B),

where

(2.3) B = UT
1 EU1 + Y UT

c EU1,

and Y is an n1 × (n − n1) matrix satisfying a Sylvester equation

(2.4) T1Y − Y Tc = H.
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Based on (2.2), SCE leads to a relative condition estimate to μ(T1) in the following
form:

(2.5) ν =
1

ωp|μ(T1)|
|μ(B)|,

where p is the number of parameters that define C (for a general n × n matrix,
p = n2; for the companion matrix (1.2), p = n), and ωp is the Wallis factor which can
be approximated by [23]

ωp ≈
√

2
π(p − 1

2 )
.

The expected value of the estimate E(ν) is equal to the exact condition number κ
[19].

Multiple samples of Z can be used to increase the accuracy of the estimation.
For example, assume we use m samples of Z, denoted Z(i), i = 1, 2, . . . , m, which are
properly orthonormalized [23], and accordingly, T1 is perturbed to T1 + δB(i), i =
1, 2, . . . , m. Then the m-sample condition estimator is defined as

ν(m) =
1

ωp|μ(T1)|

√
[μ(B(1))]2 + · · · + [μ(B(m))]2.

The accuracy of this estimator is given by [19]

Pr
(

κ

γ
≤ ν(m) ≤ γκ

)
≥ 1 − 1

m!

(
2m

γπ

)m

+ O
(

1
γm+1

)
, γ > 1.

For example, with m = 2, the probability of ν(m) being within a factor of γ = 10 of
the exact condition number κ is greater than 0.9919. Even with only one sample, this
probability is greater than 0.9363.

2.2. Improvements. We make several improvements over Gudmundsson,
Kenney, and Laub’s general SCE estimator for average eigenvalues. First, for sim-
ple real eigenvalues and complex eigenpairs, more specific forms based on (2.3) and
(2.5) can be derived. When T1 is a 1 × 1 block (eigenvalue), B in (2.3) is reduced to
a scalar which can be calculated by using Y (a vector) and the first row and the first
column of U . When T1 is a 2 × 2 block, T1 has a conjugate pair of complex eigenval-
ues. The condition number of this eigenpair is generally different from the condition
number of their average. Thus, (2.5) may not precisely reflect the sensitivity of this
eigenpair. In fact, by assuming

T1 ≡
[

t11 t12
t21 t22

]
, B ≡

[
b11 b12

b21 b22

]
,

we can derive a more accurate estimator for the actual condition of the eigenpair [26]

ν =
1

ωp

√
det(T1)

√
α2 det(T1) − αβtrace(T1) + β2

[trace(T1)]2 − 4 det(T1)
,

where α = b11 + b22, β = t11b22 + t22b11 − t12b21 − t21b12.
The second improvement is that, for average eigenvalues corresponding to a diag-

onal block Ti other than T1, we can employ diagonal block swapping techniques as in
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[1], [12], [27] to obtain a new Schur decomposition such that Ti (in its similar form)
appears in the leading (upper left) position of the new Schur form

(2.6) T̃ = GTGT ,

where G is an orthogonal transformation matrix.
Another improvement is to rewrite (2.3) as

B =
[

In1 Y
]
UT EU1

=
[

In1 Y
]
(UT EU)

[
In1

0

]
,(2.7)

where E is isolated from Y . The new representation (2.7) indicates that the opera-
tions involving E can be independent of different eigenvalues. In order to compute B
for different eigenvalues, we can precompute the matrix UT EU just once. Then for
different eigenvalues we need only solve for Y and then compute the trace of the left
n1 × n1 submatrix of

(2.8) B̂ =
[

In1 Y
]
(UT EU),

where appropriate transformations may be applied to UT EU (see section 4). On the
other hand, if multiple samples of E are used, then we can reuse the matrices Y and
U . This will be further discussed in section 4.

Finally, for structured matrices C, the perturbation matrix E may also be struc-
tured, and it is also possible to compute Y and B quickly by taking advantage of the
structure of C. The total cost of the condition estimation can then be less than O(n3).
This is the actual situation for the class of matrices (1.1) where only O(n2) flops are
needed. We elaborate on this in the rest of this paper.

Remark 2.1. The algorithm in this paper can be used to estimate the condition
of polynomial roots. For the companion matrix (1.2), it can be shown that the exact
condition number κ for μ(T1) is actually the condition number defined in [14], [15] for
the roots of the polynomial

∑n
i=0 aix

i (with an ≡ 1) when all roots are distinct [26].

3. Fast structured condition estimation. For a structured matrix C in (1.1),
the perturbation matrix E generally corresponds to the low rank modifications (see,
e.g., [18] for an error analysis based on perturbing the low rank part of a diagonal
plus rank one matrix). In such a situation, the relative perturbation matrix E has the
form

(3.1) E = xET
2 + E1y

T =
[

x E1

] [ ET
2

yT

]
≡ x̂ŷT ,

where E1 = (xijZ
x
ij)n×k, E2 = (yijZ

y
ij)n×k with Zx and Zy random matrices satis-

fying vec([Zx, Zy]) ∈ U(S2nk−1). For the example of the companion matrix (1.2), E
can be further simplified to

(3.2) E =
[

eT

0

]
1

n − 1 ,

where eT = [−an−1zn−1,−an−2zn−2, . . . ,−(a0∓1)z0] and [zn−1, . . . , z0]T ∈ U(Sn−1).
This is because, usually, an−1, an−2, . . . , a0 are the parameters of interest.

The special structure of E saves the cost of computing B. Moreover, based on
the rank structure of C and its similarity transformations, all the major steps in the
SCE scheme can be quickly done by structured matrix computations. They include
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1. structured Schur decomposition in (2.1),
2. structured diagonal block swapping in (2.6),
3. structured Sylvester equation solution for (2.4), and
4. evaluation of μ(B) in (2.5) using the low rank structure.

We discuss the details in the following subsections.

3.1. Structured Schur decomposition. We can find a structured Schur de-
composition of C by using the fast structured eigensolver in [11]. The traditional
Hessenberg QR iterations for the eigenvalues of C are

C(0) = C,

C(k) = Q(k)R(k), C(k+1) = R(k)Q(k), k = 0, 1, 2, . . . .

Clearly, any C(k) is a rank one update to an orthogonal matrix since C is. The QR
algorithm in [11] is based on the result that each C(k) actually has small off-diagonal
ranks.

Theorem 3.1 (see [3], [4], [11]). The ranks of all off-diagonal blocks C
(k)
1:j,j+1:n, j =

1, . . . , n − 1, of C(k) are no larger than 3.
The algorithm in [11] uses a sequence of Givens matrices for Q(k) and an SSS

form R(k). When the algorithm converges, it yields a quasi-triangular Schur form T .
Appropriate Givens matrices form an orthogonal matrix U such that C = UTUT ,
which is a structured form of (2.1). That is, U is a product of O(n2) Givens matrices
in general, and T is an SSS matrix.

Clearly, T also has off-diagonal ranks bounded by 3. However, we can compute
the QR factorization T = QR, where Q is a block diagonal matrix with 1 × 1 or
2 × 2 diagonal blocks and R is also a rank one update to an orthogonal matrix. The
matrix R has maximum off-diagonal rank bounded by 2 with a proof similar to that
of Theorem 3.1 [3], [11]. The application of Q to R does not increase this rank. Thus,
we have the following result.

Theorem 3.2. For any quasi-triangular matrix orthogonally similar to C, its
maximum off-diagonal rank is no larger than 2.

The algorithm in [11] can be used to obtain a compact SSS form of T with
maximum generator size 3. This algorithm can be improved by using the techniques
in subsection 3.3.2 so that the maximum generator size of T is 2.

3.2. Structured Sylvester equation solver. The Sylvester equation (2.4) can
be solved in different ways. It can be converted into a linear system using Kronecker
products. Alternatively, since T1 and Tc are quasi triangular, the Bartels–Stewart
algorithm [2] can be applied conveniently. However, both methods cost O(O(n1(n −
n1)2 +n2

1(n−n1))) if T1 and Tc are general quasi-triangular matrices. This makes the
total condition estimation cost as large as O(n3). Notice that T1 and Tc are also SSS
matrices. We can reduce the Sylvester equation solution cost to O(n1(n − n1)) by a
structured form of the Bartels–Stewart algorithm. This consists of three parts: making
one coefficient matrix lower quasi triangular, quickly formulating certain (simpler)
linear or Sylvester systems in the Bartels–Stewart algorithm, and quickly solving
those systems.

3.2.1. Transforming the Sylvester equation. We first make one of the two
coefficient matrices lower quasi triangular. Since T1 is block upper triangular, we
employ a permutation matrix P such that

L ≡ PT1P
T
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is lower quasi triangular. The matrix P is simply the anti-identity matrix

P =

⎡⎢⎣ 0 1
...

1 0

⎤⎥⎦ .

Then (2.4) can be written as

(3.3) L(PY ) − (PY )Tc = PH.

It is clear that the SSS generators of L can be obtained directly from those of T1 as
follows:

Di(L) = Di(T1)T , Pi(L) = Vi(T1), Qi(L) = Ui(T1), Ri(L) = Wi(T1)T .

For notational convenience, we write (3.3) as the SSS Sylvester equation

(3.4) LX − XR = K,

where L is a block lower triangular compact SSS matrix with generators {Di(L) ≡
Lii}l1

1 , {Pi}l1
2 , {Qi}l1−1

1 , and {Ri}l1−1
2 , and R is a block upper triangular compact

SSS matrix with generators {Di(R) ≡ Rii}l2
1 , {Ui}l2−1

1 , {Vi}l2
2 , and {Wi}l2−1

2 . Here,
l1 + l2 = l is the total number of diagonal blocks (eigenvalue clusters) in T .

3.2.2. Formulating (simpler) systems in the Bartels–Stewart algorithm.
Next, we apply the Bartels–Stewart algorithm to (3.4). Since H is an off-diagonal block
of T , we assume K = PH has the form

K =
[
K:,1 K:,2 · · · K:,l2

]
=

⎡⎢⎢⎢⎣
u1w2 · · ·wl1v

T
l1+1 u1w2 · · ·wl1+1v

T
l1+2 · · · u1w2 · · ·wl−1v

T
l

...
...

...
ul1−1wl1v

T
l1+1 ul1−1wl1wl1+1v

T
l1+2 · · · ul1−1wl1 · · ·wl−1v

T
l

ul1v
T
l1+1 ul1wl1+1v

T
l1+2 · · · ul1wl1+1 · · ·wl−1v

T
l

⎤⎥⎥⎥⎦ .(3.5)

We also assume that all the matrices in (3.4) have conformal partitions. When we get
the solution X of (3.4), the solution of (2.4) can be simply obtained by Y = PT X .

The Bartels–Stewart algorithm solves (3.4) by successively solving

LiiXij − XijRjj = Kij −
i−1∑
k=1

LikXkj +
j−1∑
k=1

XikRkj ,

i = 1, 2, . . . , l1, j = 1, 2, . . . , l2,

where Lii and Rjj are 1 × 1 or 2 × 2 blocks, and Xij denotes the (i, j) block of X ,
which is partitioned conformally according to the blocks of L and R. These equations
can be rewritten as a set of linear equations or (simpler) Sylvester equations

LX:,j − X:,jRjj = K̂j,(3.6)
j = 1, 2, . . . , l2,

where K̂j = K:,j + X:,1:j−1R1:j−1,j , and X:,j has one or two columns. Since L is an
n1 × n1 SSS matrix and Rjj is a 1× 1 or 2× 2 block, we can solve (3.6) for each j in
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O(n1) flops, provided that the right-hand side K̂j can be evaluated in O(n1) flops. In
fact, the evaluation of both K:,j and X:,1:j−1R1:j−1,j for all j = 1, . . . , l2 can be done
successively as follows (when j = 1, let X:,1:j−1R1:j−1,j ≡ 0).

For K:,j, j = 1, . . . , l2 in (3.5), introduce auxiliary matrices Ωk defined by

(3.7) Ωl1 = I, Ωk = wk+1Ωk+1, k = l1 − 1, l1 − 2, . . . , 2, 1.

Then compute each block Kkj by

(3.8) Kkj = ukΩkvT
j , k = 1, 2, . . . , l1.

After the calculation of each K:,j, replace all Ωk by

(3.9) Ω̂k = Ωkwl1+j .

For X:,1:j−1R1:j−1,j , j = 1, . . . , l2, notice that the block column R1:j−1,j has the
following form: ⎡⎢⎢⎢⎣

U1W2 · · ·Wj−1VT
j

...
Uj−2Wj−1VT

j

Uj−1VT
j

⎤⎥⎥⎥⎦ .

Introduce auxiliary matrices Φj defined by

(3.10) Φ0 = 0, Φj = Φj−1Wj + X:,jUj , j = 1, 2, . . . , l2 − 1.

Then clearly,

(3.11) X:,1:j−1R1:j−1,j = Φj−1VT
j , j = 1, 2, . . . , l2.

It can be shown that the cost of evaluating K̂j in (3.6) for each j by (3.7)–(3.11) is
O(n1).

3.2.3. Solving (3.6). Finally, we consider the solution of (3.6). For each j, when
Rjj is a scalar, (3.6) is an order-n1 lower triangular SSS system

(L − Rjj)X:,j = K̂T
j .

The coefficient matrix L − Rjj has the same generators as L except that the Di

generators are replaced by Lii − Rjj or Lii − RjjI2, depending on the size of Lii.
This system can be solved in linear time by the fast SSS system solver in [9], and the
details are shown in [26].

When Rjj is 2 × 2, (3.6) is a simple Sylvester equation, which can be converted
into an order-2n lower triangular SSS system. Note that for this situation, the Bartels–
Stewart algorithm does not apply to (3.6) anymore since we want to maintain real
arithmetic and Rjj does not have a real Schur form. However, we can rewrite (3.6) as
a Sylvester equation in terms of XT

:,j as follows:

−RT
jjX

T
:,j + XT

:,jL
T = K̂T

j .

This equation can be converted into a lower triangular SSS system

(L ⊗ I2 − In1−2 ⊗ RT
jj)vec(XT

:,j) = vec(K̂T
j ).

The SSS generators of the coefficient matrix are given by those of L ⊗ I2, except the
diagonal generators are Di(L ⊗ I2) − RT

jj or Di(L ⊗ I2) − I2 ⊗ RT
jj , depending on

whether the order of Di(L) is 1 or 2. The generators of L⊗ I2 are listed in Table 3.1.
For both cases, the solution of (3.6) costs O(n1) for each j.
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Table 3.1

SSS generators of L⊗I2 in terms of the generators of L, where Pi(L) ≡
[ Pi,1(L)
Pi,2(L)

]
and Qi(L) ≡[ Qi,1(L)

Qi,2(L)

]
.

Order of Di(L) Di(L⊗ I2) Pi(L⊗ I2) Qi(L⊗ I2) Ri(L⊗ I2)
1 Di(L)⊗ I2 I2 ⊗ Pi(L) I2 ⊗Qi(L) I2 ⊗Ri(L)

2 Di(L)⊗ I2
[
I2 ⊗ Pi,1(L)
I2 ⊗ Pi,2(L)

] [
I2 ⊗Qi,1(L)
I2 ⊗Qi,2(L)

]
I2 ⊗Ri(L)

3.3. Swapping the diagonal blocks of the Schur form T . In order to use
(2.5) to evaluate the condition of any eigenvalue cluster corresponding to diagonal
blocks other than T1, we can use a swapping procedure to bring those blocks to
the leading upper left position of T . Assume that the eigenvalue cluster of interest
corresponds to the diagonal blocks {Ti1 , Ti2 , . . . , Tik

} of T . The matrix T will be
transformed into T̃ in (2.6), for which we will derive a new compact SSS form.

3.3.1. Swapping procedure for contiguous blocks. We make use of a fun-
damental swapping procedure in [1], [12], [27] for two diagonal blocks of a matrix[

Ti Hi

0 Tj

]
,

where Ti and Tj have orders ni and nj , respectively, and Ti and Tj have no eigenvalue
in common. The swapping procedure in [1], [12], [27] finds an orthogonal matrix Gi,
which is the product of some Givens matrices such that

Gi

[
Ti Hi

0 Tj

]
GT

i =
[

MjTjM
−1
j H̄i

0 MiTiM
−1
i

]
,

where Mi and Mj are approximate invertible matrices. Thus Ti and Tj have been
swapped.

In order to preserve the quasi-triangular form of T , we apply this swapping proce-
dure to contiguous 1×1 or 2×2 diagonal blocks of T , even if T may have multiple eigen-
values. The details are as follows. To bring the 1× 1 or 2× 2 blocks {Ti1 , Ti2 , . . . , Tik

}
of an eigencluster to the leading position, we partition T as

T =

⎡⎢⎣ T̂1 Ĥ1 · · ·
0 T̂2 · · ·
0 0

. . .

⎤⎥⎦ ,

where T̂2 has diagonal blocks {Ti1 , Ti2 , . . . , Tik
}. If we directly apply the above swap-

ping procedure to
[ T̂1 Ĥ1

0 T̂2

]
to bring T̂2 to the leading position, then the quasi-

triangular form of T may be destroyed, and also the structures of the related matrices
and matrix equations are hard to explore.

Thus, instead, we apply the above procedure to contiguous 1×1 or 2×2 diagonal
blocks of T and bring each Ti in {Ti1 , Ti2 , . . . , Tik

} to the leading position in one
round of swapping. After each round of swapping, T is transformed into a new quasi-
triangular matrix T̃ = GTGT as in (2.6), where G is a product of Givens matrices.
(The current structure of this T̃ needs to be compressed. See the next subsection.)
The number of Givens matrices depends on the size of Ti. If Ti is 1 × 1, then ki − 1
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Givens matrices are needed, where ki is the row or column index of Ti in T . The
matrix G has the form

(3.12) G =
ki−1∏
j=1

diag
[
Ij−1,

[
cj sj

−sj cj

]
, In−j−1

]
,

which is upper Hessenberg. If Ti is 2 × 2, then 2(ki − 1) Givens matrices are needed,
where ki is the row or column index of the leading entry of Ti in T . Some of these
Givens matrices commute, and after reordering the matrices, we have G = G1G2,
where each of G1 and G2 has the form (3.12). The details of the generation of G are
similar to those in [26]. Clearly, G in (3.12) is an SSS matrix, with its generators given
in Table 3.2 in terms of its Schur parameters {ci, si} [11].

Table 3.2

SSS generators of G in (3.12).

Dj(G) Uj(G) Vj(G) Wj(G) Pj(G) Qj(G) Rj(G)
cj−1cj cj−1sj cj sj 1 −sj 0

The matrix T̃ is then still quasi triangular. We can get its SSS form by multiplying
three SSS matrices in (2.6) using the formulas for SSS matrix multiplications in [8].
This is the method used in [26] for the situation of distinct eigenvalues. Notice that
the off-diagonal generator sizes increase accumulatively with the multiplications in
(2.6). If the Wi(T ) generators have size 2, then the Wi(T̃ ) generators have size up to
6, since the Wi generators of G and GT have size 1 or 2.

3.3.2. Recovery of compact SSS representation of T̃ . Since here we are
considering general eigenclusters instead of simple distinct eigenvalues, the matrix
multiplication technique in [26] is inefficient. For example, if the swapping process is
applied to an eigencluster which has k multiple eigenvalues or eigenpairs, then T̃ needs
to be multiplied by up to O(kn) Givens matrices, and the off-diagonal generator sizes
of T̃ increase significantly. Therefore, T̃ is generally not compact anymore. On the
other hand, the actual off-diagonal ranks of T̃ do not increase, according to Theorem
3.2. Thus, we use a recovery strategy similar to the one in [11] to reconstruct a
compact SSS form for T̃ . The recovery strategy in [11] is designed for certain strictly
triangular matrices with maximum off-diagonal rank 2 such that their generator sizes
are bounded by 3. Here we improve the strategy such that it works for the quasi-
triangular matrix T̃ , and furthermore, the generators sizes are bounded by 2, which
is consistent with the maximum off-diagonal rank. This also saves one SSS matrix
multiplication.

The matrix T is orthogonally similar to C and is obviously orthogonal plus rank
one, which we assume to be T ≡ P +uvT . Also, assume that T̃ has a QR factorization
T̃ = Q̃R̃. The matrix Q̃ is a block diagonal matrix with 1×1 or 2×2 diagonal blocks,
since T̃ is quasi triangular. We have

R̃ = Q̃T T̃ = Q̃T G(P + uvT )GT

= Q̃T GPGT + (Q̃T Gu)(Gv)T ≡ P̃ + ũṽT .

There exists an orthogonal upper Hessenberg matrix P1 which is a product of Givens
matrices such that

(3.13) P1ũ = ||ũ||2e1,
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Table 3.3

Upper SSS generators of PT
1 P2 in terms of the Schur parameters of P1 and P2, where

ρi−1 ≡
∏i−1

k=1 sk s̃k +
∑i−1

j=1

(
cj c̃j

∏i−1
k=j+1 sk s̃k

)
. Other generators can be obtained by symmetry

in the structure.

Di(P
T
1 P2) Ui(P

T
1 P2) Vi(P

T
1 P2) Wi(P

T
1 P2)

cic̃iρi−1 + sis̃i cis̃iρi−1 − sic̃i c̃i s̃i

Table 3.4

SSS generators of ũṽT .

Di(ũṽ
T ) Ui(ũṽ

T ) Vi(ũṽ
T ) Wi(ũṽ

T ) Pi(ũṽ
T ) Qi(ũṽ

T ) Ri(ũṽ
T )

ũiṽT
i ũi ṽi 1 ũi ṽi 1

where e1 is the first unit vector. Then we have that P1P̃ = P1R̃ − ||ũ||2e1ṽ
T is

orthogonal and also upper Hessenberg. Thus, there exists another orthogonal upper
Hessenberg matrix P2 such that

P2 = P1P̃ = P1R̃ − ||ũ||2e1ṽ
T ,(3.14)

R̃ = PT
1 P2 + ||ũ||2PT

1 e1ṽ
T = PT

1 P2 + ũṽT ,(3.15)

T̃ = Q̃R̃ = Q̃(PT
1 P2 + ũṽT ).(3.16)

Both P1 and P2 are orthogonal upper Hessenberg and have maximum off-diagonal
rank one, and ||ũ||2PT

1 e1ṽ
T is a rank one matrix. Therefore, if SSS multiplication and

addition formulas are used as in [11], the SSS form of R̃ has maximum generator size
3. However, a more compact form of R̃ is available.

Theorem 3.3. For any orthogonal upper Hessenberg matrices P1 and P2, the
matrix PT

1 P2 has maximum off-diagonal rank one.
Proof. Denote a submatrix P1(1 : i, 1 : i+1) by P1;(1:i,1:i+1). An upper off-diagonal

block of P = PT
1 P2 is given by

P1:i,i+1:n = PT
1;(1:i+1,1:i)P2;(1:i+1,i+1:n).

The submatrix P2;(1:i+1,i+1:n) has rank one, since all its rows are multiples of

[c̃i, s̃ic̃i+1, . . . , s̃i · · · s̃n−1c̃n] ,

where {c̃i, s̃i} are the Schur parameters of P2. (See Table 3.2.) Thus, P1:i,i+1:n has
rank one also.

The SSS form of PT
1 P2 in (3.16) is given in Table 3.3 in terms of the Schur param-

eters {ci, si} and {c̃i, s̃i} of P1 and P2, respectively. The generators can be obtained
in O(n) complexity by computing ρi−1 =

∏i−1
k=1 sks̃k +

∑i−1
j=1

(
cj c̃j

∏i−1
k=j+1 sks̃k

)
≡

αi−1 + βi−1 recursively as follows:

α0 = 1, αi = (sis̃i)αi−1, i = 1, 2, . . . , n − 1,

β0 = 0, βi = (sis̃i)βi−1 + cic̃i, i = 1, 2, . . . , n − 1.

The SSS form of ũṽT is given in Table 3.4. Then one SSS addition gives an SSS
form for R̃ whose maximum generator size is 2.

The left multiplication of R̃ by Q̃ does not increase the off-diagonal block ranks
because Q̃ is a block diagonal matrix with 1× 1 or 2× 2 diagonal blocks. Thus, T̃ has
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maximum generator size 2. This construction process provides an alternative way of
proving Theorem 3.2.

Therefore, we can use (3.14)–(3.16) to recover a compact SSS form for T̃ . After
each round of swapping to bring a single eigenvalue or eigenpair to a desired position,
we apply the recovery procedure to T̃ . First, we form the redundant SSS form of T̃ in
(2.6) by SSS matrix multiplications, and then we compute the QR factorization Q̃R̃
for T̃ . The matrix Q̃ can be obtained by computing the Givens QR factorization

(3.17) T̃i = Q̃iR̃i

for any 2 × 2 diagonal block T̃i of T . The block diagonal matrix Q̃ has each diago-
nal block being either 1 or Q̃i. The matrix R̃ is still an SSS matrix with the same
generators as T̃ except that for any i corresponding to a 2 × 2 diagonal block,

(3.18) Di(R̃) = R̃i, Ui(R̃) = Q̃T
i Ui(T̃ ).

Note that the Schur parameters of P2 are obtained by updating only certain SSS
generators of P1R̃. With PT

1 P2 and ũṽT available in SSS forms, a new compact SSS
form of T̃ is straightforward according to (3.17) and (3.18). This improved recovery
procedure requires about 14i1 operations, as compared with the 40i1 cost in [11]. In
addition, the SSS generators have maximum size 2 instead of 3, which reduces the
cost for later operations also.

3.4. Computing the condition estimate (2.5). The major work in evaluat-
ing ν in (2.5) is to compute μ(B), where B is given by (2.3). In general, for companion
matrices we can compute (2.5) using the method which will be presented in section 4.
But since E has a special form (3.2) with only one nonzero row, an alternative method
is to use (2.3) directly.

We first find U1,:. Note that the fast eigensolver in [11] provides U in the form of
a sequence of O(n2) Givens rotation matrices. Thus, the application of these matrices
on the right to eT

1 , the first unit vector of length n, yields the initial U1,:. This costs
O(n2) operations. Later, for each cluster of diagonal blocks with size ni, the row U1,:

needs to be updated when T is updated by the swapping process. According to the
previous subsection, U is updated to Ũ = UGT , where G is also represented by Givens
rotation matrices. Thus, the updated vector is

(3.19) Ũ1,: = U1,:G
T .

The computation of EU1 in (2.3) can be done by considering EU . (If the diagonal
blocks of T are swapped, then we compute EŨ similarly.) Since U is represented by
O(n2) Givens matrices, the cost for computing EU is O(n2). The matrix EU1 has

only one nonzero row, which we assume to be uT
1 . Also, let U1,: =

[ U1:n1,:

Un1+1:n,:

]
. Then

we have

B = UT
1,1:n1

uT
1 + (Y UT

1,n1+1:n)uT
1 ,

which is the sum of two rank one matrices. We first evaluate Y UT
1,n1+1:n and then

compute the diagonal entries of B.

4. The case of general C in (1.1). For a general C in (1.1), which is a low
rank modification to a symmetric, skew-symmetric, or orthogonal matrix, the main
operations in previous sections are similar. For example, we can quickly get an SSS
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form Schur decomposition. A major difference is that the computation of the condition
estimate (2.5) can be done in a more general way.

For C in (1.1), the perturbation matrix E has the form (3.1). We can precompute

UT EU = (UT x̂)(UT ŷ)T ≡ x̃ỹT .

The computations of x̃ and ỹ cost O(n2) flops, since U is a product of O(n2) Givens
rotation matrices and both x̃ and ỹ have a finite number of columns.

The direct computation of the trace of B̂ in (2.8) is thus straightforward. Since
B̂ =

([
In1 Y

]
x̃
)
ỹT , we first form

[
In1 Y

]
x̃ and then compute the trace of the

left n1 ×n1 submatrix of B̂. For different eigenvalues, permutations are applied to U ,
and B̂ now has the form

(4.1) B̂ =
[

In1 Y
]
(Gx̃)(Gỹ)T ,

where G is a product of Givens rotation matrices. (Here, Y should also be different,
but the same notation is used for convenience.) We form Gx̃ and Gỹ first, and the
rest of the computations are similar.

5. Algorithm, flop counts, and numerical experiments. We outline the
major steps in the following algorithm in terms of a companion matrix C.

Algorithm 1 (condition estimation for the eigenvalues/eigenclusters of C).

1. Compute an initial structured Schur decomposition C = UTUT .
2. Choose a perturbation matrix E as in (3.2) or (3.1). Precompute UT EU as

in section 4.
3. Repeat for each eigenvalue cluster i corresponding to {Ti1 , Ti2 , . . .}.

(a) If i > 1, use the swapping technique in subsection 3.3 to bring cluster i
to the leading position, one block Tij per round.

(b) Solve the Sylvester equation (2.4) as in subsection 3.2.
(c) Compute the condition estimate (2.5) via the diagonal entries of B̂ in

(4.1).
4. If additional samples of E are used, repeat steps 2 and 3(c).

5.1. Flop counts. To obtain detailed flop counts for a companion matrix C, we
make the following assumptions:

– The number of iterations required for the Hessenberg QR iteration to converge
is cn2, where c is a constant (c is usually small).

– Each compact SSS matrix A has maximum off-diagonal rank p which is 2 for
T and 1 for an orthogonal upper Hessenberg matrix. All Wi and Ri generators
of A have dimension p.

– A simplified problem is considered, where all diagonal blocks Ti of T are 1×1.
– The matrix T has m eigenvalue clusters and the ith cluster has ni eigenvalues
{Ti1 , Ti2 , . . .}.

Step 1 costs about the same as the structured eigensolver in [11], and we do not
discuss the details here. Step 2 costs about 6cn2 flops. The cost of computing the
condition estimate of each cluster i in step 3 is as follows.
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1. In step 3(a), the operations and the required flops are given by the following:
(a) Swapping the diagonals of T to bring Tij to the leading position and

computing a redundant SSS form for T̃ cost

(80p3 + 122p2 + 130p + 81)(ij − j),

where we have used the result that it costs at most 40p3(ij − j) flops to
multiply two order-(ij − j) SSS matrices whose maximum off-diagonal
ranks are p [8].

(b) Recovery of a compact SSS form for T̃ approximately costs

(47p3 + 242p2 + 464p + 374)(ij − j),

where, for simplicity, the cost for a general rank p recovery process is
mainly counted based on SSS multiplications, although it is possible to
extend the idea in subsection 3.3.2 to further reduce the cost.

The total cost for the entire cluster i is thus

(127p3 + 364p2 + 594p + 455)
ni∑

j=1

(ij − j).

2. The cost for step 3(b) using the Bartels–Stewart algorithm is

(2p3 + 8p2 + 11p + 2)ni(n − ni).

3. Step 3(c) costs

2ni(n − ni) + 2ni + 12
ni∑

j=1

(ij − j).

Therefore, the cost for all the eigenvalue clusters is

(127p3 + 364p2 + 594p + 467)
m∑

i=2

ni∑
j=1

(ij − j)

+ (2p3 + 8p2 + 11p + 4)
m∑

i=1

ni(n − ni) + 2
m∑

i=1

ni.

Since
∑m

i=1 ni = n, we have

m∑
i=2

ni∑
j=1

(ij − j) =
m∑

i=2

ni(i1 − 1) ≤ n

m∑
i=2

ni ≤ n2,

m∑
i=1

ni(n − ni) ≤ n

m∑
i=1

ni = n2.

The total cost is thus approximately bounded by

(5.1) (129p3 + 372p2 + 605p + 471)n2.

This bound can highly overestimate the cost. For example, when there are only two
eigenvalue clusters with equal size n/2, the cost is bounded by(

33p3 + 95p2 + 154p + 119
)
n2.
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If multiple samples are used, we need only repeat steps 2 and 3(c), and the results
from other steps can be reused. Since the total cost for steps 2 and 3(c) is bounded
by 26n2, which is much smaller than (5.1), the amount of work required for each
additional sample of SCE is insignificant.

5.2. Numerical examples. A MATLAB implementation of Algorithm 1 is
available at http://www.math.purdue.edu/̃ xiaj/work/sceeig.

We apply it to some companion matrices and demonstrate the efficiency and
accuracy. Note that [26] also includes some results with a different algorithm which
requires all the eigenvalues to be distinct.

Example 5.1. Consider a companion matrix C whose eigenvalues are λi = i, i =
1, 2, . . . , n. These eigenvalues are the roots of the Wilkinson polynomial. According to
[26], the SCE estimator (2.5) is an estimate of the following exact condition number
for λi:

(5.2) κi = ||(ki,1, ki,2, . . . , ki,n)T ||2, κi,j =

∣∣∣∣∣∣∣
ajλ

j−1
i∏

k �=i

(λi − λk)

∣∣∣∣∣∣∣ ,
where aj is the coefficient of the λj term of the polynomial (see (1.2)).

For n = 15, we calculate the exact condition numbers κi, their 1-sample SCE
estimates, and the estimates by the MATLAB routine condeig, which computes the
reciprocals of the cosines of the angles between the left and right eigenvectors of C.
According to Figure 5.1, SCE provides favorable estimates, while condeig gives large
estimates for nearly all eigenvalues except the first one.
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Fig. 5.1. Condition numbers and their estimates for Example 5.1.

Example 5.2. We show the quadratic complexity of the estimator with an example
where C in (1.2) has a0 = 1 and ai = 0, i = 1, . . . , n − 1. We report only the flop
counts of our preliminary MATLAB implementation of the algorithm.

This companion matrix has eigenvalues at the roots of unity. The eigenvalues
are all well conditioned, with κi in (5.2) given by 1/n [15]. Our SCE estimator also
reflects this fact. We run our algorithm for n ranging from 32 to 1024 and count the
flops, denoted flopsn. Then we compute the flop ratios flopsn

flopsn/2
. The numerical results
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Table 5.1

SCE for Example 5.2 with different n.

n 32 64 128 256 512 1024
κexact 0.0313 0.0156 0.0078 0.0039 0.0020 0.0010
κSCE 0.0432 0.0268 0.0124 0.0083 0.0009 0.0007
flopsn

flopsn/2
4.9 4.4 4.2 4.1 4.0 4.0

Table 5.2

SCE for Example 5.4 with multiplicity m = 2.

n 32 64 128 256 512 1024
flopsn

flopsn/2
4.8 4.4 4.2 4.1 4.0 4.0

show that the ratios are close to 4, which is consistent with the O(n2) complexity. See
Table 5.1.

Example 5.3. We consider a companion matrix C with multiple eigenvalues
{2−i, 2−i}, i = 1, 2, . . . , n/2.

For n = 10, SCE gives five estimates for the five eigenvalue clusters {2−i, 2−i}:
2.5E2, 9.9E2, 6.4E1, 3.4E2, 4.7E1. We see that the eigenvalue clusters are still
well conditioned. This somehow is consistent with the result that multiple roots of
polynomials may be well conditioned if the multiplicities are preserved on a proper
pejorative manifold [22], [32].

However, for large problems with multiple eigenvalues, eigensolvers such as the
one in [11] give inaccurate results. Thus, it is not clear if SCE with those eigensolvers
accurately reflects the condition. With multiplicity preserving eigensolvers, it is possi-
ble to further explore the potential of SCE. This remains an open problem. Therefore,
in the following example, we report only the complexity results.

Example 5.4. Consider a companion matrix C whose eigenvalues are the roots
of unity with different multiplicities m. (We chose this example because its nonzero
entries are relatively easy to compute accurately.) Tables 5.2 shows the flop ratios
flopsn

flopsn/2
for m = 2. Very similar results can be observed for m to be a fraction of n

such as n
4 . Thus we omit them.

6. Conclusions. We develop a condition estimation scheme for the eigenvalues
of a class of matrices which are low rank perturbations to rank symmetric matrices.
Rank structures of these matrices are exploited and fast structured matrix operations
are presented, such as Schur decomposition, matrix equation solution, Schur form up-
date, compact semiseparable form reconstruction, etc. These operations may be used
in the condition estimation of other structured matrices and more general problems
such as invariant subspace computations.

Similar techniques can also be used to estimate the condition of the eigenvectors.
The information in the condition estimation for the eigenvalues can be reused. It is
also possible to derive a condition estimate for the average eigenvalue of the block Tc

in (2.1). In this way, we can save about 3/4 of the diagonal swapping work, on average,
for all the eigenvalues. We also notice that the cost for the structured Sylvester solver
can be possibly reduced further, since K in (3.4) is a low rank matrix.
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ORDINAL RANKING FOR GOOGLE’S PAGERANK∗

REBECCA S. WILLS† AND ILSE C. F. IPSEN‡

Abstract. We present computationally efficient criteria that can guarantee correct ordinal
ranking of Google’s PageRank scores when they are computed with the power method (ordinal
ranking of a list consists of assigning an ordinal number to each item in the list). We discuss the
tightness of the ranking criteria, and illustrate their effectiveness for top k and bucket ranking. We
present a careful implementation of the power method, combined with a roundoff error analysis that
is valid for matrix dimensions n < 1014. To first order, the roundoff error depends neither on n nor
on the iteration count, but only on the maximal number of inlinks and the dangling nodes. The
applicability of our ranking criterion is limited by the roundoff error from a single matrix vector
multiply. Numerical experiments suggest that our criteria can effectively rank the top PageRank
scores. We also discuss how to implement ranking for extremely large practical problems, by curbing
roundoff error, reducing the matrix dimension, and using faster converging methods.
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ordinal rank, roundoff error
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1. Introduction. Google founders Larry Page and Sergey Brin developed the
PageRank algorithm primarily for ranking Web pages. In addition to its continued
use in many Google Web search tools [1], the PageRank algorithm reaches beyond
the Web to many other applications involving directed graphs such as social networks
and semantic networks [2, 9, 11, 14, 19, 30, 33, 37, 45], as well as genomics [34], and
identifying sources of hospital infections [41]. In fact, Hilgers and Langville recently
identified the PageRank algorithm as one of the five greatest applications of Markov
Chains [44].

The Google PageRank vector π is the stationary distribution of a n×n stochastic
matrix G

πT G = πT , π ≥ 0, ‖π‖1 = 1.(G)

Each component of π measures the importance of a web page [8, 36]. If πi > πj , then
web page i has higher PageRank than web page j, and page i may be displayed ahead
of page j among the search results.

The matrix G is a convex combination of two stochastic matrices, G ≡ αS + (1−
α)1vT . Here 0 < α < 1 is a scalar, which was originally set to .85 [8, section 2.1.1]; S
is an n×n stochastic matrix; 1 is the column vector of all ones; and v ≥ 0 is a column
vector with ‖v‖1 = 1. Because α < 1 and 1 is a right eigenvector of S, the eigenvalue
one of G is algebraically simple [13, 20, 40], which implies that π is unique.

Row i of S contains the outgoing links from web page i to other pages, while
column i contains the incoming links from other pages to page i. A web page without
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any outgoing links (such as a pdf, image, or audio file) is called a dangling node. Zero
rows corresponding to dangling nodes are replaced by a dangling node vector that has
nonnegative elements summing to one.

In their 1998 paper [36, section 2.6] Google founders Brin and Page computed
PageRank with the power method.

Power method applied to G. Let x(0) ≥ 0 with ‖x(0)‖1 = 1. Repeat

[x(k+1)]T = [x(k)]T G, k ≥ 0,(P)

until some termination criterion is satisfied. Although numerous, possibly faster,
methods have been proposed since 1998 [4, 31, 32], the power method retains many
advantages:

1. It is simple to implement, especially in a parallel computing environment [17].
2. It requires a minimum of storage.
3. It has a robust and predictable convergence behavior that is insensitive to

changes in the matrix. The convergence rate depends only on α, and is not
sensitive to the underlying Web graph represented by S, the personalization
vector v, the dangling node vector, or the starting vector x(0) [17].

4. It is numerically stable. All operations are numerically well conditioned. If
1 − α is precomputed, then no subtractions are necessary to compute the
iterates of (P). There is no danger of overflow since, in exact arithmetic,
‖x(k)‖1 = 1.

The power method (P) as well as most iterative methods for computing PageRank
compare successive iterates, based on their geometric distance or ranking distance.
Once such a distance is small enough, the most recent iterate is judged to be a
sufficiently good approximation to π. But the question is: Is the induced ranking of
the iterate correct?

Overview. In section 2 we answer the previous question with “no.” In section
3 we present the main idea of our paper, a ranking criterion for the elements of an
iterate x(k):

If x
(k)
i > x

(k)
j + β, then πi > πj .

Here β is an upper bound for the error ‖x(k) − π‖1. We show how this criterion
can be used for exact, top k, and bucket ranking. In section 4 we derive several
classes of computationally efficient bounds β based on geometric distances between
iterates. In section 5 we present a careful implementation of the power method and
derive roundoff error bounds for the iterates x(k). Numerical experiments in section 6
demonstrate that our criterion can identify the ranking of the top PageRank scores.
We conclude with a discussion of how to solve extremely large problems in section 7.

Notation. All matrices are n×n matrices, and all vectors are n×1 column vectors.
The n×n identity matrix is I, with ith column ei. The transpose of a vector v is vT ,
the elements of v are vi, and inequalities like v ≥ 0 and |v| ≥ 0 are to be interpreted
componentwise. The one norm ‖ · ‖1 is the maximal column sum, and the infinity
norm ‖ · ‖∞ the maximal row sum. In particular, if x is a column vector, then

‖x‖1 =
∑

i

|xi| = ‖xT ‖∞, ‖x‖∞ = max
i

|xi| = ‖xT ‖1.

2. Existing termination criteria do not produce correct rankings. The
two most frequently mentioned termination criteria for PageRank computation are
based on geometric distance and ranking distance [6, section 4.2.1].
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Geometric distance. The traditional convergence criterion terminates the power
method once some norm of the residual is sufficiently small. Since the power method
iteration (P) contains no normalization, the residual equals the difference between
successive iterates, [x(k)]T − [x(k)]T G = [x(k) − x(k+1)]T . The power method (P) is
terminated once ‖x(k) −x(k+1)‖ is sufficiently small in the one, two, or infinity norms.
The residual norm of (P) can be interpreted as a distance between two vectors, and
has thus been classified as a geometric distance [6, section 4.2.1], in contrast to the
ranking distance below.

Ranking distance. We specify the position of an element in an ordered list through
its ordinal rank, which is defined below first for a single element and then for a whole
vector (the ordinal rank bears no relation to the numerical rank).

Definition 2.1 (ordinal rank). Let x =
(
x1 . . . xn

)T be a real vector, and σ
a permutation that orders the elements of x in decreasing order, xσ(1) ≥ . . . ≥ xσ(n).
Then the ordinal rank of an individual element is Orank(xi) ≡ σ(i), 1 ≤ i ≤ n, and
the ordinal rank of the whole vector is Orank(x) ≡

(
Orank(x1) . . . Orank(xn)

)
.

If the elements of x are distinct, and if xj = maxi xi, then Orank(xj) = 1; and if
xj = mini xi, then Orank(xj) = n. If x contains identical elements, then the ordinal
ranking is not unique, because the permutation σ in Definition 2.1 is not unique and
is not required to preserve the relative order of the elements (i.e., σ does not have to
be stable in the sense of sorting). In contrast to other ranking schemes, no two items
receive the same ordinal rank, even when they are equal. The concept of ordinal rank
leads to the particular ranking distance below, which is known as Kendall’s τ distance
[6, section 4.2.2] [27, section 1.13].

Definition 2.2 (ranking distance). The ranking distance between real vectors x
and y, each with distinct elements, is

∑
i

∑
j δxy(i, j), where

δxy(i, j) ≡
{

1 Orank(xi) < Orank(xj) and Orank(yi) > Orank(yj)
0 otherwise

.

Ranking distances have been used as termination criteria in iterative methods
for computing PageRank [3, 10, 25, 28, 38, 39, 46]. Because the matrix G is large,
computing the ranking distance for entire vectors is too expensive. To reduce com-
putation time, one can focus on the top k rankings [15, 25, 26]. Experiments in [26]
suggest that termination based on the top k rankings tends to produce rankings that
resemble those produced by a termination criterion based on the one norm of the
residual.

Incorrect ranking. Simple examples, such as those described in [47, section 4.2]
for the directed ring1 graph with n vertices, illustrate that geometric and ranking
distances between successive iterates of the power method (P) can fail to produce
correct rankings. In addition, the examples demonstrate that (1) correct ranking can
be achieved in some iteration and destroyed in the next, (2) a small residual norm does
not guarantee correct ranking, (3) zero ranking distance between successive iterates
does not guarantee correct ranking, and (4) successive iterates can be correctly ranked
before the residual norm is small.

3. Ranking. Since geometric and ranking distances between successive iterates
of the power method (P) do not ensure correct ranking, we consider instead the

1In a directed ring graph with n vertices, vertex i links to vertex i+ 1, 1 ≤ i ≤ n− 1, and vertex
n links back to vertex 1.
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ranking distance between an iterate x(k) and the desired PageRank vector π. We
obtain information about the ranking distance from the geometric distance, and show
how the resulting ranking criterion can be used to perform exact, top k, and bucket
ranking.

We use a consequence of an inequality from [21, Corollary 2.4(a)] which relates
the one norm and infinity norm of a vector whose elements sum to zero: If y is a
column vector with yT1 = 0, then

‖y‖∞ ≤ ‖y‖1/2.(3.1)

The main idea of our paper is to gather information about relative ranking based on
an approach by Kirkland [29, Corollaries 3.9-3.12], which we present below in a more
general context.

Theorem 3.1 (ranking criterion). Let x ≥ 0 with ‖x‖1 = 1 be an approximation
to π in (G), and β ≥ ‖x − π‖1. If xi > xj + β, then πi > πj .

Proof. If x = π, then β = 0 and the result holds trivially. Assuming β > 0 gives
(xi − πi) − (xj − πj) ≤ |xi − πi| + |xj − πj | ≤ 2‖x− π‖∞. Since (x − π)T 1 = 0, (3.1)
implies ‖x − π‖∞ ≤ ‖x − π‖1/2. Hence (xi − πi) − (xj − πj) ≤ ‖x − π‖1 ≤ β, and
xi − (xj + β) ≤ πi − πj . Therefore, 0 < xi − (xj + β) implies 0 < πi − πj .

Consequently, if two elements of x(k) are well-separated (compared to the geo-
metric distance between x(k) and π), then we can say something about the relative
rankings of the corresponding PageRank scores. Because the ranking criterion in The-
orem 3.1 applies only to well-separated elements, it can, in general, determine only a
partial ranking of the PageRank scores.

Kirkland [29, section 3] expresses the quantity β in Theorem 3.1 as a function of
the lengths of shortest cycles on which vertices i and j are situated in the graph of
S. However, it is not clear how to efficiently compute shortest cycle lengths for all
vertices.

Exact, top k, and bucket ranking. The bucket ranking criteria below are motivated
by Google’s Toolbar PageRank scores, which are integers from 0 (low) to 10 (high).
Our ranking criteria determine a topological (or partial) order for the PageRank
scores.

Let x ≥ 0 with ‖x‖1 = 1 be an approximation to π in (G) and β ≥ ‖x− π‖1. Let
Q be a permutation that orders the elements of x in decreasing magnitude, i.e.,

x̃ ≡ Qx =
(
x̃1 . . . x̃n

)T
, x̃1 ≥ . . . ≥ x̃n, π̃ ≡ Qπ =

(
π̃1 . . . π̃n

)T
.

In contrast to the elements of x̃, those of π̃ are, in general, not ordered in decreasing
magnitude.

First we show that if element k of x̃ is well separated from element k + 1, then
elements 1, . . . , k approximate the top k PageRank scores.

Lemma 3.2 (top k). If x̃k > x̃k+1 + β, then Orank(π̃i) ≤ k for 1 ≤ i ≤ k, and
Orank(π̃j) ≥ k + 1 for k + 1 ≤ j ≤ n.

Proof. From x̃k > x̃k+1 + β follows π̃k > π̃k+1, according to Theorem 3.1.
The descending ordering implies x̃k > x̃k+1 + β ≥ . . . ≥ x̃n + β, so that π̃k >
π̃k+1, . . . , π̃n. The descending ordering also implies x̃1 ≥ . . . ≥ x̃k > x̃k+1 + β, so
that π̃1, . . . , π̃k > π̃k+1. Combining the two sets of inequalities yields π̃1, . . . , π̃k >
π̃k+1, . . . , π̃n. Therefore Orank(π̃i) ≤ k for 1 ≤ i ≤ k, and Orank(π̃j) ≥ k + 1 for
k + 1 ≤ j ≤ n.

Now we present a criterion for finding the “exact” rank (here “exact” does not
refer to finite precision accuracy but to the fact that we can assign a number, rather
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than an interval, to the rank). If element k + 1 of x̃ is well separated from elements
k and k + 2, then element k + 1 of x̃ approximates the (k + 1)st PageRank score.

Lemma 3.3 (exact rank). If x̃k > x̃k+1 + β and x̃k+1 > x̃k+2 + β, then
Orank(π̃k+1) = k + 1.

Proof. This follows from Lemma 3.2. Condition x̃k > x̃k+1+β implies π̃1, . . . , π̃k >
π̃k+1; hence Orank(π̃k+1) ≥ k + 1. Condition x̃k+1 > x̃k+2 + β implies π̃k+1 >
π̃k+2, . . . , π̃n; hence Orank(π̃k+1) ≤ k + 1.

Often it is not possible to determine the exact PageRank, but we can still try
to assign PageRank scores to a “bucket”. This is done in the next lemma, which
represents an extension of Lemma 3.3 to intervals.

Lemma 3.4 (bucket). If x̃k > x̃k+i + β and x̃k+i > x̃k+i+j + β for i, j ≥ 1 then
k + 1 ≤ Orank(π̃k+i) ≤ k + i + j − 1.

Proof. This follows from Lemma 3.2. The condition x̃k > x̃k+i + β implies
π̃1, . . . , π̃k > π̃k+i, so that Orank(π̃k+i) ≥ k + 1. The condition x̃k+i > x̃k+i+j + β
implies π̃k+i > π̃k+i+j , . . . , π̃n so that Orank(π̃k+i) ≤ k + i + j − 1.

Lemma 3.4 assigns PageRank score x̃k+i to a bucket that represents ranks k +
1, . . . , k + i + j − 1. If i = j = 1 then the bucket consists of a single number and
Lemma 3.4 reduces to Lemma 3.3. The top k ranking in Lemma 3.2 is a special case
of bucket ranking with two buckets: One for ranks 1, . . . , k and another one for ranks
k + 1, . . . , n. In contrast to bucket sorting the buckets are not specified beforehand;
they emerge during the execution of the power method (P).

4. Error bounds for the power method. We present four classes of com-
putable bounds for the error ‖x(k) − π‖1 and for the quantity β used in the ranking
criteria in section 3. The four classes consist of the following types of bounds: simple
(section 4.1), backward looking (section 4.2), forward looking (section 4.3), and two-
level forward looking (section 4.4). We use the following facts for stochastic matrices
S: ‖Si‖∞ = 1, i ≥ 0, and

‖Si(I − αjSj)−1‖∞ =
1

1 − αj
, i ≥ 0, j ≥ 1.(4.1)

The last expression follows from the fact that (I − αjSj)−1 is nonnegative, and
‖(I − αjSj)−1‖∞ = (1 − αj)−1 [32, section 7.1].

First we justify why the ranking of the iterates in (P) can converge under a cri-
terion like the one in Theorem 3.1. The inequalities below relate two corresponding
components of two different iterates and show that the distance between the compo-
nents changes less and less as the iterations progress.

Theorem 4.1 (component distances stabilize).

|x(k−1)
i − x

(k−1)
j | − αk−1γ ≤ |x(k)

i − x
(k)
j | ≤ |x(k−1)

i − x
(k−1)
j | + αk−1γ, k ≥ 1,

where γ ≡ 2‖x(1) − x(0)‖1.
Proof. As in [7, Property 7] one shows [x(k)]T = αk[x(0)]T Sk+(1−α)

∑k−1
l=0 αlvT Sl.

Hence the difference between two components equals

x
(k)
i − x

(k)
j = αk

[
x(0)

]T
Sk(ei − ej) + (1 − α)

k−1∑
l=0

αlvT Sl(ei − ej)

=
(
x

(k−1)
i − x

(k−1)
j

)
+ αk−1

[
x(1) − x(0)

]T
Sk−1(ei − ej).
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The Hölder inequality and (4.1) imply∣∣∣[x(1) − x(0)]T Sk−1(ei − ej)
∣∣∣ ≤ ‖x(1)−x(0)‖1‖Sk−1(ei−ej)‖∞ ≤ 2‖x(1)−x(0)‖1.

The idea behind the bounds for ‖x(k) − π‖1 is to extend the residual, which is
a difference of successive iterates [x(k)]T − [x(k)]T G = [x(k) − x(k+1)]T , to differences
between nonsuccessive iterates [x(k−j)−x(k)]T . The derivations in subsequent sections
are based on the following recursions.

Lemma 4.2 (recursions).

Error : [x(k+1) − π]T = α[x(k) − π]T S, k ≥ 0
Iterate difference : [x(k−j+1) − x(k+1)]T = α[x(k−j) − x(k)]T S, 1 ≤ j ≤ k.

Proof. The recursions follow from [x(k+1)]T = [x(k)]T G, G = αS + (1 − α)1vT ,
and [x(k) − π]T 1 = 0.

Note that the statements also follow from the properties of splitting methods [43,
section 3.6]. This is because π is the solution of the linear system πT (I − αS) =
(1 − α)vT , and the power method [x(k+1)]T = [x(k)]T G is mathematically equiva-
lent to a splitting method [x(k+1)]T M = [x(k)]T N + (1 − α)vT , where M = I and
N = αS.

The second recursion in Lemma 4.2 is an extension of the one derived for j = 1
in [29, Proof of Corollary 3.11].

4.1. Simple bound. The recursions in Lemma 4.2 lead immediately to a simple
normwise error bound that depends only on α and k.

Theorem 4.3 (simple bound). ‖x(k) − π‖1 ≤ αk‖x(0) − π‖1 ≤ 2αk, k ≥ 0.
Proof. Lemma 4.2 implies [x(k) − π]T = αk[x(0) − π]T Sk, and (4.1) implies

‖x(k) − π‖1 = ‖[x(k) − π]T ‖∞ ≤ αk‖[x(0) − π]T ‖∞‖Sk‖∞ = αk‖x(0) − π‖1.

The second upper bound follows from the triangle inequality and ‖x(0)‖∞ = ‖π‖∞
= 1.

The bounds in Theorem 4.3 first appeared in [5, Theorem 5.1] and [24, section 4].
In the special case x(0) = v, when the starting vector equals the personalization vector,
the power of α can be increased by one, ‖x(k) − π‖1 ≤ αk+1‖v − ST π‖1 ≤ 2αk+1;
see also [7, Property 9]. The simple bound in Theorem 4.3 can be used as a ranking
criterion in the power method (P) as follows.

Corollary 4.4 (ranking with the simple bound). If x
(k)
i > x

(k)
j + 2αk, k ≥ 1,

then πi > πj .
Proof. Follows from Theorem 4.3 and setting β = 2αk in Theorem 3.1.

4.2. Backward-looking bounds. Backward-looking bounds are constructed
from previous iterates.

Theorem 4.5 (backward-looking bounds). ‖x(k) − π‖1 ≤ αj

1−αj ‖x(k−j) − x(k)‖1,
1 ≤ j ≤ k.

Proof. Lemma 4.2 implies

αj [x(k−j) − x(k)]T Sj = [x(k) − x(k+j)]T = [x(k) − π]T − [x(k+j) − π]T

= [x(k) − π]T − αj [x(k) − π]T Sj = [x(k) − π]T (I − αjSj).

Hence
[
x(k) − π

]T
= αj

[
x(k−j) − x(k)

]T
Sj(I − αjSj)−1. Take norms

‖x(k) − π‖1 = ‖[x(k) − π]T ‖∞ ≤ αj‖[x(k−j) − x(k)]T ‖∞‖Sj(I − αjSj)−1‖∞
and use (4.1).
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The bound for j = 1 in Theorem 4.5 was already derived in [29, (3.1)] for general
approximations, not limited to just power method iterates. Note that for a fixed step
length j, a full backward look is not possible in early iterations as long as k < j.
Experiments indicate that no bound is always the tightest. We can distinguish two
types of backward-looking bounds: Those where j is fixed and those where j is a
function of k. Among the fixed step bounds, the j = 1 bound is preferable for
several reasons: It tends to be competitive in the long-term since ‖x(k) − π‖1 ≤
α‖x(k−1) − π‖1 ≤ α2‖x(k−2) − π‖1 ≤ . . . . It takes effect immediately starting with
iteration 1 – in contrast to other bounds which require a startup of j iterations
before the full backward look is possible. It performs well in our experiments in later
iterations. At last, it keeps storage requirements low, because bounds with fixed j
need to store j or more vectors. Among the bounds where j is a function of k, the
simplest one is j = k,

‖x(k) − π‖1 ≤ αk

1 − αk
‖x(0) − x(k)‖1.

This bound has low storage requirements as well, it is effective immediately, start-
ing with iteration 1, and in our experiments it tends to do well in early iterations.
However, the j = k bound does not do as well in later iterations. This is because it
depends on the initial error ‖x(0) − π‖1 which remains constant throughout the itera-
tions, while for bounds with a fixed step length j, the error ‖x(k−j) − π‖1 approaches
zero as k increases. Applied to the power method (P), the backward-looking bounds
in Theorem 4.5 can be used for ranking as follows.

Corollary 4.6 (ranking with backward-looking bounds). If x
(k)
i > x

(k)
j +

αl

1−αl ‖x(k−l) − x(k)‖1, 1 ≤ l ≤ k, then πi > πj .

4.3. Forward-looking bounds. Forward-looking bounds are constructed from
future iterates. The derivation is similar to the one in Theorem 4.5.

Theorem 4.7 (forward-looking bounds). ‖x(k) − π‖1 ≤ ‖x(k+j)−x(k)‖1
1−αj , k ≥ 0,

j ≥ 1.
The forward-looking bound for j = 1 was derived in [7, Property 12]. Looking

farther ahead can lead to better estimates for the error at the current iteration k.
This is to be expected because future iterates can be more accurate. Comparing the
bounds in Theorem 4.7 for j = 1 and j > 1 shows that looking several steps ahead
can result in tighter bounds than just looking a single step ahead,

‖x(k+j) − x(k)‖1

1 − αj
≤ ‖x(k+1) − x(k)‖1

1 − α
, k ≥ 0, j ≥ 1.

Applied to the power method (P), the forward-looking bounds in Theorem 4.7 can be
used for ranking as follows.

Corollary 4.8 (ranking with forward-looking bounds). If x
(k)
i > x

(k)
j +

‖x(k+l)−x(k)‖1
1−αl , k ≥ 0, l ≥ 1, then πi > πj.

4.4. Two-level, forward-looking bounds. Another type of forward bound
looks forward in two stages.

Theorem 4.9 (two-level, forward-looking bounds).

‖x(k) − π‖1 ≤ ‖x(k+j) − x(k)‖1 +
‖x(k+j+i) − x(k+j)‖1

1 − αi
, k ≥ 0, j, i ≥ 1.
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Corollary 4.10 (ranking with two-level, forward-looking bounds). If

x
(k)
i > x

(k)
j + ‖x(k+l) − x(k)‖1 +

‖x(k+l+h) − x(k+l)‖1

1 − αh
, k ≥ 0, l, h ≥ 1,

then πi > πj .

5. Finite precision computation. We present error bounds for perturbed
power method iterates in section 5.1, a floating point implementation of the power
method in section 5.2, and bounds for ranking in floating point arithmetic in section
5.3.

5.1. Perturbation bounds. In a finite precision context, the ranking criterion
in Theorem 3.1 must be applied to perturbed power method iterates x̂(k). That is,
if x̂

(k)
i > x̂

(k)
j + ‖x̂(k) − π‖1, then πi > πj . We assume that the perturbed iterates

are nonnegative, have unit norm, and incur an error during each iteration. The error
bounds for ‖x̂(k) − π‖1 below are simple and easy to compute.

Theorem 5.1 (finite precision error bounds). Let x̂(0) = x(0), and [x̂(k+1)]T =
[x̂(k)]T G + gT

k , k ≥ 0, be such that x̂(k) ≥ 0 and ‖x̂(k)‖1 = 1, k ≥ 0.
1. Simple bound:

‖x̂(k) − π‖1 ≤ 2αk +
1 − αk

1 − α
max

0≤i≤k−1
‖gk−i‖1, k ≥ 1.

2. Backward-looking bounds:

‖x̂(k) − π‖1 ≤ αj

1 − αj
‖x̂(k−j) − x̂(k)‖1 +

1 − αj

1 − α
max

0≤i≤j−1
‖gk−i‖1, 0 ≤ j < k.

3. Forward-looking bounds:

‖x̂(k) − π‖1 ≤ ‖x̂(k+j) − x̂(k)‖1

1 − αj
+

1 − αj

1 − α
max
1≤i≤j

‖gk+i‖1, k ≥ 0, j ≥ 1.

4. Two-level, forward-looking bounds:

‖x̂(k) − π‖1 ≤ ‖x̂(k+j) − x̂(k)‖1 +
‖x̂(k+j+i) − x̂(k+j)‖1

1 − αi
+

1 − αi

1 − α
max
1≤l≤i

‖gk+j+l‖1,

where k ≥ 0, j, i ≥ 1.
Proof. First we derive an expression for the absolute error in the perturbed

iterates. From x̂(k) ≥ 0, x(k) ≥ 0, ‖x̂(k)‖1 = ‖x(k)‖1 = 1 follows gT
k 1 = fT

k 1 = 0.
With f0 ≡ 0 this implies

x̂(k) = x(k) + fk, fT
k ≡ αjfT

k−jS
j +

j−1∑
i=0

αigT
k−iS

i, 1 ≤ j ≤ k.(5.1)

We use (5.1) to derive each of the four finite precision bounds.
1. Simple bound: This follows from [x̂(k) − π]T = [x(k) − π]T + fT

k and (5.1).
2. Backward-looking bounds: As in the proof of Theorem 4.5 one shows

[x̂(k) − π]T (I − αjSj) = αj [x̂(k−j) − x̂(k)]T Sj + fT
k − αjfT

k−jS
j .

Then (5.1) implies fT
k − αjfT

k−jS
j =

∑j−1
i=0 αigT

k−iS
i.
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3. Forward-looking bounds: As in the proof of Theorem 4.7 one shows

[x̂(k) − π]T (I − αjSj) = [x̂(k) − x̂(k+j)]T + fT
k+j − αjfT

k Sj.

From (5.1) follows fT
k+j − αjfT

k Sj =
∑j−1

i=0 αigT
k+j−iS

i.
4. Two-level, forward-looking bounds: As in the proof of Theorem 4.9, one

shows that [π − x̂(k)]T is equal to

[x̂(k+j)−x̂(k)]T −[x̂(k+j)−x̂(k+j+i)]T (I−αiSi)−1−fT
k+j−[fk+j+i−fk+j ]T (I−αiSi)−1.

Hence (5.1) implies for the error term

−fT
k+j − [fk+j+i − fk+j ]T (I − αiSi)−1 = −

i−1∑
l=0

αlgT
k+j+i−lS

l(I − αiSi)−1.

The term gk takes care of finite precision errors incurred in iteration k, including
those from matrix vector multiplication, as well as explicit normalization of the iter-
ates if necessary. Theorem 5.1 shows that the bounds are affected only by the error
in a single iteration, and do not suffer from accumulation of errors.

5.2. Power method implementation. We discuss the implementation of the
power method in floating point arithmetic.

As already mentioned in section 1, the matrix S is derived from the webgraph
and zero rows corresponding to dangling nodes (i.e., web pages without outlinks) are
modified to ensure that S is stochastic. Computationally, though, it is more efficient
to keep the webgraph part separated from the dangling node fix so that one can take
advantage of the latter’s low rank [32, section 8.1]. It turns out that this separation
also limits accumulation of roundoff error in a matrix vector multiplication with S.
Therefore it is necessary to discuss the construction of S in more detail.

The web graph is represented by a n × n substochastic matrix H . That is, the
elements of H are nonnegative, and each row is either zero, or else its elements sum
to one. The zero rows correspond to dangling nodes, which are web pages without
outlinks. To obtain the stochastic matrix S, one can replace each zero row by the
same dangling node vector wT , where w is a column vector with w ≥ 0 and ‖w‖1 = 1.
The resulting Google matrix is G = αS + (1 − α)1vT , where S = H + dwT and d is
a column vector of zeros and ones. An element of d is equal to 1 if the corresponding
row in H is zero; otherwise this element of d is equal to zero. The following floating
point implementation of the power method (P) exploits the fact that dwT and 1vT

have rank one.

Floating point implementation of (P). Let x̂(0) ≥ 0 with ‖x̂(0)‖1 = 1, and
α1 ≡ 1 − α. Repeat

[y(k+1)]T := fl
(
α([x̂(k)]T H + ([x̂(k)]T d)wT ) + α1v

T
)

(FP)

x̂(k+1) := fl
(
y(k+1)/‖y(k+1)‖1

)
until some termination criterion is satisfied.

The explicit normalization of the iterates in (FP) is necessary to ensure that
iterate norms remain close to unity in a finite precision environment. Figure 5.1
illustrates why this is necessary. The norms of the unnormalized iterates y(k) deviate
much further from 1 than the norms of the normalized iterates x̂(k). The ratios



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1686 REBECCA S. WILLS AND ILSE C. F. IPSEN

0 20 40 60 80 100 120 140 160 180 200
−16

−15

−14

−13

Iteration Number

L
og

 o
f 

D
is

ta
nc

e 
fr

om
 O

ne

 

 

 ||y(k)||

 ||x(k)|||

0 20 40 60 80 100 120 140 160 180 200
−16

−15

−14

−13

−12

−11

−10

Iteration Number

L
og

 o
f 

D
is

ta
nc

e 
fr

om
 O

ne

 

 

 ||y(k)||

 ||x(k)|||

Fig. 5.1. |1− ‖x̂(k)‖1| and |1− ‖y(k)‖1| for iterates of the Power Method (FP) applied to the
matrices GS (left) and GL (right) in section 6.

|1 − ‖y(k)‖1| can approach 10−13 for the small matrix GS and hover around 10−11

for the larger matrix GL. The analysis in the proof of Theorem 5.2 explains this: In
IEEE double precision the unit roundoff is ε ≈ 10−16, so that the error in the matrix
vector multiplication [x̂(k)]T GL is about mε ≈ 4 · 10−11, where m = 168, 685 is the
maximal number of nonzero elements in any column of HL. For the smaller matrix
GS , the computation of xT d dominates, leading to an error of ‖d‖1ε ≈ 7 · 10−12, since
d has 2,861 elements equal to one. In contrast, the norms of the normalized iterates
are almost perfect. In all iterations k the deviation |‖x̂(k)‖1 − 1| is either ε, ε/2, or
0. Note that Figure 5.1 shows merely the effect of a single missing normalization; the
accumulated damage from failing to normalize over many iterations is much worse.

5.3. Floating point bounds. We bound the roundoff error gk incurred in it-
eration k of the power method (FP). Existing roundoff error bounds for the power
method and stationary iterative methods [22, sections 17, 18], [42] do not seem to be
applicable here, because they require knowledge of the condition number of a diago-
nalizing transformation, or assume that the spectral radius of the iteration matrix is
strictly less than one.

We assume the standard model for the elementary floating point arithmetic op-
erations with unit roundoff ε [22, section 2.2]. If a and b are floating point numbers,
then

fl(a op b) = (a op b)(1 + δ), |δ| ≤ ε, op = +,−, ∗, /.

We exploit the fact that the iterations in (FP) execute no subtractions, and that all
operations are well conditioned. The norms are computed by compensated summation
[22, section 4.3], [35] so that the dominant part of the roundoff error ‖gk‖1 does not
depend on the matrix dimension n, but only on the sparsity of the matrix. The
analysis below holds for matrices of order n < 1014, in IEEE double precision with
unit roundoff ε ≡ 10−16.

Theorem 5.2 (floating point bounds). Assume that nε < .01, and
1. The scalars α and α1 ≡ 1 − α, and the elements of H, v, w, and x̂(0) = x(0)

are floating point numbers.
2. The iterates x̂(k) are computed according to (FP).
3. The norms ‖y(k+1)‖1 in (FP) are computed by compensated summation.
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4. H has at most m nonzeros per column, and ‖d‖1 zero rows.
Then

‖gk+1‖1 ≤ 2ε(3.03 + cαM)
1 − ε(3.03 + cαM)

+ O(nε2), k ≥ 0

where M ≡ max{m, ‖d‖1 + 1}, and c ≡ 1.01(1 + 3.03ε).
Proof. Abbreviate x ≡ x̂(k), y ≡ y(k+1), and δ ≡ ‖d‖1 + 1.

1. Since H has at most m nonzero elements per column, the elements of S
and x are nonnegative, and mε ≤ .01 we obtain with [22, (3.2) and Lemma 3.4]
fl(xT H) = xT H + hT

1 , where |hT
1 | ≤ 1.01mε (xT H).

2. Similarly, since α and the elements of d and x are nonnegative, we obtain for
the second summand in αxT S, fl(αxT d) = αxT d + h2, where |h2| ≤ 1.01δε (αxT d).

3. For the computation of yT = fl(xT G) abbreviate zT ≡ α fl(xT H)+fl(αxT d)wT

+ α1v
T so that yT = fl(zT ) = zT + hT

3 , where |hT
3 | ≤ 3.03ε zT . From zT =

xT G + αhT
1 + h2w

T follows

|hT
3 | ≤ 3.03ε

(
xT G + 1.01mε (xT H) + 1.01δε (αxT dwT )

)
≤ 3.03ε

(
xT G + 1.01Mε (αxT S)

)
.

In order to express yT in terms of xT G, write yT = zT +hT
3 = xT G+αhT

1 +h2w
T +hT

3 .
Then yT = xT G + hT

4 , where hT
4 ≡ αhT

1 + h2w
T + hT

3 . Hence

|hT
4 | ≤ 1.01mε (αxT H) + 1.01δε (αxT dwT ) + 3.03ε

(
xT G + 1.01Mε (αxT S)

)
≤ 1.01Mε (αxT S) + 3.03ε

(
xT G + 1.01Mε (αxT S)

)
≤ ε

(
3.03 xT G + 1.01M(1 + 3.03ε) (αxT S)

)
.

4. Now comes the computation of ‖y‖1. Since nε < .01, and the additions in
‖y‖1 involve only nonnegative numbers, a compensated summation gives [22, (4.8)]
η ≡ fl(‖y‖1) = ‖y‖1(1 + h5), where |h5| ≤ 2ε +O(nε2). It is more convenient to write
instead η = ‖y‖1/(1 + h6), where |h6| ≤ 2ε + O(nε2).

5. A final division completes the normalization,

x̂(k+1) = fl
(

y

η

)
=

yT

η
+ hT

7 , where |hT
7 | ≤ ε

yT

η
.

To express x̂(k+1) in terms of xT G write

x̂(k+1) =
yT

‖y‖1
+

yT

‖y‖1
h6 + hT

7 =
xT G + h4

‖y‖1
+

yT

‖y‖1
h6 + hT

7 = xT G + gT
k+1,

where

gT
k+1 =

(1 − ‖y‖1)xT G + hT
4

‖y‖1
+

yT

‖y‖1
h6 + hT

7 .

Apply ‖y‖1 ≥ 1 − ‖h4‖1 twice to get

‖gk+1‖1 ≤ 2‖h4‖1

1 − ‖h4‖1
+ |h6| + ‖h7‖1.

From ‖h7‖1 ≤ ε(1 + |h6|) and |h6| ≤ 2ε + O(nε2) follows

‖gk+1‖1 ≤ 2‖h4‖1

1 − ‖h4‖1
+ 3ε + O(nε2).

At last use ‖h4‖1 ≤ ε(3.03 + cαM).
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Table 5.1

Range of parameter values for experiments in section 6.

Unit roundoff ε ≈ 10−16

Damping factor α = .85
Dimension of H, S, G n ≤ 4 · 106

Max # nonzeros in columns of H m ≤ 2 · 105

Max # iterations k ≤ 200

Theorem 5.2 implies that the roundoff error in an iteration of the power method
(FP) is bounded approximately by

‖gk‖1 � 2αMε

1 − αMε
≤ 4αMε if αMε ≤ 1/2.

Because we assume use of compensated summation, the roundoff error ‖gk‖1 does
not depend, to first order, on the matrix dimension n. It also does not depend on
the iteration count k. The roundoff error is more or less constant, and the same
for all iterations. It represents the error caused by a single matrix vector multiply,
and is determined, for the most part, by the maximal number of nonzeros m in any
column of H (i.e., the maximal number of inlinks into any web page) and the number
of dangling nodes ‖d‖1, whichever is larger. The discussion relating to Figure 5.1
in section 5.2 indicates that the bounds in Theorem 5.2 are realistic, and not too
pessimistic.

The only error we did not capture effectively in Theorem 5.2 consists of the
higher order effects O(nε2) in the compensated summation. Higher order effects can
be completely avoided with doubly compensated summation [22, Algorithm 4.3] for
applications of PageRank for matrices with dimensions not exceeding n ≤ 213 = 8192.

Corollary 5.3 (floating point version of error bounds). With the assumptions
in Theorem 5.2, the bounds in Theorem 5.1 hold with

‖gk‖1 ≤ 2ε(3.03 + cαM)
1 − ε(3.03 + cαM)

+ O(nε2), k ≥ 1,

where M ≡ max{m, ‖d‖1 + 1} and c ≡ 1.01(1 + 3.03ε).
Corollary 5.3 implies that the floating point error in the bounds is independent

of the iteration count. The error is caused essentially by the matrix vector multiply
and can be assumed to be constant. Moreover, the contribution of the floating point
error to the different types of bounds is essentially the same, so that all bounds incur
more or less the same floating point error.

We examine the ramifications of the above analysis when the power method (FP)
is applied to the data matrices in section 6, whose parameter ranges are listed in Table
5.1. The simple bound in Theorem 4.3 and the roundoff error bound in Theorem 5.2
amount to 2αk ≥ 10−14 and ‖gk‖1 ≤ 4 · 10−11. The roundoff error dominates the
ranking bounds in later iterations, so that the bounds remain essentially constant
from then on. Since the iterates can still change, though, one could continue the
power method (FP) as long as the ranking criteria in Theorem 5.1 collect new ranking
information. Note that the ranking criteria do not care whether the errors are due to
finite termination or roundoff. For illustration purposes we execute 200 iterations of
the power method in the experiments in section 6. A suitable termination criterion
would stop the iterations once log(2αk) < log(‖gk‖1).
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Table 6.1

Properties of the data matrices (n = matrix dimension, m = maximal number of nonzeros in
any column, M = max{m, dangling nodes + 1}, and g = roundoff error).

Matrix n Nonzeros m Dangling nodes M g

HS 9,914 36,854 340 2,861 29% 2,862 10−12

HL 3,148,440 39,383,235 168,685 91,462 3% 168,685 10−10

The higher order effects O(nε2) from the compensated summation are not likely
to be of any consequence for the experiments in section 6 because nε2 ≤ 10−25, which
is negligible compared to 2αk ≥ 10−14.

6. Numerical experiments. We present numerical experiments on data ma-
trices from web crawls to compare the finite precision error bounds in section 5 and
assess the performance of the ranking criterion. We describe the data matrices in
section 6.1, and compare the bounds with respect to tightness in section 6.2 and with
regard to ranking performance in section 6.3.

6.1. Data matrices. We present numerical experiments with two matrices that
are obtained from web crawls and available on David Gleich’s web page [16].

The properties of the two matrices are listed in Table 6.1. The small matrix HS of
dimension 9,914 represents a 2001 crawl [16, Webbase subgraph cs.stanford.edu], while
the larger matrix HL of dimension 3,148,440 represents a 2006 crawl [16, Wikipedia
2006-11-04]. Although the matrix HS is small and dates from an older crawl, its larger
percentage of dangling nodes is more representative of web graphs than that of HL.

We choose the most popular values for the parameters of the Google matrix:
α = .85 for the amplification factor; and the uniform vector for personalization,
dangling node, and starting vectors, x(0) = v = w = 1

n1. The two data matrices for
our experiments are

GS ≡ α(HS + dwT ) + (1 − α)1vT , GL ≡ α(HL + dwT ) + (1 − α)1vT .

The quantity g in Table 6.1 denotes the roundoff error from Corollary 5.3,

g ≡ 2ε(3.03 + cαM)
1 − ε(3.03 + cαM)

, M ≡ max{m, ‖d‖1 + 1}, c ≡ 1.01(1 + 3.03ε).

Note that the number of dangling nodes in GS exceeds the maximal number of inlinks.
Hence the dominant amplification factor M for the roundoff error of GS is determined
by the number of dangling nodes; see Theorem 5.2. This may reflect more what
happens in practice when the nondangling nodes can be outnumbered by the dangling
nodes, especially when applied to web graphs, since dangling nodes are part of the
ever increasing web frontier. All experiments are performed in Matlab. We did not
compute the norms with compensated summation because Matlab’s accuracy appears
to be sufficient for small problems with n ≤ 107.

6.2. Tightness of the bounds. We compare bounds for the error ‖x̂(k) − π‖1

in iteration k. Since the roundoff error is essentially the same for all bounds and
constant in each iteration, see Corollary 5.3, it suffices to compare the exact bounds.
We assume that storage for 3 iterates is available, and that no overwriting takes place,
so that successive iterates x̂(k−1) and x̂(k) require different storage locations. Among
the resulting seven bounds below we included the k-step backward bound to illustrate
the behavior of a bound where j is a function of k.
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Fig. 6.1. Error bounds for power method (FP) applied to the matrices GS (left) and GL (right).

(S) Simple bound: 2αk

(B1) Backward looking 1-step bound: α
1−α‖x̂(k−1) − x̂(k)‖1

(B2) Backward looking 2-step bound: α2

1−α2 ‖x̂(k−2) − x̂(k)‖1

(Bk) Backward looking k-step bound: αk

1−αk ‖x(0) − x̂(k)‖1

(F1) Forward looking 1-step bound: ‖x̂(k+1)−x̂(k)‖1
1−α

(F2) Forward looking 2-step bound: ‖x̂(k+2)−x̂(k)‖1
1−α2

(T) Two level 1-1-step bound: ‖x̂(k+1) − x̂(k)‖1 + ‖x̂(k+2)−x̂(k+1)‖1
1−α

Figure 6.1 shows the above bounds for the matrices GS and GL. The bounds
fall into two groups. The first group, consisting of (S) and (Bk), is less tight than
the second group, which comprises the remaining bounds. There is little difference
among the bounds in the second group. The straight lines in the context of the vertical
logarithmic axis suggest that the geometric distances between iterates decrease at the
same rate.

6.3. Ranking performance. Due to the lack of difference among the bounds
in the competitive second group, we choose only (B1) for ranking, because it is the
cheapest. The floating point version of the corresponding ranking criterion from
Theorem 5.1 is as follows: If x̂

(k)
i > x̂

(k)
j + βB, then πi > πj , where

βB ≡ α

1 − α
‖x̂(k−1) − x̂(k)‖1 + g.(B1-FP)

Applicability. Let Qj be a permutation that orders the elements of x̂(j) in de-
creasing order. That is, x̃(j) ≡ Qj x̂

(j) where x̃
(j)
1 ≥ . . . ≥ x̃

(j)
n . We count the number

of pairs to which the criterion (B1-FP) applies. That is, we count the number of
distinct pairs for which x̃

(j)
i > x̃

(j)
i+1 + βB in iterations 1, . . . , j. Figure 6.2 shows this

number for each iteration with the matrix GS (due to memory limitations we were
not able to collect this information for the large matrix GL in every iteration). The
line in the upper half represents the number of pairs of identical elements x̃

(j)
i = x̃

(j)
i+1

in each iterate. For instance, if x̃
(j)
1 = x̃

(j)
2 = x̃

(j)
3 , then we count the two pairs (1, 2)

and (2, 3). Since the ranking criterion cannot be applied to x̃1 and x̃2, the number
of identical element pairs puts a natural limit on the performance of any ranking
criterion that does not rely on additional criteria.
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Fig. 6.2. Applicability of ranking criterion (B1-FP) applied to the small matrix GS .
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Fig. 6.3. Buckets for ranking criterion (B1-FP) applied to iteration 200 with matrices GS (left)
and GL (right).

Figure 6.2 suggests that over 50% of the elements in most iterates are identical to
another element. After about 100 iterations, criterion (B1-FP) applies to more than
40% of the elements. This means that only less than 10% of the elements remain
unranked. The collection of new ranking information seems to level off after about
140 iterations. We can explain this as follows. The simple ranking bound 2αk is
dominated by the roundoff error ‖gk‖1 after about 170 iterations. Since the (B1)
bound is tighter than the simple bound, the roundoff error dominates earlier. This
is another justification for a termination criterion of the type already mentioned in
section 5.3: Terminate the power method (FP) as soon as βB ≈ g.

Bucket ranking. Figure 6.3 gives an idea of how many different elements can
be ranked and how big the buckets are. The histograms refer to the last iteration
and depict the number of elements per bucket. To prevent distortion of the vertical
axis and to assure better visibility for the top-ranked buckets, we omit the rightmost
buckets (a single bucket in case of GS and many buckets in case of GL), which are
the largest and contain the smallest elements.

Table 6.2 gives detailed information about the number and size of the buckets.
The number of buckets represents distinct ranks that have been identified. For both
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Table 6.2

Number and size of buckets for the matrices GS (top) and GL (bottom). The last two columns
list the number of elements in the first and last buckets, respectively.

n # Buckets First bucket Last bucket
9,914 4,307 1 699 7%

3,148,440 34,911 1 2,996,646 95%

Table 6.3

Ranking information for the matrices GS (top) and GL (bottom). The second column lists the
number of elements with exact rank, the third column the number of exactly ranked elements among
the top 100 elements, and the last column lists the lowest rank that could be distinguished.

n Exact ranking Exact top 100 Lowest rank
9,914 3,177 32% 79 9,215

3,148,440 24,120 0.76% 100 151,794

matrices the ranking criterion (B1-FP) isolates the highest ranked PageRank score,
because the first bucket contains only a single element. For the small matrix GS , 7%
of the smallest elements cannot be ranked, while for the large matrix GL this number
increases to 95%.

Table 6.3 gives detailed information about the ranking. It shows how many ele-
ments are ranked exactly, how many elements among the top 100 are exactly ranked,
and the lowest rank that could be identified. Since the lowest identified rank for the
matrix GS is 9,215, the smallest bucket contains n− 9, 215 = 699 elements, as shown
in Table 6.2. The preceding information illustrates that the ranking criteria are able
to identify the PageRanks of the top-ranked elements.

7. Extremely large matrices. As stated in Theorem 3.1, the main idea of our
paper is the following ranking criterion: Let x ≥ 0 with ‖x‖1 = 1 be any approxima-
tion to the PageRank vector π, and β ≥ ‖x − π‖1.

If xi > xj + β, then πi > πj .(C)

In the preceding sections we discussed the performance of (C) for matrices of dimen-
sion n ≤ 4 · 106, and for many applications of PageRank this is sufficient. However,
the indexed web comprises hundreds of billions of web pages. Below are several sug-
gestions for how to apply the criterion to matrices of extreme dimension.

7.1. Curbing roundoff error. The subsequent discussions are based on the
roundoff error analysis in Theorem 5.2, which is valid for matrix dimensions n < 1014

in IEEE double precision. Our experiments suggest that these roundoff error bounds
are accurate and not at all pessimistic.

1. Computation of iterate norms. To prevent first-order dependence of the
roundoff error on n, the iterates must be normalized on a regular basis, and the
norms computed with compensated summation. However, even with compensated
summation the higher order terms of the roundoff error can reach nε2 = 10−18 for n =
1014 in IEEE double precision, which is large enough to be of concern for the ranking
bound (C). Doubly compensated summation, or cascaded compensated summation
[35, Algorithm 4.8], may be able to reduce higher order effects.

2. Matrix vector multiplications. Theorem 5.2 shows that with accurate compu-
tation of the iterate norms, the roundoff error is mainly due to a single matrix vector
multiplication. In particular, it is determined by the maximal number of nonzeros
in any column of the web matrix H (maximal number of inlinks) and the number of
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dangling nodes (web pages without outlinks), whichever is larger. Since the dangling
nodes are part of the increasing web frontier, they can easily outnumber the inlinks
[12, section 2] and contribute substantially to the roundoff error. In section 7.2 we
indicate how to reduce the influence of the dangling nodes.

3. Termination criteria. In later iterations the ranking bound β in (C) is domi-
nated by roundoff error. Once this happens no new ranking information seems to be
available. One may want to terminate the power method as soon as β is on the order
of the roundoff error. The bound β is computed from geometric differences between
iterates, that is, expressions of the form ‖x̂(k+j) − x̂(k)‖1. Catastrophic cancellation
may damage the accuracy of these norms. This can be circumvented by resorting to
the simple bound 2αk in Theorem 4.3. However, this bound is the least tight among
all the bounds and requires the most iterations. A practical approach might be to
just iterate until β is on the order of the roundoff error, so that accuracy in the com-
putation of ‖x̂(k+j) − x̂(k)‖1 becomes less important, and collect ranking information
only in the very last iteration.

7.2. Reducing matrix dimension. There are at least two advantages in re-
ducing the matrix dimension: Faster computation and smaller roundoff error. Two
easy approaches involve eliminating unreferenced pages (pages without inlinks) and
dangling nodes (pages without outlinks). After such a reduction, the computation
time depends only on the number of nondangling referenced pages, and the roundoff
error depends only on the maximal number of inlinks to nondangling nodes.

1. Unreferenced pages. Suppose, as is likely in applications of PageRank to web
graphs, that the dangling nodes outnumber the unreferenced pages, and that we have
reordered the web matrix H so that the unreferenced pages are numbered last,

QHQT =

⎛⎝H1 H2 0
0 0 0
0 0 0

⎞⎠ ,

where the diagonal blocks are square and Q is a permutation matrix. If one sets
the trailing block of the dangling node vector equal to zero wT QT =

(
wT

1 wT
2 0

)
so that the dangling nodes do not add new inlinks to the unreferenced pages, then
the last block column of S is also zero. If we partition the personalization vector
conformally, vT QT =

(
vT
1 vT

2 vT
3

)
. Then πT = πT G implies that the PageRank of

the unreferenced pages is simply (1 − α)v3. Furthermore, setting v3 = 0 forces the
PageRank of the unreferenced pages to be zero, so that they automatically receive the
lowest ranking. Therefore, by keeping the dangling node vector positions associated
with unreferenced pages zero, one can compute the PageRank of the remaining pages
from the smaller matrix

(
H1 H2
0 0

)
.

2. Dangling nodes. One can further reduce the matrix dimension by lumping
all dangling nodes into a single node. The resulting lumped matrix Sl ≡

(
H1 H21

wT
1 wT

2 1

)
is stochastic and its dimension is equal to one plus the number of nondangling nodes
[23]. One can rank the nondangling nodes by applying the power method (FP) and
the ranking criterion (C) to Gl ≡ αSl + (1 − α)1vT

l , where vT
l ≡

(
vT
1 vT

2 1
)
. The

PageRanks of the dangling nodes can be recovered with a single matrix vector multi-
plication [23].

7.3. Ranking with faster converging methods. The ranking criterion (C)
is not tied to any computational method. To apply it to a method other than the
power method, one first needs rigorous bounds on the forward error ‖x−π‖1 that also
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take into account roundoff error. This may be hard to do for methods with involved
decision processes and intricate and possibly worse conditioned matrix operations.

Instead it may be easier to compute an approximation to PageRank with a fast
converging method, such as a Krylov space method [17, 18], and then use this ap-
proximation as a restart for a single power method iteration to rank the nondangling
nodes. Here is a more detailed description.

1. Apply a fast method to compute an approximation z to the PageRank of the
lumped matrix Gl, and terminate when the residual norm is less than gl. Here

gl ≡
2ε(3.03 + cαml)

1 − ε(3.03 + cαml)
, c ≡ 1.01(1 + 3.03ε)

is the roundoff error in a single iteration of the power method, and ml is the maximal
number of nonzeros in any column of Sl.

2. Execute a single iteration of the power method (FP) with x̂(0) := z/‖z‖1 as
the starting vector. That is, [y(1)]T := [x̂(0)]T Gl, x̂(1) := y(1)/‖y(1)‖1, and compute
‖z‖1 and ‖y(1)‖1 by a cacaded compensated summation method [35] or by doubly
compensated summation [22, Algorithm 4.3].

3. Determine the ranking bound (B1-FP) from section 6.3, βl := ‖x̂(1)−x̂(0)‖1+
gl, where ‖x̂(1) − x̂(0)‖1 is computed by doubly compensated summation. Use the
ranking criterion: If x̂

(1)
i > x̂

(1)
j + βl, then πi > πj , and construct buckets according

to the rules in section 3.
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Abstract. We propose a fast verification method for saddle point linear systems where the
(1,1) block is singular. The proposed verification method is based on an algebraic analysis of a
block diagonal preconditioner and rounding mode controlled computations. Numerical comparison
of several verification methods with various block diagonal preconditioners is given.
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1. Introduction. We consider the system of saddle point linear systems

Hu = b ≡
(

A B
BT 0

)(
x
y

)
=
(

c
d

)
,(1.1)

where A is an n×n symmetric positive semidefinite matrix and B is an n×m matrix,
with m ≤ n. We denote l = n + m. We assume that the coefficient matrix H is
nonsingular, which implies that B has full-column rank.

In recent years, saddle point problems have received considerable attention. A
large amount of work has been devoted to developing efficient algorithms for solving
saddle point problems. In a recent comprehensive survey [1], Benzi, Golub, and
Liesen discussed a large selection of numerical methods for saddle point problems. We
are aware that it is very important to verify the accuracy of approximate solutions
obtained by the numerical methods. However, there is little discussion on validated
solutions of saddle point problems by taking all possible effects of rounding errors into
account.

Standard validation methods for the solution of a system of linear equations use an
approximation of the inverse of the coefficient matrix. These methods are not efficient
for the saddle point problem (1.1) when the dimension l is large or the condition
number of H is large, due to the indefiniteness of H and the singularity of A.

In [2], a numerical validation method is proposed for verifying the accuracy of
approximation solutions of the saddle point problem (1.1) without using an approxi-
mation of the inverse H−1, under the assumption that A is symmetric positive definite.
The method uses the special structure of the saddle point problem to represent the
variable x by the inverse of A and the variable y. For the case that A is singular and
the size of the problem is large, it is a significant challenge to compute a rigorous up-
per bound for the norm ‖H−1‖ without using an approximation of the inverse H−1.
In this paper, we present a fast method to compute rigorous error bounds for the
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saddle point problem (1.1) where A is symmetric positive semidefinite. In particular,
we present a fast method to compute a constant α such that

‖u∗ − u‖2 ≤ α‖b −Hu‖2 foru ∈ Rl,(1.2)

where u∗ is the exact solution of (1.1). This method is based on an algebraic analysis
of a block diagonal preconditioner for saddle point systems studied in a recent paper
[6] by Golub, Greif, and Varah. Instead of approximating the inverse of the l × l
indefinite matrix H, we use approximations of inverses of two symmetric positive
definite matrices in Rn×n and Rm×m to define the constant α in the error bound
(1.2). Moreover, we present fast methods to estimate upper bounds for the norms of
inverses of the two symmetric positive definite matrices based on fast validated matrix
computation by Oishi and Rump [8].

In section 2, we define the error constant α. In section 3, we discuss how to
compute an upper bound of α efficiently and accurately by taking all possible effects
of rounding errors into account. In section 4, we compare our verification method with
the Krawczyk method [13], the LU decomposition method [8], the verifylss function of
INTLAB, and a block component verification method proposed in [2] using examples
from CUTEr [6], optimal surface fitting [3, 10], mixed finite element discretization of
the Stokes equations [1], and image restoration [5, 15].

2. A new error bound. Let W be an m × m symmetric positive semidefinite
matrix such that

M(W ) = A + BWBT

is a symmetric positive definite matrix. Note that BWBT is singular for any sym-
metric positive definite matrix W when m < n. However, if W is symmetric positive
definite, we can show that M(W ) is symmetric positive definite under the conditions
that A is positive semidefinite and H is nonsingular. To see it, let x̄ �= 0 be a solution
of M(W )x̄ = 0. Then we have

x̄T Ax̄ + x̄T BWBT x̄ = 0.

Since A and BWBT are positive semidefinite, we obtain

x̄T Ax̄ = 0 and x̄T BWBT x̄ = 0,

which implies

Ax̄ = 0 and BT x̄ = 0.

Therefore, we find that Hz = 0 with z = (x̄, 0). This contradicts that H is nonsingular.
Recently, Golub, Greif, and Varah [6] performed an algebraic study of the block

diagonal positive definite preconditioner

M(W ) =
(

M(W ) 0
0 BT M(W )−1B

)
.(2.1)

They showed that M(W ) has the attractive property that the eigenvalues of the
associated preconditioned matrix M(W )−1H are bounded in a small range.

Lemma 2.1 (see [6]). The eigenvalues of the preconditioned matrix M(W )−1H
are bounded within the two intervals[

−1,
1 −

√
5

2

]
∪
[
1,

1 +
√

5
2

]
.
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Lemma 2.1 makes it possible for us to present rigorous error bounds for the saddle
point problem (1.1).

Theorem 2.1. Let u∗ be the exact solution of (1.1). For any u ∈ Rl, we have

‖u∗ − u‖2 ≤ 2√
5 − 1

max
(∥∥M(W )−1

∥∥
2
, ‖M(W )‖2

∥∥∥(BT B
)−1
∥∥∥

2

)
‖b −Hu‖2.(2.2)

Proof. Obviously, we have

‖u∗ − u‖2 ≤
∥∥H−1

∥∥
2
‖b −Hu‖2.

Now, we use Lemma 2.1 to give an upper bound of ‖H−1‖2. Let L be a nonsingular
matrix such that LLT = M(W ), and let

S = L−1HL−T .(2.3)

Then the inverse H−1 can be given as

H−1 = L−TS−1L−1.

Since H and S are symmetric, we have

∥∥H−1
∥∥

2
= max

v∈Rl

v �=0

∣∣∣∣vTL−TS−1L−1v

vT v

∣∣∣∣
= max

v∈Rl

v �=0

∣∣∣∣vTL−TS−1L−1v

vTL−TL−1v

vTL−TL−1v

vT v

∣∣∣∣
≤ max

w∈Rl

w �=0

∣∣∣∣wTS−1w

wT w

∣∣∣∣max
v∈Rl

v �=0

∣∣∣∣vTM(W )−1v

vT v

∣∣∣∣
=
∥∥S−1

∥∥
2

∥∥M(W )−1
∥∥

2
.(2.4)

From (2.3) and LLT = M(W ), we have

LTM(W )−1HL−T = S.

Hence S and M(W )−1H have the same eigenvalues.
By Lemma 2.1, the eigenvalues of S are bounded within the two intervals[

−1,
1 −

√
5

2

]
∪
[
1,

1 +
√

5
2

]
.

Hence all eigenvalues of S−1 satisfy

|λi| ≤
2√

5 − 1
, i = 1, 2, . . . , l.

From (2.4), we obtain ∥∥H−1
∥∥

2
≤ 2√

5 − 1

∥∥M(W )−1∥∥
2
.
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Moreover, from (2.1), we have∥∥M(W )−1∥∥
2
≤ max

(∥∥M(W )−1
∥∥

2
,
∥∥∥(BT M(W )−1B

)−1
∥∥∥

2

)
≤ max

(∥∥M(W )−1
∥∥

2
, ‖M(W )‖2

∥∥∥(BT B
)−1
∥∥∥

2

)
,

where the last inequality uses

λmin

(
BT M(W )−1B

)
= min

y∈Rm

y �=0

(
M(W )−1By, By

)
(By, By)

(
BT By, y

)
(y, y)

≥ λmin

(
M(W )−1

)
λmin(BT B).

Theorem 2.1 shows that an upper bound of the inverse ‖H−1‖2 can be obtained by
computing upper bounds for the norm of inverses of two symmetric positive definite
matrices with sizes of n × n and m × m. When n and/or m are large, the number of
its flops is much less than the methods working on the (n + m) × (n + m) matrix H.
For example, the LU decomposition method for (1.1) requires O((n + m)3) flops, but
estimating ‖M(W )−1‖∞ and ‖(BT B)−1‖∞ requires only O(n3)+O(m3) flops, which
will save O(n2m + nm2) flops computational cost. Moreover, since the two matrices
are symmetric, we can replace ‖ · ‖2 by ‖ · ‖∞ for the matrix norm in (2.2) and have

‖u∗− u‖2 ≤ 2√
5 − 1

max
(∥∥M(W )−1

∥∥
∞, ‖M(W )‖∞

∥∥∥(BT B
)−1
∥∥∥
∞

)
‖b −Hu‖2.(2.5)

In general, (2.5) is easier to implement than (2.2).

3. Verification methods. When we apply Theorem 2.1 and other verification
methods to verify the accuracy of an approximate solution of (1.1) on a computer, it
is necessary to consider rounding error. The IEEE 754 arithmetic standard [4] defines
the rounding modes for double precision floating point numbers. Since Intel’s CPU
follows this standard, the rounding modes can be used on most personal computers
(PCs) and workstations. We use rounding downwards, rounding upwards, and round-
ing nearest to compute rigorous error bounds for (2.5). We also apply these rounding
modes to the following three verification methods.

Krawczyk method [11, 13].

K(U) := u −R(Hu − b) + (I −RH)(U − u),
K(U) ⊂ int(U) ⇒ u∗ ∈ K(U) ⇒ ‖u∗ − u‖∞ ≤ ‖radius(U)‖∞,

where R is an approximate inverse of H and U is an interval vector whose center is u.
LU decomposition method [8]. Let LU be an approximate LU factorization of H,

that is, H ≈ LU .

‖u∗ − u‖∞ ≤
∥∥U−1L−1(b −Hu)

∥∥
∞

1 −
∥∥U−1L−1H− I

∥∥
∞

.

Block component verification method [2]. Let u∗ = (x∗, y∗), r1 = Ax + By − c,
and r2 = BT x − d.

‖u∗ − u‖∞ ≤ max(‖x∗ − x‖∞, ‖y∗ − y‖∞),
‖x∗ − x‖∞ ≤ ‖A−1‖∞ (‖r1‖∞ + ‖B‖∞‖y∗ − y‖∞),

‖y∗ − y‖∞ ≤ ‖A‖∞
∥∥∥(BT B

)−1
∥∥∥
∞

(
‖r2‖2 +

√∥∥BBT
∥∥
∞
∥∥A−1

∥∥
∞‖r1‖2

)
.
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verifylss of INTLAB [14].

U = verifylss(H, b),
‖u − u∗‖∞ ≤ 2‖radius(U)‖∞ for u ∈ U.

Note that when A is singular, the block component verification method cannot
be applied to (1.1) directly but to the equivalent system(

A + BWBT B
BT 0

)(
x
y

)
=
(

c + BWd
d

)
.(3.1)

Obviously, the error bounds depend on the choice of W . We tested the error
bounds with various W . In this paper, we consider two types of choices

W1(γ) = γ/
∥∥BT B

∥∥
2
I

and

W2(γ) = γ
(
BT B

)−1

if A is singular. We set W = 0 if A is nonsingular.

4. Numerical experiment. The numerical testing was carried out on an IBM
PC (3.0 GHz Pentium 4 processor, 1GB of memory) with the use of MATLAB 7.0 and
INTLAB (Version 5.4) [12, 14]. We use the function setround in INTLAB [14] to com-
pute the error bound. The function setround allows the rounding mode of the processor
to be changed between round nearest (setround(0)), round down (setround(-1)), round
up (setround(1)), and round towards zero (setround(2)). To compute ‖M(W )−1‖∞,
we first use setround(0) to compute an approximate inverse R of M(W ). Next we use

S=intval(R),

beta=abss(norm(S,inf)/(1-norm(S*M(W)-I)))

to get an upper bound β for ‖M(W )−1‖∞ as

∥∥M(W )−1
∥∥
∞ ≤ ‖R‖∞

1 − ‖RM(W ) − I‖∞
≤ β.

Similarly, we apply the function setround to (2.5) to get an upper bound Γ by taking
all possible effects of rounding errors into account such that

‖u∗ − u‖2 ≤ Γ.(4.1)

We compare the error bound (2.5) with the Krawczyk method, the LU decompo-
sition method, the block component verification method, and the function verifylss of
INTLAB using examples from CUTEr [6], optimal surface fitting [3, 10], mixed finite
element discretization of the Stokes equations [1], and image restoration [5, 15].

Example 4.1 (CUTEr matrices). We used two test problems genhs28 and gouldqp3
from the CUTEr collection [7], which were used in [6].

The genhs28 is an (n+m)×(n+m) saddle point matrix, where A is an n×n tridi-
agonal matrix with 2, 4, 2 along its superdiagonal, main diagonal, and subdiagonal,
respectively, except A1,1 = An,n = 2. The rank of A is n−1. B is n×m with values 1,
2, 3 along its main diagonal, first subdiagonal, and second subdiagonal, respectively.
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Fig. 1. Error bounds (2.5) for genhs28 with different W . (n,m) = (500, 498), ‖A‖2 ≈ 8.0,
‖BTB‖2 ≈ 36.0, and ‖(BTB)−1‖2 ≈ 0.38.

Table 1

The error bounds for Example 4.1, genhs28. rank(A) = n− 1.

(n,m) (10,8) (500,498) (1500,1498) (3000,2998)
cond(H) 40.232 40.461 40.461 40.460
‖u− u∗‖∞ 2.22e−16 2.22e−16 2.22e−16 9.99e−16
‖b−Hu‖2 2.46e−14 2.02e−13 3.50e−13 1.03e−12

(2.5) W1(1) 5.67e−13 4.58e−12 7.95e−12 2.33e−11
[3.6e−15] [1.859] [48.093] [477.059]

W2(1) 1.46e−13 1.41e−12 2.45e−12 7.21e−12
[7.1e−15] [1.983] [48.906] [1102.207]

Block W1(1) 6.11e−10 5.74e−09 9.95e−09 2.82e−08
component [3.6e−15] [1.953] [89.373] [480.387]

W2(1) 3.96e−11 3.82e−10 6.63e−10 1.88e−09
[1.1e−14] [2.078] [90.185] [1105.536]

LU 5.72e−16 5.67e−16 5.67e−16 Fail1

[3.6e−15] [14.103] [385.535]
Krawczyk 2.32e−15 2.32e−15 3.55e−15 Fail

[0.031] [6.625] [166.894]
verifylss 3.33e−16 3.33e−16 3.33e−16 Fail

[0.016] [4.795] [109.827]

The gouldqp3 is an (n + m) × (n + m) saddle point matrix, where A is an n × n
matrix with rank(A) = n − 2.

We set the exact solution u∗ and right-hand side vector b as

u∗ = (1, . . . , 1)T , b = Hu∗.

Figure 1 shows the error bounds for genhs28 with (n, m) = (500, 498) as γ changes
from min(‖A‖2, 1/‖A‖2) to max(‖A‖2, 1/‖A‖2). In Tables 1–2, we report numerical
results with W1(1) and W2(1).

Example 4.2 (surface fitting problem). Let Ω ⊂ R2 be a convex bounded domain,
pi = (p1

i , p
2
i ) ∈ Ω be the measurement points, and qi be the corresponding real values

(i = 1 . . . k). We consider the following surface fitting problem [3, 10]

min
k∑

i=1

(f(pi) − qi)2 + μ|f |2H2(Ω)(4.2)

over all functions f in the Sobolev space H2(Ω). Here μ is a fixed parameter.

1In Tables 1–5, “Fail” means out of the memory; [ ] shows CPU time (sec.).
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Table 2

The error bounds for Example 4.1, gouldqp3. rank(A) = n− 2.

(n,m) (699,349) (1999,999) (2999,1499)
cond(H) 139.018 139.018 139.018
‖u− u∗‖∞ 2.22e−16 2.22e−16 9.99e−16
‖b−Hu‖2 8.29e−14 1.40e−13 3.80e−13

(2.5) W1(1) 5.63e−12 9.54e−12 2.58e−12
[2.406] [55.341] [194.385]

W2(1) 3.62e−12 6.13e−12 1.66e−12
[2.500] [81.605] [313.902]

Block W1(1) 4.31e−09 7.30e−09 1.97e−08
component [2.468] [55.951] [195.433]

W2(1) 1.94e−09 3.30e−09 8.90e−09
[2.546] [82.278] [314.996]

LU 4.75e−16 4.75e−16 Fail
[19.420] [498.377]

Krawczyk 3.37e−15 3.37e−15 Fail
[7.760] [179.915]

verifylss 3.33e−16 3.33e−16 Fail
[5.968] [118.114]

We apply a finite element approximation with uniform triangular meshes to (4.2)
and obtain a convex optimization problem in R4m+1 [3]:

min‖Nx1 + μek − q‖2
2 + μ

(
xT

2 Gx2 + xT
3 Gx3

)
subject to (s.t.) Gx1 = B1x2 + B2x3,(4.3)

eT
k Nx1 = 0,

where N ∈ Rk×m and B1, B2, G ∈ Rm×m. Here G is a symmetric positive semidefinite
matrix. The problem (4.3) is equivalent to the following saddle point system:⎛⎜⎜⎜⎜⎝

NT N G NT ek

μG −BT
1

μG −BT
2

G −B1 −B2

eT
k N

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x1

x2

x3

y1

y2

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
2NT (q − μek)

0
0
0
0

⎞⎟⎟⎟⎟⎠ ,(4.4)

where y1 and y2 are the Lagrange multipliers. In many applications, k < m, which
results in the matrix NT N being singular; i.e., the (1, 1) block of the saddle point
matrix in (4.4) is singular.

In this example, we use real data of the 2006 average temperature in the Aomori
region from the Japan Meteorological Agency. We choose k = 47, n = 3m + 1, and
rank(A) = 2m+47 and set μ =1.0e−5 in (4.4). Numerical results of the error estimate
with various m, n are given in Table 3.

Example 4.3 (the Stokes equation). We consider the saddle point system arising
from the mixed finite element discretization of the stationary Stokes equation:⎧⎨⎩

−νΔu + ∇p = ϕ in Ω,
−div u = 0 in Ω,

u = 0 on ∂Ω,
(4.5)

where Ω = (0, 1) × (0, 1), ∂Ω is the boundary of Ω, ν > 0 is the kinematic viscosity
coefficient, ϕ = (ϕ1, ϕ2) is a given force field, u : Ω → R2 is a velocity field, and
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Table 3

The error bounds for Example 4.2, surface fitting problem. rank(A) = 2m+ 47.

(n,m) (766,255) (1450,483) (2350,783) (3070,1023)
cond(H) 7.22e+05 1.31e+06 2.11e+06 2.56e+06
‖b−Hu‖2 1.41e−14 1.61e−14 2.43e−14 2.54e−14

(2.5) W1(1) 4.46e−09 1.20e−08 3.38e−08 4.94e−08
[2.749] [16.154] [66.213] [145.311]

W2(1) 4.85e−09 3.38e−09 9.25e−08 1.27e−08
[2.812] [16.591] [68.119] [150.388]

Block W1(1) 4.14e+01 5.36e+02 4.74e+03 1.04e+04
component [2.796] [16.310] [66.415] [145.951]

W2(1) 4.51e+01 1.02e+02 6.98e+02 1.27e+04
[2.859] [16.763] [68.492] [151.122]

LU 8.46e−15 6.98e−15 3.51e−14 Fail
[19.422] [122.702] [514.185]

Krawczyk 1.43e−13 2.12e−13 4.76e−13 Fail
[7.243] [27.809] [198.123]

verifylss 2.93e−14 4.17e−14 7.84e−14 Fail
[5.047] [29.984] [124.562]

p : Ω → R is a pressure field. We apply a mixed finite element approximation with
uniform triangular meshes and obtain a saddle point linear system (1.1) where the
velocity is approximated by the standard piecewise quadratic basis functions and the
pressure is approximated by piecewise linear basis functions.

In this example, A is nonsingular and A−1 ≥ 0. We use Theorem 2 in [9] to get
a upper bound of ‖A−1‖∞, i.e.,∥∥A−1

∥∥
∞ ≤ ‖w̃‖∞

1 − ‖s‖∞
,

where w̃ is an approximate solution of Aw = en, s = Aw̃−en, and en = (1, 1, . . . , 1)T ∈
Rn.

In this example, ‖(BT B)−1‖2 = O(h−2), where h is the mesh size. To avoid using
‖(BT B)−1‖2 for small h, we consider a preconditioned system. Let L be an m × m
nonsingular matrix such that LT L ≈ BT B. Let

P =
(

I
L−1

)
, H̃ = PTHP =

(
A B̃

B̃T 0

)
, b̃ = PT b,

B̃ = BL−1, M̃(W ) = A + B̃WB̃T .

Applying Theorem 2.1 to the preconditioned system

H̃P−1u = b̃,

we obtain

‖u − u∗‖∞ ≤‖P‖∞
∥∥P−1(u∗ − u)

∥∥
∞ ≤ ‖P‖∞

∥∥P−1(u∗ − u)
∥∥

2

≤ 2‖P‖∞√
5 − 1

max
(∥∥M̃(W )−1

∥∥
2
, ‖M̃(W )‖2

∥∥∥∥(B̃T B̃
)−1

∥∥∥∥
2

)
‖PT (b −Hu)‖2

≤
2 max

(
1,
∥∥L−1

∥∥
∞
)

√
5 − 1

max
(∥∥M̃(W )−1

∥∥
∞, ‖M̃(W )‖∞

∥∥L(BT B
)−1LT

∥∥
∞

)
×
∥∥PT (b −Hu)

∥∥
2
.(4.6)
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Table 4

The preconditioned error bounds for Example 4.3, Stokes equation. rank(A) = n.

(n,m) (882,144) (2738,400) (9522,1296) (20402,2704)
cond(H) 4.11e+05 1.21e+06 4.09e+06 8.66e+06
‖b−Hu‖2 1.58e−15 2.56e−15 5.04e−15 7.32e−15

(4.7) 1.10e−11 9.24e−11 1.14e−09 5.11e−09
[0.078] [1.001] [19.312] [149.383]

Preconditioned 7.24e−11 6.06e−10 7.46e−09 4.59e−08
block component [0.078] [1.002] [19.295] [149.352]
LU 7.04e−16 1.53e−15 Fail Fail

[15.780] [430.490]
Krawczyk 2.00e−14 6.00e−14 Fail Fail

[2.516] [50.391]
verifylss 1.11e−16 2.22e−16 Fail Fail

[5.202] [124.224]

We call (4.6) a preconditioned error bound. From ‖L−1‖∞ ≈
√
‖(BT B)−1‖∞ =

O(h−1), the preconditioned error bound is expected to be sharper than (2.5) for the
Stokes equation. Similarly, we can get a preconditioned block component verification
method as Method 2 in [2].

Numerical results of the preconditioned error bounds for Example 4.3 with ν = 1
are given in Table 4.

Example 4.4 (image restoration). Suppose the discretized scenes have p = p1 ×
p2 pixels. Let f ∈ Rp, g ∈ Rq be the underlying image and the observed image,
respectively. Let H ∈ Rq×p be the corresponding blurring matrix of block Toeplitz
with Toeplitz blocks. Restoration of f is an ill-conditioned problem. We consider the
linear least squares problem with Tikhonov’s regularization [5, 15]

min
f

‖Hf − g‖2
2 + α‖Df‖2

2,(4.7)

where α is a regularization parameter and D ∈ R(2p−p1−p2)×p is a regularization
matrix of a first order finite difference operator

D =
(

Δ(p1−1)×p1 ⊗ Ip2×p2

Ip1×p1 ⊗ Δ(p2−1)×p2

)
with Δ =

⎛⎜⎜⎜⎝
1 −1

1 −1
. . . . . .

1 −1

⎞⎟⎟⎟⎠ .

Problem (4.7) can be rewritten as a quadratic programming

min
1
2
xT Ax + cT x

s.t. BT x = 0,
(4.8)

where

x =
(

f
v

)
, A =

(
2HT H 0
0 αI

)
∈ R(3p−p1−p2)×(3p−p1−p2),

BT =
(
D −I

)
∈ R(2p−p1−p2)×(3p−p1−p2), c =

(
−2HT g

0

)
.
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(a) (b) (c)

Fig. 2. (a) original image, (b) observed image, (c) restored image, PSNR = 29.82 db.

Table 5

The error bounds for Example 4.4, image restoration.

(n,m) (1160,760) (1825,1200) (2465,1624) (3400,2244)
cond(H) 3.15e+08 3.40e+08 3.67e+08 4.57e+08
‖b −Hu‖2 2.13e−14 2.80e−14 3.39e−14 4.04e−11

(2.5) W1(1) 3.01e−06 4.33e−06 5.70e−06 6.96e−06
[13.564] [50.798] [124.061] [353.168]

W2(1) 3.01e−06 4.32e−06 5.70e−06 6.96e−06
[13.203] [48.687] [119.068] [320.720]

Block W1(1) 5.42e+03 8.50e+03 1.23e+04 1.52e+04
component [13.798] [51.361] [125.123] [355.182]

W2(1) 1.11e+04 1.74e+04 2.51e+04 3.13e+04
[13.203] [49.265] [120.161] [349.141]

LU 1.05e−09 1.56e−09 Fail Fail
[127.660] [481.395]

Krawczyk K(U) �⊂ U K(U) �⊂ U Fail Fail

verifylss 3.46e−14 3.91e−14 Fail Fail
[29.672] [112.698]

The optimal condition for (4.8) is a saddle point problem(
A B
BT 0

)(
x
y

)
=
(
−c
0

)
,

where y is the Lagrange multiplier vector for the constraints BT x = 0. In this problem,
A is a positive semidefinite matrix and B has full-column rank.

We generate an original image of the cameraman as shown in Figure 2(a). The
image is blurred by a Gaussian function

h(i, j) = e−(i2+j2)/18,

truncated such that the function has a support of 7×7, and then pixels are con-
taminated by Gaussian noise with the standard deviation of 0.05. The blurred and
noisy image is shown in Figure 2(b). We solve the saddle point problem to find a
restored image, which is shown in Figure 2(c). In the saddle point matrix, A has
rank(A)=2p− p1 − p2 + [p1/2][p2/2]. Here [·] denotes the nearest integer.

Numerical results of the error bounds for the restored image are given in Table 5.
To end this section, we use a 3 × 3 block ill-conditioned saddle matrix to show

that the error bound (2.5) is tight.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

VALIDATED SOLUTIONS 1707

Example 4.5. We consider the following problem:

H =

⎛⎝ εI 0 0
0 0 B
0 BT 0

⎞⎠ , b =

⎛⎝ b1

b2

b3

⎞⎠ ,

where b1, b2, b3 ∈ Rm, I, B ∈ Rm×m, and B is nonsingular. It is easy to find the
inverse and the solution

H−1 =

⎛⎝ 1
ε I 0 0
0 0 B−T

0 B−1 0

⎞⎠ , u∗ =

⎛⎝ 1
ε b1

B−T b3

B−1b2

⎞⎠ .

Consider 0 < ε ≤ 1 and ‖B‖∞ ≥ 1. The condition number of H satisfies

‖H‖∞
∥∥H−1

∥∥
∞ ≥ ε−1‖B‖∞.

When ε → 0, the condition number will go to ∞.
Using (2.2) or (2.5) with W = B−1B−T , we obtain

M(W ) =
(

εI 0
0 I

)
and

‖u∗ − u‖2 ≤ 2
ε(
√

5 − 1)
‖b −Hu‖2(4.9)

for 0 < ε ≤ 1/‖(BT B)−1‖∞. Furthermore, the equality holds in (4.9) when B =
ε(
√

5−1)
2 I and u = (1

ε b1, u2, u3).

5. Final remark. Using the algebraic analysis of a block diagonal preconditioner
in [6], we proposed a fast verification method for saddle point linear systems where
the (1, 1) block may be singular. The method was implemented by using INTLAB [14]
and taking all possible effects of rounding errors into account. Numerical results show
that the method is efficient.
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ON THE TENSOR SVD AND THE OPTIMAL LOW RANK
ORTHOGONAL APPROXIMATION OF TENSORS∗

JIE CHEN† AND YOUSEF SAAD†

Abstract. It is known that a higher order tensor does not necessarily have an optimal low rank
approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD).
We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize
the existence of the tensor SVD with respect to the higher order SVD (HOSVD). In the face of these
difficulties to generalize standard results known in the matrix case to tensors, we consider the low
rank orthogonal approximation of tensors. The existence of an optimal approximation is theoretically
guaranteed under certain conditions, and this optimal approximation yields a tensor decomposition
where the diagonal of the core is maximized. We present an algorithm to compute this approximation
and analyze its convergence behavior. Numerical experiments indicate a linear convergence rate for
this algorithm.

Key words. multilinear algebra, singular value decomposition, tensor decomposition, low rank
approximation
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1. Introduction. There has been renewed interest in studying the properties
and decompositions of tensors (also known as N -way arrays or multidimensional ar-
rays) in numerical linear algebra in recent years [30, 13, 12, 43, 17, 9, 28, 29, 15, 11].
The tensor approximation techniques have been fruitfully applied in various areas
which include, among others, chemometrics [38, 4], signal processing [10, 8], vision
and graphics [41, 42], and network analysis [31, 1]. From the point of view of practi-
cal applications, the matrix SVD and the optimal rank-r approximation of matrices
(a.k.a. the Eckart–Young theorem [18]) are of particular interest, and it would be nice
if these properties could be directly generalized to higher order tensors. However, for
any order N ≥ 3, de Silva and Lim [17] showed that the problem of optimal low rank
approximation of higher order tensors is ill-posed for many ranks r, and that this
ill-posedness is not rare for order-3 tensors. Furthermore, Kolda presented numerous
examples to illustrate the difficulties of orthogonal tensor decompositions [28, 29].
These studies revealed many aspects of the dissimilarities between tensors and matri-
ces, in spite of the fact that higher order tensors are multidimensional generalizations
of matrices.

The most commonly used generalization of the matrix SVD to higher order tensors
to date is the higher order singular value decomposition (HOSVD) [12]. The HOSVD
decomposes an order-N tensor into a core tensor that has the same size as the original
tensor together with N orthogonal1 side-matrices. Although this decomposition pre-
serves many nice aspects of the matrix SVD (e.g., the core has the all-orthogonality

∗Received by the editors December 26, 2007; accepted for publication (in revised form) by L.
De Lathauwer October 3, 2008; published electronically January 23, 2009. This work was supported
by the NSF under grants DMS-0510131 and DMS-0528492 and by the Minnesota Supercomputing
Institute.
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†Department of Computer Science and Engineering, University of Minnesota at Twin Cities,

Minneapolis, MN 55455 (jchen@cs.umn.edu, saad@cs.umn.edu).
1Throughout this paper, a matrix A ∈ Rm×n, m ≥ n, is said to be orthogonal if ATA = I. This

generalizes the definition for square matrices.
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1710 JIE CHEN AND YOUSEF SAAD

property and the ordering property), a notable difference is that the core is in general
not diagonal. Hence, in contrast with the matrix SVD, the HOSVD cannot be written
as a sum of a few orthogonal outer-product terms.2

There exist three well-known approximations to higher order tensors: (1) the
rank-1 approximation [13, 43, 27]; (2) the rank-(r1, r2, . . . , rN ) approximation with a
full core and N orthogonal side-matrices (in the Tucker/HOOI fashion) [40, 13]; and
(3) the approximation using r outer-product terms (in the CANDECOMP/PARAFAC
fashion) [6, 19]. Note that the approximated tensor in case (3) might have rank less
than r. Among these approximations, the rank-1 approximation [17] and the rank-
(r1, r2, . . . , rN ) approximation are theoretically guaranteed to have a global optimum.
In practical applications, the three approximations are generally computed using an
alternating least squares (ALS) method [33, 3, 25] (the so-called workhorse algorithm
[30]), although many other methods have also been proposed [34, 37, 43, 28, 15, 11].
The convergence behavior of the ALS method is theoretically unknown except under a
few strong conditions [32]. Besides, it has long been observed that the ALS method for
the PARAFAC model may converge extremely slowly if at all [36, 26]. An illustration
of this phenomenon is given in the appendix.

Kolda [28] investigated several orthogonal decompositions of tensors related to
different definitions of orthogonality, including orthogonal rank decomposition, com-
plete orthogonal rank decomposition, and strong orthogonal rank decomposition. These
decompositions might not be unique, or even exist. Among these definitions, only the
complete orthogonality gives a situation which parallels that of the matrix SVD. This
approach demands that the side-matrices all be orthogonal, in which case we use the
term tensor singular value decomposition (tensor SVD; see Definition 4.1) in this pa-
per. Zhang and Golub [43] proved that for all tensors of order N ≥ 3, the tensor SVD
is unique (up to signs) if it exists, and that the incremental rank-1 approximation
approach will compute this decomposition.

The following contributions are made in this paper:
1. Sufficient conditions indicating which tensors fail to have a tensor SVD are

given. These conditions are related to the rank, the order, and the dimensions of
the tensor, and hence can be viewed as generalizations of results given in the liter-
ature with specific examples. Furthermore, the existence of the tensor SVD can be
characterized by the diagonality of the core in the HOSVD of the tensor.

2. A form of low rank approximations—one that requires a diagonal core and or-
thogonal side-matrices—is discussed. Theoretically the global optimum of this
approximation can be attained for any (appropriate) rank. We present an iterative
algorithm to compute this approximation and analyze its convergence behavior.

3. The proposed approximation at the maximally possible rank leads to a de-
composition of the tensor, where the diagonal of the core is maximized. This “maximal
diagonality” for symmetric order-3 [14] and order-4 [7] tensors and for general order-3
tensors [15, 24, 35] has been previously investigated and Jacobi algorithms were used
in the cited papers, but our discussion is in a more general context and the proposed
algorithm is not of a Jacobi type.

2. Tensor algebra. In this section, we briefly review some concepts and notions
that are used throughout the paper. A tensor is a multidimensional array of data
whose elements are referred by using multiple indices. The number of indices required

2For discussions of orthogonality, see section 2.4.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TENSOR SVD AND LOW RANK ORTHOGONAL APPROXIMATION 1711

is called the order of a tensor. We use

A = (ai1,i2,...,iN ) ∈ R
d1×d2×···×dN

to denote a tensor A of order N . For n = 1, 2, . . . , N , dn is the nth dimension of A.
As a special case, a vector is an order-1 tensor and a matrix is an order-2 tensor.

2.1. Unfoldings and mode-n products. It is hard to visualize tensors of order
N > 3. They can be flexibly represented when “unfolded” into matrices. The unfolding
of a tensor along mode n is a matrix of dimension dn × (dn+1 · · · dNd1 · · · dn−1). We
denote the mode-n unfolding of tensor A by A(n). Each column of A(n) is a column
of A along the nth mode.

An important operation for a tensor is the tensor-matrix multiplication, also
known as mode-n product. Given a tensor A ∈ R

d1×d2×···×dN and a matrix M ∈
R

cn×dn , the mode-n product is a tensor

B = A×n M ∈ R
d1×···×dn−1×cn×dn+1···×dN ,

where

bi1,...,in−1,jn,in+1,...,iN :=
dn∑

in=1

ai1,...,in−1,in,in+1,...,iN mjn,in

for jn = 1, 2, . . . , cn. In matrix representation, this is

(2.1) B(n) = MA(n).

2.2. Inner products and tensor norms. The inner product of two tensors A
and B of the same size is defined by

〈A,B〉F :=
dN∑

iN =1

· · ·
d1∑

i1=1

ai1,...,iN bi1,...,iN ,

and the norm induced from this inner product is

‖A‖F :=
√
〈A,A〉F .

We say that A is a unit tensor if ‖A‖F = 1. When N = 2, ‖A‖F is the Frobenius norm
of matrix A. The norm of a tensor is equal to the Frobenius norm of the unfolding of
the tensor along any mode:

‖A‖F =
∥∥A(n)

∥∥
F

for n = 1, . . . , N.

2.3. Tensor products and outer products of vectors. The tensor product
of an order-N tensor A ∈ R

d1×d2×···×dN and an order-N ′ tensor B ∈ R
c1×c2×···×cN′ is

an order-(N + N ′) tensor

C = A⊗ B ∈ R
d1×···×dN×c1×···×cN′ ,

where

ci1,...,iN ,j1,...,jN′ := ai1,...,iN bj1,...,jN′ .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1712 JIE CHEN AND YOUSEF SAAD

Note that the operator ⊗ for tensor products unfortunately coincides with the one used
to denote the Kronecker product of two matrices. In particular, the tensor product
of two matrices (order-2 tensors) is an order-4 tensor, while the Kronecker product
of two matrices is again a matrix. The reader shall not be confused by this notation
since in this paper Kronecker products are not involved.

The outer product of N (column) vectors, which generalizes the standard outer
product of two vectors (a rank-1 matrix), is a special case of tensor products. The outer
product of N vectors x(n) ∈ R

dn is an order-N tensor of dimension d1×d2×· · ·×dN :

X = x(1) ⊗ x(2) ⊗ · · · ⊗ x(N).

The (i1, i2, . . . , iN )-entry of X is
∏N

n=1(x
(n))in , where (x(n))in denotes the inth entry

of vector x(n). The tensor X is also called a rank-1 tensor. The rank of a tensor is
defined in section 3.

It can be verified that the mode-n product of a rank-1 tensor X with a matrix M
can be computed as follows:

X ×n M = x(1) ⊗ · · · ⊗ x(n−1) ⊗
(
Mx(n)

)
⊗ x(n+1) · · · ⊗ x(N),

and it can be verified that the inner product of X with a general tensor A is

〈A,X〉F =
〈
A, x(1) ⊗ x(2) ⊗ · · · ⊗ x(N)

〉
F

= A×1 x(1)T ×2 x(2)T × · · · ×N x(N)T
.

If U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N) and V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(N) are two rank-1 tensors,
then

〈U ,V〉F =
N∏

n=1

〈
u(n), v(n)

〉
,

where 〈·, ·〉 denotes the standard Euclidean inner product of two vectors. A conse-
quence of the above relation is that ‖U‖F is the product of the 2-norms of the vectors
u(n)’s.

2.4. Orthogonality of tensors. Two tensors A and B of the same size are
F-orthogonal (Frobenius orthogonal) if their inner product is zero, i.e.,

〈A,B〉F = 0.

For rank-1 tensors U = u(1) ⊗ u(2) ⊗ · · · ⊗ u(N) and V = v(1) ⊗ v(2) ⊗ · · · ⊗ v(N), the
above definition implies that they are F-orthogonal if

N∏
n=1

〈
u(n), v(n)

〉
= 0.

This leads to other options for defining orthogonality for two rank-1 tensors. The
paper [28] discussed two cases:

1. Complete orthogonality:
〈
u(n), v(n)

〉
= 0 for all n = 1, . . . , N .

2. Strong orthogonality: For all n, either
〈
u(n), v(n)

〉
= 0 or u(n) and v(n) are

collinear, but there is at least one � such that
〈
u(�), v(�)

〉
= 0.

In this paper we will simply use the term orthogonal for two outer products that are
completely orthogonal (case 1).
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2.5. Tensor decompositions. A decomposition of a tensor A ∈ R
d1×d2×···×dN

is of the form

A = B ×1 S(1) ×2 S(2) × · · · ×N S(N),

where B ∈ R
c1×c2×···×cN is called the core tensor, and S(n) ∈ R

dn×cn for n = 1, . . . , N
are called side-matrices. An illustration is given in Figure 2.1.

A

B

S(1)

S
(2

)

S(3
)

=

Fig. 2.1. A decomposition of an order-3 tensor A as B ×1 S(1) ×2 S(2) ×3 S(3).

Let s
(n)
i be the ith column of S(n). The decomposition of A can equivalently be

written as a linear combination of rank-1 tensors:

(2.2) A =
cN∑

iN =1

· · ·
c1∑

i1=1

bi1,i2,...,iN s
(1)
i1

⊗ s
(2)
i2

⊗ · · · ⊗ s
(N)
iN

.

In particular, if B is diagonal, i.e., bi1,i2,...,iN = 0 except when i1 = i2 = · · · = iN ,
then

(2.3) A =
r∑

i=1

bii...is
(1)
i ⊗ s

(2)
i ⊗ · · · ⊗ s

(N)
i ,

where r = min{c1, . . . , cN}.
In the literature, the term “decomposition” is often used when “approximation”

is meant instead. The Tucker3 decomposition is an approximation in the form of the
right-hand side of (2.2), for given dimensions c1, c2, . . . , cN . Usually, it is required
that cn is less than the rank of A(n) for all n; otherwise the problem is trivial. The
HOOI approach computes this approximation with an additional property that all the
S(n)’s are orthogonal matrices. The CANDECOMP/PARAFAC decomposition is an
approximation in the form of the right-hand side of (2.3), for a prespecified r. Usually,
r is smaller than the smallest dimension of all modes of A, although requiring a larger
r is also possible in the ALS and other algorithms. As will be discussed in the next
section, the smallest r that satisfies equality (2.3) is the rank of the tensor A.

3. Tensor ranks. The rank of a tensor causes difficulties when attempting to
generalize matrix properties to tensors. There are several possible generalizations of
the notion of rank. The n-rank of a tensor A ∈ R

d1×d2×···×dN , for n = 1, . . . , N ,
denoted by rankn(A), is the rank of the unfolding A(n):

rankn(A) := rank(A(n)).
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The (outer-product) rank of A, denoted by rank(A), is defined as

rank(A) := min
{
r
∣∣∣∃ x

(n)
i ∈ R

dn , i = 1, . . . , r, n = 1, . . . , N,

s.t. A =
r∑

i=1

x
(1)
i ⊗ x

(2)
i ⊗ · · · ⊗ x

(N)
i

}
.

Hence, a tensor is the outer product of N vectors if and only if it has rank one, and
the rank of a general tensor A is the minimum number of rank-1 tensors that sum to
A.

There are a few notable differences between the notion of rank for matrices and
that for tensors:

1. For N = 2, i.e., when A is a matrix, rank1(A) is the row rank, rank2(A)
is the column rank, and rank(A) is the outer-product rank, and they are all equal.
However, for higher order tensors (N > 2), in general, the n-ranks are different for
different modes n, and they are different from rank(A) [12]. Furthermore, the rank of
a matrix A cannot be larger than the smallest dimension of both modes of A, but for
tensors this is no longer true; i.e., the rank can be larger than the smallest dimension
of the tensor [12].

2. The matrix SVD yields one possible way of writing a matrix as a sum of
outer-product terms, and the number of nonzero singular values is equal to the rank
of the matrix. However, a tensor SVD does not always exist (see section 4), but if
it indeed does, it is unique up to signs [34, 43] and the number of singular values is
equal to the rank of the tensor (see Definition 4.1 and Proposition 4.2).

3. It is well known that the optimal rank-r approximation of a matrix is sim-
ply its truncated SVD. However, some tensors may fail to have an optimal rank-r
approximation [17]. If such an approximation exists, then it is unclear whether it can
be written in the form of a diagonal core multiplied by orthogonal side-matrices.

Next are some lemmas and a theorem related to tensor ranks, which were also
given in [17]. They are useful in deriving the results in section 4. The first lemma
indicates that the rank of a tensor cannot be smaller than any of its n-ranks.

Lemma 3.1. Let A ∈ R
d1×d2×···×dN be an order-N tensor. Then

rankn(A) ≤ min{rank(A), dn} for n = 1, 2, . . . , N.

The next lemma illustrates a way to construct higher order tensors while preserv-
ing the rank.

Lemma 3.2. Let A be a tensor and x be a nonzero vector. Then

rank(A) = rank(A⊗ x).

The following lemma indicates that given any dimension d1 × d2 × · · · × dN , we
can construct a tensor of arbitrary rank R ≤ min{d1, d2, . . . , dN}.

Lemma 3.3. For n = 1, . . . , N , let x
(n)
1 , . . . , x

(n)
R ∈ R

dn be linearly independent.
Then the tensor

A =
R∑

i=1

x
(1)
i ⊗ x

(2)
i ⊗ · · · ⊗ x

(N)
i

has rank R.
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The next theorem is due to JáJá and Takche [23]. They showed that if A and B
are order-3 tensors and at least one of them is a “stack” of two matrices, then the
rank of their direct sum is equal to the sum of their ranks.

Theorem 3.4 (JáJá–Takche). Let A ∈ R
d1×d2×d3 and B ∈ R

c1×c2×c3 . If 2 ∈
{d1, d2, d3, c1, c2, c3}, then

rank(A⊕ B) = rank(A) + rank(B).

3.1. The ill-posedness of the optimal low rank approximation problem.
de Silva and Lim [17] proved that for any order N ≥ 3 and dimensions d1, . . . , dN ≥ 2,
there exists a rank-(r + 1) tensor that has no optimal rank-r approximation, for any
r = 2, . . . , min{d1, . . . , dN}. This result was further generalized to an arbitrary rank
gap, i.e., there exists a rank-(r + s) tensor that has no optimal rank-r approximation,
for some r’s and s’s.

Essentially, this ill-posedness of the optimal approximation problem is illustrated
by the fact that the tensor

E := e2 ⊗ e1 ⊗ e1 + e1 ⊗ e2 ⊗ e1 + e1 ⊗ e1 ⊗ e2 ∈ R
2×2×2,

where ei is the ith column of the identity matrix, has rank 3 but can be approximated
arbitrarily closely by rank-at-most-2 tensors. Hence E does not have an optimal rank-2
approximation. Then according to Theorem 3.4 and Lemma 3.2, the ill-posedness of
the problem can be generalized to arbitrary rank and order, by constructing higher
rank and higher order tensors using direct sums and tensor products. We restate one
of the results of [17] in the following theorem. For details of the proof, see the original
paper.

Theorem 3.5. For N ≥ 3 and d1, d2, . . . , dN ≥ 2, there exists a tensor A ∈
R

d1×d2×···×dN of rank r + s that has no optimal rank-r approximation, for any r and
s ≥ 1 satisfying 2s ≤ r ≤ min{d1, d2, . . . , dN}.

4. The tensor SVD and its (non-)existence. The definition used for the
SVD of a tensor generalizes the matrix SVD from the angle of an expansion of outer
product matrices, which becomes an expansion into a sum of rank-1 tensors.

Definition 4.1. If a tensor A ∈ R
d1×d2×···×dN can be written in the form

(4.1) A =
R∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and 〈u(n)
j u

(n)
k 〉 = δjk (Kronecker delta) for n =

1, 2, . . . , N , then (4.1) is said to be the tensor singular value decomposition (tensor
SVD) of A. The σi’s are singular values and the u

(n)
i ’s for i = 1, . . . , R are the mode-n

singular vectors.
We also call (4.1) the SVD of tensor A for short where there is no ambiguity

about tensors and matrices. In fact, when N = 2, i.e., A is a matrix, the tensor SVD
of A boils down to the matrix SVD. Expression (4.1) can equivalently be written in
the form

(4.2) A = D ×1 U (1) ×2 U (2) × · · · ×N U (N),

where D ∈ R
R×R×···×R is the diagonal core tensor with Dii...i = σi, and

(4.3) U (n) =
[
u

(n)
1 , u

(n)
2 , . . . , u

(n)
R

]
∈ R

dn×R
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are orthogonal matrices for n = 1, 2, . . . , N . The following proposition indicates that
the tensor SVD is rank revealing.

Proposition 4.2. If a tensor A has the SVD as (4.1), then rank(A) = R.
Proof. This follows from Lemma 3.3.
Trivially, if a tensor is constructed as in (4.1), then its SVD exists. However, in

general, a tensor of order N ≥ 3 may fail to have such a decomposition. In this section,
we identify some of these situations.

To begin with, note that the orthogonality of each U (n) implies that R ≤ dn for
each n, i.e., R ≤ min{d1, d2, . . . , dN}. This leads to the following simple result.

Proposition 4.3. A tensor A ∈ R
d1×d2×···×dN with rank(A) > min{d1, d2, . . . ,

dN} does not admit a tensor SVD.
Proof. The existence of a tensor SVD such as in (4.1) would trivially lead to a

contradiction since the tensor in (4.1) has rank R with R ≤ min{d1, d2, . . . ,
dN}.

Note that Theorem 3.5 guarantees that the condition of Proposition 4.3 is not
vacuously satisfied, for any order N ≥ 3 and dimensions d1, d2, . . . , dN ≥ 2.

Corollary 4.4. Given a tensor A satisfying the condition in Proposition 4.3,
any tensor of the form

A⊗ x(N+1) ⊗ · · · ⊗ x(N+�),

where � ≥ 1 and x(N+1), . . . , x(N+�) are nonzero vectors, does not admit a tensor
SVD.

Proof. This follows from Proposition 4.3 and Lemma 3.2.
Corollary 4.5. A tensor A ∈ R

d1×d2×···×dN does not admit a tensor SVD if
there exists at least one mode n such that rankn(A) > min{d1, d2, . . . , dN}.

Proof. This follows from Proposition 4.3 and Lemma 3.1.
Proposition 4.6. There exists a tensor A ∈ R

d1×d2×···×dN which does not admit
a tensor SVD whenever

d := max
n

{dn} > min
n

{dn} and d2 ≤
N∏

n=1

dn.

Proof. Without loss of generality, assume that d = d1 ≥ d2 ≥ · · · ≥ dN and let
d′ = d2×· · ·×dN . Since d ≤ d′, for an arbitrary set of orthonormal vectors {ai ∈ R

d′ |
i = 1, . . . , d}, we can construct a tensor A whose unfolding A(1) = [a1, a2, . . . , ad]T .
Then rank1(A) = d. By Corollary 4.5, A does not admit a tensor SVD.

Note that when N = 2, i.e., for the matrix case, it is impossible for d1 and d2 to
satisfy the condition in the proposition.

In closing this section, we provide a necessary and sufficient condition to charac-
terize the existence of the tensor SVD.3 This is related to the HOSVD proposed by
[12]. The essential relation underlying the theorem is that the mode-n singular vectors
of A, when its SVD exists, are also the left singular vectors of the unfolding A(n).

Theorem 4.7. A tensor A admits an SVD if and only if there exists an HOSVD
of A such that the core is diagonal.

Proof. The sufficient condition is obvious. Consider the necessary condition. If A
can be written in the form (4.1), then define the tensor

W(n)
i := u

(n+1)
i ⊗ · · · ⊗ u

(N)
i ⊗ u

(1)
i ⊗ · · · ⊗ u

(n−1)
i ,

3As pointed out by a referee, the provided relation may have long been recognized in other fields
of research, such as signal processing, at least in the case of distinct singular values.
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and let w
(n)
i be the vectorization of W(n)

i . Then the unfolding of A along mode n is

A(n) =
R∑

i=1

σiu
(n)
i ⊗ w

(n)
i .

Since 〈u(n)
j u

(n)
k 〉 = δjk for all n, we have 〈w(n)

j w
(n)
k 〉 = δjk. Hence the above form is

the SVD of matrix A(n). In other words, the vectors u
(n)
1 , . . . , u

(n)
R are the left singular

vectors of A(n). From the construction of the HOSVD, (4.2) is a valid HOSVD for
A.4

The proof of the above theorem indicates that if the SVD of a tensor A exists, then
its singular values coincide with the nonzero mode-n singular values in its HOSVD.
However, the HOSVD of a tensor may not be unique, since the SVD of the unfoldings
A(n)’s are not guaranteed to be unique. Hence even if a tensor is constructed as
in (4.1), its HOSVD will not necessarily recover this form. This is the reason why in
the above theorem we use the phase “. . . if there exists . . . .”

It is interesting to note again that the nonuniqueness of matrix SVD is caused by
duplicate singular values; however, the tensor SVD is unique (if it exists) even when
some of the singular values are the same [43, Theorem 3.2].

5. The optimal low rank orthogonal approximation. The problem ad-
dressed by tensor analysis is to approximate some tensor A by a linear combination
of tensors T1, T2, . . . , Tr that have “special” structures, e.g., rank-1 tensors, orthogonal
tensors, or simple tensors.5 For this it is desirable to minimize∥∥∥∥∥A−

r∑
i=1

σiTi

∥∥∥∥∥
F

for a given r. Without loss of generality, we assume that ‖Ti‖F = 1 for all i. As
discussed in section 3.1, if the Ti’s are rank-1 tensors, then the infimum of the above
expression might not necessarily be attained. The following proposition reveals some
properties when the infimum is indeed achieved.

Proposition 5.1. Given a tensor A and a positive integer r, consider a set of
linear combinations of tensors of the form

(5.1) T :=
r∑

i=1

σiTi,

where the Ti’s are arbitrary unit tensors. If inf ‖A− T ‖F is reached on this set, then
for the optimal T and Ti’s,

〈A − T , Ti〉F = 0 for i = 1, 2, . . . , r.

Furthermore, if the Ti’s are required to be mutually F-orthogonal, then the optimal
σi’s are related to the optimal Ti’s by

(5.2) σi = 〈A, Ti〉F for i = 1, 2, . . . , r.

4In order to strictly conform to the definition of the HOSVD defined in [12], in (4.2) the size of
D should be enlarged from R×R× · · · ×R to d1 × d2 × · · · × dN by padding zeros, and the U (n)’s
should be padded with orthogonal columns to make square shapes.

5A tensor is simple if it is the tensor product of two tensors.
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In this situation,

(5.3) ‖T ‖F =

√√√√ r∑
i=1

σ2
i and ‖A − T ‖2

F = ‖A‖2
F − ‖T ‖2

F .

Proof. If the infimum is attained by a certain set of σi’s and Ti’s, and if there is
a j such that 〈A − T , Tj〉F = ε �= 0, then∥∥∥∥∥A−

r∑
i=1

σiTi − εTj

∥∥∥∥∥
2

F

=

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
2

F

− 2ε

〈
A−

r∑
i=1

σiTi, Tj

〉
F

+ ε2 ‖Tj‖2
F

=

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
2

F

− ε2 <

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
2

F

,

which contradicts the assumption.
If the unit tensors Ti’s are mutually F-orthogonal, then

0 =

〈
A−

r∑
i=1

σiTi, Tj

〉
F

= 〈A, Tj〉F − σj 〈Tj , Tj〉F = 〈A, Tj〉F − σj .

Also,

‖T ‖2
F = 〈T , T 〉F =

r∑
i,j=1

〈σiTi, σjTj〉F =
r∑

i=1

σ2
i

and ∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
2

F

= ‖A‖2
F −

r∑
i=1

2σi 〈A, Ti〉F +
r∑

i=1

σ2
i

= ‖A‖2
F −

r∑
i=1

σ2
i = ‖A‖2

F − ‖T ‖2
F .

The last part of the proof indicates that the equalities in (5.3) follow from the
orthogonality of the Ti’s and the relations (5.2). They do not require optimality.

In this section, we will see that if the Ti’s are mutually orthogonal rank-1 tensors,
then the infimum in the proposition can be attained. Formally, we will prove that the
problem

min E :=

∥∥∥∥∥A−
r∑

i=1

σiu
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i

∥∥∥∥∥
F

s.t.
〈
u

(n)
j , u

(n)
k

〉
= δjk, for n = 1, 2, . . . , N,

(5.4)

has a solution for any A ∈ R
d1×d2×···×dN and any r ≤ min{d1, d2, . . . , dN}. The

solution for the case r = min{d1, d2, . . . , dN} leads to a decomposition of A where the
diagonal of the core is maximized.
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5.1. Existence of the global optimum. Let

(5.5) Ti := u
(1)
i ⊗ u

(2)
i ⊗ · · · ⊗ u

(N)
i for i = 1, . . . , r,

and let σi’s be defined as in (5.2); then, according to Proposition 5.1 (see comments
following the proof),

E2 =

∥∥∥∥∥A−
r∑

i=1

σiTi

∥∥∥∥∥
2

F

= ‖A‖2
F −

r∑
i=1

σ2
i .

Hence minimizing E is equivalent to maximizing
∑r

i=1 σ2
i ; i.e., the optimization prob-

lem (5.4) is equivalent to the following:

max E′ :=
r∑

i=1

(
A×1 u

(1)
i

T
×2 u

(2)
i

T
× · · · ×N u

(N)
i

T
)2

s.t.
〈
u

(n)
j , u

(n)
k

〉
= δjk for n = 1, 2, . . . , N.

(5.6)

Let

(5.7) U (n) =
[
u

(n)
1 , u

(n)
2 , . . . , u(n)

r

]
∈ Ω(n),

where

(5.8) Ω(n) := {W ∈ R
dn×r | WT W = I}

for n = 1, 2, . . . , N . The problem (5.6) can be interpreted as that of maximizing E′

within the feasible region

(5.9) Ω := Ω(1) × Ω(2) × · · · × Ω(N).

Since for each n the set Ω(n) is compact (see, e.g., [22, p. 69]), by the Tychonoff
theorem, the feasible region Ω is compact. Under the continuous mapping E′, the
image E′(Ω) is also compact. Hence it has a maximum. This proves the following
theorem.

Theorem 5.2. There exists a solution to the problem (5.6) (or equivalently (5.4)
with σi defined in (5.2)) for any r ≤ min{d1, d2, . . . , dN}.

5.2. Relation to tensor decompositions. Let U (n), n = 1, . . . , N , be the
solution to the problem (5.4) with r = min{d1, d2, . . . , dN} and σi be defined in (5.2).
Also for n = 1, . . . , N , let U (n)⊥ be a dn×(dn−r) matrix such that the square matrix

(5.10) Ũ (n) :=
[
U (n), U (n)⊥

]
∈ R

dn×dn

is orthogonal. Further, define the tensor

(5.11) S := A×1 Ũ (1)T ×2 Ũ (2)T × · · · ×N Ũ (N)T ∈ R
d1×d2×···×dN .

Then the equality

(5.12) A = S ×1 Ũ (1) ×2 Ũ (2) × · · · ×N Ũ (N)

holds. This decomposition of A has the following two properties:
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(i) The side-matrices Ũ (n)’s are orthogonal.
(ii) The (squared) norm of the diagonal of the core S

min{d1,...,dN}∑
i=1

s2
ii...i =

r∑
i=1

(
A×1 u

(1)
i

T
×2 u

(2)
i

T
× · · · ×N u

(N)
i

T
)2

=
r∑

i=1

σ2
i

is maximized among all choices of the orthogonal side-matrices. This is known as
maximal diagonality in [12].

5.3. First order condition. The Lagrangian of (5.6) is

(5.13) L =
r∑

i=1

σ2
i −

r∑
j,k=1

N∑
n=1

μn
j,k

(〈
u

(n)
j , u

(n)
k

〉
− δjk

)
,

where

(5.14) σi = A×1 u
(1)
i

T
×2 u

(2)
i

T
× · · · ×N u

(N)
i

T

and the μn
j,k’s are Lagrange multipliers. Define the vector

v
(n)
i := A×1 u

(1)
i

T
× · · · ×n−1 u

(n−1)
i

T
×n+1 u

(n+1)
i

T
× · · · ×N u

(N)
i

T

∈ R
1×···×1×dn×1···×1.

(5.15)

(Here we abuse the use of notation “=.” More precisely, v
(n)
i should be the mode-n

unfolding of the tensor on the right-hand side of (5.15).) It is not hard to see that〈
u

(n)
i , v

(n)
i

〉
= σi

for all n and i, and v
(n)
i is the partial derivative of σi with respect to u

(n)
i .

The partial derivative of the Lagrangian with respect to u
(n)
i is

∂L

∂u
(n)
i

= 2σiv
(n)
i −

r∑
j=1

μn
j,iu

(n)
j −

r∑
k=1

μn
i,ku

(n)
k

for any n and i. By setting the partial derivatives to 0 and putting all equations
related to the same n in matrix form, we obtain the following equations:

(5.16)

[
v
(n)
1 · · · v

(n)
r

]⎡⎢⎢⎣
σ1

. . .

σr

⎤⎥⎥⎦ =
[
u

(n)
1 · · · u

(n)
r

]⎡⎢⎢⎢⎣
μn

1,1+μn
1,1

2 · · · μn
1,r+μn

r,1
2

...
. . .

...
μn

r,1+μn
1,r

2 · · · μn
r,r+μn

r,r

2

⎤⎥⎥⎥⎦
for all n = 1, 2, . . . , N . Let

V (n) :=
[
v
(n)
1 , v

(n)
2 , . . . , v(n)

r

]
,(5.17)

Σ := diag(σ1, . . . , σr),(5.18)
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and let M (n) be the second term on the right-hand side of (5.16). Then (5.16) is
compactly represented as

(5.19) V (n)Σ = U (n)M (n), n = 1, 2, . . . , N.

In summary, the necessary condition of an extremum of the Lagrangian is (5.19),
where V (n) is defined in (5.17), Σ is defined in (5.18), U (n) is defined in (5.7), and
M (n) is symmetric, for all n = 1, 2, . . . , N .

5.4. Algorithm: LROAT. We seek orthogonal matrices U (n)’s and symmetric
matrices M (n)’s which satisfy the system (5.19). (The Σ and V (n)’s are computed from
the U (n)’s.) Note that the pair U (n), M (n) happens to be the polar decomposition of
the matrix V (n)Σ. Hence the system can be solved in an iterative fashion: We begin
with an initial guess of the set of orthogonal matrices {U (1), U (2), . . . , U (N)}, which
can be obtained, say, by the HOSVD of A. For each n, we compute V (n) and Σ, and
update U (n) as an orthogonal polar factor of V (n)Σ. This procedure is iterated until
convergence is observed. Algorithm 1 (LROAT) summarizes this idea.

Algorithm 1. Low Rank Orthogonal Approximation of Tensors (LROAT)

Input: Tensor A, rank r, orthogonal matrices U (1), . . . , U (N) as initial guess
Output: σ1, . . . , σr , U (1), . . . , U (N)

1: repeat
2: for n ← 1, . . . , N do
3: Compute V (n) =

[
v
(n)
1 , . . . , v

(n)
r

]
according to (5.15)

4: Compute Σ = diag(σ1, . . . , σr) according to (5.14)
5: [Q(n), H(n)] ← polar-decomp(V (n)Σ)
6: Update U (n) ← Q(n)

7: end for
8: until convergence

Note that when r = 1, the matrix V (n) = [v(n)
1 ] and U (n) = [u(n)

1 ], which means
that for each iteration u

(n)
1 is updated as the normalized v

(n)
1 . This indicates that

the LROAT algorithm for r = 1 boils down to the ALS method [43] (or the so-called
higher order power method [13, 27]) for computing the optimal rank-1 approximation.
Hence, it is not unexpected to see in the numerical experiments that in general LROAT
converges linearly. We also comment that LROAT is not an ALS method (except for
the case r = 1) by the nature of the update of U (n).

5.5. Convergence analysis. LROAT employs an alternating procedure (iter-
ating through U (1), U (2), . . . , U (N)), where in each step all but one of the (U (n))
parameters are fixed. In general, algorithms of this type, including ALS, are not guar-
anteed to converge. Specifically, the objective function may converge but not the
parameters. (See, for example, [32] for some discussions.) For LROAT, we are also
unable yet to prove the global convergence, though empirically it appears to hold.
However, in this section, we will prove the following: (1) the iterations monotonically
increase the objective value E′ (Theorem 5.4); (2) under a mild condition, of the gen-
erated parameter sequence, every converging subsequence converges to a stationary
point of the objective function (Theorem 5.7); and (3) in a neighborhood of a local
maximum, the parameter sequence converges to this stationary point (Theorem 5.9).
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Before analyzing the convergence behavior of LROAT, we index all of the iterates.
The outer loop is indexed by p and the overall iterations are indexed by idx, which is
equal to n+(p−1)N . In other words, Algorithm 1 is rewritten as follows. In particular,
the numbered lines correspond to the lines in Algorithm 1.

for p ← 1, 2, . . . do
for n ← 1, . . . , N do

idx = n + (p − 1)N
For all i, compute σ

(idx)
i according to U

(1)
(p+1), . . . , U

(n−1)
(p+1) , U

(n)
(p) , U

(n+1)
(p) , . . . , U

(N)
(p)

Objective E′(idx) =
∑r

i=1

(
σ

(idx)
i

)2

3: Compute V
(n)
(p) from U

(1)
(p+1), . . . , U

(n−1)
(p+1) , U

(n+1)
(p) , . . . , U

(N)
(p)

4: Assign Σ(idx) = diag
(
σ

(idx)
1 , . . . , σ

(idx)
r

)
5: Polar decomposition V

(n)
(p) Σ(idx) = Q

(n)
(p)H

(n)
(p)

6: Update U
(n)
(p+1) = Q

(n)
(p)

end for
end for

The following lemma, which is well known when the matrix A is square, reveals the
trace maximizing property that is important for the convergence analysis of LROAT.

Lemma 5.3. Let matrix A ∈ R
m×n, m ≥ n, have the polar decomposition A =

QH, where Q ∈ R
m×n is the orthogonal polar factor and H ∈ R

n×n is the symmetric
positive semidefinite factor; then

max
P∈Rm×n, P T P=I

tr(PT A)

is attained when P = Q.
Proof. Any P can be written as ZQ, where Z ∈ R

m×m is orthogonal. Then

tr(PT A) = tr(QT ZT QH) = tr(ZT QHQT ).

Since QHQT is symmetric positive semidefinite, max tr(ZT QHQT ) is attained when
Z = I.

Since U
(n)
(p+1) is the orthogonal polar factor of V

(n)
(p) Σ(idx), by Lemma 5.3,

r∑
i=1

(
σ

(idx)
i

)2

= tr
(

U
(n)
(p)

T
V

(n)
(p) Σ(idx)

)
≤ tr

(
U

(n)
(p+1)

T
V

(n)
(p) Σ(idx)

)
=

r∑
i=1

σ
(idx+1)
i σ

(idx)
i .

Then, by the Cauchy–Schwarz inequality,

(5.20)
r∑

i=1

(
σ

(idx)
i

)2

≤
r∑

i=1

σ
(idx+1)
i σ

(idx)
i ≤

r∑
i=1

(
σ

(idx+1)
i

)2

,

and

(5.21)
r∑

i=1

(
σ

(idx)
i

)2

=
r∑

i=1

(
σ

(idx+1)
i

)2

iff σ
(idx)
i = σ

(idx+1)
i for all i.
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Inequality (5.20) means that each update of U (n) increases the value of the objective
function E′, i.e.,

E′(idx) ≤ E′(idx+1).

Since E′ is bounded from above (existence of the maximum; see Theorem 5.2), the
sequence {E′(idx)}∞idx=1 converges. Note that the convergence does not depend on
the initial guess input to the algorithm. Formally, we have established the following
theorem.

Theorem 5.4. Given any initial guess, the iterations of Algorithm 1 monotoni-
cally increase the objective function E′ defined in (5.6) to a limit.

The convergence of the objective function does not necessarily imply that the
function parameters will converge. However, in our case, since the parameters U (n)’s
are bounded, they admit converging subsequences. Next we will show that every such
subsequence converges to a stationary point of E′. For this, the following lemma uses
a helper function f .

Lemma 5.5. Let T : Θ → Θ be a continuous mapping and a sequence {θn ∈ Θ}∞n=1

be generated from the fixed point iteration θn+1 = T (θn). If there exists a continuous
function f : Θ → R satisfying that

(i) the sequence {f(θn)}∞n=1 converges, and
(ii) for θ ∈ Θ, if f(T (θ)) = f(θ), then T (θ) = θ,

then every converging subsequence of {θn}∞n=1 converges to a fixed point of T .
Proof. Let {θsn}∞n=1 be a converging subsequence of {θn}∞n=1, where θsn → θ∗.

Also let f∗ be the limit of f(θn). Then f(θsn) → f(θ∗); therefore f(θ∗) = f∗. Mean-
while, from the continuity of T and f , we have T (θsn) → T (θ∗) and f(θsn+1) =
f(T (θsn)) → f(T (θ∗)), which implies that f(T (θ∗)) = f∗. Condition (ii) of the lemma
now implies that θ∗ = T (θ∗).

Our objective function E′ is just one such helper function f , and the orthogonal
polar factor function plays the role of the mapping T in the above lemma. The follow-
ing lemma establishes the fact that the orthogonal polar factor function is continuous.

Lemma 5.6. The orthogonal polar factor function g : A → Q defined on the set
of matrices with full column rank is continuous. Here Q is the orthogonal polar factor
of A ∈ R

m×n, m ≥ n.
Proof. First, function g is well defined, since the orthogonal polar factor of a full

rank matrix exists and is unique [21]. When Q and Q′ are the orthogonal polar factors
of A and A′, respectively, Sun and Chen [39] have shown that

‖Q − Q′‖F ≤ 2
‖A+‖2

‖A − A′‖F ,

where + means pseudoinverse. Hence if A1, A2, . . . converges to A∗, then g(A1),
g(A2), . . . converges to g(A∗).

Now we are ready to prove the following result.
Theorem 5.7. Every converging subsequence of {U (1)

(p) , . . . , U
(N)
(p) }∞p=1 generated

by Algorithm 1 converges to a stationary point of the objective function E′ defined
in (5.6), provided the matrices V (n) in line 3 of the algorithm do not become rank-
deficient throughout the iterations.

Proof. For convenience, let U denote the side-by-side concatenation of the U (n)’s;
i.e., at iteration number p we write U(p) := [U (1)

(p) , . . . , U
(N)
(p) ]. For each iteration,

V
(n)
(p) Σ(idx) is computed from U(p) and polar factorized, and U

(n)
(p) is updated. Let
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T be the composite of all of these iterations running n from 1 to N . That is, U(p+1) =
T (U(p)). It is not hard to see that T is continuous by Lemma 5.6. The objective
function E′ taking parameter U(p) has been previously shown such that the sequence
{E′(U(p))}∞p=1 is monotonically converging.

Hence by Lemma 5.5, in order to prove this theorem, it will suffice to show
that E′(T (U)) = E′(U) implies T (U) = U . Then every converging subsequence
of {E′(U(p))}∞p=1 converges to a fixed point, which satisfies the first order condi-
tion (5.19); i.e., it is also a stationary point of E′.

If E′(T (U)) = E′(U), then formula (5.21) indicates that the σi values have not
changed after the iteration. In particular, for any n, the update of U (n) has not
changed tr(U (n)T

V (n)Σ). Since the orthogonal polar factor of V (n)Σ is unique when
V (n) is not rank-deficient, this means that U (n) has not changed. This in turn means
that U is a fixed point of the mapping T .

The condition in the theorem is not a strong requirement in general. Of course, the
columns v

(n)
i of the matrix V (n), as computed from (5.15), will be linearly dependent

if the n-rank of A is less than r. For practical applications, the tensor usually has full
n-ranks for all n, so this does not hamper the applicability of the theorem.

Though the global convergence of {U(p)} is not determined, when localized, it is
possible that this parameter sequence converges. The following lemma and theorems
consider this situation.

Lemma 5.8. If a sequence {θn}∞n=1 is bounded, and all of its converging subse-
quences converge to θ∗, then θn → θ∗.

Proof (by contradiction). If {θn}∞n=1 does not converge to θ∗, then there is an
ε > 0 such that there exists a subsequence S = {θsn}∞n=1, where ‖θsn − θ∗‖ ≥ ε for all
n. Since S is bounded, it has a converging subsequence S′. Then S′ as a subsequence
of {θn}∞n=1 converges to a limit other than θ∗.

Theorem 5.9. Let U∗ = [U (1)
∗ , . . . , U

(N)
∗ ] be a local maximum of the objective

function E′ defined in (5.6). If the sequence {U(p) := [U (1)
(p) , . . . , U

(N)
(p) ]}∞p=1 generated

by Algorithm 1 lies in a neighborhood of U∗, where U∗ is the only stationary point in
that neighborhood, and if the full rank requirement in Theorem 5.7 is satisfied, then
the sequence {U(p)}∞p=1 converges to U∗.

Proof. This immediately follows from Theorem 5.7 and Lemma 5.8.
Note that since the starting elements of a sequence have no effect on its conver-

gence behavior, the above theorem holds whenever the tailing subsequence, starting
from a sufficiently large p, lies within the neighborhood.

A weaker, but simpler, result is the following corollary.
Corollary 5.10. Let U∗ = [U (1)

∗ , . . . , U
(N)
∗ ] be a local maximum of the objective

function E′ defined in (5.6). If this local maximum is unique and if the full rank re-
quirement in Theorem 5.7 is satisfied, then the sequence {U(p) := [U (1)

(p) , . . . , U
(N)
(p) ]}∞p=1

generated by Algorithm 1 converges to U∗.

5.6. LROAT for symmetric tensors. An order-N tensor A ∈ R
d×d×···×d,

whose dimensions of all modes are the same, is symmetric if, for all permutations π,

ai1,i2,...,iN = aiπ(1),iπ(2),...,iπ(N) .

For symmetric tensors, usually the approximation problem (5.4) has an addi-
tional constraint that the side-matrices U (n)’s are the same for all n; i.e., the problem
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becomes

min E =

∥∥∥∥∥A−
r∑

i=1

σiui ⊗ ui ⊗ · · · ⊗ ui

∥∥∥∥∥
F

s.t. 〈uj, uk〉 = δjk.

(5.22)

Applying similar arguments to those in section 5.1, it is easily seen that (5.22) is
equivalent to the following problem:

max E′ =
r∑

i=1

(
A×1 uT

i ×2 uT
i × · · · ×N uT

i

)2

s.t. 〈uj, uk〉 = δjk.

(5.23)

The supremum of E′ can be attained. Further, the “maximal-diagonality” decompo-
sition of A (cf. (5.12)) has an additional property that the core S is symmetric. Also,
the first order condition (5.19) is simplified to

V Σ = UM.

Hence, there are two approaches to compute the approximation for the symmet-
ric tensor A. The first approach is to directly apply LROAT on A. Theorems in
the above section guarantee the convergence under mild assumptions, but the side-
matrices might no longer be the same, though in the next section an experiment
indicates that they indeed converge to the same matrix. The second approach is to
only use a single initial guess U and omit the for-loop on n (line 2 of Algorithm 1). We
call this the symmetric variant of LROAT. In this case Theorem 5.4 no longer holds,
i.e., the iterations might not monotonically increase the objective value E′ defined
in (5.23), since the for-loop on n is omitted. An experiment in the next section shows
an oscillating phenomenon, which is similar to the one indicated in Figure 4.1 of [27],
for the objective value E′.

6. Numerical experiments. This section will show a few experiments to illus-
trate the convergence behavior and the approximation quality of LROAT. For com-
parisons see the ALS methods for Tucker and PARAFAC, whose implementations
are based on the codes from the MATLAB Tensor Toolbox developed by Bader and
Kolda [2]. We use the major left singular vectors of the unfoldings as the initial guess
input for all of the algorithms compared. When it comes to the quality of the final
approximation, experience shows that compared with random orthonormal vectors,
singular vectors as initial guesses do not offer any advantage. It has been argued that
running the algorithms several times using different sets of random initial guess en-
hances the probability of hitting the global optimum. We use singular vectors here
only for repeatability.

6.1. Convergence of LROAT. In the first experiment, we test LROAT (and
the symmetric variant of LROAT mentioned in section 5.6) on a few tensors listed in
Table 6.1. The results are shown in Figures 6.1 and 6.2. Each row of the figures is one
test on a tensor. The left plot shows the objective value E′ (the same as the norm
of the approximated tensor T ) for each iteration p, while the right plot shows the
convergence history of the U (n)’s. Since the optima are unknown, we plot the values
‖U (n)

(p) − U
(n)
(p−1)‖F to indicate the convergence of the sequence {U (n)

(p) }p=1,2,.... Since
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these values are plotted on logarithmic scales, if the curves are bounded from above
by a straight decreasing line, then it is indicated that the convergence of the sequence
is at least linear.

Table 6.1

The tensors used for the first experiment. The value r is the rank input to LROAT; it is not
the rank of the tensor.

Tensor Dimensions r Notes
A1 20× 16× 10× 32 5 random tensor
A2 20× 16× 10× 32 5 rank-5 tensor + Gaussian noise
A3 10× 10 × 10 5 the (i, j, k)-entry = 1/(i2 + j2 + k2)
A4 3× 3× 3× 3 2 see [27, Example 1]

Figures 6.1 and 6.2 show a total of five tests. The first test (Figure 6.1(a)) uses a
randomly generated tensor A1. The second test (Figure 6.1(b)) uses a low-rank-plus-
Gaussian-noise tensor

A2 = B1 + ρB2,

where the low rank tensor B1 is in the form (2.3) with r = 5, the Gaussian noise tensor
B2 has normally distributed elements, and ρ = 0.1 ‖B1‖F / ‖B2‖F . In these two tests
the two tensors are applied to the LROAT algorithm. The third test (Figure 6.1(c))
uses a symmetric tensor A3 with entries

(A3)ijk =
1

i2 + j2 + k2
.

In this test A3 is applied to the symmetric variant of LROAT. All three tests show a
linear convergence rate. The fourth (Figure 6.2(a)) and the fifth (Figure 6.2(b)) tests
use a symmetric tensor A4 introduced in [27, Example 1]:

(A4)1111 = 0.2883, (A4)1112 = −0.0031, (A4)1113 = 0.1973,

(A4)1112 = −0.2485, (A4)1123 = −0.2939, (A4)1133 = 0.3847,

(A4)1222 = 0.2972, (A4)1223 = 0.1862, (A4)1233 = 0.0919,

(A4)1333 = −0.3619, (A4)2222 = 0.1241, (A4)2223 = −0.3420,

(A4)2233 = 0.2127, (A4)2333 = 0.2727, (A4)3333 = −0.3054.

In [27], the symmetric higher order power method for computing the optimal rank-1
approximation of A4 is shown to be nonconverging. We experiment with this tensor
with r = 2 on LROAT and the symmetric variant of LROAT. Figure 6.2(a) shows
that when applied to LROAT, the approximation to A4 indeed linearly converges, and
what is more, all of the side-matrices converge to the same result. The approximation
computed by LROAT is

A4 ≈ σ1u
(1) ⊗ u(1) ⊗ u(1) ⊗ u(1) + σ2u

(2) ⊗ u(2) ⊗ u(2) ⊗ u(2)

with

σ1 = −1.0939, u(1) =
[
−0.5946 0.7503 0.2890

]T
,

σ2 = −0.55594, u(2) =
[
0.1947 −0.2144 0.9572

]T
.

On the other hand, Figure 6.2(b) shows that the symmetric variant of LROAT fails
to converge.
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(a) Tensor A1: Randomly generated.
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(b) Tensor A2: Low rank plus Gaussian noise.
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(c) Tensor A3: (A3)ijk = 1/(i2 + j2 + k2).

Fig. 6.1. Experiment 1: Convergence tests for LROAT.
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(a) Tensor A4 directly applied to LROAT.
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(b) Tensor A4 applied to the symmetric variant of LROAT.

Fig. 6.2. Experiment 1 (continued): Convergence tests for LROAT.

6.2. Low rank orthogonal approximation compared with Tucker and
PARAFAC. In the second experiment, we compare the approximation quality of
three different models: low rank orthogonal approximation (without confusion in this
section, we call this model “LROAT,” which happens to be the name of the algorithm,
for short), Tucker, and PARAFAC. See Figure 6.3. We experiment with two tensors:
a low-rank-plus-Gaussian-noise tensor which is generated the same way as A2 and a
real-life tensor. The latter is obtained from a problem in acoustics [20], and the data
can be downloaded from [16]. The residual norms

res(p) :=

∥∥A− T(p)

∥∥
F

‖A‖F

over all of the iterations p are plotted.
Figure 6.3 indicates three facts: (1) the three models approximate the data tensor

well to some extent (less than 35% of the information is lost due to approximation);
(2) PARAFAC is usually slow to converge; (3) the residual norm for LROAT is larger
than those of Tucker and PARAFAC. The last fact is not unexpected since LROAT
can be considered a special case of Tucker and of PARAFAC: The Tucker model has a
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(a) Low-rank-plus-Gaussian-noise tensor.
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(b) Real-life tensor.

Fig. 6.3. Experiment 2: Comparison of LROAT, Tucker, and PARAFAC.

full core while the core for LROAT is diagonal, and unlike LROAT the side-matrices
in the PARAFAC model are not restricted to be orthogonal.

6.3. An application. In the blind source separation (BSS) problem [5], the
cumulant tensor of order 4 is a rank-R tensor:

(6.1)
R∑

i=1

σiui ⊗ ui ⊗ ui ⊗ ui,

where R is the number of sources and ui is the ith column of the mixing matrix.
In the prewhitening approach for the BSS problem, the ui’s become the columns of
the composite of the whitening matrix and the mixing matrix; that is, the ui’s are
length-R vectors and are orthonormal. Hence, this prewhitening approach reduces
to computing the tensor SVD of the cumulant tensor. Since in practice this tensor
is estimated from a finite data set, it is not exact. Thus, the low rank orthogonal
approximation becomes a suitable tool to recover the ui’s.

In an experiment, we let R = 3 and generate a data tensor

A5 = B3 + ρB4,

where B3 is as (6.1), B4 is a symmetric tensor with normally distributed elements,
and ρ = 0.05 ‖B3‖F / ‖B4‖F . The σi’s are

σ1 = 0.7942, σ2 = 0.5678, σ3 = 0.4611,

and the ui’s are

U = [u1, u2, u3] =

⎡⎢⎣0.0974 0.4049 0.9092
0.9918 −0.1154 −0.0548
0.0827 0.9071 −0.4128

⎤⎥⎦ .

We use four methods to compute the rank-R (or rank-(R, R, R)) approximations to
A5: LROAT, incremental rank-1 approximation, PARAFAC, and Tucker. All four
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methods return same side-matrices for all modes. They are

ULROAT =

⎡⎢⎣0.0937 0.3822 0.9193
0.9918 −0.1164 −0.0527
0.0869 0.9167 −0.3899

⎤⎥⎦ , Uinc =

⎡⎢⎣0.0841 0.3795 0.9162
0.9929 −0.1282 −0.0745
0.0846 0.9163 −0.3938

⎤⎥⎦ ,

UPARAFAC =

⎡⎢⎣0.0841 0.3795 0.9162
0.9929 −0.1282 −0.0745
0.0846 0.9163 −0.3938

⎤⎥⎦ ,

UTucker =

⎡⎢⎣0.0627 0.3707 0.9266
0.9952 −0.0937 −0.0298
0.0758 0.9240 −0.3748

⎤⎥⎦ .

Observations are as follows:
1. The Uinc and UPARAFAC are not orthogonal.
2. Compared with Tucker, LROAT gives better approximations to the vectors

ui’s:

‖U − ULROAT‖ = 0.0252, ‖U − UTucker‖ = 0.0527.

3. In terms of approximation quality, the residual norms (in percentage of the
norm of A5), are

resLROAT = 3.07%, resinc = 1.36%, resPARAFAC = 1.36%, resTucker = 0%.

7. Concluding remarks. In the present paper we studied the tensor SVD and
characterized its existence in relation to the HOSVD. Similar to the concept of rank,
the SVD of higher order tensors exhibits a quite different behavior and characteristics
from those of matrices. Thus, the SVD of a matrix is guaranteed to exist, though
it may have different representations due to orthogonal transformations of singular
vectors corresponding to the same singular value. On the other hand, there are many
ways in which a tensor can fail to have an SVD (see the results in section 4), but
when it exists, this decomposition is unique up to signs.

We have also discussed a new form of optimal low rank approximation of tensors,
where orthogonality is required. This approximation is inspired by the constraints
of the Tucker model and the PARAFAC model. In some applications, the proposed
approximation model may be favored, since it results in N sets of orthonormal vec-
tors or, equivalently, r mutually orthogonal unit rank-1 tensors with different weights.
Among the advantages of this approximation over the Tucker model is the fact that it
requires far fewer entries to represent the core, and that it is easier to interpret. Also,
compared with the PARAFAC model, the orthogonality of vectors may be useful in
some cases. Further, the LROAT algorithm for computing the proposed approxima-
tion does not seem to exhibit the well-known slow convergence from which the ALS
algorithm for PARAFAC suffers.

A major restriction of the proposed model is that the number of terms r can
not exceed the smallest dimension of all modes of the tensor. A consequence is that
the approximation may still be very different from the original tensor even when the
maximum r is employed. However, we note that when performing data analysis, the
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interpretation of the vectors and the core tensor might be more important than how
much is lost when the data is approximated.

A nice aspect of the proposed approximation is that the optimum of the objective
function can theoretically be attained, in contrast to the PARAFAC model which
is ill-posed in a strict mathematical sense. We presented an algorithm to compute
this approximation, but the computed result is optimal only in a local neighborhood.
It will be interesting to study for what tensors or what initial guesses the LROAT
algorithm converges to the global optimum, or to devise a new algorithm to solve this
optimization problem. It is an open problem how fast LROAT converges, although
empirically convergence is observed to be linear. We also discussed the symmetric
variant of LROAT and pointed out the possibility of its nonconvergence. Hence the
convergence properties of this variant, and the observed phenomenon that the original
LROAT algorithm can yield same side-matrices for symmetric tensors, remain to be
investigated.

Appendix. Does the ALS algorithm for PARAFAC converge? It has
been pointed out that the ALS algorithm for computing the PARAFAC model may
converge very slowly due to degenerate solutions or multicollinearities, and many al-
ternatives have been proposed to address this problem [36, 37, 26]. During iterations,
the objective value monotonically decreases by the nature of the ALS procedure, and
since the sequence is bounded, it converges. However, a proof of the convergence of
the parallel factors is lacking. In general it is assumed that these factors converge, but
may take a very large number of iterations. In this section, we discuss an experiment
showing that the general concept of convergence is unclear in this context. Though
only one example is given, we note that the exhibited behavior is not rare for ran-
domly generated tensors. (On the other hand it may be argued that tensors in real
applications are far from being filled with random entries.)

We generate an order-3 tensor A ∈ R
3×3×3 and run the ALS algorithm on r = 2,

i.e., to compute the approximation

A ≈ λ1u
(1)
1 ⊗ u

(2)
1 ⊗ u

(3)
1 + λ2u

(1)
2 ⊗ u

(2)
2 ⊗ u

(3)
2 .

The MATLAB code which generates the tensor A is as follows:
A(:,:,1) = [.99 .29 .08; .44 .69 .19; .00 .49 .97];
A(:,:,2) = [.36 .64 .10; .13 .73 .89; .01 .02 .76];
A(:,:,3) = [.58 .55 .98; .68 .77 .04; .96 .61 .98];

We use u
(n)
i = ei, where n = 1, 2, 3 and ei is the ith column of the identity matrix, as

the initial guess.
Denote U (n) = [u(n)

1 , u
(n)
2 ] for n = 1, 2, 3. Two plots are shown after running 105

iterations (see Figure A.1). Figure A.1(a) shows the “convergence” history for each
U (n). The curves represent ‖U (n)

(p) − U
(n)
(p−1)‖, where p is the index of the iterations. A

necessary condition for convergence to occur is that all three curves decrease to zero.
However, we see from the figure that this may not be the case. To test the conjecture
that each of the curves tends to a nonzero value, we use the expression

log10 y =
a

(10−4x)1/α
+ b

to fit the tailing part of the curves (starting from the 2× 104th iteration). Table A.1
gives the fitting results for different α’s. When the number of iterations tends to
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Fig. A.1. Slow convergence or nonconvergence of ALS for PARAFAC.

Table A.1

Curve fitting for the three curves in Figure A.1(a) using different α values. The error is mea-
sured as the quadratic mean of fitting errors in logarithmic scales, i.e., the RMS of | log10 y −
log10 yfit|. It will be easier to understand this error by noticing that the vertical axis of Figure A.1(a)
has a length 8 (after taking logarithm).

α 1 2 3 4 5
a 2.8407 2.7925 3.2657 3.8359 4.4404

U (1) b −7.5060 −8.1549 −8.8047 −9.4544 −10.1042
error 0.0595 0.0301 0.0201 0.0151 0.0121
a 2.8408 2.7926 3.2658 3.8360 4.4406

U (2) b −7.6428 −8.2917 −8.9415 −9.5913 −10.2411
error 0.0595 0.0301 0.0201 0.0151 0.0121
a 2.8411 2.7930 3.2662 3.8365 4.4411

U (3) b −7.7219 −8.3709 −9.0208 −9.6707 −10.3205
error 0.0595 0.0301 0.0201 0.0151 0.0121

infinity, the value 10b will show the limit of the differences between two consecutive
U (n)’s.

It is still difficult to conclude for this example that the iterations do not converge
since rounding has not been taken into account. However, it makes no practical differ-
ence for this case whether the sequence actually converges or whether it is exceedingly
slow to converge. The result, if convergence holds, will be an inordinate number of
iterations to reach a desirable level of convergence, and the cost will be too high in
practice. This can be made evident by examining Figure A.1(b), which plots the par-
allel factor u

(1)
2 over all iterations: The 3rd entry of u

(1)
2 decreases from 0.2540 at the

5 × 104th iteration to 0.2517 at the 105th iteration.
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STATE FEEDBACK DECOUPLING PROBLEM WITH STABILITY
FOR (A, B, C, D) QUADRUPLES∗

DELIN CHU† , M. MALABRE‡ , AND ROGER C. E. TAN†

Abstract. The state feedback decoupling problem with stability for general proper systems
described by (A,B, C,D) quadruples has been studied for a long time. But, it is still an open
problem in the sense that there is still a lack of numerically verifiable solvability conditions and
numerically implementable methods for solving it in the existing literature. In this paper numerically
verifiable solvability conditions and a numerical method for solving this open problem are developed.
The proposed method is based on orthogonal transformations and hence can be implemented in a
numerically reliable manner.
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1. Introduction. Decoupling is a fundamental objective in control theory [6, 11,
12, 16]. It is easy for an operator to control a system if each input of the system can
affect only one of the outputs. Usually, a given multivariable system has couplings.
A strategy is then to design a controller such that the resulting control system has
no couplings between the inputs and the outputs. Decoupling control is popular not
only because it can simplify multivariable system design and control but also because
it is a desired feature in many practical applications, at least in process and chemical
industry [6, 11, 12]. Although the exact decoupling is not always possible to achieve,
it has been pointed out in [23, p. 796] that the state feedback decoupling (namely, the
diagonal decoupling by state feedback in [23]) is likely to be feasible for a wide variety
of general proper systems of the form (1.1) below. Moreover, the decoupling technique
has found applications not only in process and chemical industry [6, 11, 12, 20] but
also in industrial robots [16, 17, 28, 33, 36], and it has been studied extensively in the
last three decades; see [6, 8, 11, 12, 15, 16, 18, 23, 24, 25, 26, 28, 29, 35, 39, 41, 44,
45, 46, 47, 48, 49, 50] and the references therein. Hence, decoupling is of importance
in systems design and control.

Consider a proper multivariable system described by an (A, B, C, D) quadruple:{
ẋ = Ax + Bu,
y = Cx + Du,

(1.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, D is the direct feedthrough
matrix, x ∈ Rn is the state, u ∈ Rm is the control input, and y ∈ Rm is the output.
If we apply the state feedback of the form

u = Fx + Hv(1.2)
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to (1.1), then the closed-loop system becomes{
ẋ = (A + BF )x + BHv,
y = (C + DF )x + DHv.

(1.3)

The transfer matrix from output y to input v in (1.3) is (C+DF )(sI−A−BF )−1BH+
DH . The state feedback decoupling problem (i.e., row by row decoupling problem)
with stability studied in this paper can be formulated mathematically as follows.

Definition 1.1. The state feedback decoupling problem with stability for proper
system (1.1) is solvable if there exist matrices F ∈ Rm×n and H ∈ Rm×m such that

(C + DF )(sI − A − BF )−1BH + DH is nonsingular and diagonal,(1.4)

and A+BF is stable (i.e., all eigenvalues of A+BF are on the open left half complex
plane C−).

Up to now, many important contributions have been made to the study of the
state feedback decoupling problem with stability for the strictly proper system{

ẋ = Ax + Bu,
y = Cx,

(1.5)

which has no direct feedthrough matrix; in particular, we have the following:
• Solvability conditions have been established in [49, 50]. In [49, 50], the class of

all feedback matrices which decouple the system (1.5) and the number of closed-loop
poles which can be assigned are characterized. But, as pointed out in [4, p. 34], the
conditions given in [49, 50] are difficult to apply.

• Solvability conditions have also been given in [24, 25, 26, 47] based on the
geometric/structural approaches.

• Solvability conditions have also been given in [21] based on a polynomial equa-
tions approach; these conditions are implicit and valid only for system (1.5) satisfying
that the maximal (A, B)-controllability subspace lying in Ker(C) is the same as the
maximal (A, B)-invariant subspace contained in Ker(C) [39], which implies that there
is no extra difficulty in requiring internal stability of the decoupled closed-loop system.

• The family of all attainable transfer function matrices for the decoupled closed-
loop system has been characterized in [4] under the assumption that the solvability
conditions in [25] are satisfied; that is, system (1.5) is decouplable by a state feedback
of the form (1.2). Based on the results in [4], a numerical algorithm has been developed
in [7] for computing a desired feedback matrix pair (F, H). The main steps of this
algorithm include the following:

(1) Compute the global and row infinite zeros, and global and row invariant finite
zeros of system (1.5);

(2) compute the last invariant polynomial zi(s) of the matrix [ sI−A
ci

B
0 ] with ci

being the ith row of C (i = 1, . . . , m), and then define

W1(s) =

⎡⎢⎢⎣
k1

z1(s)
a1(s)

. . .
km

zm(s)
am(s)

⎤⎥⎥⎦ ,

where k1, . . . , km are real numbers, for i = 1, . . . , m, ai(s) is a monic polynomial with
arbitrary roots and satisfying

deg(ai(s)) − deg(zi(s)) = ni,
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and n1, . . . , nm are the row infinite zero orders of the system (1.5);
(3) let Q(s) =

(
C(sI − A)−1B

)−1
W1(s), compute G = lims→∞ Q(s), and then

compute a basis for the left constant kernel of the matrix[
(sI − A)−1B

I − GQ−1(s)

]
via computing the left constant kernel of the matrix[

det(Q(s))adj(sI − A)B
det(sI − A)(det(Q)I − Gadj(Q))

]
.

But, (i) infinite zeros of system (1.5) are very sensitive to the perturbations including
rounding errors to matrices A, B, and C; thus, the computation of the global and row
infinite zeros of system (1.5) must be avoided if possible; and (ii) the computations of
the last invariant polynomials zi(s) (i = 1, . . . , m), basis for the left constant kernel
of the matrix [

(sI − A)−1BI − GQ−1(s)
]
,

and the matrix

[det(Q(s))adj(sI − A)Bdet(sI − A)(det(Q)I − Gadj(Q))]

and its left constant kernel are very difficult and very expensive, and thus, the com-
putational complexity of the algorithm in [7] is too high.

• A numerically reliable method, which does not compute the finite/infinite struc-
tures of system (1.5) explicitly, has been developed in [9] based on orthogonal trans-
formations for solving this decoupling problem.

However, to the best of our knowledge, the results in [4, 7, 9, 21, 24, 25, 26, 47,
49, 50] cannot be generalized easily to the state feedback decoupling problem with
stability for general proper systems of the form (1.1). In addition, the state feedback
decoupling problem without stability for descriptor systems of the form{

Eẋ = Ax + Bu,
y = Cx,

(1.6)

with E singular has also been investigated in [2]. But, the state feedback decoupling
problem with stability is not considered and still remains an open problem in [2].

The solvability condition for the state feedback decoupling problem without sta-
bility for general proper systems of the form (1.1) has been available in [23, 37], which
is included in the following lemma.

Lemma 1.2 (cf. [23, 37]). Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m,
let the matrix L ∈ Rm×m be defined as follows: If the ith row of the matrix D is
nonzero, this becomes the ith row of the matrix L, and set li = 0; otherwise, find
the lowest positive integer li, for which the ith row of CAli−1B is nonzero; this then
becomes the ith row of the matrix L. Then there exist matrices F ∈ Rm×n and
H ∈ Rm×m such that (1.4) holds (i.e., (C + DF )(sI − A − BF )−1BH + DH is
nonsingular and diagonal) if and only if the matrix L is nonsingular.

The state feedback decoupling problem with stability for general proper systems of
the form (1.1) is much more complicated than the state feedback decoupling problem
without stability and has been considered in [23, 37, 41, 44, 46]. In [41, 46] only
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sufficient conditions are given, while the necessary and sufficient conditions in [44]
are based on the existence of some particular but unknown invariant subspaces of
system (1.1) and some particular but also unknown solutions of the state feedback
decoupling problem without stability for system (1.1); hence, the conditions given in
[44] are not numerically verifiable. Furthermore, the results in [41, 44, 46] cannot
give any direction to establish a numerically implementable method for solving the
underlying problem in the general setting. In [23, 37], an algorithm for the state
feedback decoupling problem for system (1.1) is presented. This algorithm can be
summarized as follows:

• First, define the matrix L and the integers {li} as those in Lemma 1.2, and let

T̂ (s) =

⎡⎢⎣ p1(s)
. . .

pm(s)

⎤⎥⎦ ,

where pi(s) (i = 1, . . . , m) are properly selected stable monic polynomials of degree
li, i.e.,

pi(s) = sli + lower − degree terms,

such that lims→∞T̂ (s)[C(sI −A)−1B + D] = L and that {A, B, Ĉ, L} is a realization
of T̂ (s)[C(sI − A)−1B + D] for some matrix Ĉ.

• Next, if L is nonsingular, and if we take F = −L−1Ĉ, H = L−1, then

(C + DF )(sI − A − BF )−1BH + DH = T̂−1(s) =

⎡⎢⎣ p−1
1 (s)

. . .
p−1

m (s)

⎤⎥⎦ .(1.7)

However, (i) as addressed in [9], the explicit computation of the matrix L above is ill-
conditioned and should be avoided; and (ii) it is pointed out in [23, p. 797, lines 1, 2, 3
below (50.5)] that “the closed-loop eigenvalues are at the assumed stable zeros of T (s)
(i.e., C(sI − A)−1B + D) and at the selected stable zeros of the polynomials pi(s).”
But, if the ith row of D is nonzero for some i, then li = 0, and pi(s) = constant,
which has no stable zeros, so, if the zeros of C(sI −A)−1B + D are not stable and/or
D �= 0, then A + BF is not necessarily stable, and thus, the (F, H) above cannot
solve the state feedback decoupling problem with stability for system (1.1) when
D �= 0. Hence, the results in [23, 37] also cannot give any direction for establishing a
numerically implementable method for solving the state feedback decoupling problem
with stability for general proper systems of the form (1.1) with D �= 0.

Based on the above observations, we can conclude that the state feedback decou-
pling problem with stability for general proper systems of the form (1.1) is still an
open problem from both theoretical and numerical points of view. The main purpose
of this paper is to develop a numerically reliable method based on a numerical linear
algebra technique to solve this open problem.

2. Main results. In this section we will develop a numerical method for solving
the state feedback decoupling problem with stability for general proper systems of
the form (1.1). Our main idea lies in decomposing the underlying problem into the
following two subproblems:

(a) decoupling of a reduced system without a feedthrough matrix, and
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(b) simultaneous decoupling and disturbance decoupling of a reduced system with
a nonsingular feedthrough term that is further reduced to an “unusual” prob-
lem of decoupling.

The obtained solutions are then transformed back to get a solution to the original
problem. Our approach is very technical and consists of the following four different
stages:

(1) The state feedback decoupling problem with stability for system (1.1) is much
more difficult than that for system (1.5). Stage 1 is to eliminate the singularity
of matrix D and reduce the underlying problem for system (1.1) into (i) a
state feedback decoupling problem with stability for a reduced system without
direct feedthrough matrix; and (ii) a simultaneous problem of state feedback
decoupling with stability and disturbance decoupling for a reduced system
with nonsingular direct feedthrough matrix.

(2) The state feedback decoupling problem with stability for a system without
direct feedthrough matrix can be solved using the numerical method in [9];
thus, in Stage 2, we consider only the simultaneous problem of state feedback
decoupling with stability and disturbance decoupling arising in Stage 1. This
simultaneous problem will be reduced to an “unusual” state feedback decou-
pling problem with stability for a reduced system with nonsingular direct
feedthrough matrix.

(3) In Stage 3 we first derive a useful reduction property of the “unusual” state
feedback decoupling problem with stability produced in Stage 2 and then
present a numerically reliable algorithm for solving this “unusual” decoupling
problem with stability.

(4) Stage 4 consists of back-transformations of the results in Stages 1, 2, and 3
to the desired solution for the original decoupling problem with stability. An
outline of the overall algorithm is given in this stage.

The following auxiliary lemma will be used frequently in this section.

Lemma 2.1 (cf. [13, 14]). Given E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈
Rp×m with rank(E) = n,

(i) the following three statements are equivalent:

[(a)] C(sE − A)−1B + D = 0;
[(b)] maxs∈C rank[ sE−A

C
B
−D ] = n;

[(c)] D = 0, maxs∈C rank[ sE−A
C

B
0 ] = n;

(ii) if rank
[

sE − A B
]

= n for all s ∈ C, then maxs∈C rank[ sE−A
C

B
0 ] = n if

and only if C = 0.

2.1. Stage 1—elimination of the singularity of matrix D. The state feed-
back decoupling problem with stability for systems of the form (1.5) has been studied
in [9]. Hence, the results in [9] are used as a bridge to achieve the purpose of Stage 1
in this subsection.

Lemma 2.2 (cf. [13, 14, 43]). Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and
D ∈ Rm×m, there exist orthogonal matrices V1 ∈ Rn×n and W ∈ Rm×m and a
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permutation matrix P ∈ Rm×m such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
V1AV T

1 =

⎡⎣
n1 n2 n3

A11 A12 A13

A21 A22 A23

0 A32 A33

⎤⎦ }n1

}n2

}n3

, V1BW =

⎡⎣
m0 m − m0

B11 B12

B21 B22

0 0

⎤⎦ }n1

}n2

}n3

,

PCV T
1 =

[ n1 n2 n3

C11 C12 C13

0 C22 C23

]
}m0

}m − m0
, PDW =

[ m0 m − m0

D11 0
D21 0

]
}m0

}m − m0
,

(2.1)
where

(2.2)

rank(D11) = m0, rank
[

B21 B22

]
= n2, max

s∈C
rank

[
−A32 sI − A33

C22 C23

]
= n2 + n3,

(2.3)

rank
[

sI − A11 B11 B12

−A21 B21 B22

]
= n1 + n2 ∀s ∈ C.

Some important information about the state feedback decoupling for system (1.1)
can be read directly from the form (2.1).

Lemma 2.3. Given A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m, assume
the factorization (2.1) has been determined. If there exist F ∈ Rm×n and H ∈ Rm×m

such that (1.4) holds (i.e., (C + DF )(sI − A − BF )−1BH + DH is nonsingular and
diagonal), then

D21 = 0, n2 = m − m0 = rank(B22).(2.4)

Proof. First, (2.2) implies that n2 + n3 = maxs∈C rank
[ −A32 sI − A33

C22 C23

]
≤

n3 + (m − m0), so

n2 ≤ m − m0.(2.5)

Next, note that rank
[

B21 B22

]
= n2 and that there exist F11 ∈ Rm0×n1 and

F21 ∈ R(m−m0)×n1 such that

A21 +
[

B21 B22

] [ F11

F21

]
= 0.

Let

F = WT FV T
1 −

[
F11 0 0
F21 0 0

]
, H = WT HPT ,

A = V1AV T
1 + (V1BW )

[
F11 0 0
F21 0 0

]
=

⎡⎣ A11 +
∑2

i=1 B1iFi1 A12 A13

0 A22 A23

0 A32 A33

⎤⎦
=:
[

A11 +
∑2

i=1 B1iFi1 A12

0 A22

]
,

C = PCV T
1 + PDW

[
F11 0 0
F21 0 0

]
=
[

C11 + D11F11 C12 C13

D21F11 C22 C23

]
=:
[

C11 + D11F11 C12

D21F11 C22

]
,
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B = V1BW =

⎡⎣ B11 B12

B21 B22

0 0

⎤⎦ , D = PDW =
[

D11 0
D21 0

]
,

and define the integers {li} and matrix L as follows: If the ith row of the matrix D
is nonzero, this becomes the ith row of the matrix L, and set li = 0; otherwise, find
the lowest positive integer li, for which the ith row of CAli−1B is nonzero, this then
becomes the ith row of the matrix L. It is clear by using D = [D11

D21

0
0 ], where D11 is

nonsingular, that L is of the form L = [D11
L21

0
L22

], and if the ith row of
[

D21 0
]

is
nonzero, then it is the ith row of

[
L21 L22

]
. Since (C+DF )(sI−A−BF )−1BH+

DH is nonsingular and diagonal, and P is a permutation matrix, thus,

(C+DF)(sI −A−BF)−1BH+DH = P
(
(C + DF )(sI − A − BF )−1BH + DH

)
PT

is also nonsingular and diagonal; consequently, by Lemma 1.2, L is nonsingular.
Hence, D21 = 0, and further,

L22 =

⎡⎢⎣ cm0+1Alm0+1−1

...
cmAlm−1

⎤⎥⎦
⎡⎣ B12

B22

0

⎤⎦ =

⎡⎢⎣ ĉm0+1A
lm0+1−1
22
...

ĉmAlm−1
22

⎤⎥⎦[ B22

0

]

is nonsingular, where cm0+k and ĉm0+k are the kth rows of C and C22, respectively,
k = 1, . . . , m − m0. Thus,

rank(B22) = rank
[

B22

0

]
= m − m0,(2.6)

which, together with (2.5) and B22 ∈ Rn2×(m−m0), yields that n2 = m − m0 =
rank(B22).

Let orthogonal matrix

U1 :=
[ n1 n2

U11 U12

U21 U22

]
}n1

}n2

be such that

U1

[
B12

B22

]
=
[

0
RB

]
}n1

}n2
.(2.7)

Define

(2.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ã11 =
[

U11 U12

] [ A11

A21

]
, Ã12 =

[
U11 U12

] [ A11 A12

A21 A22

] [
UT

21

UT
22

]
,

Ã13 =
[

U11 U12

] [ A13

A23

]
, Ã22 =

[
A21 A22

] [ UT
21

UT
22

]
,

Ã32 =
[

0 A32

] [ UT
21

UT
22

]
,

B̃11 =
[

U11 U12

] [ B11

B21

]
, C̃12 =

[
C11 C12

] [ UT
21

UT
22

]
,

C̃22 =
[

0 C22

] [ UT
21

UT
22

]
,
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and

QL =

⎡⎣ U11 U12 0
0 I 0
0 0 I

⎤⎦ , QR =

⎡⎣ I 0 0
U21 U22 0
0 0 I

⎤⎦ .(2.9)

Lemma 2.4. Assume that condition (2.4) holds. Then
(i) U11 and U22 are nonsingular.
(ii)

(2.10)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
QLV1AV T

1 QT
R =

⎡⎣ Ã11 Ã12 Ã13

A21 Ã22 A23

0 Ã32 A33

⎤⎦ , QLQT
R =

⎡⎣ U11 0 0
0 UT

22 0
0 0 I

⎤⎦ ,

QLV1BW =

⎡⎣ B̃11 0
B21 B22

0 0

⎤⎦ , PCV T
1 QT

R =
[

C11 C̃12 C13

0 C̃22 C23

]
,

and

rank
[

sU11 − A11 B̃11

]
= n1 ∀s ∈ C,(2.11)

max
s∈C

rank
[

−Ã32 sI − A33

C̃22 C23

]
= n2 + n3.(2.12)

Proof. Part (i) has been proved in [1, 5, 10, 19, 32], and part (ii) follows from a
simple calculation.

Transformations QL and QR have been used in [1, 5, 10, 19, 32], where many
numerical examples have shown that such transformations formed based on orthog-
onal transformations are numerically reliable, in contrast to the (block) Gaussian
elimination without pivoting.

Lemmas 2.2 and 2.4 offer a springboard to the objective of this subsection.
Theorem 2.5. The state feedback decoupling problem with stability for system

(1.1) is solvable if and only if the condition (2.4) holds as follows:

rank
[

Ã32 sI − A33

]
= n3, ∀s ∈ C\C−.(2.13)

Furthermore,
(a) there exist F22 ∈ Rn2×n2 , F23 ∈ Rn2×n3 , and H22 ∈ Rn2×n2 solving the

following state feedback decoupling problem with stability:

The pencil
([

UT
22 0
0 I

]
,

[
Ã22 + B22F22 A23 + B22F23

Ã32 A33

])
is stable,(2.14)

[
C̃22 C23

] [ sUT
22 − Ã22 − B22F22 −A23 − B22F23

−Ã32 sI − A33

]−1 [
B22

0

]
H22(2.15)

is nonsingular and diagonal.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STATE FEEDBACK DECOUPLING PROBLEM WITH STABILITY 1743

(b) there exist matrices F11 ∈ Rm0×n1 , F12 ∈ Rm0×n2 , F13 ∈ Rm0×n3 , and
H11 ∈ Rm0×m0 solving the following simultaneous problem of state feedback decoupling
with stability and disturbance decoupling:

The pencil (U11, Ã11 + B̃11F11) is stable,(2.16)

D11H11+(C11+D11F11)(sU11−Ã11−B̃11F11)−1B̃11H11 is nonsingular and diagonal,
(2.17)

C̃12+D11F12+
[

C11 + D11F11C13 + D11F13

]

×
[

sU11 − Ã11 − B̃11F11 −Ã13 − B̃11F13

0sI − A33

]−1 [
Ã12 + B̃11F12

Ã32

]
= 0.

(2.18)
Proof. Necessity. Let (F, H) solve the state feedback decoupling problem with

stability for system (1.1). Then the condition (2.4) follows directly from Lemma 2.3.
With the condition (2.4) we have the factorization (2.10). Denote

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
I 0

B21 B22

]
WT FV T

1 QT
R =

[
I 0
0 B22

] [ n1 n2 n3

F11 F12 F13

F21 F22 F23

]
}m0

}n2
,

[
I 0

B21 B22

]
WT HPT =

[
I 0
0 B22

] [ m0 n2

H11 H12

H21 H22

]
}m0

}n2
.

(2.19)

As D21 = 0, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QLV1(sI − A − BF )V T
1 QT

R

=

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

−A21 − B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23

0 −Ã32 sI − A33

⎤⎦ ,

QLV1BHPT =

⎡⎣ B̃11H11 B̃11H12

B22H21 B22H22

0 0

⎤⎦ , PDHPT =
[

D11H11 D11H12

0 0

]
,

P (C + DF )V T
1 QT

R =
[

C11 + D11F11 C̃12 + D11F12 C13 + D11F13

0 C̃22 C23

]
.

(2.20)
Thus, condition (2.13) follows since A + BF is stable.

Note that DH + (C + DF )(sI − A − BF )−1BH is nonsingular and diagonal, P
is a permutation matrix, and so

P [DH + (C + DF )(sI − A − BF )−1BH ]PT =:
[ m0 n2

T11(s) T12(s)
T21(s) T22(s)

]
}m0

}n2
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is also nonsingular and diagonal; i.e.,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T12(s) = D11H12 +
[
C11 +D11F11 C̃12 +D11F12 C13 +D11F13

]
×

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

−A21 −B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23

0 −Ã32 sI −A33

⎤⎦−1

×

⎡⎣ B̃11H12

B22H22

0

⎤⎦ = 0,

T21(s) =
[

0 C̃22 C23

] ⎡⎣sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

−A21 − B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23

0 −Ã32 sI − A33

⎤⎦−1

×

⎡⎣ B̃11H11

B22H21

0

⎤⎦ = 0,

(2.21)

T11(s) = D11H11 +
[

C11 + D11F11 C̃12 + D11F12 C13 + D11F13

]
×

⎡⎣sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

−A21 − B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23

0 −Ã32 sI − A33

⎤⎦−1

×

⎡⎣ B̃11H11

B22H21

0

⎤⎦
and

T22(s) = [ 0 C̃22 C23 ] ×
[
sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

−A21 −B22F21 sUT
22 − Ã22 −B22F22 −A23 −B22F23

0 −Ã32 sI − A33

]−1

×
[

B̃11H12

B22H22

0

]

are nonsingular and diagonal.

By applying Lemma 2.1(i) to (2.21) we have that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D11H12 = 0,
n1 + n2 + n3 = max

s∈C
rank

×

⎡⎢⎢⎣
sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13 B̃11H12

−A21 − B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23 B22H22

0 −Ã32 sI − A33 0
C11 + D11F11 C̃12 + D11F12 C13 + D11F13 0

⎤⎥⎥⎦ ,

n1 + n2 + n3 = max
s∈C

rank

×

⎡⎢⎢⎣
sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13 B̃11H11

−A21 − B22F21 sUT
22 − Ã22 − B22F22 −A23 − B22F23 B22H21

0 −Ã32 sI − A33 0
0 C̃22 C23 0

⎤⎥⎥⎦ ,
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which, together with (2.12) and the nonsingularity of D11, B22, and H , yields that⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

H12 = 0, H11 and H22 are nonsingular,

max
s∈C

rank

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

0 −Ã32 sI − A33

C11 + D11F11 C̃12 + D11F12 C13 + D11F13

⎤⎦ = n1 + n3,

max
s∈C

rank
[

sU11 − Ã11 − B̃11F11 B̃11H11

−A21 − B22F21 B22H21

]
= n1.

(2.22)
Since the property (2.11) and the nonsingularity of H11 imply that

rank
[

sU11 − Ã11 − B̃11F11 B̃11H11

]
= rank

[
sU11 − Ã11 B̃11

]
= n1 ∀s ∈ C,

we have further by applying Lemma 2.1 to (2.22) that⎧⎪⎪⎪⎨⎪⎪⎪⎩
H12 = 0,

max
s∈C

rank

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã13 − B̃11F13 −Ã12 − B̃11F12

0 sI − A33 −Ã32

C11 + D11F11 C13 + D11F13 C̃12 + D11F12

⎤⎦ = n1 + n3,

B22H21 = 0, −A21 − B22F21 = 0,

which with the nonsingularity of B22 gives that

H12 = 0, H21 = 0, B22F21 = −A21,(2.23)

and

max
s∈C

rank

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã13 − B̃11F13 Ã12 + B̃11F12

0 sI − A33 Ã32

C11 + D11F11 C13 + D11F13 −(C̃12 + D11F12)

⎤⎦ = n1 + n3.

(2.24)
Consequently, (2.24) and Lemma 2.1(i) give (2.18). Moreover, we obtain

QLV1(sI − A − BF )V T
1 QT

R

=

⎡⎣ sU11 − Ã11 − B̃11F11 −Ã12 − B̃11F12 −Ã13 − B̃11F13

0 sUT
22 − Ã22 − B22F22 −A23 − B22F23

0 −Ã32 sI − A33

⎤⎦ ,

⎧⎪⎨⎪⎩
T11(s) = D11H11 + (C11 + D11F11)(sU11 − Ã11 − B̃11F11)−1B̃11H11,

T22(s) =
[

C̃22 C23

] [ sUT
22 − Ã22 − B22F22 −A23 − B22F23

−Ã32 sI − A33

]−1 [
B22

0

]
H22.

Now, A + BF is stable, and T11(s) and T22(s) are nonsingular and diagonal. Hence,
(2.14)–(2.17) hold.

Sufficiency. Assume that the conditions (2.4) and (2.13) hold, and that F11, F12,
F13, F22, F23, H11 and H22 satisfy (2.14)–(2.18). Define F21, H12, and H21 by (2.23)
and determine F and H by (2.19). Then a simple calculation yields that the matrix
A + BF is stable, and that (C + DF )(sI − A− BF )−1BH + DH is nonsingular and
diagonal. Hence, (F, H) solves the state feedback decoupling problem with stability
for the system (1.1).
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Remark 2.6. Problem (2.18) is called a disturbance decoupling problem [39].
The feedthrough matrices in the state feedback decoupling problems (2.15) and

(2.17) are zero and nonsingular, respectively. By this feature the problems (2.15)
and (2.17) are easier to solve than the original problem (1.4), as shown in the next
subsections.

2.2. Stage 2—rejection of the disturbance in (2.5)–(2.18). Since the prob-
lem of (2.14) and (2.15) has been solved in [9], in this subsection we shall study only
the simultaneous problem of (2.5), (2.17), and (2.18). We will reject the disturbance
and consequently transform the simultaneous problem of (2.5), (2.17), and (2.18) into
a single problem like that of (2.5) and (2.17).

Lemma 2.7 (cf. [27, 30, 43]). Assume that the factorizations (2.1) and (2.10)
have been determined. There exist orthogonal matrices U2 ∈ R(n1+n3+m0)×(n1+n3+m0)

and V2 ∈ R(n1+n3)×(n1+n3) such that

U2

⎡⎣ −D11 −C11 −C13 C̃12 I

−B̃11 sU11 − Ã11 −Ã13 Ã12 0
0 0 sI − A33 Ã32 0

⎤⎦⎡⎣ Im0 0 0
0 V2 0
0 0 I

⎤⎦T

=

⎡⎢⎢⎣
m0 n1 + n3 − τ − ν τ ν n2 m0

D11 � � � � �
0 sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 sΘ̃13 − Φ̃13 Δ Ψ̃
0 0 sΘ − Φ sΘ̃23 − Φ̃23 0 Ψ
0 0 0 sΘ̃33 − Φ̃33 0 0

⎤⎥⎥⎦
}m0

}n1 + n3 − τ − ν
}τ
}ν

,

(2.25)

where � denotes subblocks that we are not interested in; Θ̃11, Θ, and Θ̃33 are nonsin-
gular; and

rank
[

sΘ̃11 − Φ̃11 Δ
]

= n1 + n3 − τ − ν ∀s ∈ C,(2.26)

rank
[

sΘ − Φ Ψ
]

= τ ∀s ∈ C.(2.27)

Proof. By computing the QR factorization of [D11

B̃11
] first and then computing the

controllability staircase form [27, 30, 43] of the pair⎛⎝N T

⎡⎣ −D11 −C11 −C13

−B̃11 sU11 − Ã11 −Ã13

0 0 sI − A33

⎤⎦[ 0
In1+n3

]⎞⎠ ,

⎛⎝N T

⎡⎣ C̃12 I

Ã12 0
Ã32 0

⎤⎦⎞⎠ ,

we get the factorization (2.25). Here N is a column orthogonal matrix whose columns
span the null space of [D11

B̃11
]T .

Theorem 2.8. Assume that the conditions (2.4) and (2.13) hold and the factor-
ization (2.25) has been determined. Then the simultaneous problem of (2.5), (2.17),
and (2.18) is solvable if and only if

σ(Θ̃11, Φ̃11)\C− = σ(A33)\C−,(2.28)

and there exists a K ∈ Rm0×τ satisfying the following “unusual” state feedback de-
coupling with stability:

The pencil (Θ, Φ + ΨK) is stable, K(sΘ − Φ − ΨK)−1Ψ is diagonal.(2.29)
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Moreover, if (2.28) and (2.29) hold with K ∈ Rm0×τ , then (2.5), (2.17), and (2.18)
hold with F11, F12, F13, and H11 determined by

D11

[
F11 F13

]
= −

[
0 K K̂

]
V2 −

[
C11 C13

]
, D11F12 = −C̃12,

D11H11 is nonsingular and diagonal,

where K̂ ∈ Rm0×ν is arbitrary.
In the above, for any square matrices N and M , σ(N, M) denotes the finite

spectrum of the pencil (N, M), and σ(M) = σ(I, M).
Proof. First, the factorization (2.25) and the properties (2.11) and (2.13) yield

rank

⎡⎢⎢⎣
D11 � � � � �

0 sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 sΘ̃13 − Φ̃13 Δ Ψ̃
0 0 sΘ − Φ sΘ̃23 − Φ̃23 0 Ψ
0 0 0 sΘ̃33 − Φ̃33 0 0

⎤⎥⎥⎦
= rank

⎡⎣ −D11 −C11 −C13 C̃12 I

−B̃11 sU11 − Ã11 −Ã13 Ã12 0
0 0 sI − A33 Ã32 0

⎤⎦ = n1 + n3 + m0 ∀s ∈ C\C−,

and thus, the pencil (Θ̃33, Φ̃33) is stable.
Next, the property (2.27) holds, so there exists a K0 such that the pencil (Θ, Φ+

ΨK0) is stable [39]. Let

[
F (0)

1 F (0)
3

]
= −

[n1 + n3 − τ − ν τ ν

0 K0 0
]
V2.

Then

U2

⎡⎣ −D11 −C11 + F (0)
1 −C13 + F (0)

3

−B̃11 sU11 − Ã11 −Ã13

0 0 sI − A33

⎤⎦[ Im0 0
0 V2

]T

=

⎡⎢⎢⎣
D11 � � �

0 sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 sΘ̃13 − Φ̃13

0 0 sΘ − Φ sΘ̃23 − Φ̃23

0 0 0 sΘ̃33 − Φ̃33

⎤⎥⎥⎦−

⎡⎢⎢⎣
�

Ψ̃
Ψ
0

⎤⎥⎥⎦ [ 0 0 K0 0
]

=

⎡⎢⎢⎣
D11 � � �

0 sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 − Ψ̃K0 sΘ̃13 − Φ̃13

0 0 sΘ − Φ − ΨK0 sΘ̃23 − Φ̃23

0 0 0 sΘ̃33 − Φ̃33

⎤⎥⎥⎦ ,

so, by using the stability of the pencils (Θ, Φ + ΨK0) and (Θ̃33, Φ̃33) we obtain

(2.30)

σ(A33)\C− ⊆ σ

⎛⎝⎡⎣ 0 0 0
0 U11 0
0 0 I

⎤⎦ ,

⎡⎣ D11 C11 −F (0)
1 C13 −F (0)

3

B̃11 Ã11 Ã13

0 0 A33

⎤⎦⎞⎠ \C−

= σ

⎛⎝⎡⎣ Θ̃11 Θ̃12 Θ̃13

0 Θ Θ̃23

0 0 Θ̃33

⎤⎦ ,

⎡⎣ Φ̃11 Φ̃12 + Ψ̃K0 Φ̃13

0 Φ + ΨK0 Φ̃23

0 0 Φ̃33

⎤⎦⎞⎠ \C−

= σ(Θ̃11, Φ̃11)\C−.
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For any F1i ∈ Rm0×ni (i = 1, 2, 3) and H11 ∈ Rm0×m0 , define⎧⎨⎩
F1 = C11 + D11F11, F2 = C̃12 + D11F12, F3 = C13 + D11F13, H = D11H11,[
F1 F3

]
V T

2 = −
[n1 + n3 − τ − ν τ ν

K̃ K K̂
]
.

We have that

U2

⎡⎣ −D11 −C11 + F1 −C13 + F3

−B̃11 sU11 − Ã11 −Ã13

0 0 sI − A33

⎤⎦[ Im0 0
0 V2

]T

=

⎡⎢⎢⎣
D11 � � �

0 sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K sΘ̃13 − Φ̃13 − Ψ̃K̂
0 −ΨK̃ sΘ − Φ − ΨK sΘ̃23 − Φ̃23 − ΨK̂
0 0 0 sΘ̃33 − Φ̃33

⎤⎥⎥⎦ ,

σ (U11, Ã11 + B̃11F11) = σ(U11, Ã11 + B̃11D
−1
11 (F1 − C11))

= σ

( [
0 0
0 U11

]
,

[
D11 C11 −F1

B̃11 Ã11

] )

= σ

⎛⎝⎡⎣ 0 0 0
0 U11 0
0 0 I

⎤⎦ ,
⎡⎣ D11 C11 −F1 C13 − F3

B̃11 Ã11 Ã13

0 0 A33

⎤⎦⎞⎠ \σ(A33)

= σ

⎛⎜⎜⎝
⎡⎢⎢⎣

0 � � �

0 Θ̃11 Θ̃12 Θ̃13

0 0 Θ Θ̃23

0 0 0 Θ̃33

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
−D11 � � �

0 Φ̃11 + Ψ̃K̃ Φ̃12 + Ψ̃K Φ̃13 + Ψ̃K̂
0 ΨK̃ Φ + ΨK Φ̃23 + ΨK̂
0 0 0 Φ̃33

⎤⎥⎥⎦
⎞⎟⎟⎠ \σ(A33),

D11H11 + (C11 + D11F11)(sU11 − Ã11 − B̃11F11)−1B̃11H11

= H + F1(sU11 − Ã11 − B̃11D
−1
11 (F1 − C11))−1B̃11D

−1
11 H

= H +
[

0 F1 F3

]⎡⎣ −D11 −C11 + F1 −C13 + F3

−B̃11 sU11 − Ã11 −Ã13

0 0 sI − A33

⎤⎦−1 ⎡⎣ −H
0
0

⎤⎦
= H +

[
K̃ K K̂

] [ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K sΘ̃13 − Φ̃13 − Ψ̃K̂
−ΨK̃ sΘ−Φ−ΨK sΘ̃23 − Φ̃23 −ΨK̂

0 0 sΘ̃33 − Φ̃33

]−1

×

⎡⎣ Ψ̃H
ΨH
0

⎤⎦ ,

and

C̃12 + D11F12 +
[

C11 + D11F11 C13 + D11F13

]
×
[

sU11 − Ã11 − B̃11F11 − Ã13 − B̃11F13

0 sI − A33

]−1 [
Ã12 + B̃11F12

Ã32

]
= F2 +

[
F1 F3

] [ sU11 − Ã11 − B̃11D
−1
11 (F1 − C11) −Ã13 − B̃11D

−1
11 (F3 − C13)

0 sI −A33

]−1

×
[

Ã12 + B̃11D
−1
11 (F2 − C̃12)

Ã32

]
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= F2 +
[

0 F1 F3

]⎡⎣ −D11 −C11 + F1 −C13 + F3

−B̃11 sU11 − Ã11 −Ã13

0 0 sI − A33

⎤⎦−1 ⎡⎣ C̃12 −F2

Ã12

Ã32

⎤⎦

= F2+
[
K̃ K K̂

] ⎡⎣ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K sΘ̃13 − Φ̃13 − Ψ̃K̂
−ΨK̃ sΘ − Φ − ΨK sΘ̃23 − Φ̃23 − ΨK̂

0 0 sΘ̃33 − Φ̃33

⎤⎦−1

×

⎡⎣ Ψ̃F2 − Δ
ΨF2

0

⎤⎦ .

As a result, we get by using Lemma 2.1, factorization (2.25), and the stability of the
pencil (Θ̃33, Φ̃33) that (2.5)–(2.18) hold as follows:

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

([
Θ̃11 Θ̃12 Θ̃13

0 Θ Θ̃23

0 0 Θ̃33

]
,

[
Φ̃11 + Ψ̃K̃ Φ̃12 + Ψ̃K Φ̃13 + Ψ̃K̂

ΨK̃ Φ + ΨK Φ̃23 + ΨK̂
0 0 Φ̃33

])
\C− = σ(A33)\C−,

H + [ K̃ K K̂ ]

[
sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K sΘ̃13 − Φ̃13 − Ψ̃K̂

−ΨK̃ sΘ − Φ − ΨK sΘ̃23 − Φ̃23 − ΨK̂
0 0 sΘ̃33 − Φ̃33

]−1

×
[

Ψ̃H
ΨH
0

]
is nonsingular and diagonal,

F2 + [ K̃ K K̂ ]

[
sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K sΘ̃13 − Φ̃13 − Ψ̃K̂

−ΨK̃ sΘ − Φ − ΨK sΘ̃23 − Φ̃23 − ΨK̂
0 0 sΘ̃33 − Φ̃33

]−1

×
[

Ψ̃F2 − Δ
ΨF2

0

]
= 0

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ

([
Θ̃11 Θ̃12

0 Θ

]
,

[
Φ̃11 + Ψ̃K̃ Φ̃12 + Ψ̃K

ΨK̃ Φ + ΨK

])
\C− = σ(A33)\C−,

H is nonsingular and diagonal,[
K̃ K

] [ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K
−ΨK̃ sΘ − Φ − ΨK

]−1 [
Ψ̃
Ψ

]
is diagonal,

F2 = 0,
[
K̃ K

] [ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K
−ΨK̃ sΘ − Φ − ΨK

]−1 [
Δ
0

]
= 0.

(2.31)

Because Lemma 2.1 implies that

[
K̃ K

] [ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K
−ΨK̃ sΘ − Φ − ΨK

]−1 [
Δ
0

]
= 0

⇐⇒ max
s∈C

rank

⎡⎣ sΘ̃11 − Φ̃11 − Ψ̃K̃ sΘ̃12 − Φ̃12 − Ψ̃K Δ
−ΨK̃ sΘ − Φ − ΨK 0
K̃ K 0

⎤⎦ = n1 + n3 − ν

⇐⇒ max
s∈C

rank

⎡⎣ sΘ̃11 − Φ̃11 sΘ̃12 − Φ̃12 Δ
0 sΘ − Φ 0
K̃ K 0

⎤⎦ = n1 + n3 − ν
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⇐⇒ max
s∈C

rank
[

sΘ̃11 − Φ̃11 Δ
K̃ 0

]
= (n1 + n3) − τ − ν

(since Θ ∈ Rτ×τ is nonsingular and thus max
s∈C

rank(sΘ − Φ) = τ)

⇐⇒ K̃ = 0 (since (2.26) holds),

we obtain by using (2.31) that

(2.5)−(2.18) hold ⇐⇒

⎧⎨⎩F2 = 0, K̃ = 0,
K(sΘ − Φ − ΨK)−1Ψ is diagonal,
(σ(Θ̃11, Φ̃11) ∪ σ(Θ, Φ + ΨK))\C− = σ(A33)\C−,

⇐⇒

⎧⎪⎪⎨⎪⎪⎩
F2 = 0, K̃ = 0,
K(sΘ − Φ − ΨK)−1Ψ is diagonal,
σ(Θ̃11, Φ̃11)\C− = σ(A33)\C−, σ(Θ, Φ + ΨK) ⊆ C−

(since (2.30) holds)

⇐⇒

⎧⎨⎩F2 = 0, K̃ = 0,
K(sΘ − Φ − ΨK)−1Ψ is diagonal,
σ(Θ̃11, Φ̃11)\C− = σ(A33)\C−, pencil (Θ, Φ + ΨK) is stable.

Hence, Theorem 2.8 holds.

2.3. Stage 3—a numerical solution to Problem (2.29). The main differ-
ence between the problem (2.29) and the usual state feedback decoupling problem is
that the problem (2.29) does not require the nonsingularity of the transfer function
K(sΘ−Φ−ΨK)−1Ψ. To our knowledge, the problem (2.29) has not been studied yet,
and our attempts to characterize its solvability conditions by extending the results in
[24, 25, 26, 39] have failed. We will develop a numerically reliable algorithm in this
subsection for solving the problem (2.29).

The following result is trivial.

Corollary 2.9. Assume that the factorization (2.25) has been determined and
that m0 = 1; then the problem (2.29) is always solvable and all its solutions are given
by all matrices K satisfying that the pencil (Θ, Φ + ΨK) is stable.

In the following we consider the case that m0 > 1.

Theorem 2.10. Assume that the factorization (2.25) has been determined and
that m0 > 1. There exist nonnegative integers τi (i = 1, . . . , 5), a permutation matrix
P ∈ Rm0×m0 , and orthogonal matrices U1,U2,V1,V2 ∈ Rτ×τ , U3,V3 ∈
R(τ1+τ2+τ3)×(τ1+τ2+τ3) with partitioning,

U2 =
[∑3

i=1 τi τ4 + τ5

U11 U12

U21 U22

]
}
∑3

i=1 τi

}τ4 + τ5
, V2 =

[∑3
i=1 τi τ4 + τ5

V11 V12

V21 V22

]
}
∑3

i=1 τi

}τ4 + τ5
,
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such that rank(U11) =
∑3

i=1 τi, rank(V22) = τ4 + τ5, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
U3 0
0 I

] [
U11 U12

0 I

]
U1(sΘ − Φ)

([
V3 0
0 I

] [
I 0
V21 V22

]
V1

)T

=

⎡⎢⎢⎢⎢⎣

τ1 τ2 τ3 τ4 τ5

sΘ11 − Φ11 0 0 0 0
sΘ21 − Φ21 sΘ22 − Φ22 0 0 0
sΘ31 − Φ31 sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35

0 0 0 sΘ44 − Φ44 sΘ45 − Φ45

0 0 0 sΘ54 − Φ54 sΘ55 − Φ55

⎤⎥⎥⎥⎥⎦
}τ1

}τ2

}τ3

}τ5

}τ4

,

[
U3 0
0 I

] [
U11 U12

0 I

]
U1ΨPT =

⎡⎢⎢⎢⎢⎣

m1 τ5 m0 − m1 − τ5

Ψ11 0 0
Ψ21 0 Ψ23

Ψ31 0 Ψ33

0 Ψ42 Ψ43

0 0 0

⎤⎥⎥⎥⎥⎦
}τ1

}τ2

}τ3

}τ5

}τ4

,

(2.32)
where

0 < m1 < m0, 0 ≤ τ5 ≤ 1,(2.33)
if τ5 = 0, then τ3 = τ4 = 0,(2.34)

(2.35)

rank

⎡⎣ sΘ11 − Φ11 0 0 Ψ11

sΘ21 − Φ21 sΘ22 − Φ22 0 Ψ21

sΘ31 − Φ31 sΘ32 − Φ32 sΘ33 − Φ33 Ψ31

⎤⎦ = τ1 + τ2 + τ3 ∀s ∈ C,

(2.36)
rank

[
sΘ22 − Φ22 Ψ23

]
= τ2 ∀s ∈ C,

and furthermore, if τ5 = 1, we also have

Ψ42 �= 0,(2.37)
rank

[
sΘ33 − Φ33 Φ35

]
= τ3, rank(sΘ54 − Φ54) = τ4 ∀s ∈ C.(2.38)

Proof. The constructive proof of Theorem 2.10 is given in [3].
Similarly to the factorization (2.10), the factorization (2.32) is also numerically

reliable.
We are now ready to derive a useful reduction property of the problem (2.29)

using the factorization (2.32).
Theorem 2.11. Assume that factorizations (2.25) and (2.32) have been deter-

mined. Then the problem (2.29) is solvable if and only if

pencils (Θ22, Φ22) and (Θ33, Φ33) are stable,(2.39)

the pencil
([

Θ44 Θ45

Θ54 Θ55

]
,

[
Φ44 Φ45

Φ54 Φ44

])
is stable if Ψ43 �= 0,(2.40)
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and there exists a matrix K11 ∈ Rm1×τ1 such that

(2.41)
pencil (Θ11, Φ11 + Ψ11K11) is stable, K11(sΘ11 − Φ11 − Ψ11K11)−1Ψ11 is diagonal.

Moreover, if (2.39), (2.40), and (2.41) hold, then one solution K of the problem (2.29)
is given by

K
([

V3 0
0 I

] [
I 0
V21 V22

]
V1

)T

= PT

⎡⎣
τ1 τ2 τ3 τ4 τ5

K11 0 0 0 0
0 0 0 K24 K25

0 0 0 0 0

⎤⎦ }m1

}τ5

}m0 − m1 − τ5,
(2.42)
where
(2.43) [

K24 K25

]
= 0 if Ψ43 �= 0,

(2.44)

the pencil
([

Θ44 Θ45

Θ54 Θ55

]
,

[
Φ44 Φ45

Φ54 Φ55

]
+
[

Ψ42

0

] [
K24 K25

])
is stable if Ψ43 = 0.

Proof. Denote

QL =
[

U3 0
0 I

] [
U11 U12

0 I

]
U1, QR =

[
V3 0
0 I

] [
I 0
V21 V22

]
V1,

QLΨPT =:
[m1 τ5 m0 − m1 − τ5

Ψ1 Ψ2 Ψ3

]
,(2.45)

i.e., Ψ1 :=

⎡⎢⎢⎢⎢⎣
Ψ11

Ψ21

Ψ31

0
0

⎤⎥⎥⎥⎥⎦ , Ψ2 :=

⎡⎢⎢⎢⎢⎣
0
0
0

Ψ42

0

⎤⎥⎥⎥⎥⎦ , Ψ3 :=

⎡⎢⎢⎢⎢⎣
0

Ψ23

Ψ33

Ψ43

0

⎤⎥⎥⎥⎥⎦ .

For any K ∈ Rm0×τ , let

PKQT
R =:

⎡⎣
τ1 τ2 τ3 τ4 τ5

K11 K12 K13 K14 K15

K21 K22 K23 K24 K25

K31 K32 K33 K34 K35

⎤⎦ }m1

}τ5

}m0 − m1 − τ5

=

⎡⎣K1

K2

K3

⎤⎦ }m1

}τ5

}m0 − m1 − τ5.

Necessity. Assume that (2.29) holds with K ∈ Rm0×τ . Since K(sΘ−Φ−ΨK)−1Ψ
is diagonal, so PKQT

R(QL(sΘ−Φ)QT
R −QLΨPTPKQT

R)−1QLΨPT is also diagonal;
i.e.,⎡⎣ K1

K2

K3

⎤⎦ (QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3)−1

[
Ψ1 Ψ2 Ψ3

]
is diagonal.
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Thus, we have

K3(QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3)−1

[
Ψ1 Ψ2

]
= 0,

K1(QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3)−1

[
Ψ2 Ψ3

]
= 0,

K2(QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3)−1Ψ1 = 0,

K2(QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3)−1Ψ3 = 0.

By using Lemma 2.1(i) we obtain

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3 Ψ1 Ψ2

K3 0 0

]
= max

s∈C
rank

[
QL(sΘ − Φ)QT

R Ψ1 Ψ2

K3 0 0

]
,

(2.46)

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3 Ψ2 Ψ3

K1 0 0

]
= max

s∈C
rank

[
QL(sΘ − Φ)QT

R Ψ2 Ψ3

K1 0 0

]

= max
s∈C

rank

⎡⎢⎢⎢⎣
sΘ11 −Φ11 0 0 0 0 0 0
sΘ21 −Φ21 sΘ22 − Φ22 0 0 0 0 Ψ23

sΘ31 −Φ31 sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35 0 Ψ33

0 0 0 sΘ44 − Φ44 sΘ45 −Φ45 Ψ42 Ψ43

0 0 0 sΘ54 − Φ54 sΘ55 −Φ55 0 0
K11 K12 K13 K14 K15 0 0

⎤⎥⎥⎥⎦ ,

(2.47)

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ3K3 Ψ1

K2 0

]
= max

s∈C
rank

[
QL(sΘ − Φ)QT

R − Ψ3K3 Ψ1

K2 0

]
,

(2.48)

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R − Ψ1K1 − Ψ2K2 − Ψ1K1 Ψ3

K2 0

]
= max

s∈C
rank

[
QL(sΘ − Φ)QT

R − Ψ1K1 Ψ3

K2 0

]
.

(2.49)

In (2.32), we have

rank
[
QL(sΘ − Φ)QT

R Ψ1 Ψ2

]
= τ ∀s ∈ C,

which, with (2.46) and Lemma 2.1(ii), gives that

K3 = 0, i.e.,
[
K31 K32 K33 K34 K35

]
= 0.(2.50)

Note that

rank

⎡⎢⎢⎣
sΘ22 − Φ22 0 0 0 0 Ψ23

sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35 0 Ψ33

0 0 sΘ44 − Φ44 sΘ45 − Φ45 Ψ42 Ψ43

0 0 sΘ54 − Φ54 sΘ55 − Φ55 0 0

⎤⎥⎥⎦
= τ − τ1 ∀s ∈ C,
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and (2.47) yields that

max
s∈C

rank

⎡⎢⎢⎢⎢⎣
sΘ22 − Φ22 0 0 0 0 Ψ23

sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35 0 Ψ33

0 0 sΘ44 − Φ44 sΘ45 − Φ45 Ψ42 Ψ43

0 0 sΘ54 − Φ54 sΘ55 − Φ55 0 0
K12 K13 K14 K15 0 0

⎤⎥⎥⎥⎥⎦ = τ−τ1;

thus, it follows from Lemma 2.1(ii) that[
K12 K13 K14 K15

]
= 0.(2.51)

Next, (2.50) is true, and (2.48) is reduced to

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R Ψ1

K2 0

]

= max
s∈C

rank

⎡⎢⎢⎢⎣
sΘ11 − Φ11 0 0 0 0 Ψ11

sΘ21 − Φ21 sΘ22 −Φ22 0 0 0 Ψ21

sΘ31 − Φ31 sΘ32 −Φ32 sΘ33 −Φ33 0 −Φ35 Ψ31

0 0 0 sΘ44 −Φ44 sΘ45 − Φ45 0
0 0 0 sΘ54 −Φ54 sΘ55 − Φ55 0
K21 K22 K23 K24 K25 0

⎤⎥⎥⎥⎦ ,

i.e.,

max
s∈C

rank

⎡⎢⎢⎣
sΘ11 − Φ11 0 0 Ψ11

sΘ21 − Φ21 sΘ22 − Φ22 0 Ψ21

sΘ31 − Φ31 sΘ32 − Φ32 sΘ33 − Φ33 Ψ31

K21 K22 K23 0

⎤⎥⎥⎦ = τ1 + τ2 + τ3,

which, with (2.36) and Lemma 2.1(ii), gives[
K21 K22 K23

]
= 0.(2.52)

Now, (2.51) and (2.52) hold, so (2.49) is reduced to

τ = max
s∈C

rank
[

QL(sΘ − Φ)QT
R − Ψ1K1 Ψ3

K2 0

]

= max
s∈C

rank

⎡⎢⎢⎣
sΘ11 − Φ11 − Ψ11K11 0 0 0 0 0
sΘ21 − Φ21 − Ψ21K11 sΘ22 − Φ22 0 0 0 Ψ23
sΘ31 − Φ31 − Ψ31K11 sΘ32 − Φ32 sΘ33 − Φ33 0 −Φ35 Ψ33

0 0 0 sΘ44 − Φ44 sΘ45 − Φ45 Ψ43
0 0 0 sΘ54 − Φ54 sΘ55 − Φ55 0
0 0 0 K24 K25 0

⎤⎥⎥⎦ ,

which gives

max
s∈C

rank

⎡⎣ sΘ44 − Φ44 sΘ45 − Φ45 Ψ43

sΘ54 − Φ54 sΘ55 − Φ55 0
K24 K25 0

⎤⎦ = τ4 + τ5.(2.53)

If Ψ43 = 0, then (2.53) is always true. Otherwise, if Ψ43 �= 0, then τ5 = 1 and

rank
[

sΘ44 − Φ44 sΘ45 − Φ45 Ψ43

sΘ54 − Φ54 sΘ55 − Φ55 0

]
= τ4 + τ5 ∀s ∈ C.(2.54)
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In this case, it follows from (2.53), (2.54), and Lemma 2.1(ii) that[
K24 K25

]
= 0.(2.55)

We have shown above that (2.42) and (2.43) hold. Therefore, (2.39), (2.40), and
(2.41) follow directly from (2.50), (2.51), (2.52), and (2.55).

Sufficiency. If Ψ43 = 0, then, since

rank
[

sΘ44 − Φ44 sΘ45 − Φ45 Ψ42

sΘ54 − Φ54 sΘ55 − Φ55 0

]
= τ4 + τ5 ∀s ∈ C,

there always exist matrices K24 and K25 such that (2.44) holds [30]. Let K ∈ Rm0×τbe
given by (2.42), (2.43), and (2.44). Because (2.39), (2.40), and (2.41) hold, a simple
calculation yields that the pencil (Θ, Φ+ΨK) is stable, and PKQT

R(QL(sΘ−Φ)QT
R−

QLΨPTPKQT
R)−1QLΨPT is diagonal, i.e., K(sΘ − Φ − ΨK)−1Ψ is diagonal.

Theorem 2.11 and Corollary 2.9 lead to the following algorithm, which is based
only on orthogonal transformations and solutions of some linear systems of equations
for solving the problem (2.29).

Algorithm 1.

Input: Θ, Φ ∈ Rτ×τ , Ψ ∈ Rτ×m0 satisfying (2.27).
Output: K ∈ Rm0×τ (if possible) solving the problem (2.29).
Step 0. Set K := ∅, M := Im0 , N := Iτ , l := 0.
Step 1. If m0 = 1, compute K such that the pencil (Θ, Φ + ΨK) is stable, and

set K := [K0
0
K ], then go to Step 3. Otherwise, if m0 > 1, go to Step 2.

Step 2. Compute the factorization (2.32). If (2.39) or (2.40) fails, print “The
problem (2.29) is not solvable” and stop. Otherwise, compute

[
K24 K25

]
based on

(2.43) and (2.44). Set

K :=

⎡⎣
τ2 τ3 τ4 τ5

0 0 K24 K25 0
0 0 0 0 0
0 0 0 0 K

⎤⎦ }τ5

}m0 − m1 − τ5

l
,

M := M

[
PT 0
0 I

]
, N := N

[
QT

R 0
0 I

]
,

Θ := Θ11, Φ := Φ11, Ψ := Ψ11, l = l + m0 − m1, τ = τ1, m0 := m1.

Go to Step 1.
Step 3. Compute K by solving the linear system

KN = MK.(2.56)

Output K.

2.4. Stage 4—an overall algorithm. The results in subsections 2.1, 2.2, and
2.3 can be combined to provide an overall algorithm for solving the state feedback
decoupling problem with stability for general proper systems of the form (1.1) as
follows.

Algorithm 2.

Input: A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, and D ∈ Rm×m.
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Output: Matrices F ∈ Rm×n and H ∈ Rm×m (if possible) such that A + BF is
stable and (1.4) holds.

Step 1. Compute the factorization (2.1). If the condition (2.4) is not true, print
“The studied problem is not solvable” and stop. Otherwise, compute the factorization
(2.10). If the condition (2.13) is not true, print “The studied problem is not solvable”
and stop.

Step 2. Solve the problem of (2.14) and (2.15) by the algorithm in [9]. If it is not
solvable, print “The studied problem is not solvable” and stop. Otherwise, compute
(
[

F22 F23

]
, H22) such that (2.14) and (2.15) hold.

Step 3. Compute the staircase form (2.25). If the condition (2.28) does not hold,
print “The studied problem is not solvable” and stop. Otherwise, perform Algorithm
1 without Step 3 to get matrices M , N , and K.

Step 4. Solve (2.56) to get K and then solve the following linear systems of
equations to get F and H:[

D11 0
B21 B22

]
WT FV T

1 QT
R = −

[
C11 + E1 C̃12 C13 + E3

A21 −B22F22 −B22F23

]
,

[
D11 0
B21 B22

]
WT HPT =

[
Λ 0
0 B22H22

]
,

where Λ is an arbitrary nonsingular and diagonal matrix, and

[
E1 E3

]
=
[n1 + n3 − τ − ν τ ν

0 K 0
]
V2.

Output F and H.
Note that Algorithm 2 has the following features:
• The factorizations (2.1), (2.10), (2.25), and (2.32) are numerically reliable.1

• Steps 1 and 3 are implemented based on only orthogonal transformations, in
which the condition (2.13) is equivalent to that the pair (A33, Ã32) is stabilizable and
thus it can be verified easily [43].

• Step 2 is implemented based on the algorithm in [9] which is numerically reliable.
• Linear systems of equations in Steps 3 and 4 can be solved efficiently by the

SVD method [22].
Hence, Algorithm 2 can be implemented in a numerically reliable manner.

In the following, we apply Algorithm 2 to an example generated by Matlab 7.0.
Example 2.12. Let

A(:, 1 : 3) =

⎡⎢⎢⎢⎢⎢⎢⎣
−134.7151815770 684.5200688479 −252.4858402416
2965.6910031615 2968.6795856120 3127.3190640174
2496.6636879933 5313.7625190612 2258.0418588501
−224.6817995288 1986.6127660631 −532.3798160083
−37.1081164625 −3118.1270598251 369.5187260686
1410.6906971850 2447.1024041232 1348.3759688211

⎤⎥⎥⎥⎥⎥⎥⎦ ,

1The computations of the factorizations (2.1), (2.10), (2.25), and (2.32) require the usage of the
notion numerical rank of a matrix. The most reliable method for deciding the rank of a matrix
M ∈ Rm×n, m ≥ n, is as follows: Compute the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of M , as in [27],
and consider a singular value σj to be zero if σj ≤ εσ1, where ε bounds the relative error in M . The
number of remaining nonzero singular values is then taken to be the (numerical) rank of the matrix.
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A(:, 4 : 6) =

⎡⎢⎢⎢⎢⎢⎢⎣
316.6433509627 300.0280484275 −10.467634805
1276.6140059526 1011.4552055403 820.772696295
2365.7472100096 2039.6108213012 784.077193552
916.7671233048 857.0012773342 10.752404856

−1430.5834820660 −1313.1753655886 −112.512294456
1080.7385716405 918.0951249252 424.352681385

⎤⎥⎥⎥⎥⎥⎥⎦ ,

B =

⎡⎢⎢⎢⎢⎢⎢⎣
425.29217463199 −80.88171998499 −145.72982759769
3982.20690197082 3016.72330542203 3062.57237309851
5436.32609118648 2736.92286843590 2560.48573537041
1335.34779570743 −74.51223868009 −247.07435777624
−2331.54633119938 −255.18364603148 −20.55480073218
2660.00572592472 1506.16763608974 1448.73127764291

⎤⎥⎥⎥⎥⎥⎥⎦ ,

C(:, 1 : 3) =

⎡⎣ 0.4447033643532 0.9218129707448 0.4057062130621
0.6154323481001 0.7382072458107 0.9354696991076
0.7919370374270 0.1762661444946 0.9169044399134

⎤⎦ ,

C(:, 4 : 6) =

⎡⎣ 0.4102702069910 0.3528681322170 0.1388908819570
0.8936495309135 0.8131664973038 0.2027652185603
0.0578913047843 0.0098613006609 0.1987217426615

⎤⎦ ,

D =

⎡⎣ 0.95012928514718 0.48598246870930 0.45646766516834
0.23113851357429 0.89129896614890 0.01850364324822
0.60684258354179 0.76209683302739 0.82140716429525

⎤⎦ .

By using Algorithm 2, we get a solution (F, H) of the state feedback decoupling
problem with stability for the proper system described by the (A, B, C, D) quadruple
as follows:

F (:, 1 : 3) =

⎡⎣ 13.213245245439 6.533314996605 −7.120728173265
−5.071573120781 −1.923440437567 0.236601849708
45.978278670010 −28.856343706120 26.995864311313

⎤⎦ ,

F (:, 4 : 6) =

⎡⎣ −5.266769113169 −7.409085032473 −3.479842456999
1.574115104850 1.054592476902 0.489990507618

−58.329243480873 −2.194096577547 8.908103088096

⎤⎦ ,

H =

⎡⎣ 1.67404446726824 −0.11964439680952 −0.92759516260175
−0.41647243581381 1.17375817197623 0.20499869641804
−0.85035677245799 −1.00061468473081 1.71251901466682

⎤⎦ .

It has been verified that A + BF is stable with eigenvalues

σ(A + BF ) = {−2368.44594880864,−1583.30208404670,−0.46317761699,

−0.00497367650,−0.00764132113,−0.11009271581},

and DH + (C + DF )(sI − A − BF )−1BH is nonsingular. It has also been verified
that DH + (C + DF )(sI − A − BF )−1BH is diagonal as follows:

• Compute the transfer function Tf (s) = DH + (C + DF )(sI −A−BF )−1BH
by Matlab 7.0

Tf (s) = tf(ss(A + B ∗ F, B ∗ H, C + D ∗ F, D ∗ H)).

Let (Tf(s))diag be a diagonal matrix that satisfies that all diagonal elements
of Tf(s) − (Tf (s))diag are zeros.
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• Calculate the peak gain of the frequency responses (as measured by the largest
singular value) of Tf(s) and Tf(s)− (Tf (s))diag using the code norm(·, inf) of
Matlab 7.0 to get

norm(Tf (s) − (Tf (s))diag, inf)
norm(Tf (s), inf)

= O(10−13).

Therefore, under the measure of the peak gain of the frequency responses, the off-
diagonal elements of Tf(s) are tiny relative to its diagonal elements, and thus Tf (s)
is diagonal.

3. Conclusions. We have derived numerically verifiable solvability conditions
and developed a numerical algorithm, Algorithm 2, to compute a solution for the
state feedback decoupling problem with stability for general proper systems described
by (A, B, C, D) quadruples. Algorithm 2 involves only orthogonal transformations and
the solutions of several linear systems of equations, and thus it can be implemented
in a numerically reliable manner.

Acknowledgments. We would like to thank the anonymous referees and Pro-
fessor Peter Benner for their helpful suggestions and comments on an early version of
this paper.
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INTERVAL GAUSSIAN ELIMINATION
WITH PIVOT TIGHTENING∗

JÜRGEN GARLOFF†

Abstract. We present a method by which the breakdown of the interval Gaussian elimina-
tion caused by division of an interval containing zero can be avoided for some classes of matrices.
These include the inverse nonnegative matrices, the totally nonnegative matrices, and the inverse
M -matrices—all classes with identically signed inverses. The approach consists of a tightening of the
interval pivot by determining the exact range of the pivot over the matrix interval.
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matrix, inverse M -matrix
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1. Introduction. Systems of linear interval equations arise when the entries of
the coefficient matrix and the right-hand side of a system of linear equations are
varying between given bounds; cf. [20, sect. 3.4]. The solution set of such a system

[A]x = [b],

where [A] = [A, A] is a given n-by-n matrix interval and [b] = [b, b] is a given vector
interval w.r.t. the usual entrywise partial order, is the set

Σ ([A], [b]) := {x ∈ Rn |Ax = b, A ∈ [A], b ∈ [b]} .(1.1)

We will assume here throughout that all A ∈ [A] are nonsingular. We denote the
hull of Σ([A], [b]), i.e., the smallest vector interval containing Σ([A], [b]), by [A]H [b].
A method to enclose [A]H [b] is interval Gaussian elimination, which is obtained from
the usual (termed ordinary henceforth) Gaussian elimination by replacing the real
numbers by the related intervals and the real operations by the respective interval
operations; see, e.g., [1, Chap. 15], [20, sect. 4.5]. However, interval Gaussian elimina-
tion may fail due to division by an interval pivot containing zero, even when ordinary
Gaussian elimination works for all matrices A ∈ [A]. There are some classes of inter-
val matrices for which interval Gaussian elimination cannot fail, e.g., the H-matrices;
cf. [17].

If ordinary Gaussian elimination is applied without pivoting, the pivots can be
represented as the quotient of two successive leading principal minors. This property
is used in [18] to modify the interval Gaussian elimination by tightening the interval
pivots, and it is shown that the breakdown of interval Gaussian elimination can be
avoided in some cases. However, this tightening is obtained by bounding the range of
the two leading principal minors independently and then forming the quotient of both
enclosures (in addition, the resulting interval is intersected with the ordinary interval
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pivot). This often causes an overestimation of the range of the pivot. In this paper,
we show that for some classes of matrices the exact range of the pivot can be given.
As a consequence of the inclusion isotonicity of the interval arithmetic operations, this
further tightening of the interval pivot has the additional advantage that the resulting
enclosure of [A]H [b] is not larger than the one obtained by the method of [18] and it
is often smaller. Moreover, the range of the pivots can be obtained by running a few
ordinary Gaussian elimination procedures in parallel.

The organization of the paper is as follows: In the next section we introduce
our notation and recall the interval Gaussian elimination. In section 3 we present
pivot tightening. This is applied in section 4 to inverse nonnegative matrices, to
totally nonnegative matrices, and to inverse M -matrices. In sections 5 and 6 we show
that analogous results can be obtained for a related determinantal function and some
algorithms for the solution of structured systems of linear interval equations. We
conclude with some remarks in section 7.

2. Notation and interval Gaussian elimination. By Rn, Rn×n, IR, IRn,
and IRn×n we denote the set of real vectors with n components, the set of real n-by-n
matrices, the set of the compact and nonempty intervals, the set of the intervals of
real vectors with n components, and the set of the intervals of real n-by-n matrices,
respectively. We also regard vector intervals as interval vectors and matrix intervals as
interval matrices, i.e., as vectors and matrices over IR, respectively, and consequently
represent them as [b] = [b, b] = ([bi])n

i=1 = ([bi, bi])n
i=1 and [A] = [A, A] = ([aij ])n

i,j=1 =
([aij , aij ])n

i,j=1. We identify a degenerate interval (vector, matrix) with the (only) real
number (vector, matrix) it contains.

We equip IR, IRn, IRn×n with the usual real interval arithmetic; see, e.g.,
[1, Chap. 10], [20, Chap. 1]. We assume that the reader is familiar with the basic
properties of this arithmetic. For a function f : Rn×n → R we denote the range of f
over the matrix interval [A] by f([A]), i.e.,

f ([A]) := {f(A) | A ∈ [A]} .

The interval Gaussian elimination (without pivoting) reads as follows.
Given [A] ∈ IRn×n, [b] ∈ IRn, define [A](k) = ([aij ](k)) ∈ IRn×n, [b](k) =

([bi](k)) ∈ IRn, k = 1, . . . , n, and [x]G = ([xi]G) ∈ IRn by

[A](1) = [A], [b](1) = [b],

[aij ](k+1) =

⎧⎪⎪⎨⎪⎪⎩
[aij ](k), i = 1, . . . , k, j = 1, . . . , n,

[aij ](k) − [aik](k)·[akj]
(k)

[akk](k) , i = k + 1, . . . , n, j = k + 1, . . . , n,

0 otherwise,

(2.1)

[bi](k+1) =

{
[bi](k), i = 1, . . . , k,

[bi](k) − [aik](k)

[akk](k) · [bk](k), i = k + 1, . . . , n,

k = 1, . . . , n − 1,

[xi]G =

⎛⎝[bi](n) −
n∑

j=i+1

[aij ](n)[xj ]G

⎞⎠ / [aii](n), i = n, n − 1, . . . , 1,
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where
∑n

j=n+1 . . . = 0. Note that no rows or columns are permuted. The algorithm
is feasible if and only if 0 /∈ [akk](k), k = 1, . . . , n.

For a survey on results on this algorithm the reader is referred to [17]. Since
we are interested only in the feasibility of the algorithm we consider here only the
formulae in (2.1) which provide the transformation of [A] into triangular form.

We further adopt standard notation from matrix analysis. For any n-by-n ma-
trix A, we denote the submatrix lying in rows indexed from α and columns in-
dexed from β (both in increasing order) by A[α |β], where α, β ⊆ {1, 2, . . . , n}. If
α = β, the principal submatrix A[α |α] is abbreviated as A[α]. In particular, when
α = {1, . . . , k}, k = 1, . . . , n, we call A[α] a leading principal submatrix and put
A′ := A[{1, 2, . . . , n − 1}]. We denote by Aij the submatrix of A which is obtained
by the deletion of row i and column j in A. We call A a P -matrix if all its principal
minors are positive, inverse nonnegative1 if it is nonsingular and its inverse is entry-
wise nonnegative, and an M -matrix if it is inverse nonnegative and all its off-diagonal
entries are nonpositive. If π is a certain property of a matrix, then we call a matrix
interval [A] = [A, A] a π matrix interval if all A ∈ [A] possess property π. For exam-
ple, [A] is an inverse M -matrix interval if all A ∈ [A] are inverse M -matrices. Often
it is of interest to know whether such a property of a matrix interval can be inferred
from a certain subset of the vertex matrices A = (aij) with aij ∈ {aij , aij}, for all i,j.
Examples are given in section 4.

3. Interval pivot tightening. Interval Gaussian elimination breaks down when
an interval pivot [akk](k) (henceforth termed ordinary interval pivot) contains zero.
This can occur even though all matrices A ∈ [A] have nonvanishing leading principal
minors [22]. For ordinary Gaussian elimination, the pivot a

(k)
kk can be represented as

the quotient of two succeeding leading principal minors (e.g., [5, p. 26]),

a
(k)
kk =

detA[{1, 2, . . . , k}]
detA[{1, 2, . . . , k − 1}] .(3.1)

This property is used in [18] to tighten the ordinary interval pivot [akk](k): Let Dk

denote an enclosure for detA[{1, 2, . . . , k}] for all A ∈ [A], where D0 := 1. If

0 /∈ Dk, k = 1, 2, . . . , n,(3.2)

then [akk](k) in (2.1) is replaced by

[akk](k) ∩ Dk

Dk−1
.(3.3)

In general, this approach does not have any advantage over the ordinary interval
pivot because finding an enclosure for the range of a determinant is as difficult as the
original problem of solving a system of linear interval equations. However, for some
classes of interval matrices presented in section 4 the exact range of principal minors
can be given (only by using two specified vertex matrices) and (3.2) is satisfied. Then,
when (3.3) is used as the interval pivot the breakdown of interval Gaussian elimination
can be avoided. As a welcome side effect, the enclosure of the solution set may be
tighter compared to the one which is obtained when the ordinary interval pivot is

1This is often also called inverse positive; since we use the terminology totally nonnegative instead
of totally positive (cf. subsection 4.2), we consequently prefer inverse nonnegative.
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used; at least it will not be larger. This is a consequence of the inclusion isotonicity
of the interval arithmetic operations.

However, by enclosing the ranges of the two principal minors in (3.1) indepen-
dently some overestimation is introduced into the computation. In the following, we
identify some classes of matrices for which the range of the pivot a

(k)
kk for all A ∈ [A]

can be given exactly such that forming the intersection in (3.3) is not necessary.
Again, as a side effect, this further tightening may result in a further shrinking of the
enclosure of the solution set (1.1).

The classes of matrices we will discuss in the next section have the property
that any of their leading principal submatrices are in the same class (of lower order).
Therefore, the discussion can be restricted to

p(A) :=
detA
detA′ .(3.4)

Proposition 3.1. The partial derivative of p(A) = detA/ det(A′) w.r.t. the
entry aij is given by

∂p(A)
∂aij

= (−1)i+j detAnj detAin

(det A′)2
, i, j = 1, . . . , n.(3.5)

Proof. By Laplacian expansion along row i, we obtain

∂p(A)
∂aij

=

⎧⎨⎩ (−1)i+j detAij detA′−detA′
ij det A

(det A′)2 if i, j < n,

(−1)i+j detAij

det A′ if i = n or j = n.
(3.6)

To show (3.5) for i, j < n we make use of a special case of Sylvester’s determinantal
identity (e.g., [12, p. 22]): Let C ∈ Rn×n, α ⊆ {1, 2, . . . , n} be a fixed set of cardinality
n − 2, and let {1, 2, . . . , n} \ α = {i, j} with i < j. Define the 2-by-2 matrix B by

b11 := detC [α ∪ {i}],

b12 := detC [α ∪ {i}, α ∪ {j}],

b21 := detC [α ∪ {j}, α ∪ {i}],

b22 := detC [α ∪ {j}].

Then it holds that

detB = detC[α] det C.(3.7)

Now, we interchange in A rows 1 and i and columns 1 and j and apply (3.7) to the
resulting matrix denoted by C with α = {2, 3, . . . , n − 1}. Since

detC[α] = (−1)i+j det A′
ij ,

det C[{1, . . . , n − 1}] = det A′,

detC[{2, . . . , n}] = (−1)i+j det Aij ,

detC[{1, . . . , n − 1} | {2, . . . , n}] = (−1)j−1 detAnj ,

detC[{2, . . . , n} | {1, . . . , n − 1}] = (−1)i−1 detAin,
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formula (3.7) yields

det A′
ij detA = detAij detA′ − detAnj det Ain.

Combining with (3.6), we obtain (3.5) for i, j < n.
Note that det Anj and detAin appear in the cofactor form of the inverse of A.

Therefore, we consider in the following section sets of matrices with identically signed
inverses.

4. Applications.

4.1. Inverse nonnegative matrices. We will make use of the following prop-
erty of the inverse nonnegative matrices.

Proposition 4.1 (see [16]). Let [A] = [A, A] be a matrix interval and A and A
be inverse nonnegative. Then [A] is inverse nonnegative and A−1 ≤ A−1.

For results on properties of inverse nonnegative matrix intervals the reader is
referred to [23] and for the construction of [A]H [b] in this case to [21] and the references
therein. We will focus here on the applicability of the interval Gaussian elimination. It
is known that interval Gaussian elimination may break down for inverse nonnegative
interval matrices; see, e.g., [20, p. 160]. We apply the pivot tightening approach from
section 3.

We assume now that each A ∈ [A] has the property that all its leading principal
submatrices are inverse nonnegative. By [19, p. 24] this is equivalent to the property
that A allows a factorization A = LDU , where L and U are inverse nonnegative lower
and upper triangular matrices, respectively, whose diagonal entries are all one, and
D is a diagonal matrix with positive diagonal entries. According to Proposition 4.1
the condition on [A] = [A, A] is fulfilled if all leading principal submatrices of A and
A are inverse nonnegative.

Theorem 4.2. If all leading principal submatrices of [A] = [A, A] are inverse
nonnegative, then the range of p(A) over [A] is given by

p([A]) = [p(A), p(A)].(4.1)

Proof. For A ≤ A ≤ A it follows from Proposition 4.1 that

(A
−1

)nn ≤ (A−1)nn ≤ (A−1)nn.(4.2)

Formula (4.1) is now a consequence of (A−1)nn = 1
p(A) .

The practical application of (4.1) requires running in parallel to the interval Gaus-
sian elimination two instances of ordinary Gaussian elimination applied to A and A.
In the kth step, both pivots span the interval given on the right-hand side of (4.1).

4.2. Totally nonnegative matrices. A matrix A ∈ Rn×n is called totally
nonnegative or totally positive if all its minors are nonnegative or positive, respectively.
These matrices appear in mechanics and in many branches of mathematics. If A is
nonsingular and totally nonnegative, then so too is each leading principal submatrix
and A is a P -matrix. For further properties of these matrices the reader is referred
to [3].

A suitable partial order for the totally nonnegative matrices is the checkerboard
order. For A, B ∈ Rn×n define

A ≤∗ B := (−1)i+jaij ≤ (−1)i+jbij , i, j = 1, 2, . . . , n.
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This partial order is related to the usual entrywise partial order by

A ≤∗ B ⇔ A∗ ≤ B∗, where A∗ := SAS, S := diag(1,−1, . . . , (−1)n+1),

is the checkerboard transformation.
A matrix interval [A, A] w.r.t. the usual entrywise partial order can be represented

as an interval [↓ A, ↑ A]∗ w.r.t. the checkerboard order, where

(↓ A)ij :=

{
aij if i + j is even,

aij if i + j is odd,

(↑ A)ij :=

{
aij if i + j is even,

aij if i + j is odd.

It is conjectured in [7]2 that if ↓ A and ↑ A are nonsingular and totally nonnega-
tive, then the whole matrix interval [↓ A, ↑ A]∗ is nonsingular and totally nonnegative.
This conjecture is settled for the totally positive and nonsingular tridiagonal totally
nonnegative matrices [7], almost totally positive matrices [10], and interval matrices
[A] for which the index sum i+ j of all degenerate entries [aij ] has the same parity [7].
In [9] a subset of cardinality of at most 22n−1 vertex matrices is given, from which
the total nonnegativity of the entire matrix interval can be inferred.

Note that if A is nonsingular and totally nonnegative, then 0 ≤∗ A−1 and, there-
fore, 0 ≤ (A−1)∗ = (A∗)−1. Since A∗ is inverse nonnegative, all results for inverse
nonnegative matrices carry over to the totally nonnegative matrices by the checker-
board transformation; e.g., if A and B are nonsingular and totally nonnegative, then
it follows that A ≤∗ B ⇒ B−1 ≤∗ A−1. For results on the calculation of [A]H [b]
under special sign conditions posed on [b], cf. [6].

In [6] it was shown that the interval Gaussian elimination may fail if it is applied to
a nonsingular totally nonnegative interval matrix. As the most important application
of the approach presented in [18], the pivot tightening (3.3) was employed for these
interval matrices using the fact that the range of the determinant on such an interval
matrix is given by

detA([↓ A, ↑ A]∗) = [det(↓ A), det(↑ A)].(4.3)

However, inspection of (3.5) or the use of the results in subsection 4.1 and application
of the checkerboard transformation shows that even the exact range of the pivot of
ordinary Gaussian elimination can be given.

Corollary 4.3. If [A] = [↓ A, ↑ A]∗ is nonsingular and totally nonnegative,
then the range of p(A) over [A] is given by

p([↓ A, ↑ A]∗) = [p(↓ A), p(↑ A)].(4.4)

Example 4.4. We consider the example in [6], also treated in [18]. Let

[A] :=

⎛⎜⎝ [4, 5] [2, 3] 1
[2, 3] 4 [2, 3]

1 [2, 3] [4, 5]

⎞⎟⎠ .

2Note that Theorem 1 in [6] is not correct.
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Taking (4.3) into account, it is easily checked that [A] is nonsingular and totally
nonnegative. Interval Gaussian elimination results in the interval

[a33](3) =
[
− 79

700
,
5519
1280

]
,

which contains zero, and breaks down.3 Using (4.3) the pivot tightening approach
from [18] gives for this entry [a33](3) ∩ [6,64]

[7,16] = [38 , 5519
1280 ], whereas (4.4) results in the

smaller interval [67 , 4].

4.3. Inverse M-matrices. A matrix A ∈ Rn×n is called an inverse M -matrix
if it is the inverse of an M -matrix. Inverse M -matrices are entrywise nonnegative and
P -matrices; each leading principal submatrix is likewise an inverse M -matrix. For
further properties of these matrices the reader is referred to [13]. Sufficient conditions
for a real matrix to be an inverse M -matrix and applications of these matrices can be
found in [25].

We will make use of the following proposition.
Proposition 4.5 (see [15]). A matrix interval is an inverse M -matrix interval

if and only if all its vertex matrices are inverse M -matrices.
Example 4.7 below shows that interval Gaussian elimination may fail if it is ap-

plied to such a matrix interval. Pivot tightening here is more involved than in (4.1)
and (4.4).

Theorem 4.6. If [A] ∈ IRn×n is an inverse M -matrix interval, then the range
of p(A) over [A] is given by

p([A]) =
[
p(Al), p(Au)

]
, where

Al :=

⎛⎜⎜⎜⎜⎝
a11 · · · a1,n−1 a1n

...
...

...
an−1,1 · · · an−1,n−1 an−1,n

an1 · · · an,n−1 ann

⎞⎟⎟⎟⎟⎠ ,

Au :=

⎛⎜⎜⎜⎜⎝
a11 · · · a1,n−1 a1n

...
...

...
an−1,1 · · · an−1,n−1 an−1,n

an1 · · · an,n−1 ann

⎞⎟⎟⎟⎟⎠ .

Proof. According to the sign condition that the inverse of an inverse M -matrix
A must have positive diagonal entries and all of its off-diagonal entries must be non-
positive, we obtain

0 < detAii, i = 1, . . . , n,

sgn(det Aij) ∈ {0, (−1)i+j+1}, i, j = 1, . . . , n, i �= j.
(4.5)

Consider in Proposition 3.1 first the case i = n or j = n. It follows that the partial
derivative of p w.r.t. the entries in the last row or column is nonpositive (note that

3It should be noted that the interval Gaussian elimination would not fail, were [a22] chosen as
the first pivot. The same applies to Example 4.7.
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0 < detA′) with the exception of ann for which the partial derivative is positive. In
the case i, j < n, note that sgn(detAnj detAin) ∈ {0, (−1)i+j}. Therefore, the partial
derivative of p w.r.t. an entry of A′ is always nonnegative.

Remark 4.6.1. An alternative proof in the case i, j < n is as follows:4 By
permutation similarity of the inverse M -matrices it suffices to consider only entry
a12. The inequality

detA12 detA′ ≤ det A′
12 detA

follows from the inequality [14, Theorem 2.1(ii)]

(A[α])−1 ≤ A−1[α]

which is valid for inverse M -matrices by choosing α = {1, . . . , n − 1}.
Example 4.7. Let

[A] :=

⎛⎜⎜⎝
[1, 4] [12 ,

√
2

2 ]
√

2
2√

2
2 1 [ 12 ,

√
2

2 ]
1
2

√
2

2 1

⎞⎟⎟⎠ .

It is easily checked that all eight vertex matrices are inverse M -matrices, and by
Proposition 4.5 it follows that [A] is an inverse M -matrix interval. Interval Gaussian
elimination results in the interval

[a(3)
33 ] =

[
−4

√
2 + 1
64

, 1 −
√

2
16

]
,

which contains zero, and breaks down. By Theorem 4.6 this pivot can be tightened
to [12 , 1 −

√
2

4 ] = [0.5, 0.6464 . . .].
If pivot tightening is applied in all steps, the computation of p(Al) (and similarly

of p(Au)) requires running in parallel to the interval Gaussian elimination an exten-
sion of ordinary Gaussian elimination. The elimination algorithm is applied to the
submatrices of [A] in the order indicated in Figure 4.1. The part which is recomputed
or newly computed is inside the shaded area.

5. A related determinantal function. In a similar way we can determine
monotonicity of the related determinantal function

d(A) := detA detA′,

which appears, e.g., in the matricial description of the Cholesky decomposition [5,
p. 38].

Theorem 5.1. Let [A] ∈ IRn×n.
(i) If [A] fulfills the assumption of Theorem 4.2, then the range of d(A) over [A]

is given by

d([A]) = [d(A), d(A)].

4This was pointed out to us by Professor Charles R. Johnson.
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a11 a12

22a21a

a11 a13a12

a2322a21a

31a 32a a33

a1,n−1

an,n−1

...

a11
...

n−1,1a

n1a

an−1,n−1

= A .l

a1n
...

an−1,n

ann

. . .

11 a12 a13 a14

a24a2322a21a

a 42a
32a31a a33 a34

a43 a44

a

41

. . .

. . .

. . .

Fig. 4.1. Elimination algorithm applied to submatrices of [A].

(ii) If [A] is an inverse M -matrix interval, it holds that

d([A]) = [d(A1), d(A2)],

where

A1 :=

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22

. . .
...

...
. . . . . . an−1,n

an1 · · · an,n−1 ann

⎞⎟⎟⎟⎟⎟⎠ ,
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A2 :=

⎛⎜⎜⎜⎜⎜⎝
a11 a12 · · · a1n

a21 a22
. . .

...
...

. . . . . . an−1,n

an1 · · · an,n−1 ann

⎞⎟⎟⎟⎟⎟⎠ .

Proof. Similarly as in (3.6) we obtain

∂d(A)
∂aij

=

{
(−1)i+j(det Aij det A′ + detA′

ij det A) if i, j < n,

(−1)i+j detAij detA′ if i = n or j = n.

Let [A] first fulfill the assumption of Theorem 4.2. From the sign condition for the
inverse B of an inverse nonnegative matrix A, B = A−1, we obtain

0 ≤ bij = (−1)i+j detAji

detA
;

in particular for i = j = n,

0 < bnn =
detA′

detA
,

whence

sgn(detA) = sgn(detA′).

If i, j < n and B′ := (A′)−1, it follows that

∂d(A)
∂aij

= (bji + b′ji) det A′ detA
>= 0.

If i = n or j = n, the proof of the nonnegativity of the partial derivative of d w.r.t.
aij is similar. Therefore, d is monotone increasing. This proves (i).

If [A] is an inverse M -matrix interval, we obtain from the sign condition (4.5)
that d is monotone increasing w.r.t. the diagonal entries and monotone decreasing
w.r.t. the off-diagonal entries. This proves (ii).

6. Methods for structured systems. The results for interval Gaussian elim-
ination apply to some algorithms for the solution of structured systems of linear
interval equations. Interval variants for the respective ordinary methods are obtained
by replacing the real numbers by the related intervals and the real operations by the
respective interval operations.

If [A] is symmetric, i.e., [A] = [A]T , then the symmetric solution set

Σsym([A], [b]) := {x ∈ Rn |Ax = b, A = AT , A ∈ [A], b ∈ [b]}

is considered. The interval Cholesky method [2] can be used to enclose this set. Each
step requires the division by an interval which may contain zero even if all symmetric
matrices A ∈ [A] are positive definite; an example is provided by Example 4.4. For
each step of the ordinary Cholesky method, the divisor can be represented as the
square root of the quotient of two succeeding leading principal minors as in (3.4)
(cf. [5, p. 38]), so that the result for the interval Gaussian elimination applies.
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Let [A] be a Toeplitz interval matrix (of order n + 1), i.e., there are intervals [ai],
i = −n, . . . , n, such that [aij ] = [aj−i], i, j = 1, . . . , n + 1, and define by [A]T the set
of all real Toeplitz matrices contained in [A]. Then one restricts the solution set (1.1)
to the Toeplitz solution set

ΣT ([A], [b]) := {x ∈ Rn |Ax = b, A ∈ [A]T , b ∈ [b]}.

Interval variants of the elimination procedure of Bareiss [4] and of the recurrence
relations for the inverse of a Toeplitz matrix [24], [26] are investigated in [8]. Even
if all matrices A ∈ [A]T have only nonzero leading principal minors, these interval
algorithms may break down due to division by an interval containing zero. An example
is the interval matrix in [22]. For the ordinary (real) version of both algorithms the
divisor can be represented as quotient of two successive leading principal minors (cf.
Corollary 1 in [4] and [26, p. 276]), so that for both algorithms the results for the
interval Gaussian elimination also apply.

If pivot tightening is used in the symmetric case, then for the three classes of
matrix intervals considered in section 4, the respective vertex matrices are symmetric.
In the Toeplitz case, the two vertex matrices are Toeplitz matrices in the case of an
inverse nonnegative or nonsingular totally nonnegative matrix interval, but in general
not in the case of an inverse M -matrix interval.

An elimination process very well suited for totally nonnegative matrices is Neville
elimination [11]. Here, zeros in a column below the main diagonal of an n-by-n
matrix are produced by adding to each row an appropriate multiple of the previous
one (instead of using a fixed row with a fixed pivot as in Gaussian elimination).
Lemma 2.6 in [11] shows that all the pivots of Neville elimination are nonzero if
and only if the column-initial minors detA[α | {1, . . . , k}], where α is a subset of k
successive elements of {1, . . . , n}, are nonzero, k = 1, . . . , n. Moreover, in this case,
Neville elimination can be carried out without row interchanges. This suggests that
the column-initial minors play a role in Neville elimination similar to that of the
leading principal minors in Gaussian elimination. Formula (2.8) in [11] shows that
the pivots in the kth step of Neville elimination are just the quotients of a column-
initial minor of order k and its leading principal minor which is column-initial of order
k − 1. So we can apply Proposition 3.1 and the results from subsection 4.2.

7. Conclusions. We have shown how for some classes of interval matrices the in-
terval pivots in the performance of the interval Gaussian elimination can be tightened
such that the shrunken interval does not contain zero, thereby avoiding a breakdown
of the algorithm. As a positive side effect, the tightening often leads to a smaller
enclosure of the solution set, so that the approach is recommended not only merely
for avoiding a breakdown. The extra computational effort consists of two or four
instances of ordinary Gaussian elimination, depending on the class of matrices under
consideration. However, to obtain verified results, these parallel runs of Gaussian
elimination should be performed in interval arithmetic, too. The approach easily ex-
tends to some algorithms for solving structured systems of linear interval equations
and may be applied to other classes of matrices with identically signed inverses.
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ON THE CONVERGENCE OF THE SELF-CONSISTENT FIELD
ITERATION FOR A CLASS OF NONLINEAR EIGENVALUE

PROBLEMS∗
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Abstract. We investigate the convergence of the self-consistent field (SCF) iteration used to solve
a class of nonlinear eigenvalue problems. We show that for the class of problems considered, the SCF
iteration produces a sequence of approximate solutions that contain two convergent subsequences.
These subsequences may converge to two different limit points, neither of which is the solution to
the nonlinear eigenvalue problem. We identify the condition under which the SCF iteration becomes
a contractive fixed point iteration that guarantees its convergence. This condition is characterized by
an upper bound placed on a parameter that weighs the contribution from the nonlinear component
of the eigenvalue problem. We derive such a bound for the general case as well as for a special case
in which the dimension of the problem is 2.
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1. Introduction. We are concerned with the convergence of a numerical method
for solving the following type of nonlinear eigenvalue problem:

(1) H(X)X = XΛk,

where X ∈ R
n×k, XTX = Ik, H(X) ∈ R

n×n is a matrix that has a special structure
to be defined below, and Λk ∈ R

k×k is a diagonal matrix consisting of the k smallest
eigenvalues of H(X). This type of problem arises in electronic structure calculations
[10, 6]. The nonlinearity simply refers to the dependency of the matrix H on the eigen-
vector X to be computed. This dependency is expressed through a vector ρ(X) that
corresponds to the charge density of electrons in an electronic structure calculation.
This vector is defined as

(2) ρ(X) ≡ diag(XXT ),

where diag(A) denotes the vector containing the diagonal elements of the matrix A.
Given ρ(X), the matrix H(X) that we will consider in this paper is defined as

(3) H(X) = L + αDiag(L−1ρ(X)),

where L is a discrete Laplacian, Diag(x) (with an uppercase D) denotes a diagonal
matrix with x on its diagonal, and α is some known constant. In electronic structure
calculations, H(X) is often referred to as a single-particle Hamiltonian.
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The solution of (1) is also a global minimizer of the constrained minimization
problem

(4)
min E(X)
s.t. XTX = Ik,

where the objective function E(X) is defined by

(5) E(X) =
1

2
trace(XTLX) +

α

4
ρ(X)TL−1ρ(X).

In fact, it is not difficult to show that (1) and the orthonormality constraint
XTX = Ik form the first order necessary conditions for (4) [7].

The nonlinear eigenvalue problem defined by (1) and (3) is a simplification of the
Hartree–Fock (HF) and Kohn–Sham (KS) equations in electronic structure calcula-
tions [10, 6]. In particular, it contains a parameterized Hartree term ρTL−1ρ that is
present in both the HF and KS equations. But it does not contain the exchange term
in the HF model [10] or the exchange-correlation term in the KS model [6]. Although
our analysis is performed on this simplified model, the main results reveal some of the
fundamental properties of this type of problem and how the behavior of the algorithm
used to solve this type of problem changes with respect to the amount of nonlinearity
measured by the parameter α in (3).

The numerical method we will analyze is called the self-consistent field (SCF)
iteration. It is currently the most widely used algorithm for solving the HF and KS
equations. In each SCF iteration, one computes approximations to a few of the small-
est eigenvalues and the corresponding eigenvectors of a fixed Hamiltonian constructed
from the previous approximation to X; the computed eigenvector approximations are
used to update the Hamiltonian. When the difference between Hamiltonians con-
structed in two consecutive iterations is negligible, the SCF procedure is terminated,
and the eigenvectors of the last Hamiltonian are said to be self-consistent.

It is well known that the simplest version of SCF iteration, which we will carefully
describe in the next section, often fails to converge [5]. For certain types of Hamilto-
nians (e.g., HF and the one defined in (3)), the SCF iteration may eventually oscillate
between two limit points, neither of which satisfies (1). The convergence failure of the
SCF iteration is partially explained in [11] by viewing the SCF iteration as an indirect
minimization procedure that seeks the minimum of (4) by minimizing a sequence of
quadratic surrogates. Although the arguments and numerical examples presented in
[11] demonstrated that E(X) may not decrease monotonically in an SCF iteration,
they do not reveal the asymptotic convergence behavior of the SCF iteration.

In this paper, we will take a closer look at the SCF iteration and analyze its
convergence when used to solve (1). A brief overview of the algorithm is given in
section 2 along with a simple example that illustrates the convergence failure of the
SCF iteration for some choices of α used in (3). In section 3, we show that when
the SCF iteration fails to converge, the approximate eigenvectors X(i) produced in
the SCF iteration contain two subsequences that converge to two distinct limit points.
Neither of these limit points is a solution to (1). Our proof of this result is similar to an
earlier proof given by Cancès and Le Bris in [2]. We made a number of simplifications
to make it easier to follow. However, the subsequence convergence result does not give
the conditions under which the two subsequences are guaranteed to converge to the
solution of (1). Such a condition is identified in section 4. We will show that for n = 2,
the SCF iteration is guaranteed to converge when α < 3. For the more general case,
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SCF Iteration

Input: A discrete Laplacian L ∈ R
n×n; an initial guess X(0) for the eigen-

vector X ∈ R
n×k;

Output: X ∈ R
n×k such that X∗X = Ik and H(X)X = XΛk, where Λk

contains the k smallest eigenvalues of H(X).

1. For i = 1, 2, . . . until convergence
2. construct H(i) = H(X(i−1)) using (3);
3. compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the k smallest eigenvalues of H(i);
4. end for

Fig. 1. The SCF iteration.

our main result provides an upper bound for α that depends on the minimum gap
between the kth and the k + 1st eigenvalues of H(X), the dimension of the problem,
and the norm of L−1.

Throughout this paper, we will use ‖ · ‖p to denote the p-norm [3] of either a
vector or a matrix. The Frobenius norm of a matrix is denoted by ‖ · ‖F .

2. The SCF iteration. In this section, we describe the SCF iteration and show
how it fails when it is applied to a 2 × 2 Hamiltonian (3) with a particular choice of
α.

The basic idea of an SCF iteration is to reduce the nonlinear eigenvalue problem
(1) to a sequence of linear eigenvalue problems that can be solved efficiently using
existing tools. Figure 1 shows the main steps of this procedure. The convergence of
the iteration can be monitored by computing the difference between charge densities
ρ(X) obtained in two consecutive iterations. The following example shows that the
simplest version of the SCF iteration fails to converge. In this example, we set

(6) L =

(
2 −1

−1 2

)
,

α = 12, and k = 1. As a result, X = (x1 x2)
T with x1, x2 ∈ R such that x2

1 + x2
2 = 1,

and ρ(X) = (x2
1 x2

2)
T .

Due to the convexity and symmetry of E(x) (i.e., interchanging x1 and x2 does
not change the problem), the solution to the minimization problem (4), and hence the
nonlinear eigenvalue problem (1), must satisfy x1 = x2 =

√
2/2 or x1 = x2 = −

√
2/2.

However, when the initial guess of the desired eigenvector is chosen to be, for
example,

(7) X(0) =

(
0.1389
0.2028

)
,

the difference between the charge densities computed in two consecutive SCF itera-
tions does not converge to zero, as we can clearly see in Figure 2(a). Furthermore,
Figure 2(b) shows that the ratio between two components of ρ(X(i)) does not converge
to 1.
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(a) The change in charge density Δρ(i) ≡
‖ρ(X(i+1))−ρ(X(i))‖2 fails to converge to
zero.
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around one, but does not converge to one.

Fig. 2. The SCF iteration fails to converge when α = 12 in (3).
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Fig. 3. When α = 1.0, Δρ(i) converges rapidly to 0.

If we reduce α to 1, then SCF converges from any starting guess. Figure 3 shows
that the difference between charge densities computed in two consecutive SCF iter-
ations decreases rapidly towards zero in this case when (7) is used as the starting
guess. In section 4, we will show that for this 2 × 2 example, the convergence of SCF
can be guaranteed if α < 3.

3. Subsequence convergence in the SCF iteration. When the SCF itera-
tion fails to converge to the solution of (1), it produces a sequence of approximations
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(a) Odd iterations
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(b) Even iterations

Fig. 4. When α = 12, the charge density converges to two different limit points in odd and even
SCF iterations.

{X(i)} that do not become self-consistent as i increases. We have already seen this
phenomenon in Figure 2(a), where we plotted the norm of the change in ρ(X(i))
between two consecutive SCF iterations. In this case, it is clear that ‖Δρ(X(i))‖2

does not converge to zero as i increases.
However, if we examine the subsequences {X(2i−1)} and {X(2i)} (i = 1, 2, . . .)

produced in the SCF iteration, we will see that they both converge to subspaces that
become self-consistent in every other iteration. Figure 4 shows that both

Δρ
(i)
odd ≡ ‖ρ(X(2i+1)) − ρ(X(2i−1))‖2 and Δρ(i)

even ≡ ‖ρ(X(2i+2)) − ρ(X(2i))‖2

converge to zero as i increases, although neither X(2i+1) nor X(2i+2) becomes a min-
imizer of E(X), as we can clearly see in Figure 2(b).

In [1] and [2] it was shown that such a phenomenon occurs in a more general
setting; i.e., when SCF fails to converge to the solution of the HF equation, the odd and
even subsequences of the approximations converge to two distinct limit points. This
analysis, which we will reproduce here with some modification, is based on examining
the convergence of the density matrix D(X) = XXT . It relies on the assumption that
there exists a gap δ between the kth and k + 1st eigenvalues of H(X) for all valid X,
an assumption that is referred to in [1] as the uniformly well posed (UWP) property.
The major result of [1] asserts that

∞∑
i=�

‖D(X(i+2)) −D(X(i))‖2
F < ∞

for any finite � ≥ 0. Therefore, ‖D(X(i+2)) − D(X(i))‖F must converge to zero as i
increases.

In the analysis we present next, the subsequence convergence of the SCF iter-
ation is measured by the distance between two subspaces spanned by columns of
X ∈ R

n×k and Y ∈ R
n×k. We will use the standard distance measure defined in
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[3, Theorem 2.6.1, p. 76]; i.e., if XTX = Y TY = Ik,

dist(X,Y ) ≡ ‖ZTY ‖2,

where Z ∈ R
n×(n−k) is the orthogonal complement to X and ZTZ = In−k.

The following lemma, which is a block version of Lemma 11-9-8 in [8], shows that
dist(X,Y ) can, in general, be bounded in terms of trace(Y THY ) − trace(XTHX)
and the gap between the kth and k + 1st eigenvalues of H if columns of X consist of
eigenvectors associated with the k smallest eigenvalues of H and Y ∈ R

n×k satisfies
Y TY = Ik.

Lemma 1. Let λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of a symmetric matrix H ∈
R

n×n, and let columns of X be eigenvectors associated with λ1, λ2, . . . , λk. If λk+1 =
λk + δ for some δ > 0, then

(8) dist2(X,Y ) ≤ trace(Y THY ) − trace(XTHX)

δ

for any Y ∈ R
n×k such that Y TY = Ik.

Proof. Let columns Z ∈ R
n×(n−k) be eigenvectors associated with λk+1, λk+2, . . . ,

λn, and define Λk = Diag(λ1, λ2, . . . , λk) and Λn−k = Diag(λk+1, λk+2, . . . , λn). It
follows from the spectral decomposition of H that

trace(Y THY ) = trace[(Y TX)Λk(X
TY )] + trace[(Y TZ)Λn−k(Z

TY )].

Since λk+1 = λk + δ, we have λi ≥ λk + δ for i ≥ k + 1. Thus,

trace[(Y TZ)Λn−k(Z
TY )] ≥ (λk + δ)‖ZTY ‖2

F .

Consequently,

(9) trace(Y THY ) ≥ trace[(Y TX)Λk(X
TY )] + λk‖ZTY ‖2

F + δ‖ZTY ‖2
F .

Because W = (X,Z) defines an orthogonal transformation, we have

‖WTY ‖2
F = ‖Y ‖2

F = k.

Hence

(10) ‖ZTY ‖2
F = ‖WTY ‖2

F − ‖XTY ‖2
F = k − ‖XTY ‖2

F .

Substituting (10) into (9) and setting S = XTY yields

trace(Y THY ) ≥ trace(SΛkS
T ) + λk(k − ‖S‖2

F ) + δ‖ZTY ‖2
F

= λkk + trace[S(Λk − λkI)S
T ] + δ‖ZTY ‖2

F

= trace(Λk) + trace(λkI − Λk) + trace[(Λk − λkI)SS
T ] + δ‖ZTY ‖2

F

= trace(XTHX) + trace[(λkI − Λk)(I − SST )] + δ‖ZTY ‖2
F .

Because XTX = Y TY = Ik, the diagonal elements of SST are all less than or equal
to one. Hence

trace[(λkI − Λk)(I − SST )] ≥ 0.
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Therefore, we can now conclude that

trace(Y THY ) ≥ trace(XTHX) + δ‖ZTY ‖2
F

≥ trace(XTHX) + δ‖ZTY ‖2
2

= trace(XTHX) + δdist2(X,Y ).

Rearranging terms in the above inequality yields (8).
Our analysis of the subsequence convergence will make use of the auxiliary

function

(11) Ê(X,Y ) = trace(XTLX) + trace(Y TLY ) + αρ(X)TL−1ρ(Y ).

This function is similar to the one used in [1], which is defined in terms of density
matrices D(X) and D(Y ).

It is easy to verify that

ρ(X)TL−1ρ(Y ) = trace(XTDiag[L−1ρ(Y )]X) = trace(Y TDiag[L−1ρ(X)]Y ).

Thus, Ê(X,Y ) is clearly symmetric, i.e., Ê(X,Y ) = Ê(Y,X), and it can be expressed
alternatively as

Ê(X,Y ) = trace(XTH(Y )X) + trace(Y TLY )

= trace(Y TH(X)Y ) + trace(XTLX).(12)

We are now ready to show the main result, which we state formally in the following
theorem.

Theorem 1. Let X(0) ∈ R
n×k be the initial guess to the solution of the nonlinear

eigenvalue problem (1) that satisfies X(0)TX(0) = Ik. If columns of X(i) ∈ R
n×k

contain eigenvectors associated with the smallest k eigenvalues of H(X(i−1)), as we
would obtain when applying the SCF iteration to (1), and if the gap between the kth
and the k+1st eigenvalues of H(X(i)) is greater than or equal to δ > 0 for all i, then

(13)
m∑
i=0

dist2(X(i+2), X(i)) ≤ Ê(X(0), X(1)) − Ê(X(m+1), X(m+2))

δ
,

where Ê(·, ·) is the auxiliary function defined in (11).
Proof. The proof we give here is similar to that presented in [2]. To simplify nota-

tion, we will denote H(X(i+1)) by H. Because X(i+2) contains eigenvectors associated
with the smallest k eigenvalues of H, it follows from Lemma 1 that

trace(X(i+2)THX(i+2)) + δdist2(X(i+2), X(i)) ≤ trace(X(i)THX(i)).

Adding trace(X(i+1)TLX(i+1)) to both sides of the inequality above and invoking (12)
yields

Ê(X(i+1), X(i+2)) + δdist2(X(i+2), X(i)) ≤ Ê(X(i), X(i+1)).

Rearranging terms in the above inequality yields

dist2(X(i+2), X(i)) ≤ Ê(X(i), X(i+1)) − Ê(X(i+1), X(i+2))

δ
.

Summing over i yields the inequality (13).
Because Ê(X(m+1), X(m+2)) can be bounded by a constant for any m, and the

left-hand side of (13) is an increasing series, dist(X(i+2), X(i)) must converge to zero
as i → ∞.
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4. The convergence of SCF. Although the subsequence convergence analysis
characterizes what would happen when the SCF iteration fails to converge, it does not
give the conditions under which both the even and odd subsequences are guaranteed to
converge to the solution of (1). On the other hand, the numerical examples presented in
section 2 appear to indicate that the convergence of SCF for the 2 × 2 problem depends
on the value of α, which weighs the contribution of the nonlinear term Diag(L−1ρ(X))
in the Hamiltonian (3). In this section, we will provide a formal proof that this is
indeed true. We will prove that the SCF iteration is guaranteed to converge to the
solution of (1) from any starting point when α < αmax for some upper bound αmax.

Before we state and derive a general bound for α, we will first examine the con-
vergence of the 2 × 2 problem shown in section 2 because this problem is relatively
easy to analyze and because we can obtain a much tighter upper bound on α in this
special case.

In section 4.2, we will use a more sophisticated technique to derive an upper
bound for α that is more general but somewhat pessimistic.

4.1. The 2×2 case. Before we get to the main result, we will first show that the
ratio between the two components of the charge density oscillates around 1 regardless
of the choice of α. We will later show that the magnitude of the oscillation decreases
to zero when α is sufficiently small.

Lemma 2. Let y = (y1 y2)
T be the eigenvector associated with the smallest

eigenvalue of H(X) defined in (3), where X = (x1 x2)
T with |x1| > |x2|. If α > 0 in

(3), then |y2| > |y1|.
Proof. It is straightforward to write down the inverse of L defined in (6) and show

that

L−1ρ(X) =
1

3

(
2x2

1 + x2
2

x2
1 + 2x2

2

)
.

Consequently, the two diagonal elements in the second term of H(X) in (3) are simply

(14) β1 =
α

3
(2x2

1 + x2
2) and β2 =

α

3
(x2

1 + 2x2
2).

Suppose λ is an eigenvalue of H(X); then

(15) det

(
2 + β1 − λ −1

−1 2 + β2 − λ

)
= (2 + β1 − λ)(2 + β2 − λ) − 1 = 0.

If we let φ(λ) = (2 + β1 − λ)(2 + β2 − λ), then eigenvalues of H are solutions to the
equation φ(λ) = 1.

It is easy to see from (14) that

(16) β1 − β2 =
α

3
(x2

1 − x2
2) > 0,

since |x1| > |x2|. Therefore, the two eigenvalues of H(X), which are distinct roots of
the quadratic equation φ(λ) = 1, must satisfy

(17) λ1 < 2 + β2 < 2 + β1 < λ2.

Let y = (y1 y2)
T be the eigenvector associated with λ1. It follows from H(X)y = λ1y

that

(18) (2 + β1 − λ1)y1 = y2.
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Because (17) implies 0 < 2 + β2 − λ1 < 2 + β1 − λ1, it follows from (15) that

2 + β1 − λ1 > 1.

Consequently, we can deduce from (18) that |y2| > |y1| > 0.
Lemma 3 confirms the observation we made in Figure 2(b), namely, that the ratio

between the first and second components of ρ oscillates around 1 in the SCF iteration.
The convergence of x1 and x2 to the optimal solution can be easily proved if we can
show that

|y2|
|y1|

<
|x1|
|x2|

when |x1| > |x2|,(19)

or

|y1|
|y2|

<
|x2|
|x1|

when |x2| > |x1|.(20)

Without loss of generality, we will establish the condition under which (19) holds.
However, before we do that, let us first express y2/y1 as a function of β1 − β2.

Lemma 3. If β1 and β2 are defined by (14), then

(21)
y2

y1
=

(β1 − β2) +
√

(β1 − β2)2 + 4

2
,

where y = (y1, y2)
T is the eigenvector associated with the smallest eigenvalue of H(X).

Proof. Let δ = y2/y1 = 2 + β1 − λ1. It is easy to show that

2 + β2 − λ1 = δ − (β1 − β2).

Hence, it follows from (15) that

(22) δ2 − (β1 − β2)δ − 1 = 0.

Solving (22) for δ and taking the positive root yields (21).
Note that if x1 = x2 =

√
2/2, then β1 − β2 = 0. In this case, it follows from

(21) that y2/y1 = 1, which matches our intuitive expectation that the SCF iteration
should converge right away when the initial guess is the solution to (1).

The following theorem establishes the condition that guarantees the monotonic
convergence of the SCF iteration when the initial guess is not the solution to (1).

Theorem 2. Let X = (x1 x2)
T be an initial guess of the solution to (1), where

H(X) is defined by (3), and let (y1 y2)
T be the eigenvector associated with the smallest

eigenvalue of H(X). If |x1| > |x2|, then

(23)

∣∣∣∣y2

y1

∣∣∣∣ <
∣∣∣∣x1

x2

∣∣∣∣
when the parameter α in (3) satisfies

(24) 0 < α ≤ 3.

Proof. Applying the inequality
√

(β1 − β2)2 + 4 ≤ (β1 − β2) + 2 to (21) yields

y2

y1
≤ β1 − β2 + 1.
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If |x1| = 1 and x2 = 0, then |y2/y1| < ∞ = |x1/x2| for any choice of α > 0. Thus
(23) certainly holds when α satisfies (24).

If x2 
= 0, it follows from (16) that

y2

y1
− 1 ≤ α

3
(x2

1 − x2
2)

=
α

3
(|x1| − |x2|)(|x1| + |x2|)

=
α

3

[
|x2|(|x1| + |x2|)

](∣∣∣∣x1

x2

∣∣∣∣− 1

)

≤ α

3

(
x2

1 + x2
2

2
+ x2

2

)(∣∣∣∣x1

x2

∣∣∣∣− 1

)

=
α

6
(1 + 2x2

2)

(∣∣∣∣x1

x2

∣∣∣∣− 1

)
.

Since x2
1 + x2

2 = 1 and |x1| > |x2|, x2
2 must be less than 1/2. Consequently,

y2

y1
− 1 <

α

3

(∣∣∣∣x1

x2

∣∣∣∣− 1

)
.

Thus (23) holds if α ≤ 3.

The upper bound for α established in Theorem 2 is slightly pessimistic because
our experiments show that the SCF iteration converges for α as large as 6.0. However,
it is not terribly loose because our experiments also show that convergence failure
occurs when α = 6.5.

4.2. The more general case. Our analysis of the SCF iteration for the 2 × 2
problem relies heavily on the symmetry property of the problem and the fact that
the solution to the nonlinear eigenvalue problem satisfies |x1| = |x2|. It is difficult to
apply this approach to the more general case in which n > 2 and k > 1.

Instead of tracking how eigenvectors of H(X) vary from one iteration to another,
we will focus in this section on the change in charge density ρ(X). We will use a tech-
nique developed in [9] to characterize the mapping between the input charge density
used to construct H(X) in (3) and the output charge density obtained directly from
the desired eigenvectors of H(X) via (2). We will show that under certain conditions
this mapping becomes a contraction when α < αmax for some αmax that depends on
the minimum gap between the kth and the k + 1st eigenvalues of H(X), the norm of
L−1, and the problem size n.

We will again assume that there is a gap between the kth and k+1st eigenvalues
of H(X) for all X ∈ R

n×k that satisfies XTX = Ik, and this gap is larger than some
lower bound δ > 0. (This is the UWP condition defined in [1].) The significance of
this gap will become clear in the following.

Suppose the eigenvalues of H(X) are

λ1 ≤ λ2 ≤ · · · ≤ λk < λk+1 ≤ · · · ≤ λn,

for a given X that satisfies XTX = Ik, and the corresponding eigenvectors are
y1, y2, . . . , yn. By definition, the density matrix associated with Y = (y1, y2, . . . , yk) is

D(Y ) = Y Y T .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCF CONVERGENCE 1783

An alternative way to represent this density matrix is

D = ZΩZT ,

where Z = (y1, y2, . . . , yn) and Ω = Diag(1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0).

Because λk < λk+1, we can construct a filter function φ(λ) that satisfies

(25) φ(λ) =

{
1 for λ = λ1, λ2, . . . , λk,
0 for λ = λk+1, λk+2, . . . , λn.

If φ(λ) is continuous and differentiable, then we can represent the charge density,
which is normally defined as

ρ(Y ) = diag(D(Y )),

in an alternative form given by

ρ = diag(φ(H)).

If H is constructed from the charge density ρin, then

ρout = diag[φ(H(ρin))]

defines a mapping η from ρin to ρout, and this is the mapping implicitly constructed
at each SCF iteration.

We would like to identify the condition under which η becomes a contraction.
Such a condition will ensure that the SCF iteration converges to a fixed point of η
that is the solution to our nonlinear eigenvalue problem.

To seek such a condition, we will show that

(26) ‖η(ρ1) − η(ρ2)‖1 < γ‖ρ1 − ρ2‖1

for any ρ1 and ρ2 that satisfy the standard definition (2), and identify the requirement
under which γ < 1.

Constructing a proper filter function is the key to proving (26). We will choose
φ(t) to be a Fermi–Dirac distribution [4] of the form

(27) φ(t) = fμ(t) =
1

1 + eβ(t−μ)
,

where μ is implicitly determined by the input matrix argument to φ(t) and β > 0 is
a constant. To be specific, μ is the solution of the equation

(28) trace(φ(H)) = trace(fμ(H)) = k.

Because
∑n

i=1 fμ(λi) is monotonic with respect to μ for a fixed β, the solution to (28)
is unique for any choice of β and H. Figure 5 shows how Fermi–Dirac distributions
look with different β values and μ = 0. Notice that a larger β value leads to a sharper
drop-off of φ(t) from 1 to 0.

If the UWP condition holds, then there exists a constant β sufficiently large so
that (25) is fulfilled in finite precision arithmetic.
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Fig. 5. Fermi–Dirac distribution fμ(t) = 1
1+eβ(t−μ) for μ = 0.

Let H1 and H2 be Hamiltonians constructed from the charge densities ρ1 and ρ2,
respectively. It is easy to see that

‖η(ρ1) − η(ρ2)‖1 = ‖diag[fμ1
(H1)] − diag[fμ2

(H2)]‖1

≤ ‖diag[fμ1(H1) − fμ2(H1)]‖1 + ‖diag[fμ2(H1) − fμ2(H2)]‖1.(29)

Without loss of generality, let us assume μ1 ≥ μ2. As a result, fμ1(t) ≥ fμ2(t) for
any t. Hence

‖diag[fμ1(H1) − fμ2(H1)]‖1 = trace[fμ1(H1) − fμ2(H1)]

= trace[fμ1
(H1)] − trace[fμ2

(H1)].(30)

Since trace[fμ1(H1)] = trace[fμ2
(H2)] = k, it is easy to see that

trace[fμ1(H1)] − trace[fμ2(H1)] = trace[fμ2(H2)] − trace[fμ2(H1)]

= trace[fμ2(H2) − fμ2(H1)]

≤ ‖diag[fμ2
(H2) − fμ2

(H1)]‖1.(31)

Consequently, it follows from (29), (30), and (31) that

‖η(ρ1) − η(ρ2)‖1 ≤ 2‖diag[fμ2(H2) − fμ2(H1)]‖1

≤ 2n‖fμ2
(H2) − fμ2

(H1)‖1.(32)

Now to show (26) and to derive an upper bound for α, all we need to do is show
that

‖fμ2(H2) − fμ2
(H1)‖1 <

γ

2n
‖ρ1 − ρ2‖1

for some γ that is proportional to α. Before we do that, we will first prove the following
lemma, which allows us to establish a desirable relationship between fμ2(H2)−fμ2(H1)
and H2 −H1.
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Lemma 4. Let A,B ∈ R
n×n be two symmetric matrices, and let f(t) be the Fermi–

Dirac distribution defined in (27). Suppose A = VADAV
T
A and B = VBDBV

T
B are the

spectral decompositions of A and B, respectively, i.e., V T
A VA = V T

B VB = I and

DA =

⎛
⎜⎜⎜⎝

λA
1

λA
2

. . .

λA
n

⎞
⎟⎟⎟⎠ , DB =

⎛
⎜⎜⎜⎝

λB
1

λB
2

. . .

λB
n

⎞
⎟⎟⎟⎠ .

Then the identity

f(A) − f(B) = VA(C � Δ)V T
B

holds, where Δ = V T
A (A−B)VB , the (j, k)th entry of the matrix C is defined by

Cj,k =

⎧⎨
⎩

f(λA
j )−f(λB

k )

λA
j −λB

k
if λA

j 
= λB
k ,

f ′(λ) if λA
j = λB

k = λ,

and C � Δ denotes the Hadamard product of C and Δ.
Proof. It follows from the matrix version of the Cauchy integral formula [3] that

(33) f(A) − f(B) =
1

2πi

∮
Γ

f(z)

[
(zI −A)−1 − (zI −B)−1

]
dz,

where Γ is a closed contour that contains the spectra of both A and B.
Using the identity

(zI −A)−1 − (zI −B)−1 = (zI −A)−1(A−B)(zI −B)−1,

we can express the right-hand side of (33) as

1

2πi

∮
Γ

f(z)VA(zI −DA)−1V T
A (A−B)VB(zI −DB)−1V T

B dz

=
1

2πi

∮
Γ

f(z)VA[(wA(z)wB(z)T ) � Δ]V T
B dz,(34)

where wA = diag[(zI −DA)−1], wB = diag[(zI −DB)−1].
Since the only term in (34) that contains z is wA(z)wB(z)T , it follows that

f(A) − f(B) = VA

[(
1

2πi

∮
Γ

f(z)wA(z)wB(z)T dz

)
� Δ

]
V T
B .

Let

C =
1

2πi

∮
Γ

f(z)wA(z)wB(z)T dz.

It is easy to verify that the (j, k)th entry of C can be expressed as

(35) Cj,k =
1

2πi

∮
Γ

f(z)

(z − λA
j )(z − λB

k )
dz.
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If λA
j 
= λB

k , the expression above can be evaluated as

(36) Cj,k =
1

2πi

1

λA
j − λB

k

∮
Γ

(
f(z)

z − λA
j

− f(z)

z − λB
k

)
dz.

If λA
j = λB

k = λ, (35) becomes

(37) Cj,k =
1

2πi

∮
Γ

f(z)

(z − λ)2
dz.

Invoking the scalar version of the Cauchy integral formula in both (36) and (37), we
then obtain

Cj,k =

⎧⎨
⎩

f(λA
j )−f(λB

k )

λA
j −λB

k
if λA

j 
= λB
k ,

f ′(λ) if λA
j = λB

k = λ.

Suppose H1 = X1Λ1X
T
1 and H2 = X2Λ2X

T
2 are the spectral decompositions of

H1 and H2, respectively. A direct application of Lemma 4 to H1 and H2 yields

‖fμ2(H2) − fμ2(H1)‖1 = ‖X2[C � (XT
2 (H2 −H1)X1)]X

T
1 ‖1

≤ n‖C � (XT
2 (H2 −H1)X1)‖1

≤ n2‖C‖1‖H2 −H1‖1

≤ αn2‖C‖1‖L−1‖1‖ρ2 − ρ1‖1.(38)

To establish an upper bound for ‖C‖1, we can use the mean value theorem and the
fact that

|f ′
μ(t)| =

∣∣∣∣ −βeβ(t−μ)

(1 + eβ(t−μ))2

∣∣∣∣ ≤ β

4

to first show that

max
j,k

|Cj,k| ≤ β/4.

It follows immediately that

(39) ‖C‖1 ≤ nβ/4.

Combining (32), (38), and (39), we obtain

‖η(ρ2) − η(ρ1)‖1 ≤ αn4β‖L−1‖1

2
‖ρ2 − ρ1‖1.

We can easily see that η is a contraction if α satisfies

(40) α <
2

n4β‖L−1‖1
.

It may seem surprising that the upper bound that ensures η(ρ) becomes a contrac-
tion depends on a parameter β that is present in neither the original eigenvalue prob-
lem (1) nor the description of the SCF iteration. However, if we go back to Figure 5
and recall that the choice of β is dictated by the smallest gap between λk(H) and



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCF CONVERGENCE 1787

λk+1(H) for all valid H matrices, then it becomes clear that the dependency of (40)
on β simply says that for problems in which the gap between λk(H) and λk+1(H)
is small, a smaller upper bound of α is required to ensure that the SCF iteration
converges from any starting point.

We should point out that the bound established in (40) is pessimistic. In par-
ticular, the n4 factor on the denominator, which is introduced by the use of a loose
inequality in (32) and the use of 1-norms to bound the norms of the orthogonal ma-
trices X1 and X2 in (38), is rather conservative. In our numerical experiments, we
observed that the SCF iteration may converge for α values that are much larger than
the right-hand side of (40). However, the qualitative behavior of the SCF iteration
seems to be correctly characterized by (40). Table 1 shows both the experimentally
observed largest α values (α1) for which the SCF iteration converges and the experi-
mentally observed smallest α values (α2) for which the SCF iteration fails to converge
for problems with different choices of n and k. The optimal bound lies within the inter-
val (α1, α2). We can clearly see that the optimal bound for α decreases as n increases.
For the same value of n, changing the value of k in Table 1 results in a change of the
gap λk+1 − λk. For each combination of n and k, the smallest gap among the various
choices of α’s that we experimented with is shown in Table 1. The last two rows of
Table 1 clearly indicate that for the same n, a smaller λk+1 − λk, which corresponds
to a larger β value in (40), leads to a more restrictive choice of α for which the SCF
iteration is guaranteed to converge.

Table 1

Observation from numerical experiments performed to determine the optimal bound for α. In
these experiments, the L matrix in (3) is constructed as the one-dimensional discrete Laplacian with
2 on the diagonal and −1 on the sub- and sup-diagonals. The dimension of the matrix is n. We
look for k smallest eigenvalues and the corresponding eigenvectors. The SCF iteration converges for
α ≤ α1 and fails to converge for α ≥ α2. This implies that the optimal bound for α lies in (α1, α2).
The spectral gap λk+1−λk listed here is smallest among all gaps associated with the different choices
of α values that we experimented with. These gaps were computed using a trust-region enabled SCF
iteration discussed in [11].

n k λk+1 − λk ‖L−1‖1 α1 α2

2 1 2.0 1.0 6.0 6.5
10 2 0.37 15.0 0.8 0.9
100 10 0.02 1275.0 0.05 0.06
100 4 0.0087 1275.0 0.002 0.0025

In general, the minimum gap between λk(H) and λk+1(H) is not known a priori.
However, when α is sufficiently small, we can estimate such a gap by calculating the
difference between the kth and k+ 1st eigenvalues of L. Such an estimate can in turn
be used to derive a suitable β value that would allow (27) to achieve the filtering effect
(25) in finite precision arithmetic.

5. Concluding remarks. We examined the convergence of the self-consistent
field (SCF) iteration used to solve a class of nonlinear eigenvalue problems defined
in (1). Our analysis shows that for this type of problem the SCF iteration produces
a sequence of approximate solutions X(i) that contain two convergent subsequences.
However, the limit points associated with these convergent subsequences may be dif-
ferent, as we demonstrated in a numerical example. We identified the condition under
which the SCF iteration becomes a contractive fixed point iteration that will converge
to the solution of the nonlinear eigenvalue problem. Our main result suggests that this
condition can be characterized by an upper bound placed on the parameter α in (1).
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In the most general case, the upper bound we derived characterizes the qualitative
behavior of the SCF iteration, although the bound itself is somewhat pessimistic.
When the dimension of the problem is 2× 2, we can give a much tighter bound using
a completely different technique. To generalize such a bound for the Hartree–Fock
(HF) or the Kohn–Sham (KS) problem, we need to analyze the relative contribution
of the exchange and exchange-correlation terms to the HF and KS Hamiltonians,
respectively. We will pursue such analysis in future research.
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